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Summary. This thesis is concerned with new numerical and algorithmic tools for flows with pressure and shear

dependent viscosity together with the necessary background of the generalized Navier-Stokes equations.

In general, the viscosity can depend on the density, for instance in the case of compressible flow, and if the relation

between the pressure and the density is reversible, the viscosity may depend on the pressure. This, however, is

not the case for incompressible powder flow where the viscous stresses may change with varying pressure whereas

density changes remain negligible. Meanwhile, the viscosity of the flow may change as the shear rate is varied,

for instance in Bingham flow. Both dependencies can occur together, something that holds for the so-called non-

flowing or slow-flowing materials, namely slow-flowing smaller-sized bulk powder. The Navier-Stokes equations

in primitive variables (velocity-pressure) are regarded as the privilege answer to incorporate these phenomena.

The modification of the viscous stresses leads to generalized Navier-Stokes equations extending the range of their

validity to such flow.

The resulting equations are mathematically more complex than the Navier-Stokes equations. From the numerical

point of view several problems arise. Firstly, the difficulty of approximating incompressible velocity fields. Secondly,

poor conditioning and possible lack of differentiability of the involved nonlinear functions due to the material laws

and finally, the eventual domination of convective effects.

The difficulty related to the approximation of incompressible velocity fields was treated by applying the non-

conforming Rannacher-Turek Stokes element. However, with this approach another problem arises related to the

low order nonconforming approximation for problems involving the symmetric part of the gradient: the classical

discrete Korn’s inequality is not satisfied. To handle this, the interior penalty stabilized finite element method

in the frame of Nitsche’s method was used. It requires a modification of the discrete bilinear form by adding an

interface term, penalizing the jump of the velocity over edges. This was achieved via a modified procedure in the

derivation of a discontinuous Galerkin formulation. This general approach is referred to as edge-oriented finite

element method.

The lack of differentiability was treated by regularization. Then, the continuous Newton method as lineariza-

tion technique was applied. The method consists of working directly on the variational integrals. Then, the

corresponding continuous Jacobian operators were derived. Consequently, a convergence rate of the nonlinear

iterations independent of the mesh refinement was achieved. This continuous approach is advantageous: Firstly,

the explicit accessibility of the Jacobian allows adaptive treatment which leads to a robust method with respect

to the starting guess. Secondly, it avoids the delicate task of choosing the step-length which is required for divided

differences approaches.

Another criterion for the success of any numerical method is to overcome the numerical instabilities at high

Reynolds number such that the Galerkin formulation fails and causes spurious oscillations. Although the edge-

oriented method was introduced in the frame of hybrid finite element methods, it has been shown that the

appropriate choice of edge-oriented stabilization is able to provide simultaneously excellent results regarding

robustness and accuracy for both apparent problems of the numerical solution: the lack of coercivity and a

convection dominated problem.

A fundamental issue for edge-oriented stabilization is the growing stencil for the stiffness matrix. The jump terms

involve more than the adjacent elements; the problem of storing the new stabilization matrix arises. To overcome

the storage problem, the stiffnes matrix would contain a part of stabilization matrix which fits into the same

standard FEM data structure, while the complementary part is assembled via elementwise operations. Moreover,

the construction of preconditioners for the corresponding linear systems would only include parts of the matrix.

In parallel, a nonstandard edge-oriented data structure has been developed to support the additional contributed

elements. So, the local element and edge matrices are easily deduced from the global one. Accordingly, efficient

Vanka smoothers were introduced, namely a full cell-oriented Vanka smoother and edge-oriented Vanka smoother.

In doing so, it became possible to privilege edge-oriented stabilization for CFD simulations. Moreover, the velocity-



pressure coupling was treated in linearized saddle point problems via local Multilevel Pressure Schur Complement

methods.

The principle of empiric verification stands behind the wide range of well known benchmark calculations introduced

to fulfill the objective need of performance.

Key words: Edge-oriented Finite Element Method, Multilevel Pressure Schur Complement, Newton’s

Method, Nonlinear Fluids, Granular Material.
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1

Introduction

The aim of this thesis is to present new numerical and algorithmic tools for the solution of flow problems

with shear and pressure dependent viscosity. The Navier-Stokes equations are generalized to model flow

of material involving the dependence of the viscosity from both shear rate and pressure, namely granular

material. So important is this issue and so relevant to industrial flows, that reliable numerical simulation

is required. The original numerical techniques in the field of incompressible Navier-Stokes equations is

extended with respect to these material models.

The Cauchy stress tensor is given by σ = 2ν(DII(u), p)D(u) − pI, where p is the pressure; D(u) =
1
2 (∇u + ∇T u) is the rate of deformation tensor, u denotes the velocity, and ν(·) is the (nonlinear)

viscosity which may depend on the second invariant of the deformation rate tensor DII(u) = 1
2 tr(D2(u))

and the pressure p. Then, depending on the chosen viscosity function ν(·) the following prototypical

models are considered:

1. Newtonian law

ν(z, p) = νo (νo > 0), (1.1)

2. Carreau law

ν(z) = ν∞ + (ν0 − ν∞)(1 + λz)
r
2
−1 (νo > ν∞ ≥ 0, λ > 0, r > 1), (1.2)

3. Power law

ν(z, p) = νoz
r
2
−1 (νo > 0, r > 1), (1.3)

4. Bingham law

ν(z, p) = νoz
− 1

2 (νo > 0), (1.4)

5. Schaeffer’s law

ν(z, p) =
√

2 sinφ pz−
1

2 (φ is angle of internal friction). (1.5)

In all cases, the velocity u and the pressure p satisfy the following momentum and continuity equations

which we refer to as generalized Navier-Stokes equations

∂u

∂t
+ u · ∇u − div (2ν(DII(u), p)D(u)) + ∇p = f , div u = 0 . (1.6)

especially, for Newtonian flow with constant viscosity (1.6) becomes
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∂u

∂t
+ u · ∇u − ν∆u + ∇p = f , div u = 0 . (1.7)

In the following, let us consider the generalized Navier-Stokes problem in a bounded domain Ω ⊂ R2,

and use the rate of deformation tensor formulation (1.6) instead of the gradient formulation as in (1.7),

unless it is stated explicitly.

The investigation is based on the work done by Turek et al. [91, 92], in which their research activities in

the field of the incompressible Navier-Stokes equations have been concentrated on the development and

realization of numerical techniques which provide sufficient flexibility and particularly efficiency for the

solution of nonsteady flow problems for medium Reynolds numbers in realistic 2D and 3D configurations.

As a main result, they developed the general framework of the Multilevel Pressure Schur Complement

methods [92] which allows a classification and generalization of most of the available Navier-Stokes solvers

in the CFD community (see for instance [27, 28, 29, 37, 70]). Then, having this general description, one

has the possibility to select those ingredients for a new Navier-Stokes solver which can combine the higher

accuracy of fully coupled Galerkin-type approaches - which solve Oseen-like equations in an outer Newton-

like iteration - with the much faster projection-like schemes (following the ideas of Chorin [20], Van Kan

[102] and Gresho [35]) which however have problems with accuracy and robustness due to their operator-

splitting character. In combination with rigorous multigrid applications and special nonconforming FEM

spaces, very efficient Navier-Stokes solvers have been derived which can handle the complete regime of

very low up to medium Reynolds numbers in a steady as well as nonsteady context, on more or less

general domains which include anisotropic mesh refinement in space and time. Due to the fully implicit

treatment, the time step size is mainly due to accuracy reasons - in contrast to any ‘hidden’ stability

restriction - such that error control approaches become feasible. The details for this general Multilevel

Pressure Schur Complement approach are described in [92] and the realization is partially included in

the FeatFlow software [91].

The contribution of this thesis has three aspects: the spatial discretization, the nonlinear solver and the

linear solver. In part I, the selected examples from known CFD benchmarks are presented with the aim

of providing satisfactory tests of the solver component, and more advanced applications from real life

industry are described in detail in part II. The thesis follows the following organization:

Chapter 2: This chapter deals with a nonconforming finite element method for incompressible flow with

the unavoidable stabilization techniques required for both: Firstly, the lack of coercivity due to the use

of deformation tensor formulation rather than gradient formulation. This is done by edge-oriented stabi-

lization. Secondly, the classical stabilization techniques for convection terms namely streamline diffusion

and upwinding with the corresponding error analysis.

Chapter 3: The nonlinear coupling of the pressure and shear rate in the viscosity function is linearized

via Newton method which leads to an additional term introducing a new nonclassical linear saddle point

problem. Also, the investigations go towards the growing stencil due to the edge-oriented stabilization

which leads to nonstandard FEM data structure. The corresponding multigrid components are analyzed

in combination with local Multilevel Pressure Schur Complement methods.

Chapter 4: The deeper the investigation proceeds the clearer it becomes that a comparative study could

give a view without ambiguity to our numerical components. For this reason, the chapter aims to examine

the influence of two different FEM discretization techniques (conforming Q2/P1, nonconforming Q̃1/Q0

Stokes element) and solution procedures (nonlinear Newton variants and multigrid versus Krylov-space

solvers for linear subproblems) onto the approximation properties and particularly the total efficiency of

corresponding CFD simulation tools for non-Newtonian flow of power law type.
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Chapter 5: To move towards a real CFD application, the edge-oriented stabilization method is analyzed

without preventing any questions concerning the necessity, robustness and efficiency. It is shown that the

appropriate choice of edge-oriented stabilization could be a candidate for a black box tool for all relevant

Reynolds numbers and nonlinear viscosity.

Chapter 6: As an advanced real life application the generalized Navier-Stokes problem is developed to

describe the flow of granular material in which the non-Newtonian effect of viscous stress varies with the

shear rate and the pressure is considered. Drawing the main mathematical challenges, giving briefly how

to overcome them and then presenting simulations which confirm the well known physical behavior for

granular material, namely the instability in a hopper and the independence of drag force of the velocity.





Part I

Numerical Methods and Simulation Techniques for Nonlinear

Incompressible Flow Problems
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Nonconforming Finite Element Methods for Incompressible

Flow

Nonconforming FEM approaches have proven advantageous for incompressible flow problems due to their

excellent stability properties with respect to the LBB condition (2.17) and anisotropic mesh deformation

[19, 23, 26, 65, 69, 74, 75]. Moreover, together with discrete projection techniques or Multilevel Pressure

Schur Complement methods they allow very efficient FEM solvers for nonstationary problems [92]. And,

finally, their edge-oriented degrees of freedom lead to very compact data structures which have big advan-

tages for parallel high performance computations [5, 13, 94, 96, 97]. They are quite natural candidates to

include error control mechanisms and concepts for adaptivity with respect to meshes in space and time

[53, 84, 95].

2.1 Preliminaries

Let us consider the Laplace equation in a convex polygonal domain Ω:

−△u = f , u|∂Ω = 0 , (2.1)

where f ∈ L2(Ω). For u ∈ H1
0 (Ω) ∩H2(Ω), then (see [38])

||u||2 ≤ CΩ ||f ||0 , (2.2)

where ||·||2 := ||·||H2(Ω) and ||·||0 := ||·||L2(Ω).

To derive the weak formulation, first consider a test function v ∈ H1
0 (Ω), then multiply (2.1) with v and

integrate by parts to obtain the problem

Find u ∈ H1
0 (Ω) such that:

a(u,v) = F (v) ∀v ∈ H1
0 (Ω) , where (2.3)

a(u,v) =

∫

Ω

∇u∇v dx , F (v) =

∫

Ω

f v dx . (2.4)

Let Th be a triangulation of the domain Ω and Vh the space of approximations, then the approximate

problem reads

Find uh ∈ Vh(Ω) such that:

ah(uh,v) =F (v) ∀v ∈ Vh , where

ah(u,v) =
∑

T∈Th

∫

T

∇u∇v dx ∀u,v ∈ Vh .
(2.5)
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2.1.1 Error analysis

This section will mainly sketch the results concerning the approximation in H1
0 (Ω). More detailed presen-

tation can be found in Brenner and Scott [10], Brezzi and Fortin [11], Raviart and Thomas [76], Girault

and Raviart [33], and Ciarlet [21]. Standard approximations of Sobolev spaces can be subdivided into two

classes: conforming and nonconforming methods.

Conforming finite element approximation: In order to obtain a conforming finite element approx-

imation, let us introduce a finite dimensional subspace V c
h ⊆ H1

0 (Ω)

V c
h =











v ∈ L2(Ω) : v|T ∈ P1(T ),∀T ∈ Th

v is continuous at the vertices of Th and

v = 0 at the vertices along ∂Ω.











, (2.6)

and define the norm ||v||1 = (a(v,v))
1

2 = |v|H1(Ω). It follows from V c
h ⊆ H1

0 (Ω) that ah(u,v) =

a(u,v) ∀u,v ∈ V c
h , then

||u − uh||1 = min
v∈Vh

||u − v||1 . (2.7)

With the linear interpolation operator πh and for u ∈ H2(Ω) the error estimate holds (Brenner and

Scott [10])

||u − uh||1 ≤ ||u − πhu||1 ≤ Ch ||u||2 . (2.8)

Nonconforming finite element approximation: In contrast to the conforming finite element approx-

imations, the nonconforming finite element approximations are not required to be globally continuous.

It can also be seen in the frame of external approximations [11]. The nonconforming finite dimensional

subspace V nc
h is defined as follows

V nc
h =











v ∈ L2(Ω) : v|T ∈ P1(T ),∀T ∈ Th

v is continuous at the midpoints of Th and

v = 0 at the midpoints along ∂Ω











. (2.9)

It is important to notice that V nc
h * H1

0 (Ω). Let us introduce the energy norm ||v||h = (ah(v,v))
1

2 on

V nc
h + H1

0 (Ω). Then, using the coerciveness and continuity assumptions, the following result known as

Scott-Strang lemma holds (Brenner and Scott [10], Ciarlet [21] and Strang and Fix [86])

||u − uh||h ≤ min
v∈Vh

||u − v||h + max
v∈Vh\{0}

|ah(u,v) − F (v)|
||v||h

. (2.10)

The right hand side of the inequality (2.10) contains the approximation error (first term) plus consistency

error (second term). The consistency error measures how well the exact solution satisfies the discrete

equations. This error vanishes for Vh ⊆ H1
0 (Ω) and the standard result for the conforming case (2.7) is

recovered. Also here for u ∈ H2(Ω) the error estimate holds (Brenner and Scott [10])

||u − uh||h ≤ Ch ||u||2 . (2.11)

The question arises, then, why one would like to use nonconforming finite elements ? Clearly, there

are situations where nonconforming methods are suitable in for instance the incompressible fluid flow

problems. In fact, the only function in V c
h which satisfies the divergence-free condition is the zero vector

function. In order to obtain a good approximation by a conforming method, one must use higher-order

polynomials. On the other hand, the space V nc
h can be used to solve such a problem even with low order

polynomials (Brenner and Scott [10]).
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2.2 Problems involving incompressibility

2.2.1 Navier-Stokes equations

Let us consider the nonstationary (or stationary, without the term ∂u

∂t ) generalized Navier-Stokes problem

(1.6) in a bounded domain Ω ⊂ R2, first discretize the equations (1.6) in time by a standard numerical

solution method for ODEs. For instance, the implicit θ-scheme for θ in the range of [0, 1] (backward Euler

or Crank-Nicholson) or the Fractional-step-θ-scheme yields a sequence of boundary value problems of the

form [92]

Given un, compute u = un+1 and p = pn+1 by solving

[αI + θ(u · ∇ −∇ · ν(u, p)D)]u + ∇p = [αI − θ1(u
n · ∇ −∇ · ν(un, pn)D)] un

+ θ2f
n+1 + θ3f

n
(2.12)

subject to the incompressibility constraint ∇ · u = 0.

where (·)n indicates the value of the generic quantity (·) at time step tn for time-dependent problems and

the n-th iteration for the steady-state formulation. The time-dependent problem is defined for α := 1/∆ t,

while the steady-state formulation is recovered for α := 0, θ = θ1 = θ3 = 1, and θ2 = 0.

For the spatial discretization let Vh and Qh be approximate spaces of H1
0 (Ω) and L2(Ω) respectively,

then the approximate problem may have the following algebraic system form:

Compute u and p by solving

Au + B p = g , B
T u = 0 where (2.13)

g = [αM − θ1L(un, pn) − θ1N(un)] un + θ2f
n+1 + θ3f

n. (2.14)

Here, M is the (consistent or lumped) mass matrix, B is the discrete gradient operator and −B
T is the

associated divergence operator. Furthermore,

Au = [αM + θL(u, p) + θN(u)] u, (2.15)

where L(u, p) is the discrete nonlinear viscouss term and N(u) is the nonlinear transport operator.

Furthermore, the fully discretized equations (2.12) as well as the linear subproblems can be solved within

the outer iteration loop for a Fixpoint defect correction or Newton method. They may admit the following

representation:
[

A B

B
T 0

] [

u

p

]

=

[

g

0

]

. (2.16)

This is a saddle point problem in which the pressure acts as the Lagrange multiplier for the incom-

pressibility constraint. As a consequence, the choice of the spaces Vh and Qh is subject to the so-called

LBB-condition named after Ladyzhenskaya, Babuška and Brezzi[33]

min
qh∈Qh

max
vh∈Vh

(qh,∇ · vh)

||qh||0||∇vh||0
≥ β > 0, (2.17)

where β is a mesh-independent constant and (·, ·) the L2 inner product. This condition is also known as

the inf-sup condition and it is hard to check in its abstract form (2.17). In practice, it is deduced from

the continuous one by construction of a family of uniformly continuous operators embedded into stable

subspaces [11].
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2.2.2 Mixed Stokes elements

For the generalized Navier-Stokes equations (1.6), a mixed finite element method based on a primitive

formulation is advantageous. This formulation allows direct and simultaneous access to the most relevant

physical quantities: pressure and velocity. Furthermore the method is suitable for the treatment of the

nonlinear coupling of the pressure and velocity in the viscous term.

Let us now present two examples of admissible elements, namely conforming Q2/P1 (see [7, 11]) and

nonconforming Q̃1/Q0 see [75]. Currently, these two pairs of elements are probably the most popular on

quadrilateral meshes. They are linked in the discontinuous pressure group (Crouzeix-Raviart family [24])

which leads to cell oriented Vanka smoother [50]. So, the analysis concerning the linear solver for Q̃1/Q0

is to be deduced similarly for Q2/P1.

The nonconforming Stokes element Q̃1/Q0

For the parametric rotated bilinear element Q̃1, let ψT : T̂ → T be the bilinear transformation for each

T ∈ Th to the unit square. So, Q̃1 is defined by

Q̃1 :=
{

q ◦ ψ−1
T : q ∈ span < 1, x, y, x2 − y2 >

}

. (2.18)

The degrees of freedom are determined by the following nodal functionals {F (a,b)
Γ (·), Γ ⊂ ∂Th}, with

F a
Γ := |Γ |−1

∫

Γ

vdγ or F b
Γ := v(mΓ ) (mΓ midpoint of edge Γ ) (2.19)

such that the finite element space can be written as

W a,b
h := {v ∈ L2(Ωh), v ∈ Q̃1(T ),∀T ∈ Th, v continuous with respect to all

nodal functionals F a,b
Γi,j

(·), and F a,b
Γi0

(v) = 0,∀Γi0}.
(2.20)

Here, Γi,j denote all inner edges sharing the two elements i and j, while Γi0 denotes the boundary edges

of ∂Ωh. The corresponding discrete functions will be approximated in the spaces

Vh := W a,b
h ×W a,b

h , Qh :=
{

qh ∈ L2
0(Ω), qh|T = const. ,∀T ∈ Th

}

. (2.21)

A convergence analysis is given in [75] and computational results are reported in [92]. This nonconforming

finite element is a quadrilateral counterpart of the well-known Stokes element of Crouzeix-Raviart [23]

and similarly the stability condition holds for the pair (V a
h , Qh) from the uniform one with a constant

β independent of the mesh’s aspect ratio. In contrast, for the “midpoint oriented” finite element V b
h the

independence of the stability constant on the mesh aspect ratio is restricted with the modification of the

bilinear form B(·, ·) by its numerically integrated version [90]

(B(b)qh,vh) := −
∑

T∈Th

qh
∑

Γ⊂∂T

F b
Γ (vh) · nΓ

≈ −
∑

T∈Th

qh
∑

Γ⊂∂T

∮

Γ

vh · nΓ dγ
(2.22)
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Furthermore, on general nonuniform meshes the bilinear transformations ψT : T̂ → T are of another

polynomial type than the shape functions on T .

γ

π−αΤ
Tn

Fig. 2.1. Deterioration of quadrilaterals (from [90])

Set σh = max {|π − αT |, T ∈ Th} and ih the interpolation operator, so we obtain the following error

estimate [90]

||v − ihv||0 + h ||v − ihv||h ≤ ch(h+ σh) ||v||2 , ∀v ∈ H1
0 (Ω) ∩H2(Ω) (2.23)

In contrast to the parametric counterpart, let (ξ, η) be a local coordinate system obtained by joining the

midpoints of the opposing faces of T .

P1

P2

P3
P4

M1

M2

M3

M4
M

Fig. 2.2. General quadrilateral T

Then, in the nonparametric case, set on each elementT

Q̃1(T ) := span < 1, ξ, η, ξ2 − η2 >, (2.24)

hence, we get the error estimate independent of σh

||v − ihv||0 + h ||v − ihv||h ≤ ch2 ||v||2 , ∀v ∈ H1
0 (Ω) ∩H2(Ω). (2.25)

As a consequence the optimal order convergence estimates holds [75]

||u − uh||h + ||p− ph||0 ≤ c h {||u||2 + ||p||1} . (2.26)

The conforming Stokes element Q2/P1

Let us define the finite dimensional spaces Vh and Qh for the velocity and the pressure approximations

as

Vh = {vh ∈ H1
0(Ωh)2, vh|T ∈ Q2(T )2 ∀T ∈ Th, vh = 0 on ∂Ωh}, (2.27)

Qh = {ph ∈ L2(Ωh), ph|T ∈ P1(T ) ∀T ∈ Th}, (2.28)

and consider for each T ∈ Th the bilinear transformation ψT : T̂ → T to the unit square T . So, Q2(T ) is

defined by
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Q2(T ) =
{

q ◦ ψ−1
T : q ∈ span < 1, x, y, xy, x2, y2, x2y, y2x, x2y2 >

}

(2.29)

with nine local degrees of freedom located at the vertices, midpoints of the edges and in the center of the

quadrilateral. The space P1(T ) consists of linear functions defined by

P1(T ) =
{

q ◦ ψ−1
T : q ∈ span < 1, x, y >

}

(2.30)

with the function value and both partial derivatives located in the center of the quadrilateral, as its three

local degrees of freedom. The inf-sup condition is satisfied (see [7]). However, the combination of the

bilinear transformation ψ with a linear function on reference square P1(T̂ ) would imply that the basis

on the reference square did not contain the full bilinear basis. So, the method can at most be first order

accurate on general meshes (see [3, 7])

||p− ph||0 = O(h). (2.31)

The standard remedy (see [3, 75, 92]) is to consider a local coordinate system (ξ, η) obtained by joining

the midpoints of the opposing faces of T . Then, we set on each elementT

P1(T ) := span < 1, ξ, η > . (2.32)

For this case, the inf-sup condition is also satisfied and the second order approximation is recovered for

the pressure [7, 33]

||p− ph||0 = O(h2). (2.33)

For a smooth solution, the approximation error for the velocity in the L2-norm is of order O(h3) which

can easily be demonstrated for prescribed polynomials or for smooth data on appropriate domains [7].

2.2.3 Elasticity problem and locking

The equations of linear elasticity in two dimensions is defined as follows: Find the displacement u and

the symmetric stress tensor σ such that

σ = λ∇ · uI + 2µD(u) in Ω,

−∇ · σ = f in Ω,

u = g on ∂ΩD,

σ · n = h on ∂ΩN ,

(2.34)

where f and h are given loads, and g is a given boundary displacement. The so-called Lamé constants λ

and µ satisfy 0 < µ1 < µ < µ2 and 0 < λ < ∞ and are related to the Poisson ratioµ and the Young’s

modulus E by the following formulas:

λ =
Eµ

(1 + µ)(1 − 2µ)
, ν =

E

2(1 + µ)
. (2.35)

As the Poisson ratio approaches 1
2 the incompressible behavior dominates and locking phenomena occurs

so that the performance of standard conforming methods will detoriate (see Brenner and Scott [10]). A

remedy is to introduce the dual variable p = −λdiv u and consider the corresponding mixed formulation

(see Brezzi and Fortin [11]). Here again the spaces Vh and Qh are subject to the LBB condition (2.17).

The nonconforming method leads to robust methods with the constraint of fulfilling a discrete Korn’s

inequality. Korn’s inequality guarantees the coercivity of the corresponding weak formulation of problems

(2.34) and (1.6) since it involves the strain tensor operator instead of the gradient operator. In what follows

some results concerning Korn’s inequality are presented.
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2.3 Korn’s inequality

To establish the coercivity of the variational formulations for both problems elasticity (2.34) and general-

ized Navier-Stokes (1.6), appropriate versions of Korn’s inequality are needed. Here, let us briefly outline

the recent results related to the topic and refer the reader to [4, 9, 10, 32] for detailed presentation where

one also finds further references.

Theorem 1. (Classical Korn’s inequality cf. Nitsche [68]) Let d ≥ 2 and Ω ∈ Rd be an open and bounded

domain with Lipschitz boundary. Then there exists c(Ω) > 0 such that

||D(v)||20 + ||v||20 ≥ c ||v||21 (2.36)

for every v ∈ H1(Ω).

Proposition 1. (Korn’s first inequality cf. [68, 83]) Let d ≥ 2 and Ω ∈ Rd be open and bounded with

Lipschitz boundary. Assume that the Dirichlet boundary ∂ΩD has a positive surface measure. Then there

exists c(Ω, ∂ΩD) > 0 such that

||D(v)||20 ≥ c ||v||21 (2.37)

for every v ∈ H1(Ω) with homogeneous Dirichlet boundary value on ∂ΩD.

The extension of Korn’s inequality to the nonlinear case can be found for instance in Fuchs [32]. Recently,

Brenner [9] introduced a general version for piecewise H1 vector fields. In fact, let RM(Ω) be the space

of rigid body motions, defined by

RM(Ω) =
{

a+ ηx : a ∈ Rd, η = −ηT
}

, (2.38)

which is exactly the kernel of the strain tensor D in H1(Ω) (see [9, 83]), then there holds

Proposition 2. (cf.[9]) For any seminorm Φ on [H1(Ω)]d with the following properties:

1. Φ(v) ≤ cΦ ||v||1 ∀v ∈ [H1(Ω)]d, where cΦ is a generic constant depending on Φ, and

2. Φ(m) = 0 and m ∈ RM(Ω) ⇔ m is a constant vector.

Then the following inequality holds

||∇v||0 ≤ cΦ(||D(u)||0 + Φ(v)) ∀v ∈ [H1(Ω)]d. (2.39)

By the way, let us point out some of the early attempts to surmount the instability of the nonconforming

low order approximation with the strain tensor formulation. Turek in [93] has established Korn’s inequality

for the rotated bilinear Q̃1 element. In fact, the strain tensor can be written in the following manner

D(v) =
1

2
(∇v + ∇T v)

= ∇v − 1

2
(∇v −∇T v)

= ∇v − 1

2
(rotv)χ , where

(2.40)

χ =

[

0 −1

1 0

]

and rotv =
∂v2

∂x1
− ∂v1

∂x2
(2.41)
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with appropriate local projection of the rotational operator in the discrete formulation, the discrete Korn’s

inequality holds. For the elasticity problem, Lee et al. [62] introduced high-order polynomials for Q̃1.

The most successful way to establish Korn’s inequality for a low order nonconforming finite element

methods is to use interior penalty stabilized finite element methods in the frame of Nitsche’s method

[9, 39, 98] referred to as edge-oriented stabilization.

2.3.1 Edge-oriented stabilization for the nonconforming element

The continuity requirement, for the Rannacher-Turek element, across the edges of the triangulation is

weakened to the validity of patch test of order one, then the classical discrete Korn’s inequality is not

satisfied [56] which is important for problems involving the symmetric part of the gradient.

Another perspective is to point out Hughes’s argument for the Crouzeix-Raviart element [39, 48]: pre-

scribing the displacement along one side of an element means prescribing the displacement in only one

node, which cannot preclude rigid body rotation.

To avoid this problem, Hansbo and Larson modify the Rannacher-Turek element for elasticity [39], and

treat it with discontinuous Galerkin approximations by Nitsche’s method. Hence, after omitting the

consistency terms involving the normal derivatives on the boundaries of the elements, following Rannacher

and Turek [75], appropriate edge-oriented stabilization techniques (see [9, 39, 98]) have to be included

which directly treat the jump across the interelementary boundaries via adding the following bilinear

forms

〈Ju,v〉 = γ
∑

E∈EI∪ED

1

|E|

∫

E

[u][v]dσ (2.42)

Here, γ = γ(ν) is an additional relaxation parameter and the jump of a function u on an edge E is given

by

[u] =















u+ · n+ + u− · n− on internal edges EI ,

u · n on Dirichlet boundary edges ED,

0 on Neumann boundary edges EN ,

(2.43)

where n is the outward normal to the edge and (·)+ and (·)− indicate the value of a generic quantity (·)
on the two elements sharing the same edge. For a detailed description of the analysis for this stabilization

technique, we refer to [39] and [9].

Corollary 1. (General Korn’s inequality cf. [9])

||v||2h ≤ c(||D(v)||2L2(Ω) + ||v||2L2(Γ ) +
∑

E

1

|E| ||[v]E ||2L2(E)), ∀v ∈
∏

T∈Th

H1(T ). (2.44)

Let us introduce the mesh dependent norm on the space Vh

|||v|||2 =
∑

T∈Th

∫

T

νD(v) : D(v) dx+ 〈Jv,v〉 , where

D(u) : D(v) =
∑

ij

Dij(u)Dij(v).
(2.45)
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2.3.2 Error estimates and robustness

In the following, let us present a priori error estimates for the linear (Stokes) case (see [39, 92]). Then,

the nonlinear case can be treated in the same manner following Baranger and Najib [4].

Theorem 2. (inf-sup condition cf. [40, 39]) There exists a constant β strictly positive and independent

of h such that

β ≤ inf
q∈Qh

sup
v∈Vh

(q,∇ · v)
|||v||| ||q||Qh

, (2.46)

moreover,the following bound for errors holds

||u− uh||h + ||p− ph||0 ≤ c h {||u||2 + ||p||1} . (2.47)

As a first test, let us introduce the specific kernel function on the unit square (see [56]) which takes -1 or

1 on the midpoints (see Fig. 2.3). If u =
∑

iXiφi, then define the (semi-)norm ||u||M = (
∑

i,j MijXiXj)
1

2

for any positive definite matrix M and introduce the constant CM =
||u||M
||u||A

. Let G, T and ST be the stiff-

ness matrices resulting from the discretization including the gradient, deformation tensor and stabilized

deformation tensor, respectively. Then, the following table clearly demonstrates that CT = 0, in contrast

to CST = O(1).

Level NEL ||u||G ||u||T ||u||ST

2 4 0.91 0.63 × 10−15 0.30

3 16 1.1 0.20 × 10−14 0.60

4 64 1.3 0.41 × 10−14 0.76

5 256 1.3 0.69 × 10−14 0.85

6 1024 1.4 0.14 × 10−14 0.90

7 4096 1.4 0.30 × 10−13 0.92

8 16384 1.4 0.61 × 10−13 0.93

Fig. 2.3. The specific kernel function and examples for the constant in Korn’s inequality on an equidistant refined

unit square

2.4 Stabilization of convection terms

One quantity which has an important effect on the quality of the resulting discrete solution is the local

Reynolds number ReT defined as

ReT =
||u||∞,T · hT

ν
(2.48)

where hT is a measure of element size and || ||∞,T is the maximum norm on the element T . In particular,

if the Reynolds number is big which occur whenever convective operators are dominant then the standard

Galerkin formulation fails and leads to nonphysical oscillations. A preliminary step towards minimizing the

effects of these oscillations is to stabilize the discrete problem by using certain stabilization techniques

like FEM upwinding, FEM streamline-diffusion, or algebraic FEM-FCT and FEM-TVD. While these

schemes have been successfully integrated into nonconforming rotated bilinear Q̃1/Q0 finite element

approximations [58, 59, 60, 66, 87, 92], it is not obvious what to do in the case of high order finite

elements, for instance the pair Q2/P1.
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2.4.1 FEM upwinding

The main idea is to introduce new edge-centered lumping regions and special lumping operators (for

details see [92]).

Fig. 2.4. Lumping region Rl around midpoint l (see [92])

Here, the discrete convective operator 〈N(u)v,w〉 is replaced by:

〈Ñ(u)v,w〉 :=
∑

l

∑

k∈Λl

∮

Γlk

u · nlkdγ[1 − λlk(u)(v(mk) − v(ml))]w(ml). (2.49)

Based on the local Reynolds number ReT on each cell T the following definition holds:

λlk(u) =















1
2 + δ∗ReT

1 + δ∗ReT
if ReT ≥ 0

1

2(1 − δ∗ReT )
otherwise

(2.50)

where hT is a local mesh parameter on each cell T which can be critical on highly distorted meshes.

Moreover, the appropriate choice of the free parameter δ∗ is quite sensitive and can significantly influence

the resulting accuracy. The convergence in the energy norm is of order O(h log(h)) (see [90] for details).

2.4.2 FEM streamline-diffusion

This method was originally proposed by Johnson [52], and by Hughes and Brooks [49]. The method has

been successfully applied to several classes of problems since streamline-diffusion methods can combine

both good stability and high accuracy. Due to its simplicity, streamline-diffusion is a common tool used

in many (commercial) CFD codes. It mainly consists of adding the following stabilization term to the

original convection operator described by 〈N(u)v,w〉, which means

〈Ñ(u)v,w〉 = 〈N(u)v,w〉 + 〈Nsd(u)v,w〉 , where (2.51)

〈Nsd(u)v,w〉 =
∑

T∈Th

δT

∫

T

(u · ∇v)(u · ∇w) dx. (2.52)

Here, the critical quantity for an efficient computational treatment is the local damping parameter δT .

A usual setting is described, for instance, in [92]. The local Reynolds number ReT can be introduced as

before and the parameter δT can be defined, for instance, as follows

δT = δ∗
hT

||u||∞,Ω

2ReT

1 +ReT
(2.53)
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The formulation (2.52) adds additional coercivity in the local flow direction. Moreover, the convergence is

of order O(h3/2) in the streamline-diffusion norm for the Q̃1 element on rectangular shape-regular tensor-

product meshes. This order of convergence is similar to the well known estimate for the conforming case

(see [87] for details).

Due to the more complex bilinear form, including numerical integration in certain quadrature points, the

numerical cost of the matrix assembling process is increased and, again, the precise definition of δ∗ and

hT , particularly on strongly anisotropic meshes containing large aspect ratios, can be critical. Finally,

the application to nonsteady problems and the extension to more complex coupled problems or systems,

as for instance Boussinesq approximations or multiphase flow problems is not fully clear.

2.5 Conclusions

The two pairs of Stokes elements presented in this chapter constitute the simplest elements in their

families (conforming and nonconforming). It is clear that the simplest nonconforming element - that

works - is simpler than the simplest conforming element - that works -, furthermore with nonconforming

method one easily deals with central method. The more extensive analyses required for nonconforming

finite element methods is also reflecting the capability of nonconformity to adapt to new, different and

changing requirements for any numerical simulations which is our final aim.





3

Nonlinear and Linear Solvers

A fast and robust solver for nonlinear incompressible flow is the core of this chapter. Based on the

result of the critical evaluation of the benchmark computations by Turek and Schäfer [100], multigrid

method in conjunction with ’Local Pressure Schur complement’ schemes (see [59, 92]) have been proven

as efficient solvers for the incompressible Navier-Stokes problem. Here, the investigation is concerned with

the flexibility, robustness and efficiency of multigrid solvers with respect to edge-oriented stabilization

and the nonlinearities due to the described convective operator u·∇u and the nonlinear viscosity function

ν(DII(u), p).

3.1 Problem formulation

Let us consider the stationary generalized Navier-Stokes problem (1.6) in a bounded domain Ω ⊂ R2. If

we restrict the set V of test functions to be divergence-free and take the constitutive laws into account,

the (stationary) equations (1.6) lead to:

Find u ∈ V such that
∫

Ω

2ν(DII(u), p)D(u) : D(v) dx+

∫

Ω

(u · ∇u)v dx =

∫

Ω

fv dx, ∀v ∈ V. (3.1)

It is straightforward to penalize the constraint div u = 0 to derive the equivalent mixed formulation:

Find (u, p) ∈ X ×M such that

∫

Ω

2ν(DII(u), p)D(u) : D(v) dx+

∫

Ω

(u · ∇u)v dx +

∫

Ω

pdiv v dx

=

∫

Ω

fv dx, ∀v ∈ X,

∫

Ω

q div u dx = 0, ∀q ∈M,

(3.2)

with spaces X = H1
0 (Ω) and M = L2(Ω) for the Newtonian case. In general these spaces depend on

the function ν (see [4] for the precise definition of X and M). Also, the related Stokes problems to

be considered, which means that the convective term
∫

Ω
(u · ∇u)v dx to be omitted. For the following

analysis, let us introduce the bilinear forms:
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〈L(w, q)u,v〉 =

∫

Ω

2ν(DII(w), q)D(u) : D(v) dx, (3.3)

〈N(w)u,v〉 =

∫

Ω

(w · ∇u)v dx and 〈Bq,v〉 =

∫

Ω

q div v dx. (3.4)

Then, we can rewrite our generalized flow problem in the following compact form:

Find (u, p) ∈ X ×M such that

〈L(u, p)u,v〉 + 〈N(u)u,v〉 + 〈Bp,v〉 =

∫

Ω

fvdx, ∀v ∈X,

〈Bq,u〉 = 0, ∀q ∈M.

(3.5)

3.2 Nonlinear solvers

3.2.1 Discrete Newton solver

After applying the discretization method to the system (3.5) where the approximations belong to the

finite dimensional spaces (2.27) and (2.28), a system for the residual of nonlinear algebraic equations is

obtained:

R(x) = 0, (3.6)

where x represents the vector of the coefficients corresponding to the unknowns (uh, ph).

To solve this system, let us apply a Newton method with damping which results in iterations of the form

xn+1 = xn + ωn

[

∂R(xn)

∂x

]−1

R(xn). (3.7)

This iteration is repeated until a certain conditions on the quality of the solution are met, which means

a certain norm of the residue ||R(xn)|| is small enough. The damping parameter ωn ∈ (−1, 0) is chosen

such that

R(xn+1) · xn+1 ≤ R(xn) · xn. (3.8)

The damping greatly improves the robustness of the Newton iteration in the case when the current

approximation xn is not close enough to the final solution since the Newton method without damping is

not guaranteed to converge.

The Jacobian matrix
[

∂R(xn)
∂x

]

can be approximated using finite differences as

[

∂R(xn)

∂x

]

ij

≈ Ri(x
n + εej) −Ri(x

n − εej)

2ε
, (3.9)

where the vector ej = (δij) and δij is the standard Kronecker symbol. The parameter ε can be fixed or

can be modified according to some norm of the solution ||xn|| or the norm of the update in the previous

step
∣

∣

∣

∣xn − xn−1
∣

∣

∣

∣.
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3.2.2 Continuous Newton solver

Diffusive term

In this approach, the nonlinearity is first handled on the continuous level. Let (ul, pl) be the initial state,

then the (continuous) Newton method consists of finding (u, p) ∈ V ×M such that

∫

Ω

2ν(DII(u
l), pl)D(u) : D(v)dx

+

∫

Ω

2∂1ν(DII(u
l), pl)[D(ul) : D(u)][D(ul) : D(v)]dx

+

∫

Ω

2∂2ν(DII(u
l), pl)[D(ul) : D(v)]pdx

=

∫

Ω

fv −
∫

Ω

2ν(DII(u
l), pl)D(ul) : D(v)dx, ∀v ∈ V , (3.10)

where ∂iν(·, ·); i = 1, 2 is the partial derivative of ν related to the first and second variables, respec-

tively (see [46] for shear dependent viscosity only). To see this, set X = D(ul),x = D(u), Y = pl, y =

p, F (x, y) = ν( 1
2 |x|

2
, y)x and f(t) = F (X + tx, Y + ty), so that

∂xj
Fi(x, y) = ∂xj

ν( 1
2 |x|2, y)xjxi + ν( 1

2 |x|2, y)δij
∂yFi(x, y) = ∂yν(

1
2 |x|2, y)xi

(3.11)

where δij stands for the standard Kronecker symbol. Having

f
′

i (t) =
∑

j ∂xj
Fi(X + tx, Y + ty)xj + ∂yFi(X + tx, Y + ty)y

= ν( 1
2 |X + tx|2, Y + ty)xi

+ ∂1ν(
1
2 |X + tx|2, Y + ty)〈X + tx,x〉(Xi + txi)

+ ∂2ν(
1
2 |X + tx|2, Y + ty)y(Xi + txi)

(3.12)

then decrease t towards zero, to obtain the Frechet derivative:

∇ ·[ 2ν(DII(u
l), pl)D(u)

+ 2∂1ν(DII(u
l), pl)(D(ul) : D(u))D(ul)

+ 2∂2ν(DII(u
l), pl)pD(ul)].

(3.13)

Finally, the weak formulation of (3.13) leads to the relation given in (3.10). Therefore, the resulting

auxiliary subproblems in each Newton step consist of finding (u, p) ∈ X ×M as solutions of the linear

systems
{

L(ul, pl)u + δdL
∗(ul, pl)u +B p+ δpB

∗(ul, pl)p = Ru(ul, pl),

BT u = Rp(u
l, pl),

(3.14)

where Ru(·, ·) and Rp(·, ·) denote the corresponding nonlinear residual terms for the momentum and

continuity equations. The operators L∗(ul, pl) and B∗(ul, pl) are defined as follows:

〈L∗(ul, pl)u,v〉 =

∫

Ω

2∂1ν(DII(u
l), pl)[D(ul) : D(u)][D(ul) : D(v)] dx, (3.15)

〈B∗(ul, pl)v, p〉 =

∫

Ω

2∂2ν(DII(u
l), pl)[D(ul) : D(v)]p dx. (3.16)
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Convective term

The corresponding Newton linearization applied to the convective term 〈N(u)u,v〉 leads to the additional

bilinear form

〈N(ul)u,v〉 + δc〈N∗(ul)u,v〉 ∀v ∈ X , where (3.17)

〈N∗(ul)u,v〉 =

∫

Ω

(u · ∇ul)vdx ∀v ∈ X. (3.18)

Stabilization terms

It is well-known that the ‘standard’ discretization of the convective term with central discretization, may

lead to numerical problems:

• Stiffness matrices not of positive type (‘M-matrix properties’), hence the iterative schemes such as

multigrid will not give efficient convergence results.

• Oscillations and deteriorations of the discrete solutions which have purely numerical character.

To stabilize the convective term in the FEM context, there are two approaches which are widely used

in the CFD community: Upwind schemes and Streamline-diffusion techniques. However, these two stabi-

lization methods may annihilate the (potentially) quadratic convergence of the Newton methods unless

the Jacobian matrix for the stabilization terms is computed too. The Newton method for the streamline-

diffusion terms (2.52) consists of the following addition:

〈Nsd(u
l)u,v〉 + δsd〈N∗

sd(u
l)u,v〉 ∀v ∈ Vh , where (3.19)

〈N∗
sd(u

l)u,v〉 =
∑

T∈Th

δT

∫

T

(ul · ∇ul)(u · ∇v) dx

+
∑

T∈Th

δT

∫

T

(ul · ∇u)(ul · ∇v) dx

+
∑

T∈Th

δT

∫

T

(u · ∇ul)(ul · ∇v) dx

(3.20)

while upwind stabilization techniques require special treatment of 〈N∗(ul)u,v〉.
Once the Newton step (u, p) has been determined, the current approximation can be updated, with ωl

as an appropriate relaxation parameter, that is

(ul+1, pl+1) = (ul, pl) + ωl(u, p). (3.21)

Altogether, the complete algorithm of the approximate linearized problem may have the following alge-

braic system form:

Compute u and p by solving

(A + J)u + B̃p = Resu(ul, pl) , B
T u = Resp(u

l, pl) , where (3.22)
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Resu(·, ·) and Resp(·, ·) denote the corresponding nonlinear residual terms for the momentum and conti-

nuity equations, −B
T is the discrete divergence operator and J is the edge-oriented stabilization matrix.

Furthermore,

Au =
[

(L + δdL
∗)(ul, pl) + (Ñ + δcN

∗)(ul)
]

u,

B̃p =
[

B + δpB
∗(ul, pl)

]

p
(3.23)

where L(u, p) is the discrete linearized Laplacian, Ñ(u) is the stabilized discrete linearized transport

operator, L
∗(u, p),B∗(u, p) and N

∗(u) are the discrete matrices corresponding to the operators in (3.15),

(3.16) and (3.18). Furthermore it admits the following matrix representation

(

A + J B̃

B
T 0

)[

u

p

]

=

[

Resu

Resp

]

. (3.24)

Some remarks: The full Newton method is performed for δd = 1, δc = 1 and δp = 1, while the Fixpoint

method corresponds to δd = 0, δc = 0 and δp = 0. For δp = 0, the linear problem behaves similar to the

classical saddle point problem for power law models, while for δp 6= 0 a non-standard type of problem

involving the nonsymmetric pressure matrix B
∗ is obtained. The strategy to apply Newton method is

to use a few iterations only with the Fixpoint method and as soon as the solution reaches some given

tolerance, the full Newton is applied with no damping.

3.3 Linear multigrid solver

The basic idea behind the success of multigrid is the efficiency of the basic solvers (smoothers) at

damping the short wavelength error components. This requirement is fulfilled by basic iterative methods

namely, Gauß-Seidel or Jacobi. Moreover the poor convergence of these basic iterative solvers for long

wavelength error components is reduced by solving the original problem on different grids with the object

to suppress the error components on different grids. Therefore, the main concept in the local MPSC

approach is to solve ‘exactly’ on patches and to perform an outer Gauß-Seidel iteration. This approach

can be interpreted as generalization of block-Jacobi/Gauß-Seidel methods for saddle point problems which

contains modifications of classical schemes like the Vanka smoother [103]. The necessary stabilization on

anisotropic meshes can be obtained via adaptive patching.

To handle the arising enlarged stencil, due to jump terms in the edge-oriented stabilization, the local

MPSC smoothers are modified. Firstly, by splitting the contributions from the new stabilization tech-

niques with respect to matrix-vector multiplication and local assembling routines. Secondly, by decreasing

the block size of block-Jacobi/Gauß-Seidel methods to contain only the degree of freedom that are con-

nected with one edge instead of those which are connected with one element and use the full jump matrix.

Furthermore the storage of the stiffness matrix is done with two strategies. Firstly, the stiffness matrix

will only contains the partial stabilization matrix which fits into the same standard FEM data structure,

while the complementary part can be assembled via elementwise operations only. Secondly, a special

edge-oriented data structure is developed by extending the matrix to support the additional contributed

elements.
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3.3.1 Two level algorithm

The linearization and discretization of the generalized Navier-Stokes problem leads to a large saddle point

problem (3.24) which can be rewritten in the following manner

ANuN = fN . (3.25)

Let us assume the existence of a hierarchy of levels k = 1, ..., N associated with the triangulation Thk

with mesh size hk. On each level k the matrix Ak and the right-hand side fk need to be assembled, the

multigrid linear solver is described as follows:

The kth level iteration MG(k, z0, g) of the multigrid algorithm with initial guess z0 yields an approxima-

tion to zk, the solution of

Akz = g (3.26)

One step can be described in the following way:

For k = 1 on the coarsest level, the direct solver is used

MG(1, z0, g) = A−1
1 g. (3.27)

• Smoothing step k > 1: let zl ∈ Vl(1 ≤ l ≤ m) be defined by

zl = zl−1 + Λk
−1 (g −Akzl−1) 1 ≤ l ≤ m (3.28)

where ρ(Λk) ≤ Ch−2
k .

• Correction step: Let g̃ = Ik−1
k (g −Akzm) and let gi ∈ Vk−1 be defined as

g0 = 0

gi = MG(k − 1, gi−1, g̃) 1 ≤ i ≤ p.
(3.29)

Final output:

MG(k, z0, g) = zm + Ik
k−1gp. (3.30)

The efficiency of the multigrid solver mainly depends on the efficiency of its components which are

(a) the matrix-vector multiplication routines for the operators Ak, k ≤ N ,

(b) the smoothers on finer levels and the coarse grid solver,

(c) the grid transfer operators: the prolongation Ik
k−1 and the restriction Ik−1

k .

These ingredients of a multigrid solver incorporated with edge-oriented stabilization will be discussed in

the next sections.
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3.3.2 Sparsity of the matrix

Sparse matrices are an integral part of the finite element analysis for incompressible flow problems which

may lead to huge and ill-conditioned systems for such Oseen-type problems so that very fast solvers

of Krylov-space or particularly of multigrid type are required. In addition the introduced edge-oriented

stabilization techniques destroy the typical local sparsity properties since this approach involves more

than the adjacent elements as can be seen in Fig. 3.1 which shows the increased local support of the

nonconforming basis functions: The corresponding rows and columns for the new stiffness matrices J may

contain 25 nonzero matrix elements, in contrast to the usual 7 for the non-stabilized case in 2D and 61

nonzero matrix elements, in contrast to the usual 11 for the non-stabilized case in 3D.

Edge

Fig. 3.1. Involved edges for each nonconforming basis function

3.3.3 Storage in the same FEM data structure

To overcome the problem of storing the new matrix J – coming from 〈Ju,v〉 – with regard to the standard

FEM data structures, the matrix J is written as a sum of two matrices J
∗ and Jrest,

J = J
∗ + Jrest (3.31)

where J
∗ has the same sparsity structure as the usual corresponding finite element matrix; then, Jrest =

J − J
∗. Hence, J

∗ can be handled with the same linear algebra techniques which are typically used for

the treatment of the standard nonconforming finite element approach; Jrest is the complementary part

and will be used as a correction for the calculation of the residuals inside of the linear solvers only. Then,

given any approximation v and A denoting the stiffness matrix without the new stabilization matrices,

we can write the complete residual as:

f − (A + J)v = f − (A + J
∗)v − Jrestv. (3.32)

Consequently, only the partial matrix A + J
∗ is stored in the complete stiffness matrix so that the first

part of the residual can be obtained via standard matrix-vector multiplication while the second part is

assembled via elementwise operations. Moreover, the construction of preconditioners for the corresponding

linear systems may only include parts of the (sub)matrix A + J
∗, too, which will be explained in the

following (see also [98] for more details).
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3.3.4 Storage in a special edge-oriented data structure

A data structure for the storage of the stiffness matrix for edge-oriented stabilization is not common in

FEM community. Fortunately, it is not difficult to develop one from the available FEM storage techniques.

In fact, each edge Ei has two surrounding elements with ni edges (Ei,j)
ni

j=1, then by the intermediate

of the edges (Ei,j)
ni

j=1 the other contributed elements and edges (Ei,jk
)
mj

k=1 required for edge-oriented

stabilization techniques are obtained (see Fig. 3.2). This is exactly the graph of the extended matrix:

In fact, let the index i be assimilated to any matrix row and the index j be the corresponding nonzero

columns in the standard FEM data structure, the extension will consist of the corresponding nonzero

columns jk to the rows j (see Fig. 3.2).
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Fig. 3.2. An illustration for edge-oriented storage technique

Edge-oriented storage algorithm

Based on the standard Compressed Sparse Row CSR-FEM storage technique, let NA be the number of

entries in the matrix A,NEq be the number of equations, Pc(NA) vector with dimension NA be the column

pointer and Pr(NEq + 1) vector with dimension NEq + 1 be the pointer row. Then, the edge-oriented

storage technique is deduced from the standard FEM storage technique as following

ÑA = 1

l1 = 1.
(3.33)

For each i = 1, .., Neq the corresponding nonzero columns are given by the following nested loops

P̃r(i) = li. (3.34)

1. In standard FEM storage we get

ij = Pc(l), Pr(i) ≤ l ≤ Pr(i+ 1) − 1. (3.35)
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2. For each ij the extension consists of the nonzero corresponding column in standard FEM storage

which is given by
kij

= Pc(l), Pr(ij) ≤ l ≤ Pr(ij + 1) − 1

ÑA = ÑA + 1

li = li + 1

P̃c(li) = kij
.

(3.36)

Here, ÑA denotes the number of entries in the matrix A, P̃r is the row pointer and P̃c is the column

pointer in the edge-oriented storage.

3.4 Coupled multigrid solver

Coupled multigrid method or Local Pressure Schur complement schemes (see [59, 92]) compute the

solution for velocity and pressure of (3.24) simultaneously. In the following, a details on the individual

components of these schemes and how they were adapted to support the extended stencil arising from

jump terms are presented.

3.4.1 The grid transfer operators

The multigrid method requires inter-grid transfer operators, but for nonconforming finite element ap-

proximations the finite element space of coarser level is not a subspace of the finite element space on a

finer level: Vk−1 * Vk. Therefore, the natural injection does not work and the restriction Ik−1
k from Vk

to Vk−1 must explicitly be constructed. This leads to what is known as non-nested multigrid methods.

A simple scheme like piecewise linear interpolation and L2-projection operator are popular candidates.

The choice of each of these operators can have an immense effects on convergence rates.

Fig. 3.3. Configuration for local grid transfer operators (from [57])

Adaptive prolongation for Q̃1

The adaptive prolongation for the rotated Q̃1 element calculates on all fine edges the corresponding

interpolant values due to the given function v2h which is defined via the coefficient vi, i = 1, .., 4 (see

Fig. 3.3). Let us introduce the Aspect-Ratio (AR): the ratio of largest to smallest dimension in an element,

for instance one may use the following definition (for further details see [54, 55])
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AR = max

( ||m3 −m1||Eu

||m4 −m2||Eu

,
||m3 −m1||Eu

||m4 −m2||Eu

)

, (3.37)

where || ||Eu is the Euclidean norm and mi, i = 1, .., 4 are the midpoints of the quadrilateral element (see

Fig. 2.2). Then, define the following options for the interpolation operator [92]

1. Full interpolation: If AR ≤ AR0 the full interpolation is used which reads:

(a) mean-value on edges as degrees of freedom (d.o.f.)

w1 = v1 + 1
4v2 + 1

4v4 , w2 = 5
8v1 + 1

8 (v2 + v3 + v4)

(b) midpoint on edges as d.o.f.

w1 = 15
16v1 − 3

16v2 − 1
16v3 + 5

16v4 , w2 = 9
16v1 + 3

16v2 + 1
16v3 + 3

16v4

2. Constant interpolation: If AR > AR0 simply use the constant interpolation which reads:

w1 = v1 , w2 = v1

For the values belonging to the “macro” edges w1 (for instance in Fig. 3.3) one may take a mean-value

by

(a) Simple averaging
w + w̃

2
(3.38)

(b) Weighted averaging
1

|T | + |T̃ |
(|T |w + |T̃ |w̃). (3.39)

It is recorded in Turek [92] that AR0 should belong to the interval (10, 100). For more numerical investi-

gation we refer to [57].

3.4.2 Coarse grid discretization

Similar to the grid transfers, coarse grid discretization can be categorized in two categories. First, schemes

that rediscretize the continuous operator using the application program on the coarse grid (FE approach).

Second, methods which project automatically the fine grid discretization (e.g. Galerkin coarse grid oper-

ators) onto the coarse grid without requiring further consultation of the application (Galerkin approach).

3.4.3 The smoothers

Pressure Schur Complement Approach

The Pressure Schur Complement (PSC) matrix is obtained by elimination of the velocity first, then

deduction of the equation for the pressure which acts as Lagrange multiplier for the incompressibility

constraint for the saddle point problem (3.24). In fact, if the operator A is nonsingular, the velocity can

be expressed as

u = (A + J)−1(Resu − B̃p) (3.40)

and plugged into the discretized continuity equation
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B
T u = Resp (3.41)

which gives the scalar Schur complement equation for the pressure

B
T (A + J)−1

B̃p = BT (A + J)−1Resu + Resp. (3.42)

Thus, the coupled system (3.24) can be handled as follows

1. Solve the Pressure Schur Complement (PSC) equation (3.42) for p.

2. Substitute p into relation (3.40) and compute the velocity u.

Because of decoupling of velocity and pressure the use of the matrix B
∗ will be ineffective. Conse-

quently, the idea of solving coupled small problems in an additive manner and perform an outer block

Jacobi/Gauss-Seidel iteration is more attractive which leads to the so-called Local Pressure Schur Com-

plement approach.

Local Pressure Schur Complement Approach

Local Pressure Schur complement schemes (see [59, 92]) as generalization of so-called Vanka smoothers

[103] are simple iterative relaxation methods for such coupled systems (3.24) of saddle point type which

are acting directly on element level and which are embedded into an outer block Jacobi/Gauss-Seidel

iteration. The local character of this procedure together with a global defect-correction mechanism is

crucial for our approach. If Resu and Resp denote the residuals for the (complete) discrete momentum

and continuity equations which include the complete stabilization term due to J as described in (3.32).

Then, two types of Vanka smoothers can be applied with respect to the decomposition of the domain Ω

to a patches Ωi, i = 1, ..., I. This decomposition is not required to be disjoint.

Cell-oriented Vanka smoother

In this case the patches Ωi may consist of only one element and the index I is the total number of

elements, which means that the global stiffness matrix is restricted to the single cells/quadrilaterals of

the mesh and, then the corresponding algebraic problem to be solved.

It is straightforward to deduce the element stiffness matrix from the global stiffness matrix as follows

K =
∑

T∈Th

KT (3.43)

where K and KT denote the global and element stiffness matrices respectively. It follows that

[KT ]ij =
[

A|T

]

ij
+
[

J|T

]

ij
for 1 ≤ i, j ≤ 4

[KT ]i5 =
[

B̃|T

]

i
for 1 ≤ i ≤ 4

[KT ]5i =
[

B
T
|T

]

i
for 1 ≤ i ≤ 4

[KT ]55 = 0.

(3.44)

With the standard FEM data structure (without the extension of the matrix) the contribution of the

jump term will be restricted to J
∗. Then

[K∗
T ]ij =

[

A|T

]

ij
+
[

J
∗
|T

]

ij
for 1 ≤ i, j ≤ 4. (3.45)
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The basic iteration step which means one smoothing step can be described as follows:

[

un+1

pn+1

]

=

[

un

pn

]

+ ωn
∑

T∈Th

[

K̃∗
T

]−1
[

Resu(un, pn)

Resp(u
n, pn)

]

|T

(3.46)

where the matrix K̃∗
T is easily invertible and remains close to K∗

T . Related to the choice of the matrix K̃∗
T

two types of Vanka smoothers are prescribed, namely diagonal Vanka smoother and full Vanka smoother.

(a)Diagonal Vanka smoother: The diagonal Vanka smoother updates the velocity and the pressure

values connected to the element T by

[

un+1

pn+1

]

=

[

un

pn

]

+ ωn
∑

T∈Th
[diag(K∗

T )]
−1

[

Resu(un, pn)

Resp(u
n, pn)

]

|T

. (3.47)

(b)Full Vanka smoother: The full Vanka smoother updates the velocity and the pressure values con-

nected to the element T by

[

un+1

pn+1

]

=

[

un

pn

]

+ ωn
∑

T∈Th
[K∗

T ]
−1

[

Resu(un, pn)

Resp(u
n, pn)

]

|T

. (3.48)

As can be seen, for the preconditioning step only parts of the matrix (here: A+J
∗) are involved while the

residual contains all parts of the matrix. Consequently, when this approach converges, the result is the

solution of the stabilized version while the preconditioning steps only determine the speed of the overall

iteration procedure.

Edge-oriented Vanka smoother

To incorporate the full jump J into the preconditioning step let us consider the so-called edge-oriented

patches Ωi which consist of the neighboring element sharing the same edge:

Ωi = ∪{T, T ∈ Th ∧ ∩T∈Th
= Ei} . (3.49)

Here, I is the total number of edges. This will keep the size of the local problem small and the full matrix

J will be used for the preconditioning steps.

The extension of the matrix to support the jump term leads to a 5×5 FEM matrix block of the type (3.44).

To keep the size of the local problem small the element matrix is disassembled to its edge contributions

[22]

KT =
m
∑

i=1

KEi

T (3.50)

where KEi

T is the contribution of the edge Ei to KT and m is the number of the edges on the cell T .

From the definition of edge-oriented patches (3.49), the edge stiffness matrix may contain the contributions

of all sharing elements

KEi =
∑

T∈Ωi

KEi

T = KEi

Ωi
. (3.51)

Then, one basic iteration can be described as follows

[

un+1

pn+1

]

=

[

un

pn

]

+ ωn
∑

i∈I

[

KEi

Ωi

]−1
[

Resu(un, pn)

Resp(u
n, pn)

]

|Ωi

. (3.52)
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This blocking strategy is different from that used in [82, 92] to generate isotropic subdomains for stabi-

lizing strong mesh anisotropy. Indeed, for the edge-oriented patches the number of block matrices is only

depending on the number of edges and not on the number of patches itself.

In 3d one may consider to use the face-oriented patches which should be enough for the rotated Q̃1

element, but for elements with unknown components along the edges one may then consider the edge-

oriented patches. The edge-based FEM data structure was used earlier to improve the computational

efficiency, for details see for instance [22, 64, 77].

The global defect restricted to a single patch Ωi is given by

[

Resu(un, pn)

Resp(u
n, pn)

]

|Ωi

=

([

L + Ñ + J B

B
T 0

] [

un

pn

]

−
[

f

0

])

|Ωi

. (3.53)

In practice the following auxiliary problem

[

KEi

Ωi

]

[

vn+1
i

qn+1
i

]

=

[

Resu(un, pn)

Resp(u
n, pn)

]

|Ωi

(3.54)

is solved and then the new iterates un+1 and pn+1 are computed

[

un+1

pn+1

]

=

[

un

pn

]

+ ωn
∑

i∈I

[

vn+1
i

qn+1
i

]

. (3.55)

The resulting local MPSC method corresponds to a simple block-Jacobi iteration for the mixed problem

(3.24) and to a block-Gauss-Seidel method by using the updated solution for the computation of the local

defect (3.53).

3.5 Uniqueness of the problem

The question of uniqueness of the stationary problem (1.6) is not trivial to solve. Hron et al. [45] showed

that non-unique solutions are possible for fluids flows with pressure dependent viscosity. Generally, the

complete closure of equations in an incompressible fluids can be achieved by fixing the pressure in the

following way
∫

Ω

pdx = C (3.56)

In contrast to the standard Navier-Stokes equations, the viscosity in equations (1.6) depends on the

pressure and the effect of the choice of the constant C in (3.56) is not negligible. The following Table 3.1

shows the influence of variation of the constant C on the global solution.

Table 3.1. The effect of fixing the pressure on the global solution

ν(u, p) = exp(βp), β = 10−1

C 0 2 4 6

||ν||∞ 0 3.31 × 10−1 7.31 × 10−1 13.80 × 10−1

||u||∞ 0 2.07 × 10−4 4.72 × 10−4 8.15 × 10−4

The results of Table 3.1 lead one to think of an appropriate physical choice. Franta et al. in [31] considered

a slightly compressible flow
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ǫ∆pǫ + ǫpǫ + div uǫ = 0 in Ω ,
∂pǫ

∂n
= 0 on ∂Ω. (3.57)

For the same reason Tardos et al. [89] introduced the so-called normality condition in the frame of

compressible granular material which can be generalized as follows

∇ · u =
∂ν
(

1
2 tr(D − 1

2∇ · uI)2, p
)

∂p
. (3.58)

In orther to examine the behavior of the linear solver, the matrix of the linear problem is written in the

following form

Mδp,δ̃p
(ũ, p̃) =

(

A + J B + δpB
∗

B
T + δ̃pB

∗T
0

)

. (3.59)

The nullspace of the the matrix Mδp,0 is nontrivial and dependent on the solution itself. The introduction

of the term δ̃pB
∗T

is motivated by the work of Franta et al. [31] and Tardos et al. [89] in order to not

impose any condition on the pressure. This has no effect on the solution since the matrix Mδp,δ̃p
is used

only for preconditioning. Table 3.2 summarize the multigrid behavior of the linear problem with and

without the fixation of the pressure.

Table 3.2. The convergence rate of F-cycle multigrid type with and without the fixation of the pressure

Level/ β 1 × 10−4 1 × 10−3 1 × 10−2 1 × 10−1

convergence rate for the matrix M0,0

3 0.22 0.22 0.14 0.26

4 0.23 0.24 0.23 0.36

5 0.26 0.25 0.24 0.37

convergence rate for the matrix M1,0

3 0.22 0.22 0.15 0.27

4 0.23 0.24 0.23 0.37

5 0.26 0.25 0.24 0.38

convergence rate for the matrix M1,1

3 0.22 0.22 0.15 0.27

4 0.23 0.24 0.23 0.44

5 0.26 0.25 0.24 0.50

The multigrid convergence shows excellent behavior with and without fixing the pressure with the eventual

consideration of slightly compressible model. So, the linear solver is ready to handle both compressible

and incompressible flow with the same efficiency.
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3.6 Numerical results

Let us present some results from numerical experiments with different physical models in which the

computational domain is the channel geometry with an obstacle as shown in Fig. 3.4.

Fig. 3.4. The coarse mesh for flow around cylinder benchmark

On the boundaries, we prescribe no-slip conditions on the walls and on the cylinder while a parabolic inflow

profile is defined on the upstream boundary. At the downstream part, we prescribe natural boundary

conditions (see [41]) which leads to the well-known outflow boundary condition νD(u) · n − pn = 0. An

extensive analysis of the asymptotically precise estimates for the truncation error for linear and nonlinear

problem with small data can be found in [85, 6].

3.6.1 Numerical study of the accuracy

First of all, we want to check if the new stabilization term J preserves the accuracy of the nonconforming

finite element in CFD simulations. Therefore, we calculate in Table 3.3 the corresponding lift and drag

forces acting on the cylinder for different Reynolds numbers (here: for different viscosity parameters ν)

and different formulations (gradient, tensor and stabilized tensor formulation). Table 3.3 only shows the

results on level 5 (after 4 successive refinements of the given coarse mesh) since no major differences occur

for finer or coarser meshes; we choose γ = 0.5.

Table 3.3. Lift and drag forces

1/ν force Gradient Tensor Stab. Tensor

1 lift 0.31252 × 104 0.31221 × 104 0.31231 × 104

drag 0.30898 × 102 0.30924 × 102 0.30936 × 102

10 lift 0.31258 × 103 0.31227 × 103 0.31237 × 103

drag 0.36832 × 101 0.36851 × 101 0.36864 × 101

100 lift 0.32016 × 102 0.31981 × 102 0.31990 × 102

drag 0.79786 × 100 0.79758 × 100 0.79770 × 100

1000 lift 0.55657 × 101 0.55531 × 101 0.55535 × 101

drag 0.10180 × 10−1 0.10259 × 10−1 0.10277 × 10−1

In addition, we give the corresponding approximation results when we approximate a prescribed polyno-

mial solution for u and p.

Surprisingly, we do not see any significant difference between the different formulations! The discussed

kernel function and hence the failure of Korn’s inequality has - more or less - no visible influence on the

approximation properties which is understandable in our case of (partial) Dirichlet boundary conditions:
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Table 3.4. L2- and H1-errors for a given polynomial solution

Level Norm Tensor Stabilized Tensor

3 ||u − uh||1 0.1878073305586 × 100 0.1890389708704 × 100

||u − uh||0 2.1924276705200 × 10−2 2.2278915655013 × 10−2

4 ||u − uh||1 9.3418000771639 × 10−2 9.3755096686689 × 10−2

||u − uh||0 5.4160542751463 × 10−3 5.4675714354466 × 10−3

5 ||u − uh||1 4.6624024860649 × 10−2 4.6711662913404 × 10−2

||u − uh||0 1.3482613994813 × 10−3 1.3552529532575 × 10−3

6 ||u − uh||1 2.3298314874403 × 10−2 2.3320634187601 × 10−2

||u − uh||0 3.3659558203381 × 10−4 3.3750809473889 × 10−4

Then, no ‘free’ rigid body movement can occur. However, as the following calculations will show, the

problem with Korn’s inequality is clearly visible if we look at the corresponding behavior of the (multigrid)

solvers.

3.6.2 Numerical study of the influence of the convection

The following numerical experiments investigate the influence of the convective term. For this purpose

we increase the Reynolds number and list the number of resulting nonlinear iterations (NNL) and the

averaged number of multigrid sweeps per nonlinear iteration (AVMG). Table 3.5 shows that increasing

the Re number leads to ‘improvements’ for the multigrid solver for the (unstabilized) deformation tensor

formulation (keep in mind that the case of 1/ν = 1000 corresponds to Re = 20 only, compare with the

settings for the ‘DFG-Benchmark’ [100]). However, in the case of very low Re numbers, the failure of

Korn’s inequality gets clearly visible since the averaged number of linear multigrid sweeps AVMG has to

be massively increased to satisfy a desired stopping criterion.

Table 3.5. Nonlinear iterations (NNL)/Averaged multigrid sweeps (AVMG) per nonlinear iteration for different

Re numbers (1/ν), various formulations (gradient, deformation tensor, stabilized tensor (stab. tensor 1) with

diagonal ‘Vanka smoother’ and stabilized tensor (stab. tensor 2) with modified full ‘Vanka smoother’), several

levels of refinement (LEV) and varying number of smoothing steps (NSM)

1/ν 1 1000 (Re=20)

formulation gradient tensor stab. stab. gradient tensor stab. stab.

LEV NSM form. form. tensor 1 tensor 2 form. form. tensor 1 tensor 2

3 2 3/5 4/57 3/7 3/6 10/7 10/6 10/7 10/7

4 3/3 4/29 3/4 3/3 10/5 10/5 10/5 10/5

4 2 3/6 4/167 3/7 3/6 11/6 11/10 11/5 11/5

4 3/3 4/86 3/4 3/3 11/4 11/5 10/4 11/4

5 2 3/7 4/478 3/7 3/6 12/5 12/23 12/4 12/4

4 3/4 4/231 3/4 3/4 12/4 12/10 12/4 12/4

6 2 3/9 6/382 3/16 3/7 12/4 12/4 12/4 12/4

4 3/5 5/326 3/8 3/4 12/3 12/3 12/3 12/3
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The main result is that for Re numbers of moderate size (Re ≥ 10) the presence of the convective term

seems to stabilize the multigrid behavior since the influence of the kernel function due to the deformation

tensor formulation is weakened. However, since the corresponding ‘elliptic’ differential operator - being

of second order - is the dominating operator for small mesh width, we can see that the convergence

behavior deteriorates with finer mesh widths. This can be shown much better in the case of very small Re

numbers (‘Stokes’ case) where the multigrid convergence behavior is extremely mesh dependent so that

the multigrid solver looses all favorable properties. In contrast, the introduced edge-oriented stabilization

techniques together with the described multigrid smoothers and data structures lead to significant im-

provements so that no differences between ‘stable’ gradient formulation and stabilized tensor formulation

are visible.

However, we also have to remark that the inclusion of the partial matrix J
∗ into the preconditioning

matrix A + J
∗ is necessary. It might appear to be much easier for the implementation procedure to

employ only the partial matrix A in the preconditioning step since this approach does not require any

modification of the ‘Vanka smoother’; only the defect calculation has to be adapted. However, in this

case, the solver behaves more like an (incomplete) block-Jacobi iteration so that convergence problems

may arise as soon as significant mesh anisotropies occur. Therefore, we strongly recommend to include

the partial matrix J
∗ from the stabilization procedure into the preconditioning approach.

3.6.3 Numerical study of stabilization parameter size

Non-Newtonian case: Shear-dependent viscosity

In the next simulations, let us consider the case of non-Newtonian flow in which we employ the standard

Power Law model for the viscosity function ν. However, we are confronted with the question of how to

choose a value for ν, and also for D(u) due to ν = ν(DII(u)) on the edges of the mesh cells which is required

in the edge-oriented stabilization approach. In the following, we prescribe ν(DII(u)) = ν0(ǫ+DII(u))
r
2
−1

which leads to ‘shear-thickening’ ( r
2 − 1 ≥ 0) or ‘shear-thinning’ ( r

2 − 1 ≤ 0). For the special parameter

choices ǫ = 10−1, ν0 = 1 and | r2 − 1| = 0.35, the viscosity function ν varies locally by a factor of 10

( r
2 − 1 = 0.35) or even 30 ( r

2 − 1 = −0.35). Figure 3.5 shows corresponding plots of the resulting viscosity

function ν(DII(u)) for the converged solution u of these nonlinear problems.

Looking at this locally changing behavior of the viscosity function, the question arises of how to choose

the stabilization parameters γ · ν in (2.42) on each edge. Table 3.6 shows results for the version νconst in

this case ν was fixed to be the minimum value of the (global) viscosity. In contrast, the approach νlocal

is based on the local size of the viscosity ν on every edge and takes into account the local variations due

to changes with respect to the value of DII(u). As expected, the locally adapted choice νlocal shows a

better nonlinear convergence behavior (number of nonlinear iterations NL), and the corresponding linear

multigrid behavior (averaged number of multigrid sweeps per nonlinear cycle AVMG) is significantly

better, due to a possible underestimation of the value νconst in the stabilization procedure; the case of no

stabilization at all shows the expected problems due to the failure of Korn’s inequality.
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Fig. 3.5. The resulting viscosity for the described cases of shear thickening/thinning

Additionally, we discuss the aspect of selecting the appropriate stabilization parameter γ in γ · νconst,

respectively, γ · νlocal. The results in Table 3.6 demonstrate again the improved behavior of the locally

adaptive stabilization parameter νlocal, and that γ can be chosen from a quite wide range.

Table 3.6. NL/AVMG for different choices of stabilization (ǫ = 10−1, ν0 = 1) for ν = ν0(ǫ + DII(u))
r
2
−1

r
2
− 1 = −0.35 r

2
− 1 = 0.35

Level no stab νconst νlocal no stab νconst νlocal

3 26/48 24/4 24/3 17/7 17/6 17/5

4 26/140 25/5 25/3 18/15 17/8 17/5

5 27/414 24/6 24/3 50/212 17/10 17/5

6 – 24/7 24/3 – 17/12 17/5

level 4

γ 0.1 0.01 0.001 0.1 0.01 0.001

γ · νconst 25/4 25/11 25/15 17/6 17/14 17/27

γ · νlocal 25/3 25/3 25/8 17/5 17/10 17/23
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3.6.4 Efficiency of the nonlinear solver: Pressure and shear dependent viscosity

Finally, let the nonlinear (pseudo) viscosity has the form ν(p, z) = exp(βp)
ǫ+||D|| , and list the number of resulting

nonlinear iterations and the averaged number of multigrid sweeps per nonlinear iteration for both Newton

and Fixpoint methods. Table 3.7 shows that the presence of the new linear operator B
∗ cannot be ignored;

otherwise, we destroy the efficiency of the Newton method which is necessary for the robust treatment

of the significant nonlinearity.

Table 3.7. Corresponding results for the number of nonlinear iterations and the averaged number of linear sweeps

per nonlinear cycle (couette configuration see figure 6.2).

ν(z, p) = exp(βp)
ǫ+||D||

Fixpoint Newton δp = 0.0 Full Newton

Level β 0.5 1.0 0.5 1.0 0.5 1.0

4 grad. tensor 35/2 38/2 14/2 34/2 11/2 11/2

5 grad. tensor 49/2 55/2 13/2 25/2 10/3 10/3

4 stab. tensor 13/2 18/2 11/2 18/2 8/2 8/2

5 stab. tensor 15/2 23/2 12/2 27/2 8/3 9/3

3.7 Concluding remarks and outlook

The aim of this chapter was to highlight the flexibility, robustness and efficiency of multigrid solvers

for stabilized nonconforming finite element discretization to simulate general incompressible flow prob-

lems involving the deformation tensor. Based on the work by Brenner [9] and Hansbo and Larson [39]

who have introduced and analyzed appropriate edge-oriented stabilization techniques by discontinuous

Galerkin approaches in the context of Nitsche’s method. The investigation has been concentrated on the

corresponding (multigrid) solver and aspects of appropriate data structures to include these discretization

techniques in standard FEM codes. The results are very promising and show that the typical efficiency

of multigrid solvers for the gradient formulation can be transferred to formulations including the defor-

mation tensor. The major task was to modify the existing local Multilevel Pressure Schur Complement

smoothers (‘Vanka smoother’) [92] in the framework of defect correction approaches and to split the

contributions from the new stabilization techniques with respect to matrix-vector applications and local

assembling routines.

Additionally, the nonlinear viscosity flow models for both cases pressure and shear dependent viscosity has

been successfully treated. Since in that case the corresponding viscosity function ν = ν(DII(u), p) depends

on the solution (u, p) itself, the corresponding stabilization parameter has to be locally adapted since the

resulting (local) viscosity ν exhibits significant changes of several orders of magnitude. Nevertheless, the

new stabilization techniques lead to very robust and accurate approximation results

• The full Newton method seems to be necessary for this type of nonlinear problem.

• The multigrid convergence for this new class of auxiliary linear subproblems shows the typical excellent

convergence behavior.

Altogether, appropriate discretization and solution concepts for nonconforming finite elements have been

realized which are able to simulate more complex flow models including the deformation tensor formula-

tion for general viscosities and configurations. Nevertheless, further research is required on the following

aspects:
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• Improved locally adaptive stabilization parameters which take into account the quantitative changes

due to the nonlinear solution behavior.

• Better nonlinear Newton-like solvers which are adapted to the additional nonlinearity due to the

nonlinear stabilization parameters.

• More robust and efficient smoothing operators which use the full jump matrix J by using the proposed

edge-oriented Vanka smoother.

• Beside the nonlinear solution procedure, more investigation should focus on the linear algebraic prob-

lem due to the involved pressure for both Fixpoint and Newton methods.
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A Computational Comparison of two FEM Solvers

This chapter compares the two different FEM discretization techniques (conforming Q2/P1, nonconform-

ing Q̃1/Q0 elements) and solution procedures (various nonlinear Newton variants and multigrid versus

Krylov-space solvers for the linear subproblems) onto the approximation properties and particularly

the total efficiency of corresponding simulation tools for incompressible fluids. We discuss algorithmic

details and give numerical results for laminar incompressible flow examples including Newtonian and

non-Newtonian behavior of Power Law type (1.3).

4.1 Introduction

The Stokes element Q2/P1, being potentially of 3rd order accuracy due to the biquadratic polynomials for

the velocity (and the linear pressure approximation), is one of the most popular discretization techniques

in the CFD community [11, 47]. In most applications, it is employed in a fully coupled approach which

applies an outer Newton-like iteration for the discretized Navier-Stokes equations while the resulting

linear subproblems of Oseen-type (as a nonsymmetric generalization of Stokes problems) are treated with

(single-grid) Krylov-space methods: Due to the indefinite and particularly nonsymmetric character of the

equations, preconditioned BICGSTAB [101] and GMRES [78] variants are the most popular solvers for

the corresponding linear systems.

As an alternative, see for instance the realization in the FEATFLOW software package [91], special

nonconforming FEM elements like the rotated multilinear/piecewise constant Q̃1/Q0 Stokes element

have been developed which provide an optimal approximation error of one order less. However, for such

finite elements, special hierarchical multigrid techniques have been realized which show a much more

efficient behavior with respect to the solution of the resulting huge linear systems.

While such ‘linear’ (low order) finite elements seem to require much more degrees of freedom to satisfy

a prescribed accuracy than compared with the quadratic Q2/P1 ansatz, they show at the same time a

much superior behavior with respect to the efficiency of the involved solvers. Therefore, the aim of this

chapter is to analyze the numerical characteristics of both popular approaches and to give a comparison

for non-trivial flow configurations in 2D which are based on the (nonlinear) incompressible Navier-Stokes

equations: ‘What is the total efficiency in terms of CPU timing, if we take into account the different

numbers of unknowns and iteration steps which are required for a comparatively accurate simulation?’
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4.2 Linear Solvers

Here we give a brief description of the involved solution techniques for the resulting linear systems. For the

nonconforming Stokes element Q̃1/Q0, a ‘local pressure Schur complement’ preconditioner (see section 3.4

and [92]) as generalization of so-called ‘Vanka smoothers’ (see [103]) is constructed on patches Ωi which

are ensembles of one single or several mesh cells, and this local preconditioner is embedded as global

smoother into an outer block Jacobi/Gauss-Seidel iteration which acts directly on the coupled systems

of Stokes, respectively of Oseen type. Other components in the multigrid approach, that means intergrid

transfer, coarse grid correction and coarse grid solver, are quite standard and are based on the underlying

hierarchical mesh hierarchy and the properties of the nonconforming finite elements [92].

For the biquadratic conforming Stokes Element Q2/P1, a standard GMRES method [78] as typical iter-

ative single grid solver with ILU preconditioning is applied. The preconditioner is taken from the library

developed in [8]. It is clear that multigrid might be preferable, too, but up to now, corresponding Vanka-

like smoothers for this Q2/P1 ansatz are not yet available. Anyway, this GMRES solver is probably the

most common approach in the CFD community, besides using BiCGSTAB [101], such that it will be very

interesting to perform these comparisons.

4.3 Numerical Comparisons

Now we present the results from our numerical experiments with various parameters settings and also

different physical models for the both proposed discretization and solution frameworks. The computational

domain is always a channel geometry with an interior circle as shown via the coarsest mesh in Table 4.1;

this configuration is following the standard CFD benchmark ‘Flow around a cylinder’ [100]. The reader

should know the position of the circle is slightly nonsymmetric with respect to the height such that the

lift coefficient is non-homogeneous.

Table 4.1. Coarse mesh and geometrical details for the ‘Flow around a cylinder’ configuration for the both

elements Q̃1/Q0 and Q2/P1 on the different levels of mesh refinement.

Mesh information Q̃1/Q0 Q2/P1

Level Elements Vertices Midpoints Total unknowns Total unknowns

1 156 130 286 702 1 533

2 572 520 1 092 2 686 5 927

3 2 184 2 080 4 264 10 608 23 295

4 8 528 8 320 16 848 42 016 92 351

5 33 696 33 280 66 976 16 7232 367 743

6 133 952 133 120 267 072 66 7264 −
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4.3.1 Newtonian test case

The first computational tests are performed for the Newtonian Navier-Stokes equations, i.e. with constant

viscosity, in this case the only source of nonlinearity is the convective term. To remain in the limit

of steady flows, the Reynolds number - by variations of the viscosity parameter only - is kept to be

less than Re = 50 which is near the critical point to turn into (periodically) oscillating flow behavior.

Although the cases Re = 20 (the standard test in [100]) and also Re = 50 appear to be far away from

transport-dominated flows, nevertheless the involved convective term requires special treatment: While

the simulations show that the approximation results for such ‘medium’ Reynolds numbers seem to be the

best for no stabilization at all, that means applying central differencing or the pure Galerkin formulation,

the involved multigrid routines are much more sensitive. Therefore, in the case of the rotated bilinear

nonconforming Stokes element Q̃1/Q0, we apply the two standard techniques of streamline-diffusion

(SD) and upwind (UPW) stabilization (see [92] for details of the discretization). However, such methods

require additional ‘free’ parameters as the local mesh width, the relation to the local Re number and

an additional relaxation parameter, which lead to the non-trivial task of parameter tuning, particularly

in the case of nonlinear flow models and/or on non-uniform meshes. In contrast, the conforming Q2/P1

element is employed - as usually - without any stabilization which seems to be sufficient in our case of

low up to medium Re numbers. However, we also have to state that, up to now, it is by far not clear of

how to develop corresponding stabilization techniques which can be adapted to the potentially available

higher order accuracy of this Stokes element in the case of much larger Re numbers.

The following tables show the resulting approximation properties with respect to the measured drag and

lift coefficients on the different refinement levels, the required nonlinear iteration numbers #NN to gain 8

digits of accuracy (here we compare the continuous, respectively discrete Newton solvers with the simpler

fixpoint approach) and the corresponding averaged number #NL of linear iterations per nonlinear cycle

to gain 2 digits. We apply the described multigrid solver for the Q̃1/Q0 element, while for the conforming

Q2/P1 element, the preconditioned GMRES solver has been used. These approximation and solution

properties are shown with the corresponding CPU times.
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Table 4.2. Drag coefficient (top) and lift coefficient (below) for different Re numbers and for various levels of

mesh refinement for the Q̃1/Q0 (with streamline-diffusion and upwinding for the stabilization of the convective

term) and the Q2/P1 approach (with no stabilization at all).

Level Stokes Re = 20 Re = 50

Q̃1/Q0 - SD - Drag

3 3.0231 × 103 6.3836 × 100 4.4529 × 100

4 3.0991 × 103 5.9574 × 100 3.9194 × 100

5 3.1251 × 103 5.7269 × 100 3.8728 × 101

6 3.1349 × 103 5.6285 × 100 3.7629 × 100

Q̃1/Q0 - UPW- Drag

3 3.0231 × 103 4.6383 × 100 4.4529 × 100

4 3.0991 × 103 5.9574 × 100 3.7409 × 100

5 3.1252 × 103 5.5657 × 100 3.6970 × 100

6 3.1349 × 103 5.5721 × 100 3.6922 × 100

Q2/P1 - central - Drag

2 3.1237 × 103 5.5569 × 100 3.6677 × 100

3 3.1374 × 103 5.5728 × 100 3.6867 × 100

4 3.1411 × 103 5.5777 × 100 3.6925 × 100

5 3.1421 × 103 5.5791 × 100 3.6940 × 100

Q̃1/Q0 - SD - Lift

3 2.9877 × 101 1.1740 × 10−3 −1.6618 × 10−2

4 3.0734 × 101 4.3426 × 10−3 −1.2063 × 10−2

5 3.0898 × 101 7.8140 × 10−3 −1.1941 × 10−2

6 3.0907 × 101 9.4495 × 10−3 −1.1459 × 10−2

Q̃1/Q0 - UPW- Lift

3 2.9871 × 101 4.8388 × 10−3 −1.3512 × 10−2

4 3.0733 × 101 9.1197 × 10−3 −1.0155 × 10−2

5 3.0898 × 101 1.0170 × 10−2 −1.0173 × 10−2

6 3.0907 × 101 1.0428 × 10−2 −1.0775 × 10−2

Q2/P1 - central - Lift

2 2.9854 × 101 0.9512 × 10−2 −1.1764 × 10−2

3 3.0578 × 101 1.0609 × 10−2 −1.0894 × 10−2

4 3.0788 × 101 1.0616 × 10−2 −1.0739 × 10−2

5 3.0846 × 101 1.0617 × 10−2 −1.0730 × 10−2
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Table 4.3. Corresponding results for the total number of nonlinear iterations (#NN) and the averaged number

of linear sweeps (#NL) per nonlinear iteration step together with the elapsed CPU time.

models Stokes Re = 20 Re = 50

Level #NN/#NL CPU #NN/#NL CPU #NN/#NL CPU

Q̃1/Q0 - SD

3 fixpoint 4/2 9 11/3 19 17/4 41

Newton 4/3 9 8/3 18 9/3 19

4 fixpoint 4/3 26 10/3 59 16/3 110

Newton 4/3 27 6/3 41 7/3 53

5 fixpoint 4/3 113 9/3 206 14/3 346

Newton 4/3 109 5/2 114 6/3 137

6 fixpoint 4/4 551 8/3 671 12/2 989

Newton 4/4 522 5/3 562 6/3 601

Q̃1/Q0 - UPW

3 fixpoint 4/3 9 10/4 35 16/4 53

Newton 4/3 9 8/4 26 11/5 46

4 fixpoint 4/3 25 10/3 78 15/3 143

Newton 4/3 25 6/3 47 7/3 71

5 fixpoint 4/3 106 10/3 246 14/3 386

Newton 4/3 107 5/3 116 6/3 174

6 fixpoint 4/4 505 8/2 633 12/3 1194

Newton 4/4 516 5/3 525 6/3 535

Q2/P1 - central

2 fixpoint 4/24 8 12/35 26 18/38 40

Newton 4/24 7 6/32 11 7/44 14

3 fixpoint 4/52 49 12/67 172 17/78 271

Newton 4/51 42 6/69 76 7/81 102

4 fixpoint 4/134 400 11/116 1029 16/149 1878

Newton 4/135 393 6/122 534 7/163 885

5 fixpoint 5/586 9726 11/348 12457 16/315 16193

Newton 4/541 7184 6/302 6326 6/330 6250

The results from these tables are quite prototypical for similar configurations with low up to medium Re

numbers and can be concluded as follows:

1. Both discretizations lead to the same results if we apply sufficiently many grid refinement steps; as

expected, the quadratic Q2/P1 approach is much more accurate which can be summarized by the

following thumb rules:

‘The linear Q̃1/Q0 approach requires about 1 or 2 further levels of grid refinement to produce a

comparable accuracy as the quadratic Q2/P1 ansatz. That means, the required number of elements

is about 5 - 20 times larger which results in approximately up to 10 times more unknowns (see Table

4.1). However, keep in mind that the corresponding differences regarding the amount of RAM storage

are much smaller since the matrix stencil for the higher-order FEM is significantly bigger!’
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2. We clearly see the typical effect of ‘optimal’ multigrid: the linear convergence rates are in the range

of ρMG ≈ 0.1 (only 2 - 4 steps to gain two digits are required) and quite independent of the mesh size

and also the underlying Re numbers. It is remarkable that the solution of the nonsymmetric Oseen

equations is often ‘easier’ than solving symmetric Stokes problems!

In contrast, the GMRES solver shows the expected mesh-dependent convergence behavior which is

quantitatively much worse than the corresponding multigrid approach. Refining the mesh does not

only lead to bigger problem sizes, but also to significantly more linear iteration sweeps due to the

increasing condition number of the discrete matrices.

3. The advantage of the more complex Newton solvers in comparison to the ‘simple’ fixpoint approach

is not so obvious: Even in the Re = 50 case, the required number of nonlinear fixpoint steps is only 2

- 3 times larger than compared with the Newton variants. However, in contrast to the linear solvers,

the nonlinear convergence behavior is only related to the properties of the underlying continuous (!)

problem, that means the Re number in our case, which is in contrast to the linear problems which are

mainly depending on the condition numbers of the matrices and hence on the mesh width, respectively

the mesh topology.

Table 4.4. Direct comparison of the Q2/P1 approach versus the Q̃1/Q0 Stokes element (with upwinding) for

Re = 20 (standard stationary CFD benchmark configuration in [100]).

Level Drag Lift #NN/#NL CPU

Q2/P1 - central

2 0.9512 × 10−2 5.5569 × 100 6/32 11

3 1.0609 × 10−2 5.5728 × 100 6/69 76

4 1.0616 × 10−2 5.5777 × 100 6/122 534

5 1.0617 × 10−2 5.5791 × 100 6/302 6326

Q̃1/Q0 - UPW

3 4.7543 × 10−3 5.5833 × 100 8/4 26

4 9.5360 × 10−3 5.5737 × 100 6/3 47

5 1.0455 × 10−3 5.5769 × 100 5/3 116

6 1.0593 × 10−2 5.5788 × 100 5/3 525
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As a first summary, we can state that - as expected - the quadratic Q2/P1 is more accurate for the

considered low up to medium Re numbers which lead to steady state solutions. That means, the ‘simpler’

Q̃1/Q0 approach requires approximately 5 - 20 times more grid points, respectively cells. On the other

hand, the corresponding direct multigrid solver for the Q̃1/Q0 element pair shows the typical ‘optimal’

convergence behavior which is in contrast to the preconditioned GMRES solver: The single-grid approach

shows convergence rates which clearly depend on the mesh width and which are quantitatively much

worse.

Moreover, we have to keep in mind that the use of the stabilization in the case of Q̃1/Q0 leads to the

reduction of the order of error to h
3

2 for FEM streamline-diffusion stabilization and h for FEM upwinding

stabilization [81] in contrast to the the order of h3 for the central Q2/P1 which make the reliability of

this comparison under question for Newtonian law with low and medium Re number !.

Therefore, concerning the total efficiency, the ‘Q̃1/Q0 + multigrid’ combination is (still) preferable. It is

obvious that such a higher order discretization has a high potential for the future, but the comparisons

demonstrate that discretization and solver aspects have to be treated as a unity. Hence, the analogous

development of robust and efficient multigrid techniques for the Q2/P1 and similar high-order Stokes

elements is a must for future research.

4.3.2 Non-Newtonian test case

Since the examined nonlinearity related to the convective term in the case of a steady state solution

is quite moderate, our next tests are concerned with the discussed nonlinear viscosity functions. As a

first consequence, the equivalence between the gradient and the deformation tensor formulations for the

diffusive part are not valid any more, so the stabilized version of the rotated bilinear element pair Q̃1/Q0

is required.

The following tables show the results for the Power Law model, that means ν(u) = (ǫ+DII(u))
r
2
−1, ǫ =

10−2, which has been integrated into both described Navier-Stokes solvers; the geometrical configuration

corresponds to the previous ‘Flow around cylinder’ configuration. Again, we calculate the lift and drag

coefficients, and additionally the pressure difference △ p on the cylinder (see [100]). Due to the fact

that the considered flow is very slow, the computation was done without the convective term such that

- for numerical test reasons - the nonlinear viscosity is the only source of nonlinearity. However, the

calculations show that the strength of the nonlinear behavior for the chosen parameters r = 1.5 and

particularly r = 1.1 is quite significant.

The results for these non-Newtonian test cases are quite similar as those for the Newtonian flow model:

Again, the quadratic Q2/P1 approach is more accurate while the corresponding GMRES solver for the

linear subproblems in each Newton step shows the well known grid dependent convergence behavior.

In contrast, the performed multigrid solver in the Q̃1/Q0 context is robust against variations in the

mesh width and also with respect to the problem-specific parameter r which mainly determines the

corresponding nonlinear behavior.
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Table 4.5. Comparison of approximation results (drag, lift pressure difference) and of the total number of

nonlinear iterations (#NN) and the averaged number of linear sweeps (#NL) per Newton step.

ν(u) = (ǫ + DII(u))
r
2
−1

Level Stokes element Drag Lift △ p #NN/#NL

r = 1.5

2 Q̃1/Q0 1409.60 11.86 22.41 6/2

Q2/P1 1607.10 14.48 25.38 6/27

3 Q̃1/Q0 1554.10 13.70 23.99 8/2

Q2/P1 1629.10 14.27 25.16 8/65

4 Q̃1/Q0 1594.20 14.25 24.56 9/2

Q2/P1 1635.80 14.39 25.09 8/140

5 Q̃1/Q0 1615.60 14.43 24.81 8/2

Q2/P1 1637.60 14.44 25.07 9/723

6 Q̃1/Q0 1626.20 14.46 24.94 8/2

r = 1.1

2 Q̃1/Q0 819.49 2.5201 14.22 13/2

Q2/P1 920.59 2.1805 16.76 17/37

3 Q̃1/Q0 917.89 3.1958 15.54 14/2

Q2/P1 941.51 3.3310 16.02 14/93

4 Q̃1/Q0 916.02 3.7381 15.74 12/2

Q2/P1 953.94 3.9217 15.82 19/294

5 Q̃1/Q0 935.13 3.9954 15.82 15/3

Q2/P1 957.64 4.0587 15.87 18/1162

6 Q̃1/Q0 946.22 4.0592 15.85 13/5

4.3.3 Examination of the Newton variants

In the final simulations, we will examine the characteristics of the chosen nonlinear solvers of Newton

type. To be precise, we demonstrate in the case of the continuous Newton approach the importance of

including all terms of the Jacobi matrix in contrast to the simpler fixpoint approach which utilizes the

partial differential operator only, hereby evaluated for the results of the last nonlinear iteration step (see

in (3.22)).

Table 4.6. Direct comparison of continuous Newton versus fixpoint method for the treatment of the nonlinearity

with the Q̃1/Q0 Stokes element.

Newton (r = 1.5) fixpoint (r = 1.5) Newton (r = 1.1) fixpoint (r = 1.1)

Level #NN/#NL CPU #NN/#NL CPU #NN/#NL CPU #NN/#NL CPU

2 6/2 11 19/2 37 13/2 60 74/2 228

3 8/2 46 18/2 126 14/2 215 114/2 1359

4 9/2 199 16/2 389 12/2 740 125/2 5871

5 8/2 707 14/2 1517 15/3 3957 119/2 21735

6 8/2 2885 12/2 5047 13/5 25926 −/− −−
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The results in Table 4.6 show the corresponding comparison for the nonconforming Q̃1/Q0 element. In

both cases, for the full Newton and the simplified fixpoint approach, the described multigrid solvers

for the linear auxiliary problems have been applied to gain 2 digits of relative accuracy. While for the

moderate case of r = 1.5, the differences are not so significant, the harder test case r = 1.1 shows the

importance of a full Newton solver: Differences of order 6 - 7 with respect to the number of nonlinear

iterations occur while the averaged number of linear sweeps remains constant such that differences in the

total efficiency of size 6 and more are typical for such flow problems.

Finally, we discuss the sensitivity of the discrete Newton approach via divided differences regarding

the involved step-length parameter ε, the mesh width h and the problem-dependent parameter r which

is responsible for the strength of the nonlinearity. As explained in (3.9), the discrete Jacobi matrix is

calculated via:

[

∂R(xn)

∂x

]

ij

≈ Ri(x
n + εej) −Ri(x

n − εej)

2ε
. (4.1)

Therefore, in the following tables (Table 4.7 and Table 4.8) we examine more carefully the resulting discrete

Jacobi matrices with respect to the discussed parameter ε, h and r, and we show how the ‘outer’ nonlinear

convergence behavior as well as the ‘inner’ linear solution behavior involving the resulting matrices is

influenced.

The results clearly indicate that the right choice of the step-length parameter ε might be a delicate task:

Choosing ε too big, then the advantageous quasi-quadratic convergence behavior may not appear, while

very small parameter values for ε may lead to divergence, due to numerical instabilities. Additionally, the

range of ‘good’ parameter values ε may also depend on the mesh width h and much more significantly on

the nonlinearity of the problem itself, which is determined in our case via the parameter r; being outside

of this range of admissible values, the increase in necessary CPU time can be extremely big.

Additionally, we examined the influence of the prescribed tolerance parameter TOL which determines

the relative accuracy for solving the linear subproblems. Here, the consequences are not so dramatic:

Choosing ‘big’ values for TOL might destroy the quadratic nonlinear convergence properties, while very

small parameters will not further improve the global convergence behavior. However, the ‘non-optimal’

choice can significantly increase the total CPU time such that the recommendation is to gain between 2

- 4 digits of relative defect improvement in each nonlinear iteration as stopping criterion for the linear

problems.
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Table 4.7. Direct comparison of the results for the discrete Newton approach with the Q2/P1 Stokes element for

r = 1.5; the parameters ǫ and TOL as step-length parameter, respectively as stopping criterion are varied. The

results are shown for grid refinement level 2 (top) up to level 5 (bottom). We always provide the total number of

nonlinear iterations (#NN), the averaged number of linear sweeps (#NL) per Newton step and the elapsed CPU

time in seconds. The maximum number of nonlinear Newton steps is 40.

ε \ TOL 10−1 10−2 10−3 10−4

Level 2

10−2 40/ 4 [ 60] 32/ 7 [ 49] 30/ 13 [48] 21/ 20 [ 36]

10−3 14/ 12 [ 22] 10/ 16 [ 16] 8/ 24 [ 14] 8/ 29 [ 15]

10−4 10/ 15 [ 16] 8/ 19 [ 13] 6/ 27 [ 11] 7/ 29 [ 13]

10−5 10/ 15 [ 16] 8/ 19 [ 13] 6/ 27 [ 11] 7/ 29 [ 13]

10−6 10/ 15 [ 16] 8/ 19 [ 13] 6/ 27 [ 11] 7/ 29 [ 13]

10−7 10/ 15 [ 16] 8/ 19 [ 13] 6/ 27 [ 11] 7/ 29 [ 13]

10−8 10/ 15 [ 16] 8/ 19 [ 13] 6/ 27 [ 11] 7/ 29 [ 13]

Level 3

10−2 40/ 7 [ 280] 40/ 14 [305] 40/ 22 [ 335] 37/ 36 [ 358]

10−3 33/ 24 [ 288] 14/ 35 [ 134] 10/ 57 [ 120] 11/ 67 [ 145]

10−4 11/ 40 [ 113] 10/ 40 [ 103] 8/ 65 [ 105] 8/ 70 [ 114]

10−5 11/ 38 [ 113] 9/ 43 [ 99] 8/ 65 [ 109] 8/ 70 [ 110]

10−6 11/ 38 [ 114] 9/ 43 [ 97] 8/ 65 [ 105] 8/ 70 [ 111]

10−7 21/ 25 [ 189] 21/ 35 [ 212] 13/ 58 [ 167] 14/ 78 [ 207]

10−8 21/ 23 [ 185] 15/ 40 [ 160] 11/ 62 [ 146] 15/ 82 [ 234]

Level 4

10−2 40/ 11 [ 1306] 40/ 23 [ 1548] 40/ 51 [ 2055] 40/ 84 [ 2720]

10−3 40/ 33 [ 1745] 31/ 48 [ 1561] 16/ 102 [1314] 18/ 129 [ 1877]

10−4 15/ 85 [ 1124] 11/ 104 [ 983] 9/ 134 [ 999] 9/ 199 [ 1399]

10−5 11/ 101 [ 976] 9/ 100 [ 807] 8/ 140 [ 941] 9/ 204 [ 1423]

10−6 11/ 100 [ 954] 9/ 100 [ 798] 8/ 139 [ 920] 9/ 204 [ 1426]

10−7 10/ 104 [ 898] 15/ 97 [ 1320] 10/ 138 [ 1148] 13/ 219 [ 2241]

10−8 40/ 29 [ 1814] 40/ 156 [5174] 40/ 199 [ 6244] 40/ 274 [ 8108]

Level 5

10−2 diverge 40/ 57 [10153] 40/ 122 [17075] 40/ 45 [31638]

10−3 40/ 35 [ 8251] 40/ 82[13550] 26/ 214 [18679] 22/ 348 [25640]

10−4 20/ 181 [13244] 16/ 264 [14637] 14/ 432 [20002] 9/ 755 [22325]

10−5 11/ 296 [11331] 8/ 492 [12978] 9/ 723 [22105] 8/ 944 [25220]

10−6 25/ 148 [13947] 10/ 374 [12388] 14/ 383 [18271] 11/ 590 [22030]

10−7 40/ 255 [37031] 27/ 479 [44067] 20/ 757[50167] 19/ 811 [50788]

10−8 40/ 252 [36063] 40/ 245[28289] 40/356 [47587] 40/ 472[62539]
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Table 4.8. Direct comparison of the results for the discrete Newton approach with the Q2/P1 Stokes element for

r = 1.1; the parameters ǫ and TOL as step-length parameter, respectively as stopping criterion are varied. The

results are shown for grid refinement level 2 (top) up to level 5 (bottom). We always provide the total number of

nonlinear iterations (#NN), the averaged number of linear sweeps (#NL) per Newton step and the elapsed CPU

time in seconds. The maximum number of nonlinear Newton steps is 40. (∗ - maximal CPU time exceeded)

ε \ TOL 10−1 10−2 10−3 10−4

Level 2

10−2 40/ 6 [ 62.0] 40/ 15 [67.1] 40/ 27 [ 74.4] 40/ 34 [ 79.8]

10−3 26/ 15 [ 43] 19/ 23 [ 34] 20/ 35 [ 39] 19/ 43 [ 40]

10−4 16/ 20 [ 28] 15/ 28 [ 28] 18/ 37 [ 37] 19/ 43 [ 40]

10−5 15/ 20 [ 26] 14/ 27 [ 26] 17/ 37 [ 35] 19/ 43 [ 40]

10−6 16/ 21 [ 28] 14/ 27 [ 26] 17/ 37 [ 34] 19/ 43 [ 40]

10−7 16/ 21 [ 28] 14/ 27 [ 26] 17/ 37 [ 35] 19/ 43 [ 40]

10−8 16/ 22 [ 28] 14/ 27 [ 26] 17/ 37 [ 35] 19/ 43 [ 41]

Level 3

10−2 diverge 40/ 24 [ 353] 40/ 43 [ 435] 40/ 69 [ 547]

10−3 40/ 10 [ 297] 26/ 44 [ 286] 21/ 75 [ 305] 18/ 99 [ 326]

10−4 40/ 21 [ 352] 17/ 70 [ 243] 16/ 92 [ 275] 15/ 114 [ 304]

10−5 35/ 33 [ 354] 15/ 70 [ 219] 14/ 93 [ 243] 14/ 115 [ 286]

10−6 33/ 37 [ 348] 15/ 70 [ 220] 14/ 93 [ 244] 14/ 115 [ 296]

10−7 40/ 34 [ 411] 29/ 79 [ 461] 29/ 88 [ 495] 18/ 104 [ 342]

10−8 40/ 32 [ 403] 40/ 50 [ 483] 31/ 89 [ 525] 32/ 115 [ 656]

Level 4

10−2 diverge diverge 40/ 86 [3047] 40/ 158 [ 5078]

10−3 diverge 40/ 70 [ 2726] 40/ 119 [ 4015] 37/ 214 [ 6100]

10−4 31/ 63 [ 2113] 40/ 78 [ 3050] 20/ 263 [ 4055] 20/ 431 [ 6486]

10−5 40/ 82 [ 3060] 16/ 208 [ 2721] 19/ 294 [ 4380] 18/ 454 [ 6198]

10−6 40/ 82 [ 3087] 16/ 214 [ 2733] 19/ 296 [4435] 18/ 454 [ 6314]

10−7 21/ 86 [ 1831] 18/ 205 [ 3058] 19/ 296 [ 4532] 18/ 455 [ 6472]

10−8 diverge diverge diverge diverge

Level 5

10−2 40/ 13 [ 5997] 40/ 68 [12117] 40/ 239 [35923] 40/678 [119583]

10−3 40/ 32 [ 8081] 40/179 [28095] 40/ 334 [44798] 40/ 661[86097]

10−4 40/ 71 [ 13974] 33/ 368 [45204] 24/ 795 [70727] 18/1429 [82560]

10−5 40/ 90 [ 14493] 37/ 476 [59433] 18/1162 [77307] 17/1818 [112571]

10−6 40/902 [133602] 31/1250 [127105] 37/1387 [132800] 35/1798 [169726]

10−7 40/820 [120798] 40/1128 [119128] 39/862 [102043] 31/1450 [127530]

10−8 ∗ ∗ ∗ ∗
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Table 4.9. Summarized presentation of the results for the discrete Newton approach with the Q2/P1 Stokes

element for r = 1.5 and r = 1.1 on the different mesh levels. The calculations are performed for our ‘preferred’

configuration ε = 10−5 and TOL = 10−3 which seems to give the most robust convergence behavior.

r = 1.5 r = 1.1

Level #NN/#NL CPU #NN/#NL CPU

2 6/27 11 17/37 35

3 8/65 109 14/93 243

4 8/140 941 19/294 4 380

5 9/723 22 105 18/1 162 77 307

4.4 Conclusions

In this comparative study, we have analyzed the influence of two different FEM discretization techniques

(conforming Q2/P1, nonconforming Q̃1/Q0 elements) and solution procedures (various nonlinear Newton

variants and multigrid versus Krylov-space solvers for the linear subproblems) onto the approximation

properties and particularly the total efficiency of corresponding simulation tools for incompressible fluids.

We have discussed algorithmic details and provided numerical results for laminar steady-state incom-

pressible flow examples including Newtonian and non-Newtonian behavior of Power Law type.

The following two approaches have been compared which both are quite popular in the CFD community;

additionally, both of them are representative for typical methodologies which are in use for such types of

flow simulations:

1. The Q2/P1 Stokes element with central differencing for the convective, term with a dis-

crete nonlinear Newton solver based on ‘Divided Differences’ together with a preconditioned

single-grid GMRES method for the auxiliary linear problems of Oseen type:

This pair of FEM functions leads due to the involved biquadratic polynomials to a higher order of accuracy

than compared with linear approaches, at least for the considered low up to medium Re numbers; in

contrast, for higher Re numbers, the question of stabilizing the discretized convective terms in the FEM

context while maintaining the higher order accuracy has not been discussed and is one of the current

research topics in the mathematical CFD community.

While the discrete Newton method leads in most cases - up to the optimal parameter choice for the ‘Di-

vided Differences’ approach - to quite satisfying results concerning the numerical stability and efficiency,

the involved GMRES solver as prototype for a non-multigrid Krylov-space method shows the expected

dependence of mesh size which leads to huge numbers of linear iteration steps if the mesh size has to be

decreased by accuracy reasons.

2. The nonconforming rotated bilinear Q̃1/Q0 Stokes element with upwinding, respectively

streamline-diffusion stabilization for the convective term and with a continuous nonlinear

Newton solver together with an adapted multigrid method for the resulting Oseen-type

subproblems:

The resulting accuracy of this ‘linear’ approach is lower such that up to 5 - 10 times more grid points are

needed to produce results of similar quality as with the Q2/P1 approach. However, highly sophisticated

FEM discretization techniques for the convective terms are available which can be directly applied for
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convection-dominated flows while maintaining a similar accuracy and robustness as for the considered

steady-state flow configurations.

The advantages of this approach are - beside the continuous Newton solver for the nonlinearity which

however can be performed for the Q2/P1 scheme, too - the realized multigrid solver for the linearized

problems. After a careful optimization of all multigrid components in relation to the underlying FEM

spaces, the typical robust and very efficient convergence behavior of the multigrid approaches can be

obtained such that the linear problems can be solved with a numerical efficiency which is more or less

independent of the problem size, the mesh topology and also the type of problems, as for instance Stokes

or Oseen problem for different Re numbers, coming from Newtonian and non-Newtonian models.

Concerning the question of the ‘total efficiency’, that means the amount of CPU seconds to provide a

certain accuracy for a given flow problem, the answer due to our massive test calculations should be as

follows: the higher order Q2/P1 approach requires about 5 - 20 times less grid points, however due to the

missing multigrid solvers, the corresponding CPU time is huge. Altogether, the simpler nonconforming

Q̃1/Q0 Stokes element together with the already realized multigrid components seems to be the better

compromise at the moment, if we analyze the available flexibility and efficiency of this combination:

‘Multigrid is a must for incompressible flow problems!’

As an outlook, it is clear that the examined Q2/P1 approach shows a huge potential for future improve-

ment for complex fluid simulations, but the potentially high order approximation properties have to be

combined with adequate multigrid solvers. This must be one of the main tasks for Mathematics and

Numerics in the CFD community and should be one of the major future research topics. Realizing the

vision of a ‘robust and flexible higher order FEM discretization’ with ‘accurate FEM treatment of the

convective terms’ together with ‘adaptive local grid refinement’ on the basis of ‘rigorous a posteriori

error control for user-specified functionals’ in combination with efficient nonlinear Newton-like and linear

multigrid-like solvers’, that should be the aim for future work!
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Unified edge-oriented stabilization

This chapter deals with different aspects of edge-oriented stabilization techniques for nonconforming finite

element methods for the numerical solution of incompressible flow problems. We discuss two separate

classes of problems which require appropriate stabilization techniques: First, the lack of coercivity for

nonconforming low order approximations for treating problems with the symmetric deformation tensor

instead of the gradient formulation in the momentum equation (‘Korn’s inequality’) which particularly

leads to convergence problems of the iterative solvers for small Reynolds (Re) numbers. Second, numerical

instabilities for high Re numbers or whenever convective operators are dominant such that the standard

Galerkin formulation fails and leads to spurious oscillations . We show that the right choice of edge-

oriented stabilization is able to provide simultaneously excellent results regarding robustness and accuracy

for both seemingly different cases of problems, and we discuss the sensitivity of the involved parameters

with respect to mesh distortions and variations of the Re number. Moreover, we explain how efficient

multigrid solvers can be constructed to circumvent the problems with the arising ‘non-standard’ FEM data

structures, and we provide several examples for the numerical efficiency for realistic flow configurations

with benchmarking character.

5.1 Introduction

Stabilization techniques for (nonconforming) FEM discretizations in the context of incompressible flow

problems, for instance described by the Navier-Stokes equations or appropriate extensions in multiphase

problem settings, are still a challenging task. In this chapter, particularly from a practical point of view,

we want to analyze special edge-oriented stabilization techniques regarding the following three aspects:

I. Necessity. There are two well-known situations for nonconforming finite element methods when severe

numerical problems may arise: the lack of coercivity for nonconforming low order approximations for

symmetric deformation tensor formulations, mainly visible for small Re numbers, and whenever convective

operators are dominant, for instance for medium and high Re numbers or for the treatment of pure

transport problems. Then, the standard Galerkin formulation fails and may lead to numerical oscillations

or convergence problems of the iterative solvers, too.

II. Robustness. To analyze the ability of edge-oriented stabilization terms for a wide range of Re

numbers and for different problems is one of the central aims for the use of edge-oriented stabilization

techniques as black box tools in future CFD codes. Here, the question of appropriate parameter settings

and stabilization coefficients is always a delicate task, particularly on general meshes.
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III. Efficiency. One disadvantage of edge-oriented stabilization is the contribution of an additional layer

of neighboring elements via jumps across the edges. So, a new sparsity pattern for the resulting stiffness

matrix is introduced which may contradict to the usual data structures of finite element methods. In the

context of preconditoned Krylov-space or multigrid solvers, we show how suitable preconditioners, for

instance in the framework of defect-correction schemes, can be applied.

Our contribution has the goal to critically discuss these 3 aspects via a numerical analysis which we

restrict to the incompressible Navier-Stokes equations since they contain already most of the typical

difficulties. Extensions to more complex problems, for instance multiphase flow or nonlinear viscosities

(granular, non-Newtonian, visco-elastic flow) are possible and are described, for instance, in [71].

5.2 Short review on edge-oriented stabilization methods

The main idea is to augment the original finite element discretization by an interior penalty term involving

the jump of the function values or of (part of) the gradient of the approximate FEM solution. In the

literature, several jump terms were introduced for different situations:

I. Jump terms including function values

j1(u,v) =
∑

edge E

γν
1

|E|

∫

E

[u][v]dσ (5.1)

John et al. [51] introduced the jump term in the nonconforming streamline-diffusion method for convection

dominated problem to achieve the same accuracy as with conforming streamline-diffusion FEM methods.

Moreover, to satisfy the discrete Korn’s inequality, variants have been presented by Hansbo and Larson

in [39] and by Turek, Ouazzi and Schmachtel in [98]. And, in a similar way, an analogous approach for a

general Korn’s inequality for piecewise H1-functions has been introduced by Brenner in [9].

II. Jump terms including the gradient

j2,α(u,v) =
∑

edge E

γ|E|α
∫

E

[∇u][∇v]dσ

j3,α(u,v) =
∑

edge E

γ|E|α
∫

E

[n · ∇u][n · ∇v]dσ

j4,α(u,v) =
∑

edge E

γ|E|α
∫

E

[t · ∇u][t · ∇v]dσ

j5,α(u,v) =
∑

edge E

γ|E|α
∫

E

[(t · ∇u) · n][(t · ∇v) · n]dσ

(5.2)

These terms (with different values for α) for stabilizing convection dominated problems have been intro-

duced by Douglas and Dupont in [25], Burman, Hansbo et al. in [16, 18], see also [14] and [17].
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III. Jump terms including the divergence

j(u,v) =
∑

edge E

γ|E|2
∫

E

[∇ · u][∇ · v]dσ (5.3)

This approach was originally proposed by Burman, Hansbo et al. in [18] to control the incompressibility

condition.

IV. Jump terms including the normal component of function values

j(u,v) =
∑

edge E

γν
1

|E|

∫

E

[n · u][n · v]dσ (5.4)

To control the nonconformity arising from the pressure term in Darcy’s law, this term has been introduced

by Burman and Hansbo in [15].

The techniques proposed in III. and IV. will not be discussed in the following since they are not essential

for the stabilization of Korn’s inequality, respectively of convection dominated flow which is the main

aim of our studies in this chapter. So, summarizing this overview, it shows that for different types of

problems corresponding jump terms with ”free” constant γ and order |E|α have been introduced. Our

aim is to analyze a new variant which uses only one jump term and only (almost) one choice for the

free parameter γ, and which is nevertheless able to simultaneously treat both types of problems. To be

precise, we propose the following jump term, respectively discrete stabilization term (with hE = |E|)

〈Ju,v〉 =
∑

edge E

max(γ∗νhE , γh
2
E)

∫

E

[∇u][∇v]dσ (5.5)

which will be added to the original bilinear form, respectively discretized stiffness matrices, and which

uses only the gradient of the approximate solution. This approach is based on a blending of (5.1), applying

an appropriate scaling with |E|2 due to the gradient of the discrete solution, together with the formula

in (5.2), applying α = 2. In the case of nonlinear viscosity ν, this stabilization term may depend in a

nonlinear way on the solution, too. The parameters γ, γ∗ can be chosen - more or less arbitrarily as the

subsequent tests will show - in the interval [0.0001, 0.1], with no significant influence on the resulting

accuracy, robustness and efficiency.

Summarizing, we can distinguish between the following situations:

1. In the case of treating the convection, u · ∇u, the upwinding and the streamline-diffusion approach

modify the original discrete convective operator 〈N(u)v,w〉 by an operator 〈Ñ(u)v,w〉 which may

depend in a nonlinear way on the solution u itself via the local Re number; in contrast, the edge-

oriented technique always adds a linear operator 〈Ju,v〉, unless an additional shock-capturing term

is used.

2. In the case of treating the deformation tensor formulation, D(u), the edge-oriented stabilization

employs an additional stabilization term which mainly depends on the size of the viscosity ν; if

ν depends on the solutions u and p, then this stabilization can become nonlinear. In the case of

upwinding and streamline-diffusion, a corresponding stabilization is only performed if the convective

operator is getting dominant. That means that for very low Re numbers, but with deformation tensor,

no stabilization is applied since the local Re number vanishes. Moreover, if the viscosity ν is nonlinear,

then the stabilization is (even more) nonlinear due to the local Re number which then depends on

the unknown solution u, respectively p.
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Looking more carefully at the resulting matrix stencils for the terms
∫

E
[∇φi][∇φj ]dσ, the matrix structure

can be seen in Fig. 5.1. While the matrix stencils are always increased, leading to couplings between FEM

basis functions which do not have common local support, it is also visible that reduced integration may

lead to a different amount of additional memory requirements.
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Fig. 5.1. Stencil for
R

E
[∇φi][∇φj ]dσ with exact (left) and with 1x1 Gauss quadrature (right)

5.3 Error estimates

In this section we present results of a priori error estimates for the Newtonian case. Then the non-

Newtonian case can be treated in the same manner following Baranger and Najib [4].

Lemma 1. For the interior penalty term (5.5) there holds for all v ∈ Vh

∑

edgesE

νh−1
E

∫

E

[v][v] ds ≤ c 〈Ju,v〉 and (5.6)

〈Jv,v〉 ≤ cγ∗ ||v||2h . (5.7)

Proof. The proof is an immediate consequence of the equivalence between the jumps in the solution

and the jumps in the tangential gradient. Furthermore, the H(div,Ω) consistency of the formulation is

achieved without adding the jump of the normal velocity for the same reason. The second claim is directly

deduced for the trace inequality.

Lemma 2. There exists a constant c, indendent of h and ν such that

||v||2h ≤ c |||v|||2 for all v ∈ Vh. (5.8)
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Proof. See Brenner [9], Hansbo and Larson [39] and Lemma 1.

Theorem 3. There exist constants α, β and c strictly positive and independent of h such that

α |||v|||2 ≤ ((A(v) + J)v,v), (5.9)

β ≤ inf
q∈Qh

sup
v∈Vh

(q,∇ · v)
|||v||| ||q||Qh

, (5.10)

moreover, we have the bound for errors

||u− uh||h + ||p− ph||0 ≤ c h {||u||2 + ||p||1} . (5.11)

Proof. Note that

N(u,v,w) = −N(u,w,v) for all u,v,w ∈ Vh (5.12)

and also

N(u,v,v) = 0 for all u,v ∈ Vh (5.13)

Then, Theorem 3 is an immediate consequence from Lemma 1 and Lemma 2 in conjunction with the

properties of the approximate spaces of Rannacher and Turek [75, 90].

5.4 Numerical examples

5.4.1 Flow around a cylinder

In the subsequent sections, we will analyze the numerical behavior of edge-oriented stabilization tech-

niques, particularly of our proposed choice in (5.5), in comparison to upwinding and streamline-diffusion,

hereby regarding the following aspects:

• problems with medium and high Reynolds number,

• problems with discrete Korn’s inequality for low Re numbers,

• problems with variable (nonlinear) viscosity.

The incompressible flow problem to be dealt with is the well-known benchmark ‘flow around a cylinder’

developed in 1995 for the priority research program ”Flow simulation on high-performance computers”

under the auspices of the DFG, the German Research Association [100]. This project was intended to

facilitate the evaluation of various numerical algorithms for the incompressible Navier-Stokes equations

in the laminar flow regime. A quantitative comparison of simulation results is possible on the basis of

relevant flow characteristics such as drag and lift coefficients, for which sufficiently accurate reference

values can be obtained. Moreover, the efficiency of different solution techniques can be analyzed in an

objective manner.
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Stationary flow around a cylinder: Re = 1

One of the reasons why edge-oriented stabilization was becoming so attractive for low order nonconforming

finite element methods is its ability to handle flow problems in the range of very small Re numbers, that

means more or less Stokes flow, if formulated in terms of the symmetric gradient D(v) of velocity [9, 39, 98].

Therefore, we start our computational tests to demonstrate the efficiency of the proposed edge-oriented

stabilization for this situation. However, in this case we mainly concentrate on the solver aspects, that

means the robustness of the multigrid solver with respect to Korn’s inequality since the accuracy is not

the critical case (see [98]) for these flow configurations. Nevertheless, we apply the different stabilization

techniques, including upwinding and streamline-diffusion, also for this low Re number problem, hereby

formulated in terms of the gradient of velocity, too. In principle, there is no need for any stabilization

in this case, but as it becomes clear from Table 5.1, there is also no negative side effect such that edge-

oriented stabilization is a black box candidate for low and medium Re numbers, despite the fact that

there is no local Re number for an explicit control of the amount of involved convection.

Table 5.1. Drag and lift coefficients and convergence results for Re = 1 for gradient formulation

Stab. j2,1 (γ) SD (δ∗) UPW (δ∗) Central

Level 0.001 0.01 0.1 0.5 0.1 1.0 no stab.

Drag (CD = 3142.4)

3 3084.7 3084.7 3084.6 3084.6 3084.7 3084.7 3084.6

4 3127.4 3127.4 3127.4 3127.4 3127.4 3127.4 3127.4

5 3138.6 3138.6 3138.6 3138.6 3138.6 3138.6 3138.6

6 3141.5 3141.5 3141.5 3141.5 3141.5 3141.5 3141.5

Lift (CL = 30.865)

3 29.556 29.556 29.561 29.561 29.556 29.555 29.561

4 30.525 30.525 30.526 30.526 30.525 30.525 30.526

5 30.780 30.780 30.780 30.780 30.780 30.780 30.780

6 30.844 30.844 30.844 30.844 30.844 30.844 30.844

NL/AVMG

3 4/3 4/3 4/3 4/3 4/3 4/3 4/3

4 3/2 3/2 3/2 3/2 3/2 3/2 3/2

5 4/2 4/2 4/2 4/2 4/2 4/2 4/2

6 4/2 4/2 4/2 4/2 4/2 4/2 4/2

Next, we apply the different stabilization techniques for Re = 1, but now formulated in terms of the

symmetric gradient of the velocity. Table 5.2 shows that applying edge-oriented stabilization techniques,

with the jump of function values (5.1) in conjunction with upwinding or streamline-diffusion or central

differencing, or purely with our proposed jump of the gradient, leads to optimal results.

Moreover, in order to examine the correct order α in |E|α (see (5.2)) for low Re numbers, we perform tests

with different values for α and γ with the deformation formulation. Table 5.3 shows that the multigrid

solver for the variant j2,1 (behaving like γh) is independent of the refinement in contrast to variant j2,2

(behaving like γh2) which significantly depends on the refinement level due to under-stabilization.
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Table 5.2. Drag and lift coefficients and convergence results for Re = 1 with the symmetric gradient

Stab. j2,1(γ) SD (δ∗ = 0.1) UPW (δ∗ = 0.1) central

and j1(γ) and j1(γ)

Level 0.001 0.01 0.0 0.1 0.0 0.1 no stab.

Drag (CD = 3142.4)

3 3104.5 3110.5 3103.8 3106.4 3103.9 3106.4 3103.8

4 3132.5 3133.6 3132.4 3133.1 3132.4 3133.1 3132.4

5 3139.9 3139.9 3139.9 3140.1 3139.9 3140.1 3139.9

6 3141.8 3141.6 3141.8 3141.8 3141.8 3141.8 3141.8

Lift (CL = 30.8657)

3 30.060 30.132 30.055 30.087 30.052 30.084 30.055

4 30.658 30.668 30.658 30.667 30.657 30.666 30.658

5 30.813 30.810 30.813 30.816 30.813 30.816 30.813

6 30.852 30.849 30.853 30.853 30.853 30.853 30.853

NL/AVMG

3 4/3 3/2 4/11 4/2 4/9 4/2 4/11

4 4/3 4/2 4/29 4/2 4/29 4/2 4/29

5 4/3 4/2 5/98 4/2 4/99 4/2 5/98

6 4/3 4/2 5/154 4/2 5/154 4/2 5/154

Table 5.3. Nonlinear iterations (NL)/Averaged multigrid sweeps (AVMG) per nonlinear iteration for Re = 1

with deformation tensor formulation and edge-oriented stabilizations j2,1 (with order h) and j2,2 (with order h2)

Stab. j2,2 j2,1

γ 0.0001 0.1 1.0 0.001 0.01 0.1

Drag (CD = 3142.4)

4 3132.4 3132.7 3134.9 3132.5 3133.6 3147.7

5 3139.9 3139.9 3140.1 3139.9 3139.9 3142.2

6 3141.8 3141.8 3141.8 3141.8 3141.6 3141.5

Lift (CL = 30.8657)

4 30.657 30.660 30.687 30.658 30.668 30.908

5 30.813 30.814 30.816 30.813 30.810 30.863

6 30.853 30.853 30.853 30.852 30.849 30.857

NL/AVMG

4 4/2 4/4 4/3 4/3 4/2 3/6

5 4/51 4/6 4/2 4/3 4/2 3/6

6 4/81 4/10 4/3 4/3 4/2 4/6

NL/AVMG

γ 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

4 4/14 4/6 4/4 4/2 4/2 4/2 4/5 –

5 4/19 4/10 4/7 4/3 4/2 4/2 4/5 –

6 4/24 4/16 4/11 4/6 4/2 4/2 4/6 –
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Stationary flow around a cylinder: Re = 20

We consider the steady incompressible flow around a cylinder with circular cross-section which at Re = 20

is mainly dominated by diffusion and could be simulated even by the standard Galerkin method without

any extra stabilization. However, a certain stabilization is necessary for solving the resulting linear systems

with iterative solvers while the central differencing scheme, that means the standard Galerkin approach,

usually leads to divergence if using the multigrid solvers. The drag and lift coefficients should approach

the reference values CD = 5.5795 and CL = 0.01061 during mesh refinement. The examined stabilization

techniques for the convective term have employed the described streamline-diffusion, the FEM upwinding

and the edge-stabilization via j2,2. Here, we list the number of resulting nonlinear iterations (NL) and

the averaged number of multigrid sweeps per nonlinear iteration (AVMG) to gain a prescribed tolerance

(here: 1 digit).

Table 5.4. Drag and lift coefficients for gradient formulation with various stabilization techniques for Re = 20

Stab. j2,2 (γ) SD (δ∗) UPW (δ∗) Central

Level 0.0001 0.001 0.01 0.1 0.5 0.1 1.0 no stab.

Drag (CD = 5.5795)

3 5.5874 5.5940 5.6186 5.7144 6.0354 5.6700 6.1152 5.6470

4 5.5855 5.5864 5.5901 5.6417 5.7977 5.6005 5.7460 5.6040

5 5.5813 5.5815 5.5823 5.6020 5.6655 5.5841 5.6197 5.5862

6 5.5800 5.5800 5.5803 5.5868 5.6092 5.5806 5.5882 5.5812

Lift (CL = 0.01061)

3 0.007328 0.007907 0.008874 0.006933 0.004884 0.005699 -0.002169 0.006237

4 0.009698 0.009806 0.010022 0.008633 0.007506 0.009697 0.007025 0.008604

5 0.010382 0.010398 0.010436 0.009914 0.009227 0.010483 0.010232 0.010043

6 0.010560 0.010562 0.010566 0.010394 0.010065 0.010598 0.010733 0.010471

NL/AVMG

3 12/3 12/3 12/13 11/3 11/3 10/3 10/3 34/2

4 12/3 12/3 12/11 12/3 11/2 11/3 10/3 17/2

5 12/2 12/2 12/9 12/2 12/2 12/2 11/3 12/2

6 12/2 12/2 12/8 12/2 12/2 12/2 12/2 12/2

From Tables 5.4 and 5.5 the following conclusions can be drawn:

• Streamline-diffusion and upwinding:

– The accuracy depends significantly on the user-defined parameter δ∗.

– The multigrid solver behaves much better, in the case of the deformation tensor formulation, with

the additional edge stabilization j1 since the influence of the kernel function due to the discrete

Korn’s inequality has been neutralized (see [98]).

• Edge-oriented stabilization:

– The accuracy is much less sensitive with respect to the value of the user-defined parameter γ.

– For both gradient and deformation tensor formulations, the multigrid solver is only slightly sensi-

tive with respect to over and under-stabilization.

– There is no need for the additional edge-oriented stabilization j1.
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Table 5.5. Corresponding drag and lift coefficients for deformation tensor formulation for Re = 20

Stab. j2,2 (γ) SD(δ∗ = 0.1) UPW (δ∗ = 0.1) central

and +j1(γ) and +j1(γ)

Level 0.0001 0.001 0.01 0.0 0.1 0.0 0.1 no stab.

Drag (CD = 5.5795)

3 5.5913 5.5906 5.6060 5.6764 5.6772 5.5914 5.5921 5.5970

4 5.5846 5.5838 5.5811 5.6261 5.6264 5.5847 5.5850 5.5865

5 5.5810 5.5807 5.5790 5.5974 5.5975 5.5810 5.5811 5.5814

6 5.5799 5.5798 5.5793 5.5856 5.5856 5.5799 5.5799 5.5800

Lift (CL = 0.01061)

3 0.007993 0.008350 0.009084 0.008197 0.008219 0.007932 0.007964 0.008013

4 0.009893 0.009956 0.010120 0.009402 0.009412 0.009883 0.009894 0.009581

5 0.010432 0.010441 0.010464 0.010170 0.010173 0.010431 0.010434 0.010330

6 0.010572 0.010573 0.010574 0.010465 0.010465 0.010572 0.010573 0.010545

NL/AVMG

3 12/3 12/3 12/14 12/3 12/3 12/5 12/3 52/2

4 12/3 12/2 12/12 12/2 12/2 12/5 12/2 19/2

5 12/3 12/2 12/8 12/5 12/2 12/11 12/2 21/2

6 12/4 12/2 12/8 12/9 12/2 12/12 12/2 26/2

The ‘classical’ stabilization techniques may be analyzed in the framework of artificial diffusion methods,

and it is immediately clear that the gain of more stabilization is coupled with loss of accuracy if too much

diffusion is added (see for instance [12]). Therefore, a very important factor is the local Re number which

measures the ratio between diffusive and convective terms with respect to the mesh size, and hence the

need of additional diffusion in certain flow directions. In contrast, the edge-oriented stabilization can be

seen in the framework of strengthening the continuity for the nonconforming space, so that the adding

of the stabilization terms is more related to the structure of the FEM space, rather than to the local

Reynolds number. Moreover, another interpretation is that - in contrast to this local Re number approach

- the additional stabilization is mainly due to the smoothness of the (discrete) solution such that not the

amount of convection, but of smoothness of the solution is the driving force. This could explain why the

accuracy achieved for the computation of the drag and lift coefficients is much higher since the solution

is quite smooth for this flow configuration.

For summarizing these tests for stationary flow configurations with low Re numbers, we finally test our

proposed unified stabilization term in (5.5) with a wide range of ‘free’ constants γ for both flow around

cylinder configurations, that means again for Re = 1 and Re = 20: Here, we set γ∗ = 10γ (see (5.5)).

Then, Table 5.6 illustrates for the proposed edge-oriented stabilization that:

• the accuracy is surprisingly quite independent of the ‘free’ parameter γ which means that variations

of γ between 0.0001 and 0.01 are permissible.

• the multigrid solver is also working perfectly up to a ‘small’ sensitivity with respect to over-

stabilization, which means γ ≥ 0.01.
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Table 5.6. Drag and lift coefficients and multigrid convergence results with the proposed unified jump term
P

edge E γ max(10νhE , h2
E)

R

E
[∇u][∇v]dσ

Level drag lift solver

γ 0.0001 0.001 0.01 0.0001 0.001 0.01 0.0001 0.001 0.01

deformation formulation, Re = 1

3 3104.5 3110.5 3171.5 30.060 30.132 31.049 4/3 3/2 3/4

4 3132.5 3133.6 3147.7 30.658 30.668 30.908 4/3 4/2 3/6

5 3139.9 3139.9 3142.2 30.813 30.810 30.863 4/3 4/2 3/6

6 3141.8 3141.6 3141.5 30.852 30.849 30.857 4/4 4/2 4/12

gradient formulation, Re = 1

3 3085.4 3091.6 3153.0 29.583 29.803 31.186 4/3 4/2 3/10

4 3127.5 3128.2 3140.7 30.535 30.613 31.066 4/2 4/2 3/9

5 3138.6 3138.2 3139.2 30.783 30.813 30.966 4/2 4/2 3/9

6 3141.4 3141.0 3140.2 30.846 30.858 30.914 4/2 4/2 3/7

deformation formulation, Re = 20

3 5.5911 5.5886 5.5949 0.007992 0.008344 0.009213 12/3 12/3 12/13

4 5.5844 5.5815 5.5688 0.009890 0.009934 0.010087 12/2 12/2 12/11

5 5.5809 5.5795 5.5725 0.010430 0.010417 0.010375 12/2 12/2 12/8

6 5.5799 5.5793 5.5759 0.010571 0.010559 0.010501 12/2 12/2 12/8

gradient formulation, Re = 20

3 5.5865 5.5865 5.5855 0.007331 0.007938 0.009155 12/3 12/3 12/13

4 5.5850 5.5818 5.5651 0.009698 0.009802 0.010075 12/3 12/3 12/11

5 5.5811 5.5797 5.5709 0.010379 0.010376 0.010376 12/2 12/2 12/9

6 5.5799 5.5794 5.5753 0.010558 0.010548 0.010503 12/2 12/2 12/8

Stationary flow around a cylinder: Non-Newtonian case

We again consider the case of low Re numbers while the viscosity now has the form:

ν(p,DII(u)) = (ǫ+
1

√

ǫ+ exp(β p))
+DII(u))

r
2
−1 (5.14)

Then, the results in Table 5.7 essentially confirm our previous results (see section 3.6.3, [73]), namely that

the local evaluation νlocal of the (nonlinear) viscosity leads to improved results regarding the nonlinear

and particularly the linear solution behavior, and that the ‘free’ parameter γ does not have a significant

influence onto the convergence rates for a wide range of values.
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Table 5.7. NL/AVMG for pressure and shear-dependent viscosity

γ 0.0 0.0001 0.001 0.01 0.0001 0.001 0.01

Level no stab νlocal νconst

r=3.0

3 7/6 7/2 7/2 6/2 6/2 6/2 5/2

4 7/19 6/2 6/2 6/2 7/2 6/2 6/3

5 7/51 7/2 6/2 6/2 7/3 7/2 6/3

6 9/108 7/2 7/2 6/2 10/1 7/2 5/3

r=1.5

3 7/7 6/2 7/2 7/2 6/2 6/2 5/2

4 8/22 7/2 7/2 7/2 7/2 6/2 6/3

5 9/61 7/2 7/2 6/2 7/2 7/2 6/3

6 14/65 11/1 9/1 6/2 10/1 7/2 5/3

r=1.1

3 12/6 14/2 15/2 11/2 11/2 9/2 7/3

4 16/11 17/2 15/2 12/2 13/2 9/2 7/4

5 20/23 18/2 15/2 13/3 14/2 10/4 8/6

6 24/44 19/2 14/2 12/3 15/2 11/3 10/7

Nonstationary flow around a cylinder: Re = 100

Next we analyze the nonstationary case of periodically oscillating flow for a medium Reynolds number,

here Re = 100 for the ‘flow around cylinder’ benchmark [100], with the aim to examine the (spatial)

accuracy of the different stabilization techniques. The simulation is performed for T = [0, 3], started

with a fully developed solution, for different levels of mesh refinement; here, we perform a fully implicit

approach (see [99]) with small time stepping size to minimize the influence of errors coming from the

time discretization. Figure 5.2 shows the time-dependent plots for the lift force values - the most critical

quantity in these tests [100] - for different mesh levels and for different stabilization techniques, while

Table 5.8 provides the maximum amplitudes and the Strouhal number (for the frequencies) of the lift

value for this periodically oscillating flow.

Table 5.8. Maximum amplitude and Strouhal number for the lift value for Re = 100

stab. j2,2 SD UPW j2,2 SD UPW

Level Maximum amplitude Strouhal number

3 0.8750 0.3171 0.2543 0.29126 0.25862 0.23904

4 0.9753 0.6878 0.8214 0.29810 0.26906 0.28436

5 0.9858 0.8864 0.9664 0.30075 0.28708 0.29557

reference values ∼ 1.0060 ∼ 0.3020

These results clearly show that also in this case of medium Re numbers which lead to self-induced

periodically oscillating flow, the edge-oriented stabilization is significantly more accurate than the applied

upwinding, respectively streamline-diffusion variants. Particularly on coarse meshes, the differences with

respect to the amplitude and especially the frequency (‘Strouhal number’) of the oscillations are clearly

visible and recommend this new approach for fully time-dependent flow configurations in the range of

medium Re numbers.
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Fig. 5.2. Reference results for lift versus results for the different stabilizations (in gradient formulation) for

SD-0.1, UPW-0.1 and edge-oriented stabilization EO-0.1
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5.4.2 Driven cavity

Driven cavity flows represent a common benchmark test case for incompressible CFD codes and therefore

we would like to present some corresponding results for Re = 1/ν = 2, 000 concerning the accuracy of the

approximate solution with respect to different stabilization techniques. The accuracy of the approximation

is evaluated by comparing the energy for each stabilization. We list in Table 5.9 the energy of the velocity

which consist of the L2-norm of the velocity for different stabilization techniques and different relaxation

parameters. The simulation is performed on a unit square with uniformly refined mesh 2Level × 2Level.

Table 5.9. Energy of the velocity in the driven cavity for Re = 2, 000

stab. Upwinding (δ∗) Streamline diffusion (δ∗) Edge-oriented (γ)

Element mean-value mean-value midpoint mean-values

on edges as d.o.f’s on edges as d.o.f’s on edges as d.o.f’s on edges as d.o.f’s

Level 0.1 1.0 0.25 1.0 4.0 0.001 0.01 0.001 0.1

3 0.14613 0.14613 0.22315 0.23691 0.24761 0.22283 0.24853 0.24882 0.25212

4 0.33857 0.34054 0.16449 0.17588 0.16460 0.24668 0.26308 0.28623 0.26757

5 0.34357 0.35334 0.20732 0.20112 0.15907 0.26904 0.33373 0.29941 0.34426

6 0.34402 0.36415 0.23863 0.22649 0.18540 0.28074 0.33573 0.29717 0.34241

7 0.33675 0.36642 0.26850 0.25283 0.21393 0.29078 0.31536 0.29785 0.31799

8 0.32215 0.35579 0.27518 0.27518 0.24328 0.29829 0.30609 0.30066 0.30707

9 0.31081 0.33564 0.29831 0.29068 0.26954 0.30213 0.30415 0.30272 0.30452

As can be seen from Table 5.9, the upwinding approximation overestimates the energy for both relaxation

parameter values δ∗ = 0.1 and δ∗ = 1.0, while the streamline diffusion approximation underestimates

the energy for all relaxation parameter values δ∗ = 0.25, δ∗ = 1.0 and δ∗ = 4.0. Similarly to all others

benchmark simulations, better results are obtained by the edge-oriented approximation. The unsurpass-

able degree of accuracy for edge-oriented method is independent of the relaxation parameter values and

the type of elements. Moreover, the method neither overestimates nor underestimates the energy.

We now turn our attention to the convergence rates for the edge-oriented stabilization and increase the

Reynolds number up to 10 000. Table 5.10 shows the number of nonlinear iteration versus the average

number of multigrid sweeps for both linearization methods Newton and fixpoint. The fixpoint simulations

has been done with a damping factor which has to be chosen small enough to guarantee the convergence

of the iteration procedure. In contrast, the Newton simulations has been performed without any damping

furthermore the accuracy for the linear solver was adapted to the nonlinear convergence rate: In fact,

if Resl is the residue on lth nonlinear iteration, with the assumption that Newton gives quadratic con-

vergence the next reduction of the residue should be of order ρ2 where ρ = Resl/Resl−1. Therfore, we

require that the approximation of linear solver to be only of order ρ2. Moreover, for the first few iterations

we only apply fixpoint and switch to full Newton as soon as we reach some given tolerance. This strategy

prevents the potential run away for Newton’s method.
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Table 5.10. Nonlinear convergence results with edge-oriented stabilization for different Reynolds numbers and

type of elements for driven cavity benchmark configuration

Scheme Newton fixpoint

Level/ Re 200 1 000 2 000 5 000 10 000 200 1 000 2 000 5 000 10 000

mean-value on edge as d.o.f’s , NL/ANL

3 5/2 6/3 5/2 5/2 5/2 20/1 29/1 28/1 27/1 26/1

4 5/1 6/3 7/4 6/5 6/6 14/1 45/2 53/2 65/2 66/2

5 5/1 7/3 6/4 6/5 6/7 13/1 40/2 41/2 50/2 55/1

6 5/2 7/2 6/4 6/5 6/8 12/1 34/2 47/1 62/2 52/2

7 4/2 7/2 6/3 7/6 7/5 12/1 30/1 43/1 53/2 80/2

8 4/2 7/2 6/3 6/5 8/5 11/1 27/1 36/1 39/2 90/3

9 4/2 6/1 5/2 6/3 7/3 17/1 37/1 35/1 41/1 56/2

midpoint on edge as d.o.f’s , NL/ANL

3 5/2 5/2 5/2 5/2 4/2 14/1 18/1 16/1 16/1 15/1

4 5/2 6/5 5/4 5/5 6/5 13/1 26/2 26/2 27/2 26/2

5 5/2 7/5 6/7 6/9 6/11 13/1 36/2 34/2 35/2 34/2

6 5/2 7/3 6/6 6/11 6/15 13/1 34/2 34/2 39/2 39/2

7 4/2 7/3 6/5 7/10 6/11 12/1 31/1 32/2 49/3 59/3

8 4/2 7/2 6/4 6/7 8/4 11/1 27/1 33/2 37/2 94/3

9 4/2 7/2 5/2 6/5 9/6 17/1 37/1 36/1 42/2 53/3

mean-value on edge as d.o.f’s , Energy ||u||0 midpoint on edge as d.o.f’s , Energy ||u||0
3 0.26053 0.25045 0.24882 0.24756 0.24708 0.25550 0.24800 0.24726 0.24678 0.24661

4 0.26053 0.28124 0.28623 0.29027 0.29185 0.25785 0.27624 0.28165 0.27835 0.28764

5 0.26166 0.29173 0.29941 0.30803 0.31222 0.26126 0.30649 0.32713 0.35254 0.36586

6 0.26219 0.29301 0.29717 0.30142 0.30442 0.26216 0.30294 0.32048 0.35035 0.37469

7 0.26238 0.29511 0.29785 0.29645 0.29439 0.26238 0.29848 0.30766 0.32516 0.34517

8 0.26244 0.29695 0.30066 0.29873 0.29329 0.26244 0.29781 0.30363 0.30994 0.31792

9 0.26246 0.29788 0.30452 0.30297 0.29848 0.26246 0.29807 0.30349 0.30656 0.30775

The rapid convergence of Newton’s method can be appreciated by looking at the number of nonlinear

iterations which is in fact independent of the Reynolds numbers. Furthermore, since at least the first

two iterations were done with fixpoint we could conclude that we were able to establish the quadratic

convergence of this method. In addition we achieved an optimal computational cost associated with

solving the linear system: This is due to the fact that we were using the adaptative strategy tuning the

accuracy of the linear solver to that required for the nonlinear solver. In contrast, for the fixpoint method

the nonlinear convergence rate is strongly depending on the Reynolds numbers.

We would like to mention that the simulations were done with the cell-oriented Vanka smoother which in-

corporates only a part of the jump matrix in the preconditioning which may be insufficient. Firstly, due to

the possible convection dominated effect which occur at high Reynolds numbers. Secondly, because of the

additional bilinear forms associated with Newton linearization. As an alternative, one would incorporate

the full part of the stabilization in the preconditioning step by using the proposed edge-oriented Vanka

smoother. Moreover, it is possible to speed up the quadratic convergence rate of the Newton method to

cubic specifically for ρ > 1 × 10−1 [43, 42, 2].
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5.4.3 Standing vortex: Re = ∞

To verify the advantageous dissipative properties of the edge-oriented stabilization approach, we con-

sider as the next test configuration the well known ‘Standing Vortex’ problem [36]. In this case the

incompressible Navier-Stokes equations for inviscid flow (Re = ∞) are solved in a unit square

∂u

∂t
+ u · ∇u + ∇p = 0, ∇ · u = 0 in Ω = (0, 1) × (0, 1). (5.15)

The initial condition is an axisymmetric vortex which also represents the exact steady-state solution.

In polar coordinates, the velocity u can decomposed into the radial component ur and the angular

component uθ which are initialized by

ur = 0, uθ =











5r, r < 0.2,

2 − 5r, 0.2 ≤ r ≤ 0.4,

0, r > 0.4,

(5.16)

where r =
√

(x− 0.5)2 + (y − 0.5)2 denotes the distance from the center. The aim of the following

simulations is to check which discretization scheme is able to preserve the original vortex.

The numerical results produced by the different stabilization techniques are compared with the exact

solution in Fig. 5.3. They were obtained at T = 3 on an equidistant mesh of 64 × 64, 128 × 128, and

256×256 quadrilateral elements respectively. A fully implicit time stepping approach (see [99]) with small

time steps was used to eliminate the influence of temporal discretization errors. Since in this configuration

the local Re number is not defined (ReT = ∞), the upwinding scheme deteriorates towards the simple

first-order upwind method which is however monotone and oscillation-free. In the case of the streamline-

diffusion scheme, we cancelled the relation to the local Re number. Instead, we multiplied the stabilization

term by δT = δ∗ · hT (compare with (2.53)), and thus we only varied the value of δ∗ in the following

calculations.
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Fig. 5.3. Cutline of the x-velocity component for the ‘Standing Vortex’ problem: Comparison of the different

stabilization techniques for different mesh levels

The results show the enormous potential of the edge-oriented stabilization for this type of flow problems.

It is obvious that the (first order) upwinding and also the streamline-diffusion method (here: with δ∗ = 10)

introduce, as expected, too much artificial diffusion (keep in mind that the exact velocity components

should have an absolute value of 1). Therefore, one might try to reduce the amount of numerical diffusion

of the streamline-diffusion approach by using smaller values for the parameter δ∗. However, in that

case, severe spurious numerical oscillations in combination with massive over- and under-shooting of the

solution arise and render the discrete approximation to be worthless (see the corresponding snapshots

in Fig. 5.4). Moreover, and very surprisingly for us, massive problems occur in the center of the domain

where the exact solution is very smooth and the sign of the velocity components changes. For this

configuration the physically correct solution is a so-called transonic rarefraction solution [63] where the

discrete approximation leads to entropy violating shocks which requires special techniques for an entropy

fix. This problem can be clearly seen in Fig. 5.3, where at the center (x = y = 0.5) the solutions coming

from the upwinding, respectively streamline-diffusion approaches cannot reproduce the linear shape. In

contrast, the edge-oriented approach does not show any problem in this case which is very amazing and

requires more numerical studies.
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Fig. 5.4. 3D presentation of the norm of the velocity (Vect Mag) for the ‘Standing Vortex’ problem: edge-oriented

versus streamline-diffusion (δ∗ = 10) for h = 1/64 (top), streamline-diffusion with δ∗ = 0.5 and δ∗ = 0 (= central

differencing) for h = 1/64 (middle) and edge-oriented versus streamline-diffusion (δ∗ = 0.5) for h = 1/256

(bottom)
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5.5 Conclusions and outlook

Egde-oriented stabilization approaches, including jump terms of the gradient on the edges of the compu-

tational mesh, together with low order nonconforming FEM spaces have been numerically analyzed for

incompressible flow problems. The computational tests considered cases of various Re numbers (ranging

from Re = 1, resp. Stokes flow, over medium Re numbers with periodically oscillating flow phenomena

up to the case ‘Re = ∞’) and formulations including the gradient as well as the symmetric deformation

tensor (‘Korn’s inequality’) of the velocity. We also examined non-Newtonian problems with pressure

and shear-dependent viscosity. The proposed edge-oriented stabilization term involves only the gradient

of discrete test and trial functions (leading to reduced assembling costs), which together with a special

parameter setting taking into account the local size of the viscosity, if available, requires only one ‘free’

parameter γ. The numerical tests for various prototypical problems settings have shown that, in contrast

to classical stabilization schemes of upwinding or streamline-diffusion type, the influence of this parameter

onto the resulting accuracy, robustness and efficiency is surprisingly small.

Summarizing these computational tests, we have shown that with this special edge-oriented FEM stabi-

lization method:

• we can stabilize the lack of coercivity (‘Korn’s inequality’) for problems formulated in terms of the

symmetric part of the velocity gradient.

• we can handle problems for most relevant Re numbers, even in the limit of inviscid flow.

• we can successfully realize strategies for simulating non-Newtonian flow with pressure and shear-

dependent viscosity.

• we can solve the resulting linear generalized Oseen problems in conjunction with standard multigrid

components which preserve the original FEM data structure.

Based on these positive results for a wide range of typical flow simulations, we can state that the pro-

posed stabilisation technique may be an interesting candidate for black-box components in CFD codes.

Therefore, one future aim is to study the corresponding numerical behavior with respect to accuracy and

robustness in cases of the turbulence effects, visco-elastic fluids and multiphase flow settings including

pure transport problems which are coupled with the Navier-Stokes equations.



Part II

Applications: Granular and powder flow
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Incompressible Powder Flow

The flowing of powders brings a new challenging and interesting problem to the CFD community: at

very high concentrations and low rate of strain, grains are in permanent contact, rolling on each other.

Therefore a frictional stress model must be taken into account. This can be done using plasticity and

similar theories in which the granular material behavior is assumed to be independent of the velocity

gradient or the rate-of-strain. This is in contrast to viscous Newtonian flow where stress specifically

depends on rate-of-strain. Furthermore, unlike fluids, flowing powders do not exhibit viscosity and, again,

this shows that a Newtonian rheology cannot describe granular flow accurately.

It is assumed that the material is incompressible, dry, cohesionless, and perfectly rigid-plastic. Based on

continuum theories, equations for such material have been derived which closely resemble the generalized

Navier-Stokes equations with pressure and shear depend viscosity.

Thus the resulting equations are mathematically more complex than the Navier Stokes equations and

are only valid when the material is deforming. In this chapter we apply the numerical algorithms and

simulation techniques developed in Part I to approximate these highly nonlinear equations. A Newton

linearization technique was applied directly to the corresponding continuous variational formulations. The

approximation of incompressible velocity fields was treated by using stabilized nonconforming Stokes

elements and we use a Pressure Schur Complement smoother as defect correction inside of a direct

multigrid approache to solve the linear saddle-point problems with high numerical efficiency. The results

of some computational experiments for realistic flow configurations are provided.

6.1 Physical background

6.1.1 Mohr-Coulomb criterion for friction

The Mohr theory suggests that the shear stress on a failure reaches some unique function of normal stress,

τ = f(σ), where τ is the shear stress and σ is the normal stress. Coulomb found that for frictional motion

the yield shear stress can be expressed as a combination of a normal stress dependent component and

a stress independent component. While the normal stress dependent component is connected with the

internal angle of friction φ, the former seems to be related to the intrinsic cohesion and is denoted by the

symbol c. Then, the Coulomb equation reads

τ = σ tanφ+ c, (6.1)

where φ and c are the material constants defined as the angle of internal friction and the cohesive strength

respectively: A material is called non-cohesive if c = 0. Eq. (6.1) represents the simple law of friction of
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two solids sliding on each other with the shear force proportional to the normal force where η = tanφ is

the friction coefficient. A similar condition also exists at the interface between the granular material and

the walls of the container: here only the angle of internal friction is replaced by the angle of wall friction

φW . The angle satisfies φW < φ since the wall is usually less rough than a powder layer which is mainly

due to the void fraction near the wall.

6.1.2 Regimes of powder flow

Similar to fluid flow, where several characteristic numbers, like Froude number, Reynolds number, etc.,

can be used to characterize the qualitative flow behavior, the various powder regimes can be represented

as a function of a dimensionless shear rate γo∗ = γo[dp/g]
1/2 which contains a gravitational term g and

a particle size dp (see Tardos et al. [89]). Based on such a characterization, one has the following three

different regimes.

Quasi-static regime

This regime is valid when the flow is slow enough so that any movement between two static states can be

neglected: In this case the static equilibrium equation can be applied. With this approach only stress and

condition of the onset of flow can be computed, while no flow field can be predicted which circumscribes

the range of applications of this approach. There is a large number of analytical and numerical solutions

to this case and an important number of literature devoted to this regime, see for instance [67],[34].

Slow and frictional regime

In this regime the frictional forces between particles are predominant, so the inertial effect is added to

the static equations as well as the consideration of continuity beside a yield condition. The first model

invoking a flow rule was introduced by Schaeffer (1987) [79]. This regime is very important since it can

be used for modeling a wide range of practical phenomena and industrial applications. However, for the

serious challenges which arise in this regime, for instance ill-posed partial differential equations and the

prediction of stress fluctuations, there is still a lack of fundamental research so that dealing with these

problems requires a multidisciplinary treatment. Our contribution has the goal of supporting this part

by modern numerical methods which will be described in the subsequent sections.

Intermediate and rapid granular regimes

For the intermediate regime, additional to inter-particle friction energy, collision energy is also impor-

tant. For the rapid regime, the short particle-particle contacts are important while frictional forces are

neglected. This regime is often described via kinetic models and will not be treated here. It was reported

here just to have a complete view on the different regimes of powder flow (see [89] for more details).

6.1.3 Flow rule: Saint Venant principle

The Saint Venant principle of solid mechanics says that stresses cause deformations preferentially in the

same direction. This leads to the co-axiality flow rule condition which states that the principal directions

of the stress and rate of deformation are parallel and neglects the rotation of a material element during

deformation. In two-dimensional Cartesian coordinates, this condition takes the form, for example:

Tii − Tjj

Tij
=

2(∂u1/∂x− ∂u2/∂y)

∂u1/∂x+ ∂u2/∂y
(6.2)
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This was postulated by Schaeffer [79] for the deformation of granular material. However, since the de-

formation of the granular material requires that the stresses in different directions must be different,

Schaeffer claimed that ”the response of the material to such unequal stresses should be to con-

tract in the directions of greater stress and to expand in the directions of smaller stress”.

This reflects the requirement that the eigenvectors of stress tensor and strain rate are aligned and it

quantitatively links the deviatoric stress and the strain rate tensor by the formula S = λD.

6.1.4 Rigid perfect plastic behavior

Plastic deformation

The deformation of a granular material is considered to be plastic in the sense that, if after deformation

the shearing stress is reduced, the material would not show any tendency to return to its original state.

Plastic deformation was already proposed by E. C. Bingham, in 1922, in the context of non-Newtonian

fluids, and in which the rheological behavior is governed by the following equation in modified state

introduced by Oldroyd:

T = −pI + (
µ0

||D|| + µ)D (µ0 > 0, µ ≥ 0). (6.3)

Dilatancy

A simple manifestation of this phenomenon occurs when one leaves dry footprints while walking along a

wet beach: the deformed sand dilates, therefore space between grains increases, allowing for upper water

to invade the sand. As a consequence, footsteps get dry and water goes down. This is the phenomenon

of dilatancy which was explained by Reynolds in 1885, and demonstrated experimentally: a glass tube

attached to a balloon showed that the amount of excess water decreased when the sand was deformed,

thus showing that deformation increases the space between grains. Dilatancy is important in the dynamics

of granular material, introducing a stick-slip instability at low velocity (see [61]), and it occurs because

each grain needs more space in the flowing state than at rest. Then, the flow theory of plasticity must be

applied to the constitutive modeling for describing the deformation process of a granular material.

6.2 Constitutive equation for powder flow

6.2.1 Equation of motion

The powder is assumed to be an incompressible continuum that obeys conservation of mass and momen-

tum (density ρ, gravity g, velocity u):

Conservation of mass: Dρ
Dt = ∂ρ

∂t + ∇ · (ρu) = 0.

Incompressible material: The bulk density, ρ, is a constant, so that ∇ · u = 0.

Equation of motion: With T = S − pI, there holds ρDu

Dt = ∇ · T + ρg.

6.2.2 Constitutive equations

The constitutive equation shall correlate between the deviatoric tensor S and the velocity, through the

second invariant of the rate deformation DII = 1
2D : D, where the rate of deformation is given by

D = 1
2 (∇u + (∇u)T ). There are several examples:
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Newtonian law: S = 2νoD

Power law: S = 2ν(DII)D, ν(z) = z
r
2
−1, r ≥ 1 (r = 1: Bingham law)

Schaeffer’s law: For a powder, a constitutive equation was first introduced by Schaeffer [79] which has

to obey a

• yield condition: ||S|| =
√

2p sinφ,

• flow rule: S = λD with λ ≥ 0.

In fact, the flow rule is based on a yield criterion for granular materials of von Mises type, which is

basically derived from a law of sliding friction applied to the individual particles. Specifically in terms of

the principal stresses σi, this condition is written as

3
∑

i=1

(σi − p)2 ≤ k2p2 with p =
1

3
trT (6.4)

where k =
√

2 sinφ is a characteristic constant of the material, and σi are the eigenvectors of Tij . For a

material that deforms plastically, equality must hold in Eq. (6.4):

3
∑

i=1

(σi − p)2 = k2p2 (6.5)

Under plane strain p = 1
2 (σ1 + σ2), we may consider a strictly 2D-yield condition:

(σ1 − p)2 + (σ2 − p)2 = 2p2 sin2 φ. (6.6)

A constitutive equation between stress and strain rate was proposed for slow powder by Schaeffer [79].

This equation obeys the von Mises yield condition and the described flow rule:

T = −pI +
√

2p sinφ
D

||D|| if D 6= 0. (6.7)

In fact, the flow rule is assumed to have the form T = −pI + λD, where λ is a coefficient. To satisfy the

yield condition of the given flow rule in terms of von Mises, i.e. ||S|| =
√

2p sinφ, then there must hold:

λ =

√
2p sinφ

||D|| . (6.8)

We use this correlation to obtain finally the constitutive equation T = −pI +
√

2p sinφ D

ǫ+||D|| , where ǫ is

a typical (small) regularization parameter.

6.2.3 Generalized Navier-Stokes equations

The derived problem formulation can be stated in the framework of the generalized incompressible Navier-

Stokes equations (we set ρ = 1):

Du

Dt
= −∇p+ ∇ · (ν(p,DII)D) + g, ∇ · u = 0. (6.9)

If we define the nonlinear pseudo viscosity ν(·, ·) as a function of the second invariant of the rate of

deformation DII and the ’pressure’ p, we can show that various materials can be ranged within different

viscosity laws including powder:
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• Power law defined for ν(z, p) = νoz
r
2
−1,

• Bingham law defined for ν(z, p) = νoz
− 1

2 ,

• Schaeffer’s law (including the ’pressure’) defined for ν(z, p) =
√

2 sinφ pz−
1

2 .

A comparison of this equation with the Navier-Stokes equations reveals that the ordinary viscous terms,

proportional to the viscosity and the velocity gradient, have been replaced by shear-rate independent

terms which is quite remarkable, since it implies that an overall increase in the velocity leaves the stress

unchanged. This also means that these equations are mathematically more complex than the Navier-

Stokes equations and only apply when the material is deforming, for instance for granular flows in hoppers;

these equations are only valid for the mass flow where the material is flowing throughout the hopper.

Mathematical challenges

The main mathematical problems of the incompressible powder model (see Eq. (6.9)) can be summarized

in the following aspects. Some of the these points will be discussed in the next sections; for more details

see Part I.

Mathematical analysis:

There is a lack of further research concerning the existence and regularity of solutions of such fluids except

for special cases (see for instance [44]); furthermore the dynamic equations (6.9) show some instabilities

(see Schaeffer in [80, 79]) which also requires further studies.

Singular viscosity:

The extra part,
√

2p sinφ D

||D|| , of the stress tensor T is only well defined for non zero values of the rate of

strain tensor and for positive pressure. Therefore, some stabilization techniques of singular phenomena

due to the nonlinear viscosity are required. For the pressure, one may think about using a positive

viscosity function in the pressure variable, described by exp(βp), and a small regularization parameter ǫ,

that means p
ǫ+||D|| or exp(βp)

ǫ+||D|| .

Discretization method:

It is well known that the computation of solutions of incompressible systems requires that special care is

taken in the choice of the approximating spaces in order to make the discrete problem well posed (inf-sup

condition). Moreover, since many FEM spaces satisfying the above condition are nonconforming, which

however present a locking phenomenon for problems involving the rate of deformation tensor (‘Korn’s

inequality’), some consistent stabilization term is required.

Nonlinear solver:

For this highly nonlinear problem coupling the pressure and velocity even in the viscous term, there is

almost no alternative to Newton techniques [72]. However, the derivation of the corresponding Jacobian

matrices due to the complex material laws is not clear.

Linear multigrid solver:

Efficient multigrid methods for saddle-point problems are required which however are nonsymmetric due

to the Newton linearization and contain a variable viscosity function.

6.3 Ill posedness of the incompressible granular flow equation based on

Schaeffer model

The material in this section was originally given by Schaeffer [79]. We report here in a compact form

the analysis of instabilities concerning general properties of the partial differential equations analogous
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to the classification of equations into elliptic, hyperbolic, and parabolic character. The test for linear

instability was performed using the mode analysis and looking for an eigenvalue with a positive real part

for a solution with exponential dependence ei(ξ,x)+λ(ξ)t.

Stokes equation: To guide the analysis, let us consider the linearized equations:






−µ|ξ|2I ξ

ξT 0







(

u

p

)

= λ

(

u

0

)

. (6.10)

The eigenvalue λ is then obtained as λ = −µ|ξ|2, which means that the Stokes equations are linearly

well-posed.

Granular case: In contrast the linearized equations of motion of the granular case lead to the generalized

eigenvalue problem [79]








− k
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[
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2 I + (Aξ)(Aξ)T
]
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where A = D/ ||D|| and k =
√

2 sinφ. Similarly computing λ as before, one obtains:

λ = −
√

2 sinφ

||D||

[

(Aξ, ξ)2 − 1
2 |ξ|2(Aξ, ξ)

|ξ|2 +
√

2 sinφ(Aξ, ξ)

]

. (6.12)

The presence of the factor (Aξ, ξ) leads to an indefinite quadratic form in the numerator since trA = 0

and trA2 = 1. From this we can conclude that the two-dimensional granular flow equations are linearly

ill-posed (see [79] for more details).

6.4 FEM for the numerical simulations

The range of practical real world problems which involve granular materials is growing, and since the

considered problems become more complex and experimentally more expensive, one is particularly inter-

ested in the development of new and more powerful computational methods for solving these problems

numerically. In this section we show that our numerical approaches based on FEM techniques expounded

in Part I are well suited to address the illustrated type of nonlinear powder problems and lead to com-

parative results with related experiments. We consider the following two configurations, powder flow in

a Couette device with an obstacle see Fig. 6.1 and granular flow in a hopper see Fig. 6.3.

6.4.1 Boundary conditions

The boundary conditions in any incompressible fluid simulation are expressed either in terms of the fluid

velocity or the pressure at the boundary, but generally both of them cannot be used at the same boundary

since the velocities are influenced by the pressure gradient (see [41]). For the Navier-Stokes equations with

Dirichlet velocity data, the pressure is unique up to a constant which however can be chosen arbitrarily.

In contrast, for the flow of the generalized Navier-Stokes equations with pressure dependent viscosity, the

choice of fixing the pressure cannot be done by random choice (see Table 6.1).

Remark 1. The choice of boundary condition for higher order models (compared to Navier-Stokes model)

is a problem, which is not completly discussed up to now. What can happen for fluids of different type is

recounted, for example, in Fosdick and Rajagopal [30].
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Table 6.1. The dependence of the drag force from various rotational speed V at different mean pressure values

Speed / pressure 0.5 1 5 10 100

Stokes law without convection

0.05 0.62877D+01 0.62877D+01 0.62877D+01 0.62877D+01 0.62877D+01

0.1 0.12575D+02 0.12575D+02 0.12575D+02 0.12575D+02 0.12575D+02

0.2 0.25151D+02 0.25151D+02 0.25151D+02 0.25151D+02 0.25151D+02

0.5 0.62877D+02 0.62877D+02 0.62877D+02 0.62877D+02 0.62877D+02

Bingham law without convection

0.05 0.38137D+01 0.38137D+01 0.38137D+01 0.38137D+01 0.38137D+01

0.1 0.38222D+01 0.38222D+01 0.38222D+01 0.38222D+01 0.38222D+01

0.2 0.38252D+01 0.38252D+01 0.38252D+01 0.38252D+01 0.38252D+01

0.5 0.38265D+01 0.38265D+01 0.38265D+01 0.38265D+01 0.38265D+01

Schaeffer law without convection

0.05 0.50419D+00 0.10084D+01 0.50419D+01 0.10084D+02 0.10084D+03

0.1 0.50629D+00 0.10126D+01 0.50628D+01 0.10126D+02 0.10126D+03

0.2 0.50756D+00 0.10151D+01 0.50755D+01 0.10151D+02 0.10151D+03

0.5 0.50849D+00 0.10170D+01 0.50849D+01 0.10170D+02 0.10170D+03

Wall boundary conditions

The fundamental assumption in fluid mechanics for flow past solids is a ”no-slip” boundary condition,

which means that the tangential component of the fluid velocity equals of the solid at the surface. This

well-accepted no-slip boundary condition may not be suitable for highly sheared flow, but the error due

to the ”no-slip” assumption is relatively small in big systems or if we are more interested in the flow far

away from the wall. An alternative and more suitable condition is to apply slip with friction parameterβ:

v · τ + β−1n · (2ν(DII, p)D(v) − pI) · τ = 0 on Γwall. (6.13)

Moreover, the closing of the equations is required, because the related Dirichlet problem of Navier-Stokes

equations is well known to possess no unique pressure solution due to the constraint div v = 0. The

uniqueness is assured by fixing the pressure with the choice of mean pressure to be zero which however

cannot be taken for the flow with pressure dependent viscosity, namely the Schaeffer law, since it leads to

negative values of the pressure in some parts of the computational domain. The first remedy is to make

the choice of mean pressure positive to assure a positive pressure in all regions of the computational

domain. However, the question arises of the physical meaning of any choice for the mean pressure to get

the closure of the equations with Dirichlet boundary condition since the mean pressure is part of the

viscosity and, therefore, influences significantly the global flow behavior.

Inflow and Outflow boundary conditions

Numerical simulations of flow problems usually require the flow out of one or more boundary parts of

the computational domain. At such ”outflow” boundaries there arises the question of what constitutes a

good boundary condition. The simplest and most commonly used outflow condition is that of a ”natural”

boundary, see [41] for an overview:

2ν(DII, p)n · D(v) − pn = 0 on Γout (6.14)
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This boundary condition represents a smooth continuation of the flow through the boundary and occurs in

the variational formulation of problem if one does not prescribe any boundary condition for the velocity

at the outlet, known in the literature by the name ”natural” or ”do nothing” boundary condition. It

must be stressed that the ”do nothing” outflow boundary condition has no physical basis, rather it is

a mathematical statement that may or may not provide the desired flow behavior. Particularly, ”do

nothing” boundary conditions have proven to lead to very satisfactory results in modeling parallel flows,

see e.g., Turek [92], but they must always be viewed with suspicion since they contain the hidden condition

that the mean pressure is zero across the outflow boundary. In particular, the condition of mean pressure

to be zero across the outflow leads to negative values of the pressure, which causes problems for the

numerical simulation of flow with pressure dependent viscosity, namely the Schaeffer model. As a natural

remedy for this situation, one may consider a condition in which the mean pressure across the outflow

coincides with the atmospheric pressure, that means patm > 0:

2ν(DII, p)n · D(v) − pn = patmn on Γout. (6.15)

The above examples suggest that the ability to specify a pressure condition at one or more parts of the

computational domain is an important aspect. This can be done in terms of prescribed pressure drops

with corresponding variational formulations of very general type [41].

6.4.2 Drag force in powder flow

As we described before, granular materials can flow like fluids and resist the motion of objects moving

through them. Since this retarding force, known as drag force Fd = (
∮

C0

Tn ds)y with (.)y denoting the y-

component, see Fig. 6.1, can be easily measured experimentally for a granular medium in a Couette device

with an immersed cylinder [1], for this reason we choose this configuration for our computation: Although

our simulation is only in 2D, a lot of characteristics of granular flow can be examined numerically such

that at least qualitative comparisons can be obtained in future.
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Fig. 6.1. Drag force Fd versus rotational speed V of the cylinder walls in a Couette device (‘flow around a

cylinder’) for different material laws and for varying cylinder diameter. The inner cylinder C2 is rotating with

rotational speed V while the outer cylinder C1 and the inner cylinder C0 are fixed; all quantities are in non-

dimensional form and shall provide qualitative comparisons only.

As expected, the drag force Fd for Schaeffer and Bingham flow acting on the cylinder C0 is independent of

the velocity, contrary to the (Newtonian) Stokes flow, while the drag force increases with larger diameters

for the interior cylinder C0.

”When mechanical ploughs replaced draught animals, it was observed that ploughing at greater speeds does

not require greater forces!” (from Schaeffer 1987)
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In Table 6.1, we show this behavior in detail: Here, we perform tests for various prescribed mean pressure

values to obtain a unique solution, and for several rotational speeds. As explained before, the Stokes and

Bingham model lead to drag forces which are independent of the given mean pressure while the Schaeffer

model shows the expected dependence since the pressure is part of the viscous term.

Moreover, we also examine the influence of neglecting the convective terms in the Schaeffer model, that

means (u · ∇u) in (3.1) which is typically done due to the assumption of ”slow” flow. Here, we increase

continuously the rotational speed V of the inner cylinder C2 and plot in Figure 6.2 the behavior of

the resulting drag force Fd for the Schaeffer model with and without convection. As can be seen, if we

totally neglect the convective term, then the drag force remains constant with an absolute value which is

independent of the prescribed velocity. In addition, at least for ‘slow’ flow, there is no difference between

the Stokes and the full Navier-Stokes model, including the convective terms, while from a certain speed on,

differences between both models get visible. So, it might be interesting for future experiments to check

whether this calculated relation between drag force and increasing velocity can be actually observed,

which is at least questionable since the Schaeffer model has only been theoretically derived for ‘slow’ (?)

flow. However, from a numerical point of view, it is reasonable to include this convective part, too, in

corresponding numerical modeling and simulation.
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Fig. 6.2. Dependence of the drag force Fd from the rotational speed V for the Schaeffer model with and without

convective term

6.4.3 Granular flow in a hopper

Flow of granular material in hoppers under gravity is quite complex and experimental approaches show

limitations in understanding some phenomena for this type of geometry. Our current investigation is

to understand some typical phenomena related to granular material, namely oscillating phenomena and

instabilities, as for instance shear banding instabilities.

For the Schaeffer model, Figure 6.3 shows that the flow is significantly influenced by the pressure in the

material law, in contrast to the Bingham model which is independent of it. To go deeper in understanding

the instability phenomena we plot for different times the average stress for both models in Figure 6.4.

These instabilities may be explained by the stability analysis of Schaeffer [80] who shows the previously

illustrated ill-posedness of the problem. However, since we observe that these instabilities arise from the

artificial inflow/outflow regions, the influence of the applied boundary conditions is not clear yet. Since

the inflow and outflow boundary condition supplied to the hopper do not have any physical meaning,

they could be the source of the appearance of the oscillations, too. We also examined a silo geometry with

a much longer bin on the bottom and the top of the hopper to diminish the influence of the boundary

conditions onto the flow behavior but the oscilations of the pressure in the hopper part remais. Further

investigations could be directed toward multi-phase flows.
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Fig. 6.3. The plot of the pressure, the pseudo viscosity (see (6.9)) and the components σ11, σ22 of the stress at

t=0.03s for Schaeffer (top) and Bingham law (bottom)

Fig. 6.4. Snapshots of the average stress at t=0.0s, 0.012s, 0.03s and 0.06s for Schaeffer (top) and Bingham law

(bottom)
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6.5 Conclusions

Our conclusion is that finite element methods together with special material laws can be useful tools for

the numerical simulation of incompressible granular powder, since the complete structure of the flow is

involved, i.e. the velocity, the pressure as well as the stress. Although our computer simulation is only

two-dimensional it can confirm well known physical behavior, namely the independence of the drag force

from the velocity grain and the propagation of a pressure wave in the hopper which may lead to a shear

banding instability. At first glance, the shear banding phenomenon gives the impression to be treated

mathematically as a discontinuity, but this would cause severe problems for numerical algorithms. On the

other hand, shear bands might not be a true physical discontinuity, rather than a change in the involved

physical system which could be captured with a compressible model.

Furthermore, the proposed incompressible model for granular and powder flow presents some other dis-

advantages, like for instance the wrong prediction of the flow rate through a symmetric silo by more

than a factor of 4 in comparison with experiments [88]. This gives another motivation to proceed toward

compressible granular materials which can be specified via the yield condition q(p, ρ) given in Table 6.2

(see the work by Tardos and particularly [89] for the details).

Table 6.2. Yield condition q(p, ρ) for incompressible and compressible powder (0.001 < β < 0.01)

Powder properties Non-cohesive Cohesive

Incompressible p sin φ p sin φ + c cos φ

Compressible p sin φ

»

2 − p

ρ
1

β

–

p sin φρ
1

β − C (p−ρ
1

β )2

ρ
1

β

Then, the flow can be described by a generalized compressible Navier-Stokes-like equation (6.16) where

a mass conservation equation (6.17) must hold. However, this is not enough because the density ρ is now

a dependent variable, rather than a constant:

ρ
Du

Dt
= −∇p+ ∇ ·

[

q(p, ρ)
∣

∣

∣

∣D − 1
n∇ · uI

∣

∣

∣

∣

(

D − 1

n
∇ · uI

)

]

+ ρg n = 2, 3 (6.16)

∂ρ

∂t
+ ∇ · (ρu) = 0. (6.17)

In order to complete the system, an additional equation is required in the form of the so-called normality

condition:

∇ · u =
∂q(p, ρ)
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∣
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∣

∣

∣

∣

∣

. (6.18)

The mathematical and computational methodology presented in Part I can be naturally extended to these

compressible granular and powder flow models.
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Conclusion and outlook

A final concluding note which may help to organize the research priorities and topics to be addressed is

pointed out here. In this thesis we have shown that:

Spatial discretization aspects. Nonconforming, rotated multilinear, nonparametric finite elements

for the velocity and piecewise constant pressure approximations which are robust with respect to mesh

anisotropies and perturbations and satisfy the inf-sup condition were our candidates to incorporate edge-

oriented stabilization method. We have established a robust stabilization method with respect to param-

eter weight for both types of CFD’s problems: Firstly, the discrete version of Korn’s inequality, required

for problems formulated in terms of the deformation tensor. Secondly, the convection dominated problems

were stabilized independenttly of the Reynolds number.

Nonlinear solvers aspects. For this highly nonlinear problem coupling the pressure and velocity even in

the viscous term we were applying the continuous Newton method to derive the corresponding continuous

Jacobian operators which lead to a rate of convergence independent of mesh refinement. So we avoided

the delicate task of choosing the step-length required for a divided difference approach. Moreover, our

approach consists of applying fixpoint for the first few nonlinear iterations and switching to full Newton as

soon as we reach some given tolerance. This strategy makes our generalized Newton robust with respect

to the starting guess. In addition, the accuracy of the linear solver was adapted to the nonlinear one

which leads to optimal cost.

Linear solvers aspects. The edge-oriented stabilization involves more than the adjacent elements and

the problem of storing the new stabilization matrix arise. We successfully adopted two strategies: First,

we store in the stiffness matrix only the partial stabilization matrix which fits with the same standard

FEM data structure, while the complementary part only can be assembled via elementwise operations.

Moreover, the construction of the preconditioners for the corresponding linear systems will only include

parts of the (sub) matrix. Second, we developed a special edge-oriented data structure from the available

FEM storage techniques by extending the matrix to support the additional contributed elements. The

local matrices can then easily be deduced from the global one which leads to efficient Vanka smoother

too, namely the full cell-oriented Vanka smoother. In addition, we treated the velocity-pressure coupling

in linearized saddle-point problems, which is nonsymmetric due to the Newton linearization, via local

MPSC technique.

It is clear that the usage of edge-oriented techniques will increase in application areas for finite element

methods. This is partly due to its ability to stabilize a wide range of problems and to preserve the finite

element accuracy and also due to the available modern edge-oriented data structures. Nevertheless, some

research topics merit more attention
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Based on the extended matrix structures, due to the additional coupling of FEM basis functions by

the edge-oriented jump terms, it is needed to improve the linear iterative solvers by employing the

complete stiffness matrix: Firstly, by using the edge-oriented Vanka smoother for local MPSC. Secondly,

by developing efficient LU decomposition for global MPSC. Then, edge-oriented stabilization technique

can find its way to high order finite element method and 3D problems with sufficient efficiency.

The idea of a continuum model for granular materials is of great importance in the food, soil mechanics,

and packaging industries. Within these models, some of the characteristics of the flow was successfully

captured. Since the simulations of processes, for instance hopper filling and emptying, are of extreme

importance for these materials, it is indispensable to incorporate the various surrounding boundaries to

derive equations of motion for multi-phase flows. The instability for incompressible powder flow could

be regularized by allowing for the changes in density of the media [89, 71] with an extra coupling of the

scalar reaction-convection-diffusion equation for the density. The derived techniques in this thesis can

successfully be adapted to such coupled problems including further physical models, namely viscoelastic,

hypoplastic, and multiphase flow since at least with respect to an algorithmic view the general structure

of this coupling is similar.
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