
Nonparametric regression as
an example of model choice

March 7, 2006

P. L. Davies1, U. Gather2 and H. Weinert2

Abstract

Nonparametric regression can be considered as a problem of model choice. In this paper
we present the results of a simulation study in which several nonparametric regression
techniques including wavelets and kernel methods are compared with respect to their
behaviour on different test beds. We also include the taut-string method whose aim is
not to minimize the distance of an estimator to some “true” generating function f but to
provide a simple adequate approximation to the data. Test beds are situations where a
“true” generating f exists and in this situation it is possible to compare the estimates of
f with f itself. The measures of performance we use are the L2 and the L∞ norms and
the ability to identify peaks.

1 Introduction

Consider paired data Yn = {(ti, y(ti))}n
i=1 where the design points are ordered 0 ≤ t1 <

· · · < tn ≤ 1 but not necessarily equidistant. The problem is to use the data to derive
a function fn which can be regarded as an adequate denoised representation of the data.
The model we assume for the data is

Y (ti) = f(ti) + σε(ti), i = 1, . . . , n, (1)

which represents a signal f corrupted by noise ε which we take to be standard Gaussian
white noise. Given the data Yn and the model (1) the problem of specifying a function fn

based on the data Yn becomes a problem of model choice (where σ is treated as a nuisance
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parameter). Traditional model selection operates within the model by assuming that the
data Yn were generated by the model (1). In the context of nonparametric regression the
problem of model choice becomes: estimate f by a function f ∗n ∈ F that minimizes an
expected distance or risk:

E [d (f, f∗n)] = inf
fn∈F

E [d (f, fn)] , (2)

where F is some specified class of functions and d(·, ·) is an appropriate loss function.
In addition some model selection rules require the optimization in (2) to be conducted
under constraints, whereby some measure of the complexity of a model is included in the
term to be minimized. In chapter 2 we shall briefly review some well known methods for
signal approximation including wavelet regression (Donoho and Johnstone, 1994), kernel
estimation methods (Herrmann, 1997; Polzehl and Spokoiny, 2003, 2000) and minimum
description length (MDL)-denoising (Rissanen, 2000).
Another approach to nonparametric regression is based on the concept of data approxi-
mation described in Davies (1995, 2003). Although the concept makes use of properties
of the model it does not operate solely within it but poses the question as to whether
the model can be regarded as an adequate approximation to the data. Risk minimization
such as (2) is not involved nor does it make assumptions about the existence of a true
underlying function f. The model with parameters (fn, σn) is regarded as an adequate
approximation if typical data generated under the model look like the observed data Yn.
Within the set of parameter values (fn, σn) which give an adequate approximation we
then select an fn which minimizes one or more measures of complexity. The “taut-string”
nonparametric regression method of Davies and Kovac (2001) and the corresponding non-
parametric density procedure (Davies and Kovac, 2004a) are examples of this idea. In
both cases the measure of complexity is the number of peaks. In the regression problem
the definition of approximation is based on the residuals (see below) whilst in nonpara-
metric density estimation Kuiper metrics of high order are used, see Davies and Kovac
(2004a).

2 Methods

2.1 Wavelet methods (WH and WS)

Wavelets are defined by

Ψj,k(t) = 2
j
2 Ψ(2jt− k), j, k ≥ 0.

where Ψ is the so-called mother wavelet which is often chosen to have compact support.
For a suitable Ψ the Ψjk form an orthonormal basis of L2(R) so that every function
f ∈ L2(R) can be expressed as

f(t) =
∑
j,k

w̄j,kΨj,k(t), w̄j,k =

∫ ∞

−∞
f(t)Ψjk(t)dt,
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with wavelet coefficients w̄j,k (Daubechies, 1992).
If the design points ti = i/n are equidistant and n = 2J+1 is a power of 2 then wavelet
representations can be used to construct a signal estimate fn as follows (see Donoho and
Johnstone (1994)). First the finite wavelet transform matrix W is used to produce a
vector w of empirical wavelet coefficients via w = Wyn with yn = (y(1), . . . , y(n))> ∈ Rn

(see Nason and Silverman (1994), Donoho and Johnstone (1994) and Daubechies (1992)).
The n = 2J+1 elements of w can be labelled wj,k, j = 0, . . . , J ; k = 1, . . . , 2j − 1 and w−1,0

to express a wavelet approximation

fn,∆(ti) =
∑

(j,k)∈∆

wj,kΨj,k(ti), i = 1, . . . , n, (3)

where Ψ−1,0(ti) ≡ 1 and ∆ is a subset of pairs (j, k) The optimal subset ∆∗ can be taken
as the one which minimizes the empirical L2 risk

E [d2(f, fn,∆∗)] = inf
∆

E [d2(f, fn,∆)]

where d2(f, fn,∆) =
∑n

i=1 |f(ti) − fn,∆(ti)|2/n. Minimal risk considerations indicate that
∆∗ can be estimated by including only those wavelets whose coefficients wj,k in (3) exceed
a certain threshold. Donoho and Johnstone (1994) suggest a hard thresholding rule where
the subset ∆ in (3) corresponds to those coefficients satisfying

|wj,k| > σ̂ ·
√

2 log(n), (4)

using the median absolute deviation σ̂ of the wavelet coefficients. The resulting signal
construction is the Wavelet Hard Thresholding Estimator (WH). Donoho and Johnstone
(1994) also propose a wavelet signal approximation based on shrinking the wavelet coef-
ficients to zero using so-called soft thresholding. The VisuShrink (WS) method gives a
signal construction fn,V S at the points {ti}n

i=1 by

(fn,V S(t1), . . . , fn,V S(tn))> = W> · θ̂V S · W

with a transformed version θ̂V S of the wavelet coefficient vector w given by

θ̂V S =

{
wj,k j < j0

sgn(wj,k)(|wj,k| − σ̂ ·
√

2 log(n))+ j0 ≤ j ≤ J
,

for j0 as in Donoho and Johnstone (1994) chosen to prevent extreme cases in the wavelet
transform.

2.2 Minimum Description Length Denoising

The idea of minimum description length (MDL) is that a prefix coding scheme corresponds
to a probability model and that probability models can therefore be compared by the
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lengths of the code required to encode the data. A good model describes regularities in
the data which can be exploited to reduce the code length. The naive MDL principle
involves finding that model, from a collection of candidate models, that provides the
shortest encoding of the data (Rissanen, 1989). This naive formulation is too simple and
the complexity of the model must also be taken into account which involves encoding the
model in some efficient manner. There is no objective manner of doing this and MDL
remains necessarily vague and arbitrary.
MDL for signal extraction by wavelets can be seen as a special case of the variable selection
problem in multiple linear regression. Let Z be a given n × n design matrix for linear
regression. Any subset γ = {h1, . . . , hk} of columns of Z defines an n× k matrix Zγ and
the corresponding linear regression model may be written as

Yn = Zγβk + σε, βk ∈ Rk

where the ε = (ε(t1), . . . , ε(tn))> ∈ Rn are taken to be standard Gaussian white noise.
The corresponding probability model for Yn has parameters (γ, βk, σ) and density

Mγ =

{
pγ(yn|βk, σ) = (2πσ2)−n/2 exp

[
− 1

2σ2
(yn − Zγβk)

>(yn − Zγβk)

]}
.

The length of the code required for encoding yn is − log pγ(yn|βk, σ) which is nothing
more than the encoding of the residuals. For a given γ the shortest encoding is attained
when the maximum likelihood estimates β̂k ≡ β̂k(yn) and σn ≡ σ̂(yn) for β and σ are
used. If the Zγβk and σ come for free so to speak then nothing more is to be said but
the complexity of the model has not been taken into account. This can be done by
encoding the β̂k and σn but this requires a model for the model (see Rissanen (1987)).
One way of overcoming the problem of encoding the parameters is to use a universal code
or probability model p∗γ for the class of models. One such universal code is based on the
Normalized Maximum Likelihood (NML) distribution

p∗γ(yn) = pNML,γ(yn) =
pγ(yn|β̂k(yn), σn)

Cγ

, (5)

where

Cγ =

∫
Rn

pγ(xn|β̂k(xn), σ̂(xn))dxn

Even in some of the simplest cases (including the present one of a normal distribution)
this requires some adjustment to the range of integration to make the latter integral finite.
If it is well-defined the NML–distribution is a minimax encoding in that it minimizes the
maximum regret

− log p∗γ(yn)−
(
− log pγ(yn|β̂k(yn), σn)

)
over all samples yn. Given data yn the MDL linear model selection chooses a probability
model pγ̂(·|β̂k, σn) by minimizing the negative logarithm of (5) over γ:

− log pγ(yn|β̂k(yn), σn) + logCγ ≡ Fit+ Complexity (6)
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The above criterion can be interpreted as a penalized likelihood approach to model selec-
tion with a model fit component and a model complexity penalty term (Grünwald, 2000;
Rissanen, 1996). We are again left with the problem of whether or not we have to encode
the optimal γ or not, and if so, how.
This may be applied to nonparametric regression by taking the design matrix Z> to be
W . Simplifications are available as in this particular situation it can be shown that the
optimal subset γ of size n − k corresponds either to eliminating the wavelets with the
k largest or the k smallest coefficients. After some manipulation and approximations
Rissanen (2000) ends up with the following procedure. Order the absolute components in
the wavelet coefficient vector |w|(1) ≤ · · · ≤ |w|(n), let S(k) =

∑k
i=1 |w|2(i) and then choose

k by minimizing

(n− k) log
S(n) − S(k)

n− k
+ k log

S(k)

k
+ log k(n− k). (7)

The MDL principle for wavelet model selection hence becomes a form of hard threshold-
ing where the subset ∆ of wavelet coefficients used in (3) corresponds to the largest k̂
coefficients of w in absolute value or those wavelet coefficients satisfying

|wj,k| ≥ λ = |w|(k̂)

We refer to Rissanen (2000) for more details. Risssanen (2000) showed that the MDL
wavelet threshold λ is asymptotically smaller than the hard threshold (4) of Donoho and
Johnstone (1994).

2.3 Kernel estimators (Plug-in and AWS)

2.3.1 Local Plug-in approach

We consider the locally adaptive kernel regression estimator

f̂(tj;htj) =
n∑

i=1

y(ti)

∫ si

si−1

1

htj

K

(
t− u

htj

)
du, j = 1, . . . , n, (8)

with local bandwidths ht and si = (ti + ti+1)/2, i = 1, . . . , n−1, s0 = 0, sn = 1. The kernel
K has order k ≥ 2 which means that the first k − 1 moments of K vanish but the kth
moment is non-zero. Expressions for the ht can be obtained by minimizing the pointwise
mean squared error

MSE(fn(t;ht)) = E(fn(t;ht)− f(t))2.

These depend on the unknown function f and in a first step an initial estimate fn of
f based on a global bandwidth ĥ is obtained which is plugged into the expressions for
the local bandwidths. These in turn are plugged into (8). The complete algorithm is as
follows (see Brockmann et al. (1993) and Herrmann (1997));
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1. Set ĥ0 = (k − 1)/n;

2. Iterate for i = 1, . . . , (k + 1)(2k + 1): ĝi = cĥi−1n
2/{(2k+1)(2k+3)} and

ĥi =

(
σ2

nC(K)

nÎk(f ; ĝi)

) 1
2k+1

;

3. Set ĥ = ĥ(k+1)(2k+1), the global plug-in bandwidth;

4. Set the pilot bandwidths gi = ciĥn
2/{(2k+1)(2k+3)} for i = 1, 2 and the local plug-in

estimator in (8) to

ĥtj = ψ(tj; g1)

(
Ŝ(tj)C(K)

nr̃k2(tj; g1, g2)

) 1
2k+1

+ (1− ψ(tj; g1))ĥ, j = 1, . . . , n;

for which the following must be specified or computed: a kernel constant C(K), a certain
variance estimator σ2

n for σ2, a weight function w(t), an estimator Îk(f ; g) depending on a
further kernel density M (k) and bandwidth g of an integral functional

∫
w(t){f (k)(t)}2dt

involving the kth derivative f (k) of the signal, a local variance estimator Ŝ(t), a local
estimator r̃2

k(t; g1, g2) of {f (k)(t)}2 that depends on a kernel K̃ and bandwidths g1 and g2,
a weight function ψ(t; g1), and iteration constants c, c1 and c2.
See Herrmann (1997) for details.

2.3.2 Adaptive weights smoothing (AWS)

The second kernel estimator we consider is Adaptive Weights Smoothing (AWS) (see
Polzehl and Spokoiny (2003, 2000)). Suppose a parametric family{

fθ(x) =

p∑
i=1

θiψi(x), θ ∈ Rp

}
is specified with basis functions {ψi(x)}p

i=1 (e.g. polynomials ψi(x) = xi−1). The idea is
to find the largest neighborhood of every design point ti in which the underlying signal
function f(ti) can be well approximated by a function fθ.
Fix i ∈ {1, . . . , n}. The estimate fn(ti) of f at ti is defined as a weighted mean of the
observations y(tj) by nonnegative weights wij, j = 1, . . . , n:

fn(ti) =
n∑

j=1

wij · y(tj)/
n∑

j=1

wij. (9)

The final estimator in (9) is found by iteratively computing estimators

f (k)
n (ti) =

n∑
j=1

w
(k)
ij · y(tj)/

n∑
j=1

w
(k)
ij (10)
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based on updated weights w
(k)
ij determined by three kernel density functions Kl, Ks and

Ke on the positive half-axis with Kl(0) = Ks(0) = Ke(0) = 1. Initial weights are set as

w
(0)
ij = Kl(|(ti − tj)/h

(0)|2) using an initial kernel bandwidth estimate h(0). Then, with a
memory parameter η ∈ (0, 1) and a scaling factor a > 1, weights are iteratively defined
by

w
(k)
ij = η · w(k−1)

ij + (1− η) ·Kl

(
(ti − tj)

2

(ak−1h(0))2

)
Ks(s

(k)
ij )Ke(e

(k)
ij ),

using computed penalties s
(k)
ij and e

(k)
ij , j = 1, . . . , n. Comparing estimates f

(k−1)
n (ti) and

f
(k−1)
n (tj) from a previous iteration in (10), the statistical penalty s

(k)
ij is evaluated as a

localized maximum likelihood contrast divided by a numerical tuning parameter. The
penalty e

(k)
ij aims to limit the influence of an observation when tj is deemed to be a high

level point to the local fit fn(ti); this involves another tuning parameter. For a specified
maximal bandwidth hmax, (10) is computed over k = 1+log(hmax/a)/ log(h(0)) iterations.
See Polzehl and Spokoiny (2003) for details.

2.4 Data approximation methods (TS and TV)

The philosophy behind the taut-string method of Davies and Kovac (2001) is the following.
Firstly a precise definition of adequate approximation for the model (1) is given and then,
within the class of adequate approximations, a simplest approximation is required. This
is approximation followed by regularization. An arbitrary function fn is regarded as an
adequate approximation for the data Yn if the residuals rn(ti) = yn(ti)−fn(ti) “look like”
white noise with variance σ2. The property of white noise which is used is that normalized
sums of white noise are again Gaussian random variables with the same variance. This
leads to the following condition

max
I∈I

1√
|I|

∣∣∣∣∣∣
∑
tj∈I

(y(tj)− fn(tj))

∣∣∣∣∣∣ ≤ σ
√
τ log n (11)

where |I| is the number of points tj ∈ I, I is a collection of subintervals of [0, 1] and
τ > 2 is some constant. The justification of (11) is the following. The particular form is
chosen because it forces the function fn to be close to the data whilst taking the noise
level into account. It is a multiresolution scheme as it looks at the deviations over all
scales of intervals, from single points to the whole interval. If I is the set of all intervals
and the y(ti) are generated by (1) then (11) is satisfied asymptotically with fn = f for
τ > 2. This follows from a result on the uniform modulus of continuity of the Brownian
motion on [0, 1] due to Dümbgen and Spokoiny (2001). To make (11) operational we must
estimate the noise level σ and specify a constant τ. The default value we use is τ = 2.5
and the estimate

σn =
1.48√

2
median{|y(t2)− y(t1)|, . . . , |y(tn)− y(tn−1)|}. (12)
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Another possibility of quantifying the noise for equally spaced design points is the follow-
ing (see (Davies and Kovac, 2004b)). Using the FFT we first compute the periodogram
Iy(ω) of the data

Iy(ω) =
1

2πn

∣∣∣∣∣
n∑

i=1

y(ti)e
−ωi

√
−1

∣∣∣∣∣
2

.

If the signal does not contain very high frequencies then Iy(ω) is almost constant σ2

2π
at

such frequencies and the noise parameter σ2 can then be estimated from Iy(ω). Which
ever version of σn is used we are lead to the following definition of approximation

max
I∈I

1√
|I|

∣∣∣∣∣∣
∑
tj∈I

(y(tj)− fn(tj))

∣∣∣∣∣∣ ≤ σn

√
τ log n. (13)

In practice there is little to be gained by taking all intervals and dyadic multiresolution
schemes as for wavelets can be used which are much faster (see Davies and Kovac (2001)).
There is no restriction either to equally spaced design points or to powers of two.
There are many functions fn which are adequate approximations in the sense of (13). An
extreme example is any function which interpolates the y(ti). The second step consists of
a regularization in that we wish to calculate the simplest approximating function. The
two definitions of simple we use are the number of local extremes and the total variation
of fn. In other words in one case we wish to minimize the number of local extremes of fn

subject to (13) whereas in the second case we wish to minimize

n∑
i=2

|f(ti)− f(ti−1)|. (14)

To minimize the number of local extremes subject to (13) Davies and Kovac (2001) devel-
oped the taut string algorithm. Although this does not guarantee the exact solution it is
a fast O(n) algorithm and very often does give the correct solution. This can be checked
post facto. Minimizing (14) subject to (13) is a linear programming problem.

3 Test beds and loss functions

3.1 Test beds

The test beds we use are those introduced in Donoho and Johnstone (1994) and which are
known as Blocks, Bumps, Heavisine and Doppler. We also include a constant signal as
well as a heavily oscillating sine-function which terminates with a constant. The signals
are defined below and depicted in Figure 1.

• Doppler:

f(t) = (t (1− t))
1
2 sin

(
2π (1 + δ)

(t+ δ)

)
,
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Figure 1: The regression functions used as test beds
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with δ = 0.05.

• Bumps:

f(t) =
∑

hjK

(
t− tj
wj

)
, K(t) = (1 + |t|)−4 ,

with (tj) = (10, 13, 15, 23, 25, 40, 44, 65, 76, 78, 81) /100,
(hj) = (40, 50, 30, 40, 50, 42, 21, 43, 31, 51, 42) /10,
and (wj) = (5, 5, 6, 10, 10, 30, 10, 10, 5, 8, 5) /1000.

• HeaviSine:
f(t) = 4 sin 4πt− sgn (t− 0.3)− sgn (0.72− t)

• Blocks:

f(t) =
∑

hjK (t− tj) , K(t) =
1 + sgn(t)

2

with (tj) = (10, 13, 15, 23, 25, 40, 44, 65, 76, 78, 81) /100,
and (hj) = (40,−50, 30,−40, 50,−42, 21, 43,−31, 21,−42)) /10.

• Sine:

f(t) =

{
sin (100πt) t ≤ 0.8

0 t > 0.8

3.2 Lp-norms

The loss functions we consider are the empirical versions of the L2– and L∞–norms defined
by

d2(f, g) =

(
1

n

n∑
i=1

|f (ti)− g (ti)|2
)1/2

(15)

d∞(f, g) = max
1≤i≤n

|f (ti)− g (ti)| , (16)

(see Donoho and Johnstone (1994) and Rissanen (2000)). For any given test bed with
function f and for any given procedure resulting in some fn the measures of performance
are the average values of d2(f, fn) and d∞(f, fn) over the simulations.

3.3 Identification of extremes

We introduce a new loss which measures how well the extremes (e.g., peaks and troughs)
of an estimate fn match those of the test signal f. There are two possible errors. The
reconstruction fn can fail to have a local extreme of the correct type at a point where a
target signal f exhibits one. The second type of error is that fn exhibits a local extreme
at a point where the test bed function does not have one. Both of these types of error
must allow for a certain degree of error in the position of the local extreme. With this in
mind, we propose a peak identification loss (PID) as follows.
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Let nextr denote the number of local extremes of the signal function f at the design points
and let nest denote the number of local extremes of a reconstruction fn of f . The number
of local extremes of f that are correctly identified by fn will be denoted by nid. The peak
identification loss is now defined by

did(f, fn) = sgn(nest − nextr) ((nextr − nid) + (nest − nid))

= sgn(nest − nextr) (nextr + nest − 2nid) , (17)

where the counts (nextr−nid) and (nest−nid) measure the extent of the two errors described
above. We use sgn(nest − netr) so that it is possible to see if too many (positive sign) or
too few (negative sign) local extremes are identified.
We still require a definition of the number nid of correctly identified local extremes of f.
We use tolerances as follows. Let tpk

1 < . . . < tpk
npk

< 1 and ttr1 < . . . < ttrntr
< 1 denote

respectively the positions of the peaks and troughs of the target signal f at the design
points so that npk + ntr = nextr. For identification purposes, each local extreme of f is
assigned a corresponding tolerance given by

tol(t`i) =
min

{
t`i − t`i−1, t

`
i+1 − t`i

}
2

, i = 1, . . . , n`; ` ≡ pk, tr, (18)

where t`0 = 0, t`n`+1 = 1 and the label ` above represents peaks (pk) or troughs (tr). A

peak of f at a position tpk
i is said to be correctly identified by an reconstruction fn if the

position of a peak of fn is within a distance tol(tpk
i ) from tpk

i , 1, . . . , npk. An analogous
definition holds for troughs. The count nid is the number of correctly identified local
extremes {tpk

i }
npk

i=1 and {ttri }ntr
i=1 by a reconstruction fn. The tolerances specified in (18) are

not severe.

4 Simulations

We conducted two simulation studies to compare the performances of the seven methods
for nonparametric regression described in Section 2: the wavelet methods WH and WS,
the MDL method, the kernel methods Plug-in (PL) and AWS, and the data approximation
methods: taut-string (TS) and total variation (TV). The sample sizes used are n = 27 =
128, 28 = 256, 210 = 1024, 211 = 2048 and 212 = 4096. In the first study, the design points
are taken equidistant: ti = i/n, i = 1, . . . , n. In the second study we use non-equidistant
design points, so the ti, i = 1, . . . , n are generated randomly from a standard uniform
distribution. The standard deviations σ in (1) were taken to be σ = 0.4, 0.8, 1.0 and 1.4.
To measure the performance of the signal approximations we compute risks based on the
L2, L∞ and PID losses described in Sections 3.2 and 3.3. For each method, test signal
function f , σ-value, and sample size n, we generated 1000 independent samples Yj,f,n,σ of
size n to approximate the risk:

R̂n(f, fn, d) =
1

1000

1000∑
j=1

d(f, fnj),
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using the reconstruction fnj for f based on each sample Yj,f,n,σ, j = 1, . . . , 1000, and losses
d = d2

2, d∞, did given in (15) and (16). For the PID given in (17) it is not meaningful to
take a mean of the 1000 single values because of the sign. We use the mean of the absolute
value of the PID and indicate with (+) or (-) if on average too many or too few extreme
values were found. This gives an indication of how often the PID is negative or positive.
If the PID is 0 for every of the 1000 simulations this is noted with (*).
To calculate the reconstructions for the non-equidistant data points we use the same
methods as for equidistant. Although there exist versions for non-equidistant data for
WH, WS, AWS and PL we used the standard versions because they performed better
on our test beds. For the MDL method there are no versions for non-equidistant design
points. The methods TS and TV can be applied without change to non-equidistant data.

4.1 Results and Summary

In Tables 1 to 6 the ranks of all methods for all studies are shown. Simulation results for
the first study (equidistant design points) are listed in Tables 7 to 9 and for the second
study (non-equidistant design points) in Tables 10 to 12. The values of the two best
methods are depicted in bold. As the simulation results show no large differences in the
ranking of methods over different values for σ we report only the results for σ = 0.8.
Figures 2-5 show signal reconstructions based on samples with several test bed signals.
We can summarize the results of the simulation studies as follows:

• With the exception of TS and TV the performance with respect to the peak iden-
tification deteriorates as the sample size increases.

• The results for equidistant and non-equidistant design points do not differ greatly.

• The MDL method often produces too many local extremes (see Section 2.2 for an
explanation).

• The reconstructions produced by kernel and wavelet methods (WH, WS, AWS and
PL) often failed to reproduce the magnitudes of the peaks for the Bumps-function.

• As the Blocks function is piecewise constant all the methods apart from TS and TV
performed poorly as they are designed to give smooth reconstructions.

• TS is better than TV.

• There are two types of behaviour for the sine function. Either the signal is not
recognized at all or the reconstruction is reasonable. The reconstructions improved
for large sample size n and smaller σ.

• The MDL method performs extremely badly on the white noise test bed. Calcu-
lations show that in this situation about 60% of the wavelet coefficients will be
retained. The other wavelet methods and the kernel methods show a wave-line
whilst the TS and TV often give a constant.

12



• Overall TS and TV perform the best. Of the 756 possible ranks in the tables TS is
ranked either 1 or 2 in 724 cases. Of the remaining 32 cases it is ranked 3 seventeen
times. It was ranked 5 or 6 seven times, six of which on the sine test bed.

13
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Figure 2: Reconstructions of the Doppler function with n = 1024 and σ = 1.0
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Figure 3: Reconstructions of the Sine function with n = 1024 and σ = 1.0
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Figure 4: Reconstructions of the Sine function with n = 1024 and σ = 0.4
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Figure 5: Reconstructions of the Bumps function with n = 1024 (non-equidistant) and
σ = 1.0
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Method MDL WH WS AWS TS TV PL
Average Rank 4.48 4.44 4.73 4.10 2.63 3.33 4.29

Table 1: Average rank of the seven methods w.r.t. L∞-norm for equidistant design points

Method MDL WH WS AWS TS TV PL
Average Rank 5.15 3.90 5.58 2.78 2.42 4.93 3.24

Table 2: Average rank of the seven methods w.r.t. L2-norm for equidistant design points

Method MDL WH WS AWS TS TV PL
Average Rank 6.40 4.61 3.56 4.06 1.85 2.25 5.27

Table 3: Average rank of the seven methods w.r.t. peak identification risk (absolute value)
for equidistant design points

Method MDL WH WS AWS TS TV PL
Average Rank 4.25 4.98 5.23 3.59 2.78 2.72 4.47

Table 4: Average rank of the seven methods w.r.t. L∞-norm for non-equidistant design
points

Method MDL WH WS AWS TS TV PL
Average Rank 4.48 4.53 5.96 2.58 2.16 4.81 3.48

Table 5: Average rank of the seven methods w.r.t. L2-norm for non-equidistant design
points

Method MDL WH WS AWS TS TV PL
Average Rank 6.68 4.76 3.55 4.04 1.97 2.01 4.99

Table 6: Average rank of the seven methods w.r.t. peak identification risk (absolute value)
for non-equidistant design points
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Table 7: Simulation results for L∞-norm, σ = 0.8 (equidistant design points)

function n MDL WH WS AWS TS TV LPI
128 2.94 3.67 5.28 8.05 4.65 6.23 7.36

Doppler 1024 3.07 2.83 3.41 4.41 3.17 3.69 4.32
4096 2.86 1.95 2.48 2.43 2.22 2.36 3.52
128 2.57 7.75 17.25 7.43 5.02 5.08 36.58

Bumps 1024 2.9 4.28 11.56 6.84 2.91 4.89 8.60
4096 3.14 3.87 9.68 3.90 3.20 4.72 5.44
128 2.32 2.46 2.41 2.40 2.14 2.75 2.14

Heavisine 1024 2.48 2.67 2.45 1.60 1.30 1.62 2.40
4096 2.51 2.71 2.46 1.63 1.11 1.23 2.42
128 2.05 7.67 9.38 3.43 1.56 2.50 5.09

Blocks 1024 2.19 4.10 6.60 1.92 1.63 1.96 6.06
4096 2.32 4.19 6.15 2.07 1.65 2.01 7.06
128 2.24 1.45 1.33 1.23 1.24 1.29 1.19

Sine 1024 2.76 1.39 1.14 1.24 1.76 1.38 1.01
4096 3.03 1.00 0.92 1.11 1.24 1.11 0.60
128 2.24 0.76 0.41 0.37 0.31 0.20 0.43

Constant 1024 2.73 0.49 0.14 0.21 0.21 0.12 0.14
4096 3.01 0.44 0.07 0.23 0.09 0.09 0.07

Table 8: Simulation results for L2-norm, σ = 0.8 (equidistant design points)

function n MDL WH WS AWS TS TV LPI
128 1.03 0.88 3.50 4.18 1.55 4.95 2.71

Doppler 1024 0.51 0.17 0.66 0.28 0.33 0.59 0.29
4096 0.25 0.05 0.22 0.04 0.13 0.19 0.14
128 0.51 5.56 14.83 2.94 1.14 3.02 27.38

Bumps 1024 0.32 0.52 2.12 0.58 0.21 0.73 0.43
4096 0.23 0.13 0.65 0.06 0.11 0.25 0.14
128 0.87 0.45 0.53 0.27 0.43 0.80 0.24

Heavisine 1024 0.23 0.11 0.22 0.02 0.10 0.15 0.07
4096 0.12 0.04 0.10 0.01 0.04 0.06 0.04
128 0.26 4.82 9.39 0.50 0.16 0.75 2.32

Blocks 1024 0.10 0.48 1.73 0.04 0.03 0.11 0.52
4096 0.06 0.15 0.63 0.01 0.01 0.03 0.23
128 0.63 0.45 0.44 0.42 0.41 0.49 0.42

Sine 1024 0.62 0.24 0.34 0.40 0.39 0.39 0.10
4096 0.60 0.08 0.17 0.04 0.08 0.20 0.03
128 0.62 0.06 0.04 0.03 0.02 0.03 0.03

Constant 1024 0.62 0.01 0.00 0.00 0.00 0.01 0.00
4096 0.62 0.00 0.00 0.00 0.00 0.00 0.00
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Table 9: Simulation results for peak identification loss (absolute value), σ = 0.8 (equidis-
tant design points)

function n n.extr MDL WH WS AWS TS TV LPI
128 20 4.22 (+) 2.72 (-) 2.63 (-) 7.5 (-) 3.92 (-) 3.77 (-) 10.09 (-)

Doppler 1024 39 44.98 (+) 5.13 (-) 4.8 (-) 16.94 (+) 9.43 (-) 10.53 (-) 59.48 (+)
4096 40 175.12 (+) 6.00 (+) 5.53 (+) 20.25 (+) 4.68 (-) 4.66 (-) 85.85 (+)
128 21 33.33 (+) 28.66 (+) 24.84 (+) 13.68 (+) 8.73 (-) 6.61 (-) 19.33 (-)

Bumps 1024 21 150.32 (+) 106.97 (+) 82.37 (+) 37.55 (+) 0.11 (+) 0.07 (+) 178.38 (+)
4096 21 356.34 (+) 136.02 (+) 114.83 (+) 62.24 (+) 0.07 (+) 0.14 (+) 605.35 (+)
128 6 6.57 (+) 3.02 (+) 1.86 (-) 1.13 (+) 1.59 (-) 1.68 (-) 1.26 (+)

Heavisine 1024 6 50.15 (+) 12.86 (+) 2.79 (+) 2.08 (+) 0.00 (*) 0.00 (+) 6.75 (+)
4096 6 180.09 (+) 24.69 (+) 10.87 (+) 2.71 (+) 0.01 (+) 0.01 (+) 19.22 (+)
128 9 50.12 (+) 30.07 (+) 15.03 (+) 11.03 (+) 0.20 (+) 0.05 (+) 23.39 (+)

Blocks 1024 9 223.75 (+) 158.53 (+) 108.15 (+) 27.5 (+) 0.04 (+) 0.17 (+) 195.42 (+)
4096 9 546.01 (+) 294.18 (+) 217.25 (+) 59.68 (+) 0.06 (+) 0.33 (+) 585.82 (+)
128 79 51.79 (+) 80.34 (-) 80.79 (-) 79.65 (-) 78.87 (-) 79 (-) 80 (-)

Sine 1024 80 550.52 (+) 77.41 (+) 78.37 (+) 124.83 (+) 68.74 (-) 76.25 (-) 37.73 (+)
4096 80 2506.86 (+) 27.37 (+) 22.39 (+) 84.82 (+) 2.04 (-) 1.29 (-) 80.26 (+)
128 0 82.04 (+) 9.35 (+) 8.34 (+) 2.58 (+) 0.38 (+) 0.31 (+) 8.59 (+)

Constant 1024 0 664.78 (+) 9.39 (+) 8.83 (+) 12.94 (+) 0.23 (+) 0.35 (+) 21.21 (+)
4096 0 2666.8 (+) 9.65 (+) 9.18 (+) 53.59 (+) 0.11 (+) 0.42 (+) 51.73 (+)

Table 10: Simulation results for L∞-norm, σ = 0.8 (non-equidistant design points)
function n MDL WH WS AWS TS TV LPI

128 2.87 5.40 7.53 6.04 4.04 5.07 6.18
Doppler 1024 2.94 3.98 4.88 4.23 3.31 3.76 4.61

4096 2.54 2.14 2.59 2.09 2.16 2.11 3.20
128 2.64 7.18 15.27 6.17 3.11 4.60 20.48

Bumps 1024 2.88 4.63 11.63 5.96 3.04 4.72 10.98
4096 3.06 4.13 9.15 3.78 2.76 4.36 7.33
128 2.52 2.93 3.35 2.63 2.04 2.75 2.36

Heavisine 1024 2.48 2.67 2.62 1.68 1.34 1.67 2.43
4096 2.65 2.70 2.54 1.43 1.08 1.13 2.43
128 2.6 6.9 9.96 2.65 1.63 2.77 7.48

Blocks 1024 2.74 4.26 6.68 1.24 1.61 2.00 6.29
4096 2.92 4.12 6.18 0.64 1.59 1.92 8.04
128 2.25 1.52 1.41 1.30 1.31 1.22 1.38

Sine 1024 2.75 1.58 1.18 1.37 1.82 1.39 1.29
4096 3.15 1.00 0.91 0.77 1.06 0.96 0.52
128 2.26 0.79 0.42 0.38 0.47 0.20 0.42

Constant 1024 2.74 0.52 0.15 0.23 0.33 0.12 0.14
4096 3.02 0.43 0.08 0.24 0.20 0.09 0.07
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Table 11: Simulation results for L2-norm, σ = 0.8 (non-equidistant design points)
function n MDL WH WS AWS TS TV LPI

128 0.81 2.44 5.71 2.22 1.27 3.05 2.21
Doppler 1024 0.3 0.41 1.00 0.34 0.37 0.54 0.36

4096 0.09 0.06 0.17 0.04 0.09 0.11 0.09
128 0.68 4.29 12.12 1.65 0.50 2.05 14.09

Bumps 1024 0.32 0.61 2.44 0.49 0.19 0.63 0.91
4096 0.12 0.12 0.44 0.07 0.07 0.13 0.13
128 0.55 0.71 1.04 0.51 0.39 0.79 0.36

Heavisine 1024 0.13 0.13 0.25 0.05 0.10 0.16 0.08
4096 0.06 0.02 0.07 0.01 0.02 0.03 0.03
128 0.68 4.09 9.14 0.37 0.16 0.70 3.22

Blocks 1024 0.27 0.46 1.66 0.03 0.03 0.11 0.58
4096 0.12 0.09 0.38 0.01 0.01 0.02 0.20
128 0.63 0.42 0.41 0.41 0.41 0.43 0.40

Sine 1024 0.61 0.31 0.37 0.37 0.37 0.38 0.13
4096 0.59 0.06 0.13 0.02 0.05 0.12 0.02
128 0.62 0.06 0.04 0.02 0.03 0.03 0.03

Constant 1024 0.62 0.01 0.00 0.01 0.00 0.01 0.00
4096 0.62 0.00 0.00 0.00 0.00 0.00 0.00

Table 12: Simulation results for peak identification loss (absolute value), σ = 0.8 (non-
equidistant design points)

function n n.extr MDL WH WS AWS TS TV LPI
128 18.77 12.53 (+) 8.4 (+) 6.63 (-) 7.69 (-) 6.06 (-) 6.06 (-) 5.48 (-)

Doppler 1024 36.96 64.17 (+) 16.61 (+) 10.7 (-) 18.37 (+) 9.7 (-) 9.74 (-) 62.55 (+)
4096 39.88 204.78 (+) 13.36 (+) 7.86 (+) 23.22 (+) 5.28 (-) 5.24 (-) 91.57 (+)
128 17.26 35.26 (+) 27.69 (+) 21.51 (+) 11.32 (+) 5.55 (-) 5.46 (-) 14.52 (+)

Bumps 1024 21 177.68 (+) 121.51 (+) 91.19 (+) 42.78 (+) 0.24 (-) 0.15 (-) 146.54 (+)
4096 21 434.76 (+) 168.46 (+) 126.69 (+) 76.22 (+) 0.08 (+) 0.12 (+) 561.3 (+)
128 5.95 10.65 (+) 4.72 (+) 2.12 (-) 2.38 (+) 1.62 (-) 1.7 (-) 3.9 (+)

Heavisine 1024 6 51.55 (+) 13.3 (+) 3.4 (+) 4.93 (+) 0.00 (*) 0.00 (+) 8.96 (+)
4096 6 177.29 (+) 25.07 (+) 12.13 (+) 4.29 (+) 0.00 (+) 0.01 (+) 21.12 (+)
128 8.46 49.71 (+) 32.52 (+) 16.51 (+) 11.74 (+) 0.13 (-) 0.07 (+) 21.95 (+)

Blocks 1024 9 224.64 (+) 162.01 (+) 105.09 (+) 28.22 (+) 0.06 (+) 0.20 (+) 191.81 (+)
4096 9 545.27 (+) 291.22 (+) 214.25 (+) 60.04 (+) 0.06 (+) 0.31 (+) 588.27 (+)
128 55.92 32.43 (+) 50.46 (-) 51.2 (-) 54.42 (-) 55.37 (-) 55.55 (-) 49.29 (-)

Sine 1024 79.99 550.78 (+) 43.68 (-) 44.11 (-) 65.85 (+) 63.29 (-) 60.8 (-) 33.41 (+)
4096 80 2506.11 (+) 29.59 (+) 25.49 (+) 89.36 (+) 3.34 (-) 1.86 (-) 83.59 (+)
128 0 81.84 (-) 8.92 (-) 8.02 (-) 2.51 (-) 0.37 (-) 0.25 (-) 8.57 (-)

Constant 1024 0 665.75 (-) 9.32 (-) 8.79 (-) 12.46 (-) 0.22 (-) 0.36 (-) 21.39 (-)
4096 0 2665.38 (-) 9.38 (-) 8.94 (-) 54.07 (-) 0.17 (-) 0.51 (-) 51.36 (-)
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