
Challenges and Applications of Assembly-Level
Software Model Checking

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
an der Universität Dortmund
am Fachbereich Informatik

von

Tilman Mehler

Dortmund

2005

2

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Tag der mündlichen Prüfung:

Dekan/Dekanin: Prof. Bernhard Steffen

Gutachter: Dr. Stefan Edelkamp,
Prof. Katharina Morik.

Note: � ausgezeichnet
� sehr gut
� gut
� genügend

Für meine Eltern.

4

Acknowledgements

Hereby, I would like to thank my advisor Dr. Stefan Edelkamp, for his excellent guid-
ance. Without his various original ideas, his broad theoretical and practical knowledge,
his reviews and moral support, this thesis would not exist. Moreover, I thank Prof. Dr.
Katharina Morik and Dr. Doris Schmedding who agreed to review my thesis. Also, I
want to thank Shahid Jabbar for his support and his reviews. Further acknowledge-
ments must go to the German Research Society (DFG) who financially supported my
research through the project Directed Model Checking with Exploration Algorithms of
Artificial Intelligence. Last, but not least, I would like to thank my girlfriend Frida as
well as my friends and family for their moral support.

5

6

Summary

This thesis addresses the application of a formal method called Model Checking to the
domain of software verification. Here, exploration algorithms are used to search for
errors in a program. In contrast to the majority of other approaches, we claim that the
search should be applied to the actual source code of the program, rather than to some
formal model.

There are several challenges that need to be overcome to build such a model checker.
First, the tool must be capable to handle the full semantics of the underlying program-
ming language. This implies a considerable amount of additional work unless the inter-
pretation of the program is done by some existing infrastructure. The second challenge
lies in the increased memory requirements needed to memorize entire program configu-
rations. This additionally aggravates the problem of large state spaces that every model
checker faces anyway. As a remedy to the first problem, the thesis proposes to use an ex-
isting virtual machine to interpret the program. This takes the burden off the developer,
who can fully concentrate on the model checking algorithms. To address the problem of
large program states, we call attention to the fact that most transitions in a program only
change small fractions of the entire program state. Based on this observation, we devise
an incremental storing of states which considerably lowers the memory requirements of
program exploration. To further alleviate the per-state memory requirement, we apply
state reconstruction, where states are no longer memorized explicitly but through their
generating path. Another problem that results from the large state description of a pro-
gram lies in the computational effort of hashing, which is exceptionally high for the used
approach. Based on the same observation as used for the incremental storing of states,
we devise an incremental hash function which only needs to process the changed parts
of the program’s state. Due to the dynamic nature of computer programs, this is not a
trivial task and constitutes a considerable part of the overall thesis.

Moreover, the thesis addresses a more general problem of model checking - the state
explosion, which says that the number of reachable states grows exponentially in the
number of state components. To minimize the number of states to be memorized, the
thesis concentrates on the use of heuristic search. It turns out that only a fraction of all
reachable states needs to be visited to find a specific error in the program. Heuristics
can greatly help to direct the search forwards the error state. As another effective way
to reduce the number of memorized states, the thesis proposes a technique that skips
intermediate states that do not affect shared resources of the program. By merging sev-
eral consecutive state transitions to a single transition, the technique may considerably
truncate the search tree.

7

8

The proposed approach is realized in StEAM, a model checker for concurrent C++ pro-
grams, which was developed in the course of the thesis. Building on an existing virtual
machine, the tool provides a set of blind and directed search algorithms for the detection
of errors in the actual C++ implementation of a program. StEAM implements all of the
aforesaid techniques, whose effectiveness is experimentally evaluated at the end of the
thesis.

Moreover, we exploit the relation between model checking and planning. The claim is,
that the two fields of research have great similarities and that technical advances in one
fields can easily carry over to the other. The claim is supported by a case study where
StEAM is used as a planner for concurrent multi-agent systems.

The thesis also contains a user manual for StEAM and technical details that facilitate
understanding the engineering process of the tool.

Contents

1 Introduction 15
1.1 Motivation . 15

1.1.1 Deadly Software Errors . 15

1.1.2 Expensive Software Errors . 15

1.1.3 Software Engineering Process . 16

1.1.4 Call for Formal Methods . 17

1.2 History and Goals . 18

1.3 Structure . 19

2 Model Checking 21
2.1 Classical Model Checking . 21

2.1.1 Graph-Based Formalisms . 21

2.1.2 Models, Systems, Programs, Protocols 22

2.1.3 Definition of Model Checking . 23

2.1.4 Example . 23

2.1.5 Temporal Logics . 24

2.1.6 Types of Properties . 24

2.2 Towards a Fault-Free Protocol . 26

2.2.1 Need for Model Checking . 26

2.3 Classical Model Checkers . 29

2.3.1 SPIN . 29

2.3.2 SMV . 30

2.4 Model Checking Software . 30

2.4.1 The Classical Approach . 31

2.4.2 The Modern Approach . 31

2.4.3 Some Software Model Checkers . 32

3 State Space Search 39

9

10 CONTENTS

3.1 General State Expansion Algorithm . 39

3.2 Undirected Search . 40

3.2.1 Breadth-First Search . 41

3.2.2 Depth-First Search . 42

3.2.3 Depth-First Iterative Deepening . 42

3.3 Heuristic Search . 43

3.3.1 Best-first Search . 43

3.3.2 A* . 43

3.3.3 IDA* . 44

4 StEAM 47
4.1 The Model Checker StEAM . 47

4.2 Architecture of the Internet C Virtual Machine 47

4.3 Enhancements to IVM . 49

4.3.1 States in StEAM . 49

4.3.2 The State Description . 51

4.3.3 Command Patterns . 52

4.3.4 Multi-Threading . 54

4.3.5 Exploration . 54

4.4 Summary of StEAM Features . 57

4.4.1 Expressiveness . 58

4.4.2 Multi-Threading . 58

4.4.3 Special-Purpose Statements of StEAM 58

4.4.4 Applicability . 59

4.4.5 Detecting Deadlocks . 60

4.4.6 Detecting Illegal Memory Accesses 60

4.5 Heuristics . 62

4.5.1 Error-Specific Heuristics . 63

4.5.2 Structural Heuristics . 64

5 Planning vs. Model Checking 67
5.1 Similarities and Differences . 68

5.2 Related Work . 72

5.3 Multi Agent Systems . 73

5.4 Concurrent Multiagent Systems in StEAM 74

5.4.1 Interleaving Planning and Simulation 75

5.4.2 Combined Algorithm . 75

CONTENTS 11

5.5 Case Study: Multiagent Manufacturing Problem 77

5.5.1 Example Instance . 78

5.5.2 Implementation . 78

5.6 Search Enhancements . 79

5.6.1 State Space Pruning . 80

5.6.2 Evaluation Functions . 80

6 Hashing 83
6.1 Hash Functions . 84

6.2 Explicit Hashing . 85

6.2.1 Bit-State Hashing . 87

6.2.2 Sequential Hashing . 88

6.2.3 Hash Compaction . 88

6.3 Partial Search . 89

6.4 Incremental Hashing . 89

6.5 Static Framework . 90

6.5.1 Rabin and Karp Hashing . 90

6.5.2 Recursive Hashing . 92

6.5.3 Static Incremental Hashing . 92

6.5.4 Abstraction . 94

6.6 Examples for Static Incremental Hashing 95

6.6.1 Incremental Hashing in the (n2 − 1)-Puzzle 95

6.6.2 Incremental Hashing in Atomix . 96

6.6.3 Incremental Hashing in Propositional Planning 98

6.7 Hashing Dynamic State Vectors . 99

6.7.1 Stacks and Queues . 100

6.7.2 Component Insertion and Removal 101

6.7.3 Combined Operations . 101

6.8 Hashing Structured State Vectors . 102

6.8.1 The Linear Method . 102

6.8.2 Balanced Tree Method . 102

6.9 Incremental Hashing in StEAM . 104

6.10 Related Work . 105

6.10.1 Zobrist Keys . 105

6.10.2 Incremental Heap Canonicalization 105

7 State Reconstruction 107

12 CONTENTS

7.1 Memory Limited Search . 107

7.2 State Reconstruction in StEAM . 108

7.3 Key Sates . 111

7.4 Summary . 112

8 Experiments 113
8.1 Example Programs . 113

8.1.1 Choosing the Right Examples . 113

8.1.2 Scalability . 114

8.1.3 Dining Philosophers . 114

8.1.4 Optical Telegraph . 114

8.1.5 Leader Election . 115

8.1.6 CashIT . 116

8.2 Experiments on Heuristic Search . 117

8.3 Experiments for State Reconstruction . 124

8.4 Experiments on Hashing . 125

8.5 Experiments on Multi Agent Planning . 128

9 Conclusion 131
9.1 Contribution . 131

9.1.1 Challenges and Remedies . 133

9.1.2 Application . 134

9.1.3 Theroretical Contributions . 134

9.2 Future Work . 135

9.2.1 Heuristics . 135

9.2.2 Search Algorithms . 136

9.3 Hash Compaction and Bitstate-Hashing . 137

9.4 State Memorization . 138

9.4.1 Graphical User Interface . 138

9.5 Final Words . 139

A Technical Information for Developers 141
A.1 IVM Source Files . 141

A.2 Additional Source files . 143

A.3 Further Notes . 145

B StEAM User Manual 147
B.1 Introduction . 147

CONTENTS 13

B.2 Installation . 147

B.2.1 Installing the Compiler . 147

B.2.2 Installation of StEAM . 148

B.3 A First Example . 148

B.4 Options . 150

B.4.1 Algorithms . 150

B.4.2 Heuristics . 150

B.4.3 Memory Reduction . 151

B.4.4 Hashing . 151

B.4.5 Debug Options . 152

B.4.6 Illegal Memory Accesses . 152

B.4.7 Other Options . 152

B.5 Verfying your own Programs . 153

B.5.1 Motivation . 153

B.5.2 The Snack Vendor . 153

B.5.3 Finding, interpreting and fixing errors 155

B.6 Special-Purpose Statements . 155

B.7 Status Quo and Future of StEAM . 156

C Paper Contributions 161

14 CONTENTS

Chapter 1

Introduction

1.1 Motivation

The increasing role of software in safety-critical areas imposes new challenges to com-
puter science. Software systems often contain subtle errors, which remain undetected
by manual code inspection or pure testing. Errors, that when they eventually arise after
deployment may cause heavy financial damage or even the loss of human lives. We name
a few examples.

1.1.1 Deadly Software Errors

The Lufthansa Warsaw Accident
In 1993 the Lufhansa flight DLH 2904 from Frankfurt to Warsaw ended in a disaster
when the aircraft tried to land at its destination airport. At that time, the software which
controls the thrust reversers would not allow them to activate unless the aircraft’s gears
were down and the aircraft’s weight was pressing on the wheels. As an unfortunate
coincidence, heavy wind lifted up the aircraft resulting in a lack of compression on the
left gear leg. As a result, the thrust reversers were started with a delay of 9 seconds,
which caused the aircraft to leave the runway and crash into the surrounding field. One
crew member and one of the passengers died.

Therac-25 Accident The Therac-25 was a medical linear accelerator that could be used
to destroy tumors while inflicting relatively little damage to the surrounding tissue.
A complex bug in the control software caused six cases of heavy radiation overdoses
between 1985 and 1987, causing death and severe injuries to patients.

1.1.2 Expensive Software Errors

Ariane 5 1

“On June 4, 1996 an unmanned Ariane 5 rocket launched by the European Space Agency
(ESA) exploded just forty seconds after its lift-off from Kourou, French Guyana at an

1from Scientific Digital Visions, Inc - http://www.dataenabled.com/

15

16 CHAPTER 1. INTRODUCTION

altitude of 3,700 meters. The rocket was on its first voyage, after a decade of development
costing $7 billion. The destroyed rocket and its cargo were valued at $500 million ... It
turned out that the cause of the failure was a software error in the inertial reference
system. Specifically, a 64 bit floating point number relating to the horizontal velocity
of the rocket with respect to the platform was converted to a 16 bit signed integer. The
number was larger than 32,768, the largest integer storable in a 16 bit signed integer,
and thus the conversion failed. ...”

Mars Climate Orbiter 2

“The Mars Climate Orbiter is part of a series of missions in a long-term program of Mars
exploration. ... the spacecraft was lost on September 23, 1999 while entering the orbit
around Mars. After an internal peer review at JPL [Jet Propulsion Laboratory], several
problems were discovered. The review indicated a failure to recognize and correct an
error in a transfer of data between the Mars Climate Orbiter spacecraft team in Col-
orado and the mission navigation team in California. In particular, there was a failed
translation of English units into metric units in a segment of ground-based, navigation-
related mission software. As a result, the spacecraft was lost. In order to prevent future
problems, all data and engineering processes related to the Mars Polar Lander were
scrutinized.”

Note: $150M lost.
Another popular example is the software bug of the Mars path finder explained in section
2.4.

1.1.3 Software Engineering Process

Many industrial software projects obey the so-called waterfall model, which distinguish-
es six phases: requirements analysis, design, implementation, testing, integration and
maintainance. These are illustrated in Figure 1.1.

The model suggests an iterative process of software development, which allows the
project to switch between neighbouring phases. For instance, the software engineers
may fall back from the testing phase to the implementation phase, if testing exposes
an error and they may further fall back to the design phase, if during source investiga-
tion it turns out that the cause is a general flaw in the system’s design, rather than a
simple implementation error. An obvious observation is, that correcting an error gets
more expensive if it occurs at a later phase of the development process. In the design
phase of the project, the required functionalities are usually specified with specialized
modeling languages, such as Z. These languages provide a standardized notation for the
behavior of program functions, such that their correctness can be verified through man-
ual mathematical proofs. Then, the formal specification is implemented in the targeted
programming language. Before the software is integrated, the correct functionality is
tested in a simulated environment.

2from Scientific Digital Visions, Inc - http://www.dataenabled.com/

1.1. MOTIVATION 17

Figure 1.1: The waterfall model.
.

1.1.4 Call for Formal Methods

Although, industrial software must undergo rigorous testing phases before being ship-
ped, the software errors mentioned in section 1.1.1 and 1.1.2 passed unnoticed, simply
because their occurrence was unlikely. Thus, a simulation of the system will instead
repeatedly visit the more likely configurations, while some less likely are never encoun-
tered.

As a reaction, over the last years research has spent considerable effort on formal meth-
ods, which allow to verify software in more systematic way than testing. The method of
model checking has shown to be one of the most promising verification techniques un-
til now. It is a highly generic verification scheme, which had successfully been applied
to other areas such as process engineering and the verification of hardware. Based on a
formal model of the investigated system, model checking uses exploration algorithms for
a systematical enumeration of all reachable states. For each state, it is checked whether
it fulfills certain properties.

There are several advantages of model checking software compared to testing . First of
all, the exploration treats state transitions independent from their probability in real
program execution. Thus, model checking can find subtle errors in programs which will
most probably not arise during testing. Second, testing can merely provide information
about the presence of errors but not about their cause. In contrast to testing, model
checking builds a search tree of visited program states. Upon discovery of an error, the
user is provided with the sequence of states (trail) that leads from the initial configu-
ration to the error state. That information can be used to track down the error in the
program much faster than given only the actual error state. As another advantage over
testing, model checkers allow validating properties to be formulated using temporal log-
ics such as LTL. That way, the user can precisely specify the expected behavior of the

18 CHAPTER 1. INTRODUCTION

program.

Most current approaches for model checking programs rely on abstract models. These
must either be constructed manually by the user or they are (semi-)automatically ex-
tracted from the source code of the inspected program. The use of abstract models can
considerably reduce the memory requirements for model checking a program, but it also
yields some drawbacks. Manual construction of the model is time consuming and error
prone and may not correctly reflect the actual program. Also, the abstraction may hide
exactly those aspects of the program which lead to errors in practice. Furthermore, the
trail leading to some error also refers to the abstract model and must be mapped to the
original program in order to find the source of the error.

As a recent trend, tools such as the Java model checker JPF [HP00] are capable of ex-
ploring the compiled program rather than an abstract model using a virtual machine.
This resolves the drawbacks discussed above: Fist of all, the construction of a model is
no longer required, which saves time. Furthermore, errors can no longer be abstracted-
away, since the explored states represent the actual program configuration encoded in
the processor registers and the computer’s main memory. Also, the returned trail di-
rectly corresponds to positions in the programs source code and can be interpreted much
easier than a sequence of states in the abstract model.

The single drawback of this approach lies in the high memory requirements of assembly-
level program model checking. Due to the dynamic nature of actual programs, their state
description can grow to an arbitrary size and storing the expanded states may quickly
exceed the available memory of the underlying system. Thus research on unabstracted
software model checking must mainly focus on reducing memory requirements.

1.2 History and Goals

The goal of this thesis is to give a clear vision of assembly-level software model check-
ing. It introduces an experimental C++ model checker called StEAM (State Exploring
Assembly Model Checker), which was developed in the course of the author’s research.

StEAM can be used to detect errors in different phases of the software development
process (cf. section 1.1.3). In the design and implementation phase, the engineers may
build a prototype of the software, which reflects the system specification through a set of
rudimentary C++ functions. This prototype can then be used to search for specification
errors at the source code level. In later stages of development, more details are added to
the prototype, while the system should be checked for errors at regular intervals. Along
with the implementation progress, the type of errors that are searched for, gradually
shift from specification to implementation errors.

As one advantage, this approach does not impose an additional overhead for constructing
a formal model from the system specification in order to check properties in the design
phase. Moreover, there is no need for the engineer to interpret error information from
a formal model to the source code of the program - this is discussed more detailed in
sections 2.4.1 and 2.4.2.

The tool will be used to exemplify the problems and challenges of unabstracted software
model checking and possible solutions to them. As a clear focus, we concentrate on

1.3. STRUCTURE 19

approaches that help to reduce the memory requirements. We will discuss methods for
compact storing of states - such as collapse compression and bitstate hashing and how
they apply in the context of C++ model checking. As another important issue we deal
with methods that reduce the number of explored states, including the atomic execution
of code blocks and the use of heuristics. Furthermore, we discuss time/space tradeoffs
like state reconstruction, which accept a higher computational effort in exchange for
lower memory requirements.

Each approach is theoretically discussed, implemented and empirically tested. In the
end, the sum of the most effective techniques should allow us to apply unabstracted
model checking on some simple but yet non-trivial programs.

Moreover, we discuss other tools used for model checking of software and point out the
differences to our approach.

1.3 Structure

The thesis is structured as follows: In Chapter 2, we give an introduction to model
checking and its application to software. Then, Chapter 3 introduces to general state
space search and heuristics, which is essential for model checking. In Chapter 4, we
give an introduction to the new assembly-level model checker StEAM, its capabilities
and the supported heuristics. We also comment on how StEAM differs from current
sate-of-the-art software model checkers. Then, in chapter 5 we point out the similarities
between model checking and action planning. To emphasize the relation between the
two fields, we use StEAM as a planner for concurrent multi-agent systems. Chapter
6 is dedicated to finding an efficient hashing scheme for StEAM, which turns out to
be one of the core challenges in assembly-level software model checking. In Chapter
7, we discuss the method of state reconstruction as a way to alleviate the high memory
requirements faced by tools that model check actual programs. In Chapter 8, we conduct
experiments on heuristic search, hashing and state reconstruction. Finally, in Chapter
9 we summarize the contribution of the thesis and discuss future work.

The appendix contains the user manual of StEAM as well as technical details about the
tool’s implementation.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Model Checking

2.1 Classical Model Checking

Model checking is a formal verification method for state based systems, which has been
successfully applied in various fields, including process engineering, hardware design
and protocol verification. In this section, we first clarify some terms that will be used
throughout the thesis, some of which interchangeably as synonyms. Section 2.1.4 gives
an example of an elevator system and checks it against some formal properties. It fin-
ishes by motivating the use of model checking and introducing to two of the most impor-
tant classical model checkers.

2.1.1 Graph-Based Formalisms

Model checking generally refers to search in directed graphs. However, the literature
does not obey to a standard formalism to denote a state space that is explored by a model
checker. Some authors refer to or Kripke-Structures [LMS02], others to (deterministic)
finite automata [AY98]. In some practically oriented papers, no formalism is given at
all and the authors simply refer to states that are expanded [VHBP00b]. In fact, most
graph-based formalisms used in model checking literature are equal in their expres-
siveness. We will exemplify this by giving a conversion between Kripke-Structures and
deterministic finite automata.

Deterministic Finite Automata (DFA) are quadruples (S, I,A, T), where S is a set
of states, I ∈ S is the initial state, A a set of actions, and T : S × A → S is a partial

transition function mapping state/action pairs to successor states. In the theory of for-
mal languages, a DFA additionally holds a set E ⊆ S of accepting states. A DFA is said
to accept a word w ∈ A∗, if starting at I, the corresponding sequence of actions leads
to an accepting state. In model checking, automata are used to model the configuration
space of a system, rather than to define formal languages, accepting states are usually
not mentioned in definitions.

21

22 CHAPTER 2. MODEL CHECKING

Kripke Structures (KS) are quintuples (S, I,Σ, T, L), where S is a set of states, I the
initial state, T ⊆ S × S is a transition relation, Σ a set of propositions, and L : S → 2Σ is
a labeling function which assigns proposition sets to states.

KS⇒ DFA Given a KS (S, I,Σ, T, L), we can construct an equivalent DFA (S′, I ′, A, T ′)
as follows: Let S′ = 2Σ, I ′ = L(I) and A = {a1, .., an}, where

n = max{m|∃s, s1, .., sm : (s, si) ∈ T, 1 ≤ i ≤ m, si 6= sj ⇒ i 6= j}

I.e., n is the maximal degree of outgoing transitions of a state in S. Furthermore, we de-
fine T ′ =

⋃
(s,s′)∈T (s, a, s′), such that for (s, a, s′), (s′′, a′, s′′′) ∈ T ′, s 6= s′′, s′ 6= s′′′ ⇒ a 6= a′.

The constructed DFA has a unique state for each set of labels which occurs in the KS.

DFA ⇒ KS Analogously, given a DFA (S, I,A, T), an equivalent KS (S′, I ′,Σ, T ′, L′)
can be constructed. Let Σ = A, and I ′ = I ∈ S′. We regard a transition (s, a, s′) as a di-
rected edge from s to s′ labeled with a. For each state s ∈ S and each incoming edge with
label a, we define a state sa ∈ S′. Given S′, we define T ′ = {(sx, s′y)|∃(s, x, t), (s, y, s′) ∈ T}.

Now, given a sequence of actions w the DFA will hold in state s, if and only if there is a
path I ′, s1, .., sn in the KS, such that (L(s1), .., L(sn)) = w.

In the rest of the thesis we may vary the formalism through which a state space is
described, depending on what fits best in the current context.

2.1.2 Models, Systems, Programs, Protocols

Model checking is generally described as investigating the formal model of a system.
This definition is somewhat misleading for new approaches like unabstracted software
model checking (cf. Section 2.4), where the actual software is checked instead of a model.

Moreover, protocols control the behavior of a system. They restrict the state transitions
that are allowed in the system (or in the corresponding formal model).

In practice, protocols are implemented as programs in a specific programming language.
Just like protocols, these implementations can be model checked to detect errors.

In the rest of the thesis, the terms will be used as follows:

• Here, everything that can undergo a set of configurations is called a system. This
includes physical systems like an elevator just like logical systems such as soft-
ware.

• A protocol or program is a declarative description of legal transitions in a state
space. For software, the states are implicitly defined by the values of the variables
and the current position within the program. In other areas, like hardware veri-
fication, the state space is obtained by building a formal model of the underlying
system.

2.1. CLASSICAL MODEL CHECKING 23

2.1.3 Definition of Model Checking

Given a (state-based) formal modelM and a property φ, model checking uses exploration
algorithms to explicitly enumerate each state ofM. For each visited state s, it is checked,
whether φ holds for s. A state s violating φ is called error state. If during exploration an
error state is encountered, the model checker returns the sequence of states, the error
trail, which leads from the initial to the error state. If the model M contains no error
states, we say thatM fulfills (models) φ.

Concurrency Many model checkers aim at the detection of errors in systems involv-
ing several concurrent processes. The false interleaving of process executions is a source
for numerous and hard to find errors. Consider n processes, each yielding a set Si of
states. Then, the state space of the investigated system is formed by the cross product
S1× ..×Sn of all processes’ state spaces. Note, that depending on the protocol or program
which restricts the allowed state transitions, the cross product forms a superset of all
reachable states.

Explicit vs Symbolic Model Checking Model checking approaches form two classes
through the way they represent their explored states: In explicit model checking, each
explored state is explicitly present in memory, while symbolic model checking uses de-
clarative descriptions, e.g., logic formulae to represent sets of states. A symbolic model
checker can, for example, use binary decision diagrams [McM92] for a compact repre-
sentation of the logic formula that describes the set of explored states. Thus, it is pos-
sible to enumerate significantly larger states than with an explicit state representation
[BCM+90]. Alternatives are bounded model checkers as presented in [BCCZ99]. As a
clear disadvantage, symbolic model checking does not explicitly build a tree of visited
states. Among other problems, this forbids the use of heuristics which rely on the struc-
ture of the search tree. Despite the potential of symbolic state representations, the work
at hand will thus focus on explicit model checking, as the new software model checker
presented here heavily relies on the use of heuristics to be evaluated on individual states.

2.1.4 Example

We use a simple example to illustrate the upcoming formal descriptions. Assume, that
we want to design a control software for an elevator. The model involves three types of
components (or processes). The first is the elevator, which can either be moving or at one
of two floors. The second component is the elevator’s door which can either be open or
closed. The third component type is a button, of which the model has two instances (one
for each floor). A button can either be idle or pressed. Figure 2.1 illustrates the three
component types as deterministic finite automata.

The protocol, which controls the elevator’s behavior, should fulfill several properties that
guarantee the saftey and fair treatment of the passengers. These include, for instance,
that the door is always closed when the elevator is moving and that each request for the
elevator is eventually followed.

24 CHAPTER 2. MODEL CHECKING

Figure 2.1: Three components of the elevator example.

According to Figure 2.1, the example may seem overly simplistic. We may start with a
trivial protocol, that does not restrict the transitions of the system. Figure 2.2 shows
the cross product of the automata - note the two instances for the button automaton.
For clarity, we introduced an additional edge labeled with the action start. The edge has
no predecessor and leads to the model’s initial state (at0, closed, idle, idle). The size of
the product automaton illustrates, what is known as the state explosion problem. This
combinatorial problem refers to the fact, that a system’s state space grows exponentially
in the number of its components.

2.1.5 Temporal Logics

Expressions in temporal logics allow logical formulae defined over the propositions of a
labeled transition system S to be quantified over the paths of S. Temporal properties can
often be integrated via a cross product of the automaton for the model and the automaton
for the negated property. Examples for temporal logics are CTL [CES86] (Computation
Tree Logic) and LTL (Linear Temporal Logic) [Pun77, BK00, ELLL01]. Temporal log-
ics allow the basic logical operators ∨,∧,¬ to describe state properties through basic
terms over atomic propositions. By applying path quantifiers to basic terms, we arrive
at temporal formulae, like:

AG(p⇒ F¬p)

The above formula (always globally p implies future not p), asserts that along each path
of the search tree, if at some state p holds, then there must be a future state at which p
does not hold. We pass on a detailed description of temporal logics, as they are currently
not used in the new software model checker presented in Chapter 4 and listing their
formal syntax and semantics would be out of the thesis’ scope. As temporal logics are
an important aspect of classical model checking, the term should be mentioned though.
Moreover, the remaining part of the elevator example given in this chapter uses temporal
logic formulae to describe properties.

2.1.6 Types of Properties

Protocol verification distinguishes several classes of properties the system can be check-
ed against. These properties are formulated either by assertions or temporal logic for-
mulae. Assertions describe locally checked properties formulated as logical expressions
over the associated values of a state. Depending on the underlying state model these
values may correspond to the associated atomic propositions or to the content of system
variables.

2.1. CLASSICAL MODEL CHECKING 25

Figure 2.2: The state space of the elevator protocol.

Expressions in temporal logics quantify the aforesaid properties over paths in the state
space of the system. Hence, temporal logics are more expressive than assertions, as the
described properties can be checked independently from the position within the investi-
gated protocol.

In the following, we discuss three important property classes in model checking.

Safety-Properties Safety properties describe states that should never be reached in
the protocol. For our example we may consider that the elevator should never be moving
while the door is open, i.e., AG(¬moving ∨ closed).

26 CHAPTER 2. MODEL CHECKING

Liveness-Properties Liveness-properties demand that a certain property will even-
tually hold in a state. For the elevator example, such a property might be that when a
button was pressed at a floor, the elevator will eventually arrive at that floor in a future
state: A(pressedi ⇒ F (ati)).

Absence of Deadlocks Deadlocks describe a systems state in which no progress is
possible. This often occurs in systems involving concurrent processes, which request
exclusive access to shared resources. There, a deadlock occurs if all processes wait for a
resource to be released by another process. The elevator example is obviously deadlock-
free. A example for a Deadlock is given in Section 8.1.

2.2 Towards a Fault-Free Protocol

The design of a fault-free protocol constitutes an evolutionary process. Starting with a
prototype, it is checked if the protocol violates a desired property. If so, the error source
is analysed and eliminated leading to a new protocol version. The cycle is repeated until
no further violations are found.

It is not difficult to detect a property-violation in the initial protocol of the elevator
example. The action sequence (or error trail) start, open, up leads to an error state given
by (moving, open, idle, idle), which violates our safety property. An attempt to fix the
error might be to inhibit the action up in states, where open holds. The smart system
designer may also realize the analogous case, and forbid the action down, when the door
is open. The resulting state space is depicted in Figure 2.3.

It differs from the initial state space in so far, that some transitions were removed.
However, the new version still violates our safety property: The door may also open
while the elevator is moving, i.e., (start, up, open) is an error trail. As a consequence, we
may forbid the open transition, while the elevator is moving. The resulting state space
is depicted in Figure 2.4. For clarity, we have removed all unreachable states along with
their in- and outgoing edges. As can be seen, there are no more states where both moving
and open hold.

The system fulfills the safety property, however the new version of the protocol still
violates our liveness property, since there exists an infinite sequence of actions:
start, press1, release1, press1, release1, ... for which the systems cycles between two states
at floor 0. Also, the elevator may simply open and close the door infinitely often. We try
to fix this problem by adding, two more restrictions. First, when a button was pressed,
the elevator may no longer open the door. Second, a button at floor i must immediately
be released if and only if the elevator is at floor i. The resulting state space is depicted
in Figure 2.5.

2.2.1 Need for Model Checking

In Section 2.2, we have checked a simple example against two properties. According
to the violations we found, the protocol underwent several changes. In the example we
were able to detected the violating action sequences manually, for three reasons. First,

2.2. TOWARDS A FAULT-FREE PROTOCOL 27

Figure 2.3: State space for second version of the elevator protocol.

the described system is very simple. Second, we started with the trivial protocol, that
does not restrict the transitions and hence contains a lot of errors. Last, but not least,
the example was designed for illustration purposes, and we a-priori knew the errors.

Limits of Code Inspection If we closely look at Figure 2.5, we realize that the system
still contains errors. For instance, the elevator can be forced to remain at one floor if the
corresponding button is repeatedly pressed. Such errors are already harder to detect by
manual code inspection even in a system as simple as the elevator example, while for
realistically sized examples the chance of finding an error converges towards zero.

28 CHAPTER 2. MODEL CHECKING

Figure 2.4: State space of the third version of the elevator protocol, fulfilling the safety
property.

Limits of Testing The term testing refers to running a protocol or program in a sim-
ulated environment while checking if any unwanted behavior is exposed. Industrial
standards demand quality criteria like a coverage of at least 99% of the code, before
the program is deployed. However, such criteria only roughly correlate with the visited
fraction of all reachable states, as states with equal code positions can differ in their
variable configuration. Furthermore, state transitions occur with different probabili-
ties. As a consequence, testing will visit certain states frequently, while other states are
never reached. In contrast, model checking systematically enumerates all possible sys-
tem configurations regardless of their probability. Thus model checking is able to detect
subtle errors which pass unnoticed during testing. As a further advantage over testing,

2.3. CLASSICAL MODEL CHECKERS 29

Figure 2.5: State space of the fourth version of the elevator example.

model checking builds a search tree of visited states, which makes it possible to return
an error trail. This makes it easier for the user to detect the source of the error.

2.3 Classical Model Checkers

2.3.1 SPIN

SPIN [Hol97a, Hol03] is one of the oldest and most advanced model checkers. The
tool uses the C-like description language Promela to describe a system with concurrent
processes, whose state space can be explicitly enumerated. Due to its popularity, there
are numerous derivations of SPIN like dSPIN [DIS99], which allows dynamic process

30 CHAPTER 2. MODEL CHECKING

creation or HSF-spin [ELL01], which uses heuristic search to speed up the search for er-
rors. Also, some tools use SPIN as a back end to check Promela code generated through
the conversion of program source codes [HP00]. SPIN is also the eponym for the annual
workshop on model checking of software.

2.3.2 SMV

The tool SMV [McM92] developed in the Carnegie-Mellon university is a BDD-based
symbolic model checker. Using a strongly declarative description language, models are
described as networks of communicating automata. The properties under investigation
are formulated as CTL formulae over the model. SMV owns its popularity to the fact,
that it was the first model checker to use BDDs for symbolic exploration, enabling it
to fully explore very large systems. Recent development based on SMV is nuSMV a
reimplementation of the tool, which offers an open architecture that can be used as a
core for custom verification tools [CCGR99, CEMCG+02].

2.4 Model Checking Software

Recent applications of model checking technology deal with the verification of software
implementations (rather than checking a formal specification). The advantage of this
approach is manifold when compared to the modus operandi in the established software
development cycle. For safety-critical software, the designers would normally write the
system specification in a formal language like Z [Spi92] and (manually) prove formal
properties over that specification. When the development process gradually shifts to-
wards the implementation phase, the specification must be completely rewritten in the
actual programming language (usually C++). On the one hand, this implies an addi-
tional overhead, as the same program logic is merely re-formulated in a different lan-
guage. On the other hand, the re-writing is prone to errors and may falsify properties
that held in the formal specification.

In contrast, when software model checking is used, the system specification can be for-
mulated as a framework written directly in the targeted programming language. At that
point, the framework can be checked for conceptual errors that violate formal properties.
In the implementation phase, the framework is gradually augmented with implementa-
tion details, while the implementation is regularly checked against formal properties in
the same fashion as done in the specification phase. In contrast, violations can now be
attributed to implementation errors, rather than conceptional errors in the specification
- given that we check against the same properties.

Moreover, the systematic verification of model checking is superior to any manual in-
vestigation of the formal specification: it is less likely for undetected conceptual errors
to carry over to the implementation phase, where they are much more difficult to fix.
Model checking is also superior to manual inspection or testing of the implementation,
as the systematic exploration will not miss states that are unlikely to occur in the ac-
tual execution of the program, which means that less errors are carried over from the
implementation- to the integration phase.

2.4. MODEL CHECKING SOFTWARE 31

2.4.1 The Classical Approach

In the classical approach of software model checking, an abstract model of the program
is investigated. The model must either be constructed manually or (semi-)automatically
generated from the program’s source code. The model can then be investigated by estab-
lished model checkers like SPIN or SMV.

As an advantage of the verification of abstract models, the user can use the full range of
features of highly developed model checkers. The main disadvantage lies in the discrep-
ancy between the actual program and its abstract model. Fist of all, the model might
abstract way details, which lead to an error in practice. Second, the model can lead
to false positives - i.e. errors that are present in the model but not in the actual pro-
gram. This may just invalidate the advantages of model checking over testing, as we
cannot rely on the states - though systematically enumerated - to be representative for
the actual program.

The automatic translation of source code by custom-build parsers also yields problems:
First, modern programming languages such C++ have complex formal semantics, which
implies that devising a parser for the automatic conversion is tedious and time-consu-
ming. The more time is spent for that parser, the less time remains for the design and
implementation of sophisticated model checking technology. As a workaround, many
tools only support a subsets of the programming language’s formal semantics.

As another disadvantage, the returned error trail refers to the model and not to the
source code of the inspected program, which makes it harder to track down and fix the
error in the actual program source code.

Moreover, as a very severe problem, the structure and dynamics of computer programs,
such as memory references, dynamic memory allocation, recursive functions, function
pointers and garbage collection can often not satisfactorily be modeled by the input lan-
guages of classical model checkers.

2.4.2 The Modern Approach

The modern approach to software model checking relies on the extension or implementa-
tion of architectures capable of interpreting machine code. These architectures include
virtual machines [VHBP00a, ML03] and debuggers [MJ05].

Such unabstracted software model checking does not suffer from any of the problems of
the classic approach. Neither the user is burdened with the task of building an error-
prone model of the program, nor there is a need to develop a parser that translates
(subsets of) the targeted programming language into the language of the model checker.
Instead, any established compiler for the respective programming language can be used
(e.g. GCC for C++).

Given that the underlying infrastructure (virtual machine) works correctly, we can as-
sume that the model checker is capable of detecting all errors and that it will only report
real errors. Also, the model checker can provide the user with an error trail on the
source level. Not only does this facilitate to detect the error in the actual program, the
user is also not required to be familiar with the specialized modeling languages, such as
Promela.

32 CHAPTER 2. MODEL CHECKING

As its main disadvantage, unabstracted software model checking may expose a large
state description, since a state must memorize the contents of the stack and all allo-
cated memory regions. As a consequence, the generated states may quickly exceed the
computer’s available memory. Also, as will be seen later, a larger state description will
slow down the exploration. Therefore, one important topic in the development of an
unabstracted software model checker is to devise techniques that can handle the poten-
tially large states.

2.4.3 Some Software Model Checkers

dSPIN

The tool dSPIN is not primarily a software model checker, but rather a dynamic exten-
sion to SPIN. The motivation for the tool came from previous experiences regarding at-
tempts to convert Java programs to Promela [IDS98]. The extensions relate to dynamic
features of programs, which should allow the modeling of object-oriented programs in
a natural manner. The extensions include pointers, left-value operators, new/delete-
statements, function definition/call, function pointers and local scopes [DIS99].

The tool alleviates the problem of modeling actual computer programs. However, it
still imposes many restrictions to what language constructs can be modeled. For in-
stance, the ampersand operator cannot be applied to pointer variables, which implies
that multi-level pointers cannot be fully handled in the language of dSPIN. Also, the
generated counter examples are based on the modeling language and must be manually
re-interpreted to the actual program source.

Bandera

The Bandera [HT99] project of the Kansas State University is a multi functional tool
for model checking Java programs. It is capable of extracting models from Java source
code and converting them to the input language of several well known model checkers
such as SPIN or SMV. Also, Bandera serves as a frontend for JPF2 (cf. Section 2.4.3).
The approach is based on a custom-build intermediate language called BIR (Bandera In-
termediate Language). The advantage is, that Bandera does not need to implement the
model checking technology itself, but rather inherits it from the back-end tools. However,
in consequence it also suffers from the same drawbacks as the other abstraction-based
model checkers. Even if the intermediate language allows an adequate modeling of Java
programs, it still needs to be converted to the input language of the back-end model
checker which brings up the problems of handling dynamic issues of real programs.
Moreover, since Bandera supports a couple of back-end tools, it should be difficult to
maintain, as it needs to catch up with the features new versions, such as new search
algorithms and heuristics.

2.4. MODEL CHECKING SOFTWARE 33

SPIN 4.0

In the versions 4.0 and above, Spin allows embedding of C code in the Promela models.
Yet, this does not enable Spin to model check programs on the source code level. The
embedded code is blindly copied into the source of the generated verifier and cannot be
checked [Hol03]. The idea is to provide a way to define guards, states, transitions and
data types in an external language within the model.

CMC

CMC [MPC+02], the ”C Model Checker”, checks C and C++ implementations directly
by generating the state space of the analyzed system during execution. CMC is mainly
used to check correctness properties of network protocols. The checked correctness prop-
erties are assertion violations, global invariant checks avoiding routing loops, sanity
checks on table entries and messages as well as memory leaks. The approach of CMC
is based on extending the checked program with a testing environment which executes
single steps of the (multi-threaded) program while checking for correctness-properties
in-between. This implies, that CMC does not possess a meta-level infrastructure (e.g. a
virtual machine) which has full control over the program execution. In particular, the
resulting state of a transition is only available, after the corresponding machine code
was physically executed on the computer on which the model checker runs. This makes
it impossible to detect fatal program errors, such as illegal memory accesses, since these
lead to a crash of the executed program and thus of the model checker. In contrast,
tools based on machine-code interpreting infrastructure can check the validity of each
machine instruction, before it is executed.

VeriSoft

The tool VeriSoft [God97] is a program model checker which can be applied to check any
software, independently from the underlying programming language. VeriSoft offers two
modes: interactive simulation and automatic verification. In the latter, the tool system-
atically enumerates the state space of the investigated program. The supported error
types are deadlocks, livelocks, divergences, and assertion violations. A livelock means,
that a process has no enabled transitions for a specifies amount of time. Divergences oc-
cur, when a process does not execute any visible operation during a user-specified time.
When an error is found, the respective counter example is presented to the user in a
interactive graphical interface. Like CMC, the approach is based on a supervised pro-
gram execution by augmenting the source code of the verified program with additional
code. This a priori excludes the possibility to find low-level errors such as illegal memory
accesses. Moreover, VeriSoft explores programs based on input- output behavior rather
than on the source level of the investigated program.

Zing

The Zing [AQR+04a, AQR+04b] model checker developed by Microsoft Research aims at
finding bugs in software at various levels such as high-level protocol descriptions, work-

34 CHAPTER 2. MODEL CHECKING

flow specifications, web services, device drivers, and protocols in the core of the operating
system. Zing provides its own modeling language and an infrastructure for generating
models directly from software source code. In a recent case study1, it was possible to find
a concurrency error in a Windows device driver. This indicates, that Zing may have a
practical relevance for checking properties of actual programs. Still, the approach faces
the same problems like all software model checkers based on formal models, i.e. the
model may abstract-away details of the program which lead to an error in practice or it
may introduce false positives.

SLAM

The SLAM project by Microsoft research is a model checker for sequential C programs,
based on static analysis. It uses the specification language SLIC to define safety prop-
erties over the program. Given a program P and a SLIC specification, an instrumental
program P ’ is created, such that a label ERROR in P ′ is reachable, if and only if P does
not satisfy the specification [BR02]. The process in SLAM generates a sound Boolean
abstraction B’ from the instrumental program P ’, where sound means, that if ERROR is
reachable in P ′, then it is also reachable in B′. However, the reverse cannot be assumed,
i.e. the inspection of B’ may yield false positives. To deal with the latter, the tool uses
counter-example driven refinement, which generates a more detailed abstraction B′′ of
P ′, containing less spurious paths than B′. The approach of SLAM is very interesting,
as the tool is based on abstract models, while it adresses one of its main problems - i.e.
false positives. Yet, the tool works on a function call/return level and is mainly targeted
to programs that implement an underlying protocol’s state machine. Thus, it is presum-
ably not possible to use this approach to find low-level errors such as illegal memory
accesses.

BLAST

The Berkley Lazy Abstraction Software verification Toolkit (BLAST) [HJMS03] is a tool
for the verification of safety properties in C programs. The verification scheme of BLAST
uses control flow automata to represent C programs and works in two phases: in the first
phase it constructs a reachability graph of reachable abstract states of the program. If
an abstract error state is found, the second phase begins. Here, it is checked through
symbolic execution of the program, whether the error is real or results from a too coarse
abstraction of the program. Similar to SLAM, BLAST considers error states found in
the abstract state space to be false positives and performs an additional analysis to test
their genuity.

As a limitation, the current version of BLAST cannot accurately interpret C programs
that involve function pointers or recursive function calls [Ber04].

1http://research.microsoft.com/zing/illustration.htm

2.4. MODEL CHECKING SOFTWARE 35

Java PathFinder 1+2

The Java PathFinder [Hav99] (JPF) developed by the NASA is a model checker for con-
current Java programs. The name of the tool originates from the Mars rover robot Mars
Pathfinder, which shut down due to an error in the control software [HP00]. The error
had cost the NASA a considerable amount of money - money that could have been saved,
if the software had undergone a more thorough investigation. This famous event raised
an increased awareness to the need for automated software verification. In its first ver-
sions (JPF1), the tool was merely a converter from Java source code to Promela. Since
JPF1 is no longer under development, the term ’JPF’ always refers to the second version
of the model checker: JPF(2) [VHBP00a], uses a custom-made Java Virtual Machine to
perform model checking on the compiled Java Byte-Code. By this approach, JPF consti-
tutes the first software model checker, which does not rely on an abstract model of the
checked program. JPF also provides a set of heuristics, which can significantly accel-
erate the search for errors [GV02]. An interface allows the implementation of user de-
fined heuristics (see e.g. [EM03]). Its powerful features and the public availability 2 has
earned JPF a lot of attention in the model checking community. The unabstracted model
checking approach, which eliminates various problems of previous technologies has also
inspired other projects [ML03, MJ05] to use machine code interpreting infrastructure to
model check actual programs.

Yet, JPF is limited to the verification of Java programs, while most software products -
including that of the NASA - are written in the industrial standard programming lan-
guage C++. In fact, the developers of JPF state that for the verification with JPF, some
software was manually converted from C++ to Java [VHBP00b]. Not only does this imply
and additional overhead, but may also invalidate some advantages of the JPF approach,
since the manual conversion may induce errors, resulting in false positives and hiding
actual software faults.

Estes

The Estes tool implements a quite recent [MJ05] approach to program model checking,
which builds on the GNU debugger (GDB) to verify software on the assembly level. The
approach differs from assembly model checkers such as JPF or StEAM in so far, as GDB
supports multiple processor models. Hence the tool is not limited to the verification of
high-level program properties. Instead, a stronger focus is laid on checking time critical
properties of the compiled code of embedded software. In [MJ05] an example for an
error is given that is not visible on the source level, but rather occurs due to an incorrect
timing in the m68hc11 machine code. Here, the program reads two sensor values from
registers that are updated by an interrupt which is invoked every x CPU cycles. A data
inconsistency can occur, when the interrupt fires after the program has read the first
register and before comparing it with the second.

Building on a debugger is an alternative approach, which yields the same advantages as
enhancing virtual machines. Also, the possibility to search for errors that occur only on
the machine code of a specific architecture make this a promising tool. Unfortunately,

2http://javapathfinder.sourceforge.net/

36 CHAPTER 2. MODEL CHECKING

the currently available literature gives little technical detail about the implementation
(e.g., how states are encoded), nor does it provide enough experimental data to really
judge the capabilities and limits of this approach.

Summary

Besides state explosion, an inherent problem that most existing program model checkers
face is the complexity of the formal semantics (FS) of modern programming languages
such as C++. The more effort tools invest to account for details of the underlying FS, the
less time remains for the development of sophisticated model checking techniques, such
as exploration algorithms, compact state memorization and heuristics.

As one workaround, tools such as Bandera or BLAST support only a subset of the re-
spective programming language’s FS. Obviously, this burdens the user with the task of
rewriting the application to a version, which is checkable by the respective tool. Not
only does this impose an additional overhead to the software development process, but
rather the rewriting process may introduce or hide errors of the actual program.

In a second workaround that is taken by e.g. CMC, the investigated programs source
code is augmented with a model checking unit and compiled to an executable, which
performs a stepwise, supervised execution of the program, while checking for errors be-
tween each step. This method is mainly suitable for checking highlevel properties such
as safety-violations or deadlocks, rather than machine-level errors such as illegal mem-
ory writes. The problem is, that the machine instructions which correspond to a state
transition of the program are executed on the actual hardware of the machine that runs
the model checker. Since the result of a transition is only known, after the respective
machine instructions were executed, fatal errors such as illegal memory writes cannot
be caught, as they terminate the execution of the model checker.

The second version of the Java PathFinder remedies the above problems by using a vir-
tual machine to execute the Byte Code of the investigated program. This ensures, that
the model checker accounts for the complete FS of the underlying programming lan-
guage, while there is no need to develop a translator from the program source code to
some formal model - instead one can use any 3rd party Java compiler, that produces
valid Byte Code. Obviously, the development of a virtual machine also imposes a con-
siderable one-time overhead. In particular, it must be assured that the virtual machine
works correctly, as errors in the machine may again lead to false positives even if the
underlying formal model (the machine code) is correct. Model checking the virtual ma-
chine’s implementation may help here, but that requires another virtual machine that
works correctly.

Alternatively, a tool may use an existing virtual machine that was designed to run ap-
plications rather than for the use in a model checker exclusively. Such an infrastructure
can be assumed to be thoroughly tested for correct functioning. However, it is always
difficult to integrate external components into your own tool. As previously mentioned,
the developers of JPF assumed the design of a custom-made virtual machine to be more
feasible than tailoring a model checking infrastructure to an existing machine (such as
the official Java interpreter).

As will be seen in Chapter 4, the C++ model checker StEAM takes the challenge of

2.4. MODEL CHECKING SOFTWARE 37

using a 3rd-party virtual machine to execute the machine instructions corresponding
to state transitions in the investigated program. It will turn out, that the amount of
work needed to do this is not more than that of developing a custom virtual machine -
probably less. As the core contribution of the thesis, StEAM is the first model checker
capable of checking concurrent C++ programs without the need to build formal models.
This approach allows the investigation of programs written in the industrial standard
programming language, while

• There is no need of manual conversion or heavy rewriting of the original program.

• The semantics of the program are accurately interpreted.

• The designers of the model checker are not required to write a compiler or virtual
machine themselves.

• The errors that can be searched for are not restricted to violations of high-level
properties, such as safety-violations or deadlocks. Additionally, the model checker
can detect low-level errors, like illegal memory accesses.

Furthermore, the model checker StEAM constitutes a versatile tool whose field of ap-
plication is not restricted to the verification of formal properties. Chapter 5 presents a
technique to use the model checker as a planner for concurrent multi-agent system.

38 CHAPTER 2. MODEL CHECKING

Chapter 3

State Space Search

Explicit model checking essentially relies on the exploration of state spaces with search
algorithms. Here, we give an introduction to state space search and discuss the most
important search algorithms and the advantages and drawbacks they impose in the
field of (software-) model checking.

3.1 General State Expansion Algorithm

A general search algorithm systematically enumerates the nodes of a directed graph.
A directed graph is a tuple (V,E), where V is a set of nodes and E ⊆ V × V is a set
of edges. Graph nodes are often used to model the states of a system, hence the terms
node and state may be used interchangeably. During the enumeration of the nodes, a
search algorithm maintains two lists: open and closed. The closed-list contains all fully
expanded nodes. A node n is declared to be fully expanded , if all immediate successor
states {n′|(n, n′) ∈ E} were visited. The list open, contains all nodes of the explored
graph that have been visited, but not yet fully expanded. Initially, the closed list is
empty and open only contains some designated start node s ∈ V . In each step, the
algorithm removes a node n from open according to the used search strategy. Then, n is
expanded - i.e. each immediate successor node n′ with (n, n′) ∈ E is visited and added
to the open list, if n′ is not already in the closed or open list. After state n has been
expanded, it is added to the closed list. The algorithm terminates, when the open list
is empty, which implies that all reachable nodes were visited. Algorithm 3.1 shows the
pseudo code for the general state expansion algorithm. Here, the function expand(n)
returns all immediate neighbors of node n - i.e. expand(n) = {n′|(n, n′) ∈ E}.
Common search algorithms are basically implementations of the abstract description
in algorithm 3.1 and differ mainly in the criterion upon which the next open state is
selected for expansion.

The working method of different search algorithms can very naturally be exemplified for
geometric search. Here, the costs of a path from a start location to the goal corresponds
to the sum of covered distances between the intermediate locations in that path. In
the graph depicted in figure 3.1, we have a start node i, goal node g and seven other
nodes s1, . . . , s7. For simplicity, we assume, that the spacial arrangement of the nodes in

39

40 CHAPTER 3. STATE SPACE SEARCH

Procedure GSEA(V,E,γ)

Input: A directed graph (V,E), a start node i and a goal description γ.
Output: Goal state g or null.

open = {i} ;closed = ∅
while (open 6= ∅)

select n ∈ open
if (n |= γ) return n
open← open\{n}
Γ← expand(n)
closed← closed ∪ {n}
open← open ∪ (Γ\closed)

return null

Algorithm 3.1: General State Expansion Algorithm

Figure 3.1 is such, that the geometric distance between two locations is proportional to
the Euclidean distance between their corresponding nodes. The optimal path from i to g
obviously leads through s2 and s5.

Figure 3.1: Example Network

3.2 Undirected Search

Undirected (aka blind) search algorithms have no information about the distance of a
state to a goal state in the search space and instead select the open state to be expanded
next according to its position in the search tree. The two most important undirected

3.2. UNDIRECTED SEARCH 41

search algorithms are breadth-first and depth-first search.

3.2.1 Breadth-First Search

BFS expands in each step a node n with minimal depth (number of nodes in the path
from i to n). This can be achieved by implementing the open list as a FIFO queue. BFS
gives optimal paths in uniformly weighted graphs - i.e. in graphs where all transitions
from some node to an immediate successor imply the same costs. Obviously, this is
not the case for the example network in figure 3.2, since the costs correspond to the
Euclidean distance between the nodes, which may be different for each pair of adjacent
nodes. Hence, in geometric search, paths obtained by BFS may be suboptimal as shown
in Figure 3.2, which depicts the search tree for the example network. Here we assume
that of two nodes si 6= sj with the same depth and i < j, si is expanded first. The roman
numbers indicate the order in which nodes are expanded. BFS requires five expansions
and returns the path i, s1, s4, g.

BFS in Software Model Checking

Optimality of BFS in model checking depends on the subjective definition of the ”costs”
of counter examples (trails). These costs should be proportional to how difficult it is
to track down the trail and use the information for fixing the error in the protocol or
program. The assumption in this thesis is, that shorter trails can always more easily
be interpreted by the user than longer trails. This implies that we give uniform costs
for all state transitions, which makes BFS an optimal search algorithm in the domain
of software model checking. However, since the size of the open list grows exponentially
with the search depth, the space required to memorize the open states will often exceed
the available memory, before an error is found.

Figure 3.2: Path found by BFS

Note that there is more recent work on helping the user in diagnosing the cause of
an error [GV03]. This may yield even better criteria concerning the quality of counter
examples, but it also imposes a harder problem.

42 CHAPTER 3. STATE SPACE SEARCH

3.2.2 Depth-First Search

As the dual of BFS, depth-first search (DFS) selects the open node with maximal depth to
be expanded next, which is achieved by implementing the open list as a stack. Obviously,
DFS is not optimal as it tends to return the longest path from the start node to a goal
node, which is most likely suboptimal even in non-uniformly weighted graphs.

Figure 3.3 shows the search tree for the example network as generated by DFS. Here,
the path from the start- to the goal node is of length five - as opposed by four in BFS. On
the other hand, DFS only requires four node expansions - in contrast to five expansions
for BFS.

DFS in Software Model Checking

Depth-first search is an option in software model checking, if optimal algorithms fail
to find an error. The advantage of DFS over BFS is that the number of open states
grows only linearly with the encountered search depth. As its main drawback, the trails
returned by DFS may be very long which makes it difficult or impossible for user to track
down the error with the help of that trail. Moreover, DFS is incomplete in infinite search
spaces that programs often expose.

Figure 3.3: Path found by DFS

3.2.3 Depth-First Iterative Deepening

Given a depth limit d, Depth-first iterative deepening search (DFID), explores the state
space in the same order as DFS, ignoring states with a depth greater than d. If no goal
state is found, the search is re-initiated with an increased depth limit. DFID incorpo-
rates the low memory requirements of DFS with the optimality of BFS in uniformly
weighted graphs. Moreover, DFID remedies the incompleteness of DFS in infinite state
spaces. The drawback of DFID lies in the high time requirements, as each iteration must
repeat all node expansions of the previous one.

3.3. HEURISTIC SEARCH 43

DFID in Software Model Checking

DFID is very interesting for software model checking, as it constitutes an optimality-
preserving time- space tradeoff. It is a known fact that due to the state-explosion prob-
lem, the failure of search algorithms can generally be attributed to a lack of space rather
than a timeout. For the memory saving to take effect however, closed states may not be
memorized explicitly. This requires the search to be integrated with compacting hash
functions such as bitstate-hashing (cf. 6.2.1).

3.3 Heuristic Search

3.3.1 Best-first Search

Best-first search belongs to the category of heuristic search algorithms. The state to be
expanded next is chosen as the state s which minimizes the estimated distance h(s) to
the goal (h is called the estimator function or simply the heuristic). An obvious estimator
function for geometric searches is the Euclidean distance to the goal point i. Assuming
an adequate heuristic, best-first search will in general find the goal state faster than
blind search algorithms such as BFS. However, the obtained path is not guaranteed
to be optimal. When applied to our example network using Euclidean distance as the
heuristic estimate, the generated search tree is the same as for DFS (Figure 3.3). The
preferability of heuristic search over undirected search critically depends on the quality
of the used heuristic. A bad heuristic will not only return suboptimal paths, it will
also lead to an increased number of node expansions as compared to e.g. DFS. Even
though, the Euclidean distance is generally a good heuristic in geometric search, it may
be misleading as the example shows. However, we may generally expect it to perform
good in geometric networks.

Best-First Search in Software Model Checking

Best-first search is an important option in software model checking, when optimal search
algorithms fail due to time- or space restrictions. With a properly chosen heuristic it is
often possible to find an error. Experimental results (see e.g. chapter 8) show that with
an adequate heuristic errors can be found with low time- and memory requirements
while the generated error trails are close to optimal.

3.3.2 A*

The heuristic search algorithm A* is a refinement of best-first search. Here, the state s
is expanded next, which minimizes f(s) = h(s)+g(s), where h is a heuristic estimate and
g the path cost from the initial state to s. In geometric search, the path costs correspond
to the accumulated point distances, i.e. if s1, . . . , sn is the path leading from initial state
i = s1 to state s = sn, and d(s′, s′′) denotes the Euclidean distance between point s′ and
point s′′, then g(s) =

∑n−1
i=1 d(si, si+1)

44 CHAPTER 3. STATE SPACE SEARCH

Admissibility and Consistency

A heuristic h is admissible, if the estimated goal distance h(s) of some state s is always
less or equal than the actual distance from s to g. A* provably returns the optimal
path, if the used heuristic is admissible. The term admissible is also used to describe
strategies that produce optimal results for a given class of problems - such as BFS in
uniformly weighted graphs.

As a stronger property, a heuristic is consistent, if for each state s and each immediate
successor s′ of s it holds, that h(s) ≤ h(s′) + c(s, s′). Here, c(s, s′) denote the path costs
from s to s′. When A* is used with a consistent heuristic, the f -value along each path is
non-decreasing.

If we use A* combined with the Euclidean distance on a network of waypoints, we can
expect that the returned path is optimal. Figure 3.4 shows the search tree we get by
applying A* on the example network. Here, only three expansions are needed to obtain
the optimal path i, s2, s5, g.

Figure 3.4: Path found by A*

A* in Software Model Checking

A severe problem of using A* in software model checking is, that most of the heuristics
used are not admissible - one exception is the most-blocked heuristic used to detect dead-
locks (cf. 4.5.1). Non-admissible heuristics are generally known to perform poorly under
A* and the experimental results in chapter 8 support this claim. Still, A* is useful in
software model checking e.g. if a suboptimal trail is to be improved. In this case, an
admissible heuristic can be devised by abstracting the state description to a subset of its
components.

3.3.3 IDA*

Like DFID (cf 3.2.3), Iterative Deepening A* (IDA*) [Kor85] performs a series of depth-
first traversals of the search tree. In contrast to DFID, IDA* limits the f − value f(s) =
h(s) + g(s) of the generated states, rather than their depth. Starting with an initial
cost-bound c = f(i), where i is the initial state, IDA* preforms a depth-first traversal

3.3. HEURISTIC SEARCH 45

while generated states with an f -value greater than c are not inserted to the open list.
When no more open states remain, the new value of c is the minimal cost-value of all
encountered states that exceeded the old value of c. Like A*, IDA* returns the optimal
path form i to a goal state, if an admissible heuristic is used.

IDA* in Software Model Checking

Like DFID, IDA* is interesting for software model checking at points when other optimal
algorithms fail due to lack of memory. Like A*, its applicability depends on whether an
admissible heuristic is available.

Recent Development

There is a vast body of recent development of search algorithms not covered by the thesis.
The algorithms presented in this chapter are the fundamental and most important ones.
Moreover, with exception of IDA*, the presented algorithms are implemented in the new
model checker StEAM presented in Chapter 4.

46 CHAPTER 3. STATE SPACE SEARCH

Chapter 4

StEAM

4.1 The Model Checker StEAM

StEAM is an experimental model checker for concurrent C++ programs. Like JPF, the
tool builds on a virtual machine, but also takes some further challenges. To the best of
the author’s knowledge, StEAM is the fist C++ model checker, which does not rely on
abstract models. An increased difficulty of C++ lies in the handling of untyped memory
as opposed by Java, where all allocated memory can be attributed to instances of certain
object types. Also, multi-threading in Java is covered by the class Thread from the
standard SDK. Such a standardized interface for multi-threading does not exist in C++.

Moreover, StEAM build on an existing virtual machine, IVM. This is novel since tailoring
a model checking engine to an existing virtual machine imposes a task, that was thought
to be infeasible by the creators of JPF [VHBP00b]. IVM is further explained in section
4.2.

4.2 Architecture of the Internet C Virtual Machine

The Internet Virtual Machine (IVM) by Bob Daley aims at creating a programming lan-
guage that provides platform-independence without the need of rewriting applications
into proprietary languages like c] or Java . The main purpose of the project is to be able
to receive pre-compiled programs through the Internet and run them on an arbitrary
platform without re-compilation. Furthermore, the virtual machine was designed to run
games, so simulation speed was crucial.

The Virtual Machine The virtual machine simulates a 32-bit CISC CPU with a set
of approximately 64,000 instructions. The current version is already capable of running
complex programs at descend speed, including the commercial game Doom1. This is a
strong empirical evidence that the virtual machine correctly reflects the formal seman-
tics of C++. IVM is publicly available as open source2.

1www.doomworld.com/classicdoom/ports
2ivm.sourceforge.net

47

48 CHAPTER 4. STEAM

The Compiler The compiler takes conventional C++ code and translates it into the
machine code of the virtual machine. IVM uses a modified version of the GNU C-
compiler gcc to compile its programs. The compiled code is stored in ELF (Executable
and Linking Format), the common object file format for Linux binaries. The three types
of files representable are object files, shared libraries and executables, but we will con-
sider mostly executables.

ELF Binaries An ELF-binary is partitioned in sections describing different aspects of
the object’s properties. The number of sections varies depending on the respective file.
Important are the Data- and BSS-sections. Together, the two sections represent the set
of global variables of the program.

The BSS-section describes the set of non-initialized variables, while the Data-section
represents the set of variables that have an initial value assigned to them. When the pro-
gram is executed, the system first loads the ELF file into memory. For the BSS-section
additional memory must be allocated, since non-initialized variables do not occupy space
in the ELF file.

Space for initialized variables, however, is reserved in the Data-section of the object
file, so accesses to variables directly affect the memory image of the ELF binary. Other
sections represent executable code, the symbol table etc., not to be considered for mem-
orizing the state description.

State of IVM At each time, IVM is in a state corresponding to the program it executes.
The structure of such a state is illustrated in Figure 4.1.

The memory containing an IVM state is divided in two hierarchical layers. One is the
program memory containing the memory allocated by the simulated program. Program
memory forms a subset of the other layer, the physical memory of the computer the vir-
tual machine is running at. The physical memory contains the contents of CPU-registers
(machine) and the stack of the running program. The CPU registers hold the stack and
frame pointer (SP,FP), the program counter (PC) as well as several registers for integer
and floating point arithmetic (Ri,Fi). The physical memory also holds the object file im-
age (MI), which is essentially a copy of the compiled ELF-binary. The MI stores among
other program information the machine code and the Data- and BSS-sections. Note,
that the space for storing values of initialized global variables resides directly in the MI,
while for uninitialized variables an additional block of memory is allocated at program
startup.

In its original implementation, IVM does not provide a data structure which encapsu-
lates its state, as it is implicitly described by the contents of the memory areas depicted
in figure 4.1 and changes in a deterministic fashion. A fist goal in the development of
StEAM is to formulate a state description as a data structure, which captures all rele-
vant information about a program’s state.

4.3. ENHANCEMENTS TO IVM 49

Figure 4.1: State of IVM.

4.3 Enhancements to IVM

In the following, we give a technical description of the enhancements used to tailor a
model checking functionality to IVM. These include a state description, a multi-threa-
ding capability and a set of search algorithms that enumerate the program’s state based
on our description.

4.3.1 States in StEAM

As stated in Section 4.2, the fist step is to encapsulate the state description in a data
structure, which contains all IVM components from Figure 4.1 as well as additional
information for the model checker. The latter includes:

Threads: As model checking is particularly interesting for the verification of concur-
rent programs, the description should include all relevant information about an arbi-
trary number of running processes (threads).

Locks: Many concurrency errors involve deadlocks or the violation of access rights.
Threads may claim and release exclusive access to a resource by locking and unlocking
it. Resources are usually single memory cells (variables) or whole blocks of memory.
Deadlocks occur, if all running threads wait for a resource to be released by another

50 CHAPTER 4. STEAM

Figure 4.2: System state of a StEAM program.

thread, while privilege violations are caused by the attempt to read, to write or to unlock
a resource that is currently locked by another thread.

Memory: The state should include information about the location and size of dynam-
ically allocated memory blocks, as well as the allocating thread. Figure 4.2 shows the
components that form the state of a concurrent program for StEAM.

Enhancing the state of IVM to the state of StEAM involves various changes:

Memory Layers: First of all, the memory is now divided in three layers: The outer-
most layer is the physical memory which is visible only to the model checker. The subset
VM-memory is also visible to the virtual machine and contains information about the
main thread, i.e., the thread containing the main method of the program to check. The
program memory forms a subset of the VM-memory and contains regions that are dy-
namically allocated by the program.

Stacks and Machines For n threads, we have stacks s1, . . . , sn and machines m1, . . . ,mn,
where s1 and m1 correspond to the main thread that is created when the verification
process starts. Therefore, they reside in VM-memory. The machines contain the hard-
ware registers of the virtual machine, such as the program counter (PC) and the stack
and frame pointers (SP, FP). Before the next step of a thread can be executed, the con-
tent of machine registers and stacks must refer to the state immediately after the last

4.3. ENHANCEMENTS TO IVM 51

Figure 4.3: Class diagram of StEAM’s state description.

execution of the same thread, or if it is new, directly after initialization.

Memory- and Lock-Pool The memory-pool is used by StEAM to manage dynamically
allocated memory. It consists of an AVL-tree of entries (memory nodes), one for each
memory region. They contain a pointer to address space which is also the search key,
as well as some additional information such as the identity of the thread, from which it
was allocated.

The lock-pool stores information about locked resources. Again an AVL-tree stores lock
information.

4.3.2 The State Description

Figure 4.3 depicts the diagram of classes which encapsulate the system state in StEAM.

For the memory-efficient storing of states, we rely on the concept of stored components.
That is, for components that will remain unchanged by many state transitions, we define
an additional container class. During successor generation we do not store copies of
unchanged components in the system state. Instead, we store a pointer to the container
of the respective component in the predecessor state and increment the user counter
for the component. The user counter is needed when states are deleted. In this case the
user counter of each component is decreased and its content is deleted only if the counter
reaches zero.

On the top level of our state description, we have the class System State, which memo-
rizes the number of running threads and a pointer to its predecessor state in the search
tree.

52 CHAPTER 4. STEAM

A system state relates to a set of Thread States - one for each running thread. Each
thread state contains the unique ID of the thread it corresponds to, a user counter and an
instance of ICVMMachine - the structure which encapsulates the state of CPU-registers
in IVM. Note that we do not use a container class for the latter, as the machine registers
constitute the only system component that is assured to change for each state transi-
tion.
Furthermore a thread state relates to a Stored Stack - the container class for storing
stack contents. During initialization, IVM allocates 8 MB of RAM for the stack. How-
ever, we only need to explicitly store that portion of the stack in our state which lies
below the stack pointer of the corresponding thread.
A thread state also relates to two objects of type Stored Section. This class defines the
container for the contents of the Data- and BSS-section.
Finally, we have two relations to objects of type Stored Pool - the container class for the
lock- and memory-pool.

4.3.3 Command Patterns

Command patterns form the base technology that enables us to enhance and control
IVM. A command pattern is basically a sequence of machine instructions in the compiled
code of the program. Rather than being executed, such a pattern is meant to provide the
model checker with information about the program or the investigated properties. A
command pattern begins with a sequence of otherwise senseless instructions that will
not appear in a real program. The C++ code:

{
int i;
i++;
--i;
i++;
--i;
i=17;
i=42;

}

Declares a local variable i and in- and decrements it twice. The code compiles to the
following sequence of machine instructions:

a9de ecfd inc1l (-532,%fp)
75de ecfd dec1l (-532,%fp)
a9de ecfd inc1l (-532,%fp)
75de ecfd dec1l (-532,%fp)
ebe4 1100 ecfd movewl #0x11,(-532,%fp)
ebe4 2a00 ecfd movewl #0x2a,(-532,%fp)

4.3. ENHANCEMENTS TO IVM 53

The numbers before each instructions’ mnemonic denote the opcode and parameters in
Little-Endian notation. The number −532 or fdec hexadecimal is an offset in the stack
frame used to address the local variable. This offset varies depending on the state of the
program. As a first enhancement, IVM was taught to understand command patterns.
Concretely, this means that between the execution of two instructions, IVM checks if the
value of the next four opcodes indicate a command pattern. In this case, the next four
instructions are skipped which is equivalent to increasing the PC by 16 bytes. For the
following two instructions, IVM reads the first parameter (i.e. the 2-byte value at offset
2 from the increased PC) but also skips the execution of the actual opcodes. As a result,
the values 17 and 42 have been determined as the parameters of the command pattern.
The fist parameter indicates the type of information transmitted by the pattern. The
second parameter gives the value of this information. For example the type may be
information about the source code line which corresponds to the current position in the
machine code and the value may give the concrete line number.

In StEAM, command patterns are generated through parameterized C++-macros, which
compile to the respective sequence of machine instructions. The macros are then used
to annotate the source code of the respective program. Depending on the pattern type,
this is either done by the user or automatically by a script, which is executed prior to
the model checking. Command pattern serve various purposes, including:

File Information This information tells the model checker the name of the source file
which a block of machine code was compiled from.

Line Information The information about the source code line, which the PC of the
executed thread’s state corresponds to. This is - among other reasons - needed to con-
struct the trail for a detected error.

Capturing the Main Thread The main thread refers to the part of the program that
instantiates and starts instances of user-defined thread-classes. The beginning of the
main() method in the main thread is recognized by IVM through the first line informa-
tion pattern which occurs in the compiled code.

Locking and Unlocking Exclusive access to a memory region is claimed and released
by lock and unlock macros. These compile to command patterns which tell IVM the

address and size of the respective region.

Atomic Regions The user can use macros to mark atomic regions. These are executed
as a whole without switching to another thread. The user can declare sections of code

as atomic regions if they are known to be correct, which can significantly truncate the
state space of the program.

Errors IVM can be notified about a program error through a respective command pat-
tern. This pattern is only reached, if a previous logical expression over the program
variables evaluates to false (see also section 4.4).

54 CHAPTER 4. STEAM

Non-Determinism Model checking requires that the investigated program is not purely
deterministic, but that it can take several paths while being executed. For multi-

threaded programs, non-determinism arises from the possible orders of thread execu-
tions. In StEAM, an additional degree of non-determinism is given by the use of state-
ments, which tell IVM to nondeterministically choose a variable value from a discrete
range of the variable’s domain. The user can induce non-determinism into the program
by annotating the source code using macros. These compile to command patterns, which
are recognized by IVM. Formally, we can say, a nondeterministic statement σ, affecting
variable x in state s, transforms s into m states s[x = σ(1)], . . . , s[x = σ(m)], by replacing
the content of variable x with values σ(1), . . . , σ(m).

4.3.4 Multi-Threading

As previously mentioned, standard C++ does not support multi-threading. It was there-
for decided to implement a custom multi-threading capability into IVM. On the pro-
gramming level, this is done through a base class ICVMThread , from which all thread
classes must be derived. A class derived from ICVMThread must implement the meth-
ods start , run and die . After creating an instance of the derived thread-class, a call to
start will initiate the thread execution. The run-method is called from the start-method
and must contain the actual thread code. From the running threads, new threads can
be created dynamically. Program counters (PCs) indicate the byte offset of the next ma-
chine instruction to be executed by the respective thread, i.e., they point to some position
within the code-section of the object file’s memory image (MI).

IVM recognizes new threads through a command pattern in the run-method of a thread
class. The pattern is generated by an automated annotation of the program source code.

4.3.5 Exploration

In the following we describe how StEAM explores the state space of a program. We first
illustrate the steps needed to generate a successor state. Then we discuss the supported
search algorithms and the hashing in StEAM. We close with an example on how a simple
concurrent program is model checked by StEAM and an illustration of its search tree.

State Expansion

According to section 4.3.1, a state in StEAM is described by a vector

(m1, . . . ,mn, s1, . . . , sn, BS, DS,MP, LP),

where mi and si denote the machine registers and stack contents of a thread, the compo-
nents BS,DS are the state of the BSS- and Data-sections, and MP,LP the state of the
memory- and lock-pool.

State Expansion is performed in several steps:

1. Initialize the set of successor states Γ← ∅.

4.3. ENHANCEMENTS TO IVM 55

2. Choose one of the running threads.

3. Restore the contents of the CPU-registers, stack, and the variable sections in the
physical addresses.

4. Execute a state transitions - i.e. execute a single instruction or an atomic block of
instructions starting at the PC of the thread.

5. Read the contents of the physical adresses to generate a single-element set of suc-
cessor states Γ′ ← {t}

6. If a nondeterministic statement σ with m possible choices was executed, set
Γ′ ← Γ′\{t} ∪ {t[x = σ(1)], ..., t[x = σ(m)]}.

7. Set Γ← Γ ∪ Γ′.

8. Repeat the steps 2-7 for all running threads.

Algorithms

StEAM provides several state exploration algorithms, which determine the order in
which the states of a program are enumerated. Besides the uninformed algorithms
depth-first search (DFS) and breadth-first search (BFS), the heuristic search algorithms
best-first and A* are supported (cf. Chapter 3).

Hashing

StEAM uses a hash table to store already visited states. When expanding a state, only
those successor states not in the hash table are added to the search tree. If the expansion
of a state S yields no new states, then S forms a leaf in the search tree. To improve
memory efficiency, we fully store only those components of a state which differ from that
of the predecessor state. If a transition leaves a certain component unchanged - which
is often the case for e.g. the lock pool - only the reference to that component is copied
to the new state. This has proved to significantly reduce the memory requirements
of a model checking run. The method is similar to the Collapse Mode used in Spin
[Hol97c]. However, instead of component indices, StEAM directly stores the pointers
to the structures describing respective state components. Also, only components of the
immediate predecessor state are compared to those of the successor state. A redundant
storage of two identical components is therefore possible. Additional savings may be
gained through reduction techniques like heap symmetry [Ios01], which are subject to
further development of StEAM.

Glob

Figure 4.4 shows a simple program Glob , which generates two threads from a derived
thread class MyThread , that access a shared variable glob . Note, that including the
main program this results in three running threads.

56 CHAPTER 4. STEAM

01. #include "IVMThread.h"
02. #include "MyThread.h"
04. extern int glob;
05.
06. class IVMThread;
07. MyThread::MyThread()
08. :IVMThread::IVMThread(){
09. }
10. void MyThread::start() {
11. run();
12. die();
13. }
14.
15. void MyThread::run() {
16. glob=(glob+1) * ID;
17. }
18.
19. void MyThread::die() {
20. }
21.
22. int MyThread::id_counter;

01. #include <assert.h>
02. #include "MyThread.h"
03. #define N 2
04.
05. class MyThread;
06. MyThread * t[N];
07. int i,glob=0;
08.
09. void initThreads () {
10. BEGINATOMIC
11. for(i=0;i<N;i++) {
12. t[i]=new MyThread();
13. t[i]->start();
14. }
15. ENDATOMIC
16. }
17.
18. void main() {
19. initThreads();
20. VASSERT(glob!=8);
21. }

Figure 4.4: The source of the program glob .

The main program calls an atomic block of code to create the threads. Such a block is de-
fined by a pair of BEGINATOMICand ENDATOMICstatements. Upon creation, each thread
is assigned a unique identifier ID by the constructor of the super class. An instance of
MyThread uses ID to apply the statement glob=(glob+1) * ID .

The main method contains a VASSERTstatement. This statement takes a Boolean ex-
pression as its parameter and acts like an assertion in established model checkers like
e.g. SPIN [Hol97b]. If StEAM finds a sequence of program instructions (the trail), which
leads to the line of the VASSERTstatement, and the corresponding system state violates
the boolean expression, the model checker prints the trail and terminates.

In the example, we check the program against the expression glob!=8 . Figure 4.5
shows the error trail of StEAM, when applied to glob . Thread 1 denotes the main
thread, Thread 2 and Thread 3 are two instances of MyThread . The returned error
trail is easy to trace. First, instances of MyThread are generated and started in one
atomic step. Then the one-line run -method of Thread 3 is executed, followed by the
run -method of Thread 2 . We can easily calculate why the assertion is violated. After
Step 3, we have glob=(0+1) * 3=3 and after step 5 we have glob=(3+1) * 2=8 . After
this, the line containing the VASSERT-statement is reached.

The assertion is only violated, if the run method of Thread 3 is executed before the one
of Thread 2 . Otherwise, glob would take the values 0, 2, and 9. By default, StEAM
uses depth first search (DFS) for a program exploration. In general, DFS finds an error
quickly while having low memory requirements. As a drawback, error trails found with

4.4. SUMMARY OF STEAM FEATURES 57

Step 1: Thread 1 - 28: ENDATOMIC
Step 2: Thread 3 - 29: glob=(glob+1) * ID;
Step 3: Thread 3 - 30: }
Step 4: Thread 2 - 29: glob=(glob+1) * ID;
Step 5: Thread 2 - 30: }
Step 6: Thread 1 - 29: }
Step 7: Thread 1 - 33: VASSERT(glob!=8);

Figure 4.5: The error-trail for the ’glob’-program.

DFS can become very long, in some cases even too long to be traceable by the user.

The Search Tree

Figure 4.6 shows a search tree up to level 2, as produced for the glob example. Here,
the components of each state are depicted as symbols of different shapes. Ovals symbol-
ize whole states. DATA is depicted as a diamond, circles denote BSS. A thread state is
symbolized by a square, a stack by a semi-circle and a cross denotes the memory pool.
We will disregard the lock pool here, because no locks occur. A dot in place of a symbol
means, that the corresponding state component is the same as in the predecessor state.
The initial state S0 corresponds to the program state with only the main thread run-
ning. Apparently, S0 has only one successor state - S1,1 - which results from iterating the
main thread. As shown in Figure 4.4, this calls and executes the initThreads method
in one atomic step. As the result S1,1 has three running threads. DATA is modified,
because the main thread writes to the un-initialized class pointers t[i]. BSS remains
unchanged. The stack of the main thread is changed by using the local variable i. The
memory pool is changed, because the call of the new-constructor during thread gener-
ation allocates memory for the instances of the MyThread-class. The CPU registers of
the main thread change, because they include the program counter, which was altered
by the state transition. From S1,1 we have three potential successor states, S2,1 S2,2

and S2,3 that correspond to executing one of the running threads. Iterating the main
thread executes the VASSERT statement leading to state S2,1. This will only affect the
program counter of the main thread and thus change the main-thread’s state. All other
components, including the main thread’s stack, remain unchanged. The states S2,2 and
S2,3 correspond to iterating one of the dynamically generated threads. This executes the
statement ’glob=(glob+1) * ID ’, alternating the zero-initialized global variable glob ,
and thus BSS. All other components - with the exception of the respective thread state -
remain unchanged.

4.4 Summary of StEAM Features

In this section, we will summarize the features of StEAM.

58 CHAPTER 4. STEAM

Figure 4.6: The search tree of the glob example.

4.4.1 Expressiveness

Due to the underlying concept which uses a virtual machine to interpret machine code
compiled by a real C/C++ compiler3 there are in principle no syntactic or semantic re-
strictions to the programs that can be checked by StEAM, as long as they are valid
C/C++ programs.

4.4.2 Multi-Threading

As opposed to Java, there is currently no real standard for multi threading in C++. We
decided to implement a simple multi threading capability our own. To create a new
thread class, the user must derive it from the base class ICVMThread and implement
the methods start(), run() and die(), as it was done in e.g. Figure 4.4. If in the near future
a standard for multi threading will arise, StEAM may be enhanced to support it.

4.4.3 Special-Purpose Statements of StEAM

The special-purpose statements in StEAM are used to define properties and to guide the
search. In general, a special-purpose statements is allowed at any place in the code,
where a normal C/C++ statement would be valid4.

BEGINATOMIC
This statement marks an atomic region. When such a statement is reached, the ex-

ecution of the current thread will be continued until a consecutive ENDATOMIC. A
BEGINATOMIC statement within an atomic block has no effect.

3IVM uses a modified version of GCC to compile its code.
4A following semicolon is optional.

4.4. SUMMARY OF STEAM FEATURES 59

ENDATOMIC
This statement marks the end of an atomic region. An ENDATOMIC outside an atomic
region has no effect.

RANGE(<varname>, int min, int max)
This statement defines a nondeterministic choice over a discrete range of numeric vari-
able values. The parameter <varname> must denote a variable name that is valid in the
current scope. The parameters min and max describe the upper and lower border of the
value range. Internally, the presence of a RANGE-statement corresponds to expanding
a state to have max −min successors. A RANGE statement must not appear within an
atomic region. Also, the statement currently only works for int variables.

VASSERT(bool e)
This statement defines a local property. When, during program execution, VASSERT(e)
is encountered, StEAM checks if the corresponding system state satisfies expression e.
If e is violated, the model checker provides the user with the trail leading to the error
and terminates.

VLOCK(void * r)
A thread can request exclusive access to a resource by a VLOCK. This statement takes

as its parameter a pointer to an arbitrary base type or structure. If the resource is
already locked, the thread must interrupt its execution until the lock is released. If a
locked resource is requested within an atomic region, the state of the executing thread
is reset to the beginning of the region.

VUNLOCK(void * r)
Unlocks a resource making it accessible for other threads. The executing thread must

be the holder of the lock. Otherwise this is reported as a privilege violation, and the
error trail is returned.

4.4.4 Applicability

StEAM offers new possibilities for model checking software in several phases of the
development process. In the design phase we can check, if our specification satisfies
the required properties. Rather than using a model written in the input language of a
model checker like e.g. SPIN, the developers can provide a test implementation written
in same programming language as the end product, namely C/C++. On the one hand
this eliminates the danger of missing errors that do not occur in the model but in the
actual program. On the other hand, it helps to save the time used to search for so-called
false positives, i.e. errors that occur due to an inconsistent model of the actual program.
More importantly, the tool is applicable in the testing phase of an actual implementation.
Model checking has two major advantages over pure testing. First, it will not miss subtle
errors, since the entire state space of the program is explored. Second, by providing an
error trail, model checking gives an important hint for finding the source of the error
instead of just claiming, that an error exists.

60 CHAPTER 4. STEAM

4.4.5 Detecting Deadlocks

StEAM automatically checks for deadlocks during a program exploration. A thread can
gain and release exclusive access to a resource using the statements VLOCKand VUNLOCK
which take as their parameter a pointer to a base type or structure. When a thread
attempts to lock an already locked resource, it must wait until the lock is released. A
deadlock describes a state where all running threads wait for a lock to be released. A
detailed example is given in [ML03].

4.4.6 Detecting Illegal Memory Accesses

An illegal memory access (IMA) constitutes a read- or write operation to a memory cell
that neither lies within the current stack frame, nor within one of the dynamically allo-
cated memory regions, nor in the static variable sections. On modern operating systems,
IMAs are usually caught by the memory protection which reports the error (e.g., seg-
mentation fault on Unix) and terminates the program.

IMAs are not only one of the most common implementation errors in software, they are
also among most time consuming factors in software development as these errors tend
to be hard to detect.

On Wikipedia 5, the free online encyclopedia, the term segmentation fault is exemplified
with the following small c program.

int main(void)
{

char * p = NULL;

* p = ’x’;
return 0;

}

When the program is compiled with gcc on Linux, and then being run the operation
system reports a segmentation fault. Despite the minimalistic program, the error is
not immediately obvious (at least to less experienced programmers), as it results from a
wrong view of the level of variable p.

Invoking StEAM to the the (IVM-)compiled code of the program, returns the output:

.

.

Illegal memory write, printing trail!
depth: 2
Step 1: Thread 1 - 19: char * p = 0;
Step 2: Thread 1 - 20: * p = ’x’;

5http://en.wikipedia.org/

4.4. SUMMARY OF STEAM FEATURES 61

.

.

This is already more informative than the lapidary ”segmentation fault” returned by the
operating system when the program is merely executed. If we insert a line as follows:

int main(void)
{

char * p = NULL;
p=new int[1];

* p = ’x’;
return 0;

}

and re-run StEAM on the compiled code, we get

.

.

(unique) States generated : 5
Maximum search depth: : 5

.

.
Verified!

.

.

This implies, that StEAM could enumerate all (five) states of the program without find-
ing an error.

Though nice for illustration purposes, the example is not overly impressive and one may
claim, that no model checker was needed for find the error. StEAM however aims at
finding less trivial errors that do not occur immediately at the beginning of the program.

A common practice of programmers is to manually annotate the source code with a large
amount of printf statements and monitor the output of the program to track down the
error. This is a tedious practice as it requires the user to run the programs several times
while gradually adding more statements in a binary-search fashion until the exact line
of the error was found. In contrast, StEAM only needs a single run on the inspected pro-
gram to provide the user with that information. Moreover, in the first case the printf ’s
become redundant after the error was found and have to be removed in another tedious
pass.

More advanced users may rather use a debugger like gdb to detected illegal memory
accesses. Although preferable to the printf-method, a debugger is still limited in the
amount of information it can give to the user. That information merely consists of the
stack trace of the error state s - i.e. the memory contents in s and the local variable

62 CHAPTER 4. STEAM

contents of s and its calling functions up to the top level (usually the main function). In
contrast, StEAM memorizes the complete path from the initial state of the program to s.
This also includes the CPU registers and memory contents of all preceding states, which
enables the user to precisely analyse the history of the error.

Moreover, StEAM is able to detect illegal memory accesses that may pass unnoticed
by both, the operating system’s memory protection and by debuggers. Consider the
following program:

void main(int argc, char ** argv) {
int i[100];
i[500]=42;

}

Here, it is attempted to access an element outside of a locally declared array. This error is
exclusively reported by StEAM, since it checks, that all write accesses to the stack must
reside within the current stack frame, while the system’s memory protection merely
checks, whether the respective memory cell lies inside an allocated memory region.

Checking for illegal memory access is a time-consuming task, since before the execution
of any machine instruction it must be checked, whether it accesses a memory cell and
whether this cell resides within the current stack frame, a dynamically allocated mem-
ory region or in the static variable sections. Hence, StEAM must be explicitly advised to
search for illegal memory accesses through a parameter.

4.5 Heuristics

The use of heuristics constitutes one of if not the most effective way to improve the effec-
tiveness of a model checker. Despite the state explosion problem, empirical evaluations
show, that the minimal depth of an error state in the search tree often grows only lin-
early in the number of processes. Thus, the model checker only needs to explore a small
fraction of the entire state space to find the error. Heuristics help to explore those paths
first, that are more likely to lead to an error state.

Heuristic search algorithms, such as best-first search or A* [HNR68] (cf. Chapter 3)
can be used in model checking to accelerate the search for errors, to reduce memory
consumption, and to generate short and comprehensible counter examples (trails). Note
that heuristics are suitable only for the finding of errors, and not for proving correctness,
since the latter requires an exhaustive exploration of the program.

Heuristics for model checking generally differ from heuristics for other state space searches,
as we usually do not have a complete description of an error state. Exceptions are
trail-directed heuristics, like Hamming- or FSM-distance [EM03], which use a two-stage
search for shortening suboptimal trails. The lack of information about the searched state
makes it hard to devise estimates that are admissible or even consistent .

In the following, we discuss the heuristics currently supported by StEAM. Some of them

4.5. HEURISTICS 63

are derived from the heuristic explicit state model checker HSF-Spin [ELL01] and from
the Java Byte Code model checker JPF [GV02], others are new.

4.5.1 Error-Specific Heuristics

Here, the term ”error-specific” refers to the class of heuristics, which are targeted to
finding a certain type of error.

Most Blocked A typical example for an error-specific heuristic is most-blocked [GV02,
ELL01, LL03], which was designed to speed up the search for deadlocks. Most-blocked
takes the number of non-blocked processes as the estimated distance to the error state.
A process is blocked, if it waits for access to a resource.

The most-blocked heuristic is consistent, if a state transition can at most block one
process. In StEAM, this is assured, if the investigated program does not contain atomic
regions, as a LOCK statement (cf. Section 4.3.1) can merely block the executed thread
and only LOCK statements can block threads.

If atomic blocks are present, the most-blocked heuristic may become inadmissible: Con-
sider a state u with processes p1, .., pn (n > 2), none of which is blocked, hence h(u) = n.
For thread t1, the next two actions are to lock a resource r1, then a resource r2. All other
processes will lock r2 first, then r1. In a transition u → v, thread t1 locks r1. In another,
transition v → w, thread t2 locks r2. Thus, w is a deadlock state, as all threads are mu-
tually waiting for either r1 or r2 to be released. This means, the real distance of u to an
error state is 2.

Lock and Block For StEAM, an improved version of most-blocked was devised, namely
lock-and-block. This heuristic uses the number of non-blocked processes plus the num-
ber of non-locked resources as the estimated distance to the error. Here, ’locked’ means
that a process has requested or holds the exclusive access to a resource. Clearly, a dead-
lock occurs, if all processes wait for a lock to be released by another process. Hence locks
are an obvious precondition for threads to get in a blocked state. As the experimental re-
sults in Chapter 8 will show, lock-and-block constitutes a significant improvement over
the most-blocked heuristic.

Obviously, Lock and Block is inadmissible as deadlocks do not require all available re-
sources to be locked. Nevertheless, the heuristic is more informative than most-blocked
and hence preferable over most-blocked - the experimental results in Chapter 8 will
support this claim.

Formular-Based Heuristic This heuristic aims to speed up the search for violations
of properties given by a logical formula f . The value h(s) estimates the minimal number
of transitions needed to make f true (or to make ¬f true, respectively). The heuristic
was devised and implemented for the SPIN-based heuristic model checker HSF-Spin
[ELL01]. An integration into StEAM or other assembly-level model checkers would be
difficult, as the heuristic requires full information about how a logical expression (e.g.

64 CHAPTER 4. STEAM

in an assertion) relates to a variable’s name and its value, while the compiled machine
code operates on stack offsets and memory cells in the DATA- and BSS-sections.

4.5.2 Structural Heuristics

In contrast to error-specific heuristics, structural heuristics [GV02] are not designed to
find a certain type of error. Instead, they exploit structural properties of the underly-
ing programming language to speed up the finding of errors in general. Two examples
of structural heuristics are the interleaving and branch-coverage heuristics that were
devised to be used in the Java PathFinder.

Structural heuristics differ from other heuristics in so far, as they prefer states that
maximize a function m, rather than states that minimize the estimated distance to an
error. The function m may e.g. correlate with the degree of thread interleaving. To
fit into the concept of heuristic search algorithms such as best-first, which demand an
estimated error distance of some state u, we need to subtract f(u) from a constant c,
which is hopefully always greater than f(u) for all states u. Obviously, this makes most
structural heuristics inadmissible.

Interleaving With interleaving, those paths are explored first, which maximize the
number of thread interleavings. Many program errors are caused by the illegal inter-
leavings of threads. For instance, in a block of instructions, a thread may read the
content (e.g. the value 1000) of a memory cell c (account balance) into a processor regis-
ter, perform some arithmetic operation to the register (e.g. add 100) and write the result
back to c. If between the reading and the writing, another process is executed, which
changes c (subtract 50), the contents of c become wrong (c now contains 1100 although it
should be 1050). Thus, maximizing the interleaving of threads, may speed up the finding
of such concurrency errors.

Branch-Coverage With the branch-coverage heuristic the paths are favored, that
maximize the number of branch instructions which were executed at least once. A
greater branch coverage also implies a greater source coverage of the program including
those parts that may cause an error.

StEAM supports a subset of JPFs structural heuristic as well as some new ones. Besides
lock-and-block, the new heuristics of StEAM regard the access to memory cells and the
activeness of threads.

Read-Write The read-write heuristic simply counts the number of reads and writes to
any memory cells. States that maximize the number of reads and writes are preferred in
the exploration. The intuition behind the heuristic is obvious: Accesses to memory cells
imply changes to program variables. As safety and reachability properties (cf. Section
2.1.6) in programs usually relate to variable values, more changes increase the proba-
bility of an error.

4.5. HEURISTICS 65

Alternating Access The alternating access heuristic prefers paths, that maximize
the number of subsequent read and write accesses to the same memory cell in the global
variable sections. The intuition is, that changes in a global variable x by one thread may
influence the behavior of another thread that relies on x. For example, a thread may
read the contents of x into a CPU register r, and perform some algebraic operations on
r and write the result back to x. If in between another thread changes the content of x,
a data inconsistency arises.

Threads Alive The number of threads alive in a program state is a factor that can
safely be combined with any other heuristic estimator. Obviously, only threads that are
still alive can cause an error.

66 CHAPTER 4. STEAM

Chapter 5

Planning vs. Model Checking

Automated planning has established itself as an important field of research in computer
science. Indicators for this are events such as the annual International Conference on
Automated Planning and Scheduling (ICAPS) 1 and the biennial International Planning
Competition 2.

Research on planning has created sophisticated techniques that aim to alleviate the
search for (preferably optimal) plans. This is all the more interesting, as the fields of
planning and model checking are highly related and achievements in one field such
as heuristics and pruning techniques can easily be carried over from one field to the
other. In fact, model checking tasks can straightforwardly be represented as planning
problems and vice versa. For example [Ede03] proposes a conversion from the input
language of the model checker SPIN to an action planning description language, which
makes protocols accessible to action planners.

Consequently, this chapter makes a disgression to the domain of planning and its rela-
tion to model checking. We will point out similarities and differences between planning
and model checking and discuss how the two fields of research can benefit from each
other. Finally, to prove the claimed relation between the two fields, we show an ap-
plication of the model checker StEAM for solving instances of the n2 − 1-puzzle and
multi-agent planning problems.

Planning generally refers to the finding of a plan to reach a goal - i.e., the finding of
an operator sequence, which transforms an initial state into a goal state. The simplest
class of planning problems is called propositional planning. A propositional planning
problem (in STRIPS notation) is a finite state space problem P =< S,O, I,G >, where
S ⊆ 2AP is the set of states, I ∈ S is the initial state, G ⊆ S is the set of goal states, and
O is the set of operators that transform states into states. Operators o = (P,A, D) ∈ O
have propositional preconditions P , and propositional effects (A,D), where P ⊆ AP is
the precondition list, A ⊆ AP is the add list and D ⊆ AP is the delete list. Given a state
S with P ⊆ S, its successor S′ = o(S) is defined as S′ = (S \D) ∪A.

For an operator o = (P,D,A), let pre(o) = P , del(o) = D and add(o) = A. A plan
for the propositional planning problem Π is a sequence of operators o1, .., om, implying

1http://www.icaps-conference.org/
2http://ls5-www.cs.uni-dortmund.de/ simedelkamp/ipc-4/

67

68 CHAPTER 5. PLANNING VS. MODEL CHECKING

a sequence of states I = s1, .., sm+1 ⊇ G, such that for i = 1, ..,m, pre(oi) ⊆ si and
si+1 = (si \ del(oi)) ∪ add(oi).

Extensions to propositional planning include temporal planning, which allows parallel
plan execution. In temporal planning, each operator o has a duration dur(o). In a par-
allel plan execution, several operators o1, .., ol may be executed parallel in state s, if all
preconditions hold in s and if the effect of one operator does not interfere with the pre-
conditions or effect of another operator - i.e.: For all i = 1, .., l: pre(oi) ⊆ s and for all
i 6= j: del(oi)∩ pre(oj) = ∅ ∧ del(oi)∩ add(oj) = ∅. A common goal in temporal planning is
to minimize the makespan of a plan. In parallel plans, each of its operator o has a time
τ(o) at which the operator starts. The makespan of a parallel plan o1, .., om is defined as
the point maxo∈{o1,..,on}τ(o)+dur(o), when all operators are completed. The case study in
section 5.5 refers to planning in a multi-agent environment, where we want to minimize
the makespan of a plan, that gets a set of jobs done.

5.1 Similarities and Differences

Search An obvious similarity of planning and model checking is that both methods
rely on the exploration of state spaces. In model checking, the state space describes the
set of configurations of a system model or program, while in planning the states consti-
tute sets of propositions which are true in a state. Like transitions in model checking
lead from system configurations to system configurations, operators in planning lead
from sets of propositions to sets of propositions.

Path Both, planning and model checking, return a sequence of state transitions (oper-
ators) to the user. In model checking, a path from the initial configuration to an error
state serves as a counter example (or error trail), which alleviates the task to find the
source of the error in the program or system specification. In planning, the returned se-
quence of operators describes a plan which leads from the initial state to the designated
target state.

Quality In both technologies the returned path can be of different quality. In model
checking, the quality of a counterexample is usually negatively correlated with its length,
since shorter trails are in general easier to track by the user. The quality of a plan de-
pends on the respective domain and the criterion that is to be optimized. For instance, if
the criterion is the costs of the plan and each operator implies the same costs, a plan with
less operators is always better. Alternatively, we may want to minimize the makespan
of a parallel plan. In this case, a plan with more operators can be better.

Plan/error finding vs verification The goal of planning is always to find a plan -
desirably the optimal one. An optimal plan can be obtained by applying an admissible
search strategy to the respective problem description. For instance, if we want to mini-
mize the number of operators, a plan returned by breadth-first search is always optimal.
When such a plan is found, the remaining state space of the planning problem is of no
further interest.

5.1. SIMILARITIES AND DIFFERENCES 69

Figure 5.1: The Eight-, Fifteen-, and Twenty-Four-Puzzle.

The same applies, when we search for errors in programs. For instance, in the imple-
mentation phase of a program, the presence of errors is very probable. Hence the goal is
to find one error at a time and correct it with the help of the returned error trail. Here,
directed search with appropriate heuristics can help to reduce the number of states vis-
ited until an error is found. At a later point, e.g. before the software is shipped, we may
be interested in the verification of a program. This means, we need to do an exhaus-
tive enumeration of all possible system states, while each visited state is checked for
errors. At this point, the use of directed search is not longer appropriate, as it merely
prioritizes the order in which the states are visited. Also, on a per-state base, heuristic
search is usually computationally more expensive than undirected search methods, such
as depth-first or breadth-first search.

Planning via Model Checking The goal in the n2 − 1-puzzle (a.k.a. Sliding Tile
Puzzle) is to arrange a set of n2− 1 numbered tiles from left to right and top to bottom in
ascending order. As the only operation, the blank may switch positions with one of it’s
neighbouring tiles. Figure 5.1 illustrates examples for n = 3, 4, 5.

The paper [HBG05] exploits a PDDL encoding of the n2 − 1 puzzle which can be solved
by established planners. Likewise, it is easy to formulate the puzzle as a C++ program,
such that instances can be solved by StEAM. The main program is depicted in Figure 5.2.
The program accepts as its parameters the scale n followed by a the initial arrangement
of the tiles from left to right and top to bottom. The parsing and initialization is done
in one atomic step. Afterwards, an infinite loop is executed which first tests, if the
tiles are arranged in their goal configuration through an assertion. More precisely, the
assertion is violated if and only if the goal state of the puzzle instance was reached. If the
assertion holds, i.e., if at least one tile is not at its final position, the program uses a non-
deterministic statement to choose one of the functions ShiftUp, ShiftDown, ShiftLeft and
ShiftRight, which exchange the blank with one of its neighboring tiles. Figure 5.3 lists
the function ShiftUp - the other three functions are implemented analogously.

We can invoke StEAM with breadth-first search to the instance of the 8-puzzle depicted
in Figure 5.1 by:

steam -srctrl -BFS npuzzle 3 1 4 2 3 7 5 6 8 0 | grep Shift

The output of the model checker is pipelined to the Unix command grep such that only
the calls to the Shift methods in the returned error trail are displayed. The resulting

70 CHAPTER 5. PLANNING VS. MODEL CHECKING

output is:

Step 8: Thread 1 - 96: ShiftLeft();
Step 17: Thread 1 - 90: ShiftUp();
Step 26: Thread 1 - 90: ShiftUp();
Step 35: Thread 1 - 96: ShiftLeft();

As you can easily verify, this is the shortest ”plan” to solve the puzzle instance.

As a second example, we present a method, which uses StEAM as a planner in concur-
rent multi-agent systems. In contrast to classical planning, we avoid the generation of
an abstract model. The planner operates on the same compiled code that controls the
actual system.

5.1. SIMILARITIES AND DIFFERENCES 71

int blank;
int n;
short tmp;
short * tiles;

void main(int argc, char ** argv) {

int i=-1;

BEGINATOMIC;

if(argc<6) {
fprintf(stderr, "Illegal number of Arguments!\n");
exit(1);

}
n=atoi(argv[1]);
if(argc!=n * n+2) {

fprintf(stderr, "Illegal Number of Arguments\n");
exit(1);

}

tiles=(short *) malloc(n * n* sizeof(short));
s=(Shifter **) malloc(4 * sizeof(Shifter *));
for(i=0;i<n * n;i++) {

tiles[i]=atoi(argv[i+2]);
if(tiles[i]==0) blank=i;

}

ENDATOMIC;

while(1) {
for(i=0;i<n * n && tiles[i]==i;i++);
VASSERT(i<n * n);
RANGE(i,0,3);
switch(i) {
case 0:

ShiftUp();
break;

case 1:
ShiftDown();
break;

case 2:
ShiftLeft();
break;

case 3:
ShiftRight();
break;

}
}

Figure 5.2: Main Program of the C++ Encoding of the n2 − 1 puzzle.

72 CHAPTER 5. PLANNING VS. MODEL CHECKING

void ShiftUp() {
BEGINATOMIC;
if(blank>=n) {

tmp=tiles[blank-n];
tiles[blank-n]=0;
tiles[blank]=tmp;
blank-=n;
}

ENDATOMIC;
}

Figure 5.3: The method ShiftUp of the C++ Encoding of the n2 − 1 puzzle.

5.2 Related Work

Software model checking is a powerful method, whose capabilities are not limited to the
detection of errors in a program but to general problem solving. For instance, [EM03]
successfully uses JPF to solve instances of the sliding-tile puzzle. The adaption is simple:
action selection is incorporated as non-deterministic choice points into the system.

Symbolic model checkers have been used for advanced AI planning, e.g. the Model-
Based Planner (MBP) by Cimatti et al.3 has been applied for solving non-deterministic
and conformant planning problems, including partial observable state variables and tem-
porally extended goals.

An architecture based on MBP to interleave plan generation and plan execution is pre-
sented in [BCT03], where a planner generates conditional plans that branch over obser-
vations, and a controller executes actions in the plan and monitors the current state of
the domain.
The power of decision diagrams to represent sets of planning states more efficiently has
also been recognized in probabilistic planners, as the SPUDD system [HSAHB99] and
its real-time heuristic programming variant based on the LAO* algorithm [HZ01] show.
These planners solve factored Markov decision process problems and encode probabilities
and reward functions with algebraic decision diagrams.

TL-Plan [BK00] and the TAL planning system [KDH00] apply control pruning rules,
specified in first order temporal logic. The hand-coded rules are associated together with
the planning problem description to accelerate plan finding. When expanding planning
states the control rules for the successors are derived by progression.

Planning technology has been integrated in existing model checkers, mainly by provid-
ing the option to accelerate error detection by heuristic search [ELLL04]. These efforts
are referred to as directed model checking. First model checking problems have been au-

3http://sra.itc.it/tools/mbp

5.3. MULTI AGENT SYSTEMS 73

tomatically converted to serve as benchmarks for international planning competitions4.

The work described in [AM02] reduces job-shop problems to finding the shortest path
in a stopwatch automaton and provides efficient algorithms for this task. It shows that
model checking is capable to solve hard combinatorial scheduling problems.

The paper [DBL02] describes a translation from Level 3 PDDL2.1 to timed automata.
This makes it possible to solve planning problems with the real-time model checker UP-
PAAL. The paper also describes a case study about an implementation of the translation
procedure which is applied to the PDDL description of a classical planning problem.

Some work on multiagent systems shares similarities with our proposal. In [dWTW01]
a framework called ARPF is proposed. It allows agents to exchange resources in an
environment which fully integrates planning and cooperation. This implies, that there
must also be an inter-agent communication.

The work [BC01] proposes model checking for multi-agent systems, with a framework
that is applied to the analysis of a relevant class of multi-agent protocols, namely se-
curity protocols. In a case study the work considers a belief-based exploration of the
Andrew Authentication Protocol with the model checker nuSMV that is defined by a set
of propositions and evolutions of message and freshness variables.

Multi-agent planning is an AI research of growing interest. A forward search algo-
rithm [Bre03] based on the single-agent planner FF that solves multiagent problems
synthesizes partially ordered temporal plans and is described in an own formal frame-
work. It also presents a general distributed algorithm for solving these problems with
several coordinating planners.

The paper [PvV+02] is closely related to the work at hand. It describes ExPlanTech,
as an enhanced implementation of the ProPlanT multiagent system used in an actual
industrial environment. ExPlanTech introduces the concept of meta-agents, which do
not directly participate in the production process, but observe how agents interact and
how they carry out distributed decision making. The meta-agent in ExPlanTech serves
a similar purpose as the model checker in our system, as it is able to induce efficiency
considerations from observations of the community workflow. Still, the meta-agent uses
its own abstract model of the system.

The approach we consider in this paper differs from all the above in that it uses program
model checking and that it is applied to multiagent systems in order to interleave plan-
ning and execution and learn from an existing executable of a given implementation.

5.3 Multi Agent Systems

Modern AI is often viewed as a research area based on the concept of intelligent agents
[RN95]. The task is to describe and build agents that receive signals from the environ-
ment. In fact, each such agent implements percepts to actions. So distributed multiagent
systems have become an important sub-field of AI, and several classical AI topics are now
broadly studied in a concurrent environment. Planning for multiagent systems extends
classical AI Planning to domains where several agents act together. Application areas

4http://ipc.icaps-conference.org

74 CHAPTER 5. PLANNING VS. MODEL CHECKING

include multirobot environments, cooperating Internet agents, logistics, manufacturing
etc. Approaches differ for example in their emphasis on either the distributed plan gen-
eration or the distributed plan execution process, and in the ways communication and
perception is used.

The largest discrepancy between generating a plan and executing it, is that multiagent
planners usually cannot directly work on existing programs that are executed. Here, we
show how StEAM can be utilized to serve as a planning and execution unit to improve
the performance of concurrent multiagent system implementations.

Directing the exploration towards the planning goal or specification error turns out to
be one of the chances to tackle the state explosion problem, that arises due to the com-
binatorial growth of system states. As StEAM works with different object-code distance
metrics to measure the efforts needed to encounter the error, we can also address the
evaluation problem that multiagent systems or multirobot teams have. By having ac-
cess to object code we can attribute execution time to a set of source code instructions.

The goal is to develop a planning system which interacts with the software units to im-
prove the quality of the results. Since the performance of the system on test increases
over time, our approach considers incremental learning. As a special feature, the plan-
ner should not build an abstract model of the concurrent system. Instead, planning
should be feasible directly on the implementation of the software units. This introduces
planning on the source-code and assembly-level.

5.4 Concurrent Multiagent Systems in StEAM

We regard a concurrent multiagent system as a set of homo- or heterogeneous autonomous
software units operating in parallel. Some components of the system are shared among
all units - such as tasks or resources. The units cooperate to reach a certain goal and the
result of this cooperation depends on what decisions are made by each agent at different
times.

Concurrent multiagent systems can be implemented into StEAM in a straightforward
fashion. Software units are represented as threads. Each unit is implemented by an
instance of a corresponding C++-class. Each such class is derived from StEAM’s thread-
class IVMThread. After creating a class instance, a call to the start-method adds it to
the list of concurrent processes running in the system. The shared components of the
system are represented by global variables.

Model checking in StEAM is done by performing exploration on the set of system states,
which allows to store and retrieve memorized configurations in the execution of the pro-
gram. In the simulation mode e.g. controlled by the user, by random choices, or by an
existing trace, the model checker executes the program along one sequence of source
code instructions.

Here, StEAM serves two purposes. First as a platform to simulate the system, second
as a planner which interacts with the running system to get better results. We assume
an online scenario, where planning has to be done in parallel to the execution of the
software units. In particular, it is not possible to find a complete solution in advance.

5.4. CONCURRENT MULTIAGENT SYSTEMS IN STEAM 75

We assume that the planner performs a search on system states, which are of the same
type as that of the actual concurrent system. As a result, the planner finds a desired tar-
get state t, which maximizes the expected solution quality. State t will not necessarily
fulfill the ultimate goal, because an exhaustive exploration is in general not possible due
to time and space restrictions. As the next step, the planner must carry over the search
results to the environment. However - in contrast to the plan generation - the planner
does not have full control over the actual system, due to non-deterministic factors in the
environment, such as the execution order of the agents. Instead, the planner must com-
municate with the software units to influence their behavior, so that the actual system
reaches state t or a state that has the same or better properties as t w.r.t. the solution
quality.

5.4.1 Interleaving Planning and Simulation

We want to integrate the required planning ability into the model checker with mini-
mal changes to the original code. First, a model checker operates on sequential process
executions, rather than on parallel plans. To address this issue, the concept of parallel
steps is added to StEAM. A parallel step means that all active processes are iterated one
atomic step in random order. With parallel steps, we can more faithfully simulate the
parallel execution of the software units.

Communication is realized by a concept we call suggestion. A suggestion is essentially
a component of the system state (usually a shared variable). Each process is allowed
to pass suggestions to the planner (model checker) using a special-purpose statement
SUGGEST. The SUGGEST-statement takes a memory-pointer as its parameter, which
must be the physical address of a 32-bit component of the system state. The model
checker collects all suggestions in set SUG. When the model checker has finished the
plan generation, it overwrites the values of all suggestions in the current state of the
actual environment with the corresponding values in target state t. The software units
recognize these changes and adapt their behavior accordingly. Formally, the role of sug-
gestions can be described as follows: Let V be the set of variables that form a state in
our system. A system state is defined as a function s : V → IR, which maps variables to
their domains. Let s be the root state of a planning phase and t the designated target
state. Then, the subsequent simulation phase starts at state:

s′ = s \

 ⋃
v∈Sug

{v 7→ s(v)}

 ∪ ⋃
v∈Sug

{v 7→ t(v)}.

A concrete example will be given in the case study in Section 5.5.

5.4.2 Combined Algorithm

The proposed system iterates two different phases: planning and simulation. In the
planning phase all units are frozen in their current action. Starting from a given system
state, the model checker performs a breadth-first exploration of the state space until a
time limit is exceeded or no more states can be expanded. For each generated state u an

76 CHAPTER 5. PLANNING VS. MODEL CHECKING

Procedure Interleave
Input: The initial state s of the system, time limit θ, evaluation function h
1. loop
2. besth← h(s); t← s; open← {s}
3. while (time < θ ∧ open 6= ∅) /* start of planning phase */
4. u← getNext(open)
5. Γ← expand(u) /* expand next state in horizon list */
6. for each v ∈ Γ
7. if (h(v) > besth) t← v; besth← h(v)
8. for each σ ∈ SUG
9. s.σ ← t.σ /* write suggestions */
10. c← 0
11. while (¬c) /* begin of simulation phase */
12. for each agent a: s← iterate(s, a) /* do a parallel step */
13. c← evaluateCriterion()

Figure 5.4: The Implementation of the Interleaved Planning and Simulation System.

evaluation function value h(u) is calculated, which measures the solution quality in u.
When a time limit θ is reached, the state with the best h-value is chosen as the target
state t and the simulation phase starts. At the beginning of the simulation phase, for
each element in the set of suggestions, the model checker overwrites the value of the
corresponding component in s with the value in t. Then parallel steps are executed in s
until the criterion for a new planning phase is met.

Algorithm Interleave in Figure 5.4 illustrates the two phases of the system, and is based
on top of a general state expanding exploration algorithm. Besides the initial state the
exploration starts from, it takes the preference state evaluation function as an addi-
tional parameter. A time threshold stops planning in case the model checker does not
encounter optimal depth. For the ease of presentation and the online scenario of in-
terleaved execution and planning, we chose an endless loop as a wrapper and have not
included a termination criterion in case the goal is encountered.

The function evaluateCriterion determines, whether a new planning phase should be
initiated or not. The function is not defined here, because this criterion varies depending
on the kind of system we investigate. The function iterate(s,a) executes one atomic step
of an agent (thread, process) a in state s and returns the resulting state.

Figure 5.5 shows how the generated system states switch from a tree structure in the
planning phase to a linear sequence in the simulation phase. We see that the simulation
(path on right side of the figure) is accompaigned by intermediate planning phases (tree
structure, top left and bottom right of the figure). The search tree contains the (interme-
diate) target state t - i.e. the generated state with the highest h-value. As we will see,
state t is potentially - but not necessarily traversed in the simulation phase.

Ideally, the two phases run in parallel, that is the running multiagent system is not in-
terrupted. Since we use the same executable in our model checker to simulate and plan,

5.5. CASE STUDY: MULTIAGENT MANUFACTURING PROBLEM 77

Figure 5.5: State generation in the two different exploration phases.

we store system states that are reached in the simulations and suspend its execution.
The next planning phase always starts with the last state of the simulation, while the
simulation continues with the root node of the planning process. The information that
is learned by the planning algorithm to improve the execution is stored in main memory
so it can be accessed by the simulation.

5.5 Case Study: Multiagent Manufacturing Problem

In the following we formalize a special kind of a concurrent multiagent system, which
is used to evaluate our approach. A multiagent manufacturing problem, MAMP for
short, is a six-tuple (A, J, R, req, cap, dur), where A = {a1, . . . , an} denotes a set of agents,
J = {j1, . . . , jm, �} is a set of jobs including the empty job �, and R = {r1, . . . , rl} is a set
of resources. The mappings req, cap, and dur are defined as follows:

• req : J → 2R defines the resource requirements of a job,

• cap : A→ 2R denotes the capabilities of an agent, and

• dur : J → IN is the duration of a job in terms of a discrete time measure with
dur(�) = 0.

A solution to a MAMP m = (A, J,R, req, cap, dur), is a function sol : A → 2IN×J . For
(t, ι) ∈ IN×J , let job((t, ι)) = ι and time((t, ι)) = t. Furthermore, let alljobssol : A→ 2J be
defined as alljobssol(a) =

⋃
s∈sol(a) job(s). We require sol to have the following properties.

i. For each sol(a) = {(t0, ι0), . . . , (tq, ιq)} we have that i 6= j implies either (ιi = ιj = �)
or ιi 6= ιj and for each i ≥ 0 we have ti+1 ≥ ti + dur(ιi).

ii. For each s ∈ sol(a): req(job(s)) ⊆ cap(a).

78 CHAPTER 5. PLANNING VS. MODEL CHECKING

iii. For all a 6= a′ and all s ∈ sol(a), s′ ∈ sol(a′) with req(job(s)) ∩ req(job(s′)) 6= ∅ we
have either time(s) + dur(job(s)) ≤ time(s′) or time(s) ≥ time(s′) + dur(job(s′))

iv. For all a 6= a′ we have (alljobssol(a)\{�}) ∩ alljobssol(a′) = ∅.

v. Last but not least, we have
⋃

a∈A alljobssol(a) = J\{�}.

Property i. demands, that each agent can do at most one job at a time. Property ii. says,
that an agent can only do those jobs, it is qualified for. Property iii. means, that each
resource can only be used by one agent at a time and properties iv. and v. demand, that
each job is done exactly once.

An optimal solution sol minimizes the makespan τ until all jobs are done:

τ(sol) = max
a∈A,s∈sol(a)

(time(s) + dur(job(s)).

MAMPs are extensions to job-shop scheduling problems as described e.g. in [AM02]. As
the core difference, MAMPs also have a limited set of agents with individual capabilities.
While in a job-shop problem one is only concerned with the distribution of resources to
jobs, MAMPs also require that for each job we have an agent available that is capable to
use the required resources.

5.5.1 Example Instance

Apparently, the solution quality of a MAMP relates to the degree of parallelism in the
manufacturing process. A good solution takes care that each agent works around the
clock - if possible. Consider a small MAMP m = {A, J,R, req, cap, dur} with A = {a1, a2},
J = {j1, j2, j3}, R = {r1, r2, r3, r4, r5}, req(j1) = {r1, r2}, req(j2) = {r3, r4}, and req(j3) =
{r3, r5}. Furthermore cap(a1) = R, cap(a2) = {r3, r4, r5}, and dur(j1) = 2, dur(j2) =
dur(j3) = 1.

Figure 5.6 illustrates a best, an average and a worst case solution for m. Here, we have a
time line extending from left to right. For each solution, the labeled white boxes indicate
the job, which is performed by the respective agent at a given time. Black boxes indicate
that the agent is idle. In the optimal solution, a1 starts doing j1 at time = 0. Parallel to
that, a2 performs j2 and afterwards j3. The total time required by the optimal solution
is 2. Note, that the solution does not contain any black boxes. In the average solution,
which is in the middle, a1 executes j2 at time = 0 and j1 afterwards. This implies that a2

has to be idle up to time = 1, because it is incapable to use r1 needed for j1 and r3 is used
by j1. Then, a2 can at least commence doing j3 at time = 1 when r3 is available again.
The time needed by the average solution is 3. Finally, in the worst solution, which is the
bottom-most in Figure 5.6, a1 first performs j2, then j3 and j1, while a2 is compelled to
be idle at all time. The worst solution needs 4 time units to get all jobs done.

5.5.2 Implementation

For the chosen concurrent multiagent manufacturing system, our goal is to develop a
planning procedure for an instance that interacts with the multiagent system to max-
imize the level of parallelism and thus to minimize the idle times of agents, which is

5.6. SEARCH ENHANCEMENTS 79

Figure 5.6: Three different solutions for the same MAMP m.

expected to improve the quality of the resulting MAMP-solution. Additionally, as an
immediate result of our proposal, we avoid the generation of an abstract model of the
system. Instead, we plan directly on the actual implementation.

Information about the state of the jobs and the available resources are stored in global
variables. When running, each agent a automatically searches for available jobs he is
qualified for and executes them. If a finds a free job j, such that req(j) ⊆ caps(a) and all
resources in req(j) are available, the agent requests the resources and starts executing
the job. After finishing the job - i.e. when dur(j) time units have passed, a will release
the resources and search for the next job. If a cannot find a job, he waits one time
unit and searches again. In the case of our multiagent system, each agent passes as a
suggestion the local variable assigned, which stores the next job to be executed by the
agent. Before an agents autonomously seeks a job, it checks if the default-value of its
assigned-variable has changed. This implies, that - as a result of the previous planning
phase - the model checker has assigned a job for this agent. If this is the case, the agent
skips the procedure, which looks for a feasible job and starts allocating the required
resources.

5.6 Search Enhancements

When using breadth-first search, for n active processes (agents), the number of expanded
states in the planning phase is bounded by O(nd) where d is the depth of the search
tree. Without search enhancements, it is hard to reach a search depth which is deep
enough to gain information for the simulation phase. As a result, the solutions obtained
through the combination of planning and simulation would not be any better, than that
of a purely autonomous system without planning. Several pruning and refinement tech-
niques help our planning system to reach a larger search depth.

80 CHAPTER 5. PLANNING VS. MODEL CHECKING

5.6.1 State Space Pruning

First of all, the model checker StEAM uses a hash table to store the already visited
states. When a state is expanded, only those successor states are added to the Open list,
which are not already in the hash table.

Second for a multiagent management system, it does not make sense to generate those
states of the search tree that correspond to an execution step of a job. Such an execution
only changes local variables and thus does not influence the behavior of the other agents.
To realize this pruning, threads can announce themselves busy or idle to the model
checker using special-purpose statements. In the case of the MAMP, an agent declares
himself busy, when he starts working on a job and idle when the job is finished. When
expanding a state, only those successors are added to the Open list that correspond to
the execution of an idle thread.

Third, an idle agent looks for a job in one atomic step. Therefore, the execution of an
agent that does not result in a job assignment yields no new information compared to
the predecessor state. For the given multiagent system, this implies that we only need
to store those successor states that result in the change of a suggestion (i.e. in a job
assignment).

5.6.2 Evaluation Functions

As shown in Figure 5.5 the planner cannot always enforce the target state t to be
reached, due to clashes in the simulation phases. A clash occurs, if an agent a is it-
erated before another agent b and autonomously picks a job assigned to b. Our approach
considers the value of suggestions to reflect the individual choices of each agent - in this
case the job it will do next. The value of this choice is determined by the agent or the
planner, before the job itself is taken. Since an agent has no information about the in-
ternal values of other agents, clashes are inevitable. This raises the question, what the
planner can rely on as a result of its interaction with the system. The answer to this
lies in the choice of the evaluation function that is used to determine the intermediate
target state during the planning phase. In our case, we use the number of allocated jobs
as the evaluation function h, where allocated means that an agent is working on that
job. It holds, that h(s) ≤ h(s′) for any successor state of s, since the counter of assigned
jobs never decreases - even if a job is finished. In other words h describes the number of
currently allocated, plus the number of finished jobs.

Theorem 5.1. Let t be the intermediate target state in the search tree. Furthermore, let
si describe the i-th state of the simulation phase and pi denote the i-th state on the path
from the initial state to t in the search tree, where i ∈ {0, . . . ,m} and pm = t. Then for
each 0 ≤ i ≤ m we have that h(si) ≥ h(pi).

Proof. In fact, we have h(s0) = h(p0) and h(s1) ≥ h(t). The equality h(s0) = h(p0) is
trivial, since the two states are equal - except for the values of the suggestions. This
implies that in particular, the variable which counts the number of assigned jobs has
the same value in s0 and p0. Furthermore all suggestions in s0 are initialized with the
values from t. If we now consider the first simulation step, there are two possibilities:

5.6. SEARCH ENHANCEMENTS 81

In the first case, we have no clashes during the parallel step performed between s0 and
s1. This implies that each agent picks the job assigned by the model checker (if any).
So we have at least h(s1) = h(t). Additionally, agents that have no job in t may pick an
unassigned job, so that h(s1) > h(t).
In the second case we assume to have clashes. For each such clash, we have one agent,
that cannot pick its assigned job which decreases h(s1) by one. However, we also have
another agent, that picks a job, although it has no job in t, which increases h(s1) by one.
So, a clash does not influence the value of h(s1) and thus we have h(s1) ≥ h(t).

Altogether, we have h(s0) = h(p0), h(s1) ≥ h(t) and since the number of taken jobs never
decreases, it holds that for all 1 ≤ i ≤ m, we have h(si) ≥ h(si−1) and h(pi) ≥ h(pi−1) and
in particular h(t) ≥ h(pi−1), which implies h(si) ≥ h(pi) for all 0 ≤ i ≤ m.

Experimental results for multi agent planning can be found in section 8.5.

A main insight of the case study is that assembly model checking allows us to develop a
planning methodology, which does not require the construction of an abstract model of
the environment. Instead, planning is performed directly on the compiled code, which is
the same as used by the simulation. Also, it shows that the capabilities of StEAM are
not limited to verification of software.

In the future, we would like to try the approach on actual multiagent systems - be it
pure software environments or physical systems like a group of robots. Certainly, many
multiagent systems are more complex than the MAMP architecture presented here as
they e.g. also involve inter-agent communication. We kept our framework simple for
deriving a multiagent prototype to test our planning approach.

In the long term, both areas may highly benefit from the assembly model checking ap-
proach, because it eliminates the task of building an abstract model of the actual system
or program. Not only does this save a considerable amount of resources, usually spent
on constructing the models, but performing model checking and planning on the actual
implementation also avoids possible inconsistencies between the model and the real sys-
tem.

82 CHAPTER 5. PLANNING VS. MODEL CHECKING

Chapter 6

Hashing

Hashing is essential in software verification, since concurrent programs exhibit a large
number of duplicate states. In fact, it turns out that ignoring duplicates in StEAM bars
the model checker from finding errors even in very simple programs due to memory
restrictions.

Hashing is not heavily discussed in other fields related to state space search - simply be-
cause the portion of hashing compared to the overall computational effort of the search
is negligible. In this context, program model checking takes a special position among the
universe of state space problems, since hashing shows to be the computationally most
expensive operation when expanding a state. This can be explained by the exceptionally
large state description of a program (cf. Section 4.3.1). Most state transitions of a pro-
gram relate to a single statement or a short sequence of statements that only change a
small fraction of the state, e.g., the memory cell of a variable. Since only the changed
parts need to be stored, generating a successor state is computationally inexpensive if
we consider the size of the underlying state description. In contrast, conventional hash
functions process the entire state, and as a consequence computing the hash code for
each newly generated state dramatically slows down the exploration.

This makes the design of efficient hash functions a central issue of program model check-
ing. An obvious solution to overcome the complexity stated above, is to devise an incre-
mental hash function, i.e. one that computes the hash code of a state relative to that
of it’s immediate predecessor by looking at the changes caused by the corresponding
transition. Incremental hashing is used in other areas, such as text search. However,
existing approaches rely on linear structures with a fixed size. In contrast, a program
state is inherently dynamic, as new memory regions may be allocated or freed. Also, it
is structured, in the sense that the state description is subdivided in several parts, such
as the stacks and the global variables.

The following chapter is dedicated to the design of an incremental hash function on
dynamic, structured state descriptions that can be implemented into StEAM. We first
discuss hashing in general. We then proceed by devising and incremental hash function
for static linear state vectors. The approach is exemplified for AI puzzles and action
planning. Finally, we enhance our approach to be usable for dynamic and structured
state descriptions. The contribution of incremental hashing to the field of program model
checking is experimentally evaluated using an implementation in the StEAM model

83

84 CHAPTER 6. HASHING

checker in chapter 8.

6.1 Hash Functions

A hash function h : S → K maps states from a universe S to a finite set of keys K (or
codes). A good hash function is one that minimizes the number of collisions. A hash
collisions occurs, if for two states s 6= s′ ∈ S, h(s) is equal to h(s′). Since, the number
of possible state configurations is usually greater than |K| (sometimes infinite), hash
collisions cannot be avoided. In state space search, hashing is used to compute a table
address on which to store a generated state or to lookup a previously stored one. As
a necessary criterion, to minimize the number of hash collisions, the function must be
parameterized with all state components.

Distribution To achieve a uniform distribution of the key mapped to the set of ad-
dresses, a random experiment can be performed. Computers, however, can only simulate
random experiments, aiming at number sequences whose statistical properties deviate
as less as possible from the uniform distribution. The Lehmer-generator is a pseudo ran-
dom number generator on the basis of linear congruence, and is one of the most common
methods for generating random numbers. A sequence of pseudo-random numbers xi is
generated according to x0 = b and xi+1 = (axi + c) mod m for i ≥ 0. A good choice is the
minimal standard generator with a = 75 = 16, 807 and m = 231−1. To avoid encountering
overflows, one uses a factorization of m.

Remainder Method If one can extend S to ZZ, then T = ZZ/mZZ is the quotient space
with equivalence classes [0], . . . , [m− 1] induced by the relation

z ∼ w iff z mod m = w mod m.

Therefore, a mapping h : S → {0, 1, . . . ,m − 1} with h(x) = x mod m distributes S on
T . For the uniformity, the choice of m is important: for example, if m is even then h(x)
is even if and only if x is. The choice m = rw, for some w ∈ IN , is also not appropriate,
since for x =

∑l
i=0 air

i we have

x mod m =

(
l∑

i=w

air
i +

w−1∑
i=0

air
i

)
mod m =

(
w−1∑
i=0

air
i

)
mod m

This means that the distribution only takes the last w digits into account.

A good choice for m is a prime which does not divide a number ri± j for small j, because
m | ri ± j is equivalent to rimod m = ∓j so that (case +)

x mod m = j ·
l∑

i=0

ai mod m,

i.e., keys with same (alternating) sum of digits are mapped to the same address.

6.2. EXPLICIT HASHING 85

6.2 Explicit Hashing

Explicit hashing schemes store the entire state description, without loss of information.
In practice, this is usually realized using a pointer table H of size m. For state s with
h(s) = c, it is first tried to store s at H[c]. If H[c], already holds a state s′, it is determined,
whether s′ is identical to s. In the latter case, s is not stored. Otherwise, we have a hash
collision, that has to be resolved. Resolving can be done, by either probing or successor
chaining.

Probing For probing, a function π is used to traverse a sequence of successor positions
H[π(c)], ..,H[π(π(c))], .. in the hash table. This is done, until a position H[c′] is encoun-
tered, such that one of the following holds:

• If H[c′] is unoccupied, it is used to store s.

• If H[c′] holds a duplicate of s, the state is not stored.

• If c = c′, the hash table is full. In this case, it must be decided to either not store s,
replace another stored state by s or resize the hash table.

Successor Chaining For successor chaining, the hash table entries store a linked list
of different states with the same hash value. As an advantage over probing, only states
with the same hash value must be compared.

Figure 6.1 illustrates an example of four states s1, s2, s3, s4 to be inserted into a hash
table of size 6 using either probing or successor chaining. Let h(s1) = h(s3) = 2 and
h(s2) = h(s4) = 3. Furthermore, linear probing is used, i.e. π(c) = c + 1. Obviously, for
probing the hashing scheme needs four state comparisons: s3 ↔ s1, s3 ↔ s2, s4 ↔ s2

and s4 ↔ s3. In contrast, successor chaining only needs two state comparisons: s3 ↔ s1

and s4 ↔ s2. Alternatively, to prevent unnecessary comparisons for probing, the hash
code can be integrated into the state description. However, this implies an additional
memory overhead. As another advantage of successor chaining, the linked list of a hash
table entry can grow to an arbitrary size. Therefore, the table never becomes full.

A clear disadvantage of successor chaining is the need for a successor pointer that is
stored with each hashed state. If that pointer is integrated into the state description, it
raises the memory requirements per state by the size of a memory pointer (4 bytes on
a 32-bit system). This implies wasted memory in settings, where states are not explic-
itly hashed (cf. 6.2.1), as the pointers are never used. Alternatively, one can define a
container structure like hash node, which holds a pointer to the stored state and to the
successor hash node. However, this raises the memory requirements for a stored state
by another 4.

Dynamic Arrays As an alternative, which is also used in StEAM, a hash table entry
may contain a pointer to an array of states, whose size may dynamically grow, when
needed. This constitutes a compromise between the memory-efficiency of probing and
the speed of successor chaining.

86 CHAPTER 6. HASHING

Figure 6.1: Example for explicit hashing with probing (top) and successor chaining (bot-
tom).

Here, when an array in the hash table gets full, its size is doubled. Furthermore -
without loss of generality - we assume that a memory pointer takes 4 bytes. Let n be the
number of stored states.

Theorem 6.1. Using dynamic arrays, insertion of one element in the hash table is possi-
ble in amortized constant time, while the memory requirements are less or equal than for
successor chaining.

Proof. Assume, we want to insert n elements in the hash table. Let {A1, .., Ar} denote
the set of arrays, which hold at least one element. Obviously, we have r ≤ n.

We start with the proof for the memory requirements. For successor chaining, we always
need 4n bytes to store the pointer to the element and an additional 4n bytes for the
successor pointer, which results in a total memory requirement of 8n in all cases.

Moreover, let ni be the number of elements stored in Ai. By definition, the maximal
capacity of Ai is 2dlog(ni)e bytes, which implies a total memory requirement of

∑r
i=1 4 ·

2dlog(ni)e for dynamic arrays.

In the worst case, all arrays are half full, i.e. dlog(ni)e = log(ni), which yields a memory
requirement of

∑r
i=1 8ni = 8n bytes.

In the best case, we have r = 1 and there is only one unused element in A1, i.e. we have
log(n + 1) = dlog(n)e, which implies a memory requirement of 4n + 4 bytes. The general
observation is, that the memory requirement lies in the interval [4m + 4, 8m].

Next, we prove the amortized constant time. This can be done by an induction over the
number of used arrays r.

r=1: The overall time for inserting n elements in a dynamic array consists of the time
needed to store the elements and the time needed to resize the array, when it is full.
To resize an array from a capacity m to 2m, the new memory needs to be allocated, the
elements must be copied from the old memory and the old memory must be freed. Let
c, k, l be constants, where c is the time needed to store an element in the array (without
resizing). The constant k shall denote the time required to read an entry from a memory
cell and write it to another. Moreover, l constitutes the time needed to allocate memory
for the new capacity of an array and to free the old memory. Thus, the time needed to

6.2. EXPLICIT HASHING 87

insert n elements is

n · c +
log(n)∑
i=1

(2i · k + l)

=
log(n)∑
i=1

2i · c +
log(n)∑
i=1

(2i · k + l)

= n · c + n · (k + l)
= n · (c + k + l)

This means, the insertion of one element in the hash table is possible in amortized con-
stant time c + k + l.

r→r+1: For r+1 we have one more array in which n′ ≤ n elements are inserted. For each
of the n′ elements that fall in the new array, we know by the induction hypothesis that
insertion is possible in amortized constant time t. Moreover it is a trivial observation,
that the remaining n − n′ insertions into r arrays cause less or equally many array
resizings like the insertion of n elements. For the latter, element insertion is possible in
amortized constant time t′ according to the induction hypothesis. Thus, for r + 1 arrays,
the insertion of n elements is possible in n′ · t + (n − n′) · t′, which implies that each
insertion takes amortized time t · n′/n ·+t′ − t′ · n′/n ≤ t + t′.

6.2.1 Bit-State Hashing

Bit-state hashing [Hol98] belongs to the class of compacting or approximate hash func-
tions. Instead of storing generated states explicitly, the state is mapped to one or more
positions within a bit vector v: Starting with all bits in v set to 0, for each generated state
s a set of p independent hash functions is used to compute bit positions h1(s), .., hp(s) in
v. If all bits at the corresponding positions in v are set to 1, s is considered a duplicate.
Otherwise, s inserted into the open list and the corresponding bits in v are set to zero.
The approach allows a compact memorization of the set of closed states and is hence
particularly efficient in combination with variations of depth-first search where the set
of open states is generally small. In consequence, larger portions of the state space can
be explored. As a drawback the used algorithm becomes incomplete, as hash collisions
lead to false prunings in the search tree which may hide the error state.

Bit-state hashing is also the approach of the widely used model-checker SPIN [Hol03],
which applies it in the so-called Supertrace algorithm.

Let n be the number of reachable states and m be the maximal number of bits avail-
able. As a coarse approximation for single bit-state hashing with n < m, the aver-
age probability P1 of a hash collision during the course of the search is bounded by
P1 ≤ 1

n

∑n−1
i=0

i
m ≤ n/2m, since the i-th element collides with one of the i − 1 already

inserted elements with a probability of at most (i − 1)/m, 1 ≤ i ≤ n. For multi-bit
hashing using h (independent) hash-functions with the assumption hn < m, the average
probability of collision Ph is reduced to Ph ≤ 1

n

∑n−1
i=0 (h · i

m)h, since i elements occupy at

88 CHAPTER 6. HASHING

most hi/m addresses, 0 ≤ i ≤ n − 1. In the special case of double bit-state hashing, this
simplifies to

P2 ≤
1
n

(
2
m

)2 n−1∑
i=0

i2 = 2(n− 1)(2n− 1)/3m2 ≤ 4n2/3m2.

6.2.2 Sequential Hashing

An attempt to remedy the incompleteness of partial search is to re-invoke the algorithm
several times with different hash functions to improve the coverage of the search tree.
This technique, called sequential hashing, successively examines various beams in the
search tree (up to a certain threshold depth). In considerably large protocol verification
problems, Supertrace with sequential hashing succeeds in finding bugs but still returns
long error trails. As a rough estimate on the error probability we take the following. If
in sequential hashing exploration with the first hash function covers c/n of the search
space, the probability that a state x is not generated in d independent runs is (1− c/n)d,
such that x is reached with probability 1− (1− c/n)d.

6.2.3 Hash Compaction

Like bit-state hashing, the hash compaction method [SD96] aims at reducing the mem-
ory requirements for the state table. However, it stores a compressed state descriptor in
a conventional hash table instead of setting bits corresponding to hash values of the state
descriptor. The compression function c maps a state to a b-bit number in {0, . . . , 2b − 1}.
Since this function is not surjective, i.e., different states can have the same compression,
false positive errors can arise. Note, however, that if the probe sequence and the com-
pression are calculated independently from the state, the same compressed state can
occur at different locations in the table.

In the analysis, we assume that breadth-first search with ordered hashing using open
addressing is applied. Let the goal state sd be located at depth d, and s0, s1, . . . , sd be a
shortest path to it.

It can be shown that the probability pk of a false positive error, given that the table
already contains k elements, is approximately

pk = 1− 2
2b

(Hm+1 −Hm−k) +
2m + k(m− k)
m2b(m− k + 1)

, (6.1)

where Hn =
∑n

i=1
1
i = ln n + γ + 1

2n −
1

12n2 + O(1
n4) denotes a harmonic number.

Let ki be the number of states stored in the hash table after the algorithm has completely
explored the nodes in level i. Then there were at most ki − 1 states in the hash table
when we tried to insert si. Hence, the probability Pmiss that no state on the solution
path was omitted is bounded by

Pmiss ≥
d∏

i=0

pki−1.

6.3. PARTIAL SEARCH 89

If the algorithm is run up to a maximum depth d, it can record the ki values online and
report this lower bound on the omission probability after termination.

To obtain an a priori estimate, knowledge of the depth of the search space and the distri-
bution of the ki is required. For a coarse approximation, we assume that the table fills
up completely (m = n) and that half the states in the solution path experience an empty
table during insertion, while the other half experiences the table with only one empty
slot. This models (crudely) the typically bell-shaped state distribution over the levels
0, . . . , d. Assuming further that the individual values in Equation 6.1 are close enough
to one to approximate the product by a sum, we obtain the approximation

Pmiss =
1
2b

(lnn− 1.2).

Assuming, more conservatively, only one empty slot for all states on the solution path
would increase this estimate by a factor of two.

6.3 Partial Search

During the study of approximate hash function, such as bit-state hashing, double bit-
state hashing, and hash compact, we have seen that the sizes of the hash tables can be
increased considerably. This is paid by a small but affordable lack of search accuracy,
so that some synonyms of states can no longer be disambiguated. As we have seen par-
tial search is a compromise to the space requirements that full state storage algorithms
have and can be casted as a non-admissible simplification to traditional heuristic search
algorithms. In the extreme case, partial search algorithms are not even complete, since
they can miss an existing goal state due to wrong pruning. The probability can be re-
duced either by enlarging the bits in the remaining fingerprint vector or by re-invoking
the algorithm with a different hash function.

6.4 Incremental Hashing

If the size of the state description becomes large, a full hash function, i.e. one that takes
into account every component of the state can considerably slow down the exploration.
As a compromise, the hash function may only consider a subset of all state components
and risk an increased number of hash collisions. This may be acceptable, if the full state
is stored in the hash table. In the worst case, there can be a large set of generated states
with the same hash value and the comparison with newly generated states can make
the exploration even slower than using a full hash function.

Due to the large state spaces in program model checking, we want bitstate-hashing (cf
6.2.1) to be an option for the exploration. Its use requires that the underlying function
produces a minimum of hash collisions, since each collision can result in an unexplored
subtree that may contain the error state. To minimize the number of collisions, the hash
function must consider all components of the state description.

Incremental hash functions provide both: fast computation over large state descriptions
and a good distribution over the set of possible hash values [EM04]. However, existing

90 CHAPTER 6. HASHING

applications of incremental hashing, such as Rabin-Karp Hashing (cf 6.5.1) merely rely
on statically-sized structures to be hashed. In program model checking however, the size
of the state description in inherently dynamic. Also, to best of the authors knowledge,
there has been no previous application of incremental hashing to state space search.

We therefore devise an incremental hashing scheme for StEAM in two steps. First, we
provide a static framework to apply incremental hashing for arbitrary state exploration
problems that involve a state vector of static size. We exemplify these considerations on
some classical AI puzzle problems.

After this, we extend the framework to the incremental hashing of dynamic and struc-
tured state vectors as they appear in StEAM. An implementation of the dynamic frame-
work is evaluated in chapter 8.

6.5 Static Framework

6.5.1 Rabin and Karp Hashing

The hash computation proposed here is based on an extended version of the algorithm
of Rabin and Karp.

For this case, the states in S are interpreted as bit strings and divided into blocks of bits.
For example blocks of byte-size yield 256 different characters.

The idea originates in matching a text T [1..n] to a pattern M [1..m]. In the algorithm
of Rabin and Karp [KR87], a pattern M is mapped to a number h(M), which fits into
a single memory cell and can be processed in constant time. For 1 ≤ j ≤ n − m + 1
we will check if h(M) = h(T [j..j + m − 1]). Due to possible collisions, this is not a
sufficient but a necessary criterion for the match of M and T [j..j + m − 1]. A character-
by-character comparison is performed only if h(M) 6= h(T [j..j + m − 1]). To compute
h(T [j + 1..j + m]) incrementally in constant time, one takes value h(T [j..j + m− 1]) into
account, according to Horner’s rule for evaluating polynomials. This works as follows.
Let q be a sufficiently large prime and q > m. We assume that numbers of size q · |Σ|
fit into a memory cell, so that all operations can be performed with single precision
arithmetic. To ease notation, we identify characters in Σ with their order. The algorithm
of Rabin and Karp as presented in Figure 6.2 performs the matching process.

The algorithm is correct by the following observation.

Theorem 6.2. At the start of the j-th iteration we have

tj =

m+j−1∑
i=j

T [i]|Σ|m−i+j−1

 mod q.

6.5. STATIC FRAMEWORK 91

Procedure Rabin-Karp
Input: String T , pattern M
Output: Occurrence of M in T

p← t← 0; u← |Σ|m−1 mod q
for each i ∈ {1, . . . ,m} p← (|Σ| · p + M [i]) mod q
for each i ∈ {1, . . . ,m} t← (|Σ| · p + T [i]) mod q
for each j ∈ {1, . . . , n−m + 1}

if (p = t)
if (check (M,T [j..j + m− 1])) return j

if (j ≤ n−m) t← ((t− T [j] · u) · |Σ|+ T [j + m]) mod q

Figure 6.2: Algorithm of Rabin and Karp.

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1
___ ___/ ___ ___/

\ / mod 13 \ /
\ / \ /

8 9 3 11 0 1 7 8 4 5 10 11 7 9 11

Figure 6.3: Example of hashing for string matching.

Proof. Certainly, t1 =
(∑m

i=1 T [i]|Σ|m−i
)

mod q and inductively we have

tj = ((tj−1 − T [j − 1] · u) · |Σ|+ T [j + m− 1]) mod q

=

m+j−2∑
i=j−1

T [i]|Σ|m−i+j−2

− T [j − 1] · u

 · |Σ|+ T [j + m− 1]

 mod q

=

m+j−1∑
i=j

T [i]|Σ|m−i+j−1

mod q.

As an example take Σ = {0,...,9 } and q = 13. Furthermore, let M = 31415 and T =
2359023141526739921 . The application of the mapping h is illustrated in Figure 6.3.
We see that h produces collisions. The incremental computation in the first case works
as follows.

14, 152 ≡ (31, 415− 3 · 10, 000) · 10 + 2 (mod 13)
≡ (7− 3 · 3) · 10 + 2 (mod 13)
≡ 8 (mod 13)

The computation of all hash addresses has a resulting running time of O(n + m), which

92 CHAPTER 6. HASHING

is also the best case overall running time. In the worst case, the matching is still of order
Ω(nm), as the example problem of searching M ∈ 0m in T ∈ 0n shows.

6.5.2 Recursive Hashing

Our approach relates to recursive hashing [Coh97]. Recursive hash functions consist of
a recursive function H and an address function A so that h(S) = A(H(S)). The idea of
linear recursion is that the contribution of one symbol to the hash value is independent
of the contribution of the others. Let T be a mapping from Σ to R, where R is a ring,
r ∈ R. Similar to the algorithm of Rabin and Karp we compute the value H of string
Si = (si, . . . , si+k−1) as H(S0) =

∑k−1
j=0 T (sj) and

H(Si) = rH(Si−1) + T (si+k−1)− rnT (si−1)

for 1 ≤ i ≤ n. With this we have H(Sj) =
∑k−1

i=0 rk−i+jT (si+j).

The prime-division method takes R = ZZ and assigns h(Si) = H(Si) mod q. Here q is
chosen as a suitable prime to obtain a good distribution. For faster computation the
two-power division method can be an option. The computation ignores higher order bits,
such that the hash address can be computed by word-level bit-operations.

As a compromise between the bad distribution of two-power division and the bad run
time behavior of the prime-division method is polynomial hashing. One can choose ring
R = GF (2)[x]/(xw − 1), where the GF (2) is the Galois-field of characteristic 2. The finite
field GF (2) consists of elements 0 and 1 which satisfy the following addition 0 + 0 = 0,
0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0, and multiplication 0 × 0 = 0, 0 × 1 = 0, 1 × 0 = 0,
and 1 × 1 = 1. GF (2)[x] is the polynomial ring with coefficients in GF (2) over [x]. A
polynomial is represented as a tuple of coefficients. A multiplication with x is a cyclic bit
shift, since xw − 1 is equal to the zero-polynomial so that for q(x) =

∑w−1
i=0 qix

i in R we
compute

xq(x) =
w−1∑
i=0

qix
i+1 ≡ qw−1 +

w−2∑
i=0

qix
i+1

Instead of GF (2)[x]/(xw+1) one may choose ring GF (2)[x]/p(x) with p(x) = xw+
∑w−1

i=0 pix
i

being an arbitrary polynomial. In GF (2)[x]/p(x) we have p(x) ≡ 0 and for q =
∑w−1

i=0 qix
i

we have

xq(x) =
{ ∑w−1

i=1 qi−1x
i, if qw−1 = 0

p0 +
∑w−1

i=1 (qi−1 + pi)xi, if qw−1 = 1

Although some model checkers like SPIN support recursive and polynomial hashing,
they still process the entire state vector and are not truly incremental.

6.5.3 Static Incremental Hashing

We regard state vectors with component domains in Σ = {0, . . . , l − 1}. In other words,
states are strings over the alphabet Σ. This notational simplification is not a restriction,

6.5. STATIC FRAMEWORK 93

since the approach generalizes to vectors v = (v1, . . . , vk) with vi ∈ Di, |Di| < ∞, i ∈
{1, . . . , k}. Moreover, for practical software model checking we might expect the state
vector to be present in form of a byte array.

A static vector is a vector with fixed length. It may for example represent the data
area where the values of global program variables are stored. In the simplest case,
only the value of one component is changed. This will be very common in software model
checking, since a single statement like var =< expression > will only change the content
of the memory cell associated to to var. Let i ∈ {1, . . . , k} be the position of the changed
component. For a state vector v = (v1, . . . , vn) and its successor state v′ = (v′1, . . . , v

′
n)

with v′i = vi, i 6= j, we calculate

h(v′) =
k∑

j=1

vj · |Σ|j − vi · |Σ|i + v′i · |Σ|i mod q

= h(v)− vi · |Σ|i + v′i · |Σ|i mod q.

This implies, that h(v′) can be computed in constant time. We can generalize the above to
the case, where more than one component is changed by the state transition. This occurs,
for instance, if several instructions are declared to form an atomic block. These blocks
are often used in concurrent programs to prevent a thread switch in critical sections of
the code. Let I(v, v′) = {i | vi 6= v′i} be the set of indices of all modified components, then

h(v′) =
n∑

i=1

vi · |Σ|i −
∑

i∈I(v,v′)

vi · |Σ|i +
∑

i∈I(v,v′)

v′i · |Σ|i mod q

= h(v)−
∑

i∈I(v,v′)

vi · |Σ|i +
∑

i∈I(v,v′)

v′i · |Σ|i mod q.

Choosing a prime for q is known to provide a good distribution over the set of possi-
ble hash codes [Knu98]. This property is also exploited by e.g. the Lehmer-generator
[Leh49] to generate pseudo random numbers.

Theorem 6.3. Computing the hash value of h(v′) given h(v) is available in time

• O(|I(v, v′)|); using O(k) extra space, where I(v, v′) is the set of indices that change

• O(1); using O((k · |Σ|)Imax) extra space, where Imax = max(v,v′) |I(v, v′)|.

Proof. In the first case, we store |Σ|i mod q for all 1 ≤ i ≤ k. In the second case, we
precompute ∑

j∈I(v,v′)

−vj |Σ|j + v′j |Σ|j mod q

for all possible transitions (v, v′), of which there are at most
(

k
Imax

)
·|Σ|Imax = O((k·|Σ|)Imax)

different ones.

A good hash function should minimize the number of address collisions. Given a hash
table of size m and the sequence k1, . . . , kn of keys to be inserted, we can define Xij =

94 CHAPTER 6. HASHING

1, if h(ki) = h(kj), and 0, otherwise. Then X =
∑

i<j Xij is the sum of collisions. Assum-
ing a random hash function with uniform distribution, we have

E(X) = E

∑
i<j

Xij

 =
∑
i<j

E(Xij) =
∑
i<j

1
m

=
(

n

2

)
· 1
m

.

We empirically tested the distribution of incremental hashing on a vector of size 100 and
compared the results to randomly generated numbers with m = 10000019 (the smallest
prime greater than 10000000) and n = 1000000. For randomly generated numbers, we
got 48,407 collisions, while incremental hashing gave 50,304, an insignificant increase.

6.5.4 Abstraction

Incremental hashing is of particular interest in state space searches, which use abstrac-
tions to derive a heuristic estimate, because several hash functions are involved - one
for the original state space and one for each abstraction.

State space abstractions φ map state vectors v = (v1, . . . , vk) to abstract state vectors
φ(v) = (φ(v1), . . . , φ(vk)). This includes

• data abstraction [CGP99], which exploits the fact that specifications for software
models usually consider fairly simple relationships among the data values in the
system. In such cases, one can map the domain of the actual data values into a
smaller domain of abstract data values. This induces a mapping of the system
states, which in turn induces an abstract system.

• predicate abstraction [GS97] , where the concrete states of a system are mapped
to abstract states according to their evaluation under a finite set of predicates.
Automatic predicate abstraction approaches have been designed and implemented
for finite and infinite state systems.

Both data and predicate abstraction induce abstract systems that simulate the original
one. Every behavior in the original system is also present in the abstract one.

Pattern databases [CS98, ELL04, QN04] are hash tables for fully explored abstract state
spaces, storing with each abstract state the shortest path distance in the abstract space
to the abstract goal. They are constructed in a complete traversal of the inverse abstract
search space graph. Each distance value stored in the hash table is a lower bound on the
solution cost in original space and serves as a heuristic estimate. Different abstraction
databases can be combined either by adding or maximizing the individual entries for a
state. As abstraction databases are themselves hash tables, incremental hashing can
also be applied.

Theorem 6.4. Let φi be a mapping v = (v1, . . . , vk) to φi(v) = (φi(v1), . . . , φi(vk)), 1 ≤ i ≤ l.
Combined incremental state and abstraction state vector hashing of state vector v′ with
respect to its predecessor v is available in time

•

O

(
|I(φ(v, v′))|+

l∑
i=1

|I(φi(v), φi(v′))|

)

6.6. EXAMPLES FOR STATIC INCREMENTAL HASHING 95

using O(kl) extra space, where I(v, v′) is the set of indices that change in original
space, and set I(φi(v), φi(v′)) denotes the set of affected indices in database i

• O(l); using O(l · (k · |Σ|)Imax) extra space.

Proof. Let h(v) =
∑k

i=1 vi|Σ|i mod q be the hash function for vector v in original space
and hi(φi(v)) =

∑k
j=1 φi(vj)φi(|Σ|j) mod q be the i-th hash function for addressing the ab-

stract state φi(v), 1 ≤ i ≤ l, with φi mapping v = (v1, . . . , vk) to φi(v) = (φi(v1), . . . , φi(vk)).
In the first case, we store φi(|Σ|j) mod q, for 1 ≤ i ≤ l and 1 ≤ j ≤ k. In the second case,
for all possible transitions (v, v′) we precompute∑

j∈I(v,v′)

−vj |Σ|j + v′j |Σ|j mod q

and ∑
j∈I(φi(v,v′))

−φi(vj)φi(|Σ|j) + φi(v′j)φi(|Σ|j), for i ∈ {1, . . . , l}.

6.6 Examples for Static Incremental Hashing

For illustration purposes, we exemplify incremental hashing on static state vectors, be-
fore proceeding to considerations about dynamic and distributed state vectors.

6.6.1 Incremental Hashing in the (n2 − 1)-Puzzle

Our first example is the (n2 − 1)-Puzzle presented in Chapter 5. We extend a solver
for n2 − 1 puzzles that uses IDA* [Kor85] with the Manhattan distance estimate. Let
Σ = {0, . . . , 15}. The natural vector representation for state u is (t0, . . . , t15) ∈ Σ16, where
ti = l means that the tile labeled with l is located at position i, and l = 0 is the blank. The
hash value of u is h(u) = (

∑15
i=0 ti ·16i) mod q. Let state u′ with representation (t′0, . . . , t

′
15)

be a successor of u. We know that there is only one transposition in the vectors t and t′.
Let j be the position of the blank in S and k be the position of the blank in v. We have
t′j = tk, t′k = 0, and for all 1 ≤ i ≤ 16, with i 6= j, i 6= k it holds that t′i = ti. Therefore,

h(u′) =

((
15∑
i=0

ti · 16i

)
− tj · 16j + t′j · 16j − tk · 16k + t′k · 16k

)
mod q

=

(((
15∑
i=0

ti · 16i

)
mod q

)
− 0 · 16j + t′j · 16j − tk · 16k + 0 · 16k

)
mod q

=
(
h(u) + (t′j · 16j) mod q − (tk · 16k) mod q

)
mod q.

To save time, we precompute (k · 16l) mod q for each k and l in {0, . . . , 15}. If we store
(k ·16j) mod q−(k ·16l) mod q) for each value of j, k, and l, we can save one more addition.

96 CHAPTER 6. HASHING

H

O

H

H O H

Figure 6.4: One level of Atomix. The depicted problem in can be solved with 13 moves,
where the atoms are numbered left-to-right in the molecule: 1 down left, 3 left down
right up right down left down right, 2 down, 1 right.

As h(u) ∈ [0..q−1] and ((k·16j) mod q−(k·16k) mod q) ∈ [0..q−1] we may further substitute
the last mod q operation, by an addition or a subtraction operation.

The savings are larger, when the state description vector grows. For the (n2 − 1)-Puzzle
non-incremental hashing results in Ω(n2) time, while in incremental hashing the efforts
remain constant.

The (n2 − 1)-Puzzle has underwent different designs of heuristic functions. One lower
bound estimate is the Manhattan distance (MD). For every two states S and S′, it is
defined as sum of the vertical and horizontal distances for each tile. MD is consistent,
since the differences in heuristic values between two states S and S′ are 1, such that
|h(S′)− h(S)| = 1 and h(S)− h(S′) + 1 ≥ 0. The heuristic can be computed incrementally
in O(1) time, given a two-dimensional table, which is addressed by the label, the current
direction and the position of the tile that is being moved.

6.6.2 Incremental Hashing in Atomix

The goal of Atomix [HEFN01] (cf. Figure 6.4) is to assemble a given molecule from atoms.
The player can select an atom at a time and push it towards one of the four directions
left, right, up, and down; it will keep on moving until it hits an obstacle or another atom.
The problem is solved when the atoms form the same constellation (the “molecule”) as
depicted beside the board. Atomix has been proven to be PSPACE complete [HS01].
Note, that (n2 − 1)-Puzzle solving is NP complete, while Sokoban and STRIPS planning
(cf 6.6.3) are PSPACE complete. A concrete Atomix problem, given by the original atom
positions and the goal molecule, is called a level of Atomix.

For solving Atomix problems we use IDA* search, which compared to A* considerably re-
duces the memory requirements, while preserving optimality if the underlying heuristic
is admissible. The number of duplicates in the search is larger than in regular domains
like the (n2 − 1)-Puzzle, so state storage will be essential. The design of appropriate
state abstractions for abstraction database storage are not trivial. The problem is that
by stopper atoms, sub-patterns of atoms can be unsolvable while the original problem is
not.

6.6. EXAMPLES FOR STATIC INCREMENTAL HASHING 97

For IDA* exploration Atomix has a global state representation that contains both the
board layout in form of a two dimensional table and the coordinates for the atoms in form
of a simple vector. This eases many computations during successor generation. After a
recursive call the changes due to a move operation are withdrawn in a backtrack fashion.
Consequently – disregarding the computation time for computing the heuristic estimate,
the hashing efforts (computation of the function, state comparisons and copyings), and
finding the correct location for an atom in a given move direction – successor generation
in Atomix is a constant time operation. We will see that the three remaining aspects can
all be implemented incrementally.

Incremental Heuristic A heuristic for Atomix can be devised by examining a model
with relaxed restrictions. We drop the condition that an atom slides as far as possible:
it may stop at any closer position. These moves are called generalized moves. Note that
the variant of Atomix which uses generalized moves has an undirected search graph.
Atomix with generalized moves on an n × n board is also NP-hard. In order to obtain
an easily computable heuristic, we also allow that an atom to slide through other atoms
or share a place with another atom. The goal distance in this model can be summed up
for all atoms to yield an admissible heuristic for the original problem: The heuristic is
consistent, since the h-values of child states can differ from that of the parent state by 0,
+1 or −1.

Since each atom attributes one number to an overall sum it is easy to see that the heuris-
tic estimate can be computed incrementally in constant time by subtracting the value
for the currently moving atom from its start location and by adding the value for its final
destination. We only need to precompute a distance table for each atom.

Incremental Successor Generation For move execution, the implementation, we
started with, looked at the set of adjacent squares into the direction of a move unless
an obstacle is hit. By the distance of a move between the start and the target location,
this operation is not of constant time. Therefore, we looked for alternatives. The idea to
maintain a doubly linked neighbor graph in x and y direction fails on the first attempt.
The neighbor graph would include atoms as well as surrounding walls. When moving an
atom, say vertically, at the source location, the update of the link structure turns out to
be simple, but when we place it at its target location, we have to determine the position
in the linked list for the orthogonal direction. In both cases we are left with the problem
to determine the maximal j in a list of numbers that is smaller than a given i. With an
arbitrary large set of numbers, the problem is not trivial.

However, we can take advantage that the number of atoms and walls in a given row or
column are bounded by a small value (15 in our case). This yields the option to encode all
possible layouts in a row or column as a bit-string with integer values in {0, . . . , 215− 1}.
For each of the query positions i ∈ {0, . . . , 15} we store a table Mi of size 215, with entry
Mi[b] denoting the highest bit j < i and j ≥ 0 in b that is smaller than i. Each table
Mi consumes 215 byte or 32 KByte. These tables can be used to determine in constant
time the stopping position of an atom that is pushed to the right or downwards starting
in row or column i. Analogously, we can build a second set of tables for left and upward
pushes. Together, the tables require 215 · 15 · 2 bytes (≈1MB).

98 CHAPTER 6. HASHING

Incremental Hashing A move in Atomix will merely change the position of one atom
on the board. Hence a state for a given Atomix level is sufficiently described by the
positions (p1, . . . , pm) of atoms on the board. We exploit the fact, that only one atom is
changed to calculate the hash value of a state incrementally. This constitutes a special
case of the concept described in section 6.4. Let s = (p1, . . . , pm) be a state for an Atomix
level. We define its hash value as h(s) =

(∑m
i=1 pi · 152i

)
mod q. The given Atomix solver -

Atomixer [HEFN01] - uses a hash table of fixed size ts (40MB by default). We adjust this
value to the smallest prime that is greater or equal ts and use it as our q to get a better
distribution for our hash function [Knu98]. The full calculation of the hash code is only
needed for the initial state. Let s′ be an immediate successor state which differs from its
predecessor s only in the position of atom i. Then we have

h(s′) = ((h(s)− ((pi · 152i) mod q) mod q)− ((p′i · 152i) mod q))mod q

We can use a pre-calculated table t with 152 ·m entries which, for each i ∈ {1, . . . , 152}
and each j ∈ {1, . . . ,m}, stores ti,j = (i · 152j) mod q. We can use t to substitute pi · 152i

with tpi,i and p′i · 152i with tp′i,i. Furthermore, we know that 0 ≤ h(s) < q and apparently
0 ≤ amod q < q for any a. This implies, that each remaining expression taken mod q
holds a value between −q + 1 and 2q − 2. As a consequence, each sub-term amod q can
be substituted by a− q if a ≥ q, q + a if a < 0 or a if 0 ≤ a < q. Now we can calculate h(s′)
incrementally by the following sequence of program statements:

1. if(tpi,i > h(s)) h(s′)← q + h(s)− tpi,i

2. else h(s′)← h(s)− tpi,i

3. h(s′)← h(s′) + tp′i,i

4. if(h(s′) ≥ q) h(s′)← h(s′)− q

This way, we avoid the computationally expensive modulo operators.

6.6.3 Incremental Hashing in Propositional Planning

It is not difficult to devise an incremental hashing scheme for STRIPS planning (cf. 5)
that bases on the idea of the algorithm of Rabin and Karp. For S ⊆ AP we may start
with h(S) = (

∑
pi∈S 2i) mod q. The hash value of S′ = (S \D) ∪A is

h(S′) =

 ∑
pi∈(S\D)∪A

2i

 mod q

=

∑
pi∈S

2i −
∑
pi∈D

2i +
∑
pi∈A

2i

 mod q

=

∑
pi∈S

2i

 mod q −

∑
pi∈D

2i

 mod q +

∑
pi∈A

2i

 mod q

mod q

=

h(S)−
∑
pi∈D

2i +
∑
pi∈A

2i

 mod q.

6.7. HASHING DYNAMIC STATE VECTORS 99

Since 2i mod q can be pre-computed for all pi ∈ AP , we have a running time that
is of order O(|A| + |D|), which is constant for most STRIPS planning problems. It
is also possible to achieve constant time complexity if we store the values inc(o) =
(
∑

pi∈A 2i) mod q − (
∑

pi∈D 2i) mod q together with each operator. Either complexity
is small, when compared to ordinary hashing of the planning state.

Pattern Database Search

Abstraction functions φ map states S = (S1, . . . , Sk) to patterns φ(S) = (φ(S1), . . . , φ(Sk)).
Pattern databases [CS98] are hash tables for fully explored abstract state spaces, storing
with each abstract state the shortest path distance in the abstract space to the abstract
goal. They are constructed in a complete traversal of the inverse abstract search space
graph. Each distance value stored in the hash table is a lower bound on the solution cost
in original space and serves as a heuristic estimate. Different pattern databases can be
combined either by adding or maximizing the individual entries for a state.

Pattern databases work, if the abstraction function is a homomorphism, so that each
path in the original state space has a corresponding one in the abstract state space. In
difference to the search in original space, the entire abstract space has to be looked at.
As pattern databases are themselves hash tables we apply incremental hashing, too.

If we restrict the exploration in STRIPS planning to some certain subset of propositions
R ⊆ AP , we generate a planning state space homomorphism φ and an abstract planning
state space [Ede01] with states SA ⊆ R. Abstractions of operators o = (P,A, D) are de-
fined as φ(o) = (P ∩ R, A ∩ R,D ∩ R). Multiple pattern databases are composed based
on a partition AP = R1 ∪ . . . ∪ Rl and induce abstractions φ1, . . . , φl as well as lookup
hash tables PDB1,. . . ,PDBl. Two pattern databases are additive, if the sum of the re-
trieved values is admissible. One sufficient criterion is the following. For every pair of
non-trivial operators o1 and o2 in the abstract spaces according to φ1 and φ2, we have
that preimage φ−1

1 (o1) differs from φ−1
2 (o2). For pattern database addressing we use a

multivariate variable encoding, namely, SAS+ [Hel04].

6.7 Hashing Dynamic State Vectors

In the previous section, we devised an incremental hashing scheme for static state vec-
tors. This is not directly applicable for program model checkers, as they operate on dy-
namic and structured states. Dynamic means, that the size of a vector may change. For
example, a program can dynamically allocate new memory regions. Structured means,
that the state is separated in several subvectors rather than a single big vector. In
StEAM for example, the stacks, machines, variable sections and the lock/memory pools
constitute subvectors which together form a global state vector. In the following, we ex-
tend the incremental hashing scheme from the last section to be applicable for dynamic
and distributed states.

For dynamic vectors, components may be inserted at arbitrary positions.

We will regard dynamic vectors as the equivalent of strings over an alphabet Σ. In
the following, for two vectors a and b, let a, b denote the concatenation of a and b. For

100 CHAPTER 6. HASHING

example, for a = (0, 8) and b = (15), we define a, b = (0, 8, 15).

We define four general lemmas for the hash function h as used in Rabin-Karp hashing (cf.
Section 6.5.1). Lemmas 1 and 2 relate to the insertion-, lemmas 3 and 4 to the deletion
of components. Afterwards, we apply the lemmas to different types of data structures,
such as stacks and queues. We use |a| to denote the size of a vector a.

Lemma 1. For all a, b, c ∈ Σ∗ we have h(a, b, c) = h(a, c)− h(c) · |Σ||a| + h(b) · |Σ||a| + h(c) ·
|Σ||a|+|b| mod q.

Proof:

h(a, c) =
|a|∑
i=1

ai · |Σ|i +
|c|∑

i=1

ci · |Σ|i+|a| mod q = h(a) + h(c) · |Σ||a| mod q.

Analogously, we infer the following result.

Lemma 2. For all a, b, c ∈ Σ∗ we have h(a, b, c) = (h(a, c) − h(a)) · |Σ||b| + h(a) + h(b) ·
|Σ||a| mod q.

Next, we need to address the removal of components from the vector. Lemma 3 and 4
show a way to incrementally compute the hash value of the resulting vector.

Lemma 3. For all a, b, c ∈ Σ∗ we have h(a, c) = h(a, b, c)− h(b, c) · |Σ||a| + h(c)/|Σ||b| mod q.

Lemma 4. For all a, b, c ∈ Σ∗ we have h(a, c) = (h(a, b, c)− h(a, b))/|Σ||b| + h(a) mod q.

Lemmas 3 and 4 require the multiplicative inverse of |Σ||b| modulo q. As exploration
algorithms often vary the size of their hash table and hence the value of q, the compu-
tation of the multiplicative inverse must be performed on run time in an efficient way.
This can be achieved using an extended version of the Euclidean Algorithm [Sch98] for
calculating the greatest common divisor (gcd) of two natural numbers a and b for a > b.
It computes (d, x, y), where d is the greatest common divisor of a and b, and d = ax + by.

It is a known fact [Sch98], that (Z∗
q , ·mod q) forms a group if and only if Z∗

q = {a ∈
{1, . . . , q − 1} | gcd(a, q) = 1}. If q is a prime, the latter holds for Z∗

q = {1, . . . , q − 1}.
Hence, by calculating ExtendedEuclid(a, q), we get a triple (d, x, y), with d = gcd(a, q) =
1 = ax + qy. This implies axmod q = 1, which means that x is the multiplicative inverse
of a.

6.7.1 Stacks and Queues

If the dynamic vector represents a stack- or queue-structure, components are added or
removed only at the beginning and the end. For all possible cases, the resulting hash
address can be computed incrementally in constant time:

h(v1, . . . , vn, vn+1) = h(v) + vn+1 · |Σ|n+1 mod q

h(v1, . . . , vn−1) = h(v)− vn · |Σ|n mod q

h(v0, . . . , vn) = v0 · |Σ|+ (h(v) · |Σ|) mod q

h(v2, . . . , vn) =
h(v)− v1 · |Σ|

|Σ|
mod q =

h(v)
|Σ|
− v1 mod q

6.7. HASHING DYNAMIC STATE VECTORS 101

The first and second equation refer to insertions and deletions at the end of the vector.
The third and fourth equation, address the insertions and deletions at the beginning.

6.7.2 Component Insertion and Removal

If components can be inserted or deleted at an arbitrary position of the vector, a constant-
time computation of the hash code is no longer possible. Let the i-th prefix pi and the i-th
suffix si of a hash code on a vector v = (v1, . . . , vn) be defined as pi(v) =

∑i
j=1 vj |Σ|j mod q

and si(v) =
∑n

j=i vj |Σ|j mod q.

For insertion of a (single) component, we have two alternatives by either computing the
prefix or suffix up to the respective position in the vector (Lemma applied in brackets):

h(v1, .., vi, w, vi+1, . . . , vn)
(1)
= h(v)− si(v) + w · |Σ|i+1 + si(v) · |Σ|mod q

h(v1, .., vi, w, vi+1, . . . , vn)
(2)
= (h(v)− pi(v)) · |Σ|+ w · |Σ|i+1 + pi(v) mod q

Analogously, for the removal of a component we have two alternatives:

h(v1, . . . , vi−1, vi+1, . . . , vn)
(3)
= h(v)− si+1(v)− vi · |Σ|i +

si+1(v)
|Σ|

mod q

h(v1, . . . , vi−1, vi+1, . . . , vn)
(4)
=

h(v)− pi−1(v)− vi · |Σ|i

|Σ|
+ pi−1(v) mod q

Clearly, the proposed method will not change the asymptotic runtime of O(n) compared
to the non-incremental hashing. However, we need to access only min{i, n − i + 1} com-
ponents, which means bn/2c components in the worst case.

6.7.3 Combined Operations

So far we have only discussed the cases, where either an arbitrary number of components
change their value or a single element is being inserted or removed. For completeness,
we want to cover also those cases where an arbitrary number of value changes as well
as insertions/deletions are applied to the state vector. One solution is to apply the given
incremental hash computations consecutively for each set of value changes and each
insertion/removal of a component. However, we know that for the removal of one com-
ponent in a dynamic vector, we must already access bn/2c components in the worst case.
If we have to perform several such computations, the time needed for the incremental
hash computation will quickly exceed that of a non-incremental hash function. A com-
promise is to unify all changes to the vector into a single sequence of components such
that v′ = av′1, . . . , v

′
mb, where a, b are either empty sequences or a = v1, . . . , vi is a prefix

and b = vk, ..vn is a suffix of v. Then,

h(v′) = h(v)− si+1(v) + sk(v) · |Σ|m +
m∑

j=1

v′j · |Σ|j+i mod q

= (h(v)− pi(v)) · |Σ|m + pi(v) +
m∑

j=1

v′j · |Σ|i+j mod q.

102 CHAPTER 6. HASHING

This means, for the general case we need to access min{i+m,n− i+m} elements, which
in the worst case equals the length of v′ i.e. m. We can expect an improvement if m is
small and i or n− i is small - i.e. if v′ differs from v only in a small sequence close to one
side of the vector.

6.8 Hashing Structured State Vectors

In the preceding sections we have thoroughly addressed the application of incremental
hashing in domains, whose state can be described by a single vector of constant size.
Based on the previous results, we now devise a incremental hashing scheme for dynamic
structured state vectors like those in StEAM.

A structured state vector u can be seen as the concatenation v1, . . . , vm of subvectors
vi = (vi,1, . . . , vi,ni) for i ∈ {1, . . . ,m}. Such a partitioning of v can either be chosen freely
or - more naturally - it originates from the underlying state space that is explored. For
example, the state of a computer program consists of static components, such as the
global variables, as well as dynamic components, like the program stack and the pool of
dynamically allocated memory.

6.8.1 The Linear Method

Given an order on the subvectors, we can hash each subvector individually and integrate
the results to return the same global hash code as if we hashed the global vector directly.
A possible hash function on v = v1, . . . , vm is

h(v) =
m∑

i=1

ni∑
j=1

vi,j · |Σ|Σ
i−1
k=1nk+j mod q.

The runtime needed by a naive incremental algorithm to combine the hash codes of the
subvectors into a global hash code varies depending on the changes that were made by
the state transition.

A program step - be it a single line of code or some atomic block - usually changes values
within a small subset of all allocated memory regions. Hence, we can expect the average
runtime to be close to the best case (one affected component) rather than to the worst
case (all components are affected). A weakness of the linear method lies in the time
complexity when a subvector is inserted or removed into/from the global state vector. In
analogy to Section 6.7.2, the worst case runtime is O(m), even for a single insertion or
removal. The method is still effective, if instructions that (de-)allocate memory regions
are uncommon compared to instructions that merely change the contents of memory
cells.

6.8.2 Balanced Tree Method

By introducing an additional data structure, we can reduce the asymptotic runtime to
O(log m) in each case. For this purpose, we use a balanced e.g. AVL [AVL62] tree repre-

6.8. HASHING STRUCTURED STATE VECTORS 103

Figure 6.5: Example tree for calculating the hash code of a structured state vector

sentation t with m inner nodes - one for each subvector vi, i ∈ {1, . . . ,m}.
We define the hash function h′ for node N in t as follows: If N is a leaf then h′(N) = 0.
Otherwise,

h′(N) = h′(Nl) + h(v(N)) · |Σ||Nl| + h′(Nr) · |Σ||Nl|+|v(N)| mod q.

Here |N | denotes the accumulated length of the vectors in a subtree with root N , and
v(N) stands for the subvector associated to N , while Nl, Nr denote the left and right
subtrees of N respectively. If R is the root of t, then h′(R) gives the same hash value as
h applied to the concatenation of all subvectors in order. Figure 6.5 shows an example
for a set of four vectors over Σ = {1, 2, 3} and with q = 17. The nodes in the tree are
annotated with their h′ values, and are calculated as follows:

We obtain the same result (namely 11), for h(1, 2, 3, 1, 2, 2, 1, 2) in the linear method.

When the values in a subvector vi are changed, we must first re-calculate h(vi). Then the
result must be propagated bottom-up to the root node. Because the depth of a balanced
tree is bounded logarithmically in the number of nodes m, we traverse at most O(log m)
nodes until we reach the root node of the tree. Furthermore, insertion and deletion of
an element in/from a balanced tree can be performed in O(log m) time by restoring the
balanced tree structure using rotations (either left or right). Updating the hash offsets
for the two nodes on which a rotation is executed, is available in constant time. We
summarize the observations in the following result.

Theorem 6.5. Dynamic incremental hashing of a structured vector v′ = (v1, . . . , vm) with
respect to its predecessor v = (v1, . . . , vm) assuming a modification in component i (up-
date within the component, insertion and deletion of the component), i ∈ {1, . . . ,m} with
I(vi, v

′
i) being the set of indices that change in component i and Ii

max = max(v,v′) |I(vi, v
′
i)|

is available in time

• O(|I(vi, v
′
i)|) for update, O(m + log ni) for insertion, and O(m) for deletion using

O(m + maxm
i=1 ni) extra space.

104 CHAPTER 6. HASHING

• O(1) for update, O(m + log ni) for insertion, and O(m) for deletion using O(m +∑m
i=1(ni|Σ|)Ii

max) extra space.

• O(|I(vi, v
′
i)| log m) for update, O(log m + log ni) for insertion, and O(m) for deletion

using O(m + maxm
i=1 ni) extra space.

• O(log m) for update and O(log m + log ni) for insertion and O(log m) for deletion,
using O(m +

∑m
i=1(ni|Σ|)Ii

max) extra space.

Proof: For the linear method (first case) we have

h(v) =
n1∑

j=1

vi,j · |Σ|j +
n2∑

j=1

v2,j · |Σ|n1+j + . . . +
nk∑
j=1

v2,m · |Σ|Σ
m−1
k=1 nk+j mod q

= h(v1) + h(v2) · |Σ|n1 + . . . + h(vm) · |Σ|Σ
m−1
k=1 nk mod q,

so that we can reduce the update to the static setting and multiply |Σ|Σ
i−1
k=1nk mod q with

the affected component. To update these additionally stored offset, we maintain a list
|Σ|nj mod q, j ∈ {1, . . . ,m}. For insertion, |Σ|ni mod q has to be newly computed. Using
fast exponentiation, this value can be determined in time O(log ni). Both tables consume
O(m) space in total. Insertion and deletion of a vector component additionally require
O(m) restructuring operations within the vector in the worst case.

For the balanced tree method (third case), insertion and deletion are available in time
O(log m), while the update requires O(|I(vi, v

′
i)| log m) time. Once more, for inserting we

additionally require O(log ni) time for computing |Σ|ni mod q from scratch. As a binary
tree consumes space linear in the number of leaves, the space requirements are bounded
by O(m +

∑m
i=1 ni).

As in the static case, improving factor |I(vi, v
′
i)| to O(1) (second and forth case) is avail-

able by precomputing
∑

j∈I(vi,v′i)
(−vi,j |Σ|j +v′i,j |Σ|j) mod q for all possible transitions from

vi to v′i and i ∈ {1, . . . ,m}.

6.9 Incremental Hashing in StEAM

With the insights gained about the hashing of static as well as dynamic structured
vectors, we have enough information to devise an incremental hash function for model
checking C++ programs. A first implementation is available as an option in StEAM. The
user should be given the choice whether to use partial, full or incremental hashing as
each may be most appropriate depending on the checked program. If states are hashed
explicitly, there is no risk that hash collisions may render the search incomplete and par-
tial hashing may be preferable as resolving hash collisions is often faster than hashing
the entire state (even if this were done incrementally). However, when bitstate-hashing
or hash-compaction is used, hashing the full state vector is mandatory. Generally the
incremental computation of the full hash function should be preferable, as we can ex-
pect it to be faster for most programs. In rare cases the state transitions of a program
may affect a large part of the allocated memory. Due to the computational overhead of
incremental hashing, it may be faster to use the full non-incremental hash computation

6.10. RELATED WORK 105

in these cases. Experimental results on partial, full and incremental hashing follow in
Chapter 8.

6.10 Related Work

6.10.1 Zobrist Keys

An early and frequently cited method for hashing are Zobirst Keys [Zob70]. Here, for
a hash function h : Dn → E, |E| >> |D|, each value from domain d ∈ D is associated
with a random number r(d) ∈ E. The hash code of v = (v1, . . . , vn) ∈ Dn is computed
through the XOR operator as

⊕n
i=1 r(vi). Since the XOR operator is both, commutative

and its own inverse, hash codes can be computed incrementally: For v′ = (v′1, . . . , v
′
n),

v′j = vj (j 6= i), it holds that h(v′) = h(v) ⊕ r(vi) ⊕ r(v′i). Zobrist keys are hence often
cited in conjunction with board games, such as Chess [Mar91] or Go [Lan96]. As a clear
advantage of the method, it is computationally inexpensive as it relies completely on
XOR - in contrast to, e.g., Rabin-Karp hashing which requires multiplication and modulo
operators. Through the commutativity of XOR however, all permutation of a sequence
of values yield the same hash code, which is not the case for Rabin-Karp hashing.

6.10.2 Incremental Heap Canonicalization

In [MD05] the authors address incremental heap canonicalization (HC) in explicit state
model checking. HC serves the purpose of obtaining a canonical representation (CR) for
the heap of allocated memory regions, such that states which differ only in the addresses
of the heap objects are detected as duplicates. R. Josif [Ios01] previously proposed an al-
gorithm for HC, which concatenates the heap objects according to their depth-first order
in the heap. The authors of the paper indicate two shortcomings of Iosifs algorithm:
first, for each new state, the HC requires a full traversal of the heap, yielding a runtime
linear in the number of heap objects. Second, according to the authors, small changes
in the heap lead to major changes in the CR - i.e. the positions of many heap objects
change. This can lead to a significant loss of speed in the exploration, if incremental
hashing is used. In the paper, incremental hashing is described as maintaining separate
hash values for each heap object, which get combined to a global hash value for the en-
tire heap. After a state transition, the hash value is only recalculated for those objects
that were either changed by the transition, or whose positions in the CR have changed.
Since most transitions only change a small fraction of all heap objects, a heap HC which
maintains the positions of most objects in the CR is advantageous. The paper devises
an incremental HC, which solves the two shortcomings of Iosif ’s algorithm. First, the
position for an object o in the CR is determined through the breadth-first access chain
in the heap graph and the length of o. The breadth-first access chain is defined as the
list of offset labels on the path edges. The authors devise a recursive relocation func-
tion, which computes an object’s position in the CR according to its BFS access chain
and length. The approach is implemented in the tools CMC and Zing. Experimental
results for three example programs indicate a significant speedup of the exploration. In
contrast to the work presented in this thesis, the paper misses to discuss the option of

106 CHAPTER 6. HASHING

hashing only parts of the state, since when states are explicitly stored in the hash table,
the exploration can be faster if the state is only partially hashed. Also, approximate
hashing, such as bitstate-hashing is not mentioned although these techniques motivate
incremental hashing in the first place through the need for a maximum degree of dis-
tribution. Also, the approach does not consider that for a state transition its is not only
likely that a small subset of all heap objects are changed, but also that there are only
small changes within those objects. The work in [MD05] requires, that the partial hash
value of an object is fully recomputed, if it’s contents have changed. This is surprising,
since the hash function defined in the paper would also support incremental hashing
within the single objects.

Chapter 7

State Reconstruction

The main problem that program model checkers face are high memory requirements,
since for a complete enumeration the entire system state description has to be stored to
allow pruning in case a state is visited twice. The storage problem as a consequence of
the state explosion problem, is apparent in many enumeration attempts for model check-
ing. The list of techniques is already long (cf. [CGP99]): partial-order reduction prunes
the state space based on stuttering equivalence relations tracking commuting state tran-
sitions, symmetry detection that exploits problem regularities on the state vector, binary
state encodings allows to represent larger sets of states, while performing a symbolic ex-
ploration with SAT formulae or BDDs, abstraction methods analyze smaller state spaces
inferred by suitable approximation functions, and bit-state hashing and hash compaction
compress the state vector down to a few bits, while failing to disambiguate some of the
synonyms.

Here we add a new option to this list, which will cooperate positively with explicit-state
heuristic search enumeration. In state reconstruction for each state encountered either
as a state to be expanded or as a synonym in the hash table, we reconstruct the corre-
sponding state description via its generating path. In a first phase predecessor links are
used to reconstruct the path, while in the second phase the path is simulated to recon-
struct the state starting from the initial one. This reduces the actual state description
length down to a constant amount. The approach is feasible, if the simulation mode that
reconstructs a state based on its generation path is fast. For improved differentiation in
duplicate detection we may include further information with each state.

7.1 Memory Limited Search

To alleviate the storage problem for exploration algorithms, in Artificial Intelligence dif-
ferent suggestions have been contributed. Iterative deepening A* search (cf. Section
3.3.3) refers to a series of depth-first searches with increasing depth or cost threshold.
Transposition (hash) tables [RM94] include duplicate detection to depth-first (iterative-
deepening) search. Memory-limited algorithms generate one successor at a time. The
algorithms assumes a fixed upper limit on the number of allocated edges in open∪closed.
When this limit is reached, space is reassigned by dynamically deleting one previously

107

108 CHAPTER 7. STATE RECONSTRUCTION

expanded node at a time, and if necessary moving its parent back to open such that it
can be regenerated later. In acyclic state spaces Sparse Memory Graph Search takes a
compressed representation of the closed list that allows the removal of many, but not
all nodes. Frontier Search [KZ00] completely omits list closed and applies a divide-and-
conquer strategy to find the optimal path in weighted acyclic graphs. Partial Expansion
A* is an algorithm that reduces the open list. It contributes to the observation that in
classical A* search that expands a node by always generating all of its successors; there-
fore, nodes with merit larger than the optimal solution which will never be selected,
which can clutter the open list, and waste space. In FSM pruning [TK93] the hash table
is replaced by an automatically inferred structure based on regularities of the search
space. Pattern Databases (cf. Section 6.5.4) are memory-intense containers to improve
the heuristic estimate for directed search and refer to an approximation that is a sim-
ulation. Delayed duplicate detection [Kor03] refers to the option to include secondary
memory in the search.
For assembly-level model checking of software we observed that duplicate detection
for the large state descriptions is essential, for full verification lossless storage is re-
quired, there is no general assumption on the regularity of the state space graph to be
made, and, considering compacted atomic code regions as in our case, the graph may be
weighted. Therefore, the application of most of the above techniques is limited.

In [EPP05], the authors propose a memory-efficient representation of markings in col-
ored petri nets. The approach distinguished between explicit-makings and ∆-markings.
Explicit markings, which only appear at levels i · n, n ∈ IN , i = 1, 2, .. store the full
information about a marking, while ∆-markings are represented through a reference to
one of it’s predecessors and a transition instance. We will outline the difference to our
approach in Chapter 9.

7.2 State Reconstruction in StEAM

Our proposal of state reconstruction distributes the state by its hash value, but stores
only limited information that is used to reconstruct the state. The general assumption
is given a sequence of instructions, reconstruction is fast.

Mini-States For state reconstruction, we introduce the notion of mini-states, which
constitute a constant-sized, compressed representation of actual states in StEAM. A
mini-state is essentially composed of:

• The pointer to the immediate (mini-state) predecessor to reconstruct the generat-
ing path.

• The information, which object code transition was chosen from the parent state to
the current one.

• Additional hash information for the corresponding explicit state.

The object code transition is derived from the program counter of one thread in the ex-
plicit state, which the mini-state corresponds to. Storing the additional hash information

7.2. STATE RECONSTRUCTION IN STEAM 109

in a mini state is not mandatory, as it can merely save the reconstruction of states in
case of a hash conflict. However, since state comparisons are computationally expensive,
it is most advisable to invest an additional constant amount of memory per state to store
the additional information, as it may greatly speed up the exploration.

Figure 7.1 illustrates the method of state reconstruction. On the upper side of the fig-
ure, we see the first three levels of the search tree with a degree of three. Assuming
a worst-case scenario, we need to store in each node, the full description of the corre-
sponding state, including stack contents, CPU-registers, global variables and the lock-
and memory pool. The root node (i.e. the initial state) is labeled by I. The other nodes
are labeled by 1, .., 12 according to their breadth-first generation order. The edges of the
tree are labeled with oi - which denotes the object code instruction (operator) generating
state i when applied to i’s immediate predecessor state. The edges are directed towards
each state’s predecessor to emphasize that the search tree in StEAM is build by placing
a predecessor pointer in each state.

As there is theoretically no limit to the amount of dynamically allocated memory in a
program, the required memory for explicitly storing the generated states in the search
tree can grow to an arbitrary amount.

On the lower side of Figure 7.1 we see the same search tree encoded with mini-states.
Besides the predecessor pointer and the operator, which are represented by the labeled
edges, the only information stored in a mini state is the additional hash code hi of state
i.

In addition to the mini-states, we also have to memorize I as the only explicit state. In
Figure 7.1, state 5 and its corresponding mini-state are highlighted by a bold dashed
border. To reconstruct state 5 from the mini-state encoding, we follow the predecessor
pointers up to the (mini-) root node, which yields the operator sequence o5, o1. Applying
the converse sequence o1, o5 to I, transforms I to state 1 and finally to state 5. Algo-
rithm 7.1 illustrates the expansion of a mini-state state s using reconstruction. Here,
I describes the initial state in its full representation and Imin the corresponding mini-
state. For a mini-state s, s.o denotes the operation (e.g. the sequence of machine in-
structions), which transforms the predecessor s.pred into s. Similarly, for a full state x,
x.code(x′) denotes the operation which transforms x to it’s successor state x′. Note, that
StEAM operations have a constant-sized representation through their program counter,
which is usually the program counter of a thread running in x. The notion x.execute(o)
refers to applying operation o to a full state x. The hash table H contains the mini-state
representatives of all previously generates states.

State reconstruction applies to both lists open and closed. In case a duplicate candidate is
found by a matching hash-value and additional mini-state information, the correspond-
ing state is reconstructed by simulation of the implicit trail information from a copy of
the initial state. Since as in our case, virtual machines are highly tuned for efficiency of
linear program execution, reconstruction is fast. State reconstruction can be combined
with almost all other state space reduction techniques.

A theoretical limit to state reconstruction is the lower bound for a lossless storage of
states, which is about O(log

(
n
m

)
), where n is the number of elements to be stored and

m is number of bits available for the hash table. By the discrepancy of the number of
states generated and the state description needed, the practical savings are large.

110 CHAPTER 7. STATE RECONSTRUCTION

Figure 7.1: Search tree in explicit representation (top) and using mini-states (bottom).

7.3. KEY SATES 111

ExpandRec(mini-state s)
x← Reconstruct(s)
Γ← expand(x)
for each x′ ∈ Γ

c← hash(x′)
dup← false
for each s′ ∈ H[c]

if (Reconstruct(s′)=x′)
dup← true
break

if (dup = false)
<allocate mini-state s′′>
s′′.pred← s
s′′.o← x.code(x′)
H[c].store(s′′)

Reconstruct(mini-state s)
stack σ ← ∅
s′ ← s
while (s′ 6= Imin)

σ.push(s′.o)
s′ ← s′.pred

x← I
while (σ 6= ∅)

o← σ.pop()
x.execute(o)

return x

Algorithm 7.1: General State Expansion Algorithm with State Reconstruction

As other areas related to state space search, such as puzzle solving or planning, have a
low memory requirement of a few bytes per state, regeneration would possibly not yield
gain. The larger the state description length, the better the obtained savings.

Experimental results for state reconstruction can be found in Chapter 8.

7.3 Key Sates

As mentioned, due to the high speed of the virtual machine, state reconstruction is gen-
erally fast in StEAM. However, the approach may also considerably slow down the ex-
ploration. This happens in cases, where large search depths are encountered or when
there are a lot of hash collisions: for each stored sate x′ with the same hash address
as the newly generated state x, to check for a duplicate, we must reconstruct x′ along
the lengthy path from the root node to the mini-state of x′ (cf. Algorithm 7.1). In an
advanced application of state reconstruction, we may introduce so-called key-states. The
latter are full descriptions of states, that for i ∈ IN are associated to the mini-states at
levels i·j, j = 1, 2, ... When we want to reconstruct the full description of some mini-state
s, we do not have to follow the predecessor pointers up to the root of the search tree, but
merely to the next predecessor with an associated key state. This ensures, that we need
to execute at most i− 1 operations to reconstruct a state. Figure 7.2 illustrates a search
tree for i = 3.

112 CHAPTER 7. STATE RECONSTRUCTION

Figure 7.2: Search tree with key states.

7.4 Summary

In summary, state reconstruction contributes a new approach for improving the time-
space trade-off in program model checking in recomputing system states based on their
generating paths. While it is lossless in general and combines with any state expanding
exploration algorithm, bit-state hashing can be integrated for the closed list. The main
aspect is that no longer system states are stored but reconstructed through predecessor
information. The memory requirement per state shrinks to a constant and the time
offset is affordable (cf. Chapter 8). In fact larger models can be analyzed. In the current
approach, each state in the search tree is reconstructed starting from the root node.
Thus we have low memory requirements, since only the initial system state must be
kept in memory in a full representation. As a drawback, the reconstruction of a state
can be time consuming, if its generating path is long. One issue for future research is
the integration of key-states into the existing implementation.

Chapter 8

Experiments

In the following, we experimentally evaluate the approaches presented in the previous
chapters.

First, we compare heuristic search with undirected search in StEAM. Then, it is eval-
uated, in how far state reconstruction (cf. Chapter 7) can help to alleviate the memory
requirements of software model checking, and thus to find errors in larger programs.
In Section 8.4, we investigate the speedup in the state exploration when incremental
hashing is used. Finally, in Section 8.5, we evaluate the planning capabilities of StEAM
for the multi-agent manufacturing problem (cf. Section 5.5).

8.1 Example Programs

Here, we discuss some programs used for benchmarking in StEAM. The programs in-
clude C++ implementations of classical toy protocols, as well as simple real-life applica-
tions. Moreover, the examples are either scalable or non-scalable programs and contain
different types of errors, such as deadlocks, assertion- and privilege-violations.

8.1.1 Choosing the Right Examples

Classical model checking usually investigates models of concurrent systems described
in specialized modeling languages such as Promela. In contrast, unabstracted program
model checking has a broader spectrum of applications, as we are not limited to the
search for fundamental errors - such as errors in protocol specifications. The new gen-
eration of program model checkers also allow us to find low level programming errors,
like illegal memory accesses. On the other hand it is good to point out, how program
model checking is related to the classical applications. In particular, it should be evident
that the used description languages (i.e. actual programming languages), subsume the
specialized languages of classical model checkers with respect to expressiveness.

For the above reasons, it is reasonable to include in the set of test programs implemen-
tations of protocols that are frequently cited in the classical model checking research.
Additionally, we should exemplify how the tool can be used to find errors during the im-
plementation phase of software. Hence, we implemented the popular protocols: Dining

113

114 CHAPTER 8. EXPERIMENTS

Philosophers, Leader Election and Optical Telegraph as concurrent C++ programs. Ad-
ditionally, we devised a bank automata scenario whose implementation was constantly
checked for errors.

8.1.2 Scalability

A scalable model (or program) is one that is instantiated through a size parameter n,
which usually indicates the number of involved processes (or threads). It is a known fact,
that state space of a system grows exponentially with the number of involved processes.
Hence, the quality of model checking techniques is often measured by the maximal scale
parameter in a model, for which the an error is found. However, not for all systems, the
difficulty to find an error grows monotonic with the number of processes. As a simple ex-
ample, consider a scalable version of the account balance example from section 4.5.2: We
have n processes, which access a single shared variable x. A data inconsistency arises,
if another process accesses x, before a process has written the results of its algebraic
operations back to x. For this example, the error probability even increases with the
number of processes.

8.1.3 Dining Philosophers

The dining philosophers problem constitute an popular scalable toy protocol. It is de-
scribed as n philosophers sitting on a round table. Each philosopher takes turns in
philosophizing and eating. For the latter, there is a plate of spaghetti in front of each
philosopher. Between two philosophers, lies a fork, i.e. n forks in total. In order to eat,
a philosophers needs to hold a fork in each hand. So - when he feels hungry, he stops
philosophizing and first takes the fork to his left and then the fork to his right. When
finished eating, the philosopher will put down the forks and continue to philosophize.
When a philosopher tries to take a fork that is already used by another philosopher, he
will wait until it is put down. In a faulty protocol, a deadlock occurs, if all philosophers
pick up the left fork at the same time, because then each one, waits for the second fork
to be released by his right neighbor. As a consequence, the philosophers will starve to
death. Figure 8.1 illustrates the initial state for n = 4.

Although often addressed as a toy example, the dining philosophers play an important
role in protocol verification, and not only so because it is a clear and funny way to il-
lustrate deadlocks. Through it’s scalability, the protocols state space can be increased
to an arbitrary size. Furthermore, while the size of the state space increases exponen-
tially with the number of processes, the shortest path from the initial state to a deadlock
grows only linearly and can be extrapolated. This qualifies the protocol as a way to test
the quality of heuristics.

8.1.4 Optical Telegraph

This protocol involves a set of n communicating optical telegraph stations [Hol91]. The
stations form a chain to transmit messages over long distances. When a station relays a
message, it first requests the attention of its neighbor station then it sends the message.

8.1. EXAMPLE PROGRAMS 115

Figure 8.1: The Dining Philosophers.

A deadlock occurs, if all stations mutually request each other’s attention. Though still
a toy program, an implementation of the optical telegraph protocol gets closer to a real
application than the dining philosophers. It is also frequently cited in model checking
related literature [GV02, MJ05, LV01, Meh02, LL03].

8.1.5 Leader Election

A leader election problem involves a set of n processes connected through communication
channels in an unidirectional ring. Figure 8.2 illustrates such a scenario.

The task is to elect one process as the leader by message passing. Hence, a necessary
criterion for a valid leader election protocol is that at each time the number of elected
leaders is at most one. Such a valid protocol problem is given e.g. in [FGK97]. An error
can easily be seeded into a valid implementation, by assigning the same id to more than
one process. As a result, more than one leader can be elected.

Observer Threads Obviously, the above criterion is a safety property that must be
expressed as an invariant over the entire program execution. As stated in Section 4.4,
StEAM currently supports the automatic detection of privilege violations, deadlocks and
illegal memory accesses and allows the definition of local assertions. We can augment
the checked properties to include invariants by introducing observer threads. These
threads then constitute a part of the model checking environment rather than the actual
program. Concretely, for an invariant demanding that property φ must hold at any time,
we define a thread which executes VASSERT(φ) in an infinite loop. As a result, for each
state in the original program, we have a state in the new program which differs only in
the thread-state of the observer. Furthermore, for each such state, there is a successor
state in which the assertion is is checked.

116 CHAPTER 8. EXPERIMENTS

Figure 8.2: Example for a leader election problem.

8.1.6 CashIT

CashIT describes a scenario, where the controllers for n cash dispensers communicate
with a global database of bank accounts through communication channels (cf. figure
8.3). After logging in, the users of the automata may deposit, withdraw or transfer
money from/to the accounts.

CashIT differs from the first three examples, not only because it was devised specifically
for the use with StEAM. Also, the example was written from a different perspective. For
toy models such as the dining philosophers, we a priori know their implementations and
the errors they yield.

For CashIT it was tested, in how far StEAM can be used to detect errors during the im-
plementation phase of software, rather than during maintainance. Hence, while writing
the program, the partial implementation was regularly tested against several proper-
ties, including (besides the absence of deadlocks and privilege violations):

• For each withdrawal, the account balance decreases by the withdrawn amount.

• Analogously, for deposits the balance increases.

• For for a transfer of n units from account a to account a′, the balance of a decreases
by n, while the balance of a′ increases by n.

Although, the above properties may sound trivial, their verification is not. In fact, model
checking with StEAM revealed several errors that arose during the implementation of
CashIT. The most subtle of which, is a privilege violation that, according to the error
trail, occurred during withdrawal. As it turns out, the error was caused by a false lock
to the account balance:

8.2. EXPERIMENTS ON HEURISTIC SEARCH 117

Figure 8.3: The CashIT program.

VLOCK(balances[logged_user])

which should have been:

VLOCK(&balances[logged_user])

As the CashIT example indicates, the current version of StEAM is already useful to
detect program errors during the implementation phase of a simple program.

8.2 Experiments on Heuristic Search

Here, we compare the results of uninformed search in StEAM with those obtained
through directed search with the heuristics explained in Section 4.5. The machine used
is a Linux PC with a 3GHz CPU and 1GB of RAM.

We conducted experiments with the four scalable programs from Section 8.1, dining
philosophers problem (philo), the leader election protocol (leader), the optical telegraph
protocol (opttel), and the bank automata scenario (cashit).

118 CHAPTER 8. EXPERIMENTS

Lock and Global Compaction Lock and Global Compaction (lgc) is a state space re-
duction technique that was devised for StEAM. It alleviates the state explosion problem
by allowing thread switches only after a resource has been locked or unlocked, or after
an access to the memory cell of a global variable has occurred. The intuition behind lgc
is, that only global variables and resource locks can influence the behavior of a thread:
Assume that at some state s, the program counter of thread t is at a conditional branch.
Furthermore by executing another thread t′ in s, we arrive at s′. Obviously, the state
resulting from iterating t in s′ can only differ from the state resulting from iterating t in
s, if the iteration of t′ in s changes the value of some global variable which occurs in the
branch condition of t.

Analogously, if the next action of t is to lock a resource r, the iteration of t′ can only
influence t, if it locks or unlocks r.

In the the experiments on directed and undirected search, it is determined in how far
lgc can help to solve greater program instances.

Undirected Search The undirected search algorithms considered are BFS and DFS.
Table 8.1 shows the results. For the sake of brevity we only show the result for the
maximum scale (s) that could be applied to a model with a specific combination of a
search algorithm with or without state space compaction (c), for which an error could
be found. We measure trail length (l), the search time (t) in seconds and the required
memory (m in KByte). In the following n denotes the scale factor of a model and msc the
maximal scale.

In all models BFS already fails for small instances. For example in the dining philoso-
phers, BFS can only find a deadlock up to n = 6, while heuristic search can go up to
n = 190 with only insignificantly longer trails. DFS only has an advantage in leader,
since higher instances can be handled, but the produced trails are longer than those of
heuristic search.

Heuristic Search Table 8.2 and Table 8.3 show the results for best-first search ap-
plied to the four programs. Analogously Table 8.4 and Table 8.5 depict the results for
A*.

The int heuristic, used with BF, shows some advantages compared to the undirected
search methods, but is clearly outperformed by the heuristics which are specifically tai-
lored to deadlocks and assertion violations. The rw heuristic performs very strong in
both, cashit and leader, since the error in both protocols is based on process communica-
tion. In fact rw produces shorter error trails than any other method (except BFS).

In contrast to our expectation, aa performs poorly at the model leader and is even out-
performed by BFS with respect to scale and trail length. For cashit, however, aa, lead
to the shortest trail and rw are the only heuristic that find an error for n = 2, but only
if the lgc reduction is turned off. Both of these phenomena of aa are subject to further
investigation.

The lock heuristics are especially good in opttel and philo. With BF and lgc they can be
used to a msc of 190 (philo) and 60 (opttel). They outperform other heuristics with nolgc
and the combination of A* and lgc. In case of A* and nolgc the results are also good for

8.2. EXPERIMENTS ON HEURISTIC SEARCH 119

cashit leader
c s l t m s l t m

DFS y 1 97 15 134 80 1,197 25 739
DFS n 1 1,824 2 96 12 18,106 10 390
BFS y - - - 5 56 36 787
BFS n - - - 3 66 3 146

opttel philo
c s l t m s l t m

DFS y 9 8,264 21 618 90 1,706 17 835
DFS n 6 10,455 22 470 20 14,799 46 824
BFS y 2 21 2 97 6 13 16 453
BFS n - - - 4 26 6 164

Table 8.1: Results with Undirected Search.

cashit leader
SA C s l t m s l t m

pl1 y 1 97 15 134 5 73 9 285
pl2 y 1 97 6 120 5 73 9 312
mb y 1 97 15 134 80 1,197 25 737
lnb y 1 97 15 134 5 73 9 263
int y 1 98 9 128 5 57 39 789
aa y 1 84 0 97 5 72 28 637
rw y 1 61 0 97 60 661 19 671
pba y 1 97 9 121 80 1,197 24 740
pbb y 1 97 15 134 80 1,197 24 741
pl1 n 1 1,824 2 97 4 245 9 284
pl2 n 1 792 0 97 4 245 17 376
mb n 1 1,824 2 97 12 18,106 10 428
lnb n 1 1824 2 97 4 245 9 284
int n 1 1,824 2 97 3 68 4 139
aa n 2 328 9 146 3 132 3 139
rw n 2 663 15 463 40 1,447 10 470
pba n 1 792 1 97 12 18,106 11 411
pbb n 1 1,824 2 97 12 18,106 10 407

Table 8.2: Results with Best-First Search for cashIT and Leader Election.

philo (n=6 and n=5; msc is 7).

According to the experimental results, the sum of locked variables in continuous block
of threads with locked variable is a good heuristic measure to find deadlocks. Only the
lnb heuristic can compare with pl1 and pl2 leading to a similar trail length. In case of
cashit pl2 and rw outperform most heuristics with BF and A*: with lgc they obtain an

120 CHAPTER 8. EXPERIMENTS

error trail of equal length, but rw needs less time. In the case of A* and nolgc, pl2 is
the only heuristic which leads to a result for cashit. In most cases both pl heuristics are
among the fastest.

The heuristic pba is in general moderate but sometimes, e.g. with A* and nolgc and
opttel (msc of 2) and philo (msc of 7) outperforming. The heuristic pbb is often among
the best, e.g. leader with BF and lgc (n = 6, msc = 80), philo with BF and lgc (n=150;
msc is 190) and philo with A* and nolgc (n = 6, msc = 7). Overall the heuristics pba and
pbb are better suited to A*.

Experimental Summary Figures 8.4, 8.5, 8.6 and 8.7 give a graphical summary of
the impact of heuristic search on the overall performance of the model checker. We
measure the performance by extracting the fourth root of the product of trail length,
processed states, time and memory (geometric mean of the arguments). We use a log-
arithmic scale on both axes. Note, that there is no figure for cashIT, simply because
the available experimental data is insufficient for a graphical depiction. Also, except for
Leader Election, we only give the diagram for lgc, since as it generally performs better.
For Leader Election, we additionally give a diagram for the absence of lgc, because here
the difference

opttel philo
SA C s l t m s l t m

pl1 y 60 602 21 770 190 386 17 622
pl2 y 60 601 21 680 190 385 49 859
mb y 9 6,596 16 518 150 750 21 862
lnb y 60 602 21 763 190 386 17 639
int y 2 22 1 98 8 18 19 807
aa y - - - 6 14 21 449
rw y 2 309 1 98 90 1,706 18 854
pba y 9 6,596 16 513 90 450 4 234
pbb y 9 6,596 16 510 150 750 21 860
pl1 n 40 1,203 20 705 150 909 34 859
pl2 n 40 1,202 19 751 150 908 33 857
mb n 6 10,775 23 489 60 1,425 10 548
lnb n 40 1,203 18 719 150 909 34 856
int n - - - 5 33 23 663
aa n - - - 4 27 7 197
rw n 2 494 7 206 20 14,799 469 822
pba n 6 10,775 23 470 40 945 3 239
pbb n 6 10,775 24 471 60 1,425 10 571

Table 8.3: Results with Best-First Search for Optical Telegraph and Dining Philoso-
phers.

8.2. EXPERIMENTS ON HEURISTIC SEARCH 121

cashit leader
c s l t m s l t m

pl1 y - - - 5 56 34 711
pl2 y 1 61 278 387 5 56 36 760
mb y - - - 5 56 40 769
lnb y - - - 5 56 34 719
int y - - - 5 57 40 785
aa y - - - 5 61 38 744
rw y 1 61 196 310 7 78 16 589
pba y - - - 5 56 38 648
pbb y - - - 5 56 40 777
pl2 n 1 136 1057 614 3 66 3 141
mb n - - - 3 66 3 151
rw n - - - 3 66 2 97
pba n - - - 3 66 3 138
pbb n - - - 3 66 3 139

Table 8.4: Results for A* on cashIT and Leader Election.

opttel philo
c s l t m s l t m

pl1 y 3 32 4 215 190 386 17 631
pl2 y 2 21 0 98 190 385 48 860
mb y 2 22 2 98 7 16 11 371
lnb y 2 22 1 98 8 18 8 286
int y 2 22 1 98 7 16 18 629
aa y 2 22 4 171 6 14 21 449
rw y 2 22 2 98 6 14 21 449
pba y 3 32 13 424 60 122 19 628
pbb y 3 32 19 573 60 122 19 634
pl2 n - - - 5 38 17 485
mb n - - - 4 27 4 155
rw n - - - 4 27 7 199
pba n 2 63 55 845 7 51 42 872
pbb n - - - 6 45 19 431

Table 8.5: Results for A* for Optical Telegraph and Dining Philosophers.

122 CHAPTER 8. EXPERIMENTS

Figure 8.4: Geometric mean for Dining Philosophers with lgc.

Figure 8.5: Geometric mean for Optical Telegraph with lgc.

8.2. EXPERIMENTS ON HEURISTIC SEARCH 123

Figure 8.6: Geometric mean for Leader Election without lgc.

Figure 8.7: Geometric mean for Leader Election with lgc.

124 CHAPTER 8. EXPERIMENTS

to the setting with lgc is most significant. In fact, the maximum possible scale almost
doubles, if the compaction is used.

In Optical Telegraph, the heuristics lnb, pl1 and pl2 are performing best. The pl2 heuris-
tic only starts to perform well with n = 15, before the curve has a high peak. It seems,
that the preference of continuous blocks of alive or blocked thread has only a value, after
increasing a certain scale, here 10. The pab and pbb heuristic perform similar up to an
msc of 9.

In the Dining Philosophers, the heuristics pl1, pl2, pba, pbb are performing best. If only
BF is considered, the heuristic lnb behaves similar than pl1 and pl2. Again, pl2 has an
initial peak. DFS is performing well to msc of 90. In the experiments the new heuristics
show an improvement in many cases. In the case of deadlock search the new lock and
block heuristics are superior to most blocked.

8.3 Experiments for State Reconstruction

To validate the memory savings of state reconstruction, we used a Linux system with a
1.8 GHz CPU and a memory limit of 512 MB and compare the runtime in seconds and
space in MB. The time limit was set to 30 minutes.

We ran StEAM with (rec) and without (¬rec) state reconstruction in the algorithm
breadth-first search (BFS) and greedy best-first search (GBF) with the ’lock and block’
[LME04] heuristic. The models analyzed are instances of the Dining Philosopher (phil)
and the Optical Telegraph protocol (optel). The results are summarized in Table 8.6 and
8.7. As we can see the approach trades time for space. This tradeoff becomes more sig-
nificant while scaling the model. When using ’rec’ in heuristic search, we are even able
to find errors in instances, where ¬rec fails.

In fact, when for GBF and ’rec’ the search eventually exceeds the time limit in optel-47,
the memory consumption is still low (110 MB). So it can be assumed, that even higher
instances can be handled, if more time is available.

BFS GBF
¬rec rec ¬rec rec

model time space time space time space time space
phil-2 0 97 0 97 0 97 0 97
phil-3 0 101 1 98 0 97 0 97
phil-4 4 133 27 108 0 97 0 97
phil-5 29 402 808 275 0 98 0 97

phil-10 o.m. o.m. o.m. o.m. 0 98 56 97
phil-100 o.m. o.m. o.m. o.m. 5 199 211 100
phil-190 o.m. o.m. o.m. o.m. 444 492 663 107
phil-195 o.m. o.m. o.m. o.m. o.m. o.m. 1,540 108
phil-196 o.m. o.m. o.m. o.m. o.m. o.m. 1,557 108

Table 8.6: Results of State Reconstruction for the Dining Philosophers.

8.4. EXPERIMENTS ON HASHING 125

BFS GBF
¬rec rec ¬rec rec

optel-2 36 271 996 185 0 98 0 97
optel-5 o.m. o.m. o.t. o.t. 0 102 0 98

optel-10 o.m. o.m. o.t. o.t. 1 116 3 98
optel-20 o.m. o.m. o.t. o.t. 15 183 38 100
optel-40 o.m. o.m. o.t. o.t. 137 511 850 106
optel-41 o.m. o.m. o.t. o.t. o.m. o.m. 980 107
optel-46 o.m. o.m. o.t. o.t. o.m. o.m. 1,714 110
optel-47 o.m. o.m. o.t. o.t. o.m. o.m. o.t. o.t.

Table 8.7: Results of State Reconstruction for Leader Election.

8.4 Experiments on Hashing

Here, we experimentally measure the impact of incremental hashing on the exploration
speed of StEAM.

Partial vs Full Hashing For the previous experiments, we used partial hashing, i.e.
for efficiency considerations, only a part of the state description is hashed. In this case,
we only hash the machine registers of all running threads. This allows us to solve higher
instances of each protocol within the given time limit. Table 8.8 shows the number of
hash collisions which occur when partial hashing is used compared to the number of
collisions using full hashing i.e. if the full state vector is hashed. Here, we use the
dining philosophers with depth-first search.

model states full partial
phil-2 58 0 6
phil-3 231 0 23
phil-4 969 0 135
phil-5 2,455 0 304
phil-10 18,525 4 1,656
phil-15 44,356 19 3,470
phil-20 80,006 47 5,746

Table 8.8: Number of hash collisions for partial and full hashing.

Although the machine registers are the state components most likely to be changed by a
transition, partial hashing produces a much greater number of hash collisions than full
hashing. For a scale of 20 and 80,006 generated states, we have 47 as compared to 5746
collisions. This is not a big problem for the small test programs used here: It turns out
that in none of the experiments, a hash code occurs more than twice, since the size of the

126 CHAPTER 8. EXPERIMENTS

hash table is relatively big compared to the number of generated states. Hence, a hash
collision can quickly be resolved. However, with bitstate hashing in mind, the amount
of collisions would be unacceptable: each collision leads to an unexplored part of the
search tree, increasing the probability of missing an error. This implies, that for bitstate
hashing it is essential to have a minimum of hash collisions, which is only possible if
the entire state description is hashed. This also includes the stacks and all allocated
memory blocks. As a consequence, computing the hash address may considerably slow
down the exploration.

Incremental Hashing We conducted some first experiments on incremental hashing
of the stacks in StEAM. The rest of the state is hashed non-incrementally and the result
are combined to a global hash value. For each running thread the program stack is
given as a byte vector of 8 MByte, while only the used parts are stored in the state
description. By concatenating the stack of n running threads, we arrive at a vector
size of 8 · 10242 · n, which has to be hashed. As new threads may be generated, the
vector can grow dynamically. We used the same machine, as well as the same time- and
memory limits as in the preceding experiments. Figure 8.8 compares the run times of
the exploration with non-incremental and incremental hash computation for the dining
philosophers, optical telegraph and leader election protocol1. For the leader election
protocol with GBF search, we use the more appropriate ’read/write’ [LME04] heuristic.

Note, that even for the non-incremental computation, we only regard the portion of the
stack, which lies below the current stack pointer. All memory cells above the stack
pointer are treated as zero. This is important, since hashing the unused portions of the
stack in the non-incremental case would not yield a fair comparison and a considerable
speedup of the exploration could be taken for granted.

The results are encouraging, as we get a speedup by factor 10 and above compared to
non-incremental hashing and more errors can be found within the time limit. In the
near future we aim at the verification of more complex programs, that will not allow to
store each state explicitly. This implies that compacting hash schemes such as bitstate
hashing are required. As stated before, partial hashing is not appropriate to hash com-
paction due to the high number of hash collisions. Hence, even though partial hashing
is faster for the small test programs, full hashing will be essential for checking larger
programs for which our incremental hashing scheme provides an efficient way.

1The leader election protocol makes use of the nondeterministic RANGE-statement, which is currently
not supported for state reconstruction. Hence, it was not used in the preceding experiments.

8.4. EXPERIMENTS ON HASHING 127

BFS GBF
model ¬inc inc ¬inc inc
phil-2 1 0 0 0
phil-3 14 1 0 0
phil-4 257 25 0 0
phil-5 o.t. o.t. 1 0
phil-6 o.t. o.t. 1 0
phil-7 o.t. o.t. 1 0
phil-8 o.t. o.t. 2 0
phil-9 o.t. o.t. 2 0
phil-10 o.t. o.t. 3 0
phil-16 o.t. o.t. 10 0
phil-17 o.t. o.t. 13 1
phil-18 o.t. o.t. 14 1
phil-19 o.t. o.t. 17 1
phil-20 o.t. o.t. 20 1
phil-25 o.t. o.t. 37 3
phil-30 o.t. o.t. 65 4
phil-50 o.t. o.t. 279 19

phil-100 o.t. o.t. o.t. 239

BFS GBF
model ¬inc inc ¬inc inc
optel-2 o.t. o.t. 1 0
optel-3 o.t. o.t 3 0
optel-4 o.t. o.t. 6 0
optel-5 o.t. o.t. 11 0

optel-10 o.t. o.t. 79 6
optel-11 o.t. o.t. 105 7
optel-12 o.t. o.t. 135 9
optel-13 o.t. o.t. 170 12
optel-14 o.t. o.t. 214 15
optel-15 o.t. o.t. 262 19
optel-16 o.t. o.t. 316 23
optel-17 o.t. o.t. 379 27
optel-18 o.t. o.t. 448 32
optel-19 o.t. o.t. 524 39
optel-20 o.t. o.t. 612 46
optel-25 o.t. o.t. 1,187 113
optel-30 o.t. o.t. o.t. 257
optel-40 o.t. o.t. o.t. o.t.

BFS GBF
model ¬inc inc ¬inc inc

leader-2 6 0 0 0
leader-3 263 33 1 1
leader-4 o.t. o.t. 5 0
leader-5 o.t. o.t. 11 1
leader-6 o.t. o.t. 27 3
leader-7 o.t. o.t. 55 4
leader-8 o.t. o.t. 112 9
leader-9 o.t. o.t. 232 17

leader-10 o.t. o.t. 476 35
leader-11 o.t. o.t. 936 69
leader-12 o.t. o.t. o.t. 244
leader-13 o.t. o.t. o.t. 668
leader-14 o.t. o.t. o.t. o.t.

Figure 8.8: Run times in seconds using non-incremental and incremental hashing for the
dining philosophers (top-left), the optical telegraph (top-right) and the leader election
protocol (bottom).

128 CHAPTER 8. EXPERIMENTS

8.5 Experiments on Multi Agent Planning

In the experiments we used the same system as for the experiments on state reconstruc-
tion. We applied our system to randomly generated MAMPs (cf. 5.5) with 5, 10, or 15
agents and 10, 20, 50, or 100 jobs. The number of resources was set to 100. Each job
requires between 10 and 100 steps to be done and up to 10% of all resources. Our goal is
to prove, that the combination of planning and simulation leads to better solutions than
pure simulation. To do this, for each MAMP m, we first solve m ten times with pure sim-
ulation. Then we solve m ten times with the combination of planning and simulation. In
both cases, we measure the number of parallel steps of the solution and the total time
in seconds spent for planning. A planning phase may be at most 30 seconds long. If
during planning a memory limit of 500 MB is exceeded or the open set becomes empty,
the phase ends even if the time limit was not reached. A simulation phase executes at
least 20 and at most 100 parallel steps. Additionally a simulation phase ends, if at least
as many agents are idle, as were at the beginning.
We expect that in the average case the combination of planning and simulation gives bet-
ter results (in terms of the number parallel steps), that justify the additional time spent
on planning. The evaluation function that counts the number of taken jobs is expected to
lead to a maximum of parallelism, since more taken jobs imply less idle threads. Table
8.9 shows the results. Each row represents ten runs on the same MAMP instance. The
column type indicates the type of run, i.e. either pure simulation (sim) or combination of
planning and simulation (plan). The columns min, max and µ show the minimal, maxi-
mal and average number of parallel steps needed for a solution of the respective MAMP.
Finally, pt indicates the average time in seconds used for planning.

In almost all cases the average solution quality increases if planning is used. The only
exception is the instance with 10 agents and 20 jobs, where the heuristic estimate seems
to fail. Note that clashes may lead to worse solutions, since they cause an agent to waste
one step realizing that the assigned job is already taken. For all other cases however, we
have improvements between 6 and 59 parallel steps in the average. The total planning
times range between 26 and 30 seconds, which seems odd, since each planning phase
can be up to 30 seconds long. However, this can be explained by the fact, that only in
the first planning phase all agents are idle. If in the subsequent planning phases only
a small fraction of all agents is idle, the phases may get very short because the model
checker can quickly decide, whether new jobs can be assigned or not. If for example we
assume that each parallel step corresponds to one minute in reality, then the time spent
for planning is negligible compared to the time gained through the improved solution
quality.

8.5. EXPERIMENTS ON MULTI AGENT PLANNING 129

type agents jobs min max µ pt
sim 5 10 262 315 286 0
plan 5 10 241 315 255 29
sim 5 20 517 616 546 0
plan 5 20 483 527 510 27
sim 5 50 1081 1233 1149 0
plan 5 50 1084 1187 1143 29
sim 5 100 2426 2573 2478 0
plan 5 100 2310 2501 2426 26
sim 10 10 259 266 261 0
plan 10 10 136 286 246 28
sim 10 20 389 465 432 0
plan 10 20 412 467 460 30
sim 10 50 754 902 839 0
plan 10 50 771 856 814 30
sim 10 100 1732 1871 1809 0
plan 10 100 1761 1858 1783 30
sim 15 10 260 263 261 0
plan 15 10 187 236 216 30
sim 15 20 385 463 417 0
plan 15 20 382 410 387 30
sim 15 50 675 896 767 0
plan 15 50 711 747 725 30
sim 15 100 1528 1728 1607 0
plan 15 100 1497 1600 1548 30

Table 8.9: Experimental Results in Multiagent Manufacturing Problems.

130 CHAPTER 8. EXPERIMENTS

Chapter 9

Conclusion

In the following, we summarize the contribution of the work at hand and give an outlook
on possible further work based on these results.

9.1 Contribution

The thesis addresses the verification of C++ programs. In contrast to other approaches
to software model checking, our intention is to avoid the construction of formal models
from program source code. Instead, we intend to model check C++ implementations
directly.

Analysis of the Status Quo
The thesis gives a concise introduction to model checking. The elevator example from
Chapter 2 illustrates the complexity of model checking even for small-scale systems.
Moreover, the example illustrates interesting properties of the system, how they are
formalized, checked and enforced in the model. In its succeeding course, the thesis iden-
tifies the verification of software implementations as a modern branch of model check-
ing, while it points out the important differences to classical approaches that target the
verification of system specifications rather than their implementation.

The need for software model checking is motivated by highlighting its advantages over
traditional verification techniques such as testing. This claim is supported by real-life
examples, such as the Mars Path Finder bug, which passed unnoticed through all phases
of the development process.

Also, we introduce the most popular software model checkers and discuss the advantages
and drawbacks of their approach. Our observation is that the majority of existing tools
does not adequately handle the complex semantics of modern programming languages,
such as Java or C++, and rely on an abstraction of actual source code instead. This
seems contradictory to the idea of software model checking as a technique that aims to
find errors that result from details of the software’s implementation.

StEAM
As the works main contribution, the C++ model checker StEAM was created. By extend-
ing a virtual machine, the tool constitutes the first model checker for C++ programs,

131

132 CHAPTER 9. CONCLUSION

which does not rely on an abstract model of the program. The approach of using an
underlying virtual machine for the exploration of a program’s state space eliminates
several problems of model based program verification. Firstly, by bypassing a modeling
process, there is no danger that the user may introduce new errors in the model, which
are not present in the actual program. Also, since we investigate real executables com-
piled from program source code, it is assured that the formal semantics of the program
are correctly reflected. Thus, we know that each error found is also in the actual source
code and that each error in the program can be found (assuming that a sufficient amount
of time and memory is available). In its current version, the tool is already capable of
verifying simple programs and of finding errors in larger ones. Note, that to truly verify
a program, it’s entire state space needs to be explored. In contrast to the majority of
other software model checkers, StEAM is capable to find low-level errors such as illegal
memory accesses, because it can evaluate the result of each machine instructions before
they are executed.

StEAM is not the only program model checker that keeps the internal representation of
the inspected program transparent to the user. Tools like Bandera and JPF1 (cf. sections
2.4.3,2.4.3) use a custom-designed formal semantic to translate source code either to
some existing modeling language such as Promela (cf. Section 2.3.1). We have seen, that
this approach yields two major drawbacks: on the one hand, this implies a considerable
overhead for writing a translator from source code to the modeling language. These
translators often do not even cover the full semantics of the respective programming
language. On the other hand, the used modeling languages are often not appropriate
to represent programs, as they were mainly designed for the verification of high-level
protocols rather than actual software implementations.

Moreover, StEAM is not the only model checker which uses the actual machine code of
the checked program. Tools such as CMC and VeriSoft (cf. sections 2.4.3 and 2.4.3) aug-
ment the actual program with a model checking environment and compile it to a model
checking executable. This bypasses the need to devise a custom compiler or a machine-
code interpreting infrastructure (like a virtual machine). However, this approach is not
capable to catch low-level errors such as illegal memory accesses, since the program’s
machine code is executed on the physical hardware of the executing computer.

More similar to StEAM are the approaches of JPF2 and Estes (cf. sections 2.4.3). JPF2
uses its own Java virtual machine, for which it is probably easy to build a model check-
ing algorithm on top. Yet, the design and implementation of the virtual machine implies
a large overhead for the developers of the model checker. Also, such a machine is not
thoroughly field tested for correct functioning - in contrast to, e.g., the official Java Vir-
tual Machine, which is used by millions of people every day. Likewise, StEAM builds on
the existing virtual machine IVM, which is known to reliably run complex applications
such as Doom. Moreover, JPF2 is limited to the verification of Java programs, although
most industrial applications - including those of the NASA - are written in C++.

The tool Estes uses an approach most similar to that of StEAM, as it builds the model
checking algorithm on top of an existing and widely used tool, namely the GNU debugger
GDB. Since GDB supports multiple processor levels, it is also capable to search for low-
level errors that occur only in the machine code of a specific architecture. However, the
currently available literature [MJ05] neither gives a detailed technical description on

9.1. CONTRIBUTION 133

the architecture of Estes, nor does it conduct exhaustive experiments. This makes it,
yet, hard to judge the possibilities of Estes and how feasible the approach is.

9.1.1 Challenges and Remedies

State Explosion
Verifying compiled source code yields two major challenges. The first is the state explo-
sion problem, which also applies to classical model checking. This combinatorial problem
refers to the fact, that the state space of a system grows exponentially with the number
of involved components. Like other model checkers, StEAM needs methods to alleviate
this problem. As the most promising approach, we have used heuristic search. The ben-
efit from using heuristics in model checking is threefold: Firstly, since less states need
to be memorized, the memory requirements are reduced. Second, because less states are
visited, the error is found faster. Third, heuristic search yields shorter counter examples
than, e.g., depth-first search. Shorter counter examples can be tracked down more easily
by a user, which facilitates detecting the error in the program source code.

The use of heuristic search is not a novel idea. In fact StEAM inherits some of its
heuristics from HSF-Spin (cf. Section 2.3.1) and JPF2. However, we also devised new
heuristics, such as lnb which performs considerably better in finding deadlocks than the
most-blocked heuristic (cf. Section 8.2). Moreover, we introduce heuristics such as rw
and aa, which favor paths that maximize the access to global variables. We also pro-
pose the number of processes alive as a factor which can be combined with an arbitrary
heuristic. The intuition is, that only alive threads can cause errors.

The experimental result in Section 8.2 are encouraging and are to a large extend in line
with our expectations.

State Size
The second major challenge of verifying compiled code lies in the size of the state de-
scription. Since we need to memorize the full information about a program state, in-
cluding dynamically allocated memory, the state description may grow to an arbitrary
size. Firstly, this may aggravate the state explosion problem, since we have a higher per-
state memory requirement. This problem can be alleviated by an incremental storing of
states: since state transitions usually only change a small fraction of the state compo-
nents, we only need to store these differences for the successor state. Also we devised
state space search based on state reconstruction, which identifies states through their
generating path.

The latter approach is - in similar form - also used in other works such as [MD05], which
builds the search tree for colored petri nets by identifying intermediate nodes through
the executed transition. However, for StEAM state reconstruction seems particularly
appropriate, since the execution of the machine instructions along the path from the root
to the reconstructed state is quite fast due to the IVM which was mainly optimized for
speed. This results in a particularly worthwhile time- space-tradeoff. The experimental
results in Section 8.3 support this.

Another problem of the large state description lies in the hashing effort for a state. Even,
if a transition makes only marginal changes to a state, a conventional hash function

134 CHAPTER 9. CONCLUSION

needs to look at the entire state description to compute its hash code. This can make
hashing the most expensive part of state generation. To overcome this problem, we
devised an incremental hashing scheme based on the algorithm of Rabin and Karp.

To the best of the authors’ knowledge, there is little research on reducing the hashing
effort in model checking. The reason for this is presumably the fact than most other
tools are based on abstraction, which yields relatively small state descriptions. Hashing
is mentioned in [MD05] though. Here, the approach is to use a heap canonicalization al-
gorithm which minimizes the number of existing heap objects that change their position
in the canonical representation when new objects are inserted into the heap or existing
ones are removed. This also minimizes the number of heap objects whose hash code has
to be re-computed. The fundamental difference to our approach is, that when the con-
tent of a heap object changes, its hash code must always be fully computed, even if the
change was marginal. In contrast, the incremental hashing scheme devised in Chapter
6 can also hash single objects incrementally.

9.1.2 Application

The functionality of StEAM was shown by model checking several simple C++ programs.
These range from implementations of classical toy-models such as the dining philoso-
phers to simple real-world applications like the control software for a cash dispenser.
Note, that there is an additional example given in the appendix, which deals with the
control software of a snack vendor. We are able to find deadlocks, as well as assertion-
and privilege-violations. Applying heuristic search allows us to find errors with lower
memory requirements and shorter error trails. The use of state-reconstruction consider-
ably reduces the memory requirements per generated state, which allows us to explore
larger state spaces with the same algorithm. The problem of large state descriptions is
alleviated by incremental hashing, which can significantly speed up the exploration.

Additionally, we proposed a method to use StEAM as a planner for concurrent multi-
agent systems, where simulation and exploration of a system is interleaved in a very
natural way. The idea of applying model checking technology for planning is appears
to be a logical consequence, since the two fields are quite related (cf. Section 5.1). The
approach also takes a unique position in planning, since by planning on compiled code,
we avoid the generation of a formal model of the system: the planning is done on the
same program, which controls the actual agents.

The new model checker raised some attention in the model checking community. We
have already received requests from NASA - Ames Research Center and RTWH Aachen,
who would like to use StEAM on their own test cases.

9.1.3 Theroretical Contributions

We aim at giving a very general view on model checking as a verification method for
state based systems. The conversion between the two graph formalisms in section 2.1.1
emphasizes, that model checking approaches rely on the same principles, independently
of the underlying formalism or the field of application.

In chapter 6, we give a formal framework for incremental hashing in state space search.

9.2. FUTURE WORK 135

Incremental hashing is an important issue in program model checking, but can also be
applied to any problem domain that is based on state space exploration. As an important
part of the framework, we devise efficient methods for incremental hashing on dynamic
and structured state vectors.

Moreover, we make general observations about the asymptotical run times of hash com-
putation in several domains and analyse time/space tradeoffs which invest memory to
pre-calculate tables that allow an asymptotical improvement for the hash computation -
e.g., from O(n) to O(1).

For state reconstruction, we give a general algorithm that is applicable to any kind of
state space search. Whether it makes sense to apply the algorithm depends on two fac-
tors: the size of the state descriptions and the time needed to compute a state transition.

For the planning approach, we devised the multi-agent manufacturing problem (MAMP),
as an extension of job-shop problems. Furthermore, we give a novel technique which in-
terleaves planning and simulation phases based on the compiled code which controls the
environment. The resulting procedure interleave (cf. Algorithm 5.4) is applicable to all
domains, whose description allows exploration as well as simulation.

9.2 Future Work

StEAM continues to be a running project and the source code will be publicly available
in the near future. We give an outlook for further development the tool may undergo in
the future.

9.2.1 Heuristics

Heuristic search has shown to be one of the most effective methods to overcome the state
explosion problem. With the appropriate heuristic, it is possible to quickly find an error
even in programs that exhibit a very large state space. Hence, an important topic will
be to devise new and improved heuristics.

Pattern Databases Of particular interest are pattern databases (PDBs). Here, the
state space is abstracted to a degree that allows an exhaustive enumeration of the ab-
stract states by an admissible search algorithm such as breadth-first search. The gen-
erated search tree is used to build a table which associates with each abstract state the
distance to the abstract goal state (or error state). In a subsequent exploration of the
original state space, the distance values from the table serve as heuristic estimates for
the original states. PDBs were quite successfully applied in puzzle solving and planning.
However, the application to program model checking imposes some challenges:

First, one must find an appropriate abstraction. An easy solution would be to select
a subset of the state components. However, a state of StEAM is merely given by the
stacks, CPU-registers, data-/bss-sections and the lock-/memory-pool, which allows to de-
fine only 26 = 64 distinct abstractions. A more informative heuristic can be obtained by
abstractions at the source code level, e.g. by restricting the domain of variables. The
implementation would be technically challenging, since during exploration the abstrac-
tions must be mapped from the source code level to the corresponding memory cells.

136 CHAPTER 9. CONCLUSION

Second, in contrast to AI puzzles, not all program transitions are invertible. For in-
stance, we cannot define the converse of a program instruction, that writes a value to
a variable x, since the previous value of x is not a-priori known. The classical applica-
tions of pattern databases [CS96, CS94] rely on a backwards search in the abstract state
space, starting at the abstract goal state. In domains, where state transitions are not
invertible, the search in the abstract state space must maintain a list of all predeces-
sors with each generated state. Since duplicate states - and hence multiple predecessor
states are common in concurrent programs, this may considerably increase the memory
requirements for the abstract state space enumeration.

Trail-Based Heuristics
Prior to the existence of StEAM, the author did some research on trail-based heuristics.
These exploit a complete error state description from a previous inadmissible search to
devise consistent heuristics. These heuristics can then be used in combination with an
admissible heuristic search algorithm such as A* or IDA* to obtain a shortest error trail.

One example of a trail-based heuristics is the hamming-distance, which counts the num-
ber of unequal state components in the current and the error state. Another example
is the FSM-distance, which abstracts states to the program counters of the running
threads. Hence, the FSM-distance is related to pattern databases. The latter however,
generally require a complete enumeration of the abstract state space to compute the
table of heuristic values, while for the FSM-distance this information can be extracted
from the compiled code of the program through static analysis.

The author implemented both heuristics for the Java program model checker JPF2.
Some experimental results have been published [EM03]. We passed on an implemen-
tation for StEAM, as we wanted to concentrate on fundamentally new concepts in our
research. Anyhow, the generation of short counter examples remains an important as-
pect in model checking, hence implementation of the discussed trail-based heuristics
may be an option for future enhancements of the model checker.

9.2.2 Search Algorithms

StEAM already supports the uninformed search algorithms depth-first and breadth-first
search, as well as the heuristic search algorithms best-first and A*. The memory-
requirement of the state exploration remains an important topic in program model
checking. Hence, StEAM should offer additional algorithms that have a stronger bias on
memory efficiency.

Iterative Deepening
Iterative deepening algorithms such as iterative depth-first (IDFS) or IDA* (cf. Chap-
ter 3) are particularly attractive for model checking, as they are both optimal and memory-
efficient. As an advantage iterated deepening algorithms only need to maintain a small
set of open states along the currently explored path. However, to be truly effective, the
algorithms must be integrated with hash compaction methods which provide a compact
representation of the closed states.

StEAM already provides a rudimentary implementation of IDFS. Currently each state
must be fully expanded, instead of generating just one successor state. For an outgoing

9.3. HASH COMPACTION AND BITSTATE-HASHING 137

degree of k, this implies that at a search depth of n, the size of the open list is n·k instead
of n. The problem is, that value k for a state cannot be determined before the state is
fully expanded, because k is a function of both the number of running threads and the
non-deterministic statements.

External Search
When a model checking run fails, this is usually because the space needed to store the
list of open states exceeds the amount of available main memory (RAM). The amount
of storage on external memory devices such as hard disk is usually a multiple of the
machine’s main memory. At present, the standard personal computer is equipped with
512MB RAM and a 80GB hard disk, i.e. the secondary memory is 160 times the amount
of available RAM. An obvious approach is to make that memory usable for the state
exploration.

Implicitly, this is already possible through the virtual memory architecture of modern
operating systems. Unfortunately, the virtual memory management has no information
about the locality of the states, we store - i.e. it will be common that each consecutive
access to a stored state causes a page fault and thus an access to the secondary mem-
ory. Obviously this would slow down the exploration to a unacceptable degree. For an
efficient use of external memory, the data exchange between primary and secondary
memory must be managed by the search algorithm. One of the first approaches to ex-
ternal search applies BFS with delayed duplicate detection and uses secondary memory
to efficiently solve large instances of the Towers of Hanoi puzzle [Kor03] and the n2 − 1-
puzzle [KS05]. In a different line of research, an external version of A* is used to solve
the 15-puzzle [EJS04]. The external A* was later integrated into SPIN [JE05], yielding
the first model checker capable of using external search.

Since memory limitations impose an important challenge in software model checking,
integrating external search algorithms into StEAM would be very interesting.

9.3 Hash Compaction and Bitstate-Hashing

Compacting hash functions allow a memory efficient storing of the set of closed states.
Here, we essentially distinguish between hash compaction and bitstate-hashing.

In hash compaction, a second hash function is used to compute a fingerprint of the state
s, which is then stored in a hash table. A state is assumed to be a duplicate of s, if its
fingerprint is already stored at the corresponding position in the hash table.

In bitstate-hashing the state is mapped to one or more positions in a bit-vector. A state
is assumed to be a duplicate, if all corresponding bits in vector are already set.

With compacting hash functions, more states can be visited, although completeness of
the search is sacrificed: If two distinct states are falsely assumed to be duplicates, the
search tree is wrongly pruned and an error state may be missed. However, statistical
analyses have shown that the probability for this is very low [Hol96].

The use of compacting hash functions is of particular interest in combination with iter-
ated deepening search (cf 9.2.2), because here the list of open states is generally small
compared to the number of closed states.

138 CHAPTER 9. CONCLUSION

StEAM already supports a version of bitstate-hashing, which maps the state to a single
position in a bit vector using a single hard-coded hash function. In the future, the num-
ber of bit positions should be parameterizable, because mapping the state to more than
one position will significantly reduce the risk of hash collisions and thus the danger of
missing an error state. Using an arbitrary number of bit positions per state also implies
that the corresponding hash functions must be automatically generated.

9.4 State Memorization

To reduce the memory requirements of the exploration, states should be stored in an
incremental fashion. In its current form, StEAM already uses backwards pointers to
components of immediate predecessor states. This can alleviate the redundant storing
of states, but it cannot fully prevent it: First, two states may share identical compo-
nents, although one is not an immediate predecessor of the other. Second, components
get fully stored, even if they differ only slightly from the corresponding component of
the predecessor state. This leads to particularly strong redundancies, e.g., if the respec-
tive component constitutes a large array in which the state transitions change only one
memory cell at a time. In the future one may consider a state storage, which implies less
redundancies. It is important however, that the reduced memory requirements do not
come at the cost of a significant slowdown of the exploration.

Collapse-Compression The model checker SPIN uses a sophisticated approach called
collapse compression [Hol97c] to store states in an efficient way. Here, different state
components are stored in separate hash tables. Each entry in one of the tables is given a
unique index. A whole system state is identified by a vector of indices that indicate the
corresponding components in the hash tables.

The use of collapse compression prevents the repeated storing of a component. However,
two fully stored components may still expose minimal differences.

Memorizing Changes
Alternatively, states can be represented by the differences to their predecessor state.
To some degree this is already implemented by the state reconstruction of StEAM (cf.
Section 7), states are identified through their generating path. However executing the
respective machine instructions is most probably slower than applying the resulting
changes directly to the state.

As another disadvantage, not all machine instructions are invertible, because the con-
verse of writing a new value to a memory cell c depends on c’s old content. This makes
it impossible to directly backtrack from a state s to its predecessor p. Alternatively,
for each memory cell c whose value was changed by the transition from p to s, we can
memorize the difference δc(s, p) = c[s] − c[p] of the old and new value. This allows us to
backtrack from s to by calculating c[p] = c[s] + δc(s, p) for each changed memory cell c.

9.4.1 Graphical User Interface

In the long term, research in model checking must yield useful tools, which are also ac-
cessible for practitioners. StEAM already provides a certain degree of user-friendliness,

9.5. FINAL WORDS 139

since its use does not require knowledge about specialized modeling languages such as
Promela. Moreover, the counter examples returned by StEAM directly reflect the corre-
sponding execution of the investigated program, rather than that of a formal model. The
latter would make it much harder to track down the error in the actual source code.

To obtain a broad acceptance in the industry, it will be essential to devise an integrated
graphical user interface which allows an easy and intuitive use of the tool.

9.5 Final Words

Beyond the comparisons of the various approaches, the work at hand hopefully gave
a clear impression of how model checking may help to ease the software development
process. In particular, it is desirable that the industry becomes aware of the poten-
tial that model checking-assisted software development offers as an alternative to the
state-of-the-art engineering process, as in the latter, the software engineer invests a con-
siderable amount of time on formal specifications and an even more time on browsing
code in the attempt to detect the cause of an error. Software model checking can provide
the engineer with detailed information about the cause of an error, which makes it much
easier to track down and correct the corresponding piece of code.

The approach of extending an existing virtual machine, not only ensures a correct inter-
pretation of the semantics of a program - also the internals of the model checking process
remain transparent to the user, who in turn is more likely to accept the new technology.
We hope that in the future more researchers become aware of this fact.

140 CHAPTER 9. CONCLUSION

Appendix A

Technical Information for
Developers

In the following, we give some detailed information about the implementation of StEAM.
It is meant to make it easier for developers to get known to the source package of the
model checker.

A.1 IVM Source Files

The original package of ivm includes the virtual machine and a modified version of the
gcc compiler igcc, which produces the ELF executables to be interpreted by ivm. As
stated before, the approach of StEAM does not require changes to igcc, so only the source
files for the virtual machine are of relevance. Moreover, only the files located in the sub
folder ivm/vm need to be regarded. These include:

icvmvm.c

In the original package, this file contained the loop which reads and executes the pro-
gram’s opcodes. For StEAM, this was replaced by a loop, which expands program states
according to the chosen algorithm. The original program execution is only done until
the main-thread registers to the model checker. At this point, the contents of the stack,
the machine, the global variables and the dynamic memory are memorized to build the
initial state (i.e. the root state in the search tree).

The source file also holds the functions getNextState, expandState and iterateThread.
The first function chooses the next open state to be expanded according to the used
search algorithm. The second function expands a given state and adds the generated
successors to the open list. The third function iterates a given thread one atomic step by
executing the corresponding machine instructions.

141

142 APPENDIX A. TECHNICAL INFORMATION FOR DEVELOPERS

icvmsup.c

This file implements the instructions of the virtual machine in a huge collection of mini-
function. Due to its size of more than 140000 lines, it is compiled to 14 separate object
files (icvmsup.o, icvmsup1.o,. . . ,icvmsup13.o) before linking. Compiling icvmsup takes
quite long (several minutes on a 1.8GHz machine). This is quite inconvenient in cases,
where a make clean needs to be done (e.g. when a constants in a header file were
changed), as the original makefile will also delete the icvmsup object files, even if the
machine instructions are not affected by the change. In this case it may be convenient to
move the object icvmsup object file to a temporary folder before cleaning up and moving
them back before the subsequent make all. The source file icvmsup.c was not modi-
fied during the development of StEAM. However, the file is useful to find out about the
meaning of a certain instruction. In icvmsup.c, an instruction can be located through
its corresponding opcode. For example, if we disassemble the dining philosophers from
Chapter 8 with iobjdump -d philosophers | less, we find a fraction of machine code:

.

.

.

20: 0200 7c2c 0000 bsrl 2c9c <___do_global_ctors>
26: a8eb 0800 movel (8,%r2),-(%sp)
2a: a8eb 0400 movel (4,%r2),-(%sp)

.

.

.

We may want to find out about the instruction brsl <x> (branch sub routine long). Note
that iobjdump displays opcodes according to the hi/low order of the underlying machine.
In our case, we have an Intel-processor with Little-Endian notation, which means that
the corresponding opcode is 0x2 rather than 0x200. In icvsump.c we find a line starting
with:

_If1(_sCz2,2,s32) ...

The instructions for ivm are generated through a macro, whose first parameter is the op-
code with a leading ”_sCz”. Note that the opcode is appended without any leading zeros.
We can easily interpret the implementation of the instruction, even without knowing
how the macro translates to compilable c-code:

{{(R_SP-=8,WDs32(R_SP,R_PC+6,0));R_PC=(is32(2)+R_PC);}

First, the stack-pointer (R_PC) is decremented to reserve space for the return-address of
the called sub routine. Then, that address is stored at the new position of stack-pointer

A.2. ADDITIONAL SOURCE FILES 143

through the macro WDs32 (write signed 32-bit data). The return address corresponds
to the current program counter plus 6 - the length of the bsrl instruction. Afterwards,
the program counter is set to the the current position plus a 32-bit offset that follows
the opcode. Apparently, the macro is32(y) reads a 32-bit parameter from address of the
program counter plus y.

cvm.h

This header defines the basic data types needed for the virtual machine, such as the
machine registers. The macros used by the mini-functions in icvmsup.c - such as WDs32
- are also defined here. As a big convenience, all memory read- and write-accesses are
encapsulated through the macros of this header. This enabled us to record all such
accesses by simply enhancing the macros. On the one hand, this allow us to determine
changes made by a state transition without fully comparing the pre- and successor state.
On the other hand, we can capture illegal memory accesses before they actually happen.

A.2 Additional Source files

The following source files were added for StEAM.

include/*

The name is somewhat misleading, as this folder also contains ”.c” files. More precisely, it
contains the AVL-Tree package used for the lock- and memory pool of states in StEAM.
Using the AVL trees may not have been the best choice for storing the pools, as their
handling is tedious and a simple hash table may be faster in many cases. Developers
are hereby encouraged to replace the AVL trees with a more suitable data structure.

mysrc/*

This folder holds the source files exclusively written for StEAM - these include:

IVMThread.h|.cc

This is the class definition for threads in StEAM. All new thread classes must be de-
rived from IVMThread. A thread registers to the model checker by executing a TREG
command-pattern in its start-method. A second TREG statement tells StEAM, it has
reached the run()-method of the thread.

mfgen.c

This is the source code of the tool, which is parameterized with the names of all involved
source files of the checked program. In turn generates a makefile for building the ivm-
executable that can be model checked by StEAM.

144 APPENDIX A. TECHNICAL INFORMATION FOR DEVELOPERS

extcmdlines.cpp

This is the source code annotation tool. Before the investigated program is compiled, its
source is annotated with line number information and information about the name of
the source file through command patterns. The annotation is automatically done in the
makefile generated by mfgen and , hence, remains transparent to the user. It must be
assured though, that extcmdlines.cpp is compiled to an executable called extcml must lie
in the system path.

The source annotation tool is actually a workaround, as StEAM does currently not use
the debug information that can be compiled into ELF files (e.g. using the -g option on
gcc). Writing a parser for this information would have cost too much time considering
the manpower available for the project.

Developers are encouraged to add this functionality to StEAM, as it would make the
annotation redundant and speed up the entire model checking process.

pool.h|.c

These files define the functions needed for the lock- and memory-pool of StEAM’s state
description.

icvm_verify.h|.c

These source files are the core of StEAM as they define the command patterns, data
structures and functions needed by the model checker. A command pattern is generated
by the macro INCDECPATTERN, which translates into a senseless sequence of incre-
ment and decrement instructions. The parameters of a pattern are realized by assigning
their value to a local variable. After parsing the command pattern, StEAM can obtain
the values of the parameters directly from the stack.

Most functions defined in icvm_verify.c relate to program states. This includes, cloning
of a state, comparison of two states, deletion of states etc.

Moreover, icvm_verify.c implements the functions of StEAM’s internal memory man-
agement. The management is encapsulated through the functions gmalloc(int s) and
gpmalloc(int s, char * p), which allocate memory of a given size or of a given size plus
a given purpose. When StEAM is invoked with the parameter -memguard, all memory
regions allocated with gmalloc or gpmalloc are stored in a private memory pool. NOTE:
This refers to the memory pool of the model checker and must not be confused with that
of the investigated program. It is possible to print the contents of the memory pool using
the function dumpMemoryPool(). StEAM’s internal memory management is useful to
e.g. detect memory leaks in the model checker. For instance, this was important during
the implementation of state-reconstruction (cf Chapter 7). Here, states are frequently
deleted after being replaced by a corresponding mini-state. If a few bytes of the state
are not freed, the resulting leaks will quickly exceed the available memory.

The source file icvm_verify.c also implements the currently supported heuristics through
the function getHeuristicEstimate. The latter function is called by getNextState() in
icvmvm.c, which chooses the state to be expanded next according to its heuristic value.

A.3. FURTHER NOTES 145

Note that for simplicity undirected search is also implemented through heuristic values.
For BFS, the heuristic estimate of a state corresponds to its depth in the search tree.
For DFS the estimate is determined by subtracting the depth from a constant which is
greater than any search depth we may ever encounter.

steam.c

This is the frontend of the model checker, which calls the executable of the modified
virtual machine. Environment variables are used to pass the parameters.

hash.h|.c

These files implement the (non-)incremental hashing in StEAM. The hash function is
parameterized with a bitmask, which determines the hashed components of the state
description. The frontend of steam currently only gives two choices: Either only the
cpu-registers are hashed (default) or the entire state (-fullhash). The cpu registers were
chosen for the partial hash option, since they constitute the state component that is
most likely to be changed by a state transition. Developers are encouraged to try other
subsets of components.

A.3 Further Notes

The functions getNextState, expandState, iterateThread and printTrail actually do not
belong in the file icvmvm.c and it would be a good idea to move them to icvm_verify.c.

When StEAM is started with the -scrtrl option, the error trail is printed as the actual
source lines of the checked program (rather than just the line numbers). For this, StEAM
makes use of the Unix-commands cat and grep. Hence, the option will not work on
systems where these commands are not available. It would be desirable to rewrite the
printTrail function such that it no longer requires any external programs.

As a definite drawback, states must currently be fully expanded. The problem is, that
it is not a-priori known, if during thread iteration a non-deterministic statement is en-
countered. In the latter case, execution of a thread yields more than one successor.
For this reason state reconstruction is currently not available for programs involving
non-deterministic statements. Also the full expansion is disadvantageous for depth-first
variation, such as DFS and IDA*, since at depth d the model checker needs to memorize
d · o states instead of d - where o is the outgoing degree of a node in the search tree.
Hence, a big improvement would be to add the possibility to directly generate the i-th
successor of a state.

146 APPENDIX A. TECHNICAL INFORMATION FOR DEVELOPERS

Appendix B

StEAM User Manual

B.1 Introduction

StEAM, (State Exploring Assembly Model checker) is a model checker for native con-
current C++ programs. It extends a virtual machine - called ICVM - to perform model
checking directly on the assembly level. This document gives you the basic information
needed to install and use StEAM. The example programs included in the installation
package are supposed to show the current capabilities of StEAM. However, we encour-
age you to try to verify your own programs. This manual will also explain the steps
needed to prepare a piece of software for verification with StEAM. For detailed informa-
tion about the internals of the model checker, we refer to [ML03].

B.2 Installation

The installation instructions assume that StEAM will be installed on a Linux system
using gcc. StEAM is based on the “Internet Virtual Machine” (IVM). The IVM package
comes with source code for the compiler and the virtual machine (vm) itself. In the
course of the StEAM project only the vm needed to be enhanced, while the compiler was
left unchanged. The task of building igcc - the compiler of IVM, will hence be assigned
to the user. The rest of the model checker, including the modified virtual machine can
either be obtained as a binary package for Linux or as a source package. The source
package can be compiled for use on Linux and Cygwin (a Linux-like environment for
Windows).

B.2.1 Installing the Compiler

The original source package of IVM can be downloaded from the project’s home page 1.
The package was found to compile with older versions of gcc (e.g. 2.95.4). However, later
versions such as 3.4.4 require considerable changes to the makefile in order to build
igcc. You may obtain an adapted version of the source package, which allows to build the

1http://ivm.sourceforge.net/

147

148 APPENDIX B. STEAM USER MANUAL

compiler on more recent versions of gcc from the StEAM-page2. Note that this applies
only to igcc. If you want to compile the original virtual machine on modern versions of
gcc, additional changes to the source package may be necessary.

Once you have build igcc, make sure that the directory containing the binaries (i.e. igcc,
ig++, ...) are included in the PATH variable.

B.2.2 Installation of StEAM

In the following, we assume that you have downloaded the binary installation package
of StEAM. If you prefer to compile the source package, please refer to the installation
instructions given there. The binary installation package of StEAM contains the en-
hanced virtual machine, the frontend of the model checker, the source annotation tool,
the makefile generator and some header files. Unpack the contents of the package to an
arbitrary directory e.g. "/home/foo/".

Next, set the following environment variables:

PATH=$PATH:/home/foo/steam_release/bin

STEAM_INCLUDE_PATH=/home/foo/steam_release/include

C_INCLUDE_PATH=$STEAM_INCLUDE_PATH

CPULS_INCLUDE_PATH=$C_INCLUDE_PATH

B.3 A First Example

If you followed the instructions in section B.2, you should now be able to check one of the
example programs. Go to the directory:
/home/foo/steam_release/models/philo. Here lies a C++-implementation of the dining
philosophers problem. If you list the directory, you will notice the following files:

Makefile
Philosopher.cc
Philosopher.h
philosophers.c

Besides the Makefile, there are the files Philosopher(|.h|.cc) which describe the c++-
class of a philosopher-thread. If you look at the content of Philosopher.cc (e.g. with
less Philospher.cc), you will notice, that it basically does locks and unlocks two global

2http://ls5-www.cs.uni-dortmund.de/∼mehler/uni-stuff/steam.html

B.3. A FIRST EXAMPLE 149

variables which were passed to the constructor function. The file philosophers.c contains
the main() method which generates and starts the threads.

Compile the program by typing:

make

This will first apply annotations to the .c and .cc source files. After this, the example
program is compiled and linked with ig++ - the compiler of IVM. Do another directory
listing and you will see the following:

Makefile
Philosopher.cc
Philosopher.cc_ext.c
Philosopher.h
Philosopher_ex.o
philo
philo_ex.o
philosophers.c
philosophers.c_ext.c

The source files containing an “ext|.c|.cc” in their name were produced by the source
annotation tool. The file philo is the IVM-object file compiled from the annotated source
files. Start the model checker on the example program by typing:

steam philo 2

This will start the model checker with the default parameters on the compiled program
philo parameterized with ’2’. In the case of the dining philosophers, this means that
2 instances of the thread class Philosopher are created. The typed command will pro-
duce the output of some standard information from the model checker, followed by the
report of a detected deadlock, an error trail and some statistics - such as the number of
generated states, memory requirements etc. Each line of the error trail tells us the exe-
cuted thread, the source file and line number of the executed instruction. Here, Thread
1 refers to the main program, while Thread 2 and Thread 3 correspond to the first and
second instance of Philosopher. However, the error trail may seem a bit lengthy for such
a small program. Now type:

steam -BFS philo 2

150 APPENDIX B. STEAM USER MANUAL

This tells the model checker to use breadth-first (BFS) search (instead of depth-first
which is the default search algorithm). The error trail produced by BFS will be signif-
icantly shorter than the first one. You may want to compare the source files with the
information given in the trail to track down the deadlock. Alternatively, you can add the
parameter -srctrl to the command line. This prints the error trail as actual source lines
- rather than just as line numbers. Apparently, a deadlock occurs if both Philosophers
lock their first variable and wait for the respective other variable to be released.

B.4 Options

StEAM is invoked by a call:

steam <[-optargi]> <progname> [<prog. arguments>], where

• <progname> is the name of the program to be checked.

• <prog. arguments> are the parameters passed to the program to be checked

• <[-optargi]> are optional model checker parameters.

steam -h

Prints out the list of available parameters. The parameters come from one of the follow-
ing categories:

B.4.1 Algorithms

In the current version, StEAM supports depth-first search (default), breadth-first search
(-BFS), depth-first iterative deepening (-IDFS) and the heuristic search algorithms best-
fist (-BESTFIRST) and A∗ (-ASTAR). The latter two additionally require that a heuristic
is given (see B.4.2).

Also note, that IDFS is only effective in combination with bitstate-hashing (see below).

B.4.2 Heuristics

For detailed information about each heuristic, we refer to [LME04]. The heuristic to
use is specified by the parameter -heuristic <hname>, where <hname> is from one of the
follwing groups.

Deadlock heuristics

These heuristics are specifically tailored to accelerate the search for deadlocks, but will
in general not be helpful for finding other errors, such as assertion violations.
StEAM currently supports the deadlock heuristics: mb, lnb, pl1, pl2, pb1 and pb2. For
example:

B.4. OPTIONS 151

steam -BESTFIRST -heuristic lnb philo 30

Uses best-first search and the lock and block heuristic to model check the dining philoso-
phers with 30 instances of the Philosopher class. The BESTFIRST parameter may have
been omitted in this case, because StEAM uses best-first as the default algorithm when
a heuristic is given. You may compare the results of the directed search with these of
undirected search (type ’steam philo 30’ or ’steam -BFS philo 30’).

Structural Heuristics

Rather than searching for a specific kind of error, structural heuristics [GV02] exploit
properties of concurrent systems and the underlying programming language, such as the
degree of thread interleaving and the number of global variable accesses. The currently
supported structural heuristics are aa,int and rw.

B.4.3 Memory Reduction

State Reconstruction (experimental!)

When the option -rec is given, StEAM does not store generated states explicitly, but
identifies each state by its generating path. This trades computation time for a reduced
memory consumption. As to version 0.1 of StEAM, this option will not properly work
with programs that make use of the non-deterministic range-statement (cf. Section B.6).

Lock-Global-Compaction

The parameter -lgc activates lock-global compaction, which allows thread-switches only
after either a global variable was changed or a resource was locked. In experiments,
this reduction method has shown to considerably reduce the memory requirements of a
model checking run. However, it is yet not formally proven that lock-global-compaction
preserves completeness.

B.4.4 Hashing

By default, StEAM only hashes the cpu-registers of a program state. Other options are:

Full Hashing

The option -fullhash instructs StEAM to hash the entire program state.

Incremental Hashing

Given the option -inch, the entire state description is hashed in an incremental fashion,
which is usually faster than -fullhash alone. Note, that -inch implies full hashing.

152 APPENDIX B. STEAM USER MANUAL

Bitstate Hashing

When option -bitstate is given, closed states are not completely stored but mapped to a
position in a bit-vector. Bitstate hashing should always be used with full hashing, as
this minimizes the chance that StEAM will miss states.

B.4.5 Debug Options

These options are only interesting for developers that want to write their own version of
StEAM.

GDB

The option -GDB starts StEAM in the GNU debugger gdb.

Memory Management

Passing then option -memguard activates StEAMs internal memory management. This
is helpful to e.g. find memory leaks in the model checker (but not in the checked pro-
gram).

B.4.6 Illegal Memory Accesses

Given the option -illegal, StEAM will explicitly look for illegal memory accesses (seg-
mentation faults). As this may significantly slow down the exploration, it is not a default
option.

B.4.7 Other Options

Simulation

The option -sim tells StEAM to simulate (execute) the program instead exploring its
state space.

Time and Memory limit

You can set the maximum amount of memory in megabytes (-mem <mb>) and the max-
imum runtime in seconds (-time <s>) required by the model checking run. When one
these limits is exceeded, the model checker prints its final statistics and terminates.

Log File

If you pass the option -FSAVE to the model checker, the output will be written to a file
instead of the standard output.

B.5. VERFYING YOUR OWN PROGRAMS 153

Source Trail

When option -srctrl is given, the error trail is printed as actual source lines, rather than
as line numbers. StEAM currently uses external Unix-commands to print single lines
from source files. As a drawback, the printing of the trail cannot be interrupted using
ctrl-c, as this terminates the external program rather than the model checker. This
problem should be fixed in future versions.

No Trail

The option -nt suppresses the printing of the error trail - this is useful while doing
experiments where the actual trail is of no interest.

B.5 Verfying your own Programs

In this section, we give a small tutorial, how your own code can be verified with StEAM.

B.5.1 Motivation

The desire to verify software may in principle arise from two reasons. Either we already
have some faulty implementation of a system and want to use model checking to de-
tect the error; or we are just starting with our implementation and want to use model
checking to avoid the generation of errors while our software is being developed. In this
tutorial, we want to concentrate on the latter case. Using assembly model checking in
the implementation phase yields several advantages. On the one hand, it may reduce
or even replace the efforts spent on verifying properties of a formal description of the
program. Skipping the formal modeling will not only save a considerable amount of
development time, also there is no need for the developer to learn the underlying de-
scription language (e.g. Promela). Furthermore, assembly model checking is able to find
implementation errors which were not present in the software’s specification.
The concurrency in StEAM can also be used twofold. Either, the investigated software
itself describes a concurrent system. In this case, we define the processes in the software
in terms of threads in StEAM. Or, the software itself is not concurrent. In the latter case,
we can use threads to simulate the environment of our system.

B.5.2 The Snack Vendor

As an example, lets us assume we want to develop the control software of snack vendor
machine. As its basic functionalities, the machine should accept that coins are inserted
to raise the credit and buttons are pressed to buy a certain snack. Figure B.1 shows the
bare bones of the software formed by two minimal functions - insertCoin() and pressBut-
ton().

When a coin is being inserted, the credit is raised by the appropriate value. When a
button is pressed, the machine first checks if there is sufficient credit to buy the snack.

154 APPENDIX B. STEAM USER MANUAL

If this is the case, the price of the snack is subtracted from the credit. Two counters -
got and sold - keep track of how much money was received and the total value of the
snacks sold. A first property we would like to check is that the total value of sold snacks
is always less or equal to the amount of money received, i.e. we want to check for the
invariant: (got>=sold). Currently, StEAM supports the detection of deadlocks and local
assertions. However, we are also able to check for invariants by introducing an observer
thread. The source code of this observer is shown in Figure B.2. As can be seen, a
thread class in StEAM must be derived from the abstract class “IVMThread” and must
implement the methods start() run() and die(). The start()-method makes preparations
for the generated instance and must finally call the run()-method. The call to the run()
method tells StEAM to insert the new thread into the running system. The run()-method
itself must contain the actual loop of the thread. The die()-method is reserved for future
versions of StEAM and currently has no effect - it must be implemented, but currently
the body can be left empty. The statement VASSERT(bool e) is used to define local
assertions. If the program reaches the control point of the statement and the expression
e evaluates to ’false’, StEAM returns the path that leads to this state and reports an
error.

Note that we do not have to put our assertion into an infinite loop. We can rely on
searching only for those error states, where the observer thread is first executed when
the assertion does not hold. Thus, we avoid the generation of equivalent paths to the
same error state.

Furthermore, we need to simulate the environment of our system - in this case, the users
of the machine. One way to achieve this, is to introduce two derived thread classes - one
that inserts coins and one that presses buttons. The header and source files for these
are shown in Figure B.3 and B.4. Both classes use the statement RANGE(varname n,
int min, int max, which causes a value between min and max to be non-deterministiclly
chosen as the value of the integer variable n.

Although, in its current form, the source code can already be compiled to an IVM-
executable, StEAM will not be able interpret the program correctly. First, the .c and
.cc files need to be annotated with additional information. Fortunately, this remains
mostly transparent to the user. The StEAM package comes with the tool mfgen. The
latter takes as its parameter a set of source files and generates a Makefile which can be
used to build the model-checkable file. In the directory where the sources for our vendor
machine are located, simply type:

mfgen *

followed by

make

This will create the binary file “vendor”.

B.6. SPECIAL-PURPOSE STATEMENTS 155

B.5.3 Finding, interpreting and fixing errors

Now, start the model checker by typing:

steam -BFS vendor

After a (hopefully short) time, the model checker will print the error trail and report an
assertion violation. Note that we have used breadth-first search (BFS) to detect the error
but the default algorithm is depth-first (DFS). In most cases, DFS find errors faster than
BFS, but the BFS is guaranteed to return the shortest trail. However, in some cases BFS
also finds an error faster than DFS - this can happen, if the search tree is deep but the
error is located at a shallow level. You may try to run the model checker again without
the -BFS option, which will probably exceed the memory limit of your machine. Take
some time for interpreting the error trail before you read on ...
It should be obvious, what happened: The button was pressed immediately after the
credit was increased, but before the coin value was added to got. We can fix the error by
declaring the two variable increases as an atomic block, i.e.:

BEGINATOMIC;
credit+=amount;
got+=amount;
ENDATOMIC;

When you recompile the program (make) - and start the checker anew, the error will no
longer occur.

B.6 Special-Purpose Statements

The special-purpose statements in StEAM are used to define properties and to guide the
search. In general, a special-purpose statements is allowed at any place in the code,
where a normal C/C++ statement would be valid3. In Section B.5 we already used some
of these statements for verifying the vendor machine. Now, we summarize statements,
that are currently supported by StEAM.

BEGINATOMIC
This statement marks an atomic region. When such a statement is reached, the ex-

ecution of the current thread will be continued until a consecutive ENDATOMIC. A
BEGINATOMIC statement within an atomic block has no effect.

ENDATOMIC
This statement marks the end of an atomic region. An ENDATOMIC outside an atomic

3A following semicolon is optional.

156 APPENDIX B. STEAM USER MANUAL

region has no effect.

RANGE(<varname>, int min, int max)
This statement defines a nondeterministic choice over a discrete range of numeric vari-
able values. The parameter <varname> must denote a variable name that is valid in the
current scope. The parameters min and max describe the upper and lower border of the
value range. Internally, the presence of a RANGE-statement corresponds to expanding
a state to have max−min + 1 successors. A RANGE statement must not appear within
an atomic region. Also, the statement currently only works for int variables.

VASSERT(bool e)
This statement defines a local property. When, during program execution, VASSERT(e)
is encountered, StEAM checks if the corresponding system state satisfies expression e.
If e is violated, the model checker provides the user with the trail leading to the error
and terminates.

VLOCK(void * r)
A thread can request exclusive access to a resource by a VLOCK. This statement takes

as its parameter a pointer to an arbitrary base type or structure. If the resource is al-
ready locked, the thread must interrupt its execution until the lock is released. If a
locked resource is requested within an atomic region, the state of the executing thread
is reset to the beginning of the region.

VUNLOCK(void * r)
Unlocks a resource making it accessible for other threads. The executing thread must

be the holder of the lock. Otherwise this is reported as an access violation, and the error
trail is returned.

B.7 Status Quo and Future of StEAM

The model checker StEAM is an attempt to realize software model checking without ab-
straction and the need to manually construct models in specialized languages, such as
Promela. In the current form, the tool is already able to find errors in small programs.
The large search space induced by real programs remains the main challenge of soft-
ware model checking, which may inhibit the finding of an error. Therefore, one of the
main issues of future development lies in finding good heuristics. As shown in previous
work [LME04], an appropriate heuristic is able to find errors fast, even if the underlying
search space is huge.
Also we will improve the memory-efficiency of StEAM by optimizing its state represen-
tation. Future versions of StEAM will also support memory-efficient techniques such
as bitstate hashing. In the long term our vision is to create a user-friendly application,
which facilitates software- development and maintainance without the need for in-depth
knowledge about model checking technology.

B.7. STATUS QUO AND FUTURE OF STEAM 157

/ **
* vendor.c

*
* The bare bones of a snack vendor machine

*
* written by Tilman Mehler

** /

#include "vendor.h"
#include "icvm_verify.h"
#include "Inserter.h"
#include "Presser.h"
#include "Checker.h"

int credit=0;
int coin_values[3] = {10, 50, 100};
int price[3] = {50, 100, 200};
int sold=0;
int got=0;

void main() {

BEGINATOMIC;
(new Inserter())->start();
(new Presser())->start();
(new Checker())->start();
ENDATOMIC;

}
void insertCoin(int amount) {

if(credit+amount<=MAX_CREDIT) {
credit+=amount;
got+=amount;

}
}
void pressButton(int n) {

if(price[n]<=credit) {
credit-=price[n];
sold+=price[n];

}
}

Figure B.1: Source code of the snack vendor software

158 APPENDIX B. STEAM USER MANUAL

/ **************************************
*
* Checker.h

*
* Declarations for the Checker-class

************************************** /

#ifndef CHECKER_H
#define CHECKER_H
#include "IVMThread.h"

class Checker:public IVMThread
{

public:
Checker();
virtual void start();
virtual void run();
virtual void die();

};
#endif

/ **************************************
*
* Checker.cc

*
* Definitions fot the Checker-class,

* which makes an invariant-check

************************************** /

#include "Checker.h"
#include "icvm_verify.h"

extern int credit;
extern int got;
extern int sold;

Checker::Checker() {}

void Checker::start() {
run();

}
void Checker::run() {

VASSERT(got>=sold);
}
void Checker::die() {}

Figure B.2: Source code of our observer thread

B.7. STATUS QUO AND FUTURE OF STEAM 159

/ **************************************
* Inserter.h

*
* Declaratiins fot the coin-inserter

* Thread-class

************************************** /

#ifndef INSERTER_H
#define INSERTER_H
#include "IVMThread.h"

class Inserter:public IVMThread
{

public:
Inserter();
virtual void start();
virtual void run();
virtual void die();

};
#endif

/ **************************************
* Inserter.cc

*
* Definitions fot the coin-inserter

* Thread-class

************************************** /

#include "vendor.h"
#include "Inserter.h"
#include "icvm_verify.h"

extern int coin_values[3];

Inserter::Inserter() {}

void Inserter::start() {
run();

}
void Inserter::run() {

int i=0;
while(1) {

RANGE(i, 0, 3);
insertCoin(coin_values[i]);

}
}

void Inserter::die() {}

Figure B.3: Source code of our observer thread

160 APPENDIX B. STEAM USER MANUAL

/ **************************************
* Presser.h

*
* Declaratins fot the button-presser

* Thread-class

************************************** /

#ifndef PRESSER_H
#define PRESSER_H
#include "IVMThread.h"

class Presser:public IVMThread
{

public:
Presser();
virtual void start();
virtual void run();
virtual void die();

};
#endif

/ **************************************
* Presser.cc

*
* Definitions for the coin-inserter

* Thread-class

************************************** /

#include "vendor.h"
#include "Presser.h"
#include "icvm_verify.h"

Presser::Presser() {}

void Presser::start() {
run();

}

void Presser::run() {
int i=0;
while(1) {

RANGE(i, 0, 3);
pressButton(i);

}
}
void Presser::die() {}

Figure B.4: Source code of our observer thread

Appendix C

Paper Contributions

In the following, I specify my contributions to the papers published in the course of my
research.

Bytecode Distance Heuristics and Trail Direction for Model Checking Java
Programs [EM03]. This paper is based on my master’s thesis which was supervised
by Stefan Edelkamp.

Introduction to StEAM - An Assembly-Level Software Model Checker [ML03]
This is the first paper that gives a technical description of the software model checker
StEAM. It was my idea to enhance the virtual machine IVM to a model checker. More-
over, I had devised and implemented:

• The enhancement of the virtual machine with multi-threading.

• The state description.

• The incremental storing of states.

• The two supported search algorithms (depth-first and breadth-first).

• The testing for deadlocks and assertion violations.

• The concept of ”Command Patterns”.

• The hashing.

• All models for the experiments.

Peter Leven helped in the initial installation of the IVM-package. Moreover, he imple-
mented the lock- and memory-pool based on an existing AVL-tree package.

I also conducted and interpreted the experiments and wrote the actual paper. Mr. Leven
provided useful comments.

161

162 APPENDIX C. PAPER CONTRIBUTIONS

Directed Error Detection in C++ with the Assembly-Level Model Checker StEAM
[LME04] In this paper, I enhanced StEAM with the heuristic search algorithms best-
first and A*. Moreover, I implemented the heuristics: mb, int, rw, lnb, aa, where rw, lnb,
aa are new heuristics which I devised.

Peter Leven devised and implemented the heuristics pba,pbb,pl1,pl2. Also, he proposed
the lgc-Compaction, which I implemented.

The new experiments were mainly conducted by me. Mr. Leven helped with the inter-
pretation and contributed some scripts. The idea to illustrate the experimental results
as the geometric mean of four factors was proposed by Mr. Leven, while I wrote the
programs which generated the GNU-Plot diagrams from the raw experimental data.

Stefan Edelkamp invested considerable effort in making the paper sound and more read-
able.

I gave the presentation on the conference.

Planning in Concurrent Multiagent Systems with the Assembly-Level Model
Checker StEAM [ME04] Stefan Edelkamp had the initial idea to make StEAM ap-
plicable to multi-agent systems.

The content of the paper, including the MAMP-formalism and the execution and inter-
pretation of the experiments is mainly my contribution. Again, Stefan Edelkamp helped
improving the soundness and readability of the paper.

I presented the paper at the conference.

Incremental Hashing in State Space Search [EM04] I motivated the research on
incremental hashing as an important factor of StEAM’s further development. Through
his expertise, Stefan Edelkamp could contribute the bigger part of the formal framework.
I was again responsible for the execution and interpretation of the experiments. For this,
I enhanced the Atomix-solver Atomixer with an incremental hash function.

I gave the presentation for the paper.

Directed C++ Program Verification [Meh05] This paper gives an overview of my
research. I am the only author.

Incremental Hashing for Pattern Databases [EM05a] Here, the concept of incre-
mental hashing was transferred to the domain of action planning. Stefan Edelkamp
contributed the major part of the formal framework. I enhanced the planner mips with
an incremental hash function and executed and evaluated the experiments.

I gave the presentation for the paper.

Knowledge Acquisition and Knowledge Engineering in the ModPlan Workbench
[EM05b] This paper describes the integrated planning environment ModPlan, which
was developed in the project group 463 for which I was the co-supervisor. I was mainly
responsible to help the students on practical problems (mostly in programming). I also

163

contributed comments for the paper. Moreover, I participated in the presentation of the
tool at the Knowledge Engineering Competition at ICAPS05.

Tutorial on Directed Model Checking [EMJ05] These are the proceedings of a
tutorial at ICAPS05, which was organized by Stefan Edelkamp. Shahid Jabbar and
myself contributed additional material and case studies. Moreover, I prepared and gave
the talk about incremental hashing and state compaction, which constitutes about 1/5
of the overall tutorial.

Dynamic Incremental Hashing and State Reconstruction in Program Model
Checking [ME05b] In this paper, incremental hashing was for the first time applied
for programs model checking. I enhanced the formal framework of the previous papers
with the applicability on dynamic and structured state vectors, which makes out the
bigger part of the paper. Moreover, I implemented incremental hashing for the model
checker StEAM. As its second contribution, the paper introduces state reconstruction,
which was Stefan Edelkamp’s idea in the first place. The elaboration of the concept is
approximately 50% my work and 50% the work of Stefan. Again, I implemented the
approach into StEAM and executed and evaluated the experiments.

The paper was meant to record our research on two novel approaches and was hence
published as a technical report at the University of Dortmund.

Dynamic Incremental Hashing in Program Model Checking [ME05a] This re-
fines the incremental hashing approach from [ME05b]. The formal framework and the
overall quality of the paper was thoroughly improved by both authors. Moreover, I en-
hanced the introduction for a better motivation of the approach.

164 APPENDIX C. PAPER CONTRIBUTIONS

Bibliography

[AM02] Y. Abdeddaim and O. Maler. Preemptive job-shop scheduling using stop-
watch automata. In Workshop on Planning via Model Checking, pages
7–13, 2002.

[AQR+04a] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Exploiting
program structure for model checking concurrent software. In Interna-
tional Conference on Concurrency Theory (CONCUR), 2004.

[AQR+04b] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: A model
checker for concurrent software. Technical report, Microsoft Research,
2004.

[AVL62] G. M. Adelson-Velskii and Evgenii M. Landis. An algorithm for the or-
ganization of information. Doklady Akademii Nauk SSSR, 146:263–266,
1962.

[AY98] R. Alur and M. Yannakakis. Model checking of hierarchical state ma-
chines. In International Symposium on Foundations of Software Engi-
neering (FSE), pages 175–188, 1998.

[BC01] M. Benerecetti and A. Cimatti. Symbolic model checking for multi-agent
systems. In Workshop on Computational Logic in Multi-Agent Systems
(CLIMA), pages 312–323, 2001.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pages 193–207, 1999.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In Symposium on Logic
in Computer Science (LICS), 1990.

[BCT03] P. Bertoli, A. Cimatti, and P. Traverso. Interleaving execution and plan-
ning via symbolic model checking. In Workshop on Planning under Un-
certainty and Incomplete Information, pages 1–7, 2003.

[Ber04] Berkley Center of Electronic System Design. BLAST User’s Manual,
2004.

165

166 BIBLIOGRAPHY

[BK00] F. Bacchus and F. Kabanza. Using temporal logics to express search con-
trol knowledge for planning. Artificial Intelligence, 116:123–191, 2000.

[BR02] T. Ball and S. K. Rajamani. The SLAM Project: Debugging System Soft-
ware via Static Analysis. In Symposium on Principles of programming
languages, pages 1–3, 2002.

[Bre03] M. Brenner. Multiagent planning with partially ordered temporal plans.
In International Joint Conference on Artificial Intelligence (IJCAI), pages
1513–1514, 2003.

[CCGR99] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new
Symbolic Model Verifier. In Conference on Computer-Aided Verification
(CAV), pages 495–499, 1999.

[CEMCG+02] A. Cimatti, E. Giunchiglia E. M. Clarke, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NUSMV 2: An opensource
tool for symbolic model checking. In Conference on Computer-Aided Veri-
fication (CAV), pages 27–31, 2002.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. In
Transactions on Programming Languages and Systems, volume 8, pages
244 – 263, 1986.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
1999.

[Coh97] J. D. Cohen. Recursive hashing functions for n-grams. ACM Transactions
on Information Systems, 15(3):291–320, 1997.

[CS94] J. C. Culberson and J. Schaeffer. Efficiently searching the 15-puzzle. Tech-
nical report, University of Alberta, 1994. TR94-08.

[CS96] J. C. Culberson and J. Schaeffer. Searching with Pattern Databases. In
Canadian Conference on AI, pages 402–416, 1996.

[CS98] J. C. Culberson and J. Schaeffer. Pattern databases. Computational In-
telligence, 14(4):318–334, 1998.

[DBL02] H. Dierks, G. Behrmann, and K. G. Lahrsen. Solving planning prob-
lems using real-time model checking. In Workshop on Planning via Model
Checking, pages 30–39, 2002.

[DIS99] C. Demartini, R. Iosif, and R. Sisto. dSPIN: A dynamic extension of SPIN.
In Model Checking Software (SPIN), pages 261–276, 1999.

[dWTW01] M. M. de Weerdt, J. F. M. Tonino, and Cees Witteveen. Cooperative
heuristic multi-agent planning. In Belgium-Netherlands Artificial Intel-
ligence Conference (BNAIC), pages 275–282, 2001.

BIBLIOGRAPHY 167

[Ede01] S. Edelkamp. Planning with pattern databases. In European Conference
on Planning (ECP), pages 13–24, 2001.

[Ede03] S. Edelkamp. Promela planning. In Workshop on Model Checking Soft-
ware (SPIN), pages 197–212, 2003.

[EJS04] S. Edelkamp, S. Jabbar, and S. Schrödl. External A*. In German Confer-
ence on Artificial Intelligence (KI), pages 226–240, 2004.

[ELL01] S. Edelkamp and A. Lluch-Lafuente. HSF-Spin User Manual, 2001.

[ELL04] S. Edelkamp and A. Lluch-Lafuente. Abstraction in directed model check-
ing. In Workshop on Connecting Planning Theory with Practice, pages
7–13, 2004.

[ELLL01] S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed model-checking
in HSF-SPIN. In Workshop on Model Checking Software (SPIN), pages
57–79, 2001.

[ELLL04] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state
model checking in the validation of communication protocols. Interna-
tional Journal on Software Tools for Technology, 5(2-3):247–267, 2004.

[EM03] S. Edelkamp and T. Mehler. Byte code distance heuristics and trail direc-
tion for model checking Java programs. In Workshop on Model Checking
and Artificial Intelligence (MoChArt), pages 69–76, 2003.

[EM04] S. Edelkamp and T. Mehler. Incremental hashing in state space search.
In Workshop on New Results in Planning, Scheduling and Design (PUK),
pages 15–29, 2004.

[EM05a] S. Edelkamp and T. Mehler. Incremental hashing for pattern databases.
In Poster Proceedings of International Conference on Automated Planning
and Scheduling (ICAPS), pages 17–20, 2005.

[EM05b] S. Edelkamp and T. Mehler. Knowledge acquisition and knowledge en-
gineering in the ModPlan workbench. In International Competition on
Knowledge Engineering for Planning and Scheduling, pages 26–33, 2005.

[EMJ05] S. Edelkamp, T. Mehler, and S. Jabbar, editors. ICAPS Tutorial on Di-
rected Model Checking, 2005.

[EPP05] S. Evangelista and J.-F. Pradat-Peyre. Memory efficient state space stor-
age in explicit software model checking. In International Workshop on
Model Checking Software (SPIN), pages 43–57, 2005.

[FGK97] L. Fredlund, J. F. Groote, and H. Korver. Formal Verification of a Leader
Election Protocol in Process Algebra. Theoretical Computer Science,
177(2):459–486, 1997.

[God97] P. Godefroid. Model checking for programming languages using VeriSoft.
In ACM Symposium on Principles of Programming Languages, pages
174–186, 1997.

168 BIBLIOGRAPHY

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs of infinite
systems with PVS. In Conference on Computer-Aided Verification (CAV),
pages 72–83, 1997.

[GV02] A. Groce and W. Visser. Model Checking Java Programs using Structural
Heuristics. In International Symposium on Software Testing and Analy-
sis (ISSTA), pages 12–21, 2002.

[GV03] A. Groce and W. Visser. What went wrong: Explaining counter examples.
In Workshop on Model Checking of Software (SPIN), pages 121–135, 2003.

[Hav99] K. Havelund. Java PathFinder user guide. Technical report, NASA Ames
Research Center, 1999.

[HBG05] P. Haslum, B. Bonet, and H. Geffner. New admissible heuristics for
domain-independent planning. In National Conference on Artificial In-
telligence (AAAI), pages 1163–1168, 2005.

[HEFN01] F. Hüffner, S. Edelkamp, H. Fernau, and R. Niedermeier. Finding optimal
solutions to atomix. In German Conference on Artificial Intelligence (KI),
pages 229–243, 2001.

[Hel04] M. Helmert. A planning heuristic based on causal graph analysis. In In-
ternational Conference on Automated Planning and Scheduling (ICAPS),
pages 161–170, 2004.

[HJMS03] A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification
with BLAST. In Workshop on Model Checking Software (SPIN), pages
235–239, 2003.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for heuristic
determination of minimum path cost. IEEE Transactions on Systems Sci-
ence and Cybernetics, 4:100–107, 1968.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, 1991.

[Hol96] G. J. Holzmann. An analysis of bistate hashing. In International Sympo-
sium on Protocol Specification, Testing and Verification, pages 301–314.
Chapman & Hall, Ltd., 1996.

[Hol97a] G. J. Holzmann. Designing bug-free protocols with SPIN. Computer Com-
munications Journal, 20(2):97–105, 1997.

[Hol97b] G. J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279–295, 1997.

[Hol97c] G. J. Holzmann. State compression in SPIN. In Third Spin Workshop,
Twente University, The Netherlands, 1997.

[Hol98] G. J. Holzmann. An analysis of bitstate hashing. Formal Methods in
System Design, 13(3):287–305, 1998.

BIBLIOGRAPHY 169

[Hol03] G. J. Holzmann. The Spin Model Checker, Primer and Reference Manual.
Addison-Wesley, 2003.

[HP00] K. Havelund and T. Pressburger. Model checking Java programs using
Java PathFinder. International Journal on Software Tools for Technology
Transfer, 2(4):366–381, 2000.

[HS01] M. Holzer and S. Schwoon. Assembling molecules in Atomix is hard.
Technical Report 101, Institut für Informatik, Technische Universität
München, 2001.

[HSAHB99] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic plan-
ning using decision diagrams. In Conference on Uncertainty in Articial
Intelligence (UAI), pages 279–288, 1999.

[HT99] J. Hatcliff and O. Tkachuck. The Bandera Tools for Model-checking Java
Source Code: A User’s Manual. Technical report, Kansas State Univer-
sity, 1999.

[HZ01] E. A. Hansen and S. Zilberstein. LAO * : A heuristic search algorithm
that finds solutions with loops. Artificial Intelligence, 129(1-2):35–62,
2001.

[IDS98] R. Iosif, C. Demartini, and R. Sisto. Modeling and validation of Java mul-
tithreading applications using SPIN. In Workshop on automata theoretic
verification with SPIN, pages 5–19, 1998.

[Ios01] R. Iosif. Exploiting heap symmetries in explicit-state model checking of
software. In International Conference on Automated Software Engineer-
ing (ICSE), pages 26–29, 2001.

[JE05] S. Jabbar and S. Edelkamp. I/O efficient directed model checking. In
Verification, Model Checking and Abstract Interpretation (VMCAI), pages
313–329, 2005.

[KDH00] J. Kvarnström, P. Doherty, and P. Haslum. Extending TALplanner with
concurrency and ressources. In European Conference on Artificial Intelli-
gence (ECAI), pages 501–505, 2000.

[Knu98] D. Knuth. The Art of Computer Progarmming - Vol.3: Sorting and Search-
ing (2nd edition). Addison-Wesley, 1998.

[Kor85] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree
search. Artificial Intelligence, 27(1):97–109, 1985.

[Kor03] R. E. Korf. Breadth-first frontier search with delayed duplicate detection.
In Workshop on Model Checking and Artificial Intelligence (MoChArt),
pages 87–92, 2003.

[KR87] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31(2):249–260, 1987.

170 BIBLIOGRAPHY

[KS05] R. E. Korf and P. Schultze. Large-scale parallel breadth-first search. In
National Conference on Artificial Intelligence (AAAI), pages 1380–1386,
2005.

[KZ00] R. E. Korf and W. Zhang. Divide-and-conquer frontier search applied to
optimal sequence allignment. In National Conference on Artificial Intel-
ligence (AAAI), pages 910–916, 2000.

[Lan96] H. Landman. Games of No Chance, chapter Eyespace values in Go, pages
227–257. Cambridge University Press, 1996.

[Leh49] H. D. Lehmer. Mathematical methods in large-scale computing units. In
Symposium on Large-Scale Digital Calculating Machienery, pages 141–
146. Cambridge, Massachusetts, Harvard University Press, 1949.

[LL03] A. Lluch-Lafuente. Symmetry reduction and heuristic search for error de-
tection in model checking. In Workshop on Model Checking and Artificial
Intelligence (MoChart), pages 77–86, 2003.

[LME04] P. Leven, T. Mehler, and S. Edelkamp. Directed error detection in C++
with the assembly-level model checker StEAM. In Workshop on Model
Checking Software (SPIN), pages 39–56, 2004.

[LMS02] F. Laroussinie, N. Markey, and Ph. Schnoebelen. On model checking du-
rational kripke structures. In International Conference on Foundations of
Software Science and Computation Structures, pages 264–279, 2002.

[LV01] F. Lerda and W. Visser. Addressing dynamic issues of program model
checking. In Workshop on Model Checking Software (SPIN), pages 80–94,
2001.

[Mar91] T. A. Marsland. Encyclopedia of Artificial Intelligence, chapter Computer
Chess and Search, pages 224–241. J. Wiley & Sons, 1991.

[McM92] K. L. McMillan. The SMV system. Technical report, Carnegie-Mellon
University, 1992.

[MD05] M. Madanlal and D. L. Dill. An incremental heap canonicalization algo-
rithm. In Workshop on Model Checking Software (SPIN), pages 28–42,
2005.

[ME04] T. Mehler and S. Edelkamp. Planning in concurrent multiagent systems
with the assembly model checker StEAM. In Poster Procedings of German
Conference on Artificial Intelligence (KI), pages 16–30, 2004.

[ME05a] T. Mehler and S. Edelkamp. Dynamic incremental hashing in pro-
gram model checking. Electronic Notes on Theoretical Computer Science
(ENTCS), 149(2):51–69, 2005.

[ME05b] T. Mehler and S. Edelkamp. Dynamic Incremental Hashing and State
Reconstruction in Program Model Checking. Technical report, University
of Dortmund, 2005.

BIBLIOGRAPHY 171

[Meh02] T. Mehler. Gerichtete Java-Programmvalidation. Master’s thesis, Insti-
tute for Computer Science, University of Freiburg, 2002.

[Meh05] T. Mehler. Directed C++ program verification. In International Conference
on Automated Planning and Scheduling (ICAPS) - Doctoral Consortium,
pages 58–61, 2005.

[MJ05] E. Mercer and M. Jones. Model checking machine code with the GNU
debugger. In Workshop on Model Checking Software (SPIN), pages 251–
265, 2005.

[ML03] T. Mehler and P. Leven. Introduction to StEAM - an assembly-level soft-
ware model checker. Technical report, University of Freiburg, 2003.

[MPC+02] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: a prag-
matic approach to model checking real code. In Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

[Pun77] A. Puneli. The temporal logic of programs. In Symposium on foundations
of computer science (FOCS), pages 46–57, 1977.

[PvV+02] M. Pěchouček, A. Říha, J. Vokřínek, V. Mařík, and V. Pražma. Explantech:
applying multi-agent systems in production planning. International Jour-
nal of Production Research, 40(15):3681–3692, 2002.

[QN04] K. Qian and A. Nymeyer. Guided invariant model checking based on ab-
straction and symbolic pattern databases. In Symposium on Theoretical
Aspects of Computer Science (TACAS), pages 497–511, 2004.

[RM94] A. Reinefeld and T. A. Marsland. Enhanced iterative-deepening
search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(7):701–710, 1994.

[RN95] S. Russel and P. Norvig. Artificial Intelligence, a Modern Approach. Pren-
tice Hall, 1995.

[Sch98] U. Schoening. Algorithmen - kurzgefasst, Kapitel: Algebraische und
Zahlentheoretische Algorithmen. Spektrum Verlag, 1998.

[SD96] U. Stern and D. L. Dill. Combining state space caching and hash com-
paction. In Methoden des Entwurfs und der Verifikation digitaler Sys-
teme, 4. GI/ITG/GME Workshop, pages 81–90, 1996.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.

[TK93] L. A. Taylor and R. E. Korf. Pruning duplicate nodes in depth-first search.
In National Conference on Artificial Intelligence (AAAI), pages 756–761,
1993.

[VHBP00a] W. Visser, K. Havelund, G. Brat, and S. Park. Java PathFinder - second
generation of a Java model checker. In Workshop on Advances in Verifi-
cation, (WAVe), pages 28–34, 2000.

172 BIBLIOGRAPHY

[VHBP00b] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs.
In International Conference on Automated Software Engineering (ICSE),
pages 3–12, 2000.

[Zob70] A. L. Zobrist. A new hashing method with application for game play-
ing. Technical report, University of Wisconsin, Computer Science De-
partment, March 1970.

Index

binary decision diagram, see BDD

A*, 43
in software model checking, 44
optimality, 44

abstract models
drawbacks, 18
loss of detail, 31
of software, 31

abstraction, 94
data, 94
predicate, 94

admissibility, 44
for software model checking, 62

agent, 73
distributed systems, 73
experiments, 128
in StEAM, 74
MAMP, 77
planning, 73

approximate hashing, 87
Ariane-5, 15
assertion, 24, 156
atomic regions, see command patterns, 93,

155
Atomix, 96
AVL-tree, 102

in StEAM, 143

Bandera, 32
BDD, 23, 72, 107
BEGINATOMIC, 58, 59, 155
best-first search, 43

in software model checking, 43
BFS, 41

optimality, 41
bitstate-hashing, 87, 107, 137
BLAST, 34
breadth-first search, see BFS

cash dispenser, 116
cashIT, 116
closed-list, 39
CMC, 33
code inspection, 27
collapse compression, 138
command patterns, 52, 53, 144

atomic regions, 53
capturing the main thread, 53
line information, 53
locks, 53
non-determinism, 54

compiler
of IVM, 48

conclusion, 131–139
concurrency, 23
consistency, 44

for software model checking, 62
CPU registers, 48
cross product, 24
CTL, 24
cvm.h, 143

deadlock, 26, 60
debugger, 31, 61, 152
depth-first iterative deepening, see DFID
depth-first search, see DFS
deterministic finite automaton, see DFA
DFA, 21
DFID, 42

in software model checking, 43
DFS, 42

in software model checking, 42
dining philosophers, 114, 148
directed graph, 39
dSPIN, 32
dynamic arrays, 85
dynamic memory, 50

elevator example, 23

173

174 INDEX

ELF format, 48, 48
memory image, 48

ENDATOMIC, 155
error trail, 17

in the elevator example, 26
on the source level, 31
optimal, 41
over abstract models, 31
quality, 68
shortening, 136
suppresing in StEAM, 153

Estes, 35
estimator function, see heuristic
Euclidean distance, 43
expansion, see node expansion
experiments, 113–128

directed search, 117
on hashing, 125
on multi-agent planning, 128
on state reconstruction, 124
used programs, 113–117

ExPlanTech, 73
exploration, see search
extcmdlines.cpp, 144
external search, 137

file information, see command patterns
formal semantics, 31, 36

handling of, 36
frame pointer, 48
FSM-pruning, 108

gcc, 48
gdb, 35, 61
general state expansion algorithm, 40
Glob, 55–57
graph formalisms, 21–22

hash compaction, 88, 107, 137
hash.c, 145
hashing, 55, 83

approximate, 88
balanced tree method, 102
bit-state, 137
bitstate, 87
collisions, 125
compaction, 88, 137
distribution, 84, 94, 125

dynamic arrays, 85
dynamic state vectors, 99–102
experiments, 125
explicit, 85
full, 125
hash functions, 84
ignoring duplicates, 83
in Atomix, 96
in propositional planning, 98–99
in StEAM, 104
in the n2 − 1-puzzle, 95
incremental, 83, 89, 92

runtime of, 93, 94
static examples, 95–99

linear method, 102
on static state vectors, 92
partial, 89, 125
probing, 85
Rabin-Karp, 90
recursive, 92
remainder method, 84
special case in software model check-

ing, 83
structured state vectors, 102–106
successor chaining, 85

heap canonicalization, 105
heuristic, 43

admissible, 44
consistent, 44
Euclidean distance, 43
Manhattan distance, 96
supported by StEAM, 62
trail-based, 136

heuristics
alternating access, 64
branch-coverage, 64
error-specific, 63
formular-based, 63
interleaving, 64
read-write, 64
structural, 64
threads alive, 65

HSF-Spin, 30

icvm_verify.h, ċ144
icvmsup.c, 142
icvmvm.c, 141

INDEX 175

IDA*, 44
in software model checking, 45

illegal memory access, 36, 60, 152
incremental hashing, 89
interleave algorithm, 76
interleaving planning and execution, 72, 75
Internet C Virtual Machine, see IVM
iterative deepening A*, see IDA*
IVM, 47–48

enhancements, 49–55
source code, 141
state of, 48

IVMThread, 74
IVMThread.cc, 143

Java Bytecode, 35
Java PathFinder, see JPF
job-shop scheduling, 78
JPF, 35

first version, 35
second version, 35

key-state, 111
Kripke Structure, 22

leader election, 115
Lehmer Generator, 93
lgc, 118
line information, see command patterns
liveness-property, 26
lnb, 63
lock, 156
lock and block, see lnb
lock and global compaction, 118
lock-pool, 51, 144
locks, 49, 53, 59
LTL, 24

makefile-generator, see mfgen
makespan, 68, 78
MAMP, 77
Manhattan distance, 96
Mars Climate Orbiter, 16
Mars Pathfinder, 35
memory-pool, 51
mfgen, 154
mfgen.c, 143
mini-state, 108

model, 22
model checking, 21, 23

advantages over testing, 17
classical, 21
differences to planning, 68
explicit, see symbolic
for planning, 69, 72
need for, 26
of software, 30–37

challenges, 133
status quo, 131
the classical approach, 31
the modern approach, 31
tools, 32–36

symbolic, 23
unabstracted, 18

advantage of, 31
drawback of, 32

most-blocked, 63
multi-agent systems, see agent
multi-threading, 47

in StEAM, 49, 54
observer-threads, 115
see also concurrency, 23

n2 − 1-puzzle, 69
node expansion, 39
non-determinism, 54, 59, 156
nuSMV, 30

observer-threads, 115
open-list, 39
optical telegraph, 114
optimality

of BFS, 41

parallel steps, 75
partial search, 89
partial-order reduction, 107
path costs, 39
path quantor, 24
pattern database, see PDB
PDB, 94, 135
physical memory, 48
planning, 67–72

differences to model checking, 68
on the assembly level, 74
propositional, 67

176 INDEX

temporal, 68
via model checking, 69, 72

polynomial ring, 92
pool.c, 144
printf-debugging, 61
probing, 85
program, 22
program counter, 48
program memory, 48
Promela, 29, 35
protocol, 22

trivial, 24

Rabin-Karp, 90
RANGE, 59, 156

safety-property, 25
scalability, 114
search, 39

directed, 43
experiments, 117

external, 137
frontier search, 108
general state expansion algorithm, 40
geometric, 39, 43
in StEAM, 54
memory limited, 107
undirected, 40

search tree, 57
sequential hashing, 88
simulation, 74, 152
SLAM, 34
sliding-tile puzzle, 69
SMV, 30
snack vendor, 153
software engineering process, 16
source annotation, 144
SPIN, 29

version 4.0, 33
stack, 52
stack pointer, 48
state

key-state, 111
memorization, 138
mini-state, 108
of StEAM, 49
size, 133

state enumeration, 17
state explosion problem, 24, 74, 133
state reconstruction, 107–112

algorithm, 111
experiments, 124

StEAM, 47
applicability, 59, 134
features, 57
installation, 147–148
memory management, 144, 152
options, 150–153
special-purpose statements, 155
state description, 49

steam.c, 145
stored components, 51
successor chaining, 85
Suggestion, 75
Supertrace, 87
symmetry reduction, 107
system, 22

temporal logics, 24
testing

drawbacks, 17
limits of, 27

Therac-25 accident, 15
TL-Plan, 72

unlock, see locks
UPPAAL, 73

VASSERT, 59, 156
VeriSoft, 33
virtual machine, 18, 31

extending an existing vm, 36
IVM, 47
ivm, see IVM
JVM, 35

VLOCK, 59, 156
VUNLOCK, 59, 156

Warsaw accident, 15
waterfall model, 16

Z (specification language), 16
Zing, 33
Zobrist keys, 105

