
An Interpretative Approach to the Model-Driven
Development of Web Applications

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Universit�at Dortmund
am Fachbereich Informatik

von

Stefan Haustein

Dortmund
2006

ii

Tag der m�undlichen Pr�ufung: 20.02.2006
Dekan: Prof. Dr. Bernhard Ste�en
Gutachterin/Gutachter: Prof. Dr. Katharina Morik,

Prof. Dr. Ernst-Erich Doberkat

iii

To Janine

Acknowledgements
I am grateful to my supervisor Katharina Morik for fruitful and helpful dis-
cussions and for providing the free and encouraging environment that made
this work possible. I also thank my co-supervisor Ernst-Erich Doberkat for
accepting the task of examining this thesis and for providing helpful feed-
back. I am grateful to Sonja Haustein, Michael Kroll, Ingo Mierswa, Klaus
Unterstein, and Michael Wurst for reading this thesis or testing the Info-
layer system and providing useful suggestions. Special thanks go to J�org
Pleumann for the inspiring cooperation.

iv

Abstract
The increasing size and complexity of web applications has led to a situation
where the traditional approach of creating and managing a set of plain
HTML �les is inappropriate in many cases. Consistency in structure, look
and feel, and hyperlinks needs to be maintained, and support for di�erent
content formats may be required. The combination of XML Schema, XML
and XSLT is able to improve this situation, but the expressive power of
XML Schema is insu�cient for application domains where more than a pure
hierarchical structure is required.
In this work, we have chosen the XML toolchain as a guideline to construct
an alternative basis for web information systems at a higher level of abstrac-
tion, namely UML class diagrams. We have identi�ed a UML counterpart
or implemented a substitute for each constituent of the XML processing
chain, showing that it is possible to build a consistent UML-based system
for model driven web applications.
Since our approach is based on model interpretation, a system prototype
can be created by simply drawing a conceptual model in the form of a UML
class diagram|a step that is required in the relevant development method-
ologies anyway. By making this �rst step immediately operational without
any compilation or transformation steps, the gap between web development
methodologies and actual system implementation has been narrowed signif-
icantly.

Contents

1 Introduction and Motivation 1
1.1 The Problem . 2

1.1.1 Sample Scenario . 3
1.1.2 A Naive Approach Illustrating the Problems 4
1.1.3 Separation of Concerns 4
1.1.4 Respecting Structural Constraints 5
1.1.5 Content Suitable for Mobile Devices and Software

Agents . 6
1.2 The XML Toolchain . 8
1.3 Web Application Engineering 10

1.3.1 Code Generation . 12
1.3.2 Model to Model Transformation 13
1.3.3 Model Driven Architecture 13
1.3.4 Direct Model Interpretation 15

1.4 Research Goal . 15
1.5 Outline . 17

2 Formal Basis 19
2.1 Description Logics . 20
2.2 UML Class Diagrams . 21

v

vi CONTENTS

2.3 General Modeling Approach 22
2.4 Semantics . 24
2.5 Query Capabilities . 26
2.6 Extensibility and Integration 27
2.7 Ease of Use . 28
2.8 Conclusion . 29

3 The Infolayer System 31
3.1 Interpreting the Class Diagram as a Web Application 32

3.1.1 HTML Generation . 34
3.1.2 Persistent Storage . 35

3.2 Arbitrary XML Generation 35
3.3 Security Concerns . 36

3.3.1 UML Element Visibility 38
3.3.2 User and Dynamic Access Management 39
3.3.3 Customization in XML Templates and URL Based Rules 39

3.4 Connections to Legacy Databases 39
3.5 Completeness . 40
3.6 Infolayer System Architecture 41
3.7 Sample Application . 43
3.8 Summary . 45

4 UML Class Diagram Support 47
4.1 Supported Elements of UML Class Diagrams 48

4.1.1 Classes . 49
4.1.2 Primitive Data Types 49
4.1.3 Attributes . 50

CONTENTS vii

4.1.4 Associations . 50
4.1.5 Operations . 51

4.2 Additional Prede�ned Classi�ers 52
4.2.1 Prede�ned Data Types 53
4.2.2 Object . 53
4.2.3 Infolayer . 54
4.2.4 User . 54
4.2.5 File . 55

4.3 Dynamic Access Management 55
4.4 Summary . 57

5 OCL Support 59
5.1 Implementing Query Operations and Derived Properties in

OCL . 60
5.2 Access to the Model (M1-Level) 60
5.3 Turing-Completeness . 62
5.4 Summary . 68

6 Actions 69
6.1 UML 2.0 Action Semantics 70
6.2 Action Semantics and the Object Constraint Language 72
6.3 ASOQ . 73

6.3.1 Property Assignments 77
6.3.2 Blocks, Variables, and Statements 79
6.3.3 OclAction . 82
6.3.4 if-then-else . 83
6.3.5 while . 85

viii CONTENTS

6.3.6 Method Invocations and ASOQ Expressions 85
6.3.7 Variable Assignments 87

6.4 ASOQ Utilization in the Infolayer System 88
6.4.1 Operation and Property Implementation 88
6.4.2 Prede�ned Callback Methods 89

6.5 Summary . 90

7 Transformations 91
7.1 Template Language Architecture 94

7.1.1 Template Processing Model 95
7.1.2 Static URL Resolution 96
7.1.3 The Page Evaluation Context 97
7.1.4 Dynamic URL Resolution 97

7.2 General Template Elements 98
7.2.1 valueOf . 99
7.2.2 The Evaluation Context 100
7.2.3 Iterating over Instances 100
7.2.4 Conditional Processing 101
7.2.5 Delegation to other Templates 102
7.2.6 Variables and Parameters 105
7.2.7 Access to Request Information and Cookies 107
7.2.8 Formatting and Dynamic Includes 107
7.2.9 Evaluated XML Attributes 107
7.2.10 Dynamic Content Construction 108

7.3 XHTML-Speci�c Template Features 108
7.3.1 Additional Capabilities of valueOf 109
7.3.2 Hyperlinks to Objects 109

CONTENTS ix

7.3.3 Properties and Forms 109
7.3.4 Operations, Controls, and Actions 110
7.3.5 Login and Logout . 112
7.3.6 Tables . 113

7.4 Other Content Formats . 114
7.4.1 Non-XML Formats . 114
7.4.2 Portable Document Format (PDF) 114
7.4.3 Resource Description Format (RDF) 114
7.4.4 Wireless Markup Language (WML) 115

7.5 Servlet Request Handling . 115
7.5.1 Navigation . 116
7.5.2 Error Handling . 116
7.5.3 Query Requests . 116
7.5.4 Instance Updates . 117
7.5.5 Method Invocations 117
7.5.6 User Login and Logout 118
7.5.7 Setting cookies . 118
7.5.8 URL manipulation and URL based access restrictions 118

7.6 Completeness . 119
7.7 Summary . 121

8 Persistent Storage 123
8.1 XML File Based Default Persistence Mechanism 124
8.2 Relational Database Connections 125

8.2.1 Mapping Columns and Attributes 126
8.2.2 Deferred Loading . 127

8.3 Mapping Associations . 128

x CONTENTS

8.3.1 1:n Associations . 128
8.3.2 n:m Associations . 129
8.3.3 Linking Di�erent Tables Dynamically 131

8.4 Mapping OCL Expressions to SQL 132
8.4.1 Partial Translations 133
8.4.2 Pre-Calculation of Constant Values 135
8.4.3 Deferred Evaluation 136

8.5 Summary . 136

9 Applications and Third Party Additions 139
9.1 The MuSofT Project . 139
9.2 SOAP Interface . 141
9.3 State Machines . 143
9.4 MLnet and KDnet . 143
9.5 Medical Application . 144
9.6 DeviceDB . 145
9.7 Summary . 146

10 Conclusion and Outlook 147
10.1 Summary . 147
10.2 Conclusion . 149
10.3 Outlook . 150

10.3.1 System Extensions . 150
10.3.2 Correctness . 151

CONTENTS xi

A Installation and Con�guration 167
A.1 Con�guration File Overview 167
A.2 Model File Location . 167
A.3 Telnet Interface . 169
A.4 Administrative Users . 169
A.5 Internationalization . 169

B OCL Overview 171
B.1 Context and self . 171
B.2 Constraints . 171
B.3 Types and Type Conformance 172

B.3.1 OclAny . 172
B.3.2 String . 173
B.3.3 Boolean . 173
B.3.4 Real . 173
B.3.5 Integer . 174
B.3.6 DateTime . 174
B.3.7 Binary . 174
B.3.8 Enumeration and Object Literals 174
B.3.9 The Classes Object, Infolayer, User, and File 174
B.3.10 Type Conformance . 175

B.4 Properties and Operations . 175
B.4.1 Attributes and Association Ends 175
B.4.2 Operations . 176

B.5 Keywords and Operators . 177
B.6 Let Expressions . 177
B.7 Collections . 178

xii CONTENTS

B.7.1 Collection Type Conformance 178
B.7.2 Collection Operations 180
B.7.3 Iterators and Select 180
B.7.4 Path expressions and Collect 181
B.7.5 The Iterate Operation 181

B.8 Tuples . 182

C Customization with Tagged Values 183
C.1 Labels and Descriptions . 183
C.2 Format String Syntax . 185

C.2.1 Number Format Options 185
C.2.2 String Format Options 187
C.2.3 DateTime Format Options 187
C.2.4 Classes and Collections 187

D Extension Interfaces 191
D.1 Making Java Classes available in OCL 191
D.2 Custom Request Handlers . 192
D.3 Template Elements . 193
D.4 Content Type Handling . 193
D.5 Accessing the Model from Java 194

E OCL and ASOQ Reference 197
E.1 Basic OCL Types . 197

E.1.1 OclAny . 197
E.1.2 Boolean . 199
E.1.3 Real . 199
E.1.4 Integer . 200

CONTENTS xiii

E.1.5 String . 201
E.2 Prede�ned Data Types . 203

E.2.1 DateTime . 203
E.2.2 Binary . 203

E.3 Collection Types . 204
E.3.1 Collection(T) . 204
E.3.2 Set(T) . 205
E.3.3 OrderedSet(T) . 206
E.3.4 Bag(T) . 207
E.3.5 Sequence(T) . 208

E.4 Metamodel Access . 209
E.4.1 OclModelElement . 209
E.4.2 OclType . 210
E.4.3 OclOperation . 211

E.5 Prede�ned Classes . 211
E.5.1 Object . 211
E.5.2 Infolayer . 212
E.5.3 File . 213

E.6 Special Purpose Classi�ers . 213
E.6.1 IlRequest . 213
E.6.2 IlUrl . 214

F XML Template Elements 215
F.1 General XML Template Elements 215

F.1.1 <t:assign> . 215
F.1.2 <t:attribute> . 215
F.1.3 <t:call> . 216

xiv CONTENTS

F.1.4 <t:case> . 217
F.1.5 <t:choose> . 217
F.1.6 <t:comment> . 217
F.1.7 <t:context> . 217
F.1.8 <t:element> . 217
F.1.9 <t:forAll> . 218
F.1.10 <t:if> . 218
F.1.11 <t:inner> . 218
F.1.12 <t:otherwise> . 219
F.1.13 <t:param> . 219
F.1.14 <t:recurse> . 219
F.1.15 <t:recursion> . 219
F.1.16 <t:switch> . 219
F.1.17 <t:text> . 220
F.1.18 <t:valueOf> . 220
F.1.19 <t:variable> . 220
F.1.20 <t:when> . 221
F.1.21 <t:withParam> . 221

F.2 XHTML Template Elements 221
F.2.1 <t:actions> . 221
F.2.2 <t:cancel> . 221
F.2.3 <t:column> . 222
F.2.4 <t:control> . 222
F.2.5 <t:form> . 222
F.2.6 <t:image> . 223
F.2.7 <t:link> . 223

CONTENTS xv

F.2.8 <t:login> . 223
F.2.9 <t:messages> . 224
F.2.10 <t:operation> . 224
F.2.11 <t:operations> . 224
F.2.12 <t:properties> . 225
F.2.13 <t:property> . 225
F.2.14 <t:submit> . 225
F.2.15 <t:table> . 226
F.2.16 <t:tree> . 226
F.2.17 <t:valueOf> . 226

F.3 WML Template Elements . 226
F.3.1 <t:properties> . 226
F.3.2 <t:property> . 226
F.3.3 <t:valueOf> . 227

xvi CONTENTS

Chapter 1

Introduction and Motivation

The goal of this work is to simplify the development and maintenance of
information systems that are accessible via the World Wide Web for human
users and application programs.
At the very beginning, the World Wide Web consisted of a set of simple
servers, delivering text �les annotated in the Hypertext Markup Language
(HTML) [9] to web browsers, but development of web technologies did not
stop there. Over the time, the web landscape became more and more com-
plex. Originally, HTML was a hypertext format allowing to structure text
into paragraphs, di�erent levels of headings, and other logical document
entities|but HTML did not provide any means to control physical format
options such as the color or font size of text. Thus, browser vendors soon
started to add their own proprietary markup elements, providing more con-
trol over the appearance of web pages. Meanwhile, o�cial versions of HTML
were supplemented by the Cascaded Style Sheet speci�cation (CSS) [72],
suiting the need of �ne-grained control over the layout while re-establishing
a clean separation of the layout from the content of a document.
Of course, the \document" structure of HTML is not directly suitable for all
kinds of data one may want to present on the web. To provide a higher level
of abstraction, and to better integrate content that does not �t in the static
document category, the World Wide Web Consortium (W3C) [120] has de-
veloped the generic Extensible Markup Language (XML) [122]. The XML
speci�cation does not de�ne any markup elements on its own, it just speci-
�es the general document tree structure and syntactical aspects that allow

1

2 CHAPTER 1. INTRODUCTION AND MOTIVATION

to distinguish comments, markup and text. In order to produce meaningful
content, a Schema | declaring actual elements and their nesting rules | is
required. Based on XML, various new content formats were developed. For
instance, a binary version of XML (WBXML) [77] and specialized anno-
tation languages such as the Wireless Markup Language (WML) [40] and
Cell-HTML (cHTML) [65] were developed for mobile devices such as cell
phones and PDAs.
With the growing size of web sites, the need of a clear and consistent struc-
ture increased. Sites often feature concepts with �xed properties and associ-
ations and a larger set of instances belonging to those concepts. When com-
paring pages for di�erent instances of the same concept, one would expect
the properties to appear in a consistent order and layout, enabling users to
�nd information quickly. It also became increasingly important to integrate
existing information sources. Methods to dynamically generate content from
database sources such as ColdFusion [14], PHP [97], Active Server Pages [26],
or Java Server Pages [82] were developed. Web Technologies are no longer
limited to information services, but also used for purely commercial services
such as shopping, hotel, or ight booking, including sophisticated authen-
tication mechanisms. Collaborative applications allow users to add or alter
information conveniently without leaving the browser interface. Also, web
technologies are no longer limited to direct interaction with humans. The
Remote Procedure Call mechanisms SOAP [24] and XML-RPC [119] are
built on top of web Technologies such as the HTTP protocol [36] and XML.
The W3C has started an initiative to build a \Semantic Web", that is a
network which can directly be interpreted by computers, providing means
for \semantic" services such as searches that can distinguish \potato chips"
from \computer chips" and applications that automatically integrate ight
and hotel booking from di�erent providers for a journey.

1.1 The Problem

For web applications, most of the technologies described above can be com-
bined in arbitrary ways, forming a complex landscape of partially overlap-
ping concepts and technologies that have often evolved separately. The goal
of this work is to provide a coherent framework that simpli�es the devel-
opment of web sites, especially where a strong inherent structure must be

1.1. THE PROBLEM 3

preserved. We de�ne a site with a strong structure as a site that features
concepts with �xed properties and associations and a set of instances be-
longing to those concepts. An example for a concept may be a \person"
or a \project", and one might want to see one instance of a concept on its
own page, with all the pages being interlinked with each other. Properties
of a person may be the name and address; an association may be \works
in project". Instances may be the employees and projects of a particular
company. Web sites featuring this kind of content have stronger consistency
requirements than less structured sites. Since especially the maintenance
aspect is currently a weak point in web development [78], we will keep a fo-
cus on this point. To avoid orphan links or inconsistent information, all side
e�ects of changes must be considered. The addition of a new instance may
have e�ects on linked pages. If an instance is deleted, all references must be
deleted, too. The changed name of a project must be updated everywhere
the project is referenced. If the strong structure can be formalized, it may
actually provide the key to ensure both, layout consistency and structural
integrity, automatically.
Of course, we do not try to �nd a general solution for all possible web-related
problems. For sites also featuring di�erent concepts, but no or only vague
properties and associations or a hierarchical document-structure, Content
Management Systems provide a su�cient solution. Templates for concepts
ensure a consistent look and feel|further restrictions are neither needed
nor possible due to the diversity of the stored content. Examples for this
kind of systems are Messaging Boards, Blogs, News services, or document
repositories.

1.1.1 Sample Scenario

Before going into details about current approaches, we will construct a sam-
ple scenario that �ts into our de�nition of a strongly structured domain, and
then sketch a naive approach based on existing web technology. The naive
approach does not represent the state of the art, but it helps to illustrate
the di�erent categories of problems.
A good example for a strongly structured site is the representation of a
university department. There are usually overview pages for the di�erent

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

concepts of the domain such as research topics, projects, courses, publica-
tions and the sta� members. The concept pages contain lists of instances,
linking to further pages containing more detailed information about a par-
ticular topic, project, course, publication, or person.

1.1.2 A Naive Approach Illustrating the Problems

To be accessible to a regular web browser, the content must be available in
the HTML format. A naive approach, but still commonly used, is to directly
store all the information in HTML �les. This approach relies only on the �le
system and a server capable of the Hypertext Transfer Protocol (HTTP).
The main advantage of this approach is its simplicity. HTML pages can be
created with a regular text editor, and the HTTP server simply maps web
addresses to a location in the �le system.
However, this approach has several signi�cant drawbacks:

� The lack of a separation of layout information from the content leads
to increased maintenance e�ort, especially when the layout of all pages
has to be changed consistently.

� HTML does not support the constraints of the underlying model, and
thus provides no help for maintaining structural integrity.

� HTML provides only document centric annotations. The semantics of
the model is lost and thus cannot be used for searching hints or to
support di�erent content formats.

1.1.3 Separation of Concerns

The HTML pages contain three di�erent types of information: The actual
text or content, layout information such as font sizes and colours, and struc-
tural information, that is, the order or arrangement of components on the
page. For multiple instances of the same concept, the layout and structural
information should be identical, ensuring a consistent appearance, helping
users to quickly �nd what they are looking for. The best way to ensure
consistency is to store information identical for a set of pages only once,
avoiding redundancies. HTML allows to factor out the layout information

1.1. THE PROBLEM 5

Figure 1.1: Partial Conceptual Model of a Web Presentation of an University
Department (UML Class Diagram)

into a centralized cascaded style sheet (CSS), but the same is not fully pos-
sible for the structural information.
Intermangling of concerns leads to increased maintenance e�ort. The con-
tent is di�cult to maintain when it contains a lot of embedded layout in-
structions. A consistent change in the layout is di�cult because all pages
must be changed accordingly.

1.1.4 Respecting Structural Constraints

Figure 1.1 shows a small part of a conceptual model matching our example
domain in the form of a UML class diagram [93]. The model is actually a
part of the model we are using for the web presentation of our own unit; some
concepts for tasks like seminar management are omitted to improve read-
ability. In the model, there is an association between persons and projects,
denoted by a line connecting the concepts. Setting a link betwen a person
a and project b means that person a works in project b. To keep the web
pages consistent with our model, it would be nice if we could limit \project"
links from persons to instances of the concept \project". Unfortunately, in

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

HTML, links are untyped, as they are in the general Dexter hypertext model
[47], a common abstraction of di�erent hypertext systems. There is no way
to limit a set of hyperlinks to instances of a certain target concept.
Another property of the association that cannot be represented in HTML
is its bidirectionality. It is necessary to set both, a link from a person
to a project and a link from a project to a person to express a project
membership. Again, redundancy increases the probability of errors and
inconsistencies. Ideally, a hypertext system would present a list of projects
to choose from and maintain both link ends automatically when the content
maintainer edits a link.
In plain HTML, consistency of the page structure with the underlying model
including bidirectional link consistency needs to be maintained manually.

1.1.5 Content Suitable for Mobile Devices and Software
Agents

Additional problems appear when the web presentation is needed in more
than one target format. Nowadays, mobile devices such as cell phones or
PDA are able to access the world wide web; but often they require the pages
to be present in a specialized content format, the Wireless Markup Language
(WML). WML is similar to HTML, but tailored towards the requirements
and limitations of mobile devices. For WML, an automatic translation from
HTML may be feasible to some extent since it is not required to generate
information that is not present in the original HTML pages in the �rst place.
However, the department may also want to provide information in a way that
can be interpreted by software agents, for instance to support the automatic
compilation of di�erent kinds of course directories. The Semantic Web Re-
search Community Ontology (SWRC) [114] and the Resource Description
format (RDF) [71] together de�ne a set of semantic annotations featuring
concepts such as organizations, projects, and research topics. Figure 1.2
shows a sample HTML page that is annotated with a set of those machine
readable elements. Web spiders can read and interpret the annotations, gen-
erating directories with specialized search- and browsing capabilities based
on high level concepts and properties instead of plain keywords[113].
Here, identical information is repeated in regular HTML markup (lower

1.1. THE PROBLEM 7
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head><title>Stefan Decker</title></head>
<body> <!--
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:swrc=
"http://www.semanticweb.org/ontologies/swrc-onto-2000-09-10.daml#"

xmlns:a=
"https://www.daml.org/actionitems/actionitems-20000905.rdfs#">

<swrc:AcademicStaff rdf:ID="person_stefan_decker">
<swrc:name>Stefan Decker</swrc:name>
<swrc:firstName>Stefan</swrc:firstName>
<swrc:lastName>Decker</swrc:lastName>
<swrc:email>stefan@db.stanford.edu</swrc:email>
<swrc:phone>+1 650 723 1422</swrc:phone>
<swrc:homepage
>http://www-db.Stanford.EDU/~stefan/</swrc:homepage>

</swrc:AcademicStaff>
</rdf:RDF> -->
<p>
<table border="0" width="75%">
<tr>
<td colspan="2">Stefan Decker</td>
<td rowspan="6"></td>
</tr><tr>
<td>Email:</td>
<td><a href="mailto:stefan@db.stanford.edu"

>stefan@db.stanford.edu</td>
</tr>
<tr><td>Phone:</td><td>+1 650 - 723-1422</td></tr>
<tr><td>Address (Work):</td>

<td>Stanford University Gates Hall 4A, Room 425,
Stanford, CA 94305-9040, USA</td></tr>

</tr>
</table>
<!-- ... -->
</body>
</html>

Figure 1.2: Excerpt from an SWRC-Annotated Web Page. Most of the
information is duplicated in the machine readable upper part of the page and
the traditional HTML code in the lower part, which may lead to maintenance
and consistency issues.

8 CHAPTER 1. INTRODUCTION AND MOTIVATION

part of �gure 1.2) and the SWRC markup (upper part). In the sample
page, the name, the email address, the phone number and the fax number
are duplicated. Again, redundancy leads to additional e�ort, raising the
probability of errors and inconsistencies. There are tools such as Ontomat
[48] available to help users when annotating HTML pages, but this solves
only a part of the problem. The burden of entering information twice (or
even more often, depending on the desired content format support) and
ensuring link consistency within a set of pages remains on the user [52, 53].
Thus, without a higher level of abstraction, the e�ort for creating the pages
is multiplied with the number of supported formats.

1.2 The XML Toolchain

The recognition of the limits of HTML at the W3C led to the development
of a more general format, the Extensible Markup Language (XML) [122].
HTML de�nes �xed document centric annotation elements such as \p" for
paragraphs, and \h1" for top level headings. In contrast, the XML spec-
i�cation only de�nes a general tree syntax structure. The set of elements
and nesting rules forming a concrete XML language must be de�ned sepa-
rately in a Document Type De�nition (DTD) [122] or XML Schema [123],
de�ning an application speci�c markup language. Instead of being bound to
the �xed set of HTML elements, custom elements such as \familyName" or
\projects" can be used. XML is used internally by the W3C as the basis of
all new content formats, and a new version of HTML named XHTML was
reformulated in the terms of XML.
XML Schema is not only able to declare the elements that can be used
in a conforming document, it also supports nesting rules and cardinality
restrictions. XML Editors with support for XML Schema such as XOpus
[125] are able to guide users to follow the restrictions of the schema, for
instance by presenting lists of the elements allowed in a certain context,
avoiding syntactical errors.
XML documents themselves cannot be displayed in current Web browsers.
Web browsers do not \know" how to represent the new elements visually,
so they are usually simply ignored. To transform XML documents to dis-
playable HTML, the W3C has speci�ed a declarative transformation lan-

1.2. THE XML TOOLCHAIN 9

Figure 1.3: Simple XML Toolchain

guage, the XML Stylesheet Language Transformations (XSLT) [23]. XSLT
is not only suitable for transformations from XML to HTML, but also for
any kind of XML transformations. For that purpose, XSLT templates usu-
ally contain static fragments of the destination language, annotated with
control elements, managing the insertion of content from the source format.
XSLT utilizes the navigation language XML Path Language (XPath) [121]
as a simple expression language for numerical and string operations, and to
navigate the tree structure of the source document. XSLT is prooven to be
computational complete [67], so it can be assumed that any desired desti-
nation format can be generated if the necessary information is contained in
the source document. An XSLT style sheet can be applied at the client or
server side, where the latter option avoids that every user needs an XSLT
capable browser. Figure 1.3 depicts a possible chain of XML tools for the
desired application.
Together, XML Schema and XSLT seem to provide the required means to
solve the problems of the naive approach to building a Web site for an
university department or other structured domains. XML Schema provides
means to de�ne domain speci�c elements such as \person" or \project" with
speci�c sub-elements such as \name", allowing a full separation of concerns.
An XML editor is able to enforce consistency of an XML �le with the rules
of the schema. XSLT style sheets can be used to generate not only HTML
but also di�erent formats such as WML or even content suitable for the
semantic web.
Actually, Manie et al. [76] suggest to use a generalized XML schema lan-

10 CHAPTER 1. INTRODUCTION AND MOTIVATION

guage for semantic data modeling. For XML Schema itself, Murata et al.
[86] provide a formal classi�cation as a regular tree language, and Krumbein
and Kudrass [115] provide a detailed analysis of mapping options from con-
ceptual models to XML Schema. Unfortunately, Krumbein and Kundrass
show that XML Schema is not able to model arbitrary associations be-
tween concepts without information loss. Hierarchical relationships in XML
Schema cannot express cyclic associations such as the person{publication{
project cycle in the university sample. The key references that can be ex-
pressed with XML Schema cannot guarantee a mutual reference between
two element instances that take part in a bidirectional association: If a per-
son is linked from a project, that does not ensure that the inverse link is
set, too. Even if XML Schema would be extended to cover those cases, it
does not seem very straight forward to use a language that was primarily
designed to describe document tree structures for more general graphs, such
as our domain model.
Another problem is that the XPath expression language that is used inside
XSLT style sheets operates on XML instances only, but ignores valuable
conceptual level information that is available in the corresponding XML
Schema. XML queries are evaluated against XML documents based on ele-
ment names and their syntactic nesting structure only, ignoring the element
types and other conceptual level information [74].

1.3 Web Application Engineering

Problems associated with building Web applications were also recognized in
the Software Engineering community, where a number of methodologies di-
rectly addressing hypermedia design have been developed. Early approaches
such as the Hypertext Design Method (HDM) [42], the Relationship Man-
agement Methodology (RMM) [63], the Object Oriented Hypertext Design
Method (OOHDM) [109], and the Web Modeling Language (WebML) [18]
mainly focus on the development of new hypermedia-speci�c diagram types
and the design process.

� The Hypertext Design Method (HDM) focuses on the introdcution
of a new modeling language (HDL-HDM) that is especially tailored

1.3. WEB APPLICATION ENGINEERING 11

towards hypermedia design. As design primitives, it uses entities with
an hierachical inner structure and three di�erent kinds of links. Typed
links between di�erent entities are called application links. The other
link types are perspective links for di�erent presentations of the same
object (e.g in di�erent languages), and structural links that are local
to a single entity.

� The Relationship Management Methodology (RMM) builds upon
HDM for its structural part, but shifts the focus more to the design
process itself. The RMM process consists of seven steps: ER-design,
slice-design, navigation design, conversion protocol, user interface de-
sign, and construction and testing. The slice design step determines
how properties of entities are grouped logically. The navigation design
speci�es paths that are navigable, leading to a so-called Relationship
Management Data model (RMDM).

� The Object Oriented Hypertext Design Method (OOHDM) is an ob-
ject oriented extension of HDM. It introduces object oriented features
such as inheritance, but also separetes several kinds of navigation di-
agrams from the underlying domain model.

� The Web Modeling Language (WebML) is a notation for specifying
web sites at a conceptual level. WebML consists of a structural model
for the data content, a compositional model for pages that compose the
data model, a navigation model for the link topology, a presentation
model for the layout and graphics and a personalization model for
content delivery customization.

The methodologies have in common that they are based on a standard nota-
tion | such as E-R [20] or OMT [104] | for the conceptual design, and add
their own notation for the following steps. More recent approaches such as
Conallen [22] and Baumeister [8] feature standard extension mechanisms of
the Uni�ed Modeling Language (UML) [93] for this purpose. While Conallen
mainly suggests a set of stereotypes for several web-speci�c artifacts such as
frames or forms, Baumeister introduces a comprehensive navigational model
along the lines of OOHDM, consisting of a navigation class model and a
navigation structure model. He further uses object diagrams for a static
presentation model and statecharts to describe the dynamic presentation.

12 CHAPTER 1. INTRODUCTION AND MOTIVATION

Schattkowski and Lohmann point out that the overhead associated with
heavyweight dedicated hypermedia development processes may be too ex-
pensive, in particular for smaller and medium projects [106]. Becoming fa-
miliar with the details of the process, working out the diagrams, and keeping
them in a consistent state constitutes a signi�cant amount of work | an
e�ort that needs to be justi�ed by savings in the overall development and
maintnence costs.
The examples given in [109], [8], [59] suggest that navigation class diagrams
are often nearly identical to the conceptual model, at least for smaller appli-
cations. With di�erences only in details, annotations in the class diagram
itself would be better readable and would avoid the need for keeping a sep-
arate diagram consistent with the remainder of the speci�cation.
To improve the e�ectiveness, Schattkowski and Lohmann propose a simpli-
�ed process, focussing on formal parts. This way, they are able to tailor
their process towards automated code generation, enabling rapid prototyp-
ing. In the remainder of this section, we will discuss di�erent options for
deriving an operational system from standard UML diagrams, including the
code generation approach proposed by Schattkowski and Lohmann.

1.3.1 Code Generation

To address the lack of operability in existing methodologies, Schattowski
and Lohman propose a rapid development approach, producing a working
prototype of the application automatically [106]. Their ProGUM system is
able to generate source code in the scripting language PHP [97], based on
UML class diagrams, UML use case diagrams, and UML activity diagrams
[73]. Source code is generated automatically for new parts of a model,
changes in the model a�ecting existing code are highlighted by the system.
Since PHP is computational complete, it can be assumed that it is possible
to generate code for a web based maintenance interface that is able to fully
support all constraints of the original model.
Requiring that the developer maintains code that once was generated seems
di�cult to avoid without a re-generation|possibly overwriting modi�ca-
tions. Here, a problem may be an inherent loss of abstraction. Let us
assume that a relational database is generated from the model to hold in-
stance information. Then, traversing a simple n : m association involves

1.3. WEB APPLICATION ENGINEERING 13

three tables: the table representing the source concept, a key match in the
association table resulting from the database normalization process, and
another lookup in the target table. General maintenance problems with
scripting languages such as PHP [27] may be irrelevant if the code is purely
generated, but not if the code must be actively maintained.
However, even in the simple case, when the code was not modi�ed and can
be re-generated, this approach is still not free of problems. Code generation
introduces a delay between model change and model instance execution
[103]. Generating code from models, compiling this code, shutting down
the existing system, installing and con�guring the new system, and starting
it up can take from minutes to hours. Long turnaround times restrict the
modeling options that can be explored.

1.3.2 Model to Model Transformation

An alternative to code generation is the transformation of the design model
to an operational model. Here, in contrast to the transformation to ex-
ecutable code, the transformation result remains in a declarative form.
Changes in a transformed model|such as an XML Schema generated from a
class diagram|are simpler to port back to the source diagram automatically
than arbritrary changes in generated source code. Source code generation
leads to a distribution of model constraints to relational database tables
and generated scripts, while a transformed model may be able to keep them
together in one place, if su�ciently expressive. In their UWE approach,
Kraus and Koch generate an XML Schema and XSLT stylesheets from an
UML model. The instances conforming to the model are stored in an XML
�le [69]. Unfortunately, the problems discussed in section 1.2 apply: XML
Schema is not able to represent cyclic and bidirectional associations and thus
not su�cient to ensure consistency of the stored content with the underlying
model.

1.3.3 Model Driven Architecture

In Model Driven Architecture (MDA) [111, 91], su�cient information to
completely generate the target application must be included in a platform
independent model (PIM). The PIM is then transformed into a platform

14 CHAPTER 1. INTRODUCTION AND MOTIVATION

Figure 1.4: UML Model Driven Architecture (MDA)

speci�c model (PSM). The platform speci�c model includes speci�c imple-
mentation aspects of a target platform such as Java or .net. Since the
platform independent model does not contain platform dependencies, it can
be reused for di�erent platforms. The platform speci�c models are used to
generate the application source code. Finally, the source code is compiled,
generating an executable object �le. Figure 1.4 illustrates this process.

Melia et al. suggest to use the MDA in web software architectures [79]. Un-
fortunately, the automatic transformation from a PIM to a PSM is still an
open issue [33], and the MDA approach combines some of the disadvantages
of the compilation and transformation approaches by introducing another
step of indirection. Heckel and Lohmann [57] criticize that the MDA does
not pay enough attention to the functional evolution of a system. Every such
evolutional step, for example a new requirement, triggers the whole transfor-
mation chain. Given that a large part of Web application development deals
with the creative process of creating an appropriate user interface, involving
the evaluation of small changes to HTML pages (or their equivalent in the
model), time consuming transformations are likely to hamper the process.

In order to be able to �x problems in the model, information that makes it
possible to trace them back needs to be preserved in all transformation steps.
If the trace is not clear, or developers are more familiar with the language
the application source code is generated in (e.g. Java or C++), they may be
tempted to modify the generated code instead. Even if such a modi�cation
is meant only as a temporary �x, the introduction of a single inconsistency
makes it no longer possible to run the generator chain completely. Especially
when problems need to be �xed quickly under stress conditions, this may
lead to increasing inconsistencies between the (modi�ed) generated code and
the model.

1.4. RESEARCH GOAL 15

1.3.4 Direct Model Interpretation

In the knowledge management and rapid application development commu-
nity, there are several approaches to directly interpret a conceptual model.
Prot�eg�e-2000 [34, 44, 89] is a user interface for knowledge bases accessible
via the Open Knowledge Base Connection interface (OKBC) [19]. Other
systems such as Racer [46, 84] or FaCT[60] focus on e�cient inference capa-
bilities and �nding the \right" tradeo� between expressiveness and runtime
boundaries. Model interpretation approaches are not limited to AI Systems.
Riehle [103], Mellor [80] and Frankel [41] mention UML virtual machines
(VM) capable of interpreting arbitrary UML models.
Although those systems are not directly suitable for web applications, and
there is no web engineering methodology based on the interpretation ap-
proach available yet, direct model interpretation seems to be capable of
avoiding the problems of the code generation and model transformation ap-
proaches, and also to better address the short development cycles in web
engineering [78].

1.4 Research Goal

The goal of this work is to provide conceptual and technical infrastructure
that supports the direct interpretation of models as web based applications.
The goal is not to provide yet another methodology, but to make existing
ones more operational.
Web application development methodologies provide guidance to cleanly
specify a web application. However, even for systems leading to a working
prototype, signi�cant maintenance problems remain. In the XML transfor-
mation case, the underlying tools are not su�cient to express the consistency
constraints that may be identi�ed in the original conceptual model. Code
generation methods can result in more capable solutions, but lead to main-
tenance problems for the generated code itself. Model interpretation seems
to be a viable alternative.
Since a conceptional model is a common property and starting point of
all approaches, we will primarily focus on the technical advantages of a
conceptual model:

16 CHAPTER 1. INTRODUCTION AND MOTIVATION

� The conceptual model is speci�c to a domain and not to a content
format: Alternative formats such as HTML or the Wireless Markup
Language (WML)|designed for mobile devices|may be generated
from the same content, stored in terms of the model.

� The conceptual model is independent from the site layout: When the
content is not mixed with layout instructions, maintainers do not need
to care about removing them by accident, introducing inconsistencies.
People with di�erent responsibilities can work on di�erent entities.

� The conceptual model provides constraints that can be exploited to en-
sure consistency: The associations in the model constrain links to the
endpoints of the associations. This makes it possible to reduce the se-
lection options in a user interface to instances of the relevant concepts,
guiding the user. Typed �elds make it possible to provide further as-
sistance, such as displaying a calendar when a date �elds is edited.
The consistency of bidirectional links can be ensured by the model.

While itself not su�cient for the desired purpose, the XML toolchain (Figure
1.3) consists of a coherent set of standardized technologies and avoids the
problems of code generation. Hence, it may provide a us with a guideline
for the architecture of the desired model runtime environment:

I. XML Schema needs to be replaced by a suitable conceptual modeling
language.

II. The XML editor needs to be replaced by an editor for
(a) the schema and
(b) the content.
The editor should respect the constraints of the (meta-) model. It
should enable content maintainers to focus on their original task in-
stead of being distracted by layout instructions or aspects that can
easily handled by the system|such as ensuring bidirectional link con-
sistency. In the XML toolchain, there is only one editor for both
purposes, but that is not a necessity.

1.5. OUTLINE 17

III. At least the XPath part of XSLT needs to be replaced by a query
mechanism that provides full and high level access to the content of
the system. The transformation mechanism should be able to access
the stored information at an appropriate level of abstraction and not
restrict the formats that can be generated.

There are some additional issues in real world web applications that are not
considered in the idealized XML toolchain but are addressed by additional
tools or mechanisms. With a more powerful modeling framework, we should
consider whether those issues can be addressed in a way consistent with the
remainder of the system:

IV. In the case of plain XML �les, security concerns are covered only at
�le level by the web server. Although security is not the main focus of
this work, it may make sense to address security at a more �ne-grained
level.

V. In many real-world systems, access to legacy databases will be a strong
requirement. Tables can be converted to XML �les on the y or in
batch jobs, making them accessible to XML tools. Similar means
should be provided for our chosen high-level representation.

VI. The completeness of XSLT makes it possible to generate any desire-
able transformation of the content. However, XSLT does not provide
means to manipulate the content permanently, except from a complete
rewrite. It makes sense to examine to which extent modifying opera-
tions such as \delete users that did not log in for two years" or other
actions, possibly triggered via the user interface, are feasible.

1.5 Outline

Designing a web system that directly interprets a conceptual model is a sig-
ni�cant amount of interesting work. The next chapter will examine the �rst
point, �nding the right foundation, and discuss alternative conceptual mod-
eling options for the underlying representation, namely Description Logics
and UML class diagrams.

18 CHAPTER 1. INTRODUCTION AND MOTIVATION

The following chapters will then show how an XML publishing toolchain can
be replaced at a high level of abstraction, utilizing many of the UML 2.0
provisions for the Model Driven Architecture. The Infolayer, a system im-
plemented to show the feasibility of concepts developed in this dissertation,
is sketched in chapter 3. It is mainly based on the direct interpretation of
a UML class diagram. Chapter 4 discusses in detail which UML modeling
elements are supported and how they are interpreted by the system.
The Infolayer system supports the Object Constraint Language (OCL), a
constraint language that is part of the UML. In the system, OCL is not only
used as constraint language, but also to specify queries and to de�ne query
operations. The Infolayer OCL support is described in detail in chapter
5. For the support of the business logic of Infolayer applications, besides
the OCL query methods, also operations with side e�ects may be required.
For this purpose, a simple surface language for UML action semantics is
supported by the system. The action semantics surface language is described
in chapter 6.
The Infolayer counterpart to XSLT, an XML-based template mechanism for
the generation of arbitrary XML code is described in chapter 7. Relying on
OCL instead of XPath makes it possible to generate arbitrary XML code
directly from the system state of an object oriented model, without �rst
generating canonical XML and then applying XSLT.
Technical details of the default XML persistency mechanism of the Info-
layer and alternative SQL database connections are described in chapter 8.
Chapter 9 describes some case studies that go beyond the simple univer-
sity example discussed here, including some third party extensions of the
Infolayer system.
Finally, chapter 10 provides a summary of this work and an outlook to
possible improvements and extensions.

Chapter 2

Formal Basis

For the interpretation of a conceptual model as a web application, an ap-
propriate conceptual modeling framework must be chosen. Most recent web
engineering methodologies presented in the previous chapter are based on
UML, but UML is not the only option.
The W3C has recently recommended its own conceptual modeling language,
the Web Ontology Language (OWL)[124], for the Semantic Web. The Se-
mantic Web is an e�ort to make the content of web pages understandable for
computers [118], like in the SWRC case presented in the previous chapter.
The general idea is to use special semantic annotations such as \author",
\name", or \ownedBy" instead of plain unstructured text. In the Semantic
Web terminology, the formal agreement about a common vocabulary, avail-
able in a machine readable format, is called the domain ontology. Here,
an ontology is a conceptual model with a special focus on the disambigua-
tion for information interchange [45]. The ontology usually de�nes concepts,
a specialization hierarchy, associations and attributes important for infor-
mation interchange in a particular domain. For the semantic annotations
corresponding to a given Ontology, an XML based format called Resource
Description Format (RDF) [71] has been developed by the W3C. The Ontol-
ogy Modeling Language is based on Description Logics, which can be seen
as the state of the art in conceptual modeling in the Arti�cial Intelligence
community.
In this chapter, we will �rst give a short overview of UML class diagrams
and Description Logics and their general approaches to modeling, and then

19

20 CHAPTER 2. FORMAL BASIS

compare several aspects that seem especially important for web applications:

� Semantics: Without precisely de�ned semantics, it is di�cult to build
a runtime system interpreting a model.

� Query Capabilities: To transform information stored in terms of the
model to formats suitable for browsers and software agents, it should
be possible to access any part of the content.

� Extensibility and Integration: Although only conceptual models are
considered here, it should be easy to add functionality relevant in the
web context|such as user registration or noti�cation mechanisms|
in a consistent way. Also, it should be possible to integrate existing
resources such as relational databases.

� Ease of Use: For the development of small applications, it is desireable
that developers can work with familiar tools instead of needing to learn
new formalisms.

2.1 Description Logics

Before Description Logics (DL) was developed, the Arti�cial Intelligence
community mainly used �rst order Predicate Logics and Frame systems for
knowledge representation. The semantics of First Order Predicate Logic is
well understood, but Predicate Logics is undecidable and larger rule based
systems tend to become di�cult to oversee and to manage. To avoid the
latter problems, Frames systems consisting of graphical boxes, labels and
arrows were suggested by Marvin Minsky [83], shifting the focus to intu-
itivity. However, while humans are easily able to get the meaning of boxes
with labels and arrows, this task cannot be accomplished by computers if
the symbols do not have a precise meaning, and critics pointed out that the
boxes and arrow approach did not mean much even for humans when the
English labels are not well-known words [56].
Description Logics have been developed based on KL-ONE [12] to combine
the advantages of both approaches, the intiutivity of frame systems and the
precise semantics of predicate logic, while also improving decidability by
limiting expressability.

2.2. UML CLASS DIAGRAMS 21

DL systems support the de�nition of concepts by simply naming them and
specifying where they �t in the generalization/specialization hierarchy of
existing concepts. New concepts can also be de�ned in terms of existing
concepts using the operations of concept conjunction: the and operator can
be used to specify that the new concept is a common specialization of a
number of other concepts. New roles may be introduced to represent pos-
sible relationships that may hold between individuals in the domain being
modelled, and concept de�nitions may include restrictions on the possible
values, number of values, or type of values that a role may have for the
concept being de�ned.

2.2 UML Class Diagrams

Outside the AI community, the modeling formalism of choice is the Uni�ed
Modeling Language (UML) [93]. The UML has been developed to unify
several modeling approaches for object oriented systems and is maintained
by the Object Management Group (OMG) [90].
For our purpose, the interesting part of UML are class diagrams. UML
class diagrams can be seen as extended Entity-Relationsip diagrams [20].
UML classes correspond to entities, associations to relations. In addition
to modeling classes, associations, and attributes, UML class diagrams cover
the speci�cation of operations and a specialization relationships between
classes. Classes are depicted as boxes containing the class name and lists
of attributes and operations. Associations are depicted as lines connecting
the boxes. In contrast to description logics, association ends are not de�ned
globally, but local to the declaring classes.
The use of UML is now widespread in industry and its rapid acceptance (even
for the design of mission-critical applications) suggests that it provides an
e�ective and scalable approach to conceptual modeling. Steven Crane�eld
has suggested to use UML class diagrams also for ontology modeling [28, 29].
Baclawski et al. even propose to add special modeling constructs for DL-like
property-centric modeling [7].
The purely graphical UML diagrams are usually not detailed enough to pro-
vide all the relevant aspects of a speci�cation. While it would be possible
to express additional constraints in natural language, this approach often

22 CHAPTER 2. FORMAL BASIS

Figure 2.1: Description Logic Example from [88, page 104]

leads to ambiguities. In order to write unambiguous constraints, formal lan-
guages such as Z [112] can be used. The disadvantage of traditional formal
languages is that they are di�cult to use for persons without a mathematical
background.
An associated constraint language has been developed to �ll this gap. The
Object Constraint Language (OCL) [93, chapter 6] it is a formal language
that is easy to read and write. It can be used to assert arbitrary constraints
on the possible instances of a model. OCL is a pure expression language,
and OCL expressions are required to be without side e�ects.
Here, we will use the abbreviation \UML" as short form for UML class
diagrams with OCL annotations, unless otherwise noted.

2.3 General Modeling Approach

Description Logic and UML class diagrams both use a graphical notation to
describe concepts and relations between them. However, there are signi�-
cant di�erences between the general approaches to modeling chosen in both
frameworks.
In Description Logics, concepts are de�ned by a set of properties an instance

2.3. GENERAL MODELING APPROACH 23

Figure 2.2: UML Adoption of the DL Team Sample

must have in order to be a member of this concept. Concepts may be atomic
root concepts, or inherit requirements from other concepts. Figure 2.1,
taken from [88], shows a small sample, modeling di�erent types of teams in
Description Logic. In the example, a team is de�ned as something that has
at least two (human) members. A small team is a team which has at most
5 members. A modern team is a small team where the leader is a woman.
The set of objects belonging to a concept is de�ned intensionally; the set is
derived dynamically from the concept de�nition.
In object oriented modeling, concepts are described as the set of properties
instances may have. In description logics, properties are globally de�ned,
any property may be assigned to any instance as long as it is not explicitly
excluded. Thus, it would be possible to assign a leader to a team, although
the leader role is used only in the context of the modern team. Based on the
member and leader information, the system could automatically infer that a
certain instance of the concept Team is a actually a modern team. In UML,
object properties are limited to those explicitly declared for a class and its
super-classes. The class an object belongs to must be explicitly speci�ed at
the creation time of an object.
Because of those di�erences, it is not possible to build an identical UML
Model for the above DL example. In object oriented systems, it is usually
necessary to explicitly specify which properties are calculated, and which
ones can be �lled by the user of the system. Figure 2.2 shows a possible
adoption to UML, where the di�erent team types are represented as in-

24 CHAPTER 2. FORMAL BASIS

ferred attributes of the class Team instead of separate concepts|like in the
DL model. The comment boxes attached to the attributes contain OCL
speci�cations of the values.
An advantage of the DL approach is that inferences are not limited to those
explicitly speci�ed. For instance, from the information that T is a modern
team and L is the leader of the team, the system might be able to auto-
matically infer that L is a Woman [88, page 104]. From the information
that T is a small team and the leader of the team is a woman, the system
could infer that the team is actually a modern team. The main disadvan-
tage of this approach is that there are only global runtime and expressability
boundaries, and �nding the \right" trade-of between DL expressiveness and
runtime limits has become its own branch of AI research.

2.4 Semantics

It makes very much sense that the semantics of a modeling formalism are
well-de�ned, so there are no doubts about the \meaning" of a model. The
users should be able to get a clear picture of what they are actually doing.
Moreover, while humans are good at guessing or implying some kind of
\common sense" meaning, for a runtime environment this is certainly not
an option. Thus, the semantics of the modeling formalism should be well-
de�ned.
The semantics of a formalism is usually described using a mapping to a
semantic domain, a language for which the semantics are well understood
[105]. For Description Logics, usually a well-de�ned mapping to a decidable
subset of predicate logics exists.
The UML features a four-layered modeling approach. Layer 0 contains user
objects such as \Team A". Layer 1 contains the user model, that is the set of
classes, attributes, associations, etc., as de�ned by the user, describing the
objects in layer 0. Layer 2 contains UML concepts such as class, association,
and operation that are used in the user model. The concepts of layer 3 are
de�ned in terms of layer 4, the meta object facility (MOF), which happens
to be a subset of layer 3. Layer 4 is described in itself.
The semantics of the upper layers of UML were described in plain text
and scattered over the whole standard documentation in UML 1. Several

2.4. SEMANTICS 25

proposals for de�ning precise semantics can be found in the literature, for
instance a system model suggested by Ruth Breu et al [13] or mappings to
the speci�cation language Z [112, 35], or an integration of Fusion modeling
techniques and Z [15].
The adopted OCL proposal [10] for version 2 of the UML standard follows
the UML meta-model based approach, where the semantics of large parts
of OCL and UML are described using a \core" subset of UML. The formal
static semantics of the core parts are de�ned by a set-theoretical object
model, based on work by M. Richters [102]. However, despite the signi�cant
progress made with the OCL 2.0 proposal, there are still areas in UML
that lack a proper semantic de�nition, for example the precise meaning of
\Aggregations" [58].
In his dissertation, Richters de�nes an object model as a tuple
M = (CLASS;ATT;OP;ASSOC; associates; roles;multipicities;�)
The set of all Types T consists of the set of types of the classes CLASS,
the primitive types Integer, Real, Boolean, and String, and collection types
representing sets, bags, sequences, and ordered sets of types. For naming
model components, we assume a set of �nite, non-empty names N .

Signature

CLASS � N is the set of classes, a �nite set of names.
ATT is a set of signatures a : tc ! t where the attribute name a is an

element of N , tc an element of CLASS and t 2 T a type. Cardinality
constraints other than one can be modeled by using set types.

OP Operations are de�ned as a set of signatures w : tc � t1 � :::� tn ! t,
where the operation name w is an element of N , tc an element of
CLASS, and t1:::tn 2 T types.

ASSOC is a �nite set of association names ASSOC � N .
associates is a function ASSOC ! CLASS+, mapping the association

names to a tuple of two or more classes.
roles is a function ASSOC ! N+, mapping the association names to a

tuple of two or more role names.

26 CHAPTER 2. FORMAL BASIS

multiplicities is a function assigning each of the participating classes a
multiplicity constraint which is a non-empty set of positive integers N.

� is a partial order on the set of classes CLASS. Pairs in � describe the
generalization relationship between two classes.

Semantics A system state if formally de�ned as
�(M) = (�CLASS ; �ATT ; �ASSOC)
where �nite sets �CLASS(c) contain all objects of a class c existing in the
system state, functions �ATT assign attribute values to each object, and the
�nite sets �CLASS(c) contain links connecting objects.
Richters also de�nes precise semantics for OCL expressions. The object
model does not cover the whole UML. Concepts that are not required in the
UML meta model like visibility constraints are left out; the subset covers
only concepts that are used in the UML speci�cation to describe UML itself.
For a detailed discussion of precise static UML and OCL semantics, please
refer to [102].

2.5 Query Capabilities

Unfortunately, the query capabilities of the built in reasoning mechanism of
Description Logics are limited. According to Alex Borgida, the constructors
usually considered in the DL literature are exactly as expressive as the pred-
icates de�ned by the subset of �rst order predicate calculus with monadic
and dyadic predicates which allow only three variable symbols [11]. Even
the full description logic DL cannot express the \conjunctive queries"|the
least powerful query language considered in the relational database litera-
ture. For instance, if we add a role \father" to the team sample, it is not
possible to formulate the following query in terms of Description Logics:

Team(T), Peson(P), Person(Q), Person(R),
father(P, Q), father(Q, R), member(T, P), member(T, R)

Thus, one is very likely to need an additional query language when designing
XML templates for a system based on Description Logics.

2.6. EXTENSIBILITY AND INTEGRATION 27

Although OCL was originally designed as constraint language, it can be used
as a query language as well. For instance, an OCL equivalent of the above
query taking advantage of path expressions is:

Team.allInstances()->select(t
| t.member.father.father.team->includes(t))

Mandel and Cengarle have analyzed the completeness of OCL as a query
language [75] in the sense de�ned by Ullman [116]. Union, di�erence and
selection can be expressed directly as primitive OCL collection operations.
Projection is only possible for just one attribute, and the cartesian product
cannot be expressed, both due to the lack of tuple types. As a solution,
Mandel and Cengarle have suggested the addition of tuple types to OCL.
Accordingly, tuple types were included in the accepted proposal for the
version 2.0 of OCL.
Richters points out that when allowing the implementation of query meth-
ods in OCL, the computational power of OCL is extended to the power of
recursive functions for the price of the termination guarantee of expressions
[102, page 112]. We will prove the computational completeness of OCL in
chapter 5.

2.6 Extensibility and Integration

While the semantics of DL systems seem more mature than UML semantics,
they are limited to a static world. It also seems di�cult to integrate other
techniques elegantly into the formalism, since there are no standardized
\plugs" for extensions.
UML provides di�erent means to describe the dynamic aspects of a system.
OCL provides means for the precise description of the post conditions of
method invocations. UML state chart diagrams can be used to describe the
life cycle of objects. Moreover, the UML Action Semantics introduced with
UML 1.5 [93, Chapter 2] allows the speci�cation of arbitrary computations.
For custom extensions, the UML provides three di�erent standard interfaces:

� Stereotypes can be used to further de�ne an element in a UML diagram.

28 CHAPTER 2. FORMAL BASIS

� Tagged values can be used to enrich all kinds of model elements with
user de�ned annotations in the form of attribute{value pairs.

� Operations can be used to hide any kind of \blackbox" system, where
OCL post conditions can be used to describe the invocation conse-
quences that can be covered by the UML.

2.7 Ease of Use

DL based knowledge representation systems o�er several inference services,
helping the user to avoid building inconsistent or unsatis�able models [16]:

� Concept Satis�ability: Does a concept C have a non-empty set of possi-
ble instances? Concepts that are unsatis�able are usually not intended
in the design process.

� Subsumption: Is a given concept description more general or more
speci�c than another, or can no such relation be established? This
enables the system to show the user how a newly created concept
relates to other existing ones.

� Knowledge-Base Satis�ability: Are the model and the set of recorded
instances consistent with each other? This check can be used to vali-
date a model using sample instance data.

� Instance Checking: Is a an instance of concept C in any model of the
knowledge base?

All that DL services handle the overall knowledge base. It is a \global"
model where each concept may have an e�ect on other concept de�nitions.
UML does not o�er this kind of inference services. In UML, most model
elements are localized in scope. This feature of design locality helps the
model designer to construct a more complex design in manageable \chunks",
whose complexity is encapsulated within the scope of a class or a few classes.
Another important aspect is that UML is widely used in the industry and
taught in Universities. Together with wide-spread use comes tool support;
the UML is supported by a large number of sophisticated graphical tools
such as Rational Rose, Magic Draw, Argo UML and others.

2.8. CONCLUSION 29

2.8 Conclusion

Both options, DL and UML class diagrams provide the necessary means to
model a domain in terms of concepts and associations between the concepts.
While DL provides mature semantics and a more intensional formulation
of knowledge, UML generally seems to be more modular and also more
popular, enabling people to build on existing knowledge and expectations,
and to work with familiar tools. Taking the previous knowledge of users into
account, UML will probably be simpler to work with for most users.
Concerning completeness of the formalism for the given task, both, DL and
UML, provide means for adding and removing instances and links. However,
the built in query capabilities of Description Logics seem insu�cient for a
sophisticated template mechanism, and there is currently no widely accepted
query language available for Description Logics. While UML provides well-
de�ned annotation and extension mechanisms that are fully supported by
UML tools, this kind of standardized interfaces does not exist for Description
Logics.
For those reasons, we have chosen UML class diagrams as the basis for our
work on an interpretative approach to the model-driven development of web
applications.

30 CHAPTER 2. FORMAL BASIS

Chapter 3

The Infolayer System

In the introduction, we have identi�ed a set of primary action points for
building a system that resembles the coherence of the XML toolchain, but
at a higher level of abstraction:

I. Replace XML Schema with a high-level conceptual modeling language.
II. Replace the XML editor with an editor that automatically respects

the constraints of the chosen modeling language.
III. Replace XSLT with a language that is coherent with the remainder of

the system.

We already have identi�ed UML class diagrams as a modeling language
suitable for our purpose in the previous chapter, addressing issue I. Here,
we will address issues II and III.
In the XML toolchain, the XML editor serves two purposes, editing the
schema and editing the system content. The schema editing part of issue
II is su�ciently addressed by existing UML based CASE tools. In order
to cover the remaining part of issue II (that is not covered by UML tools),
we have developed a runtime environment that is able to interpret a class
diagrams as a web applications. The runtime environment takes a class
diagram in a standardized format (XML Metadata Interchange (XMI) [92])
as input. It uses the �le to dynamically generate a browser interface that
is based on HTML forms, taking the constraints of the model into account.

31

32 CHAPTER 3. THE INFOLAYER SYSTEM

The generic HTML interface is described in section 3.1. The class diagram
is also used to derive a simple default storage format that can be used to
make the system state persistent.
In the XML toolchain, transformation rules to other XML formats directly
accessible to clients can be speci�ed in XSLT. In section 3.2, we address
issue III with a similar transformation mechanism. The main di�erence of
our approach is that we are using OCL to access the parts of the system
state that are needed when applying the templates. The utilization of OCL
helps us to keep the transformation rules coherent with the remainder of the
system.
In the introduction, we have identi�ed three additional issues that are not
addressed in the XML toolchain, but are nevertheless important for real-life
applications.

IV. Security Issues
V. Integration of legacy data
VI. Completeness

Those issues are considered briey in sections 3.3{3.5, mainly pointing to
separate chapters for a more detailed discussion.
All our proposed solutions have been implemented in the Infolayer system.
By using this system in a number of real world applications (described in
chapter 9), we were able to make sure that no important aspect of web
applications was left unaddressed. Section 3.6 describes the architecture of
this system. Section 3.7 shows the look and feel of an Infolayer sample ap-
plication that results from the UML diagram presented in the introduction.
At the end of this chapter, we discuss means to keep the semantics of the
implemented system consistent with the UML speci�cations.

3.1 Interpreting the Class Diagram as a Web Ap-

plication

In the Infolayer system, a UML class diagram controls two main aspects
of the web server: The HTML based default user interface, and a simple

3.1. INTERPRETING THE CLASS DIAGRAMAS AWEBAPPLICATION33

Figure 3.1: HTML Generation from the Class Diagram

XML-based persistent storage.

In addition to those primary aspects of the system, the class diagram is
also used to derive a SOAP interface [24, 25], sketched in chapter 9, and
a simple command line interface. SOAP is a remote procedure invocation
protocol that enables third party applications to access the content of the
Infolayer system in a machine readable manner. The command line interface
is accessible via a telnet socket connection or an HTML form based interface
and makes it possible to evaluate arbitrary OCL expressions for debugging
and testing purposes.

While we focus on UML class diagrams here, the general approach of model
interpretation is not limited to a single diagram type. For instance, an
extension of the Infolayer system uses statechart diagrams to manage the
state and life cycle of objects, including means to trigger state transitions
via the web interface [100, 55].

34 CHAPTER 3. THE INFOLAYER SYSTEM

3.1.1 HTML Generation

In the default case, the HTML pages generated by the Infolayer system are
divided into two areas, a global navigation area to the left, taking about
1/5 of the screen, and a detail area. The navigation area is identical for
all pages and contains a tree of class names, representing the classes and
their generalization structure. The classes are annotated with a hyperlink,
leading to a new page, the default page of the class.
A default class page has the address /auto.html?self=< classname >. It
shows

� the name of the class as the title,

� the Documentation of the class, extracted from the XMI �le,

� the set of all instances of the class (excluding instances of subclasses),
and

� a set of buttons corresponding to parameterless static operations avail-
able for the class. By default, a \create"-Button that triggers the cre-
ation of new instances and a \query"-button which leads to a query
page are displayed.

The listed instances are hyperlinked with instance detail pages. An instance
detail page shows a table of all attributes, associations and methods of an
instance, including the corresponding values. For associations, the listed
instances are again hyperlinks, leading to the detail page of the instance at
the other end of the association. This way, it is possible to \click through"
the whole system content conveniently.
All objects have stable URLs, so it is possible to create bookmarks for the
generated pages. For modifying instances, a HTML page similar to the in-
stance detail|but containing form elements for manipulating attributes and
associations|is created. For primitive types, simple input �elds are used.
For associations, selection lists make it possible to pick instances conforming
to the type of the association. Figure 3.1 illustrates the automatic interface
generation.

3.2. ARBITRARY XML GENERATION 35

3.1.2 Persistent Storage

By default, all instances managed by the Infolayer system are stored in two
simple XML �les. The primary �le (instances.xml) stores a snapshot of all
instances at a point of time. The secondary �le (instances.chg) is used to
store changes relative to the primary �le. The current set of instances and
properties is determined by the primary �le plus the changes denoted by the
secondary �le. When the changes exceed a certain limit at system startup,
the changes are incorporated into the main instance �le, and the secondary
�le is discarded.
The XML �les contain XML elements for all instances, where the element
name corresponds to the class name. The unique id of an instance is stored
in an id attribute. Elements corresponding to the properties of an instance
are embedded in the instance XML element. Primitive types are stored as
textual content of the property elements. References to objects are stored in
an idref attribute. Binary content is stored in separate �les. The persistent
storage is covered in more detail in chapter 8.
This simple persistence mechanism is only a simple default option if no
explicit link to a relational database is provided. Connections to relational
databases are discussed in section 3.4.

3.2 Arbitrary XML Generation

The Infolayer system provides three di�erent options to inuence the look
and feel and the generated XML code. The simplest option are Cascaded
Style Sheets (CSS) [72]. CSS support is not an Infolayer speci�c feature, but
a general feature of newer HTML versions. Additional formatting and visi-
bility options can be inuenced using Infolayer speci�c model annotations,
as described in appendix C.
The most powerful customization mechanism provided by the Infolayer sys-
tem is an XML Templates engine, enabling the generation of any XML based
format. The templates consist of regular elements of the target format, en-
riched with three types of template elements:

� Conditionals, Loops and include elements, similar to those provided

36 CHAPTER 3. THE INFOLAYER SYSTEM

by the XML transformation language XSLT [23], except that OCL is
used as expression language instead of XPath [121].

� Elements providing views and editors for UML constructs such as prop-
erties or operations. Those elements provide simple means to generate
complex constructs of the target language, such as components for
editing associations or uploading binary content.

� Elements for special purposes such as search or login buttons.

Embedding the template elements is similar to other template mechanisms,
such as XSLT. Before delivering pages to the client, the template elements
are evaluated and replaced with code of the target language. The main
di�erence to XSLT is that the Object Constraint Language (OCL) is used
as a query language in the templates. While other languages would have
been possible (and actually have been used in the system before), the OCL
naturally �ts with the UML-based modeling approach. The OCL capabilities
of the Infolayer system are described in detail in chapter 5.
The templates follow an object-oriented schema: Every class can be assigned
several templates, e.g. \view" and \edit", and the templates are inherited
by subclasses. Thus, in the most simple case, the de�nition of a template
for the base class \Object" can inuence the appearance of the whole sys-
tem. Actually, this mechanism is used to generate the HTML interface
described above; the HTML interface is completely implemented using the
template mechanism. Template inheritance makes it possible to provide
a single generic default user interface for all classes, without constraining
customization options.
Figure 3.2 compares the XML toolchain to the corresponding concepts of the
Infolayer system. The template mechanism is described in detail in chapter
7.

3.3 Security Concerns

Since the Infolayer provides means for editing instances remotely, some kind
of security mechanism is required in order to limit write access to authorized
persons. In some case, even more �ne grained access rights may be necessary,

3.3. SECURITY CONCERNS 37

Figure 3.2: The XML Toolchain and the Corresponding Building Blocks of
the Infolayer System

38 CHAPTER 3. THE INFOLAYER SYSTEM

for example to limit read access, too, or if di�erent groups of maintainers
shall have access only to the content they are responsible for.
To address the di�erent needs, the Infolayer system provides four di�erent
mechanisms to restrict access to the content stored in the system:

� General visibility of classes and properties, de�ned in the UML dia-
gram

� User dependent access constraints for classes, properties and opera-
tions

� User dependent customization in XML Templates and

� URL based access restrictions

The default setting allows anybody to see all classes and properties that are
marked public in the UML diagram, while for editing content, a user must
be registered with the system.
Please note that all access restrictions are enforced by the user interface;
operation implementations or page templates are not implicitly bound to
the constraints.

3.3.1 UML Element Visibility

The simplest and least exible mechanism for access control is the UML
element visibility as de�ned in the UML model.
The element visibility is used to determine whether an element is displayed
in the user interface automatically. If a class, attribute, association end, or
query operation is marked public in the UML model, it will be displayed,
otherwise not.
This default behavior can be overwritten by specifying explicit visibility
rules, described in the following sections.

3.4. CONNECTIONS TO LEGACY DATABASES 39

3.3.2 User and Dynamic Access Management

In order to determine user access rights, the Infolayer system needs a
database of registered users and their properties. For this purpose, it uses
a specialized class named User. By setting the tagged value il-userclass of
the model or the class Infolayer, the Infolayer system can be instructed to
consider an alternative class as the user class.

To restrict the access for classes, properties, and operations to certain users,
the Infolayer system recognizes specialized model annotations. Both, the
user class and the model annotations for access restrictions are described in
more detail in the next chapter.

3.3.3 Customization in XML Templates and URL Based
Rules

Customization and access limitations depending on the current user can
also performed in the XML template mechanism. In contrast to the model
annotations, which have a global scope, the XML templates enable di�erent
access restrictions in di�erent situations.

The template based XML generation and URL based access rules are de-
scribed in detail in chapter 7.

3.4 Connections to Legacy Databases

In addition to the default XML �les, it is possible to use a number of other
options such as CSV, BibTex or relational database tables as persistence
mechanism. For this purpose, the model must be annotated with additional
information describing the database connection. Moreover, for mapping as-
sociations, explicit rules must be provided since none of the supported stor-
age mechanisms supports associations as �rst class entities. The alternative
persistence options are described in detail in chapter 8.

40 CHAPTER 3. THE INFOLAYER SYSTEM

3.5 Completeness

In the previous chapter, we have already mentioned that OCL, the expres-
sion language associated with UML, is computationally complete. We will
handle OCL in more detail and prove this claim in chapter 5.
Since OCL is free of side e�ects, we cannot use OCL to manipulate the
current content of the system, to create new instances, or to delete existing
instances.
However, in contrast to OCL, existing database manipulation languages
normally have capabilities beyond queries. For instance, Ozkaran asserts
the need for more capabilities in his de�nition of completeness [95]:

In language implementations, the following two operations are
needed to assure relational completeness:
1. The ability to represent assignments, that is, the ability to

create new relations to store the results of relational algebra
operations that are also relations. [...]

2. The ability to compute transitive closures which enables
recursion and/or nesting of relational algebra operations to
express expressions of arbitrary complexity. [...]

While the ability to compute transitive closures is subsumed by Turing com-
pleteness, we are not able to formulate assignments or model manipulations
in OCL. With assignments, OCL would no longer be free of side e�ects,
so we cannot simply add an assignment operator to OCL. Without assign-
ments, our system is suitable for pure information services, but not for web
applications such as online shops that require program controlled changes
of the system state.
Actually, the �rst point of Ozkarans notation of completeness can be split
into manipulation of the data level (M0), that is the manipulation of data in
existing relations or instances, and manipulation of the schema level (M1),
that are manipulations that have an e�ect on the system tables, such as the
creation of new tables or classes.
In order to be able to precisely specify the semantics of operations with
side e�ects, UML contains an action semantics speci�cation. In chapter 6,

3.6. INFOLAYER SYSTEM ARCHITECTURE 41

we show how action semantics can be integrated into the Infolayer system
to achieve program controlled data manipulation, extending the range of
possible applications beyond the pure XML toolchain. In the next chapter,
we will present the Infolayer meta-model that could be used for modi�cations
at the schema level if we would extend the implementation to support write
access to the user model.

3.6 Infolayer System Architecture

The architecture of the system, which is depicted in �gure 3.3, consists of
the following main components:

� The core of the Infolayer system is the UML Runtime Environment in-
cluding the OCL and action semantics parser and interpreter. It holds
a memory representation of the complete model and the instances
that are currently being processed. The memory representation of the
model is generated by the XMI loader. Instance data is requested
from the persistence layer on demand. The UML capabilities of the
Infolayer system are described in detail in chapter 4.

� The XMI loader loads the UML model from an XML Metadata Inter-
achange (XMI) �le and transforms it into the memory representation
that is needed by the UML Runtime Environment. Using the stan-
dardized model interchange format XMI makes it possible to utilize
existing CASE tools for conceptual modeling.

� The storage abstraction provides a unique interface to data that is
stored persistently in di�erent formats or at di�erent locations. It
makes the core of the system independent from the underlying data
store. Currently, the following data sources are supported: XML �les,
JDBC/SQL, Bibtex (used for literature databases), and CSV (comma
separated value) �les.

� The Telnet server provides a simple command line interface to the
Runtime Environment, mainly for testing and debugging purposes.
OCL queries entered by the user are handed over to the core, where
they are evaluated. The results are returned in textual form.

42 CHAPTER 3. THE INFOLAYER SYSTEM

Figure 3.3: Architecture of the Infolayer System

3.7. SAMPLE APPLICATION 43

� The HTTP request handler delegates incoming HTTP requests to a
specialized processor where they are translated to requests to the sys-
tem core and possibly a template name, depending on their type:
{ SOAP requests are processed immediately in cooperation with
the core.

{ For a request originating from a browser, the processor performs
all actions associated with the request, such as data manipulation,
but the response is generated by a separate module, the template
processor.

� The template processor merges prede�ned XML templates determin-
ing the layout of a page with the processing result of a HTTP request.
It replaces instructions embedded in the template with data denoted
by OCL expressions. This way, the layout of HTML and WML pages
can be maintained seperately from the content. The template mecha-
nism is su�ciently powerful to generate any desired output.

3.7 Sample Application

In chapter 1, we have introduced a simpli�ed university department scenario
to motivate this work. In the remaining chapters, we will use the simpli�ed
model with a few mock-up instances to illustrate di�erent aspects of the
system.
If the department sample is started locally, it can be explored by pointing
a web browser to the URL http://localhost:8080/department/. Figure 3.4
shows two screen shots of the application, the upper one is generated using
the generic Infolayer HTML interface, the lower one is created using the
template mechanism. Figure 3.5 illustrates the OCL command line interface
of the system.
A methodology or \best practice" for working with the Infolayer has evolved
over time. It emcompasses these steps:

1. A domain model consisting of OCL-annotated UML class diagrams
and possibly UML state machines is designed using one or more iter-
ations of designing and testing a prototype, as described above.

44 CHAPTER 3. THE INFOLAYER SYSTEM

Figure 3.4: Generic and Customized Department Sample Screen Shot

3.8. SUMMARY 45
> Person.allInstances()
type: Set(Person)
result: Set{Dr. Bunsen Honeydew, Bill Beaker}

> select(title = 'Dr.')
type: Set(Person)
result: Set{Dr. Bunsen Honeydew}

Figure 3.5: OCL Command Line Interface Session

2. The system's layout is tailored to personal taste or a given corporate
design using one very simple template that provides a basic frame and
a main navigation structure. This is usually the point at which the sys-
tem can actually be utilized by its users, that is, the Web application's
database can be �lled with content.

3. The page layout for individual classes is successively improved. If re-
quired, the system's whole navigational structure is changed according
to the speci�c needs dictated by the application.

4. The model itself can be modi�ed, too, as long as these changes only
introduce elements (classes, attributes, associations, constraints) into
the system that are consistent with existing instances. We hope to
loosen this restriction using refactoring facilities in the near future.

3.8 Summary

In this chapter, we have outlined how the goals raised in the introduction
are met by the Infolayer system. We have shown how a UML class diagram
can be directly interpreted as a web application, implicitly solving the ed-
itor problem. We have sketched a language for generating arbitrary XML
content that builds upon both, the UML constraint language OCL, as well
as XSLT. Here, building upon OCL ensures consistency with the remainder
of the system. For both, UML and XSLT, we can leverage existing devel-
oper knowledge in many cases. By considering issues such as security and
completeness, we go beyond the capabilities of the XML toolchain without
compromising the overall integration and consistency of the system. The

46 CHAPTER 3. THE INFOLAYER SYSTEM

ongoing formalization of UML provides a precise reference for comparing
intended and actual behaviour of the system.
The following chapters discuss the solutions for the various problems in more
detail. The next chapter illustrates which elements of UML class diagrams
have been selected to show the feasibility of the system. A separate chapter
is devoted to the OCL and its implementation because of its central role in
various parts of the Infolayer system.

Chapter 4

UML Class Diagram Support

In the previous chapter, we have outlined the general architecture of a run-
time environment that makes it possible to execute UML class diagrams
as web applications. In this chapter, we discuss the interpretation of the
elements of UML class diagrams in the system in more detail.
Although it seems technically feasible to support all the concepts of UML
class diagrams, for the limited scope of a university project, an adequate
subset must be selected. The �rst section of this chapter describes the
selected subset and its interpretation in the web application context.
In the second section, we present some additional prede�ned classi�ers which
are not part of the UML standard. They are used in the Infolayer system
to address common requirements of web applications such as dealing with
binary �les and user management.
In the third section, we introduce a set of Infolayer speci�c model annota-
tions that can be used to limit access to elements of the model to speci�c
users or general rules in the form of OCL expressions.
Some capabilities of the Infolayer that are not directly covered by the UML
speci�cation can be con�gured using a standard UML extension mechanism:
all model elements can be annotated with special name-value pairs, so-called
tagged values. The Infolayer makes use of tagged values for various purposes,
such as customization of the presentation, access permissions and other fea-
tures like database connections. All tags used in the infolayer system start
with the pre�x \il-" .

47

48 CHAPTER 4. UML CLASS DIAGRAM SUPPORT

Figure 4.1: Infolayer Meta-Model

4.1 Supported Elements of UML Class Diagrams

The following elements of UML class diagrams are understood by the Info-
layer system:

� Classes
� Properties (Attributes and Associations including Compositions)
� Operations
� Generalization / specialization relations between classi�ers
� Data Types
� OCL expressions

Those elements form the subset of the UML 2.0 proposal for class diagrams
depicted in �gure 4.1. The selection matches the UML core de�ned in [102].
Properties and operations support visibility to the extent that public ele-
ments are shown in the user interface by default, whereas private properties
are not.

4.1. SUPPORTED ELEMENTS OF UML CLASS DIAGRAMS 49

For specifying the UML model, any UML tool that generates valid XMI 1.1
can be used.
Relevant features and model elements that are (currently) not supported
are:

� Multiple Inheritance
� Interfaces
� Association Classes
� N-Ary Association
� Classes with overlapping sets of instances

Those elements were not required in the applications we used to evaluate
whether the system meets its requirements and thus left out. However, for
other applications it may make sense to add them. Even if unimplemented
concepts can be emulated with implemented elements, it was not the goal
to identify a general minimum working set.

4.1.1 Classes

Classes are|like in object oriented databases|used to describe the entities
managed by the system. Classes may be derived from other classes, inherit-
ing their properties, and building a class hierarchy. Classes that are marked
abstract cannot be instantiated. In the Infolayer system, each instance of a
class has a stable unique alphanumerical ID, identifying the instance.
IIn addition to the standard UML capabilities, the Infolayer supports tagged
values for user interface customization, localization, and user access manage-
ment. The annotations for customization and localization are described in
appendix C; the annotations for access management are described in section
4.3.

4.1.2 Primitive Data Types

Data types are simple types where the instances do not have an \identity"|
it is not possible to create two di�erent instances of the type Integer with

50 CHAPTER 4. UML CLASS DIAGRAM SUPPORT

Type Domain

Boolean Supported values are true and false
Integer 64 bit signed integer numbers
Real 64 bit real numbers
String Unicode text strings

Table 4.1: Prede�ned Data Types that can be used in Attributes

the value 5. Data types supported by the Infolayer system are the OCL
types Boolean, Integer, Real, and String. In contrast to UML, the domain of
the numeric types is limited to simplify the implementation of the system.
Table �g:datatypes shows an overview of the built in UML data types and
their (restricted) domains in the Infolayer system, roughly corresponding to
primitive data types in programming languages.

4.1.3 Attributes

Attributes are typed properties of classes, where the type is usually a simple
data type. Attributes with a class type are regarded as compositions, as
speci�ed in the UML standard. A default value of an attribute is speci�ed
by providing an OCL expression; that expression is interpreted whenever a
new instance is created. Attributes must have an instance scope, attributes
with a classi�er scope are not supported.

4.1.4 Associations

Associations in UML can be seen as a tuple of attributes representing the
association ends at each connected class, where the \attribute values" are not
independent, but synchronized with the other ends. In contrast to regular
attributes, the type of the association ends cannot be a primitive type,. Most
information about associations relevant for the information layer, such as the
local name and the cardinality, is accessible via the association ends. Like for
classes and attributes, additional information regarding access permissions
and appearance can be set using tagged values. If the UML CASE tool does
not allow to set tagged values for the association ends, it is possible to set
tagged values named il-endname-tagname for the association itself. Those
values are assigned to il-tagname at the association end endname.

4.1. SUPPORTED ELEMENTS OF UML CLASS DIAGRAMS 51

For compositions, the associated elements are deleted automatically if the
owning element is deleted.
If the �eld \ordering" is set to the value ordered, an ordering that cannot
be determined from the instances implicitly is preserved. For the Infolayer,
that means that the ordering in which the links were set is not changed. For
all other values, the associated instances are ordered alphabetically in the
user interface.
Like for attributes, default values are supported, and the scope of the asso-
ciation must be instances.
Please note that attributes and associations are only displayed in the user
interface by default if they are marked public. Many UML tools set the
default access rights for attributes and association ends to private.

4.1.5 Operations

It is possible to add operations to the classes. For example, an operation get-
Name() may return the concatenation of givenName and familyName �elds.
The implementation of the method must be provided as OCL expression
in the tagged value \il-implementation". For the given example, the OCL
expression would be

givenName.concat(' ').concat(familyName)

Each class contains a prede�ned method toString(), which is called when
a string representation of an object is needed, for instance in titles or
overviews. The default implementation displays the name or title attribute
of the object if available. Otherwise, the unique ID of the object is re-
turned. For persons, an appropriate implementation would correspond to
the getName() implementation shown above.
For operations without parameters, action buttons are displayed in the user
interface, which allow the user to trigger a method invocation if he or she has
the required permissions. The permissions and other customization options
for operations are discussed in detail in the following chapters.
In addition to user de�ned operations, the Infolayer provides a set of pre-
de�ned OCL operations. The Infolayer OCL support is discussed in more

52 CHAPTER 4. UML CLASS DIAGRAM SUPPORT

Figure 4.2: Prede�ned Classi�ers in the Infolayer System

detail in the next chapter. Methods with side e�ects are handled in chapter
6.
In contrast to attributes and association ends, operations may be de�ned
with a class scope.

4.2 Additional Prede�ned Classi�ers

In addition to the prede�ned UML types presented in section 4.1.2, the In-
folayer contains the prede�ned data types Binary and DateTime and the
classes Object, Infolayer, User and File, providing some basic functionality
for web applications. Figure 4.2 shows an overview of all prede�ned types
available at the user model level, including the abstract OCL base type
OclAny, which will be handled in the next chapter. Infolayer-speci�c types
are marked with a dark background in the diagram. The data type Date-
Time is needed to store points of times such as publication dates or dates of
changes. Support for binary data is needed to be able to store binary data
such as PDF documents or images in the system.

4.2. ADDITIONAL PREDEFINED CLASSIFIERS 53

The class Object was added to be able to track changes in the system in a
central place and to simplify object identity by adding an explicit unique ID
value, that is also used to identify links in the persistent storage mechanism.
The class File type combines binary data with a �le name that serves as
MIME type indicator, allowing the browser to automatically select the right
form of presentation. The class Infolayer provides access to information
about the system state such as the current time and user, represented by
the class User.
The generation of custom classes with a name identical to the prede�ned
ones will lead to conicts or ambiguities in the system and is not recom-
mended. However, it is possible to add an explicit representation of the
prede�ned classes to the UML model, in order to set tagged values or addi-
tional properties for this class. For instance, by adding properties to Object,
it is possible to add attributes and operations to all other classes contained
in the model.

4.2.1 Prede�ned Data Types

The Infolayer-speci�c types DateTime and Binary can be used to store date
and time values and arbitrary binary data.

4.2.2 Object

The class Object is the implicit abstract base class of all other classes.
The Infolayer supports a set of methods for objects in addition to the built
in OCL methods inherited from OclAny, presented in the following chapter.
The method getId() returns the unique identi�cation string of the object.
The callback methods onChange(), onCreate(), and onDelete() allow to react
on changes of the object if they are overloaded with an own implementation.
The default implementation of those methods is empty.
An important method of the class Object with a class scope is createIn-
stance(), which can be used to create new instances. Since this method
has an obvious side e�ect, it cannot be used in OCL constraints and query
operations.

54 CHAPTER 4. UML CLASS DIAGRAM SUPPORT

Property Type Mandatory Description

password String yes Stores the encrypted password of the
user

login String no Stores the login name of the user. If not
present, the toString() method is used
to determine the login string.

admin Boolean no Determines whether a user has admin-
istrative rights. By default, administra-
tors can manage users and have access
to the Infolayer command line interface.
If not present, the user with the name
\admin" is the only user with adminis-
trative rights.

Table 4.2: User Class Properties Interpreted by the Infolayer System

4.2.3 Infolayer

The Infolayer class contains the static methods getCurrentUser() and
getCurrentDateTime() to access general information about the current state
of the Infolayer:

getCurrentUser(): User : Returns the current user, corresponding to
the current browser session.

getCurrentDateTime(): DateTime: Returns the current system date
and time.

The Infolayer class supports the tagged value il-userclass to instruct the
Infolayer system to use a di�erent class for users than the default User
class. The built in user class and the requirements for custom user classes
are described in the next section.

4.2.4 User

The User class is generated automatically by the system if no explicit user
class is set using the il-userclass tagged value of the Infolayer class. A
custom user class must contain at least an attribute named password of the

4.3. DYNAMIC ACCESS MANAGEMENT 55

type String, which is used internally to store the passwords of the users in
an encrypted form. The additional attribute login is optional. If present, it
is used to store the login name of the user. If not present, the toString()
method is used to determine the login string.
The Infolayer makes a distinction between regular users and administrators.
By default, regular users can edit all the content of the system, except
from User instances belonging to other users; only administrators can create
new users or change existing users. Furthermore, the OCL command line
interface of the Infolayer system is restricted to users with administrative
rights.
In addition to the prede�ned properties of the user class, it is possible to add
attributes, association ends and operations that can be used for customized
access control such as user group membership or similar.

4.2.5 File

The File class is designed for storing binary content along with a �le name.
It consists of the following attributes:

name: String The name of this �le object, including the �le extension.
data: Binary The binary content of the stored �le.
counter: Integer A download counter for the �le.

The tagged value \il-mimetype" may be used in attributes of type File in
order to restrict uploaded �les to the given mime type(s).

4.3 Dynamic Access Management

In the Infolayer system, OCL expressions can be used to limit or extend
access to classes, attributes, associations, and operations. For this purpose,
OCL expressions can be attached to the corresponding elements of the UML
model using specialized tagged values, such as il-permission-read for read
access and il-permission-write for write access. Table 4.3 shows an overview
of all tagged values that can be used for access control.

56 CHAPTER 4. UML CLASS DIAGRAM SUPPORT

Tag Attached to Description
il-permission-read class If the expression evaluates to true for the instance

denoted by self, the current user may view this
instance. The default value is true

property Determines whether the attached attribute or as-
sociation end is visible in the user interface. If
not present, the expression attached to the class
is used to determine the read access rights.

query opera-
tion

Determines whether the attached query operation
may be executed. If not present, the permission
speci�ed for the class applies. Please note that
this property has no inuence on non-query oper-
ations

il-permission-write class If the expression evaluates to true for the instance
denoted by self, the current user may modify or
delete this instance. The default value is:
not Infolayer.getCurrentUser().oclIsUnde�ned

property Determines whether the attached attribute or as-
sociation can be edited in the user interface. If
not present, the expression attached to the class
is used to determine the read access rights.

non-query op-
eration

Determines whether the attached non-query
method may be executed.

il-permission-query class Determines whether queries may be performed for
the attached class. In contrast to most other per-
mission expressions, self points to the class and
not an instance.

property Determines whether queries may be performed for
the attached attribute or association end. In con-
trast to most other permission expressions, self
points to the class and not an instance.

il-permission-create class If the expression evaluates to true, the current
user may create new instances of the attached
class. In contrast to the other permission expres-
sions, self points to the class. The default value
is:
not Infolayer.getCurrentUser().oclIsUnde�ned()

Table 4.3: Tagged Values Controlling Access Permissions

4.4. SUMMARY 57

The OCL expressions contained in those tags are evaluated at runtime, when
the attached element is accessed. If the evaluation result is true, an access
permission is granted, otherwise not. While any boolean OCL expression can
be used to de�ne the access rights, in most cases it will make sense to let the
permissions depend on the current user. In Infolayer OCL expressions, the
current user can be determined using the method Infolayer.currentUser().
For instance, the following expression can be used to limit access for a class
or property to scientists in the example model:

let user = Infolayer.getCurrentUser() in
(not user.oclIsUndefined()) and (user.job = Job::Scientist)

Of course, the access permissions can also be based on other values such
as the current time, but in most cases they will also depend on the current
user.
Some of the tagged values can be attached to both, classes and properties.
If both options are given, only the expression at property level is considered
and the expression at class level is ignored. Permissions are inherited along
the class hierarchy.

4.4 Summary

In this chapter, we have described a subset of UML class diagrams that can
be used to build models that can be directly interpreted as web applications.
We have clari�ed the interpretation of those elements in this context where
necessary. Our subset is similar to the subset de�ned in [102]. However, in
contrast to Richters' work, our subset was selected to show the feasibility of
the concept, and not to identify a small core subset for a speci�c purpose.
Thus, it may make sense to extend this set to reach more convenience and
a higher level of abstraction. As an example, association classes could be
supported to make it possible to assign properties to associations.
In addition to describing the UML coverage, we have also introduced a small
set of pre-de�ned classi�ers that model common aspects of \real world" web
applications such as users, access permissions, and binary �les.

58 CHAPTER 4. UML CLASS DIAGRAM SUPPORT

In the next chapter, we will discuss the OCL implementation of the Infolayer
system, which is the foundation for several aspects of the system, such as
the implementation of query operations and the XML templates.

Chapter 5

OCL Support

OCL is a side e�ect free textual expression language that was added to
UML in order to be able to express formal constraints of the model that
cannot be expressed with other, mostly graphical, elements of the UML.
The original purpose of the Object Constraint Language (OCL) [93, chapter
6] is to specify invariants on classes and types in a class diagram. Without
OCL, those constraints would need to be written down in plain text, quickly
leading to ambiguities.
However, OCL is also quite suitable as a general purpose query language
[30]. Although there are specialized query languages for object oriented
systems such as the Object Query Language (OQL) [17], it does not seem
to make much sense to add an additional language to an UML based system
if the OCL is su�ciently quali�ed for the desired tasks.
Thus, the OCL is utilized everywhere in the Infolayer system where the
ability to express sophisticated queries is necessary or useful. In particular,
OCL is used as an expression language in XML templates and for de�ning
query operations in the class diagram. The XML templates are a central
element of the Infolayer system that is not directly covered by elements
of the UML. They are mainly used for building web-based user interfaces.
The XML templates are discussed in detail in chapter 7. In chapter 8,
we will show how delayed evaluation and referential transparency of OCL
expressions can be used to optimize generated SQL queries.
An detailed overview of the Infolayer OCL support, focussing on deviations

59

60 CHAPTER 5. OCL SUPPORT

from the o�cial standard, is contained in appendix B. As for class diagrams,
we needed to leave out some parts that were not essential for our purposes.
In this chapter, we will describe OCL-related aspects of the Infolayer system
that are not covered by the UML speci�cation. Section 5.1 shows how query
operations can be (technically) implemented in OCL in the Infolayer system
using tagged values. Section 5.2 describes how the meta model can be ac-
cessed from OCL in the Infolayer system, following the power type approach
proposed by Stefan Flake [39]. Section 5.3 shows the Turing completeness
of OCL.

5.1 Implementing Query Operations and Derived

Properties in OCL

One of the main purposes of the OCL in the Infolayer system is to provide
operational speci�cations of query operations. Query operations are oper-
ations without side e�ects, denoted by the isQuery attribute in the class
diagram.
In order to specify the implementation of a query operation in the In-
folayer system, the operation must be annotated with the tagged value
il-implementation, holding the OCL code for the implementation of the
method. Similarly, calculated properties can be implemented using the
tagged value il-getter.
Like for other tagged values that are interpreted by the Infolayer, the spec-
i�cations may alternatively be embedded in the documentation of the oper-
ation, marked by @il-implementation or @il-getter.
The implementation of operations that are not necessarily free of side e�ects
and writeable properties is discussed in the next chapter.

5.2 Access to the Model (M1-Level)

The Infolayer system does not only provide access to an object diagram
conforming to a model, but also access to the user model itself. Access to the
model is required to be able to implement functionality of the XML template

5.2. ACCESS TO THE MODEL (M1-LEVEL) 61

Figure 5.1: OCL Access to the User Model (M1) in the Infolayer System

mechanism (chapter 7) in OCL, for instance displaying all properties of a
class. Unfortunately, the OCL 2.0 introspection capabilities are very limited
and not su�cient for this purpose.
In OCL 2, the type of any object can be determined at runtime using the
oclType() method, which returns an instance of the type OclType. In con-
trast to earlier Versions of the OCL, OclType is now an enumeration. It pro-
vides methods to query information about the given type, such as name() to
query the name or supertypes(), returning the set of all super types. How-
ever, the information available is limited to the name of the classi�er, the
set of all instances, and sub and super types. Earlier versions of the OCL
speci�cation allowed to obtain the operation and property names, but those
operations are not part of OCL 2.0.
To overcome this limitation and to provide better access to the user model
(M1), the Infolayer provides access to the classes of the user model as in-
stances, following a UML powertype approach proposed by Stefan Flake
[39]. A powertype is a type whose instances are classes of the user model.
In the Infolayer system, the type OclType is implemented as power type
for OclAny. Thus, all subclasses of OclAny are accessible as instances of
OclType.

62 CHAPTER 5. OCL SUPPORT

The operation oclType(), which is de�ned in OclAny and thus available for
all types, returns the type of the instance as an instance of the type OclType.
OclType corresponds to the M2 element Classi�er and provides methods and
properties making it possible to access to the user model (M1), as depicted
in �gure 5.1. The diagram is a simpli�ed version of the Infolayer metamodel
presented in the previous chapter, however, the names of the corresponding
M2 elements are pre�xed with \Ocl" for consistency with other parts of the
OCL speci�cation. A full list of methods and properties is provided in the
appendix.
In particular, access to the user model makes it possible to specify generic
rules for XML generation using the XML template mechanism presented in
chapter 7.
Please note that currently the Infolayer system provides only read access to
the user model.

5.3 Turing-Completeness

Mandel and Cengarle have proven that OCL is not Turing complete [75].
However, Richters claims that the expressiveness of OCL may be extended
to recursive functions by allowing the implementation of query operations
in OCL [102]. As described in the section 5.1, this option is available in the
Infolayer system using the tagged value il-implementation. In the remainder
of this section, we prove Richters' claim.
One option to demonstrate Turing completeness is to show that it is possible
to implement �-recursive functions [107]. However, this technique requires
unlimited integers, and in the Infolayer system integers are limited to 64 bit.
Moreover, it would be nice to use the completeness of OCL to show that
the XML template mechanism presented in chapter 7 is able to generate
any computable XML output. This seems simpler with the tape output of
a Turing Machine. Hence, we will implement a Turing Machine in OCL in
order to show the Turing completeness of our extended OCL.
A Turing machine is a 7-tuple (Q;�;�; �; q0;#; F), where

� Q is s a �nite set of states,

5.3. TURING-COMPLETENESS 63

� � is a �nite set of symbols, the input alphabet,
� � = � n# is a �nite set of symbols, the tape alphabet,
� � : Q� � �! Q� �� fL;R;Ng is the transition function,
� # is a symbol called blank,
� q0 2 Q is the initial state,
� F � Q is a set of �nal states.

A Turing Machine has an endless tape with unlimited storage positions for
the input alphabet. Any portion of the tape that has not been visited by the
read/write head is initially �lled with blank (#) symbols. In each step, the
Turing Machine reads the symbol at the current position of the read/write
head. Then the transition function � is used to determine the new state
of the machine, the symbol to be written at the current position and the
movement of the read/write head, depending on the current symbol and
state. A Turing Machine terminates when a �nal state is reached.
Since the sets of states and symbols are �nite, they can be mapped to integers
in order to simplify the OCL implementation:

� The states can be encoded as integers, where negative integers mean
halting states.

� The tape and input alphabet can be mapped to positive integers.
� Zero can be used as blank symbol.

The transition function � can be modeled as a set � of 5-tuples representing
single transitions (q; �; q0; ;m) where

� q is the current state,
� � the current symbol,
� q0 is the new state,
� the symbol to be written, and

64 CHAPTER 5. OCL SUPPORT

def: let
step (delta: Set(Sequence(Integer)),

state: Integer,
tape: Sequence(Integer),
pos: Integer
): Sequence(Sequence(Integer))

= if pos < 1 then
step(delta, state, tape->prepend(0), pos+1)

else if pos > tape->size() then
step(delta, state, tape->append(0), pos)

else if state < 0 then
Sequence{tape, Sequence{state, pos}}

else
apply (delta, tape, pos,

delta->any(transition|transition->at(1) = state
and transition->at(2) = tape->at(pos)))

endif endif endif

def: let
apply (delta: Set(Sequence(Integer)),

tape: Sequence(Integer),
pos: Integer,
transition: Sequence(Integer)
): Sequence(Sequence(Integer)) =

= step (delta,
transition->at(3),
tape->subSequence(1, pos - 1)

->append(transition->at(4))
->union(tape->subSequence(pos + 1, tape->size())),

pos + transition->at(5))

Figure 5.2: A Simple OCL Implementation of a Turing Machine. The func-
tion step() analyzes the current state and tape position, the function apply()
applies the corresponding transition and moves to the next step.

5.3. TURING-COMPLETENESS 65

� m 2 f�1; 0; 1g denotes the head movement fL;N;Rg.

The OCL functions step(delta, state, tape, pos) and apply(delta, tape, pos,
transition) shown in �gure 5.2 realize a corresponding Turing Machine. The
�rst parameter delta represents the transition function �, encoded as de-
scribed above, using the OCL type Set(Sequence(Integer)). The remaining
parameters represent the current con�guration of the Turing Machine. The
second parameter state is the current state q of the machine. The third pa-
rameter is the tape, encoded as an integer sequence. The fourth parameter
pos is the current position pos of the read/write head.
The machine is started by calling step() with the parameters �; q0; t0; p0,
where t0 denotes the initial tape con�guration encoded as Sequence(Integer)
and p0 denotes the initial head position.
In order to prove that the step function actually implements a Turing ma-
chine, we need to show that

1. the tape is extended as needed and thus potentially in�nite,
2. the machine terminates if (and only if) a halting state is reached,
3. the machine reads the symbol at the current position of the read/write

head and determines the correct transition according to the delta func-
tion, current tape symbol and state, and that

4. the new state and head position are set according to the transition,
and the machine continues with 1.

Claim 1 The tape is extended as needed, so although the integer sequence
is �nite, the machine will never reach its end.

Proof 1 The read/write head position pos is outside the scope of the current
tape representation when it is smaller than one (the �rst index position of
an OCL integer sequence), or if it is larger than tape->size(). The OCL
expression

if pos < 1 then
step(delta, state, tape->prepend(0), pos+1)

66 CHAPTER 5. OCL SUPPORT

makes sure that the step() function is reapplied with an extended tape where
a blank (0) is inserted at the beginning and the position adjusted accordingly
if the read/write head position is smaller than one.

The OCL expression

else if pos > tape->size() then
step(delta, state, tape->append(0), pos)

makes sure that the step() function is reapplied with an extended tape where
the blank (0) is appended at the end of the tape.

Claim 2 The machine terminates if and only if a halting state is reached.

Proof 2 A halting state is represented by a negative value of state. The
OCL expression

else if state < 0 then
Sequence{tape, Sequence{state, pos}}

returns the con�guration of the turing machine if state contains a negative
value. Since all results of step() and apply() are immediately returned with-
out further processing, this ensures that the OCL implementation terminates
and yields the current con�guration of the machine.

Claim 3 The machine reads the symbol at the current position of the
read/write head and determines the correct transition according to the delta
function, current tape symbol and state.

Proof 3 The symbol at the current tape position pos can be read with the
OCL expression tape� > at(pos). To determine the correct transition, the
sequence in delta must be found where the �rst element matches the current
state state and the second element matches the current tape symbol. This is
performed by the OCL expression

delta->any(transition|transition->at(1) = state
and transition->at(2) = tape->at(pos), delta, tape, pos)

5.3. TURING-COMPLETENESS 67

Claim 4 The new state and head position are set according to the transition.

Proof 4 In order to actually perform a transition, we de�ne a help function
apply that applies a transition, represented as a 5-element integer sequence.
The apply function takes as arguments the representation of �, the tape,
and the transition to be performed, where the transition is determined as
described in the previous step. The corresponding call to apply() is:

apply (delta, tape, pos,
delta->any(transition|transition->at(1) = state
and transition->at(2) = tape->at(pos), delta, tape, pos))

The result of the apply() function is immediately returned as the result of
the step function without further processing.

The apply() function uses its arguments to recursively call step() with the
con�guration of the machine that results from applying the transition to the
current con�guration, keeping the machine running until a halting state is
detected in step().
The �rst two elements of the transition are the old state and tape symbol
that were used in the previous step to look up the right transition.
Element three of the transition (transition� > at(3)) determines the state
parameter of the step() function, denoting the new state of the machine.

The fourth element of transition is the new tape symbol that needs to be
written at the current head position. The OCL expression

tape->subSequence(1, pos-1)
->append(transition->at(4))
->union(tape_->subSequence(pos_ + 1, tape_->size()))

generates the new tape representation by appending the new tape symbol and
remainder of the tape to the part of the tape preceding the current head
position. The new tape representation is delivered to the tape parameter of
the step() function.
The �fth element of the transition represents the head movement. Since a
movement to the left is represented as -1, a movement ot the right as 1,

68 CHAPTER 5. OCL SUPPORT

and no movement as 0, the new head position can determined by adding
the integer representation of the head movement to the head position: pos+
transition� > at(5).
The result of the step() function is immediately returned as the result of the
apply() function.

The fact that the results of the recursive calls in the machine implementation
are returned immediately without further processing could be used in the
OCL interpreter to return the results directly to the original caller, avoiding
unnecessary usage of stack space (tail recursion). Without this optimization,
the number of steps the turing machine can perform is limited by the stack
space available. With the optimization, the only limit would be the memory
that is needed for the tape representation.

5.4 Summary

In this chapter, we have provided an overview of the meta-model access
capabilities of the Infolayer OCL implementation, following the powertype
approach, as suggested by Stefan Flake [39]. We have proven the assertion of
Mark Richters that OCL is Turing complete by providing a Turing machine
implemented in pure OCL.
The decision to use OCL as a query language inside the system proved to
be very helpful. A previous version of the Infolayer used OQL instead,
so we are in a position to draw a comparison here: OQL is basically a
slight syntactic adaption of SQL to the object-oriented world. Queries that
encompass multiple associations with a cardinality greater than one tend
to become lengthy and unreadable, because they result in nested select
statements. The implicit collect() in OCL expressions supports much
shorter and more intuitive queries. As a result, we propose to use OCL as
a general query language for OODBMS.
In the next chapter, we go beyond queries and show how UML action se-
mantics and OCL can be combined to a consistent language that permits
side e�ects without tainting OCL or leaving the UML framework.

Chapter 6

Actions

In several cases, it is desirable to be able to specify functionality that is
not free of side e�ects in a web application. For instance, in the sample
application, one may want to implement a \vote" button, making it possible
for the users to cast a vote for their favorite paper.
As discussed in the previous chapter, OCL is well suited for implementing
query operations, but the language does not provide means for the imple-
mentation of any functionality that modi�es the current system state. Of
course one could simply implement an interface to an existing program-
ming language|such as Java|to circumvent this problem. Actually, the
Infolayer features this kind of interface (see appendix D), but this means
leaving the UML framework. For implementing simple operations like in-
crementing a counter, falling back to a regular programming language seems
to be a overly complex solution and introduces additional dependencies and
integration issues. Also, general purpose languages usually do not support
UML concepts such as associations as �rst class entities, introducing a step
of indirection when accessing the system state [110].
For modeling operations with side-e�ects, so-called actions, UML 1.5 con-
tains the speci�cation of action semantics [93, chapter 2]. Action seman-
tics is a framework for the formal description of programming languages
[85]. One motivation for including action semantics in the UML is to enable
language-independent code generation [81]. An implementation of the action
semantics speci�cation seems to be a natural choice for adding non-query
operations to the Infolayer system without leaving the UML framework. The

69

70 CHAPTER 6. ACTIONS

only problem is that the action semantics speci�cation does not contain a
surface language, but stays on the level of abstract syntax. The speci�cation
refers to several possible action surface languages, but all of them rely on
a syntax that di�ers signi�cantly from the OCL syntax. Yet, since the ac-
tion semantics covers a superset of the OCL, using two completely di�erent
syntaxes seems confusing and inappropriate. Thus, instead of using one of
the action languages referenced in the speci�cation, we have created syntax
constructs for actions that make it possible to embed OCL expressions for
read access to the current system state.
Section 6.1 of this chapter provides a brief overview of the UML action
semantics. Section 6.2 discusses the relation between OCL and UML action
semantics. Section 6.3 describes our action surface language based on OCL
Queries (ASOQ). Finally, section 6.4 shows how ASOQ implementations can
be attached to operations, properties, and prede�ned user interface callback
methods in the Infolayer system.

6.1 UML 2.0 Action Semantics

In the previous chapter, we have seen that the OCL is not su�cient to de-
scribe operations with side e�ects in an operational way. In earlier versions
of the UML standard, textual descriptions were used to capture the behavior
of operations. However, the OMG has recognized the need to be able to de-
�ne the behavior precisely in a standardized form. A precise speci�cation of
behavior makes it possible to share semantics of actions and operations be-
tween modelers and tools, leading to signi�cant advantages such as a higher
level of abstraction, support for formal proofs, model-based simulation, and
code generation [81]. Hence, the OMG accepted a proposal to formalize
di�erent categories of actions [1] for inclusion in UML 1.5 and 2.0:

Control Actions are used to model loop and branch structures.
Read and Write Actions are used to access the values of object proper-

ties and to create new instances or to delete existing instances.
Computation Actions transform a set of input values to produce a set of

output values without side e�ects on other parts of the system.

6.1. UML 2.0 ACTION SEMANTICS 71

Figure 6.1: Control Action Overview

Collection Actions permit the (parall) application of an action to a set
of data elements.

Messaging Actions trigger asynchronous or synchronous actions such as
state machine transitions or method invocations with a return value.

Compositional Actions model iterations and conditionals.
Jump Actions allow deviations from the main path of control ow in iter-

ations similar to the break statement known from many programming
languages.

Following the general spirit of UML, those actions are modeled as UML
classes. Figure 6.1 shows an overview of the classes describing control struc-
tures in the Action Semantic framework. The other categories are described
in a similar way. Each action has a set of input and output pins. Output

72 CHAPTER 6. ACTIONS

pins can be connected to one or more input pins of other actions, creat-
ing sequential dependencies. Alternatively to the pin mechanism, the class
ControlFlow can be used to explicitly enforce an order of execution. The
class diagrams of the action semantics are roughly similar to the grammar
specifying the abstract syntax of a programming language. Naturally, ob-
ject diagrams could be used to capture the equivalent of the abstract syntax
tree of a program, altough even for simple expressions the diagrams become
extremely verbose. What is missing in this system is a concrete syntax,
which is called surface language in the action semantics speci�cation.

6.2 Action Semantics and the Object Constraint

Language

The UML action semantics recognizes the need for an action semantics
surface language, but does not recommend a speci�c one. The speci�ca-
tion contains a set of informal mappings to action languages used in dif-
ferent UML tools, namely the Action Speci�cation Language (ASL) [66],
the BridgePoint Action Language (AL) [101], the Kabira action semantics
(Kabira AS) [64], and the action language subset of the Speci�cation and
Description Language (SDL), an international standard widely used in the
telecommunications industry [117].
All those languages rely on a syntax that is incoherent with the existing UML
expression language, the Object Constraint Language (OCL). Actually, large
parts of the action semantics speci�cation duplicates functionality that is
already covered by the OCL, such as

� Navigation and read access to properties
� Computation
� Calls to query operations
� Collection operations

The great overlap of the model access constructs de�ned in the AS and
OCL speci�cations suggests that using two completely di�erent syntaxes

6.3. ASOQ 73

may be inappropriate and confusing; one would expect a surface language
that leverages existing OCL knowledge and infrastructure. Naturally, due
to the side e�ect free nature of OCL, OCL cannot cover actions such as
write actions or calls to non-query operations, but using OCL for the parts
covered would mean a signi�cant improvement over the current situation.
It seems quite straight-forward to build an action surface language that is
based on OCL expressions, without tainting OCL itself with side e�ects.
Anneke Kleppe and Jos Warner suggest an action clause as an extension to
OCL that would �t nicely with the declarative nature of OCL [68], but for
the desired purpose a fully operational solution is required. Since the OCL
is a subset of the AS, there are two options for building an action surface
language based on OCL:

1. Map all OCL constructs to actions, then add new syntax constructs
for actions that are required, but not covered.

2. Embed OCL expressions in new syntax constructs for actions.

The �rst option requires a complete mapping of the abstract OCL syntax
to actions. This would mean to give up declarative semantics in OCL, or to
have two avors of OCL with di�erent speci�cations that would need to be
aligned carefully.
The second option can be implemented by referring to the existing OCL
surface language, without modifying it, maintaining a clean syntactical sep-
aration between plain queries and actions that may inuence the system
state. This approach keeps the interface between the languages minimal
and makes it possible to keep both languages relatively separate, not taint-
ing OCL by introducing side e�ects to OCL itself. Since this approach
seemed the more promising one, we have implemented it in our Infolayer
system.

6.3 ASOQ

The Infolayer system is basically an UML runtime environment that inter-
prets class diagrams and state charts as a Web application. It can be seen

74 CHAPTER 6. ACTIONS

as an implementation of a variant of MDA that does not compile PIMs,
but interprets them instead. In this approach, the transformation from the
PIM to the PSM is handled implicitly by a model-driven runtime (MDR)
environment. Where MDA potentially transforms object-oriented concepts
to non object-oriented ones (as in the case of the relational database), our
MDR implements selected parts of the UML metamodel and interprets them
for a given application domain.
In the system, OCL is used to implement user de�ned operations without
side e�ects. To implement operations that are not free of side e�ects, we
have implemented a language termed Action Semantics Surface Language
based on OCL Queries (ASOQ), following the ideas outlined in the previous
section [54].
Syntax constructs needed to be created only for the functionality that is
not already present in OCL, namely composite actions, write actions, and
messaging actions. We tried to align the new constructs with existing OCL
syntax:

� The OCL if{then{else structure includes endif as a speci�c end marker,
where other languages such as C and PASCAL use an explicit block
structure, marked by curly brackets or special keywords such as begin
and end. For consistency, implicit blocks and end markers speci�c
to the control structure are used in ASOQ also for loops (while{do{
enddo).

� `=' is used mainly as comparison operator in OCL; when used in as-
signments it may be paired with a colon and a type declaration. Thus,
using `:=' for property and variable assignments seems consistent with
OCL.

� OCL uses dots (`.') to separate parts of path expressions. In ASOQ,
we will use the exclamation mark (`!') to indicate an operation with
side e�ects at the end of a path expression.

� The OCL let...in declaration block and the if{then{else structure can
be reused in the ASOQ with an identical syntax to build group actions
and conditional actions.

6.3. ASOQ 75

Figure 6.2: OclAction and Related Classes. Classes Contained in the Action
Semantics Speci�cation are Dark Gray, Classes from the OCL Speci�cation
are light Gray. The new Class OclAction and UML Core Classi�ers are
White

76 CHAPTER 6. ACTIONS

Before we can de�ne the details of the syntax, we need a construct to inte-
grate arbitrary OCL expressions in the action semantics framework. For this
purpose, we create a class OclAction that inherits from PrimitiveAction, but
has a link to an OclExpression object, de�ned in the OCL speci�cation. The
new class makes it possible to embed OCL expressions in chains of actions.
It can have at most one result output pin, which delivers the result of the
evaluation of the expression. The upper part of �gure 6.2 shows the OclAc-
tion class. The isReadOnly property of the OclAction is always true, since
OCL expressions cannot have any side e�ects. Variable references can be
handed from actions to the OCL parser by pre-initializing the OCL environ-
ment accordingly. Full read access to the System state is already available
in OCL.
The OCL speci�cation includes a mapping from the concrete syntax to the
abstract syntax in the form of a full attribute grammar. The full attribute
grammar contains not only the syntax de�nitions, but also a speci�cation of
the resulting abstract syntax tree. For consistency with the OCL speci�ca-
tion, we use the same formalism to specify the ASOQ syntax. This enables
us to include some OCL constructs by reference, too.
The following subsections contain the syntax speci�cation of the ASOQ
building blocks that complement the OCL to a action semantics surface
language:

� A simple block structure including variables and statements
� The OclAction allowing to embed OCL constructs
� An if-then-else conditional structure
� A while loop structure
� Non-query method invocations
� Variable assignments
� Property assignments

In the next section, we will show in detail how the full attribute grammar
yields a completely operational action graph in addition to de�ning the syn-
tax. For this purpose, we start with property assignments, before proceeding

6.3. ASOQ 77

to introducing the top level ASOQ block stucture. In the following sections,
we will focus only on special aspects of the corresponding constructs.

6.3.1 Property Assignments

Property assignments are not included in the OCL because they change the
current state of the system. In ASOQ, we introduce the binary in�x operator
`:=' to represent this feature. The left operand of the assignment operator
denotes the property or association end that is the target of the assignment.
The right operand is an expression that determines the value to be assigned.
For the assignment target, we can simply refer to AssociationEndCallCS, the
OCL grammar rule for identifying association ends. For the value expression,
we use the the new construct AsoqExpressionCS that is de�ned later in this
chapter. The main di�erence to its OCL counterpart is that it may have
side e�ects on the system state.
For the syntax speci�cation itself, the full attribute tree grammar uses an
extended Backus-Naur [87] form:

PropertyAssignmentCS ::= AssociationEndCallCS ':=' AsoqExpre-
sisonCS

In addition to the syntax, the full attribute grammar also speci�es the en-
vironments of the sub-expressions and the construction rules for the syntax
tree in a declarative form.
The environment attribute .env of a grammar rule de�nes the evaluation
context for sub-expressions. In the case of an property assignment, the
environment for the sub-expressions does not change; it is simply forwarded
without change:

AssociationEndCallCS.env = PropertyAssignmentCS.env
AsoqExpressionCS.env = PropertyAssignmentCS.env

The environment part is more interesting for operations such as variable
declarations, where the environment is actually modi�ed.
For UML action semantics, the construction of the abstract syntax tree
translates to the construction of an operational set of connected Action
objects. Here, the corresponding action object is a CreateLinkAction:

78 CHAPTER 6. ACTIONS

PropertyAssignmentCS.ast : CreateLinkAction

The value and endData properties of the CreateLinkAction still need to be
connected to the corresponding properties of the operands. For the value,
this means a simple connection to the output pin of the left hand ASOQ
expression. Unfortunately, the InputPin and DataFlow objects | needed
to connect actions | make the speci�cation relatively verbose, despite its
simplicity:

PropertyAssignmentCS.ast.isReplaceAll = true
PropertyAssignmentCS.ast.value = InputPin
PropertyAssignmentCS.ast.value.flow = DataFlow
PropertyAssignmentCS.ast.value.flow.source =

AsoqExpressionCS.outputPin

For the endData, linking is a bit more complicated. Actually, the assignment
target consists of two parts: A reference to the association end that will
be assigned and an expression that determines the target instance of the
assignment.
In the action semantics speci�cation, the association end and target instance
are referenced in the end and value properties of a LinkEndData object. The
abstract syntax tree node of the AssociationEndCallCS holds this informa-
tion in the properties referredAssociationEnd and expression. The construc-
tion of the LinkEndData object and connecting the referenced association
end is relatively simple, since the same type is used in the action semantics
speci�cation and the OCL speci�cation:

PropertyAssignmentCS.ast.endData : LinkEndData
PropertyAssignmentCS.ast.endData : LinkEndData
PropertyAssignmentCS.ast.endData.end =

AssociationEndCallCS.ast.referredAssociationEnd

For the target object we need to construct an intermediate OclAction in-
stance in addition to the InputPin and DataFlow objects connecting that
are needed to connect actions. The OclAction wraps the OCL expression
denoting the target object in an action that can be connected to the input
pin of the link end data.

6.3. ASOQ 79

Figure 6.3: Mapping of a Block to a GroupAction object

PropertyAssignmentCS.ast.endData.value : InputPin
PropertyAssignmentCS.ast.endData.value.flow = DataFlow
PropertyAssignmentCS.ast.endData.value.flow.source =
OutputPin

PropertyAssignmentCS.ast.endData.value.flow.source
.action = OclAction

PropertyAssignmentCS.ast.endData.value.flow.source
.action.expression = AssociationEndCallCS.source

6.3.2 Blocks, Variables, and Statements

The top level concept of ASOQ is a block, consisting of a list of variable
declarations, followed by a sequence of statements. Figure 6.3 shows an
action object diagram for the following block:
let

x = 5
in
-- Statement 1;
-- Statement 2

In the following annotated syntax de�nition, SimpleNameCS and OclEx-
pressionCS from the OCL Grammar are referenced. OclActionCS simply

80 CHAPTER 6. ACTIONS

wraps the OclExpression abstract syntax tree in an OclAction object. The
OCL variable declaration syntax cannot be used without modi�cation here,
since it does not permit to initialize a variable with a newly created object.
The construction of the rules is similar to the previous section; most space
is spent for the correct chaining of actions.

BlockCS ::= StatementListCS
StatementListCS.env = BlockCS.env
BlockCS.ast : GroupAction
BlockCS.ast.subaction = StatementListCS.ast

BlockCS ::= LetBlockCS
LetBlockCS.env = BlockCS.env
BlockCS.ast : GroupAction
BlockCS.ast.subaction = LetBlockCS.ast

LetBlockCS ::= 'let' AsoqVariableDeclarationCS LetBlockSubCS
LetBlockSubCS.env =

LetBlockCS.env.nestedEnvironment().addElement(
AsoqVariableDeclarationCS.variable.name,
AsoqVariableDeclarationCS.variable,
false)

LetBlockCS.ast = LetBlockSubCS.ast->prepend(
AsoqVariableDeclarationCS.ast)

LetBlockCS.ast->first().consequent : ControlFlow
LetBlockCS.ast->first().consequent.sucessor =

LetBlockSubCS.ast->first()

LetBlockSubCS ::= ',' AsoqVariableDeclarationCS LetBlockSubCS[2]
LetBlockSubCS[2].env =

LetBlockSubCS.env.nestedEnvironment().addElement(
AsoqVariableDeclarationCS.variable.name,
AsoqVariableDeclarationCS.variable,
false)

LetBlockSubCS.ast = LetBlockSubCS[2].ast->prepend(
AsoqVariableDeclarationCS.ast)

LetBlockSubCS.ast->first().consequent : ControlFlow
LetBlockSubCS.ast->first().consequent.sucessor =

LetBlockSubCS[2]->first()

6.3. ASOQ 81

LetBlockSubCS ::= 'in' StatementListCS
StatementList.env =
LetBlockSubCS.env.nestedEnvironment().addElement(

AsoqVariableDeclarationCS.variable.name,
AsoqVariableDeclarationCS.variable,
false)

LetBlockSubCS.ast = StatementListCS.ast->prepend(
AsoqVariableDeclarationCS.ast)

LetBlockSubCS.ast->first().consequent : ControlFlow
LetBlockSubCS.ast->first().consequent.sucessor =
StatementList->first()

AsoqVariableDeclarationCS ::= simpleNameCS : typeCS = AsoqEx-
pressionCS
AsoqExpression.env = AsoqVariableDeclarationCS.
VariableCS.ast : WriteVariableAction
VariableCS.ast.variable : Variable
VariableCS.ast.variable.name : String = simpleNameCS
VariableCS.ast.variable.in : InputPin
VariableCS.ast.variable.in.flow : DataFlow
VariableCS.ast.variable.in.flow.source : OutputPin
VariableCS.ast.variable.in.flow.source.action =

AsoqExpressionCS

StatementListCS ::= StatementCS
Statement.env = StatementListCS.env
StatementListCS.ast = Sequence{StatementCS.ast}

StatementListCS ::= StatementCS ';' StatementListCS[2]
StatementListCS.ast =

StatementListCS[2].ast->prepend(StatementCS.ast)
StatementCS.ast.consequent : ControlFlow
StatementCS.ast.consequent.successor =
StatementListCS[2].ast->first

StatementCS ::= BlockCS
BlockCS.env = StatementCS.env
StatementCS.ast = Block.ast

82 CHAPTER 6. ACTIONS

StatementCS ::= IfStatementCS

IfStatementCS.env = StatementCS.env
StatementCS.ast = IfStatementCS.ast

StatementCS ::= WhileStatementCS

WhileStatementCS.env = StatementCS.env
StatementCS.ast = WhileStatementCS.ast

StatementCS ::= AssignmentCS

AssignmentCS.env = StatementCS.env
StatementCS.ast = AssignmentCS.ast

StatementCS ::= AsoqExpressionCS
In order to avoid ambiguities with OCL let and if constructs, all other
statement rules must take precedence to this one.

AsoqStatementCS.env = StatementCS.env
StatementCS.ast = AsoqExpressionCS.ast

6.3.3 OclAction

A simple rule simpli�es the integration of OCL expressions in the action
syntax by creating an OclAction instance. The created OclAction can be
directly connected to input pins in the abstract syntax speci�cations of other
rules:

OclActionCS ::= OclExpressionCS

OclExpressionCS.env = OclActionCS.env
OclActionCS.ast : OclAction
OclActionCS.ast.expression = OclExpressionCS.ast

6.3. ASOQ 83

Figure 6.4: Mapping of an if Statement to a GroupAction Object

6.3.4 if-then-else

The OCL already contains an if-then-else control structure, but at ASOQ
statement level it is not necessary that a value is returned, thus the else
part may be omitted. To avoid deep nesting for multi-way decisions, while
still keeping the syntax consistent with OCL, we add an elseif construct.
Other languages such as C or PASCAL do not need this because they use
an explicit general block structure|instead of implicitly opening a block
that must be terminated with endif.
An example code snippet, matching the multi-way decision sample of the
action semantics speci�cation, looks as follows:

if factor = 1 then
-- Some action 1

elseif factor = 2 then
-- Some action 2

else
-- Some action 3

endif

84 CHAPTER 6. ACTIONS

The resulting action semantic object diagram is depicted in �gure 6.4.

IfStatementCS ::= `if' ClauseCS `endif'
ClauseCS.env = IfStatementCS.env
IfStatementCS.ast : ConditionalAction
IfStatementCS.ast.clause = Set{ClauseCS.ast}

IfStatementCS ::= `if' ClauseCS ElseCS `endif'
IfStatementCS.ast : ConditionalAction
IfStatementCS.ast.clause =

ElseifCS.ast->prepend(ClauseCS)
ClasuseCS.ast.successorClause = ElseifCS->first()

ClauseCS ::= OclActionCS 'then' BlockCS
ClauseCS.ast : Clause
ClauseCS.ast.test = OclActionCS.ast
ClauseCS.ast.body = BlockCS.ast

ElseCS ::= `else' DefaultClauseCS
ElseCS.ast = Sequence{DefautlClauseCS.ast}

ElseCS ::= ElseifCS `else' DefaultClauseCS
ElseCS.ast = ElseifCS.ast->append(DefautlClauseCS.ast)
DefaultClauseCS.ast.predecessorClause =

ElseifCS.any(successorClause->isEmpty)

DefaultClauseCS ::= BlockCS
DefaultClauseCS.ast : Clause
DefaultClauseCS.ast.test : LiteralActionCS
DefaultClauseCS.ast.test.value = true
DefaultClauseCS.ast.body = BlockCS.ast

ElseifCS ::= 'elseif' ClauseCS
ClauseCS.env = ElseifCS
ElseifClauseCS.ast = Sequence{ClauseCS}

6.3. ASOQ 85

ElseifCS ::= 'elseif' ClauseCS Elseif[2]CS
ClauseCS.env = ElseifCS.env
ElseIfCS[2].env = ElseifCS.env
ElseifCS.ast = Elseif[2]CS.ast->prepend(ClauseCS.ast)
ClauseCS.ast.successorClause = ElseifCS[2].ast->first()

6.3.5 while

A while loop is fortunately quite straightforward to construct:

WhileStatementCS ::= 'while' OclActionCS 'do' BlockCS 'enddo'
WhileStatementCS.ast : LoopAction
WhileStatementCS.ast.clause : Clause
WhileStatementCS.ast.clause.test = OclExpressionCS.ast
WhileStatementCS.ast.clause.body = BlockCS.ast

6.3.6 Method Invocations and ASOQ Expressions

Non-query Operations with and without parameters can be invoked just
like query operations are invoked in OCL. All parameters must be OCL
expressions, it is not possible to nest invocation actions. An optional path
to the operation may be provided as an OCL expression. If so, the operation
invocation must be separated from the path expression with an exclamation
mark. An actual ASOQ code snippet may look as follows:

Publication.allIstances()->one
(title='Cold Fusion')!vote()

Figure 6.5 shows the relevant parts of the action semantics used in the
following syntax de�nition.

AsoqExpressionCS ::= simpleNameCS ArgumentsCS
ArgumentCS.env = AsoqExpressionCS.env
AsoqExpressionCS.ast : CallOperationAction
AsoqExpressionCS.ast.argument : Sequence(InputPin)

86 CHAPTER 6. ACTIONS

Figure 6.5: Messaging Actions Referenced in ASOQ

AsoqExpressionCS.ast.argument->size() =
ArgumentCS.ast->size()

AsoqExpressionCS.ast.argument->forAll
(i|i.flow : Dataflow)

Sequence{1..ArgumentCS->size()}->forAll(i|
AsoqExpressionCS.ast.argument->at(i).flow.source =

ArgumentCS->at(i).result)
AsoqExpressionCS.ast.operation =

env.lookUpImplicitNqOperation(
simpleNameCS.ast,
ArgumentCS.ast->collect(result.type))

AsoqExpressionCS ::= OclActionCS ' !' simpleNameCS ArgumentsCS

ArgumentCS.env = AsoqExpressionCS.env
AsoqExpressionCS.ast : CallOperationAction
AsoqExpressionCS.ast.target = OclAction
AsoqExpressionCS.ast.target : InputPin
AsoqEspressionCS.ast.target.flow : DataFlow
AsoqExpressionCS.ast.target.flow.source =

OclActionCS.result
AsoqExpressionCS.ast.operation =

OclActionCS.result.type.lookUpNqOperation(
simpleNameCS.ast,
ArgumentCS.ast->collect(result.type))

AsoqExpressionCS.ast.argument : Sequence(InputPin)
AsoqExpressionCS.ast.argument->size() =

ArgumentCS.ast->size()

6.3. ASOQ 87

AsoqExpressionCS.ast.argument
->forAll(i|i.flow : Dataflow)

Sequence{1..ArgumentCS->size()}->forAll(i|
AsoqExpressionCS.ast.argument->at(i).flow.source =

ArgumentCS->at(i).result)

AsoqExpressionCS ::= OclActionCS
OclActionCS.env = AsoqExpressionCS.env
AsoqExpressionCS.ast = OclActionCS.ast

ArgumentsCS ::= '(' ')'
ArgumentCS.ast : Sequence(OclAction)
ArgumentCS.ast = Sequence{}

ArgumentListCS ::= OclActionCS
OclActionCS.env = ArgumentListCS.env
ArgumentListCS.ast = Sequence{OclActionCS.ast}

ArgumentListCS ::= OclActionCS ',' ArgumentListCS[2]
OclActionCS.env = ArgumentListCS.env
ArgumentListCS[2].env = ArgumentListCS.env
ArgumentListCS.ast =
ArgumentListCS[2].ast->prepend(OclActionCS.ast)

6.3.7 Variable Assignments

The action semantics classes modeling assignments are depicted in �gure
6.6. Variable assignments are simple to handle. It is only required to look
up the name in the environment and then construct an according Write-
VariableAction:

VariableAssignmentCS ::= SimpleNameCS ':=' AsoqExpressionCS
SimpleNameCS.env = VariableAssignmentCS.env
AsoqExpressionCS.env = VariableAssignmentCS.env
VariableAssignmentCS.ast : AddVariableValueAction

88 CHAPTER 6. ACTIONS

Figure 6.6: Read/Write Actions Referenced in ASOQ

VariableAssignmentCS.ast.isReplaceAll = true
VariableAssignmentCS.ast.variable =

env.lookUpASVariable(SimpleNameCS)
VariableAssignmentCS.ast.value = InputPin
VariableAssignmentCS.ast.value.flow = DataFlow
VariableAssignmentCS.ast.value.flow.source =

AsoqExpressionCS.outputPin

6.4 ASOQ Utilization in the Infolayer System

The main purpose of the ASOQ capabilities of the Infolayer system is to pro-
vide operational de�nitions of operations and writeable derived attributes.
The operations may either be explicitly invoked via the user interface by
pressing a button, or may be called from other operations with side e�ects.
In addition to general user de�ned operations, there are a few prede�ned
callback methods that are called by the user interface for noti�cations about
changes.

6.4.1 Operation and Property Implementation

Operations and virtual properties can be implemented similar to query op-
erations and derived properties, using the same tags, except that it is per-

6.4. ASOQ UTILIZATION IN THE INFOLAYER SYSTEM 89

mitted to use the ASOQ extensions instead of plain OCL.
In the user interface, methods with and without side e�ects are displayed
as buttons. The only di�erence is that query buttons trigger a HTTP GET
request, whereas non-query buttons trigger a HTTP POST request.
As for query methods, the implementation can be attached to the operation
using the tagged value il-implementation. However, for non-query methods,
the ASOQ syntax must be used. As an alternative to the tagged value, the
implementation can be included in the documentation of the method, which
often provides a larger input �eld in UML tools. If so, it must be pre�xed
with the marker @il-implementation.
In addition to operations, the Infolayer supports the implementation of de-
rived and \virtual" attributes and association ends using ASOQ expressions.
The implementation of derived properties can be attached to the model using
the tagged value il-getter, as illustrated in the previous chapter. Virtual
properties are derived properties that are writeable. The following tagged
values are supported:

il-setter The contained ASOQ expression is responsible for storing the new
value of the property, accessible via the local variable value.

il-adder Add value to the existing values of the property.
il-remover Remove value from the existing values of the property.

At least, either the setter or the adder and the remover must be de�ned. The
alternatives are provided to avoid unnecessary conversions at the persistent
storage layer.

6.4.2 Prede�ned Callback Methods

The prede�ned class Object contains the callback operations onChange(),
onCreate(), and onDelete() which are invoked automatically by the Infolayer
system. The implementation of those operations may have side e�ects:

onChange is invoked on an object when the object was changed in the user
interface.

90 CHAPTER 6. ACTIONS

onCreate is invoked when a new instance of a class was creates via the
user interface.

onDelete is invoked when an object is deleted via the user interface.

Those methods can be overwritten with customized behavior. For instance,
to set a \lastChangeBy" attribute for an object by implementing the on-
Change method can be implemented as follows:

lastChangeBy := Infolayer.getCurrentUser();

6.5 Summary

In this chapter we have shown how OCL expressions can be cleanly inte-
grated into the UML action semantics framework by introducing a special-
ized OclAction. We have created an action semantics surface language that
embeds OCL expressions without needing modi�cations of the OCL gram-
mar or the OCL semantics. The syntax is kept consistent with the OCL
syntax. By not duplicating parts of the action semantics framework, the
additional constructs can be limited to a small set. The resulting ASOQ
language provides a clean solution to the surface language and functional-
ity overlap problem of the current action semantics speci�cation. It is not
limited to the Infolayer system, it may also be used where similar problems
arise, such as the YATL transformations system [96].
In addition to de�ning ASOQ, this chapter illustrates how the gained func-
tionality can be utilized in the Infolayer system, using the same tagged value
mechanism as for non-query operations.
With ASOQ, the Infolayer system allows assignments and operation calls
with side e�ects, such as the creation of new instances, as announced in
chapter 3. Theoretically, modi�cations of the M1-model would also be pos-
sible with this mechanism, since UML uses the same modeling constructs for
both levels, making ASOQ also suitable for refactoring. However, currently
the M1-model is not writeable. Yet, this is only a limitation of the underly-
ing implementation, and not a general limitation of Infolayer approach.
In the next chapter, we will consider simple access permission and customiza-
tion options available in the Infolayer system.

Chapter 7

Transformations

The default HTML presentation of the Infolayer system illustrated in chap-
ter 3 and the simple customization options discussed in the previous chapter
make it possible to set up a working prototype quickly, given a UML class
diagram. However, those mechanisms are neither su�cient to generate a so-
phisticated customized HTML presentation nor able to generate other XML
formats|such as the Wireless Markup Language (WML) [40] or the Re-
source Description Framework (RDF) [71]. If we want to build a processing
chain for object oriented systems with the capability to generate arbitrary
XML (requirement III in the introduction), we still need a replacement for
the last link in the chain, the XML Stylesheet Language Transformations
(XSLT) [23].
XSLT templates transform a source XML document to a target docu-
ment of any desirable format [67]. XSLT is itself an XML-based language
and consists of XML elements for writing to the target document such as
<xslt:text> or <xslt:element>, as well as control structures such as con-
ditionals (<xslt:if>, <xslt:choose>) and loops (<xslt:for-all>). It is
also possible to write literally included XML fragments to the target doc-
ument. To access the source document that is to be transformed, XSLT
makes use of another W3C standard, the XML path language (XPath).
XPath is an expression language with the main purpose of being able to
address any part of an XML document. It also provides simple numeric,
boolean and string operations. In XSLT, XPath expressions are supported
in test or select attributes, providing the conditions for conditionals or

91

92 CHAPTER 7. TRANSFORMATIONS

source selectors for write-elements.
Since the transformation source for XSLT is an XML �le, XSLT cannot be
applied to the state of an object oriented system directly; it is required that
the system state is translated to some kind of generic intermediate XML
tree before. The intermediate XML format may be a standardized XML
format for the serialization of objects or a custom format, such as in the
UWE web engineering approach [69].
The problem with this requirement is that for the serialized form, query op-
erations may become more complicated. As already discussed in chapter 1,
XML does not directly support arbitrary associations [115], hence links may
only be accessible via key reference matches, and XPath remains at a pure
syntactical level [74]. Expecting a developer to obtain detailed knowledge
of the serialization process does not seem very user friendly.
There are several alternative approaches for XML generation. Mechanisms
such as Active Server Pages (ASP) [26], Java Server Pages (JSP) [82], PHP
[97] or ColdFusion [14] are based on XML templates with embedded pro-
gramming language fragments. The programming language fragments are
used for control structures and to �ll the templates with content from query
operations. Unfortunately, the programming language fragments are plat-
form dependent and hence not suited to specify XML generation in a plat-
form independent manner.
To solve the XML generation problem in a platform-independent manner, it
seems to be a natural choice to build on XSLT, but to use OCL as expres-
sion language instead of XPath, providing direct access to the system state
without an intermediate XML representation. Although OCL was originally
proposed as a pure constraint language, its ability to navigate the model and
form collections makes it perfectly suitable as query language [30]. Thus,
OCL can directly be used to replace XPath expressions that return simple
values, such as the test attribute in conditionals and the select attribute
in content generation elements.
For instance, the following XML fragment shows a possible serialization of
a set of Book objects from the department sample presented in chapter 1:

<list>
<Book>

93

<title>Mastering Quantum Physics in 24 Hours</title>
<price>49.50</price>

</Book>
<Book>

<title>Building a Particle Accelerator</title>
<price>16.70</price>

</Book>
</list>

The XPath expression contained in the XSLT element

<xsl:value-of select="sum(//Book/@price)" />

could simply be replaced by the OCL expression

Book->allInstances().price->sum()

A corresponding language, mainly derived from XSLT, eliminates the need
of an intermediate XML format|while still able to utilize huge parts of
XSLT knowledge.
The replacement of XPath by OCL is not the only di�erence between XSLT
and the Infolayer template mechanism. The processing model was adopted
to better �t the object oriented architecture of the Infolayer model. Since
Infolayer templates are always applied on the server side, more speci�c rules
how di�erent template �les can interact and a schema for URL resolution
can be provided. The most signi�cant change in addition to using OCL
was the addition of several server sided elements that make it possible to
interact with the server, for instance to modify the content of the system. A
minor di�erence to XSLT is that hyphens in identi�ers were replaced by a
\camel syntax" (for technical reasons, but also improving consistency with
most other XML standards); for instance the XSLT element <value-of>
was renamed to <valueOf> and <for-all> was renamed to <forAll>. The
test and select attributes have both been renamed to expr.
The �rst section of this chapter describes the general architecture of the In-
folayer template mechanism and provides an overview of the URL resolution
mechanism that acts as a replacement for the source fragment selection in

94 CHAPTER 7. TRANSFORMATIONS

XSLT. In the second section, we discuss the general XML template elements
that are derived from XSLT counterparts.
Since the Infolayer templates are always applied on the server side, it was
possible to design additional high level interaction elements that are de-
scribed in separate sections. Interaction details of the XML code generated
by those elements with the server are described in section 7.5. Finally, the
completeness of the template mechanism is discussed in section7.6.

7.1 Template Language Architecture

Template �les consist of literal XML content (e.g. regular XHTML) and
special template elements. The template elements are distinguished from
\regular" XML elements using dedicated XML namespaces.
The namespace mechanism was developed by the W3C in order to make
it possible to mix di�erent XML languages in a single XML �le without
ambiguities.
The namespace for the general Infolayer template elements is http://
infolayer.org/templates. Additional specialized XHTML template el-
ements reside in the namespace http://infolayer.org/templates/html.
The XHTML template namespace also contains the basic template elements
for convenience, of which some are overwritten with functionality adopted
to the special needs for generating XHTML output.
Here, the XML namespace pre�x \t" will be used for all Infolayer template
elements in order to avoid confusion with XML elements of the target lan-
guage. A corresponding namespace declaration is always required, even if it
is omitted in some code fragments below. It is not required that the names-
pace pre�x is actually set to \t", any other pre�x can be used if declared
properly.
A simple HTML template �le may look as follows:

<html xmlns:t="http://infolayer.org/templates/html">
<head><title>Books</title></head>
<body>The sum of all book prices is:

<t:valueOf expr="Book.allInstances().price->sum()" />

7.1. TEMPLATE LANGUAGE ARCHITECTURE 95

</body>
</html>

7.1.1 Template Processing Model

XSLT style sheets contain a number of template rules. Each rule contains an
XPath selector, denoting the part of the source �le the rule applies to. The
XSLT processor determines the best match and applies the corresponding
template. In the template, <apply-templates> can be used to apply the
template selection process on the currently processed node.
When applying a template to the state of an object oriented system, the
notaion of a \current node" in the source XML tree can be replaced by a
\current object". An OCL expression could be used as selector expression.
However, this kind of centralized dispatching approach, where a set of tem-
plate rules for di�erent classes or expressions is listed in a single template
�le, does not seem to �t well with the object oriented paradigm.
Instead, from an object oriented perspective, one expects an object to know
how to transform itself. Thus, templates should be attached to a class in
some way. Moreover, one will want to reuse parts of the functionality for
di�erent templates. For instance, Publication details should be reusable
in di�erent types of lists.
An option to satisfy both goals is to use a single �le for each template rule.
The �le is simply stored in a directory named after the class it belongs
to. The �lename itself is the name of the template, allowing an unlimited
number of templates for di�erent purposes per class. This approach provides
several advantages:

� When applying a template, the context is always an instance of the
given class, enabling type safe expressions.

� Templates can be searched in the directories of more general classes if
a specialized template is not found.

� Templates look much more similar to the anticipated target format,
simplifying the initial creation with editors specialized for this format.

96 CHAPTER 7. TRANSFORMATIONS

The Infolayer system uses a dynamic URL resolution mechanism for late
binding that is explained in section 7.1.4. Here, we will start with the
simpler static URL resolution mechanism, which is useful to generate pages
that do not clearly depend on a particular object or class, such as the start
page index.html.

7.1.2 Static URL Resolution

For static templates and non-template �les, the path part of an URL denotes
the name of the source �le directly. In general, the path consists of a �xed
part denoting the Infolayer servlet, and a variable part. The variable part is
directly translated into a �le name in the �le system that is relative to the
directory html/static/ in the servlet root directory. Here, html/static/
is used even for non-HTML formats such as PDF �les or image �les since
they are usually closely connected to HTML pages. The only (prede�ned)
exception are templates for the Wireless Markup Language (WML), which
reside in a separate directory wml/static/.
For instance, if we assume that http://localhost:8080/department/ is
the base URL of the servlet, and $basepath denotes the installation direc-
tory of the Servlet in the �le system, the path

http://localhost:8080/department/index.html

will be resolved to

$basepath/html/static/index.html

Static templates can be used and accessed just like \regular" static web
pages, except that they should contain well-formed XML code. The handling
of �les depends on the �le extension of the requested URL. The extensions
.html, .htm, and .xhtml denote HTML-Templates. The extension .xml
denotes plain XML templates without content format speci�c extensions.
Additional options are presented in section 7.4.

7.1. TEMPLATE LANGUAGE ARCHITECTURE 97

7.1.3 The Page Evaluation Context

An important concept for Infolayer templates is the current context. The
evaluation context of Infolayer template elements can be accessed in tem-
plate expressions using the OCL pseudo variable self. Initially, the value
of self is determined from the self URL parameter. If the self parameter
is not given, self is set to OclUndefined. For static templates, the type of
self always is OclAny.
Using the URL parameter self, it is possible to set an initial evaluation
context from outside. The evaluation context can be any OCL literal, in-
cluding the Infolayer extension for object references, where single objects
are identi�ed by a dollar sign followed by the object ID.
However, it is not possible to use general OCL expressions for the context
parameter for security reasons|since the permissions are evaluated by the
user interface elements, it would be possible to spy on the whole system
content this way.

7.1.4 Dynamic URL Resolution

Dynamic URLs consist of the servlet base URL, \auto", a �le extension
denoting the MIME type, and an URL property self, holding the desired
class name or object ID to specify the template search path and the evalu-
ation context. The optional URL property template denotes the name of
the template. If the template property is missing, \default" is assumed
as template name.
Those dynamic URLs are resolved to a template �le name as follows:

1. A base directory is selected based on the type of self. If self
is a Class, the base directory is $basepath/html/class, where
$basepath denotes the root directory of the servlet. For ob-
jects, the base directory is $basepath/html/object, for collections,
it is $basepath/html/collection, and for all other types simply
$basepath/html (WML �les are searched in $basepath/wml/... in-
stead).

2. The name of the (element-) type is appended to the base directory.

98 CHAPTER 7. TRANSFORMATIONS

3. A �le with the name of the template and the extension provided for
\auto" is searched in the resulting directory.

4. If a corresponding template �le is found, it is processed; otherwise, the
same search is performed for the supertype of the current (element-)
type.

If a template is still not found, the same search is performed in the resource
directory of the Infolayer JAR �le, which contains prede�ned generic tem-
plates for classes, objects and primitive types. Those prede�ned templates
are used to generate the output described in section 3.1.1.
For instance, the URL

http://localhost:8080/department/auto.html?self=Person

will be resolved to the path

$basepath/html/class/Person/default.html

If the template is not found, Object and then OclAny are tried. If a template
is still not found, the prede�ned default template is used.
Custom templates can either hide the existing templates, or have a di�erent
name. In the latter case, the template name must be appended to the URL
using the parameter template. If a template URL parameter is present,
the �le corresponding to the given name is searched instead of the default
�le. The type of the evaluation context is set automatically depending on
the directory where the template resides.

7.2 General Template Elements

The Infolayer system provides support for template elements that are inde-
pendent of the chosen target format. Those elements are described in this
section. Most of the elements are similar to XSLT elements, but there are
also elements that do not have a direct XSLT counterpart, such as switch
and case.

7.2. GENERAL TEMPLATE ELEMENTS 99

7.2.1 valueOf

A simple Infolayer template element is the <t:valueOf> element. It must
contain an attribute named expr, providing an OCL expression that is eval-
uated when the page is delivered to the user. For instance, the expression

<t:valueOf expr="Infolayer.getCurrentUser()" />

inserts the current user, replacing the valueOf element on the page sent to
the browser.
The complete source code for a working static \whoami.html" page is:

<html xmlns:t="http://infolayer.org/templates/html">
<head><title>Who Am I</title></head>
<body>

<t:valueOf expr="Infolayer.getCurrentUser()" />
</body>

</html>

If this page is stored at the location

$basepath/html/static/whoami.html

it will be accessible using the URL

http://localhost:8080/department/whoami.html

If the user currently logged in is \John Smith", and the toString() method
of the user class returns the family name and the given name, separated by
a comma, the generated XML code will be:

<html xmlns:t="http://infolayer.org/templates/html">
<head><title>Who Am I</title></head>
<body>

Smith, John
</body>

</html>

100 CHAPTER 7. TRANSFORMATIONS

7.2.2 The Evaluation Context

For dynamic templates, the initial type of self is inferred from the location
of the template �le. For example, for the template �le

$basepath/html/object/Person/default.html

the initial type of self will be Person.
The current context can be altered using the context element. The following
example generates the same output as the previous example, but makes use
of the context element:

<t:context expr="Infolayer.getCurrentUser()">
<t:valueOf expr="self" />

</t:context>

Please note that the above example is only a fragment. To view this and
following examples in a web browser, it is necessary to add the HTML root
and body elements, as well as a namespace declaration, as shown in the
previous example.

7.2.3 Iterating over Instances

The <t:forAll> element applies its child elements to all instances of a
collection denoted by the expr attribute. The child elements are evaluated
for each element of the collection, with the context adapted accordingly.
The following fragment illustrates the usage of forAll:

<t:forAll expr="Sequence{'a', 'b', 'c'}">
This is Item <t:valueOf expr="self">

</t:forAll>

The generated XML code will look as follows:

This is Item a

This is Item b

This is Item c

7.2. GENERAL TEMPLATE ELEMENTS 101

By setting the attribute iterator, it is possible to use a separate variable
as iterator instead of self. The attribute counter can be used to declare a
counter variable that will hold an integer counting the iterations:

<t:forAll expr="Sequence{'a', 'b', 'c'}"
iterator="i" counter="c">

Item No. <t:valueOf expr="c" />
is <t:valueOf expr="i" />

</t:forAll>

The above template will generated the following XML code:

Item no. 1 is a

Item no. 2 is b

Item no. 3 is c

7.2.4 Conditional Processing

The Infolayer template mechanism provides three constructs for conditional
template evaluation, <t:if>, <t:choose> and <t:switch>.
The if-element evaluates the OCL expression given in the expr-Parameter,
and processes child elements only if the evaluation result is true.
The following example illustrates the usage of the if-element:

<t:if expr="user.oclIsUndefined()">
No user is logged in!

</t:if>

The <t:choose> element makes it possible to handle a number of alternative
options. It contains a number of <t:when> elements. If the expr attribute
of a when-element evaluates to true, template processing continues with
its child elements. Otherwise, the next when-element is considered. The
otherwise element can be used to denote a default option. After the �rst
match, processing of the choose-element is terminated; no further options
are considered.

102 CHAPTER 7. TRANSFORMATIONS

The <t:switch> element is structured similar to choose, but it has an ad-
ditional expr attribute. In contrast to choose, the expressions of the case-
child elements do not contain boolean conditions. Instead, the evaluation
results of the expr attributes of the switch and case elements are compared.
Template processing continues with the �rst matching case branch, all other
sub elements are ignored. If no case matches, and an <t:otherwise> ele-
ment is present, the otherwise branch is processed.

The Person class contains
<t:switch expr="Person.allInstances()->size()">

<t:case expr="0">Zero</t:case>
<t:case expr="1">One</t:case>
<t:case expr="2">Two</t:case>
<t:otherwise>Three or more</t:otherwise>

</t:switch>
instances.

7.2.5 Delegation to other Templates

The Infolayer system supports a call mechanism that allows to continue
processing in a di�erent template.
The simplest case of the <t:call> element is to include another static tem-
plate, denoted by the file attribute:

<html xmlns:t="http://infolayer.org/templates/html">
<head><title>FooBar</title></head>
<body>

<table>
<tr>

<td><t:call file="menu.html" /></td>
<td>This is the Page content</td>

</tr>
</table>

</body>
</html>

The call element hands the current context (self) to the included template
automatically.

7.2. GENERAL TEMPLATE ELEMENTS 103
<!-- common header -->
<html xmlns:t="http://infolayer.org/templates/html">
<head><title>FooBar</title></head>
<body>
<table><tr><td>

Menu

Foo

Bar

</td><td>

<!-- Individual content starts here -->

...

<!-- Common footer -->
</td></tr></table>
</body>
</html>

Figure 7.1: Typical HTML File Structure

One problem we faced when designing the template mechanism was that
for many XML documents, the outer frame had an identical structure, like
sketched in �gure7.1, but it was di�cult to factor it into a single template.
Separate header and footer templates would not be well formed XML be-
cause a header template would need to open several element not closed in
the same �le, and a footer template would need to close those elements
without opening them. One option would have been some kind of callback
mechanism, where the template of the outer frame is called with a parameter
denoting which template to include for the actual content, but this seemed
uncomfortable and error-prone.
Instead, the Infolayer makes it possible to continue processing of the child
elements of the <t:call> element at a position denoted by the element
<t:inner> in the called template. This way, it is possible to move more
of the common structure to a single �le, as depicted in �gure 7.2.5.
For instance, the following XML code, holding the page structure and menu,
could be stored as frame.html in the Infolayer static HTML template di-
rectory:

104 CHAPTER 7. TRANSFORMATIONS

Figure 7.2: Page Composition from Di�erent Templates with <t:inner>

<html xmlns:t="http://infolayer.org/templates/html">
<head><title>FooBar</title></head>
<body>

<table><tr><td>
Menu

Person

Thesis

Project

</td><td>
<t:inner />

</td></tr></table>
</body>

</html>

Now, using the <t:call> element, it is possible to arrange the menu around
the actual page content:

<t:call xmlns:t="http://infolayer.org/templates/html"
file="menu.html">

<h1>Available Thesis</h1>
...

7.2. GENERAL TEMPLATE ELEMENTS 105

</t:call>

Processing of the above template will result in the following XML code:

<html xmlns:t="http://infolayer.org/templates/html">
<head><title>FooBar</title></head>
<body>

<table><tr><td>
Menu

Person

Thesis

Project

</td><td>
<h1>Available Thesis</h1>

...
</td></tr></table>

</body>
</html>

In the Infolayer default HTML templates, the call element is used to gen-
erate a common menu on the left side of all pages. Thus, by modifying the
static template frame.html, the appearance of all pages can be customized
in a single central place.
The expr attribute can be used to set a di�erent evaluation context for the
called template. If the call element contains sub-elements, the previous
context is restored.
Alternatively to the file attribute, the template attribute can be used
to determine the included �le based on the dynamic template resolution
mechanism presented in section 7.1.4. The only di�erence is that the �le
extension is \.inc".

7.2.6 Variables and Parameters

In a template, variables can be declared using the element <t:variable>.
The name of the variable is denoted by the name attribute. The initial value
is determined by the expr attribute containing an OCL expression. If the
expr-attribute is omitted, the initial value of the variable is OclUndefined.

106 CHAPTER 7. TRANSFORMATIONS

A type attribute may be used to set the type of the variable. Variable
declarations must not have child elements. Variables can be accessed by
their name in OCL expressions.
Variables shadow other variables with the same name. The scope of a vari-
able ranges from its declaration to the end tag of its immediate parent
element.
If <t:param> is used in a template embedded via <t:call>, the parameter
values can be set using <withParam> child elements of the call-element,
like in the following example:

<t:call xmlns:t="http://infolayer.org/templates/html"
file="~/frame.html">

<t:withParam name="title" expr="'foo'" />
This is the content of the foo page!
</t:call>

In the example, the tilde character (`~') is used to point to
$basepath/html/static (or $basepath/wml/static, depending on the
content format). In URLs, it can be used in URLs to reference the servlet
base directory.
In the included �le, parameters can be accessed using the operation
context.getParam(name: String):

<html xmlns:t="http://infolayer.org/templates/html">
<t:param name="title" type="String" />
<head><title><t:valueOf expr="title" /></title></head>
<body><t:inner /></body>

</html>

For top-level templates, parameter values can be set using URL properties
of the form \p-name=OCL literal value". The XHTML template element
<t:link> described in section 7.3.2 also supports the withParam element.
The value of a variable can be changed using the <t:assign> element. The
name attribute must contain the name of the variable, and the expr attribute
denotes the new value of the variable.

7.2. GENERAL TEMPLATE ELEMENTS 107

7.2.7 Access to Request Information and Cookies

s It is possible to access information about the HTTP request that triggered
the current template evaluation in OCL expression inside XML templates.
The prede�ned variable request provides access to request information such
as the request URL or URL properties:

The request URL for this page was
<t:valueOf expr='request.getUrl()' />

The request variable also provides access to the current language settings
of the browser using the getLang() method and access to cookies using the
getCookie() and setCookie() methods.
The methods available for IlRequest and IlUrl are described in detail in
the appendix.

7.2.8 Formatting and Dynamic Includes

For the valueOf template element, it is possible to specify one of the format
strings described in the previous chapter in the format attribute.
If possible, the evaluation result is then inserted according to the given
format.
For objects, the format string is interpreted as template name, and the
template with the given name is included. To distinguish the included tem-
plates from regular templates, representing full pages, \.inc" is used as �le
extension instead of the default extension for the given content format (e.g.
\.html").

7.2.9 Evaluated XML Attributes

The XML namespace standard allows to assign namespaces not only to
elements, but also to attributes. By default, attributes are in no namespace,
since their interpretation is usually depending on the owning element. In
the Infolayer system, the option to assign namespaces to attributes is used
for dynamic attribute content.

108 CHAPTER 7. TRANSFORMATIONS

If an attribute of any element is in one of the Infolayer template namespaces,
the content is not taken literally, but treated as OCL expression that is
parsed and evaluated. In the generated page, the attribute content is then
replaced by the evaluation result.
Please note that all attributes directly interpreted by the Infolayer system
are excluded from this feature, except when explicitly noted otherwise.

7.2.10 Dynamic Content Construction

The infolayer provides a set of constructs that make it possible to generate
XML content dynamically:

<t:element>: Generates the XML element denoted by the name and
namespace attributes.

<t:attribute>: Generates an XML attribute denoted by the name and
namespace attributes. The attribute value is determined by the ele-
ment content.

<t:comment>: Generates an XML comment. The comment is determined
by evaluating the element body.

<t:text> Generates an XML text node. The content is determined by
evaluating the element body.

7.3 XHTML-Speci�c Template Features

In addition to the general XML template elements, which do not make
assumptions about the XML language they are applied to, the Infolayer
contains several template elements that are tailored towards the generation
of XHTML code.
These XHTML template elements reside in a separate namespace, which
is http://infolayer.org/templates/html. This namespace also provides
access to the general XML template elements, so it is not necessary to declare
separate pre�xes for access to both.

7.3. XHTML-SPECIFIC TEMPLATE FEATURES 109

7.3.1 Additional Capabilities of valueOf

The XHTML <t:valueOf> template element provides additional support
for collection based HTML-speci�c format options such as ol, li or table,
as described in appendix C. Those format options cannot be supported
by generic XML template elements since they need to generate code that
depends on the target XML language.

7.3.2 Hyperlinks to Objects

The link template element generates an <a> XHTML element, where the
href attribute points to the URL of the object denoted by the OCL ex-
pression contained in the expr attribute of the element. By specifying a
template attribute, it is possible to create a link to the given template
instead of the default template.
If the expression evaluates to OclUndefined, no href attribute is generated.

<t:link expr="Person">All instances
of the class Person</t:link>

<t:link expr="Infolayer.getCurrentUser()
template="verbose">Verbose Information
about the current User</t:link>

Like call, the link element supports the withParam sub element to trans-
mit parameters to linked pages.

7.3.3 Properties and Forms

Current values of object properties can be included in pages using the
<t:valueOf> element, but the valueOf element does not permit any user
interaction. A more powerful alternative are the elements <t:property>
and <t:properties>.
The property element displays a single object property which is denoted
by the name attribute.
The properties element displays not just a single property, but a set
of properties, including the property names, in an XHTML table. If the

110 CHAPTER 7. TRANSFORMATIONS

il-label tagged value (or a �tting localized variant) is set for the property,
this is used as label instead. The list of object properties to be displayed
is controlled by the properties attribute. If not present, all public prop-
erties are displayed. Otherwise, the names attribute must contain a comma
separated list of property names. The order of properties given in the list is
preserved when the properties are displayed.
While the properties element can be used as a convenient alternative to
valueOf, the real strength of the elements property and properties is
their ability to generate input elements that can be used to edit the dynamic
content of the Infolayer system, and to perform searches.
For this purpose, the elements must be embedded in a <t:form>-element.
The form-element requires an attribute type, which speci�es which kind of
form to generate:

edit: Generates a form for editing an instance. self must be an object.
query: Generates an XHTML form for querying a class for matching in-

stances. self must be a class.

For attributes, property and properties generate simple input �elds. For
association ends, selection lists and additional controls are generated, pro-
viding means for adding and removing linked instances.
Inside the form, the <t:submit> element creates a submit button, and the
<t:cancel> element generates a cancel button. The labels of both buttons
can be customized using the label attribute. The followup attribute in-
structs the Infolayer servlet which page to display when the given button was
pressed. Table 7.1 shows an overview of the followup commands available.
The form and properties elements are used in the generic Infolayer default
templates; 7.3 shows a simpli�ed form of the default edit template.

7.3.4 Operations, Controls, and Actions

Buttons to execute operations that do not depend on parameters can be
included in XHTML templates using the <t:operation> element. The name
attribute denotes the name of the operation to be called. The name of the

7.3. XHTML-SPECIFIC TEMPLATE FEATURES 111

Followup Command Description

goto-url Sets the next page to the given URL, separated by a
colon.

goto-template Sets the next page to the given template, separated
by a colon. The context object is the same as for the
current page.

call-url Sets the next page to the given URL, separated by a
colon. The current page is saved on the URL stack.
A return command can be used to return to the cur-
rent address.

call-template Sets the next page to the given template, separated
by a colon. The context object is the same as for the
current page. The current page is saved on the URL
stack. A return command can be used to return to
the current address.

return Returns to a previous page saved on the URL stack.
Default command for submit and cancel buttons.

stay Stay on the current page. Default when an error
occurs while processing the current page.

Table 7.1: Followup Parameter Options for Submit and Cancel Buttons

<t:call xmlns:t="http://infolayer.org/templates/html"
file="~/frame.html">

<h1><t:valueOf expr="''+self" /></h1>

<t:form type="edit">
<p>

<t:properties />
</p>
<t:submit /> <t:cancel />

</t:form>
</t:call>

Figure 7.3: The Default Edit Template File \/instance/Object/edit.html"

112 CHAPTER 7. TRANSFORMATIONS

operation is also used as a label for the button; if a il-label tagged value
is set in the model, this is used instead. A local label attribute can be used
to override il-label.
In contrast to properties, operations must not be embedded in a form ele-
ment.
The return value of the operation is used to determine the page that is
generated when the operation was performed. Using the followup attribute
mechanism, the system can be instructed to use a speci�c template for
displaying the evaluation result.
Similar to the properties element, the operations element generates a
table containing all operations that are available for the current user.
The <t:control> element will generate a button that does not invoke an
operation. It can be used to display a di�erent page in the browser, for
instance to display a link to the edit template consistently with operation
buttons such as clone or delete.
The <t:actions> element displays a horizontal table containing all opera-
tions and statemachine actions available for self.

7.3.5 Login and Logout

For enabling users to login and logout, the template element <t:login> can
be used. If the user is not logged in, it generates a table containing input
elements for the user login and password.
Using the type attribute, it is possible to set one of the modes input or
select. If the type is select, the user to log in can be selected from a list.
Otherwise, the log in name must be entered in a text �eld. The following
code fragment shows how to build a login dialog using a form element, the
login element and corresponding buttons:

<t:form type="login">
<t:login type="select"/>
<t:submit /> <t:cancel />

</t:form>

7.3. XHTML-SPECIFIC TEMPLATE FEATURES 113

The login dialog can be a separated page, but it can also be included in an
template, hiding the content of a page if no user is logged in:

<t:if expr="Infolayer.getCurrentUser().oclIsUnknown()">
<t:form type="login">

<t:login type="select"/>
<t:submit followup="stay"/> <t:cancel>

</t:form>
<t:else/>

<t:inner/>
</t:if>

For the user, this option may be more convenient than a message saying to
log in on a separate page before the content becomes visible. This option
makes sense especially for content that shall not even be visible without lo-
gin. In the example, the submit followup command was set to stay because
the default behavior would return to the previous page, instead of showing
the actual content of the page, that was hidden by the login form.

7.3.6 Tables

While it is possible to generate HTML tables based on the iterate element,
the <t:table> element permits to interactively select a column determining
the sort order of the table.
For tables, the current type of self must be a collection type.
The table element must contain a number of <t:column> elements, de�ning
the columns of the table. The column element supports the attributes title
and expr, de�ning the title and content of each column. For the expr
attribute, self iterates over the element of the collection for the current
row.
The result of the expression can be formatted using the format attribute.
Alternatively, if the column element is not empty, the whole content is pro-
cessed for each table cell. The evaluation context for the subtree is the result
of the expr attribute.

114 CHAPTER 7. TRANSFORMATIONS

7.4 Other Content Formats

Besides XHTML and the general XML support, the Infolayer provides spe-
cial support for some other content formats, namely the the Wireless Markup
Language (WML), the Portable Document Format (PDF), and non-XML
�les. The actual handling of a �le depends on the extension; �les with an
unrecognized extension will not be processed further, but directly delivered
to the client.

7.4.1 Non-XML Formats

For non-XML formats, the XML escaping rules for writing reserved charac-
ters such as `<' and `&' are switched o�|otherwise, it would be impossible
to generate those characters. The only extensions for non-XML formats that
is recognized by default is \.csv".

7.4.2 Portable Document Format (PDF)

The XSL standard contains an XML based page description language that
can be used to generate documents in the Adobe Portable Document Format
(PDF) [2]. For this purpose, the Infolayer system supports the Apache
XSL Formatting Object Processor (FOP) [5], if it is installed in the Servlet
environment.
When the Infolayer receives a request with the Extension \.pdf", it looks
for a corresponding template with the extension \.fo". The template is pro-
cessed, and the resulting XML �le is handed over to FOP, which generates
an PDF document that is transmitted to the client.
Template elements in the source �les should use the namespace http://
infolayer.org/templates/fo, although it currently does not provide ad-
ditional template elements.

7.4.3 Resource Description Format (RDF)

Template elements used for RDF generation should use the namespace http:
//infolayer.org/templates/rdf, although there is currently no RDF spe-

7.5. SERVLET REQUEST HANDLING 115

ci�c support. Files with the extension \.rdf" are recognized as RDF tem-
plates.

7.4.4 Wireless Markup Language (WML)

WML templates must have the �le extension \.wml". They reside in the
separate directory wml. The namespace for WML template elements is
http://infolayer.org/templates/wml. For WML, a specialized version
of <t:valueOf> is supported, as well as read-only versions of <t:property>
and <t:properties>.

7.5 Servlet Request Handling

In some cases, it may be necessary to interact with the Infolayer Servlet from
a client application directly, or to recreate the functionality of prede�ned
Infolayer template elements, for example when an image button shall be
used instead of the prede�ned submit button, or when functionality that
was not foreseen in the existing templates is required.
In addition to the standard URL format described in section 7.1.2, the
Infolayer supports several special purpose addresses, starting with \get-"
or \post-", depending on the HTTP method.
The general URL syntax for the additional get and post requests is:

� GET /get-type.ext?par1=value1&par2=value2&...&parN=valueN
� POST /post-type.ext

In the case of post requests, the parameters are transferred with the request
body and are not visible in the browser URL �eld. The \extension" is used
to indicate the content type.
While the value of the self parameter must always be a valid OCL literal,
the other parameter values may be plain strings not enclosed in quotes.
POST requests are used when the request changes the internal state of the
system, since the HTTP speci�cation requires that GET requests are free
of side e�ects. If possible, the browser is forwarded to a valid \GET" URL
when the post request was processed.

116 CHAPTER 7. TRANSFORMATIONS

7.5.1 Navigation

When processing forms, it is not possible to assign di�erent URLs to di�erent
buttons. The following general request parameters allow to make further
processing dependent on the button pressed:

cancel-id: Cancel the current form. The form is not processed and the id
is used to look up a corresponding followup command.

followup-id: Use the value as followup-command, if the submit or cancel
button with the given id was pressed.

submit-id: Commit the current form. The form is processed and the id is
used to look up a corresponding followup command.

return Used to store the URL previously visited, used by the return fol-
lowup command.

7.5.2 Error Handling

When processing a request, it is possible that an error occurs. In that case,
an err-parameter is added to the URL of the resulting page. Error reports
can be displayed in the resulting page using the <t:messages> element.

7.5.3 Query Requests

The URL base for query requests is \get-query", followed by the content
type indicator and query parameters. Supported parameters are:

self Denotes the class that is queried.
q-name Contains the value the attribute or association end name must

contain in order to make the instance appear in the result list. If more
than one properties are queried, they are combined with a logical and.
Empty values correspond to empty input �elds and are not taken into
account.

template Denotes the template that shall be used to render the query re-
sult. The template is searched in the collection template directory.
If not present, the value defaults to results.

7.5. SERVLET REQUEST HANDLING 117

7.5.4 Instance Updates

Instance updates can be performed by setting the form post URL to
post-edit, followed by the content type extension. The instance denoted
by the self parameter is updated with respect to the following additional
request parameters:

self Denotes the instance to be updated. The value must contain the
instance id, preceded by a dollar sign ($).

add-name Add the value to the object property name. Strings are not
quoted, but instance IDs are pre�xed with a dollar sign. An aster-
isk followed by a class name means to add a newly created instance.

remove-name Removes the value from the property with the given name.
set-name Sets the value of the object property name.

7.5.5 Method Invocations

Any operation of the model can be invoked using the get-exec and
post-exec URLs. The GET method and address can be used only for
query methods; for methods having side e�ects, the POST method must be
used. The request parameters are as follows:

self: Denotes the instance the method belongs to.
op: The name of the method, immediately followed by the parameter types

in round brackets. The parameter names must be omitted. If the
method has no parameter, an empty pair of round brackets must be
appended to the method name.

pn The value of the n-th parameter, encoded as OCL literal.
pn$ The value of the n-th parameter, encoded as plain string. This option

allows to use input �elds to generate function parameters.

If the method returns a result value, this value is used as evaluation context
of the next page displayed, following the instructions of the followup request
parameter.

118 CHAPTER 7. TRANSFORMATIONS

7.5.6 User Login and Logout

For logout, it is su�cient to post to the address /post-logout. For login, the
address is /post-login and the additional parameters login and password
are required. If the login and password are valid, the user is logged in using
a session cookie.

7.5.7 Setting cookies

The address /post-cookie can be used to set cookies. The request param-
eter format is:

cookie-name: Sets a cookie with the given name to the parameter value.

7.5.8 URL manipulation and URL based access restrictions

The Infolayer is able to restrict, rewrite and redirect URLs. For this purpose,
the con�guration �le httpd.conf supports the commands permission,
rewrite and redirect. All three commands require two parameters con-
taining OCL expressions in double quotes, separated by a colon. The �rst
expression is always a boolean expression denoting URLs the command ap-
plies to. In both expression, self is the IlUrl object for the current URL.
In the case of permission, the second parameter is a boolean OCL expres-
sion determining if the permission to access the given URL is granted. For
redirect and rewrite, the second expression contains the target URL. The
di�erence is that rewrite immediately delivers the page corresponding to
the new URL, whereas redirect asks the browser to send a request for the
new address.
The following example limits access to the path \internal" to users who are
currently logged in:

permission "getPath().startsWith('~/internal')",
"Infolayer.getCurrentUser()->notEmpty()"

7.6. COMPLETENESS 119

7.6 Completeness

The template mechanism provides full access to OCL and inherits its com-
putational completeness, demonstrated in section 5.3 of chapter 5. However,
this is not su�cient to show that any desired XML output can be gener-
ated. The naive approach|to interpret the tape symbols of the presented
OCL Turing Machine as Unicode characters|does not work since any tex-
tual output of the template mechanism is subject to the XML escaping
rules. The escaping mechanism writes symbols with a special meaning in
XML|such as \<"|in an escaped form (\<" in the given case), ensuring
that it is not possible to generate invalid XML. The literal symbol \<" can
only be written by specialized template elements such as <t:element> or
<t:comment>.
Of course it would be possible to work around this problem with a special
literal output mode. However, it is relatively simple to show that we do
not need an extension to write any XML infoset instance. The XML infoset
is a formalization of the contents of an XML �le. It abstracts XML syn-
tax details that are not relevant for information processing, but still covers
SGML legacy and syntactic sugar, namely DTDs, namespaces, comments,
processing instructions and CData sections. To keep the proof readable, we
will leave out those parts and use the following simpli�ed de�nition:

� An Element is de�ned as a 3-tuple (name, attributes, children), where
{ name is an string denoting the name of the element
{ attributes is a �nite set of Attributes
{ children is an ordered set of Element and String objects.

� An Attribute is a pair of strings (name, value), denoting the name and
the value of the attribute.

An XML document is simply de�ned as its root element. The corresponding
OCL type de�nition is:

TupleType(
name: String,
attributes: Set(TupleType(name: String, value:String)),
children: Sequence(OclAny))

120 CHAPTER 7. TRANSFORMATIONS

In order to prove that the template mechanism is able to generate any desired
XML output, we need to show that we can construct an XML template
(named element) that properly writes all components, namely

� the element name,
� the attributes, and
� the child elements and text nodes.

Claim 5 It is possible to design an XML template that writes the element
name.

Proof 5 The following template fragment writes the name of an element in
valid XML syntax:

<t:element t:name="name" xmlns:t="http://infolayer.org/templates">
</t:element>

Claim 6 It is possible to write all attributes of an element with an XML
template.

Proof 6 The following template fragment writes all attributes of an ele-
ment:

<t:forAll expr="attributes">
<t:attribute t:name="name" t:value="value" />

</t:forAll>

Claim 7 It is possible to design an XML template that writes the sequence
of children, given a template that is able to write an element:

Proof 7 The following template fragment writes all child elements. String
content is written immediately; for element content, the template is called
recursively.

7.7. SUMMARY 121

<t:forAll expr="children">
<t:choose>

<t:when expr="oclIsKindOf(String)">
<t:valueOf expr="self" />

</t:when>
<t:otherwise>

<t:call template="xmlwriter" />
</t:otherwise>

</t:choose>
</t:forAll>

Claim 8 It is possible to design an XML template that writes any XML
infoset as de�ned above.

Proof 8 The XML template can be constructed by combining all previous
parts:

<t:element t:name="name" xmlns:t="http://infolayer.org/templates">

<t:forAll expr="attributes">
<t:attribute t:name="name" t:value="value" />

</t:forAll>

<t:forAll expr="children">
<t:choose>

<t:when expr="oclIsKindOf(String)">
<t:valueOf expr="self" />

</t:when>
<t:otherwise>

<t:call template="xmlwriter" />
</t:otherwise>

</t:choose>
</t:forAll>

</t:element>

7.7 Summary

In this chapter we have presented an XML generation mechanism for object
oriented systems that is based on XSLT, but provides direct access to the sys-

122 CHAPTER 7. TRANSFORMATIONS

tem state. This way, we have avoided an intermediate XML representation
that has an inherent loss of information, resulting from the transformation
of the object graph into a tree.
We have extended this template mechanism with server sided elements be-
yond the capabilities of the XML processing chain, opening possibilities such
as building the default system state editor based on a set of default tem-
plates. In addition to the possibility to edit the content remotely without
specialized tools, this also leads to a single consistent interface for both,
browsing and editing the content.
We have proven that our template mechanism is able to generate any valid
XML output, going one step beyond Kepser's proof of the computational
completeness of XSLT [67] by not simply relying on literal output, but using
the adequate XML generation elements.

Chapter 8

Persistent Storage

For a system like the Infolayer, it is a necessity to save the stored information
persistently. Even if the content will �t into the main memory of modern
computers in many cases, it is not desirable to lose it after a system restart.

For storing information persistently, there are two main options: the �le
system and a database system.

Database systems, relational, object-oriented, or mixed, provide several ad-
vantages over simple �les, such as better scalability and sophisticated sup-
port for queries and transactions. However, while a database system needs
to be installed separately, the availability of a �le system can be assumed
on most platforms.

Thus, by default, the content of the Infolayer system is stored in the �le sys-
tem, requiring no additional setup steps. However, to utilize the advantages
of database systems or simply to connect to legacy systems (requirement
V), it is also possible to connect the Infolayer system to one or more rela-
tional database tables. For this purpose, the Infolayer provides a mechanism
to map the class diagram that drives the system to tables in a relational
database system.

123

124 CHAPTER 8. PERSISTENT STORAGE

8.1 XML File Based Default Persistence Mecha-

nism

The File System based default storage mechanism of the Infolayer consists
of three main building blocks:

� The XML �le instances.xml, representing a snapshot of the content of
the system at a certain point of time.

� The XML �le instances.chg, containing all changes of the object model
relative to the instances.xml �le.

� A set of binary �les in the subdirectory �les, storing the contents of
binary �elds that are used, for example, in File objects.

The default location of all �les is the directory instances contained in the
main directory of the corresponding web application.
Using an XML based �le format is a straight forward solution for storing
the structured content of the Infolayer system. The XML �le consists of a
root element <data>, containing one element named after the class name
for each stored instance. The instance id is stored in an id attribute. Inside
the instance element, there are sub elements for each attribute and asso-
ciation end, named after the corresponding property. Datatype values are
stored directly as literal content of the corresponding element, while object
references are stored using a idref attribute, containing the id of the related
object. For cardinalities greater than one, the property elements are sim-
ply repeated. Properties may contain additional XML attributes user and
timestamp denoting the user name and time of a content modi�cation in
ISO format, but those attributes are not essential for the system and may
be omitted.
The instances.chg �le inherits the structure from the instances.xml �le, but
it is interpreted as \di�erence" to the instances.xml �le. In this �le, all
changes of the object model are journalled immediately. All properties of
instances are added to the properties described in the instances.xml �le,
except for properties with a maximum cardinality of one. In that case,
the property value is simply replaced. In the di�erence �le, it is possible to

8.2. RELATIONAL DATABASE CONNECTIONS 125

delete instances using the deleted attribute with a value of true. Associations
can be annulled by setting the attribute of related to a value of false for the
corresponding property and instance(s).
Attributes with binary content are stored in separate �les, in order to avoid
cluttering of the instance �les with large amounts of data. The path to a
binary attribute is constructed as follows:

<classname>/<instance-id>/<property-name>.bin

Please note that binary attributes must not have a cardinality greater than
one. If that is desired, it is necessary to use an intermediate class such as
File.
While it would have been possible to use XMI to externalize instances, the
verbosity of XMI does not make the format very well suited for manipulation
with a text editor. While the XML �les are generated automatically for a
given model, they are not automatically adopted to changes in the model
that are not backwards compatible, such as renaming attributes. Thus, for
those kinds of model changes it may become necessary to edit the XML �les
manually if corresponding instances are existing and shall be preserved.

8.2 Relational Database Connections

When compared to a \regular" relational database, the UML-Classes con-
tained in the model correspond to tables, and the instances correspond to
rows, and the columns correspond to UML-attributes. A class in the Info-
layer system can be linked to a database table by setting the tagged value
il-connection. The syntax of the connection string is:

table:<table-type>:<connection-details>

Supported table connection types are:

jdbc: Connects a class to a SQL table using the Java Database Connectivity
(JDBC). The connection details consist of the jdbc database URL, the
user name, the password, and the table name in the following form:

126 CHAPTER 8. PERSISTENT STORAGE

Figure 8.1: Example Database Table Connection

<jdbc-url>;user=<username>;password=<password>;
table=<table>;driver=<classname>

Of course, the <jdbc-url>, <username>, <password>, <table>, and
<driver> parameters must be replaced with actual values.

bibtex: Connects the associated class to a literature database in the BibTex
format. The BibTex �le name must be provided following the colon
as connection details.

dbase: Connects the associated class to a DBase III+ database (.dbf) �le.
The �le name must be provided as connection details following the
colon.

ar�: Connects the associated class to an Attribute-Relation File Format,
developed by the Machine Learning Project at the Department of
Computer Science of The University of Waikato for use with the Weka
machine learning software [6]. Basically, the ARFF format is a list
of comma separated values with a header section de�ning the column
types. The �le name of the ARFF �le must be provided as connection
details following the colon.

Figure 8.1 shows a sample speci�cation of a database connection.

8.2.1 Mapping Columns and Attributes

For all table based formats, it is required that one column can be used as
a unique identi�er, serving as the primary key to access a row. If the table

8.2. RELATIONAL DATABASE CONNECTIONS 127

Infolayer
SQL DBase ARFF DL Datatype

BIT / BOOLEAN L (logical) N Boolean
BLOB Y Binary
CHAR C (character) N String
DATE D (date) date N DateTime
DOUBLE PRECISION numeric N Real
FLOAT N Real
LONGVARCHAR M (memo) Y String
NUMERIC N (numeric) N Real (scale>0)

Integer (scale=0)
REAL N Real
TIME N DateTime
TIMESTAMP N DateTime
VARCHAR string N String

Table 8.1: Mapping from SQL Types to Infolayer Types; The DL Column
Shows the Default Value for \il-deferred-loading"

does not contain a column named id, or the column named id does not
contain a unique identi�er for each row, a corresponding column must be
speci�ed using the tagged value il-id-field.
If the database table contains columns that do not correspond to attributes
in the model, those are generated at runtime. The opposite direction is not
implemented: when de�ning attributes in the model that do not correspond
to existing columns in the table, it is necessary to de�ne at least a \getter"
method; missing columns in the table are not created automatically.
Table 8.1 shows how SQL and DBase column types are mapped to the built
in data types of the Infolayer system. Character column types can optionally
be mapped to enumeration types by explicitly de�ning an attribute matching
the column name but having the desired enumeration type. In this case, the
column content must match one of the enumeration literals.

8.2.2 Deferred Loading

It is possible to mark �elds for deferred loading by setting the tagged value
il-deferred to true. Usually, all attribute values are loaded into memory
when an instance is accessed. Deferred attributes are loaded only when the

128 CHAPTER 8. PERSISTENT STORAGE

Figure 8.2: Tagged Values Providing Database Implementation Details of
1 : n Associations.

attribute itself is accessed. The default values of the il-deferred property
depend on the column type and are also shown in table 8.1.

8.3 Mapping Associations

While associations are a �rst class concept in UML, they are usually repre-
sented by key matches across di�erent tables in the relational world. Thus,
some kind of mapping is required. Here, UML tagged values again provide
means to annotate the model with information about a speci�c implemen-
tation.

8.3.1 1:n Associations

The simplest case are 1:n associations. For instance, consider a customer
linked to a set of invoices, like depicted in �gure 8.2. In the example, an
invoice belongs to a customer if the customer id column matches the cus-
tomer id column of an invoice.
The tagged value named il-link-�eld makes this information available to the
Infolayer system. The column name id is speci�ed in a tagged value named
il-link-field of the invoice association end. For the other end of the
association, the tagged value is set to customer id.

8.3. MAPPING ASSOCIATIONS 129

Figure 8.3: An n:m Association Including an Association Table and the
Required Annotations

Internally, the il-link-�eld value is used to generate the following OCL getter
expression for the corresponding association end:

let lf = <link-field> in
<type>.allInstances()->select(lf=<opposite-link-field>)

At runtime, <link-�eld> is replaced with the il-link-�eld value, <type> with
the class name of the opposite association end, and <oppositeLinkField>
with the il-link-�eld value of the opposite end.
A \setter" is only generated for the association end with the maximum
cardinality of one. The expression is:

<link-field> := value.<opposite-link-field>

8.3.2 n :m Associations

While 1:n associations can simply be modeled in relational databases fol-
lowing the approach described above, for n:m associations an explicit as-

130 CHAPTER 8. PERSISTENT STORAGE

sociation table is required. This additional table links arbitrary numbers
of associated rows by storing pairs of row identi�ers from both tables. An
example for n:m associations is the assignment of employees to projects: on
the one hand, a single employee can participate in di�erent projects. On
the other hand, one project may have more than one employees assigned.
To model this association, the association table employee project map is
used. Each row of this table links a pair of ids from both associated tables.
Again, for the Infolayer system the association must be annotated with im-
plementation details: Both association ends must be annotated with the
tagged values il-link-�eld and il-link-concept-�eld, denoting the key �elds
of the linked classes and their counterparts in the association table. Ad-
ditionally, the association itself must be annotated with the tagged value
il-link-concept, denoting the class making the association table accessible
for the Infolayer system. Of course, also the il-connection value must be set
properly for all three classes.
Figure 8.3 shows an annotation sample for the sketched employee-project
link.
Also the mapping of the tagged value entries for the n:m case to \getters",
\adders", and \removers" is a bit more complex than for the 1:n case:

� getter-de�nition:

let lf = <link-field>
let lcs = <il-link-concept>.allInstances()

->select(<link-concept-field> = lf)
->collect(<opposite-link-concept-field>) in

<type>.allInstances()->select
(lcs->includes(<opposite-link-field>))

� adder de�nition:

let n = <link-concept>.createInstance() in
n.<link-concept-field := <link-field>;
n.<opposite-link-concept-field> :=

value.<opposite-link-field>

8.3. MAPPING ASSOCIATIONS 131

Figure 8.4: A Dynamic Association Between the Employee Class on the one
Hand and the Classes BaseAttribute and Value on the other Hand.

� remover de�nition:
let lf = <link-concept-field>
let olf = value.<opposite-link-field> in
<link-concept>.allInstances()
->select (<link-concept-field> = lf

and <opposite-link-concept-field> = olf)
!delete();

8.3.3 Linking Di�erent Tables Dynamically

A special case of an association is an association where the table at one
association end is not �xed, but denoted by a column of the table at the
other association end.
In order to model this special case in the information layer, all classes corre-
sponding to dynamically associated tables must be subclasses of a common
superclass. The association is not drawn to all target classes, but only to the
common superclass. The tagged value il-link-target must contain the
�eld that denotes the table name. If the content of this �eld does not con-
tain the name of the target class directly, the target classes must be marked
with a corresponding il-link-tag tagged value. Figure 8.4 shows a corre-
sponding example taken from the UML model used to represent the table

132 CHAPTER 8. PERSISTENT STORAGE

structure of an insurance company. The il-link-target tag is only supported
for 1:n associations.
The generated getters and setters are:

� getter:

let lf = <link-field>
let lt = <linkTarget> in

<type>.allSubtypes()->one
(if not getTaggedValue('il-link-tag').isOclUnknown()
then getTaggedValue('il-link-tag')
else name
endif = lt).allInstances()

->select(<opposite-link-field> = lf)

� setter:
let vt = value.oclType
let tag = vt.getTaggedValue('il-link-tag') in
<link-field> := value.<opposite-link-field>;
<linkTarget> := if not tag.isOclUnknown() then tag

else value.oclType() endif

8.4 Mapping OCL Expressions to SQL

A simple way to apply OCL expressions to the contents of database tables
is to translate the rows to the corresponding Infolayer object representation,
making them accessible to the regular Infolayer OCL processor. However,
the set of instances stored in database tables may be very large. Even if
enough main memory is available, all instances would need to be trans-
ferred from the database to the infolayer system, before an OCL expression
could be applied. Ideally, the OCL expression would be evaluated inside the
database system, avoiding any unnecessary I/O costs. However, relational
database systems usually support only SQL queries, but not OCL.
Some OCL constructs can be translated to SQL, though. For instance,
attributes can be translated to column names, and most operations on simple

8.4. MAPPING OCL EXPRESSIONS TO SQL 133

data types such as <, =, or and have matching SQL counterparts. The OCL
construct <Class>.allInstances()->select(<condition>) can be translated
to a corresponding SQL select statement if <Class> is linked to a database
table and the condition can be translated to an SQL where-clause. However,
this is not possible for the complete language. For instance, it is not possible
to dirctly translate queries involving data from di�erent sources. A general
translation cannot be possible since OCL is computational complete and
SQL is not.
However, even partial translations may be helpful. For an OCL select()-
operation, a SQL where clause that is more general than the OCL source
may still reduce the set of instances that need to be considered by subsequent
stages. Thus, the full OCL select condition needs only to be applied to
the reduced set of instances that passes the SQL �lter. If an OCL select
expression cannot be converted completely, the system tries to determine a
more general SQL expression for a partial mapping, for instance by omitting
the left or right side of a boolean \and".
In addition to this partial translation scheme, the Infolayer system uses de-
layed evaluation and referential transparency of OCL expressions to optimize
generated SQL queries.

8.4.1 Partial Translations

A simple example for an OCL expression where a partial translation to SQL
makes sense is:

Person.allInstances()->select(
p|p.name = 'Beaker' and p.calcIncome() > 2000)

The name query may be translated to SQL easily, but the income calculation
operation not. However, �nding a more general SQL query that delivers a
super set of the desired instances will already avoid a lot of IO and mapping
operations:

select * from Person where name = 'Beaker' and true

134 CHAPTER 8. PERSISTENT STORAGE

Generalization Allowed SQL results for OCL result
Parameter true false

MAY GENERALIZE true true or false
MAY SPECIALIZE true or false false
EXACT MATCH true false

Table 8.2: OCL to SQL translation scheme

OCL Expression SQLTranslation

toSql(expr1 and expr2, X) toSql(expr1, X) and toSql(expr2, X)
toSql(expr1 or expr2, X) toSql(expr1, X) or toSql(expr2, X)
toSql(expr, MAY GENERALIZE) not toSql(expr, MAY SPECIALIZE)
toSql(expr, MAY SPECIALIZE) not toSql(expr, MAY GENERALIZE)
toSql(expr, EXACT MATCH) not toSql(expr, EXACT MATCH)
toSql(NOT TRANSLATABLE, true
MAY GENERALIZE)

toSql(NOT TRANSLATABLE, true
MAY SPECIALIZE)

toSql(NOT TRANSLATABLE, NOT TRANSLATABLE
EXACT MATCH)

Table 8.3: OCL to SQL translation scheme

8.4. MAPPING OCL EXPRESSIONS TO SQL 135

In order to perform this kind of SQL conversions, the class OclExpression
contains an Infolayer-speci�c operation toSql, translating a given OCL ex-
pression to SQL. To take advantage of partial translations, the toSql() op-
eration is parameterized whether the translation result may be more gen-
eral (MAY GENERALIZE), more special (MAY SPECIALIZE), or an exact
match with the OCL expression is required (EXACT MATCH).
If a boolean sub-expression cannot be translated at all, it is replaced with
true in the MAY GENERALIZE case, and false for MAY SPECIALIZE,
making it possible to construct a valid (more general or more special) SQL
expression, even if parts of an expression cannot be translated. The allowed
deviations from the result of a boolean OCL expression, depending on the
generalization parameter, are illustrated in table 8.2. The generalization
parameter is also recognized by the translation operation for several boolean
operations. For instance, the generalization mode for the argument of a not
operation needs to be inverted. The mode-speci�c treatment of boolean
operations is illustrated in table 8.3.
For all remaining OCL operations, the translations are either exact or not
available, as documented in appendix E.

8.4.2 Pre-Calculation of Constant Values

All operations available in the Infolayer system are marked with meta-data
determining whether an operation is referentially transparent, making it
possible to pre-calculate values. The exclusion of side e�ects is not su�cient
here since functions returning a random number or the current time are not
generating a side e�ect but still cannot be pre-calculated.
The identi�cation and elimination of referentially transparent sub-
expressions that do not depend on the iterator is feasible in OCL since
OCL is free of side e�ects, so it can be assumed safely that there are no
hidden dependencies.
To support this kind of query optimization, the Infolayer implementation
of the OclExpression class from the OCL Model was extended with two
additional methods:
boolean isResolvable(int var) Determines whether the expression can

be made dependent only on the given (iterator) variable.

136 CHAPTER 8. PERSISTENT STORAGE

OclExpression resolve(Object[] bindings, int var) Replaces all vari-
ables with the given bindings, except from the iterator variable. Now
constant sub expressions are reduced to constants automatically.

8.4.3 Deferred Evaluation

With the above methods, it is possible to optimize several simple data type
expressions. Unfortunately, �lter chains applied to collections are often not
given as a single expression. For instance, the input for the table XML
template element is a collection. This collection may be �ltered further
or sorted when the table is actually displayed. One option would be to
supply an expression instead of a collection for the table element. The
alternative is to temporally allow intensionally de�ned collections for some
special cases such as allInstances() and select(). The materialization of
the collection is delayed, similar to the delayed evaluation of expressions
in the functional programming language Haskell [49], making it possible
to re�ne the underlying SQL expression before the materialization. In the
Infolayer system, the following operations can defer the materialization of
the resulting collection:

allInstances(): Materialization is always deferred for classes connected to
Database tables. If allInstances() returns instances from more than
one class, the corresponding union() operation is also deferred.

union(): The union operation may be delayed for optimizations based on
the expressions de�ning the underlying collections.

select(): If the underlying collection is not yet materialized, a deferred
collection, based on the expression de�ning the original collection and
the �lter expression, is returned.

8.5 Summary

In this chapter, we have illustrated how the Infolayer system persists its
state. In the simplest case, the existing objects are serialized to a human-
readable XML �le in the �le system. This is su�cient for many application

8.5. SUMMARY 137

scenarios. For those cases where increased reliability is needed or legacy
date is required, the Infolayer can be connected to relational databases, ad-
dressing requirement V from the introduction. In addition to the technical
integration, we have demonstrated how the generation of SQL statements
can be optimized, for instance by using deferred evaluation techniques known
from functional programming languages. The SQL optimization is not lim-
ited to the Infolayer system but could also be used in other OCL-based
systems that need to generate SQL.

138 CHAPTER 8. PERSISTENT STORAGE

Chapter 9

Applications and Third

Party Additions

The Infolayer system has been in development and use for several years
now. The department sample presented in chapter 1 is actually a trimmed
down version of the web presentation of our own unit, where we use the
Infolayer system to manage the the public information about research and
software projects, unit members, and about 3000 publications. The very
�rst Infolayer application was a conference system accessible by humans
and software agents in the scope of the CoMRIS EU project [98, 50, 51, 52].
This chapter describes some additional applications of the Infolayer system,
and some extensions of the overall system that have been implemented for
those applications.

9.1 The MuSofT Project

MuSofT is the acronym for a Germany-wide project that develops multi-
media teaching material for software engineering education [32]. The goal
of the web presence of the project, the so-called MuSofT-Portal, is to man-
age and distribute the learning objects contributed by the various project
partners.
For the realization of the portal, existing content management systems
(CMS) did not meet the requirements. Traditionally, CMS distinguish a

139

140 CHAPTER 9. APPLICATIONS AND THIRD PARTY ADDITIONS

Figure 9.1: Screenshot of the MuSofT Application

developer and a presentation view, but are not providing the retrieval capa-
bilities required for the designated work ow in the MuSofT project. More-
over, the set of meta attributes and value sets may change corresponding to
the experiences with the portal, thus a simple adaptation option for meta
attributes was required. Finally, for a user friendly interface, simple navi-
gation options along the hierarchy of learning objects and the classi�cation
schema were desired. Thus, the MuSofT portal was implemented on top of
the Infolayer system [4, 3].
The MuSofT-Portal is designed for archiving learning objects, which are
created inside as well as outside of the MuSofT project. The most important
activities that can be performed with the portal are uploading, modifying
and querying learning objects. When inserting new objects, the meta data
requirements must be taken into account, ensuring a consistent description of
the objects. Here, the Infolayer user interface supports the user by providing
input �elds for the required attributes and select boxes for attributes with
a �xed value set.
In addition to the upload process, the portal supports the hierarchical clas-
si�cation of learning objects according to the LOM standard [62]. Thus, a

9.2. SOAP INTERFACE 141

new learning unit can easily be built as an arrangement of modules exist-
ing in the portal. A screen shot of the user interface, showing the topics
available and the numbers of corresponding entries, is depicted in �gure 9.1.
A �rst working version of the MuSofT portal was developed during the
Winter of 2001 in only two weeks. It included all required features, though
much of it was still in its infancy. After approval by the MuSofT project
members, the system was successfully improved during 2002. The domain
model was re�ned and templates were added to the system, based on the
layout provided by a web designer. Most of the template work was done by a
single student worker who had prior experience with HTML and some insight
into UML and OCL. Over time, more features such as e-mail noti�cations
and download counters were added. While still in development, the MuSofT
application was already used by the project members to upload their learning
material, so it was possible to incorporate feedback early.
Since the o�cial public launch of the application in fall 2004, about 100
di�erent learning objects on software engineering along with their meta data
have been stored on the server. The learning objects range in complexity
and size from simple slides over specialized applications to videos of several
hundred megabytes. The class diagram that drives the MuSofT portal is
depicted in �gure 9.1.

9.2 SOAP Interface

To simplify the integration of existing structured resources, the MuSofT
project partners asked for an XML based bulk upload option. To suit this
need, a SOAP based upload mechanism was added to the Infolayer system.
The upload mechanism consists of a server sided component that is able
to generate an XML Schema corresponding to the UML diagram, and a
component that is able integrate data conforming to the schema into the
current object diagram.
A separate graphical client (�gure 9.2) that is able to perform a client side
validation prior to the upload can be used to select conforming XML �les.
Both, client- and server sided components are not speci�c to the MuSofT
model, but can be used in any Infolayer project if desired. The SOAP

142 CHAPTER 9. APPLICATIONS AND THIRD PARTY ADDITIONS

Figure 9.2: Class Diagram of the MuSofT Application

9.3. STATE MACHINES 143

Figure 9.3: SOAP Upload Client Developed in the MuSofT Project

interface was later extended to enable the invocation of any methods de�ned
in the model.

9.3 State Machines

Another addition to the system that was performed mainly by J�org Pleu-
mann in the scope of the MuSofT project is an interpreter for UML state
chart diagrams that was originally implemented as the simulation compo-
nent of a CASE tool [99]. State charts are used to model the life cycle of
objects. A special HTML template element makes it possible to display
the state of an object as a state chart diagram where the current state is
highlighted. State transitions can be triggered via the user interfaces using
HTML buttons.

9.4 MLnet and KDnet

The Information Layer system is also used for the training information server
of the MLnet project and it successor, the KDnet project. Both projects are
similar to the MuSofT portal, but for training information from the areas
of Machine Learning and Data Mining.

144 CHAPTER 9. APPLICATIONS AND THIRD PARTY ADDITIONS

Figure 9.4: Infolayer Anatomy Application

9.5 Medical Application

The medical computer science unit of the University of Applied Sciences
Dortmund and the University of M�unster both use the Infolayer system for
information access with mobile clients [70, 108]. In the M�unster Project,
images of dissected human corpses are taken in order to assist students dur-
ing their studies in anatomy. The Infolayer is used as middleware providing
SOAP based access to the image repository. Both, the mobile clients and
the HTML interface can be used for chat communication. The o�-campus
teaching capabilities in anatomy were extended, since students at home have
direct access to their fellow students in the dissecting room.
Here, the Infolayer was chosen because the SOAP interface provided con-
venient access to the whole functionality from mobile clients. The mobile
clients provide a simpli�ed user interface, specialized for the tasks to be
performed remotely. The HTML interface (�gure 9.5) can still be used from
regular terminals to browse and re�ne the content, and for administrative
purposes. In the project, also some server sided tools for handling DICOM

9.6. DEVICEDB 145

Figure 9.5: Screenshot of the DeviceDB Application

[31] images were added to the Infolayer Servlet. The project consists of 10
classes and about 100 objects.

9.6 DeviceDB

Another project that utilizes the Information Layer is a database for Java-
enabled small devices like cell phones and personal digital assistants1. Here,
the model describes the devices, their capabilities such as available protocols,
and vendors.
The basic pro�le of a Java-enabled mobile device is obtained automatically
by a mobile client software that can be downloaded from the DeviceDB
web pages. The device information is directly uploaded using the SOAP
interface. Figure 9.6 shows the title page of the DeviceDB application,
indicating that currently 21 di�erent device types are stored in the data
base, and 44 new records are waiting for approval.

1http://devicedb.kobjects.org

146 CHAPTER 9. APPLICATIONS AND THIRD PARTY ADDITIONS

9.7 Summary

Some of the above applications have been in use for about three years. The
general approach of modeling relevant structural and dynamic parts of a Web
application in a CASE tool and then executing this model works well. For
the applications mentioned in the previous sections, there was practically
no additional Java programming necessary (only the MuSofT application
required the two additional classes to handle e-mail noti�cations and the
export functionality). With the model itself becoming executable, we were
able to produce a working prototype for any of the applications very early.
If a database schema proved to be insu�cient for the application, it was
possible to go back to the CASE tool, change the model, and then execute
it again. No implementation e�ort was spent on thrown-away prototypes,
which makes the Infolayer ideal for a rapid application development (RAD)
approach in the Web application or database context. We think a similar
approach should be possible in other areas, too. Prototypes directly gener-
ated from an initial class diagram can gradually be turned into a working
system by adding classes and templates. Where the amount of data became
too large for storage in plain XML �les, the database connectivity ensured
that the system is able to grow with increasing demands.

Chapter 10

Conclusion and Outlook

In this chapter, we �rst summarize our work, following the XML toolchain
analogy, and then reconsider how this translates back to our original goal,
the improvement of web application development. Finally, we provide an
outlook for further research or development based on this work.

10.1 Summary

The increasing size and complexity of web applications has led to a situation
where the traditional approach of creating and managing a set of plain
HTML �les is inappropriate in many cases. Consistency in structure, look
and feel, and hyperlinks needs to be maintained, and support for di�erent
content formats may be required. The combination of XML Schema, XML
and XSLT is able to improve this situation, but the expressive power of
XML Schema is insu�cient for application domains where more than a pure
hierarchical structure is required.
In this work, we have chosen the XML toolchain as a guideline to construct
an alternative basis for web information systems at a higher level of abstrac-
tion, namely UML class diagrams. We have identi�ed a UML counterpart
or implemented a substitute for each constituent of the XML processing
chain, showing that it is possible to build a consistent UML-based system
for model driven web applications.
The XML Schema has been replaced by UML class diagrams, and the XML
editor that is used for editing the schema can be replaced by any UML

147

148 CHAPTER 10. CONCLUSION AND OUTLOOK

tool that is able to generate the XMI model interchange format. We have
developed a default transformation from a set of objects and classes to a set
of HTML pages that can not only be used for browsing, but also for editing
the contents of the system. Hence, no second editor is needed; compared
to the XML toolchain, the functionality just has been shifted to a di�erent
place in the system.
In order to create a replacement for XSLT, a template mechanism based on
XSLT elements, but using OCL as an expression language instead of XPath,
has been developed. XSLT could have been used unchanged by serializing
the system state into an XML tree. However, by forcing the system state
into a tree structure, many of the advantages of a higher level of abstraction
would have been lost. Moreover, adding template elements such as input
�elds supporting interaction with the servlet made it possible to use the tem-
plate mechanism to take over the content editing functionality, leading to a
single coherent interface for content inspection and modi�cation. Compared
to the XML toolchain, using a web interface for editing the content provides
the advantage that content can be maintained from anywhere without need-
ing specialized tools. However, the web interface also raised the demand
of a more sophisticated user management, which is also addressed by our
system.
In many areas, the capabilities of the system go far beyond the XML tool
chain. Operations in UML class diagrams are fully supported. While query
operations can be speci�ed in OCL, for non-query operations a new sur-
face language for the UML action semantics has been developed. Compared
to existing action languages, our language has the advantage that it inte-
grates OCL expressions and provides a consistent syntax, instead of dupli-
cating OCL functionality with a new syntax. The support for operations
makes it possible to trigger actions that modify the system state via the
user interface|without leaving the UML framework.
Another feature that goes beyond the scope of the XML toolchain is the
clearly speci�ed connection to relational database systems, including a trans-
lation mechanism that is able to generate SQL queries from OCL expres-
sions. By deferring the evaluation of expressions such as allInstances() and
generating over-generalized expressions where an exact match is not possi-
ble, we are able to achieve a high level of e�ciency in the generated queries.

10.2. CONCLUSION 149

Many aspects of this work such as the HTML generation rules, templates,
database connectivity or the action semantics surface language are not tied
to the Infolayer system, they could easily be used for other applications. For
instance, the action semantics surface language could be used in YATL (Yet
another transformation language) [96] to increase its consistency with the
remainder of the UML. YATL is a transformation language that has been
de�ned to perform transformations within the OMG's MDA framework.
YATL currently uses OCL and its own imperative features (not based on
the UML action semantics) for unidirectional model transformations.

10.2 Conclusion

Leaving the XML analogy and looking back at our original goal, improving
web development methodologies, we can conclude that the Infolayer system
demonstrates that direct model interpretation is a viable alternative to tra-
ditional implementation approaches as well as the upcoming Model Driven
Architecture.
Especially for data-intensive applications that do not require much special-
ized business-logic, a prototype can be generated by simply drawing a UML
class diagram|a step that is required in the relevant development method-
ologies anyway. By making this �rst step immediately operational, the gap
between web development methodologies and actual system implementation
has been narrowed signi�cantly.
Modeling the link structure and the page layout itself are covered at a techni-
cal level by the Infolayer template mechanism. Built on XML, the template
language �ts well with XML target languages (XHTML, WML, XSL-FO,
...), preserving the strength of XSLT and much of its structure, while reach-
ing a higher level of abstraction by providing direct access to the user model
via OCL expressions.
Of course there is still a gap between additional navigation diagrams sug-
gested by web engineering methodologies and the Infolayer template mech-
anism. However, by using OCL in the templates|instead of languages that
are one or more steps further away from the UML|this gap has been nar-
rowed signi�cantly. Moreover, a large part of page design consists of artistic
aspects that are not covered by any of the web engineering approaches. In

150 CHAPTER 10. CONCLUSION AND OUTLOOK

our approach, this part|the design of the XML templates|is clearly sep-
arated from the model design, without being limited to cosmetic changes
only. Building the template expressions mostly on UML instead of pro-
gramming language artifacts may also help non-technicians to better see
the links to the design documents. Allowing designers to stick with their
favorite tools may improve the interaction with software engineers, which is
often a problematic area in web engineering [78].
Cutting the number of involved technologies for structured web applications
down to a small coherent set required some amount of new \glue" to connect
them. Fortunately, this could be limited to the replacement of XPath by
OCL in XSLT, and the creation of a simple OCL based surface language for
the UML Action Semantics.
Experiences with developing and using the applications presented in the
previous chapter have been very positive so far, and we feel that it should
be feasible to apply the same ideas to other application domains, too.

10.3 Outlook

The direct interpretation of UML diagrams creates new opportunities be-
yond the current scope of the Infolayer system. For instance, it seems in-
teresting how support for additional UML diagram types could �t into the
system. While state charts are already supported to control the life cycle
of an object, they may also help to create dialog structures for the user in-
terface. Moreover, the interpretation approach could be explored for other
types of applications than web applications.

10.3.1 System Extensions

For the Infolayer system itself, there are three concrete improvements that
we would like to perform:

� Support for refactoring
The model interpretation approach puts the option to perform model
changes (refactoring [94]) at runtime within reach. To make this hap-

10.3. OUTLOOK 151

pen, at least write access to the meta model would be required, al-
though an integrated graphical modeling tool would be more user
friendly.

� Replacement of the model implementation with the Eclipse UML 2
framework
As noted in chapter 3, using standard components could reduce the
probability of errors in the system. The Eclipse UML 2 implemen-
tation1 seems to be well suited as a solid foundation for our system,
allowing us to drop large parts of our own model representation and
the XMI parser. This is especially interesting since the Eclipse frame-
work includes XMI write capabilities, a functionality that is needed to
add refactoring capabilities.

� Web services based on Representational State Transfer
The Infolayer supports web services via SOAP, but recently there has
been a lot of discussion whether web services should be based on Rep-
resentational State Transfer (REST)|the general architecture of the
World Wide Web [37]|instead. The SOAP interface works very well,
but SOAP does not allow to use the URL to address individual data
objects as service endpoints, in contrast to the use of URLs in the
remainder of the system. Large parts of SOAP duplicate functional-
ity that is handled by HTTP, while still building on HTTP to bypass
�rewalls.

10.3.2 Correctness

It does not seem practical to provide a formal proof that the Infolayer im-
plementation is actually fully consistent with the UML semantics. However,
there are several options to reduce the probability of errors that could be
exploited in the future:

� Use standard components: When using \standard" components (e.g.
the Dresden OCL toolkit [61, 38]) that are used by many developers,
the probability that errors are not noticed decreases.

1http://eclipse.org/uml2

152 CHAPTER 10. CONCLUSION AND OUTLOOK

� Use the OCL de�nition of an operation where available: If the de�ni-
tion of the result of an operation is available in OCL, it can be used
as implementation. However, there may be a performance penalty.

� Use test cases to �nd errors: Conformance tests seem to be the most
practical option, used for instance in the Java Community Process.
While they do not provide a proof of correctness, they are able to
detect many errors, especially simple copy-paste issues and common
problems such as special case handling if well constructed.

In the Infolayer system, it may make sense to replace parts of the OCL frame-
work by \standard"-components. However, the existing tools are mainly
addressing Java code generation, whereas we are interested in direct inter-
pretation. Of course running conformance tests would be a desirable option,
but currently the availability of tests is limited. We were able to collect some
general tests from the precise UML mailing list, which actually helped to
�nd and eliminate several bugs in the Infolayer OCL implementation. How-
ever, the tests are limited in scope. The MuSoft project is using JUnit [21]
test to test some aspects of the HTML code generated by the Infolayer, but
not for testing OCL and model correctness in general. The availability of a
more sophisticated \o�cial" test suite from the OMG would probably help
to improve the quality and interoperability of UML tools signi�cantly.
The source code of Infolayer system is available at http://infolayer.org.

Bibliography

[1] Action Semantics for the UML, August 2001. OMG ad/2001-08-04.
[2] Adobe Systems, Inc. PDF Reference: Version 1.4 (3rd Edition).

Addison-Wesley, 2001.
[3] Klaus Alfert, Ernst-Erich Doberkat, and Gregor Engels. MuSofT

Bericht Nr.2: Ergebnisbericht des Jahres 2002 des Projektes MuSofT
{ \Multimedia in der SoftwareTechnik". Technical Report 133, Uni-
versity of Dortmund, Computer Science X, March 2003.

[4] Klaus Alfert, Ernst-Erich Doberkat, Gregor Engels, Marc Lohmann,
Johannes Magenheim, and Andy Sch�urr. MuSofT: Multimedia in der
SoftwareTechnik. In Johannes Siedersleben and Debora Weber-Wul�,
editors, Software Engineerung im Unterricht der Hochschulen Berlin
2003 (SEUH 8), pages 70 { 80. dPunkt-Verlag, Heidelberg, February
2003.

[5] Apache Software Foundation. Formatting Object Processor (FOP).
http://xml.apache.org/fop/.

[6] Attribute-relation �le format (ar�).
http://www.cs.waikato.ac.nz/�ml/weka/ar�.html.

[7] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes,
J. Letkowski, and M. Aronson. Extending UML to support ontology
engineering for the Semantic Web. In C. Kobryn M. Gogolla, editor, In
Fourth International Conference on The Uni�ed Modeling Language,
number 2185 in LNCS, pages 342{360. Springer-Verlag, October 2001.

[8] H. Baumeister, N. Koch, and L. Mandel. Towards a UML extension
for hypermedia design. In Proceedings of UML'99, 1999.

153

154 BIBLIOGRAPHY

[9] Tim Berners-Lee and Daniel Connolly. Hypertext Markup Language
(HTML), June 1993. Internet Draft (Working Document).

[10] Boldsoft et al. Response to the UML 2.0 OCL RfP (ad/2000-09-
03), January 2003. Revised Submission, Version 1.6. OMG Document
ad/2003-01-17.

[11] Alex Borgida. On the relative expressiveness of Description Logics
and Predicate Logics. Arti�cial Intelligence, pages 353{367, 1996.

[12] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science, 9(2):171{216,
April 1985.

[13] Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel Klein, Barbara
Paech, Bernhard Rumpe, and Veronika Thurner. Towards a formal-
ization of the Uni�ed Modeling Language, 1997.

[14] Rob Brooks-Bilson. Programming ColdFusion. O'Reilly, 2001.
[15] Jean-Michel Bruel. Transforming UML models to formal speci�ca-

tions. In Luis Andrade, Ana Moreira, Akash Deshpande, and Stuart
Kent, editors, Proceedings of the OOPSLA'98 Workshop on Formal-
izing UML. Why? How?, 1998.

[16] M. Buchheit, F. Donini, and A. Schaerf. Decidable reasoning in ter-
minological knowledge representation systems. Journal of Arti�cial
Intelligence Research, 1:109{138, 1993.

[17] R. G. G. Cattell and Douglas K. Barry. The Object Data Standard
ODMG 3.0. Morgan Kaufmann, 2000.

[18] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Lan-
guage (WebML): A modeling language for designing Web Sites. Com-
puter Networks, 33(1{6):137{157, 2000.

[19] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp,
and James Rice. OKBC: A programmatic foundation for knowledge
base interoperability. In AAAI/IAAI, pages 600{607, 1998.

[20] P.P Chen. The entity/relationship model: toward a uni�ed view of
data. ACM Transaction on Database Systems, pages 9{36, 1976.

BIBLIOGRAPHY 155

[21] Yoonsik Cheon and Gary T. Leavens. A simple and practical approach
to unit testing: The JML and JUnit way. Technical Report 01{12, Iowa
State University, 2001.

[22] Jim Conallen. Modeling web application architectures with UML.
Communications of the ACM, 42(10):63{70, 1999.

[23] The World Wide Web Consortium. XSL Transformations (XSLT)
version 1.0, 1999. http://www.w3.org/TR/1999/REC-xslt-19991116.

[24] The World Wide Web Consortium. SOAP Version 1.2 Part 1: Mes-
saging Framework, 2002. http://www.w3.org/TR/2002/CR-soap12-
part1-20021219/.

[25] The World Wide Web Consortium. SOAP Version 1.2 Part
2: Adjuncts, 2002. http://www.w3.org/TR/2002/CR-soap12-part2-
20021219/.

[26] Microsoft Corporation. ASP.NET Web: The o�cial Microsoft
ASP.NET site. http://www.asp.net/.

[27] Aaron Crane. Experiences of using PHP in large websites. In Linux
2002, 2002.

[28] S. Crane�eld and M. Purvis. UML as an ontology modelling
language. In Proceedings of the Workshop on Intelligent Infor-
mation Integration, 16th International Joint Conference on Arti�-
cial Intelligence (IJCAI-99), 1999. http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-23/crane�eld-ijcai99-iii.pdf.

[29] Stephen Crane�eld, Stefan Haustein, and Martin Purvis. UML-based
ontology modelling for software agents. In Proceedings of the Au-
tonomous Agents 2001 Workshop on Ontologies in Agent Systems,
May 2001.

[30] D.H.Akehurst and B.Bordbar. On querying UML data models with
OCL. In UML 2001 Modeling Languages, Concepts and Tools, October
2001.

[31] Digital imaging and communication in medicine (DICOM), 2004.

156 BIBLIOGRAPHY

[32] Ernst-Erich Doberkat and Gregor Engels. Musoft { multimedia in der
softwaretechnik. Informatik Forschung und Entwicklung, 17(1):41{44,
2002. Springer Verlag.

[33] Michael Eichberg. MDA and programming languages. In OOPSLA
2002 Workshop Generative Techniques in the context of Model Driven
Architecture, 2002.

[34] H. Eriksson, R. W. Fergerson, Y. Shahar, and M. A. Musen. Au-
tomatic generation of ontology editors. In Twelfth Ban� Knowledge
Acquisition for Knowledge-based systems Workshop, Ban�, Alberta,
Canada, 1999.

[35] Andy Evans and Tony Clark. Foundations of the Uni�ed Modeling
Language. In Proc. of the 2nd BCS-FACS Northern Formal Methods
Workshop, Ilkley, UK, 23-24 September 1997, 1997.

[36] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol {
HTTP/1.1, 1999. http://www.ietf.org/rfc/rfc2616.txt.

[37] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, 2000.

[38] Frank Finger. Design and implementation of a modular OCL compiler.
Master's thesis, TU Dresden, March 2000.

[39] S. Flake and W. M�uller. OclType - a type or metatype? In Workshop
OCL 2.0 { Industry standard or scienti�c playground? at UML 2003,
Electronic Notes in Theoretical Computer Science, San Francisco, CA,
USA, October 2003. Elsevier, Amsterdam, The Netherlands.

[40] WAP Forum. Wireless Markup Language (WML), April 1998.
http://www.wapforum.org/.

[41] D. Frankel. Model Driven Architecture { Applying MDA to Enterprise
Computing. OMG Press, 2003.

[42] F. Garzotto and P. Paolini. HDM| a model-based approach to hyper-
text application design. ACM Transactions on Information Systems,
11(1):1{26, Jan 1993.

BIBLIOGRAPHY 157

[43] David Goldberg. What every computer scientist should know about
oating-point arithmetic. ACM Computing Surveys, 23(1):5{48, 1991.

[44] W. E. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and
M. Musen. Knowledge modeling at the millennium { the design and
evolution of protege-2000, October 1999.

[45] Thomas R. Gruber. A translation approach to portabele ontology
speci�cations. In Knowledge Aquisition, 1993.

[46] Volker Haarslev and Ralf M�oller. Racer: A core inference engine for the
semantic web. In Proceedings of the 2nd International Workshop on
Evaluation of Ontology-based Tools (EON2003), located at the 2nd In-
ternational Semantic Web Conference ISWC 2003, pages 27{36, Sani-
bel Island, Florida, USA, October 2003.

[47] Frank Halasz and Mayer Schwartz. The dexter hypertext reference
model. In Hypertext Workshop, NIST Special Publication, pages 95{
133, Gaithersburg, Md, January 1990. National Institute of Standards
and Technology.

[48] Siegfried Handschuh, Ste�en Staab, and Alexander Maedche. Cream
| creating relational metadata with a component-based ontology-
driven annotation framework. In First International Conference on
Knowledge Capture, 2001.

[49] Report on the programming language Haskell version 1.1, 1991.
[50] Stefan Haustein. Information environments for software agents. In

Wolfram Burgard, Thomas Christaller, and Armin B. Cremers, edi-
tors, KI-99: Advances in Arti�cial Intelligence, volume 1701 of LNAI,
pages 295{298. Springer Verlag, September 1999.

[51] Stefan Haustein. Utilising an ontology based repository to con-
nect Web miners and application agents. In Proceedings of the
ECML/PKDD Workshop on Semantic Web Mining, September 2001.

[52] Stefan Haustein and J�org Pleumann. Easing participation in the Se-
mantic Web. In Martin Frank, Natasha Noy, and Ste�en Staab, edi-
tors, WWW2002 International Workshop on the Semantic Web, vol-
ume 55 of CEUR Workshop Proceedings, 2002.

158 BIBLIOGRAPHY

[53] Stefan Haustein and J�org Pleumann. Is Participation in the Semantic
Web too Di�cult? In Ian Horrocks and James Hendler, editors, First
International Semantic Web Conference, volume 2342 of LNCS, pages
448{453. Springer, 2002.

[54] Stefan Haustein and J�org Pleumann. OCL as expression language in
an action semantics surface language. In Octavian Patrascoiu, editor,
OCL and Model Driven Engineering, pages 99{113. University of Kent,
2004.

[55] Stefan Haustein and J�org Pleumann. A model-driven runtime envi-
ronment for Web applications. Software and Systems Modeling, 2005.

[56] P. J. Hayes. In defence of logic. In Proc. of the 5th IJCAI, pages
559{565, Cambridge, MA, 1977.

[57] Reiko Heckel and Marc Lohmann. Model-based development of web
applications using graphical reaction rules. In M. Pezz, editor, Funda-
mental Approaches to Software Engineering, pages 170{183. Springer,
2003.

[58] Brian Henderson-Sellers and Franck Barbier. Black and white dia-
monds. In Robert France and Bernhard Rumpe, editors, UML'99 -
The Uni�ed Modeling Language. Beyond the Standard. Second Inter-
national Conference, Fort Collins, CO, USA, October 28-30, volume
1723 of LNCS, pages 550{565. Springer, 1999.

[59] Rolf Hennicker and Nora Koch. Systematic design of web applications
with uml. In Uni�ed Modeling Language: Systems Analysis, Design
and Development Issues, pages 1{20. Idea Group Publishing, 2001.

[60] I. Horrocks. Using an expressive description logic: Fact or �ction?
In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the Sixth
International Conference (KR'98), pages 636{647, San Francisco, Cal-
ifornia, June 1998. Morgan Kaufmann Publishers.

[61] Heinrich Hussmann, Birgit Demuth, and Frank Finger. Modular ar-
chitecture for a toolset supporting OCL. In Andy Evans, Stuart Kent,
and Bran Selic, editors, UML 2000 - The Uni�ed Modeling Language.

BIBLIOGRAPHY 159

Advancing the Standard. Third International Conference, York, UK,
October 2000, Proceedings, volume 1939 of LNCS, pages 278{293.
Springer, 2000.

[62] IEEE Learning Technology Standards Committee. Final draft
of the IEEE standard for Learning Objects and metadata.
http://ltsc.ieee.org/wg12, 2002.

[63] Tom�as Isakowitz, Edward A. Stohr, and P. Balasubramanian. RMM:
A methodology for structured hypermedia design. Communications of
the ACM, 38(8):34{44, 1995.

[64] Kabira Technologies, Inc. Kabira Action Semantics.
http://www.kabira.com.

[65] Tomihisa Kamada. Compact HTML for Small Informa-
tion Appliances (cHTML). W3C Note, February 1998.
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209.

[66] Kennedy Carter Ltd. Action Speci�cation Language (ASL).
http://www.kc.com.

[67] Stephan Kepser. A proof of the turing-completeness of XSLT and
Xquery. Technical report, University of Tuebingen, May 2002. SFB
441.

[68] Anneke Kleppe and Jos Warmer. Extending OCL to include actions.
In Andy Evans, Stuart Kent, and Bran Selic, editors, UML 2000 - The
Uni�ed Modeling Language. Advancing the Standard. Third Interna-
tional Conference, York, UK, October 2000, Proceedings, volume 1939
of LNCS, pages 278{293. Springer, 2000.

[69] Andreas Kraus and Nora Koch. Generation of web applications from
UML models using an XML publishing framework. In Integrated De-
sign and Process Technology, IDPT-2002, 2002.

[70] Michael Kroll. Designing embedded Java software for the visualiza-
tion and analysis of DICOM waveform objects on resource constrained
computer platforms. Master's thesis, University of Applied Sciences,
Dortmund, 2004.

160 BIBLIOGRAPHY

[71] Ora Lassila and Ralph R. Swick. Resource Description Framework
(RDF) model and syntax speci�cation. Technical report, World Wide
Web Consortium, 1999.
http://www.w3.org/TR/1999/REC-RDF-SYNTAX-19990222.

[72] H�akon Wium Lie and Bert Bos. Cascading style sheets, level 1, Jan-
uary 1999. W3C Recommendation 17 Dec 1996, revised 11 Jan 1999.

[73] Marc Lohmann, Stefan Sauer, and Tim Schattkowsky. ProGUM-Web:
Tool-support for model-bases development of web applications. In
UML 2003, number 2863 in LNCS, pages 101{105. Springer, 2003.

[74] Bertram Lud�ascher, Ilkay Altintas, and Amarnath Gupta. Time to
leave the trees: From syntactic to conceptual querying of xml. In
Intl. Workshop on XML Data Management (XMLDM), in conjunction
with Intl. Conf. on Extending Database Technology (EDBT), Prague,
March 2002.

[75] Luis Mandel and Mar��a Victoria Cengarle. On the expressive power
of OCL. In FM'99 - Formal Methods. World Congress on Formal
Methods in the Development of Computing Systems, Toulouse, France,
September 1999. Proceedings, Volume I, volume 1708 of LNCS, pages
854{874. Springer, 1999.

[76] Murali Mani, Dongwon Lee, and Richard R. Muntz. Semantic data
modeling using XML schemas. In 20th International Conference on
Conceptual Modeling (ER 2001), 2001.

[77] Bruce Martin and Bashar Jano. WAP Binary XML Content Format
(WBXML). W3C Note, June 1999. http://www.w3.org/TR/wbxml.

[78] A. McDonald and R. Welland. Web engineering in practice. In Pro-
ceedings of the Fourth Workshop on Web Engineering, pages 21{30,
May 2001.

[79] Santiago Meli�a, Cristina Cachero, and Jaime G�omez. Using MDA in
web software architectures. In 2nd International Workshop on Gener-
ative Techniques in the Context of MDA, Anaheim, California. USA,
October 2003.

BIBLIOGRAPHY 161

[80] Stephen J. Mellor and Marc Balcer. Executable UML { A Foundation
for Model-Driven Architecture. Addison Wesley Longman, 2002.

[81] Stephen J. Mellor, Steve Tockey, Rodolphe Arthaud, and Philippe
LeBlanc. Software-platform-independent, precise action speci�cations
for UML. In Jean B�ezivin and Pierre-Alain Muller, editors, The Uni-
�ed Modeling Language, UML'98 - Beyond the Notation. First In-
ternational Workshop, Mulhouse, France, June 1998, pages 281{286,
1998.

[82] Sun Microsystems. JavaServer Pages { Dynamically Generated Web
Content. http://java.sun.com/products/jsp/, 2003.

[83] Marvin Minsky. A framework for representing knowledge. Memo 306,
MIT-AI Laboratory, June 1974.

[84] Rolf M�oller and Volker Haarslev. Description logics for the semantic
web: Racer as a basis for building agent systems. K�unstliche Intelli-
genz, pages 10 { 15, March 2003.

[85] Peter D. Mosses. Theory and practice of action semantics. Techni-
cal Report BRICS RS-96-53, Department of Computer Science, Uni-
versity of Aarhus, Ny Munkegade, building 540, DK-8000 Aarhus C,
Denmark, 1996.

[86] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema lan-
guages using formal language theory. In Extreme Markup Languages,
Montreal, Canada, 2000.

[87] Peter Naur and J. Backus. Report on the algorithmic language AL-
GOL 60. j-CACM, 3(5):299{314, May 1960.

[88] B. Nebel. Reasoning and Revision in Hybrid Representation Sys-
tems. Number 422 in Lecture Notes in Arti�cial Intelligence. Springer-
Verlag, 1990.

[89] Natalya Fidman Noy, Ray W. Fergerson, and Mark A. Musen. The
knowledge model of Prot�eg�e-2000: Combining interoperability and
exibility, 2000.

[90] Object Management Group (OMG). Homepage. http://www.omg.org.

162 BIBLIOGRAPHY

[91] Object Management Group (OMG). Model Driven Architecture
(MDA). http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01, 2001.

[92] Object Management Group (OMG). XML Metadata Inter-
change (XMI) Speci�cation 1.2, 2002. http://www.omg.org/cgi-
bin/doc?formal/2002-01-01.

[93] Object Management Group (OMG). Uni�ed Modeling Lan-
guage (UML) 1.5 Speci�cation. http://www.omg.org/cgi-
bin/doc?formal/03-03-01, 2003.

[94] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois, Urbana-Champaign, IL, USA, 1992.

[95] Ese Ozkarahan. Database Machines and Database Management. Pren-
tice Hall, 1986.

[96] Octavian Patrascoiu and Peter Rodgers. Embedding OCL expressions
in YATL. In Octavian Patrascoiu, editor, OCL and Model Driven
Engineering, pages 60{68. University of Kent, 2004.

[97] PHP: Hypertext Preprocessor - homepage, 2001. http://www.php.net.
[98] E. Plaza, J. Arcos, P. Noriega, and C. Sierra. Competing agents in

agent-mediated institutions. Personal Technologies Journal, 2(3):1{9,
1998.

[99] J�org Pleumann. Erfahrungen mit dem multimedialen didaktischen
Modellierungswerkzeug DAVE. In 2. Deutsche e-Learning Fachtagung
(DeLFI). Gesellschaft f�ur Informatik, September 2004.

[100] J�org Pleumann and Stefan Haustein. A model-driven runtime environ-
ment for Web applications. In UML Conference 2003, LNCS. Springer
Verlag, 2003.

[101] Project Technology, Inc. BridgePoint Action Language (AL).
http://www.projtech.com.

[102] Mark Richters. A Precise Approach to Validating UML Models and
OCL Constraints. PhD thesis, Universit�at Bremen, Logos Verlag,
Berlin, BISS Monographs, No. 14, 2002.

BIBLIOGRAPHY 163

[103] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, and Nosa Omorogbe.
The Architecture of a UML Virtual Machine. In 2001 Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA '01), pages 327{341. ACM Press, 2001.

[104] James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall International Editions, New York, NY, 1991.

[105] Bernhard Rumpe. A note on semantics (with an emphasis on UML).
In Second ECOOP Workshop on Precise Behavioral Semantics (with
an Emphasis on OO Business Speci�cations), 1998.

[106] Tim Schattkoswki and Marc Lohmann. Rapid Development of Modu-
lar Dynamic Web Sites Using UML. In J.M.-Jezequel, H. Hussmann,
and S. Cook, editors, UML 2002, volume 2460 of LNCS, pages 336{
350. Springer, 2002.

[107] U. Sch�oning. Theoretische Informatik { kurzgefasst. Spektrum
Akademischer Verlag, 3 edition, 1999.

[108] B. Sch�utze, M. Kroll, H.-G. Lipinski, and T.J. Filler. Mobiles com-
puterbasiertes Lernen in der anatomischen Lehre. In H. H�opfner
and G. Saake, editors, Workshop Grundlagen und Anwendungen
mobiler Informationstechnologie des GI-Arbeitskreises Mobile Daten-
banken und Informationssysteme, pages 104{113, 2004.

[109] Daniel Schwabe, Gustavo Rossi, and Simone D. J. Barbosa. Systematic
Hypermedia Application Design with OOHDM. In UK Conference on
Hypertext, pages 116{128, 1996.

[110] Mika Siikarla, Jari Peltonen, and Petri Selonen. Combining ocl and
programming languages for uml model processing. In Workshop OCL
2.0 { Industry standard or scienti�c playground? at UML 2003, Elec-
tronic Notes in Theoretical Computer Science, San Francisco, CA,
USA, October 2003. Elsevier, Amsterdam, The Netherlands.

[111] Richard Soley et al. Model Driven Architecture. Object Management
Group White Paper, November 2000.

[112] J. M. Spivey. The Z Reference Manual. Prentice Hall, 1992.

164 BIBLIOGRAPHY

[113] P. Spyns, D. Oberle, R. Volz, J. Zheng, M. Jarrar, Y. Sure, R. Studer,
and R. Meersman. Ontoweb { a semantic web community portal. In
PAKM, 2002.

[114] York Sure. SWRC - Semantic Web Research Community Ontology,
2001. http://ontobroker.semanticweb.org/ontos/swrc.html.

[115] Thomas Kudrass Tobias Krumbein. Rule-based generation of XML
schemas from UML class diagrams. In Berliner XML Tage 2003, pages
213{227, 2003.

[116] Je�rey D. Ullman. Principles of Database Systems. Computer Science
Press, 1982.

[117] International Telecommunication Union. Speci�cation and description
language (SDL). Technical Report Z.100, ITU-T, 1999.

[118] World Wide Web Consortium (W3C). The semantic web.
http://www.w3.org/2001/sw/.

[119] Dave Winer. XML RPC speci�cation, June 1999.
http://www.xmlrpc.com/spec.

[120] WorldWideWeb Consortium (W3C). Homepage. http://www.w3.org.
[121] World Wide Web Consortium (W3C). XML Path Language (XPath)

Version 1.0, November 1999. http://www.w3.org/TR/1999/REC-
xpath-19991116.

[122] World Wide Web Consortium (W3C). Extensible Markup
Language (XML) Speci�cation 1.0 (Second Edition), 2000.
http://www.w3.org/TR/2000/REC-xml-20001006.

[123] World Wide Web Consortium (W3C). XML Schema part 1:
Structures, 2001. http://www.w3.org/TR/2001/REC-xmlschema-1-
20010502/.

[124] World Wide Web Consortium (W3C). OWL Web Ontol-
ogy Language semantics and abstract syntax, March 2004.
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/.

[125] XOpus. The friendly XML editor. http://xopus.com/.

BIBLIOGRAPHY 165

The URLs in the bibliography have been last visited on 2005-09-01.

Joint Publications

In joint publications, the author's contributions were 30 % for [29], 70 % for
[52], 70 % for [53], and 80 % for [54]. To [100], J�org Pleumann contributed
the integration of state machines and the SOAP interface; to the extended
version of the paper for the SoSyM journal [55], he additionally contributed
the case study.

166 BIBLIOGRAPHY

Appendix A

Installation and

Con�guration

This appendix contains an overview of all con�guration �les and the internal �le
system structure. After the installation, it is recommended to change the password
of the default user immediately via the web interface.

A.1 Con�guration File Overview

Table A.1 shows the typical �le system structure of an infolayer servlet, relative to
the servlet root directory. Files marked with an R are searched in the ressources
directory of the Infolayer JAR �le if missing in the servlet directory. For �les
marked with an C, the contents of both locations are combined.

A.2 Model File Location

The location of the XMI �le containing the model is denoted by the model param-
eter in the web.xml �le:

<init-param>
<param-name>model</param-name>
<param-value>model.xml</param-value>

</init-param>

For testing the Infolayer, mainly UML Magic Draw (versions 5.5 and 7.0) has been
used.

167

168 APPENDIX A. INSTALLATION AND CONFIGURATION

File Purpose

WEB-INF/web.xml General information about the Servlet:
model location (app. A.2) and telnet
port (app A.3)

WEB-INF/lib/il-servlet.jar JAR File containing the Infolayer Soft-
ware

model.xml Default XMI Model �le; name and loca-
tion may di�er, depending on web.xml.

instances/instances.xml Instance data XML �le (chapter 8).
instances/instances.chg Instance data updates relative to in-

stances.xml
html/ R HTML and possibly other template

�les, depending on httpd.conf (chapter
7).

conf/http.conf C Allows to de�ne URL manupulation
and restriction rules (sec. 7.5.8). Also
de�nes connections between �le exten-
sions, template loaders and template di-
rectories (sec. D.4).

conf/mime.types C Mapping from MIME types to �le name
extensions.

i18n.dat C Internationalization information (sec.
A.5).

Table A.1: Infolayer File Structure

A.3. TELNET INTERFACE 169

A.3 Telnet Interface

The command line interface of the Infolayer described in chapter 3 is accesible
with a telnet client via a con�gurable TCP port. It can be accessed by any user
with administrative rights. A default port number is determined by the name of
the installation directory and is displayed on the \administration" page. The port
number can be set to a �xed value using the shellport init parameter in the web.xml
�le, e.g.:

<init-param>
<param-name>shellport</param-name>
<param-value>2001</param-value>

</init-param>

The command line interface can be disabled by setting the shellport parameter to
-1.

A.4 Administrative Users

In order to determine whether a user has administrative rights, the Infolayer uses
the boolean property admin of the user class. If the user class does not contain an
admin property, the user with the login \admin" is the only user with administrative
rights. Table 4.2 shows an overview of the properties of the user class that are
interpreted by the Infolayer system.

If the system does not contain any instance of the user class, a user with the login
name and password \admin" is created automatically. However, this is not possible
if the user class does not contain the login property. In that case, it is necessary to
create an initial user manually in the persistent storage system that is holding the
actual user data.

A.5 Internationalization

It is possible to localize the standard elements of the Infolayer user interface, such
as Create or Edit buttons.

For this purpose, the resource �le i18n.dat in the Infolayer resource directory con-
tains a set of entries of the form \element-name[lang-code]=localized-value", for
example:

170 APPENDIX A. INSTALLATION AND CONFIGURATION

create[de]=Erzeugen
create[en]=Create

In order to support further languages, according entries can be added to the i18n
�le.

Appendix B

OCL Overview

This appendinx contains an overview of the Object Constraint Language, including
additions to the OCL standard library that we needed for our application. The full
set of prede�ned classi�ers and operations is described in appendix E.

B.1 Context and self

In OCL, the UML context of an OCL expression within an UML model can be
speci�ed using a context declaration. In the Infolayer system, the expression must
always be attached to the contextual model element, which is easily done in most
case tools. If a context declaration is given, it must match the attached element.

The reserved word self is used to refer to the contextual instance. For instance, if
the context is Person, then self refers to an instance of Person.

B.2 Constraints

While OCL can be used to specify invariants and pre- and postconditions, only in-
variants that are attached to classes are actually veri�ed at runtime in the Infolayer
system.

Invariants must be OCL expressions of type Boolean and must be true for all
instances of the attached class at any time. Constraint violations are clearly high-
lighted in the Infolayer user interface.

The type of the contextual instance of an OCL expression, which is part of an
invariant, is written with the context keyword, followed by the name of the type.
The label inv: declares the constraint to be an \invariant" constraint.

171

172 APPENDIX B. OCL OVERVIEW

For example, the following constraint requires that all persons with the role Assis-
tant must have at least one publication, where self is an instance of type Person:

context Person inv:
self.role = role::Assistant

implies self.publication->notEmpty()

Here, the keyword self can be dropped because the context is clear:

context Person inv:
role = Role::Assistant implies project.notEmpty()

B.3 Types and Type Conformance

In addition to the types de�ned by the user in the UML model, several prede�ned
types and operations are available in OCL expressions. Most prede�ned types
were already introduced in the previous sections: the Infolayer system supports the
basic OCL data types Boolean, Integer, String, Enumeration and Real, as well as
the abstract base type OclAny. Additionally, the primitive data types Binary and
DateTime, which are not part of the OCL speci�cation, are available. In contrast
to objects, basic types do not have attributes or an identity.

A special literal value that conforms to all types is OclUnde�ned. It is used to
denote an unde�ned value, for instance unassigned attribute values that have no
default value. A simple OCL expression that yields OclUnde�ned is Sequencef1g-
>any(false).

B.3.1 OclAny
OCL provides a set of general methods that can be applied on any type in OCL.
the abstract type OclAny is the implicit super type of all types available in OCL.
It provides the basic in�x operators = and <>, returning a boolean determining
whether the compared objects are equal or di�erent. The operation oclIsKindOf()
determines whether the given object is compatible to a known type, and the oper-
ation oclAsType() performs a type cast.

Please note that the OCL operation oclIsNew() is not supported in the Infolayer
system.

The Infolayer provides a set of additional operations for OclAny, which are not
contained in the OCL speci�cation. The method toString() returns a String rep-
resentation of the object. The comparison operators <, <=, > and >= operate

B.3. TYPES AND TYPE CONFORMANCE 173

based on the toString() method. Sub types such as Real overload those operations
with more adequate functionality.

The operations de�ned for OclAny are inherited by all other types.

B.3.2 String
The String type can be used to store Unicode character strings. It provides the
concat() method to concatenate strings, toUpper() and toLower() to convert be-
tween upper and lower case. In OCL expressions, String literals must be contained
in single quotes. The backslash character is used as escape character and has a
special meaning in String literals.

An example for an OCL string expression is:

'can you hear me?'.toUpper()

B.3.3 Boolean
The domain of the Boolean data type are the boolean values true and false. Sup-
ported operations are not in pre�x notation, and and, or, xor and implies in in�x
notation.

A special boolean operation is the functional if operation:

if b then expr1 else expr2 endif

If b is true, the result is the value of evaluating expr1; otherwise, the result is the
value of evaluating expr2. expr1 and expr2 must have identical types.

B.3.4 Real
Real values are stored in the Infolayer as double precision 64 bit double precision
IEEE 754 oating point numbers [43].

For Real, the mathematical pre�x operation � and the in�x operations +, �, =, and
� are supported. The comparison operations =, <>, <, <=, >, and >= inherited
from OclAny are overwritten with adequate numeric comparisons. Additionally,
the Real data type provides the methods abs(), oor(), round(), max(), and min().

An example for an OCL expression of type Real is:

38.86 + 3.14

174 APPENDIX B. OCL OVERVIEW

B.3.5 Integer

The domain of the Integer data type are 64-Bit signed integers. Like for Real,
the mathematical standard operators �, =, <>, <, <=, >, >=, +, �, =, and �

are provided. While +, �, and � return an integer value if both parameters are
integers, the =-operator always returns a real value. Additionally, the Integer data
type provides the methods abs(), div(), mod(), max(), and min().

An example for an OCL integer expression is:

4 - 4 - 4

B.3.6 DateTime

The data type DateTime is not contained in the OCL speci�cation. It can be used
to store dates, times, or both.

B.3.7 Binary

The Binary data type represents a sequence of bytes. It is not contained in the
OCL speci�cation. It can be used to store large binary objects such as media �les
in the Infolayer.

If support for multiple media �le formats is required, then the prede�ned File object
may be a more suitable option. In addition to the binary �eld data, holding the �le
content, the class File contains a string �eld name containing the �le name.

B.3.8 Enumeration and Object Literals

In OCL expressions, enumeration literals must be pre�xed with their type, sepa-
rated by a double colon, e.g. Job::Scientist.

In addition to the OCL standard, the Infolayer provides access to objects using a
dollar sign ($), immediately followed by the instance ID.

B.3.9 The Classes Object, Infolayer, User, and File

In addition to the primitive types, the Infolayer system de�nes the prede�ned classes
Object, Infolayer, User, and File, as described in the previous chapter.

B.4. PROPERTIES AND OPERATIONS 175

B.3.10 Type Conformance

The OCL types are organized in a type hierarchy. This hierarchy determines con-
formance of the di�erent types to each other. Each type conforms to the transitive
closure of its super types.

The operation oclAsType(OclType) can be used to re-type (cast) a type to one of
its subtypes. The oclAsType(OclType) operation results in the same object, but the
type is OclType.

In some cases, the evaluation result of parts of OCL expressions may be unde�ned.
In this case, the whole expression will be unde�ned. The only exception to this
rule are the boolean operators and, or and implies, which make use of short-circuit
evaluation:

� True or anything is True

� False and anything is False

� False implies anything

B.4 Properties and Operations

In addition to the prede�ned OCL and Infolayer types, the classes, attributes,
associations and operations de�ned in the UML model can be accessed in OCL
expressions.

B.4.1 Attributes and Association Ends

The values of attributes and association ends can be accessed by a dot, followed
by the name. For example, in a Person context, the attribute givenName can be
accessed using the following expression:

self.givenName

The type of this expression is the type of the attribute givenName, which is the
basic type String.

Starting from a given object, it is possible to navigate an association on the class by
using the name of the opposite association end. If the association end is unnamed,
the type of the opposite end of the association, starting with a lowercase character,

176 APPENDIX B. OCL OVERVIEW

can be used, as speci�ed in the OCL speci�cation. However, this is possible only if
the role name is not ambiguous.

For attributes and association ends with upper cardinality limits greater than one,
a collection type is returned. For instance, using the following expression, it is
possible to navigate from a person to the Set of projects the person is participating
in:

self.projects

When the ordering of the attribute or association end is set to Ordered, a Sequence
is returned instead of a Set.

Collections like Sets, Bags and Sequences are prede�ned types in OCL. Using the
arrow (`->'), it is possible to access the properties of the collection types. For
example, the following expression would return an integer value determining the
number of instances for the previous query:

self.projects->size()

Using the dot and arrow syntax, properties can be combined to more complex
expressions, which are evaluated from left to right.

Applying the dot syntax to attributes or association ends with a maximum car-
dinality greater than one performs an implicit collect operation (section B.7.4).
For instance, self.projects.name would be expanded to self.projects->collect(name),
delivering a collection of the names of all projects linked to self. Similarly, when us-
ing the arrow syntax for properties with a maximum cardinality of one, an implicit
conversion to a collection with one or none elements is performed.

Please note that association classes and quali�ed associations are not supported in
the Infolayer system.

B.4.2 Operations
The results of method invocations can be accessed similar to attributes, except that
the method name must be followed by a comma separated argument list, enclosed
in parentheses.

For example, the following expression returns a String representation of self:

self.toString()

In OCL expressions, all operations of the model without side e�ects are accessible.

B.5. KEYWORDS AND OPERATORS 177

Precedence Operators
1 @pre (not supported in the Infolayer system)
2 `.' and `{>'
3 unary not and unary `-'
4 `*' and `/'
5 `+' and binary `{'
6 if - then - else - endif
7 `<', `<=', `>', `>='
8 item `=', `<>'
9 and, or, and xor
10 implies

Table B.1: OCL Precedence Order for Operators

B.5 Keywords and Operators

The following identi�ers are reserved keywords in OCL, and cannot be used as
variable names: context, def, endif, endpackage, else, if, implies, in, inv, not, let,
or, package, post, pre, then, xor.

In OCL, the operators `*', `/', `+', `{', `<', `>', `<=', `>=', `=', and `<>' are de�ned
as in�x operators. In�x operators will be interpreted as method invocations on the
�rst operand with the second operand as parameter. The pre�x operators not and
unary `{' are interpreted as method invocations on their only operand.

Table B.1 shows the OCL precedence order for operators, starting with the highest
precedence. Regular parentheses can be used to override the default precedence.

B.6 Let Expressions

Values and functions that are needed multiple times can be bound to a simple name
using a let expression. Let expressions must always be listed at the beginning of
an OCL expression, immediately following the context declaration:

context Person inv:
let type = Role::Assistant
let magicNumber = 38.86 + 3.14

self.job = type
implies self.project->notEmpty()

178 APPENDIX B. OCL OVERVIEW

In the Infolayer, it is possible to use let expressions to de�ne named values, but
functions are not supported. All functions must be de�ned as regular operations in
the model.

B.7 Collections

Since property values with upper multiplicity restrictions greater than one are re-
turned as collections, collections play an important role in OCL. The type Collec-
tion itself is the abstract base type of the four supported collection types Set, Bag,
Sequence and OrderedSet:

� A Set in OCL corresponds to a mathematical set. It does not contain dupli-
cate elements. There is no order de�ned on a set.

� Like for a set, there is no order de�ned on a Bag. In contrast to sets, bags
may contain duplicate elements

� Like a bag, an OCL Sequence may contain duplicate elements. Additionally,
the ordering of the elements in a sequence is preserved.

� A OrderedSet does not contain duplicate elements, but in contrast to the Set,
the order of the elements is preserved.

Collections can be speci�ed in OCL by the type of the collection, followed by a
comma separated list of elements, enclosed in curly brackets. Examples for collec-
tions are:

Set{'Hello', 'World'}
Bag{5, 5, 5, 5403}
Sequence{4, 3, 2, 1, 1, 2, 3, 4}

B.7.1 Collection Type Conformance

OCL collections are typed depending on the contained element type. If Collec-
tion(X) is a collection of type X, and Y is a super type of X, then the type Col-
lection(X) conforms to the type Collection(Y). For the given base types, Set(X)
conforms to Set(Y), Collection(Y), and Collection(X).

B.7. COLLECTIONS 179

Operation Description

any(OclExpression) Returns any object from the collection where the
given boolean expression evaluates to true

asBag() Returns the collection as Bag
asSet() Returns the collection as Set
asSequence() Returns the collection as Sequence
at(Integer) Returns the element with the given index; only avail-

able for sequences
collect(OclExpression) Collects the evaluation results of the given expression

for each element into a new Bag or Sequence.
count(OclAny) Counts the occurrences of the parameter object in

the collection.
excludes(OclAny) Returns true if the parameter is not contained
excludesAll(Collection) True if none of the parameter objects is contained
exists(OclExpression) True if the expression holds for any of the elements
forAll(OclExpression) True if the expression holds for all elements
includes(OclAny) Returns true if the collection contains the given ob-

ject.
includesAll(Collection) Returns true if the collection includes all objects con-

tained in the parameter.
isEmpty() True if the collection is empty.
isUnique(OclExpression) True if the evaluation results of the given expression

are distinct for all elements.
iterate(OclExpression) Iterates over the collection, accumulating values in

an accumulator variable, which is returned as result.
max() Returns the maximum of all elements.
min() Returns the minimum of all elements.
notEmpty() True if the collection is not empty.
one(OclExpression) True if the expression holds for exactly one element
reject(OclExpression) Returns a sub-collection, containing only the ele-

ments where the given boolean expression evaluates
to false.

select(OclExpression) Returns a sub-collection, containing only the ele-
ments where the given boolean expression evaluates
to true

sum() The sum of all elements.

Table B.2: Collection Operation Overview

180 APPENDIX B. OCL OVERVIEW

B.7.2 Collection Operations
OCL de�nes a large number of prede�ned collection operations. Consistent with
the de�nition of OCL as an expression language, those operations never change
collections. Operations resulting in a collection create a new collection instead
of manipulating existing collections. Table B.2 shows an overview of the most
important collection operations. A full list is provided in appendix E.

B.7.3 Iterators and Select
In addition to simple operations like size(), isEmpty(), and notEmpty(), OCL de-
�nes several operations on collections that take an OCL expression as parameter.
For these operations, the result depends on applying the given expression to all
elements of the collection.

For example, the select operation results in a �ltered collection. If the expres-
sion parameter evaluates to true for an element of the source collection, it will
be contained in the resulting collection, otherwise not. Thus, the following OCL
expression returns all instances of Person where the role �eld is set to \Assistant":

Person.allInstances()->select(role = Role::Assistant)

In the above example, it is not possible to refer to the persons themselves, only
properties of them like the job attribute can be accessed. To refer to the elements
of a collections themselves, there is a more general syntax for iterative operations:

collection-> <operation> (v | expression with v)

The variable v is called iterator. When the operation is evaluated, v iterates over
the elements, and expression-with-v is evaluated for each of them. For instance, to
select all numbers greater than 10 from a set of numbers, one could write:

Set{2, 4, 8, 16, 32}->select(v | v > 10)

It is possible to specify the type of the iterator, separated by a colon, like in the
example below:

Set{1, 3.14, 7, 10, 20, 42}
->select(oclIsKindOf(Integer))
->select(v : Integer | v mod 10 = 0)

B.7. COLLECTIONS 181

B.7.4 Path expressions and Collect
In contrast to select, collect returns a collection containing the evaluation results
of the given expression for each element, instead of just �ltering the collection. If
the original collection is a Sequence, the resulting collection is also a Sequence,
otherwise, a Bag is returned.

For example, the following expression returns a bag of strings containing all the
names of projects of a given person:

person.project->collect(name)

To make path expressions more readable, the collect operation is used as default
operation in path expressions involving collections. Thus, the following expression
is equivalent to the one given above:

person.project.name

In general, applying a property to a collection of objects will automatically be
interpreted as collect over the members of the collection with the speci�ed property.

B.7.5 The Iterate Operation
In contrast to all other collection operations, the iterate operation provides a spe-
cial accumulator variable, that can be used to accumulate elements of the original
collection into a single result. The accumulator variable is declared similar to the
iterator, except that it needs an initial value:

collection->iterate(
elem: Type,
acc: Type = init-value
| expression-with-elem-and-acc)

The variable elem is the iterator variable that is available in all other iterative
collection operations as well. The variable acc is the accumulator. It gets an initial
value of init-value.

When iterate is evaluated, elem iterates over the collection and the given expression
is evaluated for each element. The resulting value is assigned to acc after each
evaluation. Since acc may be used in the iterator expression, a value that depends
not just on the current element but also on the previous value of acc can be built.

Using iterate, it is possible to provide the functionality of all other prede�ned
collection operations. Some examples are listed below:

182 APPENDIX B. OCL OVERVIEW

collection->size() :

collection->iterate(i, v = 0 | v + 1)

collection->collect(property) :

collection->iterate(i, v = Bag{} | v->including(i))

For sequences, the elements are iterated in the order of the sequence, otherwise,
the iteration order is unde�ned.

B.8 Tuples

Tuples are sets of typed name{value pairs. Tuple literals are enclosed in curly
brackets, and the parts are separated by commas. The type names are optional,
and the order of the parts is not relevant. Examples of tuples are:

Tuple{givenName = 'John', lastName = 'Smith'}
Tuple{a:String='Foo', b=Sequcence{1..5}}

The parts of tuples are accessed by their names, using the same dot notation that
is used for accessing attributes. For instance, the expression

Tuple{x=5, y=7}.x

results in 5.

Appendix C

Customization with Tagged

Values

The Infolayer provides a powerful template mechanism for customization. However,
some basic preferences can also be con�gured by setting tagged values in the UML
model.

Table C.1 shows an overview of all tagged values that are interpreted by the Info-
layer, inuencing the appearance of the user interface.

Since the mechanism for entering tagged values is inconvenient in some UML tools,
tagged values that are interpreted by the Infolayer can also be speci�ed in the
documentation of the corresponding element. For that purpose, the documentation
must contain a line starting with @<tag-name>, followed by a whitespace and the
value of the property. Subsequent lines are added to the property value, allowing
simple speci�cation of longer entries in tools that provide only small input �elds
for tagged values (e.g. UML Magic Draw).

C.1 Labels and Descriptions

For presenting model elements, the Infolayer uses the element name as label and the
element description to generate a description of the element where adequate. Those
defaults can be overridden by setting the tagged values il-label and il-description.
For both values it is possible to add a su�x that determines the language, separated
by a hyphen. This way, di�erent labels and descriptions can be set for di�erent
supported languages. Based on the user's browser settings, the appropriate label
and description are chosen automatically at runtime. For instance, by using the

183

184 APPENDIX C. CUSTOMIZATION WITH TAGGED VALUES

Name Applicable to Description
il-label classes

attributes
association ends
operations

The given label is shown instead of the
class or property name in the user in-
terface

il-children classes This tagged value can be used to set an
association that determines a hierarchy
on the instances of this class. This will
change the instance select box and the
default instance list format to a tree
representation. Both association ends
must be attached to the same class.

il-format attributes
association ends

Determines the format of the attribute
or association end, depending on the
property type.

classes Determines the format of the instance
list of the given class.

il-hide attributes
association ends

Can be used to hide the given property
from speci�c screens of the user inter-
face. Supported values are view, edit
and query.

il-mimetype attributes Allows to set a mimetype for Binary
attributes, or to restrict the possible
mime types for File attributes.

Figure C.1: Tagged values for customizing the presentation

C.2. FORMAT STRING SYNTAX 185

tagged value il-label-de, it is possible to de�ne a German name for a class. If a
description is not available, the regular class and property documentation contained
in the XMI �le is used as description.

In the default HTML user interface, class descriptions are inserted below the list
of instances and property descriptions are attached to the corresponding label as
\hover" text.

C.2 Format String Syntax

The tagged value il-format can be used to customize the appearance of property
values and instance lists using format strings. Those format strings can not only
be used inside il-format, but also in the format attribute of several XML template
elements such as <t:valueOf>. The XML template mechanism is described in detail
in the next chapter.

C.2.1 Number Format Options
The format string for Real and Integer values is interpreted as a pattern. Internally,
the pattern string is used as parameter for the creation of a Java DecimalFormat
object, which is used for formatting. The following paragraphs summarize the
behavior described in the DecimalFormat API documentation.

A number format pattern consists of special characters such as \#" or \0" that are
replaced by digits or other characters when the format is applied to a number. For
example, \#,##0.00" applied to \8765.4321" will result in \8,765.43". Table C.2
shows an overview of the characters that have a special interpretation in number
formats. Other characters are taken literally and are unchanged during formatted.
In contrast, format characters must be quoted, if they are to appear as literals.

A pattern may contain a positive and negative sub pattern, for example,
\#,##0.00;(#,##0.00)". Each sub pattern has a pre�x, numeric part, and su�x.
The negative sub pattern is optional; if absent, then the positive sub pattern pre-
�xed with the minus sign is used as the negative sub pattern. If there is an explicit
negative sub pattern, it serves only to specify the negative pre�x and su�x; the
number of digits, minimal digits, and other characteristics are all the same as the
positive pattern. That means that \#,##0.0#;(#)" produces the same behavior
as \#,##0.0#;(#,##0.0#)".

The grouping separator is commonly used for thousands, but may also be used
for other grouping sizes. If a pattern contains multiple grouping characters, the
interval between the last one and the end of the integer is used.

186 APPENDIX C. CUSTOMIZATION WITH TAGGED VALUES

Symbol Description
0 Digit
Digit, zero shows as absent
. Decimal separator or monetary decimal separa-

tor
- Minus sign
, Grouping separator
E Separates mantissa and exponent in scienti�c

notation. Needs not be quoted in pre�x or suf-
�x.

; Subpattern boundary; Separates positive and
negative subpatterns

% Multiply by 100 and show as percentage
' Used to quote special characters in a pre�x

or su�x, for example, \'#'#" formats 123 to
\#123". To create a single quote itself, use two
in a row: \# o''clock".

Figure C.2: Pattern characters for formatting numbers

C.2. FORMAT STRING SYNTAX 187

Scienti�c notation is indicated by the exponent character immediately followed by
one or more digit characters indicates scienti�c notation. Example: \0.###E0"
formats the number 1234 as \1.234E3".

C.2.2 String Format Options

For formatting Strings, there are only a few prede�ned format strings. The actual
results of the format options may depend on the user interface:

memo: The String is interpreted as a \longer" text, given in unformatted Unicode.

xhtml: The String is interpreted as a \longer" text, given in XHTML format.

url: The String is interpreted as a URL.

C.2.3 DateTime Format Options

Similar to the number format string, date formatting is based on the pattern syntax
supported by the underlying Java class SimpleDateFormat.

Date and time formats are speci�ed by date and time pattern strings. Within date
and time pattern strings, unquoted letters from `A' to `Z' and from `a' to `z' are
interpreted as pattern letters representing the components of a date or time string.
Text can be quoted using single quotes (') to avoid interpretation. \''" represents a
single quote. All other characters are not interpreted; they are simply copied into
the output string during formatting.

Table C.3 shows the de�ned pattern letters.

Pattern letters are usually repeated, as their number determines the exact presen-
tation.

For formatting numeric values, the number of pattern letters is the minimum num-
ber of digits, and shorter numbers are zero-padded to this amount.

For formatting text values such as the day of the week, if the number of pattern
letters is 4 or more, the full form is used; otherwise a short or abbreviated form is
used if available.

C.2.4 Classes and Collections

For formatting class instance lists, collections or properties with a maximum car-
dinality higher than one, the following format strings can be used:

188 APPENDIX C. CUSTOMIZATION WITH TAGGED VALUES

Letter DateTime Component
G Era designator
y Year; if the number of pattern letters is 2, the

year is truncated to 2 digits
M Month in year; If the number of pattern letters

is 3 or more, the month is interpreted as text;
otherwise, it is interpreted as a number.

w Week in year
W Week in month
D Day in year
d Day in month
F Day of week in month
E Day in week (Text)
a Am/pm marker
H Hour in day (0-23)
k Hour in day (1-24)
K Hour in am/pm (0-11)
h Hour in am/pm (1-12)
m Minute in hour
s Second in minute
S Millisecond
z General time zone
Z RFC 822 time zone

Figure C.3: Pattern characters for formatting numbers

C.2. FORMAT STRING SYNTAX 189

compact: The contents of the collection are displayed in a compact, comma-
separated horizontal list.

il: Displays the contents of the collection in a vertical bullet (item) list.

ol: Displays the contents of the collection in a numbered (ordered) list.

table: The contents of the collection are displayed in a table. \table" is followed
by a colon and a comma-separated list of titles and attributes, de�ning the
columns of the table. For instance, the following table format shows the
horizontal and vertical resolution (= the size in pixels) of a device in a table:

table:Screen Width,screenWidth,Screen Height,screenHeight

simple: The default format, a vertical list of instances separated by line breaks

All options except from table allow to provide a secondary format separated from
the collection format by a colon. The secondary format is applied to the contents
of the collection. For example, applying the format string \ul: #,##0.00" to
a collection of numbers generates a bullet list, where each number is formatted
according to the second part of the format string.

190 APPENDIX C. CUSTOMIZATION WITH TAGGED VALUES

Appendix D

Extension Interfaces

When building Infolayer-based systems, it may be desirable to extend the Infolayer
itself with specialized functionality that is hard or impossible to realize by menas
of UML and OCL. For instance, an existing Java chart generation framework has
been added to the Infolayer system for a fuel consumption tracking service that
required graphical reports.

The Infolayer system provides several options for extensions:

� It is possible to map Java classes to classi�ers in the UML model, thus making
them accessible in OCL expressions.

� Special-purpose request handlers, such as the chart image generator, can be
added to the Infolayer Servlet.

� Custom template elements can be added to the System.

� New template loaders for di�erent content types can be added.

� The full runtime model can be accessed from Java.

D.1 Making Java Classes available in OCL

The simplest extension of the Infolayer is to make Java classes available in OCL
expressions. For that purpose, Java classes can be bound to UML data types. To
link a UML data type and a Java class, the UML data type must have a tagged
value il-javaclass. The value denotes the fully quali�ed name of the Java class. The
Java class and all dependencies must be accessible from the Servlet at runtime.

If no methods are declared for the data type, all public methods of the Java class
are made visible to OCL expressions. However, this way it is not possible for the

191

192 APPENDIX D. EXTENSION INTERFACES

system to determine whether a method has any side e�ects, so all methods are
registered as non-query methods. If operations are declared for the data type, the
Java method with a matching name and signature is made available through the
operation declaration. In this case, only the declared operations are available. The
query property of the operation must match the actual behavior of the Java method.
The registered Java class must provide a public constructor without parameters.

Instances of data types bound to Java classes do not have an \identity". It is not
recommended to declare attributes having a data type that is not prede�ned. If
attributes of non-prede�ned types are declared, it is necessary that the correspond-
ing Java class provides a public constructor with a String parameter, which must
be su�cient to construct an instance from its toString() presentation.

D.2 Custom Request Handlers

In several cases, the Infolayer system needs to perform actions such as log-
ging in users or handling method invocations via the HTTP interface that
go beyond the capabilities of the XML template mechanism. For those
cases, the Infolayer provides specialized request handlers. When receiv-
ing HTTP requests with an URL of the form \<base-URL>/get <type>"
or \<base-URL>/post <type>", the Infolayer servlet searches for a class
named org.infolayer.servlet.Process <type>, implementing one of the interfaces
org.infolayer.servlet.GetHandler or org.infolayer.servlet.PostHandler, depending on
the request type. Prede�ned handlers are:

Process chart (GetHandler) Generates a chart image.

Process cookies Called by IlRequest.setCookie() to set cookie values.

Process download Generates a ZIP �les from content selected for download.

Process edit Performes modi�cations of an instance, usually resulting from an
edit fotm.

Process exec (GetHandler, PostHandler) Executes an OCL or ASOQ operation.
If the operation is not free of side e�ects, the HTTP POST method must be
used.

Process log (GetHandler) Displays system logging information.

Process login (PostHandler) Tries to log in a user.

Process logout (PostHandler) Logs out the current user.

Process query (GetHandler) Performs a query.

D.3. TEMPLATE ELEMENTS 193

Process statemachine (GetHandler) Renders an image of a state machine, in-
cluding the current state.

Process trigger (PostHandler) Triggers a state machine transition.

The prede�ned handlers are described in more detail in 7.5. By adding own imple-
mentations of org.infolayer.servlet.GetHandler or org.infolayer.servlet.PostHandler,
following the naming convention, it is possible to install custom request handlers.
For more details, please refer to the Javadoc documentation of the above mentioned
interfaces.

D.3 Template Elements

Template elements are used in the Infolayer for XML transformations: an XML
template element is generating XML code, depending on the de�nition of the be-
havior of the element. The prede�ned elements are described in chapter 7.

Using a dynamic class loading mechanism similar to the mechanism used for request
handlers, it is possible to add custom template elements. When encountering an
element in a template namespace, the template loader looks in a package depending
on the namespace for a Java class named TE <element-name>. All template el-
ements must extend the class org.infolayer.templates.TemplateElement. The most
important method is apply(), which receives an XML output stream, the current
request and variable bindings as parameters. The apply method should be �lled
with the replacement functionality of the template. For more information, please
refer to the Javadoc documentation of org.infolayer.templates.TemplateElement.

D.4 Content Type Handling

The mapping from a template namespace to a Java package is de�ned by an instance
of the class org.infolayer.templates.TemplateLoader. Template loaders are activated
in the con�guration �le conf/httpd.conf using an addTemplateLoader statement.

To add support for a new content type, it is necessary to add an addLoader entry
to the Infolayer httpd.conf �le. The �rst parameter of the entry is the class name of
the template loader, the second the base directory where templates of the matching
content type are searched. The following parameters are content type extensions
that are assigned to the loader. For instance, the httpd.conf entry for the HTML
loader, assigning the HTML loader to the source directory %basepath%/html and
the �le extenstions .html and .htm looks as follows:

194 APPENDIX D. EXTENSION INTERFACES

addTemplateLoader
org.infolayer.templates.html.HtmlLoader html .html .htm

The following prede�ned template loaders are available:

org.infolayer.templates.TemplateLoader Loader for general XML templates.
De�nes the namespace http://infolayer.org/templates.

org.infolayer.templates.html.HtmlLoader Loader for XHTML tem-
plates. De�nes the namespace http://infolayer.org/templates/html for
XHTML-speci�c template elements. The template element package is
org.infolayer.templates.html.

org.infolayer.templates.plain.PlainLoader Loader that is optimized for the
generation of non-XML text �les, such as CSV tables. The generated XML
code must not contain XML elements. The document declaration, XML
comments, and processing instructions are omitted from the output automat-
ically. All character entities in the output are replaced by the corresponding
characters.

org.infolayer.templates.rdf.RdfLoader Loader for RDF templates. Does not
de�ne any speci�c template elements, but if custom elements are added to the
package org.infolayer.templates.rdf, they will be available via the namespace
http://infolayer.org/templates/rdf.

org.infolayer.templates.wml.WmlLoader Loader for Wireless Markup Lan-
guage (WML). De�nes the namespace http://infolayer.org/templates/html
for XHTML-speci�c template elements. The template element package is
org.infolayer.templates.wml.

org.infolayer.templates.pdf.Loader handles the conversion of XML-FOP �les
to PDF �les. It can be used to generate all kinds of printable forms or reports.
This loader expects source �les to have the �le extension \.fo"

A mapping between the mime types and content type extensions is de�ned in the
�le mime.types; the XML namespace mapping is �xed for all template loaders and
cannot be changed.

D.5 Accessing the Model from Java

A model executed in the Infolayer system is fully accessible from Java. The Il-
Request object|handed to the request hander and template elements|provides
access to the model itself using the method getModel(). Java implementations of

D.5. ACCESSING THE MODEL FROM JAVA 195

UML classes are contained in the package org.infolayer.model and pre�xed with the
String \Uml". Some of the most important classes are:

org.infolayer.model.UmlModel Represents the UML model. Provides access
to model and system properties and classi�ers.

org.infolayer.model.UmlClassi�er Base class for classes and data types. Pro-
vides access to instances and methods.

org.infolayer.model.UmlClass Represents classes. Provides access to instances,
operations, and properties.

org.infolayer.model.UmlObject Represents instances.

org.infolayer.model.UmlDatatype Represents data types.

org.infolayer.model.UmlEnumeration Represents enumerations. Provides ac-
cess to enumeration literals.

org.infolayer.model.UmlOperation Represents operations. Provides access to
the parameter and result types and is able to perform the execution of an
operation.

org.infolayer.model.UmlAttribute Represents attributes. Provides access to
the type and cardinality and set- and get-methods.

org.infolayer.model.UmlAssociationEnd Represents association ends. Simi-
lar to UmlAttribute, but additionally provides access to the association and
opposite end.

org.infolayer.util.OclCollection OCL collection interface.

org.infolayer.util.DefaultOclCollection Java collection based implementation
of the OclCollection interface.

Detailed information about those classes and interfaces and links to other relevant
classes are available in the Infolayer Javadoc documentation.

196 APPENDIX D. EXTENSION INTERFACES

Appendix E

OCL and ASOQ Reference

This appendix describes all prede�ned methods available in the Infolayer system.
The operation descriptions are annotated as described in table E. Operations with-
out any of the those annotations are referential transparent OCL query operations.

E.1 Basic OCL Types

E.1.1 OclAny

Operations
toString(): String [I]

Returns a string representation of self. For primitive types, a canonical
String representation is returned. For objects, the default implementation
returns the name, the title or the login attribute if available. If not, the ID
of the object is returned.

oclType(): OclType

Returns the type of self.

oclIsTypeOf(t: OclType): Boolean

Determines whether self is of the type t.

oclIsKindOf(t: OclType): Boolean

True if t is a type or super type of self.

=(a: OclAny): Boolean

True if self equals a. Please note that all comparisons wiht OclUnde�ned
including '=' yield OclUnde�ned. Hence, please use oclIsUndefined() to

197

198 APPENDIX E. OCL AND ASOQ REFERENCE

Annotation Description

[I] The operation is an Infolayer-speci�c extension and
not part of the OCL speci�cation.

[N] The operation is not referential transparent: the
evaluation result of the operation does not only de-
pend on the parameters. Thus, the result cannot be
pre-calculated and the operation cannot be used in
constant expressions.

[S] The operation may have side e�ects and thus can be
used only in ASOQ but not in OCL expressions.

Table E.1: Operation Annotations

test for unde�ned values.
Syntax and SQL template: self = a

<>(a: OclAny): Boolean
True if self is di�erent from a.
Syntax and SQL template: self <> a

<(a: OclAny): Boolean
True if self is less than a. By default, the comparison operations are based
on the toString() representations of self and a. Sub types should overload
this operation.
Syntax and SQL template: self < a

>(a: OclAny): Boolean
True if self is greater than a.
Syntax and SQL template: self > a

<=(a: OclAny): Boolean
True if self is less than or equal to a.
Syntax and SQL template: self <= a

>=(a: OclAny): Boolean
True if self is greater than or equal to a.
Syntax and SQL template: self >= a

oclIsUnde�ned(): Boolean

True if self is OclUndefined, false otherwise.

E.1. BASIC OCL TYPES 199

E.1.2 Boolean

Operations
not(): Boolean

Returns true if self is false.
Syntax: not self

and(b: Boolean): Boolean

True if self and b are both true.
Syntax: self and b

implies(b: Boolean): Boolean

True if self is false or both, self and b, are true.
Syntax: self implies b

or(b: Boolean): Boolean

True if self or b is true.
Syntax: self or b

xor(b: Boolean): Boolean

True if either self or b is true, but not both.
Syntax: self xor b

E.1.3 Real

Operations
-(): Real

Returns (0 - self)
Syntax and SQL template: - self

abs(): Real

Returns the absolute value of self.

oor(): Integer

Returns the largest integer which is less than or equal to self.

round(): Integer

Returns integer that is closest to self. If two integers are equally close to
self, the largest is returned.

+(r: Real): Real

Returns the sum of self and r
Syntax and SQL template: self + r

200 APPENDIX E. OCL AND ASOQ REFERENCE

-(r: Real): Real

Returns the di�erence of self and r.
Syntax and SQL template: self - r

*(r: Real): Real

Returns the product of self and r.
Syntax and SQL template: self * r

/(r: Real): Real

Returns the quotient of self and r.
Syntax and SQL template: self / r

max(r: Real): Real

Returns the maximum of self and r.

min(r: Real): Real

Returns the minimum of self and r.

toString(s: String): String [I]

Returns a string representation of self, formatted according to s.

E.1.4 Integer

Operations
-(): Integer

Returns (0 -i).
Syntax and SQL template: -self

abs(): Integer

Returns the absolute value of self.

+(i: Integer): Integer

Returns the sum of self and i.
Syntax and SQL template: self + i

-(i: Integer): Integer

Returns the di�erence of self and i.
Syntax and SQL template: self - i

*(i: Integer): Integer

Returns the product of self and i.
Syntax and SQL template: self * i

div(i: Integer): Integer

Returns the number of times i completely �ts within self.
Syntax: self div i

E.1. BASIC OCL TYPES 201

mod(i: Integer): Integer

Returns self modulo i.
Syntax: self mod i

max(i: Integer): Integer

Returns the maximum of self and i.

min(i: Integer): Integer

Returns the minimum of self and i.

toChar(): String [I]

Returns a string of length 1, containing the unicode character with the value
self.

E.1.5 String

Operations
size(): Integer

Returns the length of s.

concat(s: String): String

Returns the concatenation of self and s.
SQL template: self j s

+(a: OclAny): String [I]

Returns the concatenation of self and o. Equivalent to
self.concat(o.toString())
Syntax: self + a; SQL template: self j a

toUpper(): String [I]

Returns a copy of self with all characters converted to upper case.
SQL template: upper(self)

toLower(): String [I]

Returns a copy of self with all characters converted to lower case.
SQL template: lower(self)

substring(i1: Integer, i2: Integer): String

Returns the substring of self, starting at the index position i1, ranging to
and including i2. Please note that the index of the �rst character of a string
is 1.

substring(i: Integer): String [I]

Returns the substring of self, starting at the index position i. Please note
that the index of the �rst character of a string is 1.

202 APPENDIX E. OCL AND ASOQ REFERENCE

pos(s: String): Integer [I]

Deperecated. Returns the �rst index position of s in self. If s1 cannot be
found in s, 0 is retuned.
SQL template: position(s in self)

indexOf(s: String): Integer [I]

Returns the �rst index position of s in self. If s1 cannot be found in s,
OclUndefined is retuned.
SQL template: position(s in self)

toInteger(): Integer

Converts self to an integer value.

toInteger(s: String): Integer [I]

Converts self to an integer value, assuming that s is formatted according
to s.

toReal(): Real

Converts self to a real value.

toReal(s: String): Real [I]

Converts self to a real value, assuming that self is formatted according to
s.

toDateTime(): DateTime [I]

Converts self from the ISO time format to a DateTime value.

toDateTime(s: String): DateTime [I]

Converts self to a DateTime value that is formatted with respect to s to a
DateTime value.

startsWith(s: String): Boolean [I]

Returns true if self begins with s.
SQL template: position(s in self) = 1

endsWith(s: String): Boolean [I]

True if self ends with s.

replace(s1: String, s2: String): String [I]

Replaces all occurences of s1 in self by s2.

toAscii(): String

Converts self to a string that contains only ASCII characters (Unicodes
32-127). Unsupported characters are replaced by a question mark.

at(i: Integer): Integer

Returns the Unicode value of the i-th character of self.

E.2. PREDEFINED DATA TYPES 203

E.2 Prede�ned Data Types

The Infolayer system provides two additional data types, DateTime to store date
and time values and Binary for binary values.

E.2.1 DateTime

Operations
toString(s: String): String

Returns self as string, formatted with respect to s.

add(i: Integer): DateTime

Returns a new date with i milliseconds added to self.

getYear(): Integer

Returns the year component of self.

getMonth(): Integer

Returns the month component of self.

getDayOfMonth(): Integer

Returns the day component of self.

getMinute(): Integer

Returns the minute component of self.

getHour(): Integer

Returns the hour component of self.

toInteger(): Integer

Returns the time in milliseconds since 1.1.1970 as integer value.

E.2.2 Binary

Static Operations
fromUrl(s: String): Binary [S]

Creates a Binary object from the given URL

Operations
length(): Integer [S]

Returns the number of bytes of b.

204 APPENDIX E. OCL AND ASOQ REFERENCE

E.3 Collection Types

E.3.1 Collection(T)
The type Collection is the abstract base type of the collection types Set,
OrderedSet, Bag and Sequence.

Operations
size(): Integer

The number of elements contained in self.

includes(t: T): Boolean

True if self contains t.

excludes(t: T): Boolean

True if self does not contain t.

count(t: T): Integer

Returns the number of occurences of t in self.

includesAll(c: Collection(T)): Boolean

True if self contains all elements of c.

excludesAll(c: Collection(T)): Boolean

True if self contains none of the elements of c.

isEmpty(): Boolean

True if self does not contain any elements.

notEmpty(): Boolean

True if self contains at least one element.

sum(): T

Returns the sum of the elements. T must support the + operation.

exists(e: OclExpression): Boolean

Returns true if e holds for at least one of the elements contained in self.

forAll(e: OclExpression): Boolean

True if e holds for all elements in self.

isUnique(e: OclExpression): Boolean

True if e evaluates to a di�erent value for each element in self.

sortedBy(e: OclExpression): T2

Returns a sequence, containing all elements of self. The ordering of the
sequence is determined by the < operation, applied to the results of e.

E.3. COLLECTION TYPES 205

iterate(e: OclExpression): T2

Applies e to elements of self and returns the value of e for the last visited
element of self. If self is a sequence, the elements are iterated in the order
of the sequence.

any(e: OclExpression): T

Returns any element of self for which e evaluates to true.

one(e: OclExpression): Boolean

True if e evaluates to true for exactly one element in self.

min(): T

Returns the minimum of all elements in self.

max(): T

Returns the maximum of all elements in self.

asBag(): Bag(T)

Returns a bag containing all elements of self.

asSet(): Set(T)

Returns a set containing all elements of self withou duplicates.

asSequence(): Sequence(T)

Returns self if self is a sequence, otherwise a sequence containing all ele-
ments of self. The order is unde�ned if self is a set or bag.

E.3.2 Set(T)
Represents a mathematical set. Duplicate elements are stored only once.

Operations
union(b: Bag(T)): Bag(T)

The union of self and b.

union(s: Set(T)): Set(T)

The union of self and s.

intersection(b: Bag(T)): Set(T)

The set of all elements contained in self and b.

intersection(s: Set(T)): Set(T)

The set of all elements contained in self and s.

-(s: Set(T)): Set(T)

The elements of self which are not in s.

206 APPENDIX E. OCL AND ASOQ REFERENCE

symmetricDi�erence(s: Set(T)): Set(T)

A set containing all the elements that are in self or s, but not in both sets.

including(t: T): Set(T)

A set containing all elements of self and a.

excluding(t: T): Set(T)

A set containing all elements of self except from a.

select(e: OclExpression): Set(T)

The subset of self containing the elements for which e evaluates to true.

reject(e: OclExpression): Set(T)

The subset of self containing the elements for which e evaluates to false.

atten(): T2

If the element Type is not a collection type, this results in the same set.
Otherwise collection type, the result is a set containing all the elements of
all the elements of self

collect(e: OclExpression): T2

Equivalent to s->collectNested(e1)->flatten().

collectNested(e: OclExpression): T2

The bag of elements resulting from applying e to every element in self. The
element type of the bag is the type of the given expression.

E.3.3 OrderedSet(T)

Operations
append(t: T): OrderedSet(T)

The ordered set consisting of all elements of self, followed by t1.

at(i: Integer): T

The element at index position i.

�rst(): T

The element at index position 1.

reverse(): OrderedSet(T)

The ordered set containing all elements of self in reverse order.

last(): T

The last element of self.

subOrderedSet(i1: Integer, i2: Integer): OrderedSet(T)

The sub-sequence of s starting at index i1, ranging to and including i2.

E.3. COLLECTION TYPES 207

prepend(t: T): OrderedSet(T)

The ordered set consisting of t1, followed by all elements of self.

including(t: T): OrderedSet(T)

The ordered set containing all elements of self and t, appended as last
element.

excluding(t: T): Set(T)

An ordered set containing all elements of self except from t. The order of
the remaining elements is not changed.

indexOf(t: T): Integer

The position of t in self; OclUndefined if not contained

select(e: OclExpression): OrderedSet(T)

The subset of self, containing the elements for which e evaluates to true.
The order of the elements is preserved.

reject(e: OclExpression): OrderedSet(T)

The subset of self, containing the elements for which e evaluates to false.
The order of the remaining elements is preserved.

collect(e: OclExpression): T2

Equivalent to self->collectNested(e)->flatten().

collectNested(e: OclExpression): T2

The sequence of elements resulting from applying e to every element in self

atten(): T2

If T is not a collection type, this results in self. Otherwise, the result is a
ordered set containing all the elements of all the elements of s

insertAt(i1: Integer, t2: T): OrderedSet(T)

Returns a new squence with t2 inserted at position i1, if t2 is not already
contained in o.

E.3.4 Bag(T)

Operations
union(s: Bag(T)): Bag(T)

The union of self and b.

union(s: Set(T)): Bag(T)

The union of self and s.

intersection(s: Bag(T)): Bag(T)

The bag of all elements contained in self and b.

208 APPENDIX E. OCL AND ASOQ REFERENCE

intersection(s: Set(T)): Set(T)

The set of all elements contained in self and s.

including(t: T): Bag(T)

A bag containing all elements of self and t.

excluding(t: T): Set(T)

A bag containing all elements of self except from all occurences of t.

select(e: OclExpression): Bag(T)

The Bag containing the elements of self for which e evaluates to true.

reject(e: OclExpression): Bag(T)

The Bag containing the elements of self for which e evaluates to false.

collect(e: OclExpression): T2

Equivalent to self->collectNested(e1)->flatten()

atten(): T2

If the element type is not a collection type, this operation results in the same
bag. Otherwise, the result is a bag containing all the elements of all the
elements of self

collectNested(e: OclExpression): T2

The Bag of elements resulting from applying e to every element in self. The
element type of the resulting bag is the type of e.

E.3.5 Sequence(T)

Operations
union(s: Sequence(T)): Sequence(T)

The Sequence consisting of all elements of self, followed by all elements of
s.

append(t: T): Sequence(T)

The Sequence consisting of all elements of self, followed by t.

prepend(t: T): Sequence(T)

The Sequence consisting of t, followed by all elements of self.

subSequence(i1: Integer, i2: Integer): Sequence(T)

The sub-sequence of self, starting at index i1 and ranging to and including
i2.

at(i: Integer): T

The element at index position i.

E.4. METAMODEL ACCESS 209

�rst(): T

The element at index position 1.

last(): T

The last element of the sequence.

including(t: T): Sequence(T)

The sequence containing all elements of self and t, appended as last element.

reverse(): Sequence(T)

The sequence containing all elements of self in reverse order.

excluding(t: T): Set(T)

A sequence containing all elements of self except from any occurences of t.
The order of the remaining objects is not changed.

select(e: OclExpression): Sequence(T)

The sub-sequence of self, containing the elements for which e evaluates to
true.

reject(e: OclExpression): Sequence(T)

The sub-sequence of s, containing the elements for which e evaluates to false.

collect(e: OclExpression): T2

Equivalent to s->collectNested(e1)->flatten().

collectNested(e: OclExpression): T2

The sequence of elements resulting from applying e to every element in s

atten(): T2

If the element Type is not a collection type this results in the same sequence.
If the element type is a collection type, the result is a sequence containing
all the elements of all the elements of s

indexOf(t: T): Integer

The index of the �rst occurence of t in self; OclUnde�ned if not contained

insertAt(i1: Integer, t2: T): Sequence(T)

Returns a new ordered set with t2 inserted at position i1 and the remaining
elements are shifted accordingly.

E.4 Metamodel Access

E.4.1 OclModelElement

Attributes
name The name of self.

210 APPENDIX E. OCL AND ASOQ REFERENCE

Operations
getTaggedValue(s: String): String [N]

Returns the tagged value named s.

getTaggedValue(s1: String, s2: String): String [N]

Returns the tagged value named s1, localized to s2. The format for s2 is
usually a two-letter ISO country code (see localization con�guration �les).

E.4.2 OclType

The static methods of OclAny are at the same time the instance methodsof the
type OclType. OclType is the type of OclAny and the supertypeof all meta types.
OclType provides the methods listed below to queryinformation about the given
type.

Attributes
operation Association to all operations available for this type

attribute Association to all properties (attributes and association ends) available
for this type

ownedOperation Association to all operations (re)declared for this type

ownedAttribute Association to all properties (re)declared for this type

Operations
name(): String [N]

Deprecated; included for OCL 1.x compatibility. Please use the name at-
tribute (de�ned at OclModelElement) instead. Returns the name of self.

supertypes(): Set(OclType) [N]

Returns all immediate super types of self.

allSupertypes(): Set(OclType) [N]

Returns the transitive closure of the set of all super types of self

subtypes(): Set(OclType) [N]

Returns all immedidate subtypes of self

allSubtypes(): Set(OclType) [N]

Returns the transitive clousure of all subtypes of self.

E.5. PREDEFINED CLASSES 211

allInstances(): Set(TypeOf) [N]

Returns the set of all instances of self, including all instances of subtypees.

instances(): Set(TypeOf) [I] [N]

Returns the set of all direct instances of type, not including instances of
subtypees. This operation is speci�c to the Infolayer and not part of the
OCL standard.

getInstance(s: String): TypeOf [I] [N]

Returns the instance with the given id, or OclUndefined, if there is no such
instance for t and its subtypees. This operation is speci�c to the Infolayer
and not part of the OCL standard.

createInstance(): TypeOf [I] [S]

This method returns a new Instance of self.

canCreate(): Boolean [N]

Returns true if the current user may create new instances of self.

canQuery(s: String): Boolean [N]

True if the current user may query self.

E.4.3 OclOperation
Represents an operation. Currently, only the features inherited from OclModelEle-
ment are supported.

E.5 Prede�ned Classes

The Infolayer system contains the prede�ned classes Object, Infolayer, and File.

E.5.1 Object

Operations
getId(): String

Returns the unique ID of self.

onChange(s: String): Void [S]

This method is called when a property value has changed. The name of
the property is given as parameter. Overwrite this method for classes where
you are interested in particular changes. Please note that this method only
reports changes made via the user interface (the same holds for onCreate and
onDelete).

212 APPENDIX E. OCL AND ASOQ REFERENCE

onCreate(): Void [S]

This method is called when a new instance has been created via the user
inteface.

onDelete(): Void [S]

This method is called immediately before an instance is deleted via the user
interface.

clone(): Object [S]

Creates a clone of an instance. Composite objects are also cloned, other
associated objects are linked by reference.

delete(): Void [S]

This method deletes self, including all links to self.

canRead(): Boolean [N]

Queries whether the current user has read access to self.

canWrite(): Boolean [N]

Queries whether the current user may modify or delete self.

E.5.2 Infolayer
The Infolayer class contains a set of static methods providing general information
about the current state of the Infolayer.

Static Operations
getCurrentUser(): User [I] [N]

Returns the user logged in to this session context. Please note that the result
type may vary if the user class is changed using the il-userclass tagged
value.

getCurrentDateTime(): DateTime [I] [N]

Returns the current date and time.

getMimeType(s: String): String [I] [N]

Returns the mime type for the given �le name or extension, as de�ned in
conf/mime.types.

getCon�gurationProperty(s: String): String [I] [N]

Returns the system/servlet/model property with the given name.

getActiveUsers(): Set(User) [I] [N]

Returns the set of users currently logged in. As for getCurrentUser(), the
actual return type may di�er depending on the il-userclass tagged value.

E.6. SPECIAL PURPOSE CLASSIFIERS 213

getSystemProperty(s: String): String [S]

Returns the Java property with the given name.

eval(s: String): OclAny [S]

Evaluates an arbitrary expression.

resetPassword(u: User): String [S]

Returns a new password.

E.5.3 File

The class File provides a binary data �eld and a name �eld

Attributes
name The name of the �le

data Binary content of the �le

counter Number of downloads

E.6 Special Purpose Classi�ers

In the XML template mechanism, the Infolayer provides the prede�ned classi�ers
IlRequest and IlUrl for access to properties of the current HTTP request and to
construct URLs.

E.6.1 IlRequest

Operations
getCookie(s: String): String

Returns the value of the cookie named s.

getHeader(s: String): String

Returns the value of the request header named s.

getHost(): String

Returns the name of the host serving the request.

getI18n(s: String): String

Returns a localized version of s, depending on getLang().

214 APPENDIX E. OCL AND ASOQ REFERENCE

getLang(): String

Returns the language setting of the browser, or, if overriden by a cookie, the
cookie value.

getRequestUrl(): IlUrl

Returns the URL of the original request, without modi�cations reecting
internal state changes or normalizations.

getUrl(): IlUrl

Returns the URL of the request, including modi�cations reecting internal
state changes or normalizations.

setCookie(s1: String, s2: String): Void [S]

Sets the cookie s1 to the value s2.

E.6.2 IlUrl

Operations
getObject(s1: String, t2: OclType): OclAny

Returns the object denoted by the URL parameter s.

getPath(): String

Returns the path part of the self.

getProperty(s: String): String

Returns the value of the URL query parameter s.

getParameterValues(s: String): Bag(String)

Returns all values of the URL query parameter named s as a bag of strings.

isLocal(): Boolean

Returns true if self is a local URL.

withProperty(s1: String, s2: String): IlUrl

Returns a copy with a query parameter s1, having the value s2.

withPath(s: String): IlUrl

Returns a copy of self, but with the URL path set to s.

withObject(s1: String, a2: OclAny): IlUrl

Returns a copy of i, but with a URL parameter named s1, containing o2
encoded as OCL literal.

Appendix F

XML Template Elements

This appendix describes all template elements that are available in the Infolayer
system. XHTML and WML speci�c elements are described in separate sections.

F.1 General XML Template Elements

General XML template elements can be used in all templates, independent from
the target language.

F.1.1 <t:assign>
The <t:assign>-element can be used to alter the value of variables declared by
in a <t:variable>-element.

Attributes
name (required) The name of the variable to be declared.

expr (required) An OCL-expression determining the initial value and type of the
variable.

F.1.2 <t:attribute>
The <t:attribute> element generates an XML attribute for a previous
<t:element>-element, or for a literal XML element embedded in the template
source code. The content of the attribute-element is used to determine the value
of the attribute.

215

216 APPENDIX F. XML TEMPLATE ELEMENTS

Attributes

name The name of the generated attribute

namespace The namespace of the generated attribute

F.1.3 <t:call>

The <t:call> element is replaced by the content of the template denoted by the
template or file attribute. The expr attribute denotes the context of the applied
template, if present. Otherwise, the current context becomes the template context.

The file and template attributes are mutally exclusive. The file attribute de-
notes the path to the template �le that is called. A relative path is resolved relative
to the current directory; an absolute path is resolved relative to the base directory
for static tenplates.

The template parameter is resolved to a template �le by a dynamic lookup op-
eration. A template �le with the given name and the extension ".inc" is searched
in the dynamic template directory depending on the type of the template context.
Except from the di�erent �le extension, the lookup mechanism is identical to the
lookup mechanism for top-level templates (used for URLs starting with "/auto").

If the called template contains an <t:inner /> element, template processing con-
tinutes with the child elements of the <t:call> element. For the child elements,
the original evaluation context is preserved, it is not inuenced by processing the
called template.

<t:withParam> elements can be used to transfer parameters to the called tem-
plate.

Attributes

�le Name of the template �le to be called.

expr The evaluation result of this expression is used as context for the called
template.

template Name of the template to be called.

Restrictions for Child Elements If <t:withParam> child elements are
present, they must precede any other content.

F.1. GENERAL XML TEMPLATE ELEMENTS 217

F.1.4 <t:case>

Please refer to the description of <t:switch>.

F.1.5 <t:choose>

The choose element allows conditional processing of sub-elements. Template pro-
cessing continues in the �rst <t:when>-sub-element, where the evaluation result of
the expr-attribute is true. The evaluation context remains unchanged. If a match-
ing case is found, no further sub-elements are considered. If no matching case is
found, template processing continues at the optional <t:otherwise> element.

Restrictions for Child Elements Allowed sub-elements are any number of
<t:when> elements, followed by up to one <t:otherwise> element.

F.1.6 <t:comment>

The element <t:comment> generates a comment from the contained text.

F.1.7 <t:context>

The context element changes the evaluation context for all child elements. The
new evaluation context (self) is determined by the expr-attribute.

Without the expr attribute, the <context> may be used as helper element, for
instance to hold namespace declarations that shall not appear in the generated
XML code.

Attributes

expr Contains an OCL expression, determining the new evaluation context

F.1.8 <t:element>

The <t:element> element generates an XML element. The name and namespace
ot the element are de�ned in attributes.

218 APPENDIX F. XML TEMPLATE ELEMENTS

Attributes
name The name of the generated element

namespace The namespace of the generated element

F.1.9 <t:forAll>
Processes all child nodes for each element of the collection obtained from eval-
uating the expr-attribute. If the type of expr is OclType, an implicit call to
allInstances() is performed to obtain a set. If the expr attribute is omitted, it
defaults to the expression self.

When a iterator attribute is given, its value is used as the name of an iterator
variable. Otherwise, the evaluation context (self) is set accordingly in each iteration
step. The counter-attribute allows to declare an integer variable, holding the
current element index.

Attributes
expr Contains an OCL expression that must result in an collection.

iterator If present, the value denotes an iterator variable name that is used
instead of self.

counter If present, the given variable name is used to declare an integer variable
holding the current element index.

F.1.10 <t:if>
The <t:if> element allows conditional processing of child elements, depending
on the expr-attribute. Child elements are only processed if the given expression
evaluates to true.

Attributes
expr The boolean evaluation result of the contained OCL expression determines

the processing of child elements.

F.1.11 <t:inner>
See <t:call>.

F.1. GENERAL XML TEMPLATE ELEMENTS 219

F.1.12 <t:otherwise>
The otherwise-element is only allowed as immediate child element of <t:choose>
and <t:switch>, denoting the default branch. For a detailed description, please
refer to the corresponding sections.

F.1.13 <t:param>
The <t:param>-element declares a variable that is initialized from a parameter
that is set via the <t:withParam> element. The variable can be accessed in tem-
plate elements following the declaration. The scope of the variable ends at the
closing tag of the immediate parent element.

Attributes
name (required) The name of the variable to be declared.

expr If the parameter is not set, this expression is used to determine a default
value.

type The type of the variable. It must match the actual type set by the withParam
element. If not set, the type defaults to OclAny.

F.1.14 <t:recurse>
Reserved for future use.

F.1.15 <t:recursion>
Reserved for future use.

F.1.16 <t:switch>
The<t:switch> element allows conditional processing of<t:case> sub-elements.
The evaluation result of the expr-attribute is compared to the evaluation result of
the expr-attribute of the case elements. Template processing continues in the �rst
matching <t:case> element. The evaluation context remains unchanged.

When a matching case is found, no further sub-elements are examined; if no match-
ing case is found, template processing continues in the optional <t:otherwise> ele-
ment.

220 APPENDIX F. XML TEMPLATE ELEMENTS

Attributes

expr (required) : The result of the given OCL expression is compared to the
expressions given in <t:case> sub-elements.

Restrictions for Child Elements Allowed sub-elements are any number of
<t:case> elements, followed by up to one <t:else> element.

F.1.17 <t:text>

Writes the contained text to the target document.

F.1.18 <t:valueOf>

Inserts the evaluation result of the OCL expression contained in the expr-attribute.
If an format-attribute is present, the contained format string is taken into account.
Child elements of <t:valueOf> are processed only if the evaluation results in
OclUndefined.

Attributes

expr (required) Determines the replacement value.

format Formatting instructions for the evaluation result.

F.1.19 <t:variable>

The <t:variable>-element declares a variable. The variable can be accessed in
OCL expressions in template elements following the variable declaration. The scope
of the variable ends at the closing tag of the immediate parent element. In contrast
fo XSLT, it is possible to alter the value of a variable with the<t:assign>-element.

Attributes

name (required) The name of the variable to be declared.

expr (required) An OCL-expression determining the initial value and type of the
variable.

F.2. XHTML TEMPLATE ELEMENTS 221

F.1.20 <t:when>
See <t:switch>.

F.1.21 <t:withParam>
The <t:withParam> element allows the transmission of parameters to other tem-
plates, referenced by the template element <t:call> and the XHTML template
element <t:link>. In the target template, the parameters can be queried using
the template element <t:param>.

Attributes
expr An OCL Expression determining the value of the parameter.

name The name of the parameter.

F.2 XHTML Template Elements

XHTML template elements provide additional features that are useful for the gen-
eration of (X)HTML pages.

F.2.1 <t:actions>
Generates a set of buttons: All public operations available for self, where the
current user meets the permissions, plus additional edit or query buttons, depending
on the type of self and the user permissions.

F.2.2 <t:cancel>
If it is embedded in an <t:form> element, the <t:cancel> element creates a
cancel button. The label attribute can be used to set a custom label. If no custom
label is provided, "cancel" or a translation is displayed.

Attributes
label The optional label of the cancel button.

followup A followup command, determining the next page.

222 APPENDIX F. XML TEMPLATE ELEMENTS

F.2.3 <t:column>
This element determines the content of a column in a dynamic table. It can only
be used as immediate child element of the <t:table> element.

Attributes
title The Column Title.

expr Expression determining the content of the colum. If not present, the child
elements of the colum-element are used to determine the column content. If
the expr-attribute is present, the <t:column> element must be empty.

format Used to format the result of the expr-attribute.

sortedBy Expression determining the row order of the table if this column is
selected. If not given, expr is used to determine the order.

F.2.4 <t:control>
Displays a button that performs a HTTP-GET for the address determined by the
followup-Attribute. Can be used as replacement for a link when a coherent look
with other buttons is desired.

Attributes
followup Determines the URL of the page that is requested when the button is

pressed.

F.2.5 <t:form>
Writes an HTML form element, including a method and URL depending on the
type and method attributes. The type attribute is added to the current URL for all
sub elements, so they can determine easily whether they are included in an active
form.

Attributes
type A type constant determining the request type and URL for the form. The

request URL is constructed by pre�xing the type with "get-" or "post-",
depending on the method, and appending ".html".

F.2. XHTML TEMPLATE ELEMENTS 223

method Determines the request method used to submit the form. May be
POST or GET. If omitted, the default value is GET if the type is query,
POST otherwise.

F.2.6 <t:image>
Displays an image that is contained in the �eld determined by the name attribute.
The �eld must be of type Binary or File. The image is scaled to the given width
or maxWidth automatically. Clicking on the image will zoom in the image, and a
"zoom out" region will be marked on the zoomed image.

Attributes
name Name of the �eld holding the image data.

width If present, the image is always scaled to the given width.

maxWidth If present, and the image is wider than the value, the image is scaled
down accordingly.

zoomable Decides whether zooming via clicking the image is enabled. Default
is true.

F.2.7 <t:link>
The <t:link> element creates a hyperlink to the object denoted by the expr at-
tribute. Other uninterpreted attributes are added to the generated <a> element.

Attributes
expr The contained OCL expression is evaluated to determine the link address.

template If an template attribute is present, the given template is used instead
of the default template of the object.

F.2.8 <t:login>
Generates a complete login form, including input elements for the user and pass-
word, as well as login and cancel buttons. If a user is logged in already, a logout
button is displayed.

This element must not have any content.

224 APPENDIX F. XML TEMPLATE ELEMENTS

Attributes

followup Contains an optional followup URL command. By default, the previous
page will be displayed when one of the buttons is pressed.

type Must contain one of the values input or select. If the type is select, the
user to log in can be selected from a list. Otherwise, the log in name must
be entered in a text �eld.

F.2.9 <t:messages>

The <t:messages> element displays messages such as "Login Failed", result-
ing from processing forms. Thus, every page should contain a message element
at a prominent place. For the default pages, a message element is contained in
frame.html.

F.2.10 <t:operation>

The <t:operation> element creates a button that performs the operation denoted
by the name attribute. The button can only be activated successfully if the current
user has the required permissions.

If the operation is a query operation, a HTTP GET request is used. Otherwise, if
the method has side e�ects, an HTTP POST request is generated.

If the operation provides a return value, it is used to generate the result page.

Attributes

name The name of the operation to be executed.

label An optional labed for the button. If not present, the name of the operation
will be displayed.

followup A followup command, determining the next page.

F.2.11 <t:operations>

The <t:operations> element generates a table of buttons which are applicable
to the current context for the current user.

F.2. XHTML TEMPLATE ELEMENTS 225

F.2.12 <t:properties>

The <t:properties> element generates a table consisting of labels and properties
of the current object. This element can be used in regular pages for displaying object
properties. Inside <t:form> elements, the <t:properties> element can be used to
edit objects or to search for objects.

Please note that the context must be an instance for the display and edit mode,
but a class for the query mode.

names A comma separated list of property names to be displayed.

F.2.13 <t:property>

The <t:property> element displays the object property denoted by the name
attribute. If the property element is embedded in a form of type edit, and the
user has the permission to edit the given property, an input element corresponding
to the object type is created.

If the property is embedded in a form of type query, and the property type is
queryable, an input element for a query is displayed.

Please note that the context must be an instance for the display and edit mode,
but a class for the query mode.

name The name of the property to be displayed, edited, or queried.

compact If "true", the element does not use empty space to align with other
elements.

F.2.14 <t:submit>

The <t:submit> element displays a submit button if included in a form element.
If no label attribute is provided, \submit" or a translation is used as default
label. The next page to be displayed can be determined by the followup attribute.
No followup is interpreted as followup="stay", or, if the current template is a
comma separated list, the remainter of the list is interpreted as a followup="goto-
template:..." command.

The <t:submit> element must not have any child elements.

226 APPENDIX F. XML TEMPLATE ELEMENTS

Attributes
label An optional label for the submit button.

followup A followup command, determining the next page.

F.2.15 <t:table>
Generates a HTML table. The columns of the table are de�ned by <t:column>-sub
elements; No other immediate content is permitted.

F.2.16 <t:tree>
The <t:tree> element displays a nested tree of instances or classes. If the con-
text or root element is a class, the class inheritance tree is displayed. Otherwise,
the children attribute and the tagged value il-children are used to determine an
association. The tree is built by simply following this association.

F.2.17 <t:valueOf>
The XHTML <t:valueOf> element is identical to the general <t:valueOf> tem-
plate element, but provides some additional format implementations for collections
like table and li that cannot be provided for XML in general.

F.3 WML Template Elements

WML template elements provide additional features that are useful for the gener-
ation of (X)HTML pages.

F.3.1 <t:properties>
Simpli�ed version of the HTML variant of this element (read-only): Displays all
displayable properties of the current object (self). Properties with a maximum
cardinality greater than one are put in separate cards. The optional names attribute
allows to specify the properties to be displayed.

F.3.2 <t:property>
Simpli�ed version of the HTML variant of this element (read-only): Displays the
value of the property denoted by the name attribute.

F.3. WML TEMPLATE ELEMENTS 227

F.3.3 <t:valueOf>
The WML eval element is identical to the general eval template element, but dis-
plays collections as comma separated lists and adds detail links to objects.

