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CHAPTER 1

General Introduction

In our dissertation, we study the influence of salt on the molecular self-
association of nonpolar groups. Nonpolar entities include small organic
molecules and large molecules (lipid, protein, DNA). The interactions be-
tween these molecules are at the origin of many biological processes such
as protein folding, biological membrane formations, and condensation of
DNA in cell nuclei.

Nonpolar regions appear to attract one another in water stronger than
expected on the basis of thermodynamics [1-4]. This type of interaction,
which is believed to be the driving force for self-association, is called the
hydrophobic interaction. The origin of the effect is not clearly determined
and some theoretical works have suggested that the rearrangement of the
local water structure, the electrostatic fluctuation, the bridging bubbles and
separation-induced phase transitions are some mechanisms which describe
the hydrophobic attraction [5-8]

More specifically, we consider amphiphiles which contain both hydropho-



bic and hydrophilic groups. Amphiphilic molecules self-associate sponta-
neously in aqueous solution above the critical micelle concentration (cmc)
into a variety of structures of well defined geometries, consisting of a hy-
drocarbon core with polar groups at the surface. The structural polymor-
phism ranges from spherical and cylindrical micelles to bilayer phases and
more complex lyotropic crystalline phases (cubic phase). In biology for in-
stance, the bilayer structures play a dominant role, since they form the bi-
ological membrane (lipid bilayer), the most common cellular structure in
both animals and plants. Most of the time, the solution contains salts at
different concentrations. A better understanding of the biological systems
would be precious in many areas of science such as biochemistry, medicine,
pharmaceutical and other fields. Model systems composed of artificially
prepared amphiphilic materials and associated colloids serve a very useful
purpose [9].

The morphology of the amphiphile aggregates depends on the nature of
the amphiphiles, i.e. the size of the headgroup and the hydrophobic tail, but
also on factors that influence the conformation of the hydrocarbon chain, the
headgroup solvation and the interaction between neighboring head groups.
Thus changing the amphiphiles or salt concentration or temperature affects
not only the interactions between the aggregates but also the intermolecular
forces within each aggregate, thereby modifying the self-assembled struc-
tures themselves [10-14].

Advanced applications of self-assembled systems include for example
drug delivery [15] and the direct application of liquid crystalline phases as
models for inorganic nanostructured materials such as mesoporous silica in
catalysis [16].

We investigate the effect of salts (NaCl, NaBr and Nal) on the molecular
forces, i.e the hydrophobic interaction, that is believed to determine the self-
assembled structure such as biological membranes and allow some other
biomolecules to adhere to them. To achieve our goal, we used NMR tools

such as relaxation measurement, pulsed field gradient diffusion NMR and



deuterium NMR.

The first part of this dissertation provides the background for the exper-
imental studies and theory for the molecular association. Thus chapter 2 is
an introduction to basic concepts of NMR spectroscopy. In chapter 3 are dis-
cussed the molecular forces, with emphasis on the self-association and the
concept of hydrophobic interaction. The second part consists of Chapter 4
describing the experimental approach to analyze the relatively simple sys-
tem of tertiary butanol (TBA), considered as quasi hydrophobic substance,
and chapter 5 introducing the biological membranes and the experiment on
a model membrane, the pentaethylene glycol monododecyl ether (C;3Es).
The last part, chapter 6 is a summary of the experimental findings, including
the comparisons between the different studies and investigations reported

in the literature.



CHAPTER 2

Fundamentals of NMR

2.1 Introduction

Though it was a scientific curiosity initially, the phenomenon of Nuclear
Magnetic Resonance (NMR) has now evolved to a powerful analytical tool
used in chemistry and physics for studying molecular structure and dynam-
ics. Discovered initially by Purcell and Bloch shortly after the Second World
War [17, 18], nuclear magnetic resonance spectroscopy studies the absorp-
tion of electromagnetic energy by inducement of transitions between spin
states from lower to upper energy. Since the frequency of the emitted elec-
tromagnetic signals is determined by the energy difference of the states of
the nuclei and the decay of the signal in time depends on the molecular en-
vironment of the nuclei, the NMR signals received by an rf probe can be
analyzed to study the properties of the nuclei and their environment.

NMR has some advantages over other spectroscopic techniques, in the

sense that it can non-invasively and non-destructively examine the physical
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and chemical composition of materials. The method spans all the states of
matter. Particularly, NMR methods can probe living systems in many levels
of organization, ranging from the basic DNA, proteins, to biological mem-
branes. Another category of application is the NMR imaging or magnetic
resonance imaging, which is based on the same foundation as the classi-
cal NMR, is now widely used for clinical diagnostics, by supplying images
of soft tissues of the body. Recently, the discovery that NMR can be used
for developing quantum computers, with computing speed higher than the
speed of the modern computers, has extended further the perspectives of
nuclear magnetic resonance. It is obvious that the development of NMR
spectroscopy has provided a wide field of spectacular applications not only
in the field of chemistry but also extended to physics, biology, medicine and
more.

In this chapter, we present a brief overview of the physical principles
of NMR and the phenomenological treatment of an NMR experiment. The
hardware of NMR spectrometers is widely discussed in the literature [19,

20], so we do not include any of those details for reasons that are evident.

2.2 Properties of Nuclear Spins

Certain atomic nuclei possess a property known as spin, which has a mean-
ing only in the quantum mechanical frame-work , not discussed here. The
property of nuclear spin is fundamental to the NMR phenomenon. A nu-
cleus of spin quantum number I has a spin angular momentum J = /. To
the angular momentum is associated a permanent spin magnetic moment 1
given by [21,22]

p=yhi, (2.1)
where v is the gyromagnetic ratio which is constant for any given nucleus
and i = h/27m, h = 6.629 x 1073*J.s being the Plank constant. The nuclei with

I = 0 possess no nuclear spin and therefore cannot exhibit nuclear magnetic

resonance.
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2.3 Nuclei in a Static Magnetic Field

When a strong external, static field By = (0, 0, By), pointing in the z-direction,
is applied, nuclei will adopt one of the two states: one has a higher energy
level and the other has a lower energy level. The Hamiltonian H, or inter-
action energy of the nuclei is proportional to ;1 and B, and is given by the

expression

Hz = —pBy, (2.2)
whose eigenvalues are defined by

E,, = —yhmB,, (2.3)

where m are eigenvalues of the component of the angular momentum in
the direction of B and can take up 2/ + 1 different values, defined as —1,
—I + 1..1 — 1, I. Each value of m defines an energy level and, in thermal
equilibrium, the number of nuclei in the higher energy state is slightly less
than the number of nuclei in the lower energy state. The energy level of

stationary states are equally spaced with separation
AFE = vhB,. (2.4)

This equation shows that the energy difference is linearly proportional to
the applied field. The distribution of spins between the lower energy state

and the excited state is given by the Boltzmann relation

Nj kT

(2.5)

where N, and Nj are the numbers of spin in the lower and excited states,
kp = 1.3805 x 10-2*J /K is the Boltzmann constant and 7T is the temperature.
A nucleus in the higher energy state can fall to the lower energy state by
emitting a photon with energy equal to the energy difference between two
states. A nucleus in the lower energy state can jump to the higher energy
state by absorbing a photon with energy matching the energy difference be-

tween the two states. The magnetic resonance signal arises from transitions
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between these energy levels induced by the absorbtion of a photon of fre-

quency v or a quantum of energy
AE = hv. (2.6)

This energy is applied as an electromagnetic radiation, perpendicular to the
static field, whose frequency must match that of the precessing nuclei or the
Larmor frequency for the resonance condition to be satisfied. The Larmor

frequency is given by the following expression:
Wy = ”)/Bg (27)

After the irradiation of photons, the excess nuclei in the higher energy
state will return to the lower energy state to recover the equilibrium, emit-
ting photons or electromagnetic fields, which can be detected by an rf probe.
These electromagnetic fields are known as NMR signal and their decay in

time depend on the molecular environment of the observed nuclei.

2.3.1 The Vector Representation

For a collection of spins, the magnetic moments of the nuclei are randomly
oriented in the absence of an external magnetic field and, therefore the re-
sulting magnetic moment is zero. Once the magnetic field is applied, each
individual magnetic moment must align itself either with or against the
external field. These spin states are not equally populated, and the small
population difference of nuclear spins can be represented as a collection
of spins distributed randomly about the precessional cone and parallel to
the z axis. The random distribution of individual magnetic moments about
the cone generate no net magnetization in the transverse z-y plane. Thus
the picture of many similar magnetic moments can be reduced to one of a
single bulk magnetization vector M per unit volume, which is directly pro-

portional in the high temperature approximation to the magnetic moments
through Eq. (2.8) [23] :

Npe, (2.8)
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where N is the total number of spin per unit volume in the sample, 7" the
temperature, kp is the Boltzmann constant, e, the unit vector along the z-
axis and p, = yh/2. This simplified picture is referred as the vector model
of NMR and is used to describe the behavior of the spin in pulsed NMR

experiments.

2.3.2 Radio Frequency Field and the Rotating Frame

The radio frequency field (rf), is an alternating field perpendicular to the
static field By. By convention, this field is called B, field. The concept of
rotating frame is used to simplify the description of the nuclear spin motion
when a rf pulse is applied. In the new frame, rotating about the z-axis, B4
is stationary in the new transverse plane.

Usually, the manipulation of magnetic resonance phenomena is consid-
ered as motion in the rotating frame. Thus, the Hamiltonian of the rf pulse

of general phase ¢, is written [20]:
Hy = —w (I, cos ¢+ I, sin¢). (2.9)

where w; = vB;/2. If the phase ¢ takes the values 0,90, 180,270 degrees,
they define in this order the z, y, -z and -y pulses.

A consequence of transformation into the rotating frame is that the mag-
netization appears to precess more slowly, at the difference (£2y) between the

Larmor frequency (wy) and the rotating or transmitter frequency (w,),

QO = (WO - wr). (210)

2.4 Internal Nuclear Interactions

In addition to the interaction of the nuclear spins with the applied external
magnetic fields (Bo and B), there exist other interactions among the mag-
netic moments within the spin-system. These interactions are referred as

internal interaction.
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2.4.1 Dipolar interaction

A®o
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-
-
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-

FIGURE 2.1: Geometry of the dipole-dipole interaction

The dipole-dipole interaction is due to a through space interaction of
nuclear magnetic moments. The geometry of the interaction is shown on
Fig. The interaction Hamiltonian for dipolar coupled spins in the high-

field approximation is [24]

il 1
Hyy— — (Z_;;) 7:3] 5 > (3o’ — D[3LL. — L, (2.11)
ij i<j

where I.I; = I,,.15, + Ly Ioy + I1..15,, 14 is the distance between the two
nuclei, 7; and +; are the gyromagnetic ratio of the two spins, I,,. are an-
gular momentum operators, % is Planck’s constant, 1 is the permittivity
of free space and 0;; is the angle between the internuclear vector and the
static magnetic field. The form of Eq. is often referred to as the sec-
ular or truncated form or the dipole-dipole Hamiltonian. In solution, the
dipole-diploe interaction is averaged to its isotropic value, zero, by molec-
ular tumbling. This is not the case in liquid crystalline phases and solids
where the interaction is a major cause of line broadening. There are two
possible cases of dipolar coupling: homonuclear dipolar coupling, where
spins I; and ; are the same species (e.g 'H), and heteronuclear dipolar cou-
pling, where spins /; and I; are different (e.g 'H and '*C). In solution NMR,
the measured dipolar coupling is [25]:

ij
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where the angular brackets indicate the time and ensemble average of the
dipolar Hamiltonian over all sampled orientations. Eq. takes the value
zero when all orientations are equally probable (in liquid for instance), but
have a finite non-zero value when there is an anisotropic distribution of ori-

entations relative to the static field direction.

2.4.2 Quadrupole interaction

The nuclear quadrupole interaction is the coupling of the nuclear quadrupole
moment (Q;;) with the gradient of the electric field VE = (Vj;) generated by
the surrounding charges in the system. This behavior is a typical property
of nuclei with spin > 1.

The field gradient tensor (Vj;) is usually defined in a molecule fixed co-
ordinate system while the spin operators I,, I,;, I. are quantized along the
laboratory frame. In the principal axes of the electric field gradient, the
quadrupole Hamiltonian is simplified to [22]:

Q@

Ho —
@7 4120 —1)

Vee (B2 = 1) + (Voo — Vi) (I — L)), (2.13)

where () is the scalar quadrupole moment, e the elementary charge, I is
the total angular momentum operator, and V,,, are the second derivatives
of the potential V(z,y, z) produced at (x,y, z) by exterior charges. Usually
two parameters are defined to characterize the gradient of the potential: the
field gradient

eq="V..

and the asymmetric parameter

Vm_vyy

Vel 2 Vi 2 Ve,
zz

’]’I:

such that 0 < 7 < 1. Both parameters are dictated by the dynamic process.
Given the total Hamiltonian H; + Hy,, the energy levels for the system
can be computed. The allowed transitions are defined by Am = +1, where

m = —I,...,I is the eigenvalue of I,. The quadrupolar splitting Av is a
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symmetry

axis »
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FIGURE 2.2: Geometry of the quadrupole interaction

function of the polar angles © and ¢ (see Fig. that define the orientation

of the principal axis system in the laboratory frame [26]. Thus,

_ §62qQ (3(:052@ -1

1,
Avg(©,¢) = 5, 5 + N sin O cos 2q§) (2.14)

where the factor €?¢Q/ I is the quadrupole coupling constant. For axial sym-
metry such that V,, = V,, , thatis n = 0, a simplified expression for the

splitting is:

Avg(©)

_ 3e%Q (300326 - 1) (2.15)

T2 h 2

2.4.3 Chemical shift

The diamagnetic electrons surrounding the nuclei partially shield the ap-
plied magnetic field so that the local magnetic field at the site of the nucleus
is different from B, and both are related trough the shielding tensor o rep-
resented as a 3 x 3 matrix. The local magnetic field is given by cBy. The
chemical shift effect describes the fact that the magnetic fields experienced
by nuclei at two sites in the same molecule are different if the electronic
environments are different. The internal Hamiltonian associated to this in-

teraction for a given spin is defined by [27,28] :

H., = y10Bo. (2.16)
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24.4 J-coupling

The spin at one nucleus disturbs the electrons surrounding it. The resulting
perturbation is transferred via the surrounding electrons of the molecule
to electrons in the vicinity of the second nucleus. This effect is known as
indirect spin-spin coupling. The interaction Hamiltonian is approximated
by [24]:

Hy=> LIl (2.17)

i<j

where J;; is the coupling tensor between spin i and j and has two contribu-

tion: an isotropic contribution and an anisotropic contribution.

2.5 Dynamics of the Nuclear Spins

2.5.1 Equation of Motion

Spin systems are statistical ensembles whose average state is frequently de-
scribed by a density operator p(t) [20,22,24]. The density operator can be
represented as a matrix with elements < n|p(t)|n’ >, where |n > is a com-
plete basis of states. Usually, the eigenstates of the nuclear spin Hamiltonian
operator H are used as the basis, i.e, H|n >= E,|n >. Doing so, the diagonal
elements of p(t) (n = n’) are populations, i.e., < n|p(t)|n > is the probabil-
ity of finding the system in the nth energy level. The off-diagonal elements
(n # n') are called coherences if they are non-zero. At thermal equilibrium,
there are no coherences, however coherences can be created by resonant rf
pulses.

The expectation value of an operator O for the spin state is given by
<O >=1tr{O0.p(t)}. (2.18)

It follows particularly that the magnetezation vector M is related to the spin

operator vector I by

M = Nvhtr{L.p(t)} (2.19)
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where N is the number density of spins.
The change that the different nuclear interactions cause on the density

operator is given by

dfc’l_? — iH. (1), (2.20)

This equation, also known as the Liouville von Neumann equation, is de-
rived from the time-dependent Schrodinger equation. The solution to this

equation for a time-independent Hamitonian is
p(t) = U(t)p(0)U ' (t) (2.21)

where p(0) is the density operator at time ¢ = 0 and the evolution operator

is given by:
U(t) = exp(—iHt) (2.22)

The definition of U(t) assumes that the Hamiltonian is constant over the
time period. Usually, this is not the case, for instance in multiple pulse ex-
periment. The Hamiltonian changes when radio frequency pulses are ap-

plied from that which operates during the time gaps between pulses. For

this reason, Eq. (2.22) is written
U(t) = exp(—iHpty,)... exp(—iHity) (2.23)

where the Hamiltonian which operates in the time ¢,, is H,,, and the factors
are time-ordered (from right to left).

The density operator formalism is very convenient for the description of
the dynamics of nuclear spins in NMR. The vector model, introduced ear-
lier, is very useful for describing basic NMR experiments but unfortunately
is not applicable to coupled spin systems. Specifically, in two-dimensional

NMR many of the experiments are only of interest in coupled spin systems.
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Energy
A I I B High spin state, N
TS A A o sein sate. P
AE=hv T
A
v T T T T i \‘1' Low spin state, Na.
A
T2

FIGURE 2.3: Resonance and Relaxation. T; involves the exchange of Zeeman
energy with the lattice, T» processes do not alter the total Zeeman energy of
the nuclear spin, i.e it conserves the energy of the spin state. N,, Ng are

populations of spin states.

2.5.2 Nuclear Spin Relaxation

Spin relaxation describes all phenomena, where a spin state ¢ returns to the
thermodynamic equilibrium state ¢y due to a randomly fluctuating Hamil-
tonian. In NMR, these phenomena are of two different types. Each type de-
pends upon different processes within the spin system. The first type takes
place in the z-y plane and is commonly known as the spin-spin or transver-
sal relaxation, and is characterized by a time constant 75. The transversal
relaxation does not involve the exchange of spin energy with the lattice, but
is concerned with the mutual exchange of spin energy via a flip-flop type
mechanism, see Fig. The second type of relaxation is the spin-lattice or
longitudinal relaxation, occurs along the z-axis and is characterized by the
time constant 7.

The first phenomenological description of the motion of the net mag-
netization of isolated spins was done by Bloch [29]. The Bloch equations
provide a simplified model for the behavior of a nuclear spin system after

perturbation by a pulse. The Bloch equation may be written
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dM,, M, ,

= y(M — .
p (M x B),, T (2.24)
dM., My — M,
= y(MxB), + ——= 2.2
o 7(M x B). + T (2.25)

where M is the thermal equilibrium magnetization given by Eq. (2.8). These
equations provide qualitative insights into the effects of relaxation on the
NMR experiment and the relaxation rates can be measured experimentally.
But it is worth emphasizing that nuclear spin relaxation is not a spontaneous
process, it requires stimulation by a suitable fluctuating field to induce the
necessary spin transition. Usually, a radio frequency field rotating at Larmor
frequency is used to produce the transitions.

The Bloch formulation does not provide a microscopic explanation of
the origin or magnitude of the relaxation time nor is it extensible to more
complex coupled spin systems, for example, in dipolar-coupled two spin
systems. In fact, as the molecules in the sample move due to the thermal
motion, the magnitude and direction of the magnetic field exerted by one
spin on the other changes. The fluctuating or time-dependent magnetic
fields generated by the motion of neighboring molecules is the origin of
the relaxation process. The fluctuation may be the dipole-dipole interac-
tion, quadrupole interaction etc... and is considered as a small perturbation
to the dominant Zeeman interaction. Usually a time-independent Hamil-
tonian is obtained by transformation to a frame rotating at the frequency
w of the applied radio frequency. No such option is available for dealing
with a randomly fluctuating Hamiltonian responsible for relaxation during
the intervals between the pulses. Instead, the evolution of the spin density
operator in the presence of random perturbation must be calculated either
by numerical integration of Eq. (2.20), or by the formalism developed by
Wangness and Bloch [30], and by Redfield [31].
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2.6 Molecular Self-diffusion

The molecular self-diffusion can be defined as the translational motion of
particles due to the changing interaction at the molecule vicinity (internal
kinetic energy). The trajectory of any given molecule is irregular through
the available space, Fig. According to the geometry of the space, we can
distinguish a free diffusion which takes place in an isotropic solution; and a

restricted diffusion where the molecules diffuse within a confined space.

origin

FIGURE 2.4: Chaotic trajectory: two particles, indicated by solid and dashed
lines. The trajectories begin at the same origin yet follow different irregular

paths.

2.6.1 Pulsed Field Gradient NMR

In pulsed field gradient (PFG) NMR, a magnetic field gradient is deliber-
ately applied, making the NMR frequencies functions of position within the
sample. The pulsed field gradient NMR self-diffusion experiment [32-34]
is an important tool for investigations of diffusion processes in biological

systems. The echo attenuation can be written in the general form [35] :

E(G,A) // (r|r’, A) exp [iv0G.(r — r')]dr’ dr (2.26)

where p(r) is the initial spin density, P(r|r’, A) the propagator is the the con-
ditional probability that a molecule initially at r has moved to r’ after a time
A, 0 and G are the duration and magnitude of the gradient pulses. A is also

called the diffusion time. It is worth underlying that Eq. (2.26) is valid under
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the short-gradient pulse approximation (SGP) since at the moment there is
no universal model describing the echo decay as a function of the diffusion
of molecules. Thus, the relationship between the signal attenuation and the
diffusion constant is not so obvious to determine. The knowledge of the ex-
pression of P(r|r’, A) allows the integration of Eq. (2.26). For freely diffusing

particles, the propagator is

1 (r—r')?
P(rltr,A) = ——— - 2.27
(rle’. &) (47 Dt)*/* P [ 4Dt |’ (227)
where D is the self-diffusion coefficient. For a system of arbitrary geometry,
an analytical expression for P(r|r’, A) is not known but numerical methods

can be used successfully [36] .

2.6.2 Gradient Calibration

Nucleus System value of Dx10% /m?s~!

'H CgHg 2.207 £ 0.005
H,O 2.300 £ 0.005
H,0/2?H,0 (trace) 1.902 + 0.002
H>,0/2H50 (10 mol.%)  1.935 £ 0.010

13C CeHs 2.207 £ 0.007

TABLE 2.1: Reference system for gradient calibration at 25°C. Adapted from
ref [37]

It is very important to determine the gradient strength G as accurately
as possible because there is a link in both precision of G' and precision of D.
In both pulsed gradient and static gradient NMR experiment the strength
of the gradient required to achieve the results should be assigned. We just
remind here that the static gradient is applied continuously during an exper-
iment, and the magnitude of the gradient can be derived by the shape anal-
ysis of the echo [38], but this method has some drawbacks such as the devi-
ation from the ideal geometry of the sample, which can distort the shape of

the echo. It should be also possible to calculate the field gradient inside the
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probe from the geometry of the gradient coil and the current through them.
But this turns to be difficult and inaccurate particularly because the shape of
the gradient coils might not be perfect, as the theoretical model. Usually the
calibration is done indirectly by examining a sample of known D through
the analysis of the echo decay of a PGSE experiment on a single component
solution [39]. Some reference systems used in 'H and '*C NMR are given in
Table Even then this requires accurate temperature control.
For a gradient pulse applied, the amplitude of the echo is given by [32]

2 J

M(27) = M(0) exp —% — (vG6)*D (A - 5)} , (2.28)
2

where 7 is the time between the pulses, //(0) is the equilibrium magnetiza-

tion, § and A are the duration and the interval of the gradient pulses. The

experimental dependence of the echo is normalized to a relative gradient

S
g— Gmax7

(2.29)

where G4, is the maximum value of the pulsed gradient strength. The

experimental dependence M (g) is fitted to a Gauss-function
— 92
M (g) = moexp (?) (2.30)

where my = M(0) exp <%) is constant and corresponds to the decay of

the equilibrium magnetization M (0) with the relaxation time 75, and k* =

max

be seen in Fig.

The maximum gradient is calculated for a water sample at 25°C using

[(76)?D (A = 3) G2 }_1. The experimental points and the fitted curve can

the formula

1
Gma;r - ; (231)

\/Dcal (vok)? (A — 8)
where D, = 2.3 x 1072 m?/s is the diffusion coefficient of water at 25°.
For v = 2.675 x 10°s7'T™!, § = 3ms, A = 75.015ms and the fitting pa-
rameter k = 0.01048, Eq. (2.31) gives G4, = 9.15T /m. This value of Gy, is
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o o Exp.
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.. o,
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L 1 L

FIGURE 2.5: Profile of the diffusion experiment used for gradient calibration.

The solid line is the best fit of the experimental data.

characteristic of the probehead used for our measurement. For each exper-
iment, the diffusion coefficient can be obtained by applying the following

formula:

1
Pk a-D e @3

max

where £; is the fitting parameter obtained for a given experimental condi-

tions (samples, temperature).



CHAPTER 3

Molecular Association and

Hydrophobic Interaction

3.1 Introduction

An understanding of the forces between molecules is the basic requirement
for understanding the structure and properties of physical and biological
systems. The forces act either within a molecule and they are called in-
tramolecular forces, or they act between molecules and they are called in-
termolecular forces. A comprehensive treatment of the subject is found
in elaborated textbooks [40—43]. Intramolecular forces are localized in the
bonding region between atoms and are of short range in the sense that
they act over bond distances of 0.1 — 0.2nm [42]. They are mostly covalent
bond because they are limited to the interactions between atoms involved
in molecular formation. In most of the system involving molecular associa-

tion phenomena, the intramolecular forces are not of great interest, instead,
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the intermolecular forces acting over distances greater than molecular bond
dimensions are interesting. The intermolecular forces are responsible for
aggregation/self-assembly and binding reaction in many biochemical pro-
cesses [44]. The type of intermolecular binding forces operating between
the molecules defines how different molecules should aggregate into one or

another structure. The force between two molecules is defined by [40,41]:

~dw(r)
F=_ o (3.1)

where w(r) is the pair potential between two molecules or particles and
correspond to the work done in bringing the two molecules from infinite
separation to the separation r. The pair potential has various functional
form for different types of forces.

The modification of the molecular microenvironment through addition
of salts or other means has important consequences in structural integrity
and dynamic of biological system. The intermolecular forces may be elec-
trostatic in origin or may be derived from special interactions such as hy-

drophobic interaction.

3.2 Electrostatic Forces

Electrostatic forces arise from the coulombic interaction between charges
and are fairly easy to understand. They are at the origin of the strong inter-
action among ions, among ions and polar molecules and among ions and
non polar molecules, that is, they are involved when at least one formally
charged species is present in the system. Ionic crystals (e.g. NaCl) are a
good illustration of the electrostatic interaction; Fig. shows the spacial
arrangement of the charged species.

Electrostatic interactions are very important in molecular association ei-
ther in inorganic system or biological systems such as nucleic acids and pro-
teins. The potential between two ions is a function of their separation.

A hydrogen bond (H-bond) constitutes a particular case of electrostatic

interactions where a hydrogen atom covalently bonded to an electronega-
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FIGURE 3.1: lonic crystal of NaCl, composed of alternate positive and negative
ions. The forces are attractive between unlike ions and repulsive between like

inos. The overall interaction ensures the stability of the structure.

tive atom, such as oxygen, nitrogen or halogen (S, F), is able to approach
another electronegative atom which may be within the same molecule or in
a different molecule. The hydrogen bond is not unique to water and can
occur also in nonpolar environments. They are particularly important in
macromolecular and biological assemblies such as in proteins, linking dif-
ferent segments together inside the molecules and in nucleic acids, where

they are responsible for the stability of the DNA molecule.

3.3 Van der Waals Forces

The van der Walls forces are separated in three types of atomic and molec-
ular interactions: dispersion forces, induction forces and orientation forces.
Each of which has its own characteristics, its own theoretical basis, and its
own limitations [41]. The first two of the three are reasonably easy to un-
derstand because they are based on relatively straightforward electrostatic
principles similar to those used for the much stronger coulombic interac-
tions.

The dispersion interaction is very important in phenomena such as the
properties of gases and liquids, the strengths of solid and the aggregation

of particles in aqueous solutions, and the structures of condensed macro-
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molecules such as proteins [41]. To understand the origin of dispersion in-
teraction, we consider the interaction of two molecules neither of which has
a permanent dipole moment. Although a molecule may possess no perma-
nent dipole moment, its electrons are in continuous motion so that the elec-
tron density in a molecule oscillates continuously in time and space. Thus at
any instant any molecule possesses an instantaneous electric dipole which
fluctuates as the electron density fluctuates. This instantaneous dipole in
one molecule induces an instantaneous dipole in a second molecule. The
induced dipole in the second molecule and the inducing dipole in the first
interact to produce an attractive energy called the dispersion energy. In
other words, the dispersion energy is a result of the correlation between the
electron density fluctuations in the two molecules. This force is the only
contribution to the long range interaction of nonpolar molecules [40].

The induction contribution originates from the interaction between one
molecule with a permanent dipole moment and a neutral molecule (i.e. non-
polar molecule). In fact the electric field of the dipolar molecule distorts the
electron charge distribution of the other molecule producing an induced
dipole moment within it. This induced dipole then interacts with the nearby
dipole to produce an attractive force. Inductive forces are simultaneously
present with the electrostatic contribution in the case of the interaction of
two polar molecules.

The orientation forces concern polar molecules with permanent dipole,
and are generally significant only in systems involving very polar molecules

[42].

3.4 The Hydrophobic Interactions

The considerations of intermolecular forces in the paragraph above were
more or less restricted to pure compounds that is only one type of attractive
force is present. For a mixture of two or more components, more interac-

tions occur simultaneously. Many of the characteristics of mixtures can be
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explained in terms of the relative strength of the intermolecular forces be-
tween unlike pairs of molecules and those acting between the pure com-
ponents. Thus the limited miscibility of water and liquid hydrocarbons
such as tertiary butanol, is not an indication that molecules of water and
tertiary butanol repeal each other, but rather that they attract each other less
strongly than water attracts another water molecule, and tertiary butanol
attracts another tertiary butanol. The aspect of the molecular forces of in-
terest is the self-association, occurring spontaneously in aqueous solution
as a result of the attraction of like-like apolar groups, more specifically, the
stability of these aggregates is believed to be due to the effective interac-
tion between the apolar groups. This subject is usually discussed under the
name hydrophobic effect or hydrophobic interaction. The literature on the
subject is very wide [3,4, 41,45-48] and covers the anomalous thermody-
namic properties of solutions [45], the formation of biological membranes
and micelles [3], and the influence of solution environment on the structure
of proteins [1].

The hypothesis for the theory of hydrophobic interaction were mainly
built around the observations that, inert gases and simple hydrocarbons are
barely soluble in liquid water and readily soluble in nonpolar solvents; the
low solubility is coupled to the negative deviation of the standard entropy

of solution.

3.4.1 Aqueous Solution

Aqueous solutions are defined as solutions in which water is the solvent. It
is generally said that "Water is life". That is true in the sense that all known
forms of life need water. Many biochemical processes require the presence
of water [49]. Much has been written on the subject of water to explain its
structure and the challenging properties [50].

The water molecule is a simple molecule consisting of two hydrogen
atoms attached to an oxygen atom. Water has the chemical formula H,O.

For an isolated molecule, Fig. the O-H bonds are at an angle of about
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FIGURE 3.2: The average structure of a water molecule

105° between these bonds. This arrangement results in a polar molecule
since there is a negative charge (0~) toward the oxygen end and a net pos-
itive charge (6*) at the hydrogen end. The polar nature of water and its
ability to form hydrogen bonds make water a good solvent. Many au-
thors [50-52] agree that liquid water structure consists of hydrogen bonds
between molecule and emphasized a fundamental difference in properties
between water and most other liquids. Among these properties, one can
consider the anomalous thermodynamic behavior of aqueous solution.

The arrangements of water molecules must be altered when any solute is
dissolved in it. If the solute particles are ionic or polar solute, strong bonds
to water molecules can form, compensating by this fact the disruption of
bonds existing in pure water, and making such solute easily soluble in wa-
ter. Thus, water molecules reorient and partially neutralize charges (ionic
charges) so that positive and negative charges do exist as separate entities,
i.e. without forming ion pairs. The molecules at the first hydration shell (hy-
drating molecules) show much slower H-bond and reorientation dynamics
than water molecules far away (bulk water) [53].

The H-bond compensation does not occur with nonpolar groups, mak-
ing them barely soluble in water. Wiggins et al. [49] indicate that water
molecules remain in a high energy state if they fail to arrange for the maxi-
mum number of hydrogen bonds with one another in the presence of non-

polar moieties. However the water molecules which are adjacent to the hy-
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drophobic solute are in the higher energy state.

3.4.2 Theory of Hydrophobic Interactions

Many substances which form solids with strong intermolecular cohesion
generally exhibit low solubility in all solvents. This is contrasted with hy-
drophobic substances defined as substances which are barely soluble in wa-
ter but easily soluble in many nonpolar solvents. The limited miscibility of
water and hydrophobic substances is known as the hydrophobic effect. In a
macroscopic scale, the effect is summarized by the sentence: "Oil and water
don’t mix", as shown in Fig. The behavior of nonpolar molecules which
are unable to form hydrogen bond in aqueous solution is very fascinating.
This behavior can not be explained only by the van der Waals interaction

and the origin is not yet clearly understood.
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FIGURE 3.3: OQil and water don’t mix. Macroscopic illustration of the hydrophobic

effect.

Frank et al. [51] in their investigation of the thermodynamic properties of
aqueous solutions of hydrophobic substances gave the initial interpretation
of the anomalous behavior of nonpolar solutes in aqueous solution, confer-

ring the important role to the properties of water. This was later called the
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hydrophobic effect or hydrophobic interaction or hydrophobic bond [52]. It
was recognized that the modification of the water structure around nonpo-
lar solute is accompanied by a loss of entropy, i.e hydrophobic units induce
some order in the surrounding water. This effect is strengthened with in-
creasing temperature and this is why the interaction is often viewed as an
entropic phenomenon.

The loss in entropy is more pronounced for large molecules than for
small molecules. The role of water in resolving protein conformation and
denaturation was considered by Kauzmann [1] in his analysis of the forces
stabilizing the native structure of proteins. He underlined the unique nature
of the solvent medium in which the processes of life take place.

Biological structures are stabilized by a variety of forces. But, it is be-
lieved that the self-association between hydrocarbon chains or the hydropho-
bic interaction is the main stabilizing force [1,3].

At the moment there is no precise theory of hydrophobic interaction.
While qualitative description of the hydrophobic effect is widely discussed
in the literature, the lack of a formal theory of hydrophobic interaction makes
a quantitative analysis very difficult. In a first approximation only ideal or
pure hydrophobic substances are considered. The hydrophobic interaction
exhibits many characteristics [48]. The hydrophobic interaction depends on
the molecular size or hydrophobic cavity - which may consist of a molecular
unit, large clusters or a combination of both. For a small hydrophobic cav-
ity, the hydrogen bonded structure of water is maintained (four hydrogen
bonds), although configured in a disordered manner. But in the case of large
cavities, the hydrogen bond requirement of water can not be fully satisfied
anymore (< 3) in some region of space, because the dimension of the cluster
doesn’t allow the adjacent water molecules to maintain a complete H-bonds

network with the surrounding liquid, see Fig.[3.4] for a pictorial description.

Many phenomenological descriptions do not consider this detailed as-

pect of the problem. Eriksson et al. [6] have developed a concept of mean



3.4. The Hydrophobic Interactions 28

FIGURE 3.4: Configuration of liquid water molecules near hydrophobic cav-
ities. a) The hydration of small cavity does not break hydrogen bonds. b)
Solutes cluster together to form an hydrophobic unit with an extended surface.
The dimension of the cluster doesn’t allow the adjacent water molecules to
maintain a complete H-bonds network with the surrounding liquid. Adapted
from [48]

tield theory of the hydrophobic attraction based on the notion of enhanced
hydrogen bonding for the water molecules in the vicinity of hydrophobic
surfaces. Their main conclusion suggests that a change in water structure
may be at the origin of the observed hydrophobic interaction. Another ex-
planation for the origin of the hydrophobic attraction relies on the electro-
static fluctuation [5]. In fact they propose that the hydrophobic attraction
arises from electrostatic fluctuation between neutral bodies. Actually Ka
Lum et al. [7] went further by considering two aspects of the hydrophobic at-
traction in terms of density fluctuations. In their analysis, they emphasized
that the hydrophobic attraction of small apolar groups (alcohol) is not simi-
lar to those between large assemblies (proteins). Small apolar groups affect
density fluctuations in water at small length scale, while large hydropho-
bic species can induce density fluctuations at large length scale. Some au-
thors proposed that the hydrophobic attractions arise from the bridging of

microscopic and submicroscopic bubbles adhering to the hydrophobic sur-
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faces [8]. More importantly these bubbles exhibit a convex profile when
there exists an attraction between the hydrophobic surfaces.

All these theories are defined in the context of ideal hydrophobic solutes,
i.e objects which have no attractive interactions with the solvent particles,
although real hydrophobic particles have some attraction for water (and
vice versa), because of the omnipresence of van der Waals interactions [47].

However, pure hydrophobic or hydrophilic compounds are probably
not very typical representatives of biophysical constituents. Another class
of organic molecules, the so-called amphiphiles, containing polar and non-

polar portions is usually found in biological systems.

3.4.3 Amphiphile Solutions

Amphiphiles are molecules consisting of two parts, one polar (hydrophilic,
meaning it likes water) and the other one nonpolar (hydrophobic, mean-
ing it avoids water) [3,41,54]. The hydrophilic part also is called the head
group, it can be charged (anionic, cationic, zwitterionic) or polar (polyethy-
lene chain, amine oxide). The hydrophobic or nonpolar portions, known
also as the tail are usually hydrocarbons consisting of one or two linear
chains as well as branched hydrocarbon chains. A typical structure of the
amphiphilic molecules is given in Fig. Molecule such as polyethylene
glycol monododecyl ether have a head group made up of oxyethylene and
a tail consisting of a long hydrocarbon unit.

In aqueous solution, amphiphiles can self-assemble into aggregates of
different geometries generally called micelles. This class of substances is
generally referred to as association or self-assembled aggregates. The mi-
celles consist of a hydrocarbon core, with polar groups at the surface serving
to maintain solubility in water. The size, shape, and basic structure of the
associated structure are controlled by internal and external factors such as
the chemical structure of the molecules, the solvent composition, the solute
concentration, the temperature, etc...

Micelles can be small spheres or disks, oblate or prolate ellipsoids, or
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FIGURE 3.5: Schematic representation of an amphiphile: the pentaethylene

glycol monododecyl ether ( C12E5). A) Simplified picture , B) Chemical structure

long cylinders. They can also be in the form of bilayers, that is, two parallel
layers of amphiphile molecules with the polar groups facing out. Bilayer
micelles often form more or less spherical vesicles (liposomes) with an in-
ternal solvent-filled cavity. The common features of these aggregates is that
they possess well-defined hydrophobic domains in which the chains cluster
into the core of the aggregates whilst the hydrophobic groups remain in con-
tact with the solvent (water). The self-association is a spontaneous process
resulting from the interaction between the individual solute molecules and
the solvent medium. However, the aggregate starts only to form at a certain
concentration of the solution called critical micelle concentration (cmc) and

at a certain temperature called critical micelle temperature (cmt) [3], [41].

FIGURE 3.6: Schematic representation of a spherical micelle formed by ag-
gregation of amphiphiles in aqueous solution. The micelle is opened to show

the hydrocarbon core.



3.4. The Hydrophobic Interactions 31

The basic types of biological amphiphiles are:

e Lipids which are structural components of biological membrane,

e Integral membrane proteins which, together with lipids serve as fun-

damental building blocks of biomembranes,

e Nucleic acids which are of two types: deoxyribonucleic acids (DNA)

and ribonucleic acids (RNA).

At low concentration, amphiphiles may reduce effectively the surface
tension. For this reason, they are also called surfactant, i.e. surface active
agents, which refers to another feature of amphiphile substances. The sur-
factant self-assembly occurs in order to minimize the free energy of the solu-
tion. As a result they are very unstable, that is they are dynamic aggregates
(making and breaking in a short time), able to rearrange (i.e. adopt a range
of sizes and shapes ) in response to changing environmental conditions such
as temperature. The most stable form of micelles is dictated by thermody-

namic and geometric factors.

3.4.4 Factors Controlling the Micellar Structures

Shape and size of micelles may be predetermined as the result of the com-
petition of the hydrophobic interaction between the tails and the electro-
static repulsion between the head group. The geometric properties of the
molecule and the head group charge influence the micellar shape. Now, it
is recognized that the shape of micelles is strongly influenced by its tails
also [55]. The micellar shape depends on the relative values of tail length
(1), effective head group area (a) and the tail volume (v) of the molecule,
that is, the dimension of the amphiphile. A packing parameter, useful in

determining a phase preference of an amphiphilic molecule, is defined by:

p=2". (3.2)
al

The variables a,v and [ are all measurable [41], [3]. The possible packing
geometries are listed in Table
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Packing shape Packing parameter P Structures formed

w <1/3 spherical micelles
9
&/ 1/3—-1/2 cylindrical micelles
S 1/2-1 vesicles, flexible bilayers
~1 lamellaes, planar bilayers
>1 inverse cylindrical and spherical micelles

TABLE 3.1: Packing parameter and the corresponding structures formed [41].

The thermodynamic aspect of self-aggregation is based on the change
in free energy. An individual molecule in a solution has an interaction free
energy (cohesive energy) which is the sum of its interactions with the sur-
rounding molecules. The aggregate formation is regarded as changing the
energy /1 (chemical potential) of a free monomer (molecule) of a system
when an additional constituent of the same kind is introduced [41]. How-
ever, the change must be constant and equal to the change in the energy py
of a molecule already in an aggregate of aggregation number N (/N being
also the number of constituent monomer molecules). This may be expressed
as
pn = S+ kWTln <%> =const, N =1,2,3... (3.3)

where 1% is the mean interaction free energy per molecule in aggregates
of aggregation number N, and Cly is the concentration of molecules bound

in aggregates of number NV (N = 1 corresponds to free molecules or am-

phiphiles).
However, the relevant physics lies in 1%, and how it depends on N. It is
denoted as:
akT
Y = Moo + o (3.4)

NP
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FIGURE 3.7: Amphiphiles are either present as un-aggregated monomers or are
part of an aggregate consisting of N surfactant molecules. Micelles are dynamic ag-
gregates, making and breaking in a short time, the residence time being estimated to
be between 10~° and 10735 [42] .

where « is a positive constant that dependent on the strength of the inter-
molecular interaction, P is the packing parameter, 1%, is the energy of a
molecule in an infinite aggregate. Stable aggregates form if u% — u) < 0
for at least some value of N. So, the ability of amphiphiles to assemble
into structures in which %, reaches a minimum or constant value at some
finite value of N limits the aggregate growth. This explains why the ag-
gregates formed are not infinite (leading to phase separation) but of finite
size (leading to micelle formations or micellization) and the critical micelle

concentration (cmc) is given by:
eme v e N e (3.5)

The c¢mc correspond to the concentration above which aggregates start to
form in solution. The knowledge of how the molecular structure of the sur-
factant controls the shape and size of the resulting aggregate is useful in

selecting molecules that would give desired structures such as bilayer vesi-

cles, Fig.

3.4.5 Effect of Cosolute

In addition to solvent (water) and solute (amphiphile), there exist also coso-

lute, traditionally considered as a second solute substance. An interesting
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cosolute is salt. The salt can dissolve in water and acquire an ionic character.
The ions then affect the solvent structure [10,53] in addition to the specific
interaction between the cosolute and the solute molecules. Regarding the
solvent structure, some ions order water and they are called kosmotropes
while other ions disorder water and they are called chaotropes.

The solubility of apolar particles such as noble gas is relatively lowered
upon addition of salt [56]. The associated variation of the chemical potential

is positive and is found to be proportional to the salt concentration [57].



CHAPTER 4

Effect of Salts on Aqueous

Solutions of Tertiary Butanol

41 Introduction

The entropy of simple alcohols such as methanol increases less than ex-
pected for an ideal solution upon mixing with water. This effect has been as-
signed to the modification of the water structure, forming ice-like or clathrate-
like structures around a solute molecule [1,51]. Experimental and theoret-
ical evidence suggested that hydrophobic portions of alcohol molecules in
aqueous solution aggregate together [58,59]. This behavior makes alcohol
a good candidate to study the interaction between apolar groups. Tertiary
butanol (TBA) is a simple amphiphile molecule and is used for the basic in-
vestigation of the hydrophobic interaction. These interactions are modified
by the addition of salt and the mechanism remains poorly understood.

To understand efficiently the structural properties of the tert-Butanol / Water
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system, and the effect salts can induce, it is important to know the structure

of the basic components of the system.

4,2 Structure of tert-Butanol

FIGURE 4.1: Three dimensional structure of a TBA molecule. The red shoulder

indicates the position of the oxygen atom

Alcohols are important organic compounds that contain the hydroxyl
(-OH) group. They are generally classified in three groups: primary, sec-
ondary and tertiary. The alcohol of interest, tert-Butanol, belongs to the
third group. Tertiary alcohols have the hydroxyl group (-OH) attached to a
carbon atom which has no hydrogen atom attached directly to it and is also
bound to three carbons. Tert-Butanol has the chemical formula (CH3);COH.
The methyl group (-CHjs) form the hydrophobic head while the (-OH) group
is the hydrophilic tail. This structure confers to the t-Butanol molecule an
amphiphilic character.

The structure of liquid tert-Butanol is due to a mix of intermolecular
interactions. A number of studies have attempted to propose a model for
the structure. Neutron scattering [60] and molecular dynamics simulation
[61] indicate that there exists a contact between the methyl groups of the

alcohol as well as the hydrogen bonding interactions between the hydroxyl
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group, and, that a significant number of polar to non-polar interactions are

also present.

4.3 Aqueous solution of tert-Butanol

The interaction of water with alcohol is accompanied by a loss of entropy
which is typical for hydrophobic system. This has led to a wide range of
studies on this system and yet, understanding of the origin of this interac-
tion still remains elusive. A number of studies on alcohol water mixture
in atomic detail have been published, aimed at studying details of interac-
tion and structural properties. For instance, study on TBA in water shows
that besides the dominant non-polar contact, there are mixed polar-apolar
contacts and there is no evidence for significant TBA-TBA hydrogen bond-
ing [62,63]. The work of Soper et al. [64] involves neutron diffraction and in-
dicates that water molecules form cages around methanol molecules in solu-
tion. Computer simulation has been used extensively to study the structure
of tertiary butanol and the results claim little self-association of molecules
for dilute solutions [65]. The investigation of Dixit et al. [66] have attributed
the loss of entropy to an incomplete mixing water-alcohol solution at molec-
ular level. More recently, Guo et al. [67] have performed x-ray emission
spectroscopy whose result indicates that water molecules bridge methanol
chains to form a ring structure containing 6 to 8 methanol molecules. Some
experiments based on NMR, on different alcohols, have emphasized the de-
pendence of the solubility (or hydrophobicity) of alcohol solutions on tem-
perature, on concentration and on some cosolutes [11,13, 68, 69]. Moreover,
the properties of aqueous solutions of ethanol are systematically influenced
by salts [69]. This influence appears to be ordered in the Hofmeister series
of aqueous solution [10].

Tertiary butanol-water solutions have been subjected to a particular at-
tention. TBA is the largest monohydric alcohol fully miscible in water and

is considered to be the most hydrophobic of the water-soluble alcohols [62].
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Within the mixture exist different kinds of intermolecular interactions: the
solute-solute, solute-solvent and solvent-solvent interactions. The tempera-
ture and concentration dependent studies on this system indicate that, the
hydrophobic association (or solute-solute interaction) increases with dilu-
tion of the alcohol concentration and reaches a maximum at a concentration
of about 2-3 mol % alcohol [11]. This has been the main motivation for the
choice of this system for investigation of the hydrophobic interaction.
Upon addition of NaCl, the structure of the solute-solute interaction is
affected as indicated by neutron scattering. Two coordination spheres are
observed. Bowron et al. [12,70] have inferred this structural change to the
anion (Cl7), proposing that the anion might bridge a pair of TBA molecules.
An investigation of the effect of different salts (NaBr, Nal) may yield addi-
tional information regarding either the location of the anion or the overall

effect of salts on the association behavior of TBA molecules.

4.4 Theoretical approach

Information about the structure and translational motion can be obtained
from spin-lattice relaxation measurements. Spin-lattice relaxation for inter-
acting spins can be treated theoretically. The principles of the calculation of
the spin-lattice relaxation emerged from the fundamental work of Bloem-
bergen, Purcell and Pound [71], who considered the rates of transitions of
the spins between energy levels, although more general formulations of the
theory have been given by Wangsness and Bloch [30] , and by Redfield [31].
The analysis is complicated by the fact that it is necessary to separate out
the contribution due to the intramolecular and intermolecular dipole inter-

actions.

4.4.1 Dipolar Relaxation Rate vs Pair Distribution Function

The mechanisms responsible for 7; relaxation are time-dependent interac-

tions, such as the dipole-dipole interaction, the spin rotation interaction due
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to the distribution of electrons in the rotating molecule, or to portions of the
molecule; the chemical shift anisotropy interaction, due to the variability of
the chemical shift as a function of the orientation of the molecule with re-
spect to the static field; the scalar coupling interaction, due to fluctuations
of the coupling constant J; the quadrupolar relaxation (very large for nuclei
with spin > 1), due to the changing direction of the electric field gradient at
the nucleus; the paramagnetic interaction, due to the presence of unpaired
electrons. Since all these interactions are of different strengths depending
on a given situation, it follows that the relaxation rate will depend upon the
precise mechanism responsible for relaxation.

In liquid solution, the dipole-dipole coupling is considered to be the
main interaction responsible for nuclear relaxation for spin 1/2 (‘H only).
An expression for the relaxation rate is determined by the time dependence

of the magnetic dipole-dipole coupling. For two like spins, it is [72]

o= 2RI 1) fam? (4.1)
T D(),l[Qij(O)] DO,I[Qij(t)] iwt
R e
TX Do 2[$25(0)]  Do2[S2;(2)] 2wt
! 4/<Z B0 > ‘o

where Dy, ,,[(2] is the k, m-Wigner rotation matrix element of rank 2. The Eu-
lerian angles ©2(0) and 2(¢) at time zero and time ¢ specify the dipole-dipole
vector relative to the laboratory fixed frame of a pair of spins and r;; denotes
their separation distance and 1 specifies the permittivity of free space. The

expression of Eq. (4.1) for the relaxation rate consist of two contributions:

L1,
Tl Tl,intra TLinter ’

an intramolecular part (1/7} intra) generated by nuclei within the same molecule,

(4.2)

and an intermolecular (1/77 jster) contribution due to the nuclei in different
molecules. This is illustrated in Fig[4.2]
The intramolecular contribution is basically due to molecular reorienta-

tions and conformational changes and has been used extensively to study
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FIGURE 4.2: Cartoon showing the inter- and intramolecular dipolar couplings

between nuclear spins of methyl groups

the reorientational motions, such as that of the H-H-vector in CH;-groups in
molecular liquids and crystals [73]. In the course of this work, however, we
are particularly interested in the association of solute molecules, and will
therefore focus on the intermolecular contribution.

For an isotropic fluid and in the extreme narrowing limit an expression
of the intermolecular relaxation rate is obtained from Eq. and is written
[74,75]

LY 4, [
(ﬁ)j = 7' PI(I + 1) /G(t) dt (4.3)

where G/(t) is the dipole-dipole time correlation function, x = 3/2 for homonu-
clear interactions and « = 1 for heteronuclear interactions. G(t) is defined

by [72,76]

G(t) = <Zrij3(0)7“ij3(t)P2[Cosﬁij(t)]>, (4.4)

where 7;; is the distance between the spins i and j and cos 0;;(¢) is the angle
between the vector joining spins 7 and j at time 0 and time ¢. P, is the second
Legendre polynomial.

The integral of G(t) of Eq. defines the spectral density at w = 0
which is a function of the randomly modulated local interaction. To in-
tegrate it, we should separate the correlation function into an r~%-prefactor,
which is sensitive to the structure of the liquid (average intermolecular spin-
spin distances) and a correlation time 7., which is obtained as the time-

integral of the normalized correlation function, and which is sensitive to
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the mobility of the molecules in the liquid,

o0

/ G(t)dt = <Zr;ﬁ(0)>n . (4.5)

0

From the definition of the dipole-dipole correlation function in Eq.
it follows directly that the relaxation time 7 is affected by both, reorienta-
tional and translational motions. It is obvious that it also depends strongly
on the average distance between the spins and hence is sensitive to chang-
ing inter- and intramolecular pair distribution functions [77,78]. In addition,
the r~%-weighting introduces a particular sensitivity to changes occurring at
short distances.

The structure of the liquid can be expressed in terms of the intermolec-
ular site-site pair correlation function g;;(r), describing the probability of
finding a second atom of type j in a distance r from a reference site of type

i according to [79]

1
i Pj

<Zizj5(f'—77kl)> , (4.6)

k=1 i=1
where p; is the number density of atoms of type j. The prefactor of the
intermolecular dipole-dipole correlation function is hence related to the pair

distribution function via an r~° integral of the pair correlation function

<Z 7’;6(0)> = pj / r=% gij(r) 4w r*dr . (4.7)
J 0

Since the process of enhanced association in a molecular solution is equiva-
lent with an increase of the nearest neighbor peak in the radial distribution
function, Eq. [#.7) establishes a quantitative relationship between the degree

of intermolecular association and the intramolecular dipolar nuclear mag-

netic relaxation rate.

4.4.2 Self-association: the "A"-parameter

As a measure of the degree of intermolecular association, Hertz and co-

workers [77,78,80] introduced a so-called association parameter "A", which
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is a weighted integral of the pair correlation function of the nuclei contribut-
ing to the dipolar relaxation process (in the present case 'H nuclei in TBA-

d1) and is defined as [81]:

[e9]

A= %VZEQ (Z—;)z/ <%>6 gru(r) 4nr? dr (4.8)

0
where the distance a is introduced to represent the "closest approach dis-
tance of the interacting nuclei", gy stands for the proton-proton pair corre-
lation function. A useful approximation relates this distance a, the dipole-

dipole correlation time 7., and the self-diffusion coefficient D through

CL2

Tinter = 3D (4.9)

The A-parameter is a useful measure in the sense that it is directly re-
lated to the solvent mediated attractive or repulsive interactions between
solute molecules through the sharpness, or peak-height, of the pair correla-
tion function. The relative change of the local concentration of the observed
molecules is identified by the relative change in the A-parameter: as gg(r)
becomes sharper when the density of the next neighbor atoms around the
reference atom increases, the A-parameter increases. Using the definitions
of Eq. and Eq. (¢.9), “A” is given in terms of NMR measurable quanti-
ties [81,82]:

1 D

A= —
Tl,inter PH

(4.10)

where D is the self-diffusion coefficient of the solute molecules and py is the
number density of the 'H-nuclei in the system. Making use of the concentra-
tion dependence outlined in Eq. (4.10), the aggregation behavior of solvent
molecules should be determined [11, 13]: an enhanced association is iden-
tified by an increasing A-parameter, whereas a de-association corresponds
to a decrease. In the present case, where we vary the salt concentration, we

measure the change of the A-parameter with the salt concentration.
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4.5 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations provide information about the dy-
namics of the molecules. Correlation functions can be derived, which de-
scribe the tendency of the molecules to form clusters.

The pair correlation function g(r) provides a measure of local spatial
ordering in a solution: ¢(r) is the probability of finding a second solute
molecule in a distance r from a reference solute molecule. More details on
the simulation parameters are given in a paper submitted in the course of

this work [83].

4.6 Experimental Strategies

4.6.1 Relaxation Experiment

In a relaxation experiment each data acquisition consists of an excitation
and detection of magnetization. The most commonly applied method for
T determination is the inversion recovery method combined with Fourier
transform (IRFT). The experiment is a simple two pulses sequence, Fig.
This experiment can be described in terms of a density operator and an ex-

pression for the transverse magnetization derived.

s /2
o(1) o(2) o(3) o(4) alt)
\ % d |/ ‘
. 1 , t

FIGURE 4.3: Inversion recovery pulse sequence for 77 measurement. o is the

density operator.

The total Hamiltonian of the system in the rotating frame is given by:

H = kI, + hwy I, (4.11)
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where () is the rotating frame frequency defined by Eq. (2.10). Before the
first pulse, the spin density operator in terms of angular momentum opera-
tors corresponds to

1
o(1) = 51 +bL (4.12)

where b = YhBy/2kgT and 1 is the identity operator. The first pulse 7,
generates an inverted population distribution,

o(2) = %1 Y (4.13)

The net magnetization placed along the —z-axis will gradually return to its
equilibrium position along the +z-axis during the time interval 7 at a rate

dictated by 7;. After a free evolution with 7} relaxation,

o(3) = %Il +b[1 — 2exp(—7/T1)]L; (4.14)

The second pulse (7/2),, converts the population difference into coherence

1
o(4) = 51 = B[l = 2exp(—7/Th)]; (4.15)
A free evolution of the coherence with 75 relaxation transforms the density

operator to
o(t) = %]1 + b(I, sin Qot — I, cos Qot)[1 — 2exp(—7/T1)] exp(—t/T2). 4.16)

Using Eq. (2.19), the complex transverse magnetization M, +iM, = M can
explicitly be written in the form :

N’}/QFLQBO
M*(8) = AkpT

(sin Qot — i cos Qot)[1 — 2exp(—7/T1)] exp(—t/Ts). 4.17)

The receiver introduces a phase shift ¢ and the magnetization with the

mixed phase is written :

M*(t) ]\[Zk—ZTBO(sin(QOt + ) — icos(Qot + ¢))
X [1—2exp(—7/T1)] exp(—t/T3). (4.18)

In the frequency domain, the magnetization M *(w) is the Fourier trans-

form of M*(t):

+oo
M*(w) = / M+ (et dt. (4.19)
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The complex spectrum of transverse magnetization is then given by:

MT(w) = iMy(1—2e /)
(w—Qp)sinp + Acosp — i[(w — Q) cosp — Asin @]
Tt = (4.20)
where A = 1/75. The amplitude of the spectrum is defined by:
Ao(T) = My(1 — 2e7 /™). (4.21)

The real part of the complex spectrum is a Lorentzian mixed phase. The

intensity I(7) of the spectrum is proportional to the amplitude Ay(7),
I(1) = I(1 — 2e77/T) o Ag(7). (4.22)

This expression is valid for ideal experimental conditions. In practice, the
inhomogeneity of the rf field , the resonance frequency offset, the inaccura-
cies in m-pulse calibration, which causes imperfect initial inversion, lead to

errors in the resulting 77. The modified function [84, 85],
I(t)=A+Be /M, (4.23)

is preferred to overcome these sources of errors. A, B and 7 are free ad-
justable parameters determined by a non-linear fit of the experimental data
[86], see Fig.

Usually enough time (> 5 7)) is allowed between acquisitions that the
equilibrium spin temperature is fully restored. Repeating the experiment
with increasing values of the pulse delay 7 allows one to follow the relax-
ation of the spin.

After processing the spectra, each individual peak is integrated for max-
imum accuracy in the relaxation curve. The starting and stopping points
must be chosen carefully. Baseline artifacts can affect significantly the reli-
ability of integral values. Accurate integral values are obtained when the
baseline is relatively flat. Since NMR peaks approach the baseline only very
gradually, the integration limits should be placed a distance from the peak,
in order to insure that as much as possible of the peak is included.

Each T} value reported is the average obtained from the analysis of three
sets of relaxation data with two scans per spectrum. The pulse phases were

0 for the m-pulse, and alternated between 0 and 180 for the 7/2-pulse.
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FIGURE 4.4: Non-linear fit of the data for an inversion recovery experiment

4.6.2 Isotopic Dilution

The observed relaxation rates depend on inter- as well as intra-molecular
correlation functions. To extract the intermolecular rates, which are sensi-
tive to the solute-solute association, we used the method of isotopic dilu-
tion [87].

Since we are interested only in the hydrophobic methyl-protons, we deuter-
ated the water and the hydroxyl group of the TBA. Isotopic dilution was
performed by mixing (CH3);COD (TBA-d1)| with its perdeuterated analog
(CD3)sCOD (TBA-d10) . We parameterize the dilution with the mole frac-
tion

[TBA-d1]

[TBA-d1] + [TBA-d10]’ (4.24)

Iy =

The anhydrous TBA-d1 (99%) was purchased from Cambridge Isotope
laboratories, the TBA-d10 (99%) from Isotec. The solvent D,O with the pu-
rity 99.96% was obtained from Merck KGaA. The solution was prepared by

1Using (CH3)3COD instead of (CH3);COH, serves to eliminate any intra or inter con-
tribution from t-butanol hydroxyl protons. We are using D,O as solvent instead of H,O in

order to "shutdown" the 'H—'H dipole-dipole interaction with water molecules
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measuring the appropriate amount of each compound with a micropipette,
and by weighing corresponding amount of salts (NaCl, NaBr, Nal).

The TBA and water molecules are in the stoichiometric ratio & :

g = ny=knp (4.25)

np
where n, and np denote the total number of moles of TBA and of D,O re-

spectively. It follows the relation for the mole fraction z;, and zp:

= 4.2
TD 1+ k ( 6)
k
= — 4.27
Ly 1+ k ( )

For a given volume Vp of D;O, the volume of TBA-d1 (Vrpa) and of
TBA-d10 (V410) needed to be in the proportion k are given by:

pp Mrpa

Vrpa = kxg Vb (4.28)
prea Mp
pp Maio
= k(1- — 4.2
Vaio ( xH)Pdm Mp Vb, ( 9)

where Mrps = 75.11g/mol and prpa = 0.797g/ml, Mp = 20.3g/mol and
pp = 1.107g/ml, M40 = 84.18g/mol and pg190 = 0.893g/ml
The salt concentration is calculated with respect to that of the solvent. If

the salt and D,O are in the stoichiometric ratio k;,

oy = e (4.30)
np
then the quantity of salt required is given by :
M;
Mp

mg = kl PD VD. (431)

The degassing process was done carefully by the usual freeze-pump-
thaw technique, repeated several times until no gas bubbles developed from
the solution. If by any means the samples were not totally degassed, then
the influence of the oxygen will lead to wrong results since the variation of
the proton concentration is very small during the isotopic dilution.

The temperature control is a very important part of the isotopic dilution

experiment. Although a temperature controller is built to regulate the flow
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samples xm  Vp Vrpa Vao

S1 1.00 490 51.0 0.0
52 075 490 383 128
S3  0.50 490 255 255
5S4 025 490 12.8 383

TABLE 4.1: Composition of the samples 2:100:0 TBA:D»,O:NaCl used for the

isotopic dilution experiment. The volumes are in microliters.

rate of hot or cool air in the probe, the temperature set from the electronic
console generally doesn’t correspond to the temperature read at the sample
location. The read temperature is measured by introducing a thermocouple
at the sample location inside the probehead. In fact a given flow rate cor-
responds to a heating profile as shown in Fig. This type of calibration
allows us to measure always at the desired temperature, which is 25°C in
our measurement. Only with a good temperature calibration, results mea-
sured at different time periods and on different samples can be compared
successfully.

The basic assumption of the isotopic dilution procedure is that the relax-
ation rate is given by the sum of an intramolecular term, which is indepen-
dent of the dilution, and an intermolecular term, which is proportional to

the concentration of the corresponding molecular species.

11 1 er (1—zp)
. 4.32
Tl TI,O * Tl,intra * Ty + T ( )

1,inter 1,inter

Here, T inra denotes the intramolecular contribution from protons within
the methyl groups of the same molecule as the one being measured, 77

and TV

1,inter

inter

the intermolecular contributions between TBA-TBA and TBA-
(TBA-d10) molecules respectively, and 7}  all other terms, such as param-
agnetic relaxation and interaction with other molecules such as D,O. The

contribution of the deuterated molecules can be taken as proportional to
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FIGURE 4.5: Temperature calibration. The temperature set does not always
correspond to the temperature at the sample location and the solid line rep-
resents the ideal case of perfect correspondence. In our case we manage to
have a flow such that the set temperature correspond to the read temperature

for the given gas flow rate.
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that of the protonated molecules, with a reduction factor [21] E|

1/T1//,inter o 272D ID(‘[D + ]')

= -—————7F =a=0.042. 4.33
1/T1,,inter 3 7]2—1 [H([H + 1) ( )

The observed relaxation rate becomes therefore

1 1 1 1
— = + + 1—a)ry + al, 4.34
Tl Tl,() Tl,intra Tl,inter [( ) " ] ( )

where T inter is the intermolecular contributions between different TBA molecules.
To extract the intermolecular term, we measured the relaxation rate as

a function of the isotopic dilution and fitted the measured data points to

Eq. (4.34). Figure |4.6|is an illustration of the procedure. The quantity =— +
q g P q Y Ty

L of Eq. (4.34) is the intercept with the y axis and is considered as the

Tl,intra

intramolecular contribution in the analysis.

0,444 -

»—“D—q

0,440 - o 2:100 TBA:D20
| e 2:100:1 TBA:D20:NaCl
0,436 - A 2:100:2 TBA:D20O:NaCl

0,432 4

0,428 —

1T [s™]

0,424 -

0,420 H

0,416 o
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FIGURE 4.6: Relaxation rate 1/7; as a function of the isotopic dilution z .
This plot is used to separate the intra- and intermolecular contributions to the
relaxation rate. The intramolecular rate is the intercept with the y-axis and the

intermolecular rate is the slope of the line.

The knowledge of the intermolecular relaxation time and the diffusion

coefficient is not enough to evaluate the A-parameter. We need additionally

2The magnetic moment of the deuterium is smaller than that of the proton, this is char-

acterized by the coefficient o
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the number density py. This number can be calculated from the concen-
tration [TBA] of TBA in Mol/m®. One molecule of TBA contains 9 pro-
tons, so the concentration of protons is 9 times that of TBA. Therefore, if
N = 6.022 x 10%* /mol is the Avogadro’s number, then the number of pro-

tons/unit volume is given by :
pr = 9N [TBA]. (4.35)

Here, the concentration of TBA can be determined via the relation,

PTBAVTBA
TBA] = LrBA TBA 436
[ ] VTotalMTBA ( )
where
M ota.
Virotal = —22 (4.37)
PTotal

is the total volume of the solution. The associated density protq, is measured

with the Anton Paar densimeter and,

Mrota = Myact + preaVrea + ppVp. (4.38)

Vrea, Vb, prea and pp have the same meaning as in section and m .
is the mass of NaCl. The A-parameters obtained experimentally are given

in Table

4.7 Results and discussions

Effect of NaCl

We performed nuclear magnetic relaxation experiments on aqueous solu-
tion of tertiary butanol with varying NaCl concentration while keeping the
butanol concentration constant. Given a non-changing intermolecular dipo-
lar relaxation time Ti,, an increasing relaxation rate would directly indi-
cate an association behavior, whereas a decreasing relaxation rate would

support the scenario obtained by Bowron and Finney. However, since the
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correlation times are likely to be changing we follow the A-parameter ap-
proach proposed by Hertz and co-workers, discussed extensively in a sepa-
rate section above. The A-parameter approach is based on the assumption
of a linear relationship between the intermolecular dipolar relaxation time
Tinter and the inverse self-diffusion coefficient of the solute molecules, which
can be obtained independently. The diffusion coefficients were measured by
the PGSE technique [32,34]. The gradient calibration was done as described
in section In addition, the experimental self-diffusion coefficients for
TBA-d1 in heavy water/salt solutions are shown in Table The diffu-
sion coefficient decreases as the salt concentration increases. From the dif-
fusion result we might anticipate the effect, induced by NaCl. Since small
aggregates might diffuse faster than large ones, it appears that TBA-TBA
intermolecular forces are modified such that TBA clusters are formed.
Hence we extracted the inter- and intramolecular dipole-dipole relax-
ation rate for the aliphatic hydrogens by the isotopic dilution technique. A
qualitative description of the intra-/ intermolecular contributions and the

observed relaxation times 7 are given in section [4.4.1]

TBA-d1:D,0O:NaCl 2:100:0 2:100:1 2:100:2
p/kgm=3 1083.9 1106.1 11225
¢(TBA)/mol1™! 1.0059 0.9994 0.9882
¢(NaCl)/mol1™" - 0.5270 1.0403

T4 inter/S 4489 +1.74 41.02+4.73 37.92+0.13
D/107%m?s™! 0.3962 0.3818 0.3709
A/10739m5s—2 1.619 1.718 1.826

TABLE 4.2: Experimental densities p, intermolecular relaxation times 11 inter
and self-diffusion coefficients D for TBA-d1 in TBA-d10/D,O/NaCl solutions.
All experiments were carried out at 7' = 25°C. Also given are the TBA-d1

concentrations and the obtained A-parameters.

Fig. 4.7| shows the plot for the A-parameter. We observe an increase of
the A-parameter upon addition of NaCl. Moreover, an apparent linear re-

lationship is observed within the salt concentration range. Measurement at
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FIGURE 4.7: Evolution of the A-parameter vs the NaCl concentration.

high salt concentration might give more information on this dependence.
The molecular dynamics results indicate a significant increase of the
height of the peak of the central carbon pair correlation function upon adding
NaCl, see Fig. It follows an increase of the number of nearest neighbors
of the TBA molecule which means an increase of the degree of association,
that is an enhancement of the hydrophobic contact of the TBA molecule
with increasing salt concentration. More details on the MD can be found in
ref. [83]. Both A-parameter and MD results indicate that the NaCl enhances
the self-association tendency of the TBA molecules. However the result of
Bowron and Finney [12,70] using the neutron scattering technique predict a
significant decrease of the height of the the peak upon adding salt. This de-
crease, accompanied by an increase at a distance of a second neighbor peak
located at about 0.85nm, lead to the conclusion that the anion (C17) bridge
TBA pair. On the other hand, there is no evidence for such bridging from
the MD point of view. Unfortunately we do not have any NMR experiment

at hand that can allow us to support this result.
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0,8
r/ nm

FIGURE 4.8: Radial pair distribution functions between the TBA central car-

bon atoms (CC) in aqueous solutions at different salt concentrations, from MD

simulation [83].

TH

1.0

0.75

0.5

0.25

TBA:D20:NaCl
2:100:0

2:100:2

2:100:4
TBA:D20:NaBr
2:100:2

2:100:04
TBA:D20:Nal
2:100:2

2:100:4

2.321
2.267
2.230

2.306
2.283

2.348
2.405

2.345

2.321

2.325
2.310

2.377
2.425

2.378
2.334
2.348

2.351
2.335

2.391
2.445

2.409
2.369
2.373

2.375
2.366

2415

TABLE 4.3: Some dilution data

. The number represent the relaxation times in

seconds. zy is the dilution parameter defined by Eq. (4.24)
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Samples 71 Tiintea Tiinter D/107P%m2s7!  A/10739m%s~?2

TBA:D20:NaCl
2:100:0 2.321 2445  44.889 3.962 1.628
2:100:2 2267 2411  37.920 3.709 1.853
2:100:4 2230 2447  27.853 3.546 2.475
TBA:D20:NaBr
2:100:2 2306 2403  56.002 3.882 1.319
2:100:4 2283 2398  47.506 3.798 1.569
TBA:D20:Nal
2:100:2 2348 2441  63.727 4.157 1.254
2:100:4 2405 2491  69.646 4.196 1.202

TABLE 4.4: Summary of the experimental quantities including the calculated A-
parameters. The sample 2:100:0 is the reference and therefore is salt free. The

relaxation times are in seconds. All experiments were carried out at 7'=25° C.

Effect of NaBr and Nal

In this section, the component in the mixture (TBA:D,O:Salt ) are in the ratio:
2:100:0, 2:100:2 and 2:100:4. We decided to increase the salt concentration to
really appreciate the effect that salts can induce. We made also samples with
high NaCl concentration to be used as reference regarding the discussion.
The dilution data are given in Table The relaxation times increase as the
proton concentration is diluted. This observation fits our expectation, i.e a
decrease of the number of dipoles leads to an increase of the relaxation time.

The diffusion results presented in Table are discussed at the first
place. As shown in Fig. diffusion coefficients have different behav-
iors. For TBA:D,O:NaCl, we observed that the more we increase the NaCl
concentration, the diffusion coefficient decreases. So the discussion above
might still hold, at least for the range of concentrations that we have investi-
gated. Now if we consider the sample TBA:D,O:NaBr, we see also a similar
evolution of the diffusion coefficient, although at a moderate rate. Thus,
we might be able to draw a conclusion very close to that of TBA:D,O:NaCl.
However, TBA:D,O:Nal presents a totally different behavior. In fact the dif-
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fusion coefficient of TBA increases with the increase of the concentration of
Nal. That is, Nal might break the existing structure of TBA, and by this fact

enhance the mobility of the molecule. Every time the behavior of NaBr is in-
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FIGURE 4.9: Dependence of the diffusion coefficient as a function of salt con-

centration.

termediate between that of NaCl and that of Nal. But the induced deviation
is more pronounced in the NaCl direction.

To determine the A-parameter for these data, we needed also to measure
the density of the sample. We did not use the densimeter, rather we esti-
mated the number density py via Eq. and (4.36), except that in the last
equation the approximation is Vi = Vrpa+Vpao + Vs (the incompressibil-
ity of the fluid mixture justifies the approximation ), with V; = m,/p,. Using
these relations, we were able to evaluate the A-parameter for each sample.
The quantitative results are found in Table The first two rows were al-
ready determined previously (see Table 4.2), but here we reported only the
calculated values to homogenize the results. Fig.[4.10/is an illustration of the
evolution of the A-parameter as a function of different salts. The result for
the A-parameter confirms the discussion for the diffusion coefficient, that

is NaCl and NaBr might enhance the initial structure of TBA molecule by
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enhancing the hydrophobic contact while Nal plays the opposite role.
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FIGURE 4.10: Evolution of the A-parameter. The curve are splines

4.8 Conclusions

We have used nuclear magnetic resonance A-parameter measurements to

investigate the effect of salt (NaCl, NaBr and Nal) on the association-behavior

of tertiary butanol molecules in an aqueous solution. Molecular dynamics

simulations have been used to calibrate the result for the sample containing

NaCl, moreover a detailed structural characterization of the MD-simulation

data [83] does not hence provide evidence for a significant amount of chloride-

bridged butanol-pairs, as recently proposed from the analysis of neutron

experiments [12,70]. We have shown that an increasing NaCl and NaBr

concentration is found to further strengthen the solute-solute hydrophobic

interaction, whereas an increasing Nal concentration lowered the TBA-TBA

interaction. Finally we would like to emphasize that the mechanistic picture
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introduced by Bowron and Finney still remains an interesting and challeng-
ing concept, and might be applicable in case of relatively larger anions such

as iodide.



CHAPTER 5

Effect of Salts on Model

Biomembranes

5.1 Introduction

Membranes are the most common cellular structures in both animal and
plants Fig. Their function is vital for living cells because they are in-
volved in almost all aspects of cellular activity, ranging from compartmen-
talization to selective passage of metabolites in and out of the cell. For ex-
ample, the plasma membrane is the envelope of the cell and controls the
movement of substances into and out of a cell. The endoplasmic reticulum
forms a network of folded membranes within the cytoplasm. Mitochon-
drial and chloroplast membranes convert organic materials into energy in
the cell. The nuclear membrane separates the genetic substance (DNA in
particular) from the cytoplasm in the cells [88]. It appears that most mem-

branes are structured bilayers of amphiphilic molecules and are built up
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according to the general principles of liquid crystal structures [9,89].

—+————Nuclear Envelope

o />>7/57 Endoplasmic
Reticulum

A :_ )//1

Plasma Membrane

= Mitochondria

FIGURE 5.1: lllustration of an animal cell. All components are separated by

membranes

Biological membranes are formed as a result of hydrophobic interactions
of lipid molecules in solution. Most of the time, the solution contains salt
with different concentrations. Salts influence several properties of aqueous
solutions, specially the self-association behavior or hydrophobic contacts.
The cation plays a significant role in the interaction of salt with lipids [14], as
opposed to the alcohol molecule where the association behavior is believed
to be driven by the anions [12,70]. In order to understand the effect of salt, it
is important to monitor not only the effect the salt can induce in the system,
but to identify where the salt is residing (located) in the system.

We used NMR to study the relatively simple model system of biomem-
brane C;3E; as a function of the concentration of NaCl, Nal and tempera-

ture.

5.2 Model Biomembranes

The natural cell membrane is an extremely complex structure in which var-
ious functional entities (channels, receptors) are embedded. The degree of
complexity has induced researchers to resort to simpler model systems in
order to comprehend and to explain the structure and function of natural

membranes [9,90].
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The cell membrane model is a two dimensional liquid crystalline lipid
bilayer, formed in water as a result of self-assembling process occurring
as described in paragraph that is the hydrocarbons form an oily core
whereas the polar groups remain at the surface in contact with water.

It is worth recalling that liquid crystals or mesophase [91], are substances
that exhibit phase properties in between the crystalline solid and simple lig-
uid, that is a liquid crystal may flow like a liquid, but have the molecules in
the liquid arranged and oriented in a crystal like way. The basic characteris-
tic of liquid crystals is the presence of orientational order of the anisotropic
molecules, and the limited positional order. The orientational order is the
ability of molecules to point their axes in specific direction known as direc-
tor while the positional order is the ability of molecules to occupy specific
sites in a lattice. The quantity of order is measured by an order parameter.

Liquid crystals exhibit a polymorphic character. Thus, the phase tran-
sition may be induced either as a function of the temperature and they
are called thermotropics, or as a function of the concentration and they are
called lyotropics. Many basic biomolecules (lipids, proteins, nucleic acids)
possess a lyotropic liquid crystalline phase, either pure or mixed. Here, our

investigation is limited to lyotropic liquid crystals.

5.2.1 Lyotropic liquid crystalline phases

Lyotropic liquid crystals are formed by dissolution of amphiphilic molecules
of a material in water [} i.e they consist of two or more components. The
molecular structures of amphiles or lipids (two distinct parts with different
properties in the same molecule inducing an anisotropic character required
for liquid crystal formation) confers them the ability to form lyotropic crys-
talline phases. As the concentration of the amphiphile material increases,
intermicellar interactions become significant and the micelles rearrange to

form ordered structures. There exist several different types of lyotropic lig-

!Note that thermotropics are single component substances.
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uid crystal phase structures determined by the concentration of the solute
compound in the solvent [54, 88,91].

Possible phase structures are the hexagonal phase, Fig. consisting of
rod-shaped micelles, packed in a hexagonal array and separated by contin-
uous water region. Two hexagonal phase structures are known: the normal
hexagonal phase and the reverse hexagonal phase having the hydrocarbon
chain occupying the spaces between the hexagonally packed water cylinder.

The spacing between cylinders depend on the water contents.

Hexagonal phase

Reversed hexagonal phase

FIGURE 5.2: Hexagonal lyotropic liquid crystalline phases. The amphiphiles form

long cylinders arranged into an hexagonal lattice.

The cubic phase (or viscous isotropic phase) structure is not well estab-
lished and appears mainly in the phase transition zones between the hexag-
onal and lamellar phases. The known cubic phase exhibits a cubic arrange-
ment of molecular aggregates as shown on Fig.

The third and most important structure in biology is the lipid bilayer.

5.2.2 Lipids and Bilayer Structure

Lipid molecules are a particular kind of amphiphile. In addition to their
anisotropic character ( e.g. rod like shape), they posses high enough mass.
These properties confer lipids the ability to form liquid crystalline phase.
The formation of lipid bilayers is a rapid and spontaneous process, with
the hydrophobic interactions as the main driving force. Water molecules
are released from the hydrophobic tails as these tails become sequestered in

the interior of the bilayer. Additionally, the van der Waals attractive forces
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Structure Symmetry

FIGURE 5.3: Well-established inverse bicontinuous cubic phases indicating different
space group symmetry, a is the lattice parameter. A) The double diamond phase.
B) The plumber’s nightmare cubic phase. C) The gyroid cubic phase. Adapted from
Petrov, [88]
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between the tails favor a close packing. And finally, the lipid bilayers are
stabilized by the electrostatic interactions and the formation of hydrogen

bonds in the head group region. The lamellar phase, also known as neat

Glycoprotein

Hydrophobic
core Fatty
acid tail
Integral
protein
Peripheral

Hydrophilic

protein polar head

FIGURE 5.4: Fluid mosaic model of biomembranes. The matrix of the membrane is
formed by phospholipids. Some integral proteins contain hydrophilic groups on both
ends and traverse the membrane thickness. The peripheral membrane are mainly

hydrophylic and interact with the membrane faces by electrostatic interaction.

phase, presents the amphiphilic molecules arranged in bilayers separated
by water layers. The bilayer thickness is larger than a molecular length and
their monolayers are not interdigitated.

The common representation of biological membranes is the bilayer struc-
ture of Singer and Nicolson [9], suggesting that the membrane is not a
static two-dimensional crystal, but it is a highly dynamic system with many
types of motion. This model is known as "fluid mosaic", indicating that
the molecules within the membrane have considerable lateral and rotational
freedom and therefore are randomly distributed within the membrane. The
fluid mosaic model essentially consists of large phospholipid with embed-
ded protein, Fig. The phospholipids are arranged to form bilayers of
lipid amphiphiles molecules with their hydrophilic part in contact with the
aqueous phase while the hydrophobic carbon chains of both monolayers
meet at the center of the bilayer and are shielded from water. The propor-

tion of protein and lipid can vary widely according to the type of membrane,
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but the common constituents of all membranes are lipids with long hydro-
carbon chains.

The hydrophilic head groups vary considerably between different mem-
branes, but the hydrocarbon tails are long and contain both saturated and
unsaturated hydrocarbons.

Membrane lipids are fluid and offer little resistance to bending while
membrane proteins are rigid and affect lipids in their vicinity when incor-

porated into a lipid bilayer.

5.2.3 Magnetic Field Induced Orientation

Sample orientation is a routine practice in solid state NMR. By this means,
the resolution of spectra can be improved significantly, for instance powder
patterns are avoided while retaining the structural parameters observed in
solids. The orientational techniques include sample spinning (MAS) about
the magic angle of 54.7°; the mechanical orientation consisting of sandwich-
ing the sample between juxtaposed glass surfaces. Besides these techniques,
orientation may be also induced by the use of an anisotropic media (liquid
crystal).

Biomolecules such as lipids and proteins orient spontaneously in a mag-
netic field. The origin of orientation is believed to be the anisotropy of the
diamagnetic susceptibility tensor, x [92,93]. When model membrane sys-
tems are prepared in the form of lipid bilayer and placed in a magnetic
field, the field B, induces on the molecules a magnetic moment proportional
to x. The susceptibility x is negative and small for ions and diamagnetic
molecules, but positive and larger for paramagnetic species. The anisotropy
of bilayer constituents infers a tensor character to the magnetic susceptibil-
ity.

The degree of orientation of rotational symmetry axis ¢ in the molecule
relative to By is measured by the parameter S;5 defined by [93]:

20, —
S = <%> (51)
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where 6,5 is the angle between the axis i and By. An expression for S;p can
be derived under the assumption that the change in energy of the system
upon putting a molecule in the magnetic field obey Boltzmann distribution
[93]. Then,

AxiiBj

Sip = —~i0
B 15poksT

(5.2)

where Ay = xii — (xj; + Xxk)/2 is the difference between the susceptibili-
ties parallel and perpendicular to the axis of rotational symmetry, kg is the
Boltzmann constant, 7" the absolute temperature. The degree of orientation
is proportional to the square of the static magnetic field B, and is inversely
proportional to the temperature.

Eq. and are defined on individual molecules. However, the
macroscopic alignment results from the interaction of the applied field with
the collective diamagnetic susceptibility of the isolated bilayer domain. So
the degree of alignment of the bilayer is given by : S;y = N;S;p where
N; is the number of the nuclei in the domain. The order parameter can be
directly related to certain experimental quantities [26,88]. For example, in
deuterium NMR, the quadrupole splitting is related to the order parameter
Sin by
3840

2 h
where the constants are the same as in Eq. ([2.14).

AVQ SiN- (53)

In the liquid crystalline phase which characterizes many membrane prepa-
rations, macroscopic alignment may or may not occur depending on the
competition between the magnetic torque, the thermal motion and viscous
force [94]. The magnetic contribution tends to make the local order direc-
tor of the liquid crystal align either parallel (for samples with Ay > 0) or
perpendicular (for samples with Ay < 0) to the magnetic field. The other
contribution tends to counteract this alignment, particularly these effects
prevail at high surfactant concentration (e.g. L, phase) making magnetic
alignment not so easy. Traditionally, the alighment is induced by a thermal

cycle that is heating the sample above their anisotropic phase transition and
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leaving them cool down gradually, of course in the presence of the magnetic
field. The heating serves to reduce the effect of the viscous and elastic forces.

The dipolar and quadrupolar interactions are mainly responsible for the
modification of the NMR spectrum upon alignment of the molecule. Both

vanish in an isotropic medium.

5.2.4 Material: the pentaethylene glycol monododecyl ether

B0z 3,4

a b c d EO, 502‘3’4 e f g
CHg - (CH,)g CHy CH, O CHy CH, O [CH, CH, 013 CH,, CHy OH

FIGURE 5.5: Proton spectrum of pure C;5E; at 25°C recorded on a 600MHz spec-
trometer, the peaks assignment and the nomenclature used in the text to refer to spe-

cific protons. The peak assignment is adpated from ref. [95]

The pentaethylene glycol monododecyl ether molecule ( or CyoHy60s,
and its short name is C;,E;) shown in Fig. is a non-ionic amphiphilic
molecule. The NMR spectrum of C;,E; is shown in Fig. 5.5 together with
an assignment of the various signals, adapted from a previous work on the
same sample, on a 360 MHz spectrometer [95]. The alkyl chain plays the
role of the hydrophobic region or tail, whereas the oxyethylene group (EO;,
EO, 34) is the hydrophilic region.

The various phases of C;1E;5 solution can transform from one to another
by changing the solution conditions such as the solute (solvent) concentra-

tion or the temperature. Usually a phase diagram is associated to the struc-
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tural changes brought about, see Fig. The focus of the present study is
on the lamellar phases.

The lamellar phase (L) exist over a broad temperature and concentra-
tion range (cf. Fig.[5.6). One can distinguish a highly dilute amphiphile
phase (down to 1% wt C;3Es5) and a concentrated amphiphile phase (2 60%
wt C;3E;5), both being interconnected continuously [96,97].

The phase diagram of Fig.[5.6lwas established using H,O as solvent. The
investigation of the molecular and phase structure of the system C,3Es in-
dicate that the lamellar phase is stabilized by the presence of interlamellar
water [98]. But we do not use H,O, instead we replace H,O by D,O. It is
known that this replacement results in a lowering of the various transition
temperatures [96]. More importantly, the formation of the dilute L, phase is
favored in the presence of D,O, whereas, the phase behavior at high surfac-

tant concentration is not influenced by the substitution of H,O by D,O [97].

5.2.5 Sample Preparation

The pentaethylene glycol monododecyl ether was purchased from Sigma-
Aldrich Chemie GmbH. The solvent D,O with the purity 99.96% was ob-
tained from Merck KGaA Germany. The solution was prepared in the L,
phase according to the phase diagram of Fig. by weighing the different
components (Ci2E; , D,O and salts). The mass of Cy2E5 (mp) and the mass

of D,O (mp) obey the relation
ITp.Mp = Tp.Mmp, (54:)

where xp, xp are the mass fraction of C;3E5; and D,O respectively. We can
write also mp = pp.Vp, where pp = 1.107g/ml is the density of D,O. It
follows the volume of D;O to be measured for a given mass mp of C2E;5 is

given by :
Vp = —=.—.mp, (5.5)

since zp + zp = 1 in the solution.
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T/°C

100

C,,Es (Wt %) Ci2Es

FIGURE 5.6: Phase diagram of the C,,E5-water system over the temperature range

0 — 100°C. L4, Ly and L3 denote isotropic liquid solutions, H; is a normal hexagonal

phase, V; is a cubic liquid crystalline phase and L, denotes a lamellar liquid crystalline

phase [96]
SampleNo zp z; mp(g) Vp (L) myaci(g) mnar(g)
S1 05 00 0.2452 221.500 - -
S2 05 1.0 0.2562 231.436 0.03682 -
S3 05 1.0 0.2486 224.571 - 0.09165
S4 0.7 00 03494 135.269 - -
S5 0.7 05 0.3041 117.731 0.02185 -
S6 0.7 1.0 04346 168.254 - 0.16022
S7 0.8 00 04473 101.016 - -
S8 0.8 05 04973 94.196 0.0299 -
S9 0.8 1.0 0.4100 92.526 - 0.15113

TABLE 5.1: Sample composition.

Because of the low solubility of NaCl

(35.9g/100ml, with respect to water), s = 0.5 to have an homogeneously mixed

solution. The solubility of Nal is rather high (184g/100ml) and the ratio x5 = 1

is maintained for all samples containing Nal.
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The quantity of salt is determined by the relation

M,
Mp

mg=Ismp

(5.6)

where z is the ratio of the number of moles of salt to the number of moles
C1E5, my is the mass of salt, M, and Mp is the molar mass of salt and C,,E5
respectively. The sample composition is given in Table

The homogenization processes was made by heating the mixture in a
water bath at 45-75°C for a long time ( more than ten minutes), then shaking
vigorously. The process was repeated several times. The sample was frozen
in liquid nitrogen, and flame sealed. Nal turns the color of C;3E5 solution

from transparent to slightly colored in gold.

5.3 Deuterium Magnetic Resonance *H NMR)
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FIGURE 5.7: Energy levels of a deuterium nuclear spin (I = 1) with and with-

out the influence of the quadrupole coupling. The allowed transitions and cor-

responding splittings are shown.

In many situations, the spectrum of the lipid is dominated by strong
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proton-proton and proton-carbon dipolar interactions. As a result the spec-
tra contain a large number of overlapping resonances and are rather difficult
to analyze. The structure and dynamics of molecular system can be moni-
tored alternatively by deuterium NMR [26,90].

Deuterium has nuclear spin / = 1 and therefore possesses a quadrupole
moment that defines the non spherical distribution of nuclear charges. The

Hamiltonian H for the deuterium nucleus in a magnetic field is given by
H = Hy+ Ho, (5.7)

where H is the zeeman Hamiltonian and Hy, is the quadrupole Hamilto-
nian defined by Eq.(2.13) is orientation dependent. The quadrupole inter-
action is a weak perturbation of the Zeeman interaction so that the cor-
responding energy levels can be easily estimated by perturbation theory.
These energy levels are shown in Fig.

Traditionally, some hydrocarbon atoms in the lipid chain are replaced by
deuterium, and it follows that the spectra of partially deuterated molecules
consist of a few resonances with respect to the corresponding proton spec-
tra. However to gain the full possibility of deuterium NMR, one should be
able to synthesize accurately the molecules deuterated at the desired posi-
tions. But this task is not always straightforward. More often people used
the commercially available products. This makes some restrictions in the
range of lipid membranes to be investigated.

The basic features of deuterium NMR exploited for our investigation re-
side in the fact that ?H NMR can easily detect anisotropic motions in the
system. For a rapid isotropic motion, the deuterium NMR spectrum con-
sist of one single line, while for an anisotropic motion each deuteron con-
tributes a doublet due to the quadrupole moment of the deuterium nucleus.
The doublet spacing Av, defined by Eq. (2.14), depends on the degree of
anisotropy and the reorientation of the deuteron with respect to the molec-
ular symmetry axis. In oriented samples, the quadrupole splitting depends
further on the angle between the magnetic field and the axis of motional

averaging (director axis), Fig.
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FIGURE 5.8: Orientation of a bilayer in the magnetic field and the possible
lineshapes. n is the director of the bilayer. The bound water sit on the head

groups.

Actually, the pentaethylene glycol monododecyl ether deuterated at the
desired position is not readily available to purchase. So, the *H of D,O
is measured during the experiment. In fact, D,O can participate in the
anisotropic motion of the solute molecule [97,99]. There exists two types
of water molecules: the free water that is free to move and the bound water
that is in contact with the polar group of the surfactant molecule. Because
of the fast exchange between both types of water, only an average motion is
detected. Therefore, a splitting is an indication that the average motion of
the D,O molecules is anisotropic. It is then possible to determine region of
phase coexistence of the lamellar phase with an isotropic phase. The split-
ting of the ?H NMR signal is a measure of the degree of order in the L,,

which helps in discussing the structural change.
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5.4 Experimental Considerations

The sample temperature was maintained by the spectrometer temperature
controller which has been calibrated by direct insertion of a thermocouple
into the sample location inside the probe-head (see Fig. [£.5). A thermal cy-
cle was used to improve the alignment of the liquid crystalline phases. Dur-
ing the heating process, ?H NMR measurements were carried out to mea-
sure the degree of orientational ordering. At each temperature, the samples
were allowed to equilibrate for at least 15 min.

Deuterium NMR measurements were performed using a Varian 600 MHz
spectrometer. All data were obtained using a single pulse sequence 90 —
acquisition with pulse length of 26 — 30us. The FID following a single 90°
excitation pulse was long enough and largely detectable to make the use of
quadrupolar echo pulse sequence (90, — 7 —90,) unnecessary. The relaxation
times were in the order of 0.5 — 0.7s. The dead time was set to 5us. A recycle

delay of 2s and 5 — 50 accumulations were necessary to obtain good signals.

5.5 Results and Discussions

Lineshape Analysis

Fig.[5.6/shows the phase diagram of the surfactant used in our investigation.
A systematic study of the effect of salt on the phase diagram of chromomic
liquid crystals have been done earlier [100].

We start studying the samples with low surfactant content (50% wt C12E5).
For this concentration and from the phase diagram we know that the lamel-
lar phase occurs at temperature > 50°C. So we start the heating process
from the ambient temperature (25°C) to 50°C, where the lamellar phase is
supposed to start to form. The change in the spectra brought about by the
salt at some temperatures is shown in Fig. We were then able to observe
simultaneously the changes induced by temperatures and salts.

The temperature of 25°C is very close to the boundary hexagonal-isotropic
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FIGURE 5.9: Deuterium spectra of 50 wt % C12E5 as a function of the temper-
ature. A) 012E5:D20. B) C12E5:D202N8.C|. C) C12E5:DQO:N3|
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FIGURE 5.10: Variation of the quadrupolar splitting
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L, phase. This might explain the presence of the residual splitting observed
on Fig.[5.9/A) at 25°C. Upon heating, there appears more and more anisotropic
domain. At 50°C, the isotropic phase is almost gone and the anisotropic

lamellar phase prevails as predicted by the phase diagram.

o M
N
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FIGURE 5.11: The spectral shape transformation in the magnetic field (50 wt
% C12E5). All the spectra were measured at 25°C: A) Before heating to the

isotropic phase. B) After cooling from the isotropic phase

When NaCl is added, it induces a splitting already at 25°C, Fig. 5.9 B),
and the splitting remains over a wide temperature range. The baseline of
these spectra is very broad. The splitting is larger than that of the refer-
ence sample (sample without salt) and decreases when the temperature in-
creases, Fig. The phase boundary is shifted upward by more than 25°C.
The isotropic phase occurs only at temperatures higher than 40°C.

The effect of Nal is quite different from that of NaCl as expected from
the measurement on TBA (see chap.[). At 25°C, a powder-like spectrum is
obtained. However, this spectrum does not survive a temperature increase
of 5°C, Fig. C). At 30°C, the sample show an isotropic structure, and
the temperature of the upper isotropic-lamellar phase boundary is shifted

upward. After cooling the sample from the isotropic phase to the initial
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FIGURE 5.12: Deuterium spectra of 70 wt % Ci2E5. A) C13E5:D20. B)
C12E5:D20:NaCl. C) Cy2E5:D,0:Nal. In D), spectrum C) superimposed over

the vertical expansion showing that the apparent shoulders are additional

peaks.
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temperature (25°C)in the magnetic field, the line shape is remarkably af-
fected. The intensity of the outer peaks increases while that of the inner
peaks decreases, Fid This behavior is an indication that Nal promotes
the formation of the hexagonal phase and the alignment of the domain in

the magnetic field.

25°C
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FIGURE 5.13: Deuterium spectra of 70 wt % C12E5 as a function of the tem-
perature. A) 012E5:D20. B) C12E5:D20:NaCI. C) 012E5:D201Na|

For samples with 70 wt % C;2E;, the observed spectra exhibit character-
istic features representative of the effects of the different salts. We do not
need to heat the sample in order to reach the lamellar phase, because they
occur already at room temperature. The spectra recorded at 25°C are shown
in Fig. Consider at the first place the reference spectrum (sample with-
out salts), Fig. A). This spectrum is characteristic of the lamellar phases
as know from ?H NMR of D,O, and the doublet splitting is 1.74KHz.

Fig. B) shows the spectrum with NaCl as cosolute. The lineshape
is totally modified and exhibits a powder-like structure. The peak sep-
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aration is 1.513kHz and the inflection points of shoulders are separated
by 3.419kHz. This structure indicates that the motions take place in an

anisotropic environment.
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FIGURE 5.14: The spectra at the bottom were recorded after cooling the sam-
ple of 70 wt % C12E5 in the magnetic field. A) C13E5:D20. B) C12E5:D20:NaCl.
C) 012E5IDQOZN8.|

In Fig. C) we can clearly see that Nal has a profound effect on the
structure of the L,. The *H NMR spectrum consists of two resolved signals
with different quadrupolar splittings Av = 0.609kHz and Av = 1.217kHz
at 25°C. Moreover, shoulders appear at Av = 2.243 kHz. This spectrum in-
dicates a regime of phase coexistence induced by Nal. The signal with a
quadrupolar splitting of Av = 0.609 kHz might correspond to the hexagonal
phase. When we increase the temperature, the phase boundaries are now
shifted downward by more than 30°C for NaCl and more than 50°C for Nal,
Fig.5.13

Following these transformations, if the samples are cooled down in the
magnetic field, spectacular changes occur to samples containing salts as
shown in Fig. The samples are more oriented and the lamellar struc-
ture seems to be promoted over the random orientation.

The samples with 80 wt % C;2E5 show a different behavior, Fig. In
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FIGURE 5.15: Deuterium spectra of 80 wt % Ci2E5. A) Ci3E5:D20. B)
C12E5:D20:NaCl. C) Ci2E5:Do0:Nal. In D), spectrum B) superimposed over
the vertical expansion showing shoulders. In E), spectrum C) superimposed
over the vertical expansion showing that the apparent shoulders are additional

peaks.
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A) the splitting is obtained as expected for lamellar structures. But in B) we
still have a powder-like spectrum in equilibrium with an isotropic phase,
that is we have a regime of phase coexistence. Under the effect of Nal, the
intensities of the quadrupolar splitting are considerably reduced and only a
vertical expansion of the spectrum can show them (Fig. ) and E)). The

boundary of the phase transition are further shifted downward.
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FIGURE 5.16: Deuterium spectra of 80 wt % C12E5 as a function of the tem-
perature. A) 012E5:D20. B) 012E5:DQO:N8.C|. C) 012E5:DQO:N8.|

However if the sample with 80 wt % C;3E; containing the Nal is mea-
sured at low temperature (22°C in this case), we can observe the formation
of structure, Fig. After the thermal cycle, the spectra show also some
structural changes.

To these effects of salt, we can associate a modified phase diagram for

the range of temperature and concentration, Fig.
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FIGURE 5.17: Shape transformation in the magnetic field (80 wt % C12E5). All
the spectra were measured at 22°C: A) Before heating to the isotropic phase.

B) After cooling from the isotropic phase
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FIGURE 5.18: Modified phase diagram. |, H, L denote the isotropic, hexagonal

and lamellar solution respectively. A) C12E5:D20:NaCl. B) C12E5:D,O:Nal
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And the hydrophobic interaction ?

Our objective in this study was to determine how the hydrophobic inter-
action is modified upon addition of salts. But our results show that the
lineshape analysis might not be enough to draw reliable conclusions.

A complete interpretation of the data in terms of self-association involves
the use of some sort of model which relate the attractive or repulsive inter-
action between the surfactant molecules. However, considering our results,

our intuition indicates that:

e NaCl might promote the formation of aggregates, since the splittings

remain within a wide temperature range,

e Nal might decrease the self-association tendency since the structure is

destroyed very fast in the range of the observed temperatures.

5.6 Conclusion

An understanding of the effect that salt has on membranes is going to de-
pend on identifying the site of interaction. Are the salts disolved within the
hydrocarbon core of the lipid membranes or are they confined between the
bilayers? In our study, we held the ratio surfactant/salt constant (equal to
1 or 0.5 depending on the solubility of the salts), and varied only the ratio
surfactant/water (50%, 70% and 80% Ci2Es5). Changing the water concen-
tration means re-arrangement of water molecules inducing changes in the
hydrogen bond network with the consequences that are known [1,48,98]. So
the observed changes might be attributed to the change in water contents.
Other difficulties in interpreting these types of experiments is that, both the
solvent and the bilayer are affected by the presence of salts. However, the
temperature shift either upward or downward was already observed while
studying the effect of salts on chromonic liquid crystals|[100]. Animportant

role was attributed to the cations. A systematic study of the effect of salts at

2Chromonic liquid crystal are formed by addition of aromatic molecules to water
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fixed surfactant/water ratio and at different salt concentrations might sup-

ply complementary information regarding the structural changes.



CHAPTER 6

Conclusion

In this study, we have shown how salts influence the various properties of
aqueous solutions including the self-association behavior or hydrophobic
contacts. The use of NMR to measure the degree of association or the A-
parameter for the system TBA:D,O:NaCl, TBA:D,O:NaBr and TBA:D,O:Nal
indicates that NaCl and NaBr show similar influence on the TBA-TBA inter-
action, that is the tendency of promoting the self-association of TBA molecules
in solution, although the effect of NaCl is more pronounced. The result for
NaCl was confirmed by molecular dynamics simulation. The anion (CI )
is believed to play an important role, but this role is still discussed, particu-
larly, neutron scattering measurement indicates that a chloride ion bridges
two TBA molecules while the molecular dynamics shows no evidence of
such bridges. Our result indicates also that Nal induces an opposite effect
by preventing the hydrophobic contacts.

We have also shown that salts can induce dramatic changes to the phase

behavior of surfactants. Depending on the water content (or the surfactant
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content), the salts can shift the temperature of the phase boundaries either
upwards or downwards. Only a systematic study of the salt effects at fixed
surfactant/water ratio can separate partially the contribution of salts to that
of water and indicate which ions (anion or cation) participate in aggregate
formation/destruction, although some studies on chromonics liquid crys-

tals point out the role of the cations.
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