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Motivation

Since the invention of lasers in the 1960s, nonlinear optical techniques established a
new field of research [1, 2, 3, 4]. Although the second harmonic generation (SHG) is the
lowest-order nonlinear process, it can provide a lot of important information about the
electronic and magnetic structure of solids [5, 6, 7]. With its larger number of degrees
of freedom SHG reveals new and complementary information in comparison to linear
optics [8, 9, 10]. The leading-order contribution to SHG induced by the interaction
of light and matter can be described in the electric-dipole (ED) approximation. This
process is forbidden in non-centrosymmetric crystals from the symmetry point of view
[3, 8, 7]. Especially in the case of centrosymmetric materials the SHG process can be
sensitive to surfaces or interfaces due to the breaking of the inversion symmetry at the
boundary [11, 12, 13, 14]. Beside the optical degrees of freedom as spectral, spatial or
temporal resolution as well as the choice of light polarization, external perturbations
can provide additional degrees of freedom in order to study electronic or magnetic
properties. Usually perturbations of the material system are introduced by means of
applied electric or magnetic fields or external pressure. In the case of an applied electric
field, which is described by a polar vector, the inversion symmetry is broken in any
case. As a result of the reduced symmetry, the generation of an electric-field-induced
second harmonic (EFISH) contribution becomes allowed [15], which enables to probe
the charge of the electrons. Due to their axial nature, an applied magnetic field or a
spontaneous magnetic ordering break the time-inversion symmetry. This breaking of
the symmetry leads to a magnetic-field-induced second harmonic (MFISH) [16, 17] or
a magnetic second harmonic (MSHG) [7] contribution, respectively, which provides an
opportunity to probe the spin of the electrons. A complementary use of MFISH and
EFISH as sensors to spin and charge enables to study both, charge and spin properties,
by means of nonlinear optics.

A recent field of research are spin phenomena and their possible applications in
e.g. spintronics and quantum computation [18, 19]. Big research effort is not only
made to develop technological applications in electronics and optoelectronics, but also
for fundamental study of spin phenomena. Most of the fundamental studies of optical
spin manipulation are accomplished by using linear optical techniques as e.g. magneto-
optical spectroscopy [20, 21, 22]. Applications of nonlinear magneto-optical techniques
to this field are scarce. In order to discover nonlinear spin effects, detailed studies are
required. For this purpose especially the nonlinear techniques of MFISH and EFISH
might be promising tools to study charge and spin phenomena. In this work the novel
technique of MFISH is used to probe the spin properties of semiconductors (GaAs,
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CdTe and (Cd,Mn)Te) and isolators (CuB2O4 and NiO).

One of the main foci of this work is the study of the magnetic properties of semicon-
ductors. Up to now, semiconductors have been probed by SHG only under restricted
experimental conditions (single optical wave lengths, room temperature and without
application of magnetic fields). However, examples of SHG over a wide spectral range
are scarce [23, 24]. Only recently, studies of SHG over wide spectral ranges at low
temperatures and supplementary application of a magnetic field were reported [16, 25].
Broad spectral features near the band gap related to magnetic ordering have been
found in the ferromagnetic semiconductor (Ga,Mn)As [26]. Theoretical calculations
can be only found for crystallographic SHG susceptibilities [27, 28, 29], but for SHG in
semiconductors in an applied magnetic field theoretical calculations are still missing.

A possible classification of semiconductors can be given according to their mag-
netic properties, which are of main interest for this work. Undoped semiconductors
with a spin-compensated atomic or ionic structure as e.g. Si, Ge, GaAs and CdTe
are diamagnets. The interaction with a magnetic field is rather weak and determined
mostly by orbital magnetic momentums [30]. Semiconductors doped with magnetic
impurities, which contribute uncompensated spins, can reveal possible paramagnetic
behavior. The interaction of a paramagnet with a magnetic field is much stronger
than for a diamagnet and is determined mostly by the magnetic momentums of the
uncompensated spins. As a consequence of the different microscopic mechanisms the
signs of the magnetic susceptibilities are opposite for dia- and paramagnets. In this
work, amongst others, the material system (Cd,Mn)Te was chosen by two reasons. On
the one hand the dilution with Mn ions induces via exchange interaction a giant Zee-
man splitting of the valence and conduction bands, which can raise up to about 120
meV depending on the Mn concentration. On the other hand, without Mn, CdTe pro-
vides a diamagnetic reference system. Another class is given by magnetically ordered
semiconductors. Here the exchange interaction can lead to a possible ferromagnetic
or antiferromagnetic ordering below a critical temperature. Magnetic semiconductors
revealed a plenty of new electronic, magnetic and optical properties. Exemplarily, un-
usually large magneto-optical effects as giant Faraday rotation [31] or nonreciprocal
linear birefringence in the Voigt configuration [32] are observed.

Another focus of this work is on the investigation of long-range magnetically ordered
materials. Due to its possible macroscopic spontaneous magnetization, ferromagnetism
was discovered and practically used even two millennia ago. One of the oldest applica-
tion is the use of magnetite crystals (Fe3O4) as compass needles. In our day ferromag-
netic properties are exploited e.g. to convert kinetic energy into electric current and
vice versa via generators and motors, respectively. Another application of ferromag-
netism is the data storage. All these effects are based on the macroscopic magnetization
in ferromagnets. In opposite to ferromagnetism, antiferromagnetism was predicted first
by Néel in 1932 [33] and demonstrated by Bizette, Squire and Tsai in 1938 [34]. Since
antiferromagnets do not possess a macroscopic magnetization, a technical application
was not considered for a long time. Nowadays the importance of antiferromagnetic
compounds for practical applications has increased strongly. Examples for applica-
tions of antiferromagnetic systems are mostly on the field of data storage and based on
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the exchange bias effect [35]. Furthermore antiferromagnetic materials are expected to
enable fast spin manipulation since no magnetization is present [36]. Another example
are high-temperature superconductors, which reveal also antiferromagnetic phases in
their magnetic phase diagrams [37].

As examples for antiferromagnetic insulators, copper borate and nickel oxide are
chosen to study the magnetic properties by means of SHG. Nickel oxide is one of the
most promising antiferromagnetic materials for device application. An important ap-
plication is the data storage using the exchange bias effect [35]. The effect of exchange
bias is based on the directional coupling between the spins in an antiferromagnet and
those in an adjacent ferromagnet. The development of magnetic read heads [38] and
magnetic memory cells [39] was already reported. Furthermore the ultrafast manip-
ulation of the antiferromagnetic order parameter of NiO is very promising [40, 41].
In the case of copper borate no device application is in sight yet. Nevertheless it
possesses a rather complicated magnetic structure with different magnetic phases and
thus is a good material to point out the power of the MFISH technique to investigate
antiferromagnetic ordering phenomena.

Outline

In Ch. 1, a brief review of some important topics of magnetism in solids, semiconductor
physics and nonlinear optics is given.

In Ch. 2, a study of magnetic-field-induced second harmonic generation (MFISH) in
the diamagnetic III-V and II-VI semiconductors gallium arsenide (GaAs) and cadmium
telluride (CdTe) over broad spectral ranges and at varying temperatures is presented
[16, 42, 43]. The applied magnetic field breaks the time-inversion symmetry of a dia-
magnetic compound and induces new optical nonlinearities. SHG spectra with com-
plicated polarization properties and characteristic magnetic-field and temperature de-
pendencies are observed. The rotational anisotropy of the SHG signal distinctly differs
from that of the electric-dipole approximation. It will be shown by model calculations,
that the MFISH process is based on nonlinear magneto-optical spatial-dispersion and
the electric-dipole term. In diamagnetic semiconductors, the Zeeman splitting is much
smaller than the Landau-level splitting and the dominant SHG mechanism is based on
the Landau-orbital quantization, whereas the SHG intensity depends quadratically on
the applied magnetic field.

In Ch. 3, MFISH in the diluted magnetic semiconductor cadmium manganese tel-
luride (Cd1−xMnxTe) is investigated [44, 45, 46]. In opposite to the MFISH mecha-
nism in diamagnetic semiconductors, in paramagnetic semiconductors a new mecha-
nism based on the spin quantization and giant Zeeman splitting of electronic states
is found. The interplay of both mechanisms is studied as a function of the Mn con-
centration. By contrast to linear optics, the complete set of eight possible electronic
transitions between different spin-states of the valence and conduction bands is ob-
served in Cd1−xMnxTe using MFISH. It will be shown, that the MFISH intensity is
proportional to the magnetization induced by an applied magnetic field. Subsequently,
MFISH will be used to study spin glass phase magnetic properties.
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In Ch. 4, the complex magnetic structure of the antiferromagnetic compound cop-
per borate (CuB2O4) is investigated by linear and (more detailed) by nonlinear optical
techniques [25, 47, 7, 48]. Three different types of optical magnetic-field-induced second
harmonic (MFISH) generation are observed in CuB2O4. Unusually sharp and intense
electronic transitions in MFISH and linear absorption spectra provide selective access
to the two non-equivalent Cu2+ sublattices. The magnetic phase diagram for both
sublattices is determined by MFISH. The magnetic structure is dominated by antifer-
romagnetic order at the 4b site. The magnetic ordering is transferred via sublattice
interactions to the 8d site where it coexists with a discoupled paramagnetic component.

In Ch. 5, the distribution of antiferromagnetic S and T domains in NiO is investi-
gated by optical magnetic second harmonic generation (MSHG) [49, 7]. The anisotropy
of the MSHG signal from individual domains and from typical superpositions of do-
mains in NiO is derived from symmetry considerations. Subsequently, experiments on
two types of samples are discussed. Untreated NiO samples possess a random distri-
bution of all S and T domains with a lateral size in the order of . 1 µm. NiO samples
annealed in oxygen possess a distribution of T domains of ∼ 100 µm make up by a
random distribution of the three corresponding S domains of . 1 µm is observed. Next
to a T domain wall large S domains of ∼ 10 µm are formed because of a tendency of
the Ni2+ spins to orient along the stacking direction of ferromagnetic planes in the ad-
jacent T domain. Considering practical application, correlations between the ultrafast
magnetization dynamics [40] and the density of domain walls can be of big importance.
Therefore MSHG is not only an alternative technique for probing domain structures in
NiO, but indispensable for studying contemporary aspects of antiferromagnetism.



Chapter 1

Introduction

In this section an introduction to the physical basis of this work is provided. Magnetism
in solids and semiconductor basics are of capital importance for this work. Furthermore
the experimental technique of nonlinear optics is considered.

1.1 Magnetism

Magnetism in matter originates mainly from the magnetic moments of the electrons.
Thereby the spin and the orbital momentum contribute to the magnetism. In opposite
to electrons the magnetic moments of the nucleons are negligible compared to the mag-
netic moments of electrons, which is a result of the mass difference between neutrons
or protons and electrons. In this Chapter the magnetism resulting from localized ionic
magnetic moments will be discussed. A consideration of the magnetic properties in-
duced by free carriers is given in Ch. 1.2. According to Hund’s rule the atomic orbitals
of the ions building up the crystal are filled with electrons, whereas electronic spins
can partly compensate each other. Thus only partially filled orbitals with unpaired
electrons can result in a magnetic moment of the ion [30].

1.1.1 Disordered magnetic systems

In the case of absent long-range interaction between the magnetic moments and without
an external magnetic field, a system of disordered magnetic moments is present. An
alignment of such non-correlated magnetic moments is possible by applying an external
magnetic field. The dependence of the magnetization M of the system on the magnetic
field strength H is described by the magnetic susceptibility χmag:

M = µ0χmagH , (1.1)

where µ0 is the permeability. The magnetic susceptibility varies by orders of magnitude
for the different types of magnetism discussed below.
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1.1.1.1 Diamagnetism

Diamagnetism can be described by the induction of a circular current by an external
magnetic field. The circular current is caused by the Lorentz force acting on the orbital
and band electrons of the material. According to Lenz’s rule the induced magnetic
moments of the electrons are aligned reverse to the applied magnetic field. Therefore
the magnetic susceptibility is negative χDia < 0. Larmor diamagnetism is a form of
magnetism, which is present in all materials and is in the order of magnitude of 10−4. In
the case that other forms of magnetism are present in a material, diamagnetism can be
neglected. In opposite to other forms of magnetism, diamagnetism does not depend on
the temperature. A model of an ideal diamagnet is a superconductor. According to the
Meißner-Ochsenfeld effect the magnetic moments fully insulate the external magnetic
field. This is described by χSC = −1.

1.1.1.2 Paramagnetism

Beside diamagnetism other forms of magnetism can exist. The magnetic properties
discussed below originate from the magnetic moments of ions possessing only partially
filled orbitals. Unpaired electrons of the partially filled orbitals contribute a magnetic
moment due to their spin and angular momentum. In the case that no long-range
ordering exists, without magnetic field the directions of the magnetic moments are
distributed statistically. Due to the statistical distribution the macroscopic average
of the magnetic moments vanishes whereby the time-inversion symmetry remains a
symmetry of the system. The application of a magnetic field leads to a breaking of
the symmetry, since an alignment of the magnetic moments along the magnetic field
direction is induced. Paramagnetism is described by a positive magnetic susceptibility
χPara > 0.

The Langevin paramagnetism is based on a model system of free magnetic moments
µ = gJµBJ without interaction. The magnetization can be calculated thermodynami-
cally and is given by

M = ngJµBJBJ(y) , (1.2)

where n is the number of magnetic moments per unit volume,

gJ = 1 +
J(J + 1) + S(S + 1)− L(L + 1)

2J(J + 1)
(1.3)

is the Landé factor, J is the total angular momentum and

BJ(y) =
2J + 1

2J
coth(

2J + 1

2J
y)− 1

2J coth( y
2J

)
(1.4)

is the Brillouin function with the argument y = gJµBJB
kBT

. The special case, that the
argument y of the Brillouin function is small, which is fulfilled at high temperature
and weak magnetic fields, leads to the classical Curie law

χpara =
C

T
, (1.5)
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where C is the Curie constant. In the special case of low temperature and high magnetic
fields the Brillouin function in Eq. (1.2) amounts to the value 1 and the saturated
magnetization is given by MS = ngJµBJ .

In addition, for J = 0 Van Vleck paramagnetism exists, which does not depend on
the temperature. This contribution is induced by excited states. Since the Van Vleck
paramagnetism is weak compared to χpara for J 6= 0, it will be not considered here.

Another paramagnetic contribution to the magnetic susceptibility is given by the
Pauli paramagnetism, which is important for metals, where the electrons are delocal-
ized.

1.1.2 Ordered magnetic systems

In diamagnetic and paramagnetic materials discussed above, at zero magnetic field
the magnetic symmetry coincides with the crystallographic symmetry. In contrast,
a spontaneous ordering leads to a reduction of the magnetic symmetry. Long-range
interaction causes an collective alignment of the magnetic moments. The time-inversion
symmetry is broken, since time-inversion causes a reversal of the spins.

In order to describe the magnetic ordering in ferromagnetic, ferrimagnetic and anti-
ferromagnetic materials, the Heisenberg model [50] will be considered. The Heisenberg
model takes into account the exchange interaction between electrons on the basis of
the Coulomb interaction and the Pauli principle. The Heisenberg Hamilton operator
is given by

ĤExchange = −2
∑
i6=j

JijSi · Sj , (1.6)

where Jij is the exchange integral. Jij displays the overlap of the wave functions of two
spins located at the lattice sites i and j.

1.1.2.1 Ferromagnetism

In ferromagnetic materials the exchange integral Jij is positive. Thus the exchange
energy is minimal in the case of a parallel alignment of the spins. The ferromagnetic
susceptibility depends strongly on the temperature. Below a critical temperature TC ,
namely the Curie temperature, the spins are aligned ferromagnetically. The order pa-
rameter is the magnetization. With raising temperature the order parameter decreases
and vanishes at TC . At TC a phase transition of second order (no latent heat) [51]
occurs. Above TC paramagnetism is present. Due to the thermal energy above TC no
ordering of the magnetic moments is possible.

Application of a magnetic field leads to an alignment of spins and thus a macroscopic
magnetization. The magnetic susceptibility is on the order of magnitude of 102-106.
For T > TC the temperature dependence of the magnetic susceptibility is given by the
Curie-Weiss law

χ =
C

T − TC

. (1.7)
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Figure 1.1: Hysteresis of a ferromagnet
below TC : Dependence of the magneti-
zation M on the magnetic field strength
H. MS: saturated magnetization, Mr:
remanent magnetization, HC : coercive
field strength.

Below TC a characteristic dependence of the magnetization on the magnetic field
strength, namely the hysteresis (B-H curve), can be observed. Fig. 1.1 shows a hystere-
sis, which is obtained from a periodic variation of the magnetic field. With increasing
magnetic field strength the magnetization asymptotically saturates (MS) and all mag-
netic moments are aligned along the direction of the magnetic field. After reducing the
magnetic field strength to zero, the magnetization Mr remains. The remanent magneti-
zation vanishes at the reverse coercive field strength −HC or for T > TC . The variation
of the magnetization is based on two processes. On the one hand at low magnetic field
strengths, where the external magnetic field is applied along one of the crystallographic
axes (easy axes), the domain walls are shifted. The shifts of the domain walls increase
the size of the domains possessing a magnetization, which is parallel to the magnetic
field. On the other hand at high magnetic field strengths, where the magnetic field is
not applied parallel to a crystallographic axis, a tilting of the magnetic moments along
the direction of the magnetic field is induced.

1.1.2.2 Ferrimagnetism

Ferrimagnetism is observed in materials with at least two ferromagnetically ordered
sublattices with opposed magnetization. If the spins of the sublattices do not fully
compensate each other, a macroscopic magnetization can be observed. The exchange
integral between spins of the same sublattice is positive, whereas the exchange integral
between spins of opposed sublattices are negative. Similar to ferromagnetic materi-
als, the formation of domains can lead to a macroscopic magnetization. The order
parameter is the magnetization. In opposite to ferromagnetism, in general different
temperature dependencies of the magnetization of the sublattices are present. Thus
the macroscopic magnetization within the domains might vanish for a compensation
temperature [52].

1.1.2.3 Antiferromagnetism

Antiferromagnetism is a special case of ferrimagnetism, where the magnetic moments
of the sublattices fully compensate each other within the unit cell. The exchange inte-
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gral is negative. In opposite to ferrimagnetism and ferromagnetism, the macroscopic
magnetization vanishes in the case of antiferromagnetism.

Above the Néel temperature TN the paramagnetic phase is present. The temper-
ature dependence of the magnetic susceptibility in the paramagnetic phase is given
by

χ =
C

T + Θ
, (1.8)

where C and Θ, the paramagnetic Néel temperature, are material-specific constants.
Below the phase transition of second order the spins are aligned antiferromagnetically.
Due to the vanishing of the magnetization, the order parameter is defined to be a non-
vanishing linear combination of the magnetic moments of the unit cell. This definition
is not unique. A constraint for the choice of the magnetic order parameter is that
the magnetic order parameter has to possess the same symmetry as the magnetic
system. In opposite to the magnetization in ferri- and ferromagnetic materials, the
antiferromagnetic order parameter is no physical property.

Beside antiferromagnetism possible ferromagnetic components can be present. The
so-called parasitic ferromagnetism results from a slight misalignment or tilting of the
antiferromagnetically ordered spins. The weak ferromagnetic susceptibility is on the
order of magnitude of 10−3-10−5. Possible explanations are the influence of relativistic
effects [53], magnetic impurities [54] or domain walls [55].

A phase transition from the antiferromagnetic to the ferromagnetic phase is de-
scribed by the metamagnetism, where the spins are aligned along the direction of a
strong magnetic field. In opposite to ferromagnetism, the antiferromagnetic exchange
interaction is overcome by the magnetic field. This effect requires high magnetic fields
on the order of magnitude of 100 T [56].

According to the spin dimensionality n, different models to describe the alignment
of the spins are distinguished. Thereby the spin alignment with the minimal exchange
energy is formed. The Ising model (n=1) describes a system of spins, where the spins
are aligned along one (easy) axis. If the spins are aligned within the (easy) plane,
the XY model (n=2) can be used. The Heisenberg model (n=3) describes a three-
dimensional spin order. Further models as well as the universality classes of phase
transitions are introduced in the Refs. [57, 58, 59].

A frustration of a spin arrangement appears, if no optimal solution for the ex-
change coupling exists. The antiferromagnetic exchange interaction leads to a minimal
exchange energy in the case of antiparallel aligned spins. An example for a frustrated
spin arrangement is the triangular arrangement of spins [60] in the one-dimensional
Ising model. Thereby only two spins can be aligned antiparallel leading to a mini-
mization of the exchange energy, whereas the orientation of the third spin can not be
explained in terms of the exchange energy.

1.1.2.4 Domains

Although in ferromagnetic materials the spontaneous magnetization is saturated be-
low TC , a vanishing of the macroscopic magnetization is possible. The vanishing of
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the macroscopic magnetization can be explained by the presence of domains. Within
a domain the spins are saturated, but different domains might have different order
parameters, which are correlated to the spin orientations. Thus a compensation of
the magnetization of different domains is possible leading to a vanishing macroscopic
magnetization. In the case of antiferromagnetic domains, a distinction by means of the
antiferromagnetic order parameter is possible. Ferromagnetic and antiferromagnetic
domains were postulated by Weiss [61] and Néel [62], respectively. Experimentally
ferromagnetic domains were observed by Barkhausen [63], Hondo and Kaya [64] and
the existence of antiferromagnetic domains was demonstrated by Slack [65] and Roth
[66].

The formation of the domains, e.g. the size and the shape, depends on the total
energy of the system [67, 68]. The domain structure, which minimizes the free enthalpy
G, is formed. In the following the most important contributions to the free enthalpy
are discussed for the ferri- and ferromagnetism:

• The magnetostatic field energy is given by the energy of the magnetic field caused
by the magnetization. This contribution raises with the domain size and thus
prefers the formation of small domains.

• The exchange energy is calculated by the Heisenberg model and the exchange in-
tegral. Due to the coupling of the spins large domains are energetically preferred.

• The wall energy takes into account the transition zones between different do-
mains, which are called Bloch walls in the case of ferromagnetism. Between
different domains the magnetization changes within the distance of many lattice
constants. In order to overcome the exchange energy the wall energy is required.

• The anisotropy energy results from preferential directions for the magnetization
due to the crystallographic structure. The alignment of the spins along such easy
axes leads to a lower anisotropy energy. The other way round, a rotation of the
magnetization by an applied magnetic field requires anisotropy energy.

• The mechanical tension energy is based on the magnetostriction. The magne-
tostriction describes the magnetization induced elastic deformation of the crystal
structure. The other way round, a manipulation of the domain size by mechanical
forces is possible.

In opposite to ferri- and ferromagnetic materials, antiferromagnets possess no mag-
netization and thus the magnetostatic field energy vanishes. Since the magnetostatic
field energy is important for the formation of (small) domains, the explanation of
antiferromagnetic domains is more complicated. Some reasons for the formation of
antiferromagnetic domains are given in the following:

• The free enthalpy G ∝ −TS also depends on the entropy S. A motivating for
the formation of small domains is evident for a temperature T 6= 0, since an
increase of the entropy, which strongly depends on the domain structure, leads
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to a decrease of the free enthalpy. The single domain state is most unfavorable
from the entropy point of view.

• The formation of antiferromagnetic domains can be explained by the influence of
impurities and surface effects on the domain structure. Such pinning effects are
expected to be independent of the temperature.

In this work only antiferromagnetic domains are investigated and thus the following
discussion is restricted to the distinction and characterization of antiferromagnetic do-
mains [69]. Depending on the material, especially its symmetry, different types of
domains, for which the free enthalpy is minimized, have to be considered. From the
symmetry point of view, the total number of domains is given by the ratio of the order
of the symmetry group of the paramagnetic crystal to that of the antiferromagnetic
crystal. Furthermore the domain structure depends on external parameters as tem-
perature or pressure. Also a coexistence of different domain types is possible. In the
following different types of domains are distinguished:

• 180◦ domains always exist paired. The application of the time-inversion trans-
forms both domains into each other. The spins are reversed since time-inversion
reverses the spin direction. 180◦ domains are observed e.g. on chromium oxide
[70].

• Orientation domains can exist, if the magnetic group is a subgroup of the crystal-
lographic point group combined with the time-inversion symmetry. The domains
are transformed into each other by the symmetry elements of the crystallographic
point group, which are not present in the magnetic point group combined with
the time-inversion symmetry. Orientation domains are found e.g. in the spin-flop
phase in chromium oxide [71].

• Configuration domains can be present, if the magnetic symmetry group is no
subgroup of the crystallographic symmetry group.

• Helix domains are given, if the spins are arranged forming a spiral staircase. Helix
domains can be distinguished due to the left-handed or right-handed chirality.

• The incommensurate ordering describes a spin order, where the periodicity of
the spin lattice does not match with a multiple integer of the crystallographic
lattice constant. The spins are not aligned parallel to the lattice vectors. An
arrangement of the spins comparable to the structure of the helix domains is
possible, where a spiral staircase oriented along the optical axis of the crystal is
formed. Incommensurate ordering is found e.g. in copper borate (below 10 K)
[72].

1.1.2.5 Experimental techniques to visualize domains

In this section some experimental methods to investigate the domain structure are
discussed. Ferromagnetic (and also ferrimagnetic) domains can be visualized e.g. by the
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Faraday effect [73]. Different domains can be distinguished due to different orientations
of the magnetization by means of the Faraday rotation. Since the Faraday rotation
depends on the orientation of the magnetization, the polarization dependence of the
transmitted light can be used to identify the domains. If the magnetization is reversed
as in the case of 180◦ domains, the direction of the Faraday rotation is also reverted.
In the case of non-transparent materials the Kerr effect can be used.

Due to the absence of a magnetization in antiferromagnetic domains, methods,
which couple to the magnetization, are not suitable. An alternative method is the
neutron scattering [74, 75]. The neutron scattering is the only method, which provides
a direct coupling to the magnetic moments of the spins, since neutrons possess a mag-
netic moment, but no charge and thus no perturbing Coulomb interaction as in the
case of the electron scattering. Disadvantages of the neutron scattering are the low
spatial resolution (of domains), which is typically about 100 µm, and the long exposure
times, which are required, whereby dynamical effects can not be studied. Alternatively
linear optical techniques as the polarization microscopy [76] can be used, but optical
techniques do not provide a direct coupling to the magnetic moments. A distinction
of antiferromagnetic domains is only possible due to the magnetostrictive deformation
of the crystal lattice causing linear birefringence. However, the birefringence can be
rather small, which limits the detection and the resolution. The first application of
this method was the distinction of the orientation domains in nickel oxide [65, 66].
Another method is the X-ray diffraction technique, which was also applied to nickel
oxide [77, 78].

Nonlinear optical techniques, e.g. the polarization dependent second harmonic
generation (SHG), are also suitable to distinguish between different domains. The
principle of the distinction of different domains is based on the magnetic symmetry
of the domains. A macroscopic approach leads to special selection rules, e.g. for the
polarization. In Ch. 5 a detailed description of this method is given. An advantage of
the nonlinear optical techniques is the high spatial resolution, which is in the order of
a few µm and therefore 1 - 2 orders of magnitude higher compared to the technique of
neutron diffraction. Also in opposite to neutron diffraction methods, which require high
exposure times, the investigation of dynamical properties is possible with nonlinear
optical methods. The possibility to distinguish 180◦ domains is given using phase
sensitive nonlinear optical techniques [79, 80]. The basic principle is the interference of
the time-noninvariant SHG signal with an external reference (see Ch. 4). Only in the
case of a linear coupling of the nonlinear polarization to the antiferromagnetic order
parameter, which means that the SHG intensity depends quadratically on the order
parameter, 180◦ domains can not be distinguished according to their definition (see
Ch. 5).

1.1.3 Magnetic symmetry

In this section a classification of the symmetry groups, which describe the investigated
(magnetic) system, is given. First, point groups and space groups are distinguished [81].
Point groups consider only symmetry operations, which leave one point fixed. Such
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symmetry operations are the spatial rotations SO(3), the spatial inversion Î as well as a
combination of both. Space groups additionally include nontrivial spatial translations
T3∞, whereas these translations can not be described by a linear combination of the
lattice vectors. If the crystallographic symmetries are classified only by spatial rota-
tions, the 11 Laue groups result. With additional inversions, 32 crystallographic point
groups have to be considered. Taking into account also non-trivial translations, the
230 crystallographic space groups (Federov groups) are needed to classify the symme-
tries. In the case of the magnetic symmetries the crystallographic symmetry is broken
by the magnetic ordering of the spins. A consideration of three dimensional space
is not sufficient. The magnetic moments are classically described by the model of a
circular current. The circular motion is described on the basis of the four dimensional
space-time model. Thus also the time-inversion operation T̂ has to considered. With
regard to the time-inversion symmetry, instead of 32 crystallographic point groups one
has to distinguish 122 magnetic point groups (Shubnikov groups [82]). Taking into ac-
count additionally the nontrivial translations, 1651 magnetic space groups have to be
considered. A detailed description of these classifications is given in Refs. [83, 84, 85].

In the majority of cases the symmetries of the optical properties of a crystal are
determined by the point group symmetry only. This results from the fact that the
dimension of the unit cell is negligible compared to the optical wavelength. Thus the
macroscopic properties are invariant with respect to nontrivial translations [86]. For
the macroscopic description of the magnetic properties the magnetic point groups are
of big importance. The magnetic point groups are divided into uncolored, gray and
black-white groups on the basis of the time-inversion symmetry T̂ , which allow different
forms of magnetic ordering:

• The 32 uncolored groups contain all elements of the crystallographic points groups
without the time-inversion symmetry. A description of forms of ferri-, ferro- and
antiferromagnetic ordering is possible

• The 32 grey groups possess the same symmetry properties as the uncolored groups
in combination with the time-inversion symmetry. Due to the time-inversion sym-
metry, dia- and paramagnetism are allowed for these groups. Ferromagnetism is
forbidden since ferromagnetic materials do not possess time-inversion symmetry.
Antiferromagnetism is allowed, if a combination of the time-inversion operation
with a nontrivial translation is a symmetry element of the magnetic system.

• The 58 black-white groups have to be considered, if only a part of the crystal-
lographic symmetry elements combined with the time-inversion operation is a
symmetry operation of the magnetic system. These groups allow ferri-, ferro-
and antiferromagnetism.

1.2 Semiconductors

In this section some properties of semiconductors, which are important for this work,
will be discussed. First, a general consideration of the electronic band structure will
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be given.

In Ch.1.1 the magnetism resulting from electrons, which occupy atomic orbitals
according to Hund’s rules, is discussed. This model is sufficient to describe magnetism,
which results from electrons of inner shells, e.g. for d-electrons of magnetic ions as Cu2+

and Ni2+ in insulating CuB2O4 and NiO, respectively. These atomic states possess
discrete energy levels.

In opposite, the discrete atomic energy levels of electrons of outer shells (e.g. the
4s- and 4p-states of Ga and As in GaAs) are split in solids, leading to the formation
of broad energy bands. Theoretically the band structure can be calculated by different
methods as e.g. the pseudo-potential, the tight binding (LCAO) or the k · p method.
Taking into account the Pauli principle, the bands are filled with electrons up to the
Fermi level. The electronic, magnetic and optical properties of a material depend
strongly on this band structure.

1.2.1 Band structure

According to the conductivity, isolators, semiconductors and metals can be distin-
guished. Isolators possess electronic bands, which are whether completely filled or
empty. In addition the energy distance Eg between the uppermost filled band (valence
band) and the lowest empty band (conduction band) is large (Eg & 10 eV ) and so
the electrons cannot be thermally excited from the valence to the conduction band.
Due to the Pauli principle, the electrons of the completely filled valence band cannot
contribute to the conductivity and a high resistance of R > 1014 Ω cm results. In
metals the bands are partly filled leading to a high number of electrons, which can
contribute to the conductivity, and so the resistance R << 10−2 Ω cm is very low.
In semiconductors for T=0 the bands are whether filled or empty as in the case of
isolators. In opposite to isolators, the energy gap is in the order of a few eV. Due to
the thermal energy, electrons can be excited from the valence to the conduction band
and thus the energy bands are whether nearly filled or nearly empty for T 6= 0 and so
the resistance 10−2 Ω cm < R < 109 Ω cm depends strongly on the temperature and
possesses values between that of metals and isolators [30].

Semiconductors can possess whether a direct or an indirect band gap. Examples
for semiconductor with an indirect band gap are Si and Ge, where the maximum of
the valence and the minimum of the conduction band of the band structure E(k)
are located at different k values. Thus only phonon assisted optical excitations from
the valence to the conduction band are possible with ~ωγ ≈ Eg, since the impulse
conservation law cannot be fulfilled with the (small) photon impulse only. In opposite,
direct semiconductors as GaAs and CdTe reveal a maximum of the valence and the
minimum of the conduction band of the band structure E(k) at the same k value (Γ
point). Thus optical excitations are possible for ~ωγ ≈ Eg. In this work only direct
semiconductors are considered.

Fig. 1.2(a) shows the band structure of GaAs calculated by an empirical tight
binding method [87]. A good description of the band structure near the Γ point can
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Figure 1.2: Band structures: (a) Empirical tight binding calculation for GaAs taken
from Ref. [87], (b) Parabolic approximation for direct band gap semiconductors in the
vicinity of the Γ point.

be also given by the model of free electrons with effective masses (Fig. 1.2(b)). The
dispersion of free electrons is E(k) = ~2k2

2m
. A substitution of the mass m by an effective

mass m∗ takes into account the influence of the periodic lattice potential on the carriers.
The anisotropic effective masses can be determined by the slope of the parabolically
approximated bands in the vicinity of the Γ point with(

1

m∗

)
i,j

=
1

~2

d2E(k)

dkidkj

, (1.9)

where i and j denote cartesian coordinates. In Fig. 1.2(b) the parabolically approxi-
mated conduction and valence bands are shown. The conduction band, labelled with
e, is mainly formed by the s-type wave functions of the atomic orbitals with L = 0
and S = 1

2
leading to the angular momentum J = 1

2
. The symmetry of the conduction

band is Γ6. The valence bands mainly display the p-type wave functions of the atomic
orbitals with L = 1 and S = 1

2
leading to the angular momentums J = 3

2
for the

heavy (Jz = ±3
2
) and light (Jz = ±1

2
) hole bands and J = 1

2
for the so-called split-

off band. The heavy and light hole bands, labelled with hh and lh, respectively, are
described by the symmetry Γ8, whereas the split-off band has the symmetry Γ7. Due
to the higher mass of the heavy holes, the slope of the heavy hole band is smoother
than the slope of the light hole band. The split-off band is separated energetically
by ∆SO from the heavy and light hole bands due to the spin-orbit coupling. In the
case of large spin-orbit splitting, the Γ7 band is fully occupied and does not influence
the optical properties. Also a wide band gap results in a weak coupling between the
conduction and the valence bands. This simplified band structure model provides a
basis for understanding the electronic and magnetic properties discussed below.
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In this work, on the one hand the magnetic properties of the insulators CuB2O4

and NiO are investigated. For these insulators, mostly the (inner) 4d-electrons of Cu
and Ni reflect the magnetic properties of the material. A consideration of the magnetic
moments of the magnetic ions (see Ch.1.1) is sufficient and the band structure of the
insulators can be neglected. However, on the other hand the magnetic properties of dia-
(GaAs, CdTe) and paramagnetic (Cd1−xMnxTe) semiconductors are studied. Here the
consideration of the band electrons is indispensable. Thus in the following free carrier
induced magnetic properties as the Landau diamagnetism (Ch. 1.2.3.2) and the sp− d
exchange interaction (Ch. 1.2.4) are considered.

1.2.2 Excitons

The excitation of an electron from the completely filled valence band to the empty
conduction band of a semiconductor creates an electron-hole pair. If this pair is not
separated, then due to Coulomb interaction the quasi-particle known as exciton is
formed. Bound electron-hole pairs can propagate within the crystal lattice. The
Coulomb interaction between the electron and the hole leads to the exciton binding
energy Eex=1..1000 meV, which depends strongly on the material. Exciton energies
are below the energy necessary for inter-band excitations. The optical creation of an
exciton requires photon energies ~ω >Eg−Eex. Two types of excitons can be distin-
guished. Mott-Wannier excitons possess a low binding energy and thus the averaged
distance between the electron and the hole de−h is large compared to the lattice con-
stant a (de−h >> a). In opposite Frenkel excitons have a large exciton binding energy
leading to de−h ≈ a.

The two particle problem of the Frenkel excitons in the effective mass approximation
can be described by the Schrödinger equation[

p2
e

2m∗e
+

p2
h

2m∗h
− e2

4πε0εr|re − rh|

]
Ψ(re, rh) = E Ψ(re, rh) , (1.10)

where the indices e and h denote electrons and holes and εr is the static dielectric
constant. The dielectric constant takes into account the electrostatic shielding due to
the polarizability of the lattice. Analogue to the hydrogen problem a transformation
to the relative (r) and the center of gravity (R) coordinates can be performed. Using
a separation approach the eigenfunctions can be obtained:

Ψ(r,R) =
1√
V

exp(iKR)φnlm(r) , (1.11)

where V is the crystal volume and normalizes the wave functions. The motion of the
center of gravity is described by plane waves with the wave vector K. The energy
of the center of gravity is given by ~2K2/(2M). Analogue to the hydrogen atom the
relative motion of the electron and the hole is specified using the relative coordinate
r. This leads to the eigenfunctions of the hydrogen atom φnlm(r), where n = 1, 2, 3..
is the main quantum number, l = 0, 1, 2, .., n − 1 is the orbital quantum number and
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Figure 1.3: Exciton en-
ergy levels at Eg-En. (a)
Two particle picture (elec-
tron, hole): Band struc-
ture E(ke) vs. electron
wave vector ke. Exciton
energy levels are schemat-
ically shown below the
conduction band. (b)
One (quasi-)particle pic-
ture (exciton): Exciton
dispersion En(KX) with
exciton wave vector KX .

m = −l,−(l−1), .., 0, .., l−1, l is the magnetic quantum number. Thus the eigenvalues
of the exciton are given by

En = Eg −
µ

meε2
r

Ryd

n2
+

~2K2

2M
, n = 1, 2, 3.. , (1.12)

where Ryd = e4me/[32(πε0~)2] = 13.6 eV is the Rydberg constant and µ = (1/m∗e +
1/m∗h)

−1 is the reduced mass. Only excitons with K = 0 can be excited optically or
recombine emitting a photon, which results from the impulse conservation law and the
low photon impulse compared to the high impulse of the center of mass of the exciton.
Thus the term ~2K2/(2M) in Eq. 1.12 can be neglected.

Fig. 1.3 shows schematically the exciton energy levels and the band structure. The
energy distance between the exciton energy levels and the lowest conduction band
depends on the main quantum number n = 1, 2, 3.. . A creation or an annihilation of
an exciton is only possible, if the electron and the hole are at the same position (r=0).
Therefore only s-like excitons (l=0), which have a non-vanishing probability density at
r=0, will be considered here. The exciton binding energy Eex is 4.2 meV in GaAs and
10 meV in CdTe. An observation of the 1s, 2s, 3s.. excitons is possible in absorption
and luminescence spectra. From the symmetry point of view, a one-photon transition
between the p-like Γ8 valence band and the s-like Γ6 conduction band is allowed in the
electric-dipole approximation. In opposite this transition is not electric-dipole allowed
for a two-photon excitation as e.g. is required for the SHG process investigated in this
work. Thus without an external perturbation, s-like excitons can not be probed with
two-photon excitations. However, p and d excitons are not accessible by one-photon
experiments, but can be visualized in two-photon experiments.

1.2.3 Dia- and paramagnetism of free carriers

Application of a magnetic field to a semiconductor gives rise to various magnetic effects
caused by band electrons. In semiconductors as GaAs and CdTe, where no magnetic
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Figure 1.4: Pauli param-
agnetism: Sub-bands with
spins parallel and antipar-
allel to the quantization
axis (a) without magnetic
field and (b) with mag-
netic field. The splitting
of the sub-bands leads to a
majority of electrons with
spins parallel to the direc-
tion of the magnetic field
(hatched area).

ions are implanted, the free carriers cause Pauli paramagnetism and Landau diamag-
netism. A model to describe both effects is the model of the free electron gas. The
magnetic moment of a free electron is µe = µB(geS+l), where ge = 2 and S = ±1/2 are
the electron g-factor and spin, respectively, and l is the orbital momentum of the free
electron. The effect of the orbital momentum of the band electrons will be discussed
in Ch.1.2.3.2. First, the spin of the free electrons is considered.

1.2.3.1 Pauli paramagnetism

Pauli paramagnetism results from the spin of the band electrons. Fig. 1.4 shows the
electronic density of states N(E) ∝

√
E with and without magnetic field. Without

magnetic field the energy parabola E ∝ N(E)2 for spin up and spin down are not
shifted against each other, since no spin direction is preferential (Fig. 1.4(a)). In a
magnetic field the energy of the electrons with spin parallel to the direction of the
magnetic field is decreased in opposite to electrons with antiparallel spin alignment,
which is a result of the Zeeman splitting

∆Ez = geµBSH . (1.13)

A distinction between the sub-bands with electrons possessing spin parallel or antipar-
allel to the quantization axis, which is given by the direction of the magnetic field, is
necessary (Fig. 1.4(b)). The splitting between the sub-bands is 2µBH. In the case of
a small splitting 2µBH << EF the macroscopic magnetization is proportional to the
hatched area shown in Fig. 1.4(b). The Pauli susceptibility is given by

χPauli
para = µ0µ

2
BN(EF ) , (1.14)

where N(EF ) is the density of states at the Fermi level EF . A weak temperature
dependence of the Pauli paramagnetism results from the temperature dependence of
the chemical potential µ(T ) = EF (1 − O(T 2)), which influences the density of states
N(E, µ(T )). At high temperature the Fermi statistic passes into the Boltzmann statis-
tic leading to the typical temperature dependence of the magnetic susceptibility of free
spins (see Eq. (1.5)).
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Figure 1.5: (a) Allowed
electronic states in k-space
without magnetic field.
(b) In an applied magnetic
field Hz an additional
quantization of the states
appears. The electronic
states condensate at the
Landau cylinders.

In opposite to metals and strongly doped semiconductors, Pauli paramagnetism in
undoped semiconductors (and insulators) is weak. This results from the fact that at
low temperature nearly no free carriers are present in undoped semiconductors. As is
known, for T=0 the density of states at the Fermi level, which is between the conduc-
tion and the valence band for T=0, vanishes and therefore the Pauli paramagnetism
disappears at low temperature.

1.2.3.2 Landau diamagnetism and Landau-levels

In opposite to the atomic diamagnetism discussed in Ch. 1.1, where the orbital mo-
mentum L of the atomic electrons is considered, here the circular motion of the free
electrons (with angular momentum l) caused by an external magnetic field will be
considered.

In the following a description of the motion of non-interacting electrons in a static
homogeneous magnetic field Bz is given in the effective mass approximation. Here the
vector potential A = (0, Bzx, 0) and the Landau gauge divA = 0 are chosen. The
minimal substitution of the momentum operator p → p− eA leads to the Schrödinger
equation [

(pe − eA)2

2m∗e

]
Ψ(re) = EΨ(re) . (1.15)

Here the Zeeman term, which induces the electron spin splitting 2µBBz, is neglected.
A separation approach for the wave function Ψ(re) = χ(x) exp(ikyy) exp(ikzz) enables
to write the Schrödinger equation in the form[

− ~2

2m∗e

d2

dx̃2
+

1

2
m∗e(ω

e
c)

2x̃2

]
χ(x̃) =

(
E − ~2k2

z

2m∗e

)
χ(x̃) , (1.16)

where ωe
c = eB

m∗
e

is the electron cyclotron frequency and x̃ = x− ~ky/(eBz). This is the
Schrödinger equation of an one-dimensional harmonic oscillator, which possesses the
eigenvalues

E = ~ωe
c

(
Ne +

1

2

)
+

~2k2
z

2m∗e
, (1.17)
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Figure 1.6: Landau-levels of
the valence and conduction
band states (solid lines).
Inter-Landau-level transitions
(dashed lines) are determined
by the selection rules ∆N = 0.

where ~ωe
c/2 is the zero point motion of the harmonic oscillator. The eigenfunctions are

given by the product of plane waves in y− and z−direction and the one-dimensional
wave functions of the harmonic oscillator in x−direction, which are described on the
basis of the Hermite polynomials HNe

χNe(x̃) =
1√

2NeNe!

(
m∗eω

e
c

π~

)1/4

exp

(
m∗eω

e
c x̃

2

2~

)
HNe

(√
m∗eω

e
c

~
x̃

)
. (1.18)

The formation of the Landau-levels labeled with Ne = 0, 1, 2, .. corresponds to a
quantization of the motion of the electrons in the plane perpendicular to the direction
of the magnetic field with equidistant, discrete energy levels. The free motion along the
direction of the magnetic field with quasi-continuous eigenenergies leads to a formation
of one-dimensional sub-bands. A quantization constraint is that the relaxation time τ
between electron scattering processes is larger than the period of the circulation of the
electrons T = 2π/ωe

c (ωe
cτ > 1). At low temperature, high magnetic fields and a large

mean free path, which requires a high crystal quality, the electrons rotate with the
cyclotron frequency ωe

c . Then the states of the Fermi sphere (Fig. 1.5(a)) condensate
on the Landau cylinders or Landau-levels (Fig. 1.5(b)). For a non-interacting free
electron gas, and a possible occupation of the Landau-levels with electrons with spin
up and spin down (Zeeman splitting is neglected), the degeneracy of the Landau-levels
is given by

g =
L2eBz

π~
, (1.19)

where L is the length of the crystal.

Analogous to the formation of the Landau-levels from the electronic states of the
conduction bands, which is discussed above, the hole states are quantized in the mag-
netic field and form Landau-levels with the quantum numbers Nh = 0, 1, 2, .. . Due to
the different mass of the holes m∗h, the hole cyclotron frequency is ωh

c and differs from
that of the electrons. The orbital quantized valence bands are described by Eq. (1.17)



1.2 Semiconductors 21

by replacing the index e by h. The Landau-levels of the conduction and the valence
band are shown schematically in Fig. 1.6 by solid lines. Optical transitions between
the Landau-levels of the electron and hole states are so-called inter-Landau-level tran-
sitions (dashed lines). E.g. an electron can be excited from the quantized valence to
the quantized conduction band, similar to the creation of an exciton described above.
Here the spin splitting is neglected. The selection rules for an one-photon excitation
or recombination of an electron-hole pair are ∆N = Ne −Nh = 0.

Beside the optical properties determined by the inter-Landau-level transitions, dia-
magnetism arises from the Landau-level formation. A calculation of the magnetic
susceptibility considering the energy levels of the Landau-levels and their occupation
based on the Fermi statistic, reveals the temperature independent Landau susceptibility

χLandau
dia =

1

3

(
me

m∗e

)2

µ0µ
2
BN(EF ) = −1

3

(
me

m∗e

)2

χPauli
para , (1.20)

where the effective mass takes into account the mobility of the electrons.

Note that at low temperature the magnetism of undoped semiconductors is based
on the atomic magnetism described in Ch. 1.1. However, the optical probe of the
carriers around the band gap can reveal the magnetism displayed by the free carriers.

1.2.4 Diluted magnetic semiconductors (DMS)

In the following the magnetic properties of diluted magnetic semiconductors will be
considered. Well known examples for this group of magnetic materials are the II-
VI semiconductors with magnetic ions as Mn2+. In this work, among other material
systems, Cd1−xMnxTe is studied and thus in the following important properties of
diluted II-VI semiconductors are discussed on the basis of Cd1−xMnxTe, where two
interacting sub-systems are of importance. On the one hand there are delocalized
electrons of the conduction and valence band of the host material (II-VI compound).
The electronic and magnetic properties of sp band electrons are discussed above. On
the other hand the random dilution with magnetic impurity ions introduces localized
magnetic moments. The magnetic properties of localized non-interacting spins are
discussed in Ch. 1.1. New properties arise from the interaction between the spins of the
sp band carriers and the localized spins of the d-electrons of the magnetic ions, which
leads to effects as paramagnetism, ferromagnetism, antiferromagnetism, the formation
of the spin-glass phase, the magnetic-field-induced metal-insulator transition or the
formation of the bound magnetic polaron. Also wide gap semiconductors as (Cd,Mn)Te
feature e.g. giant Zeeman splitting and giant Faraday rotation.

In diluted magnetic semiconductors it is possible to tune the band gap energy and
the magnetic properties by the choice of the host material and the concentration of the
magnetic ions and so provides an opportunity to engineer the electronic and magnetic
properties of a system.
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Figure 1.7: Linear absorption
in Cd1−xMnxTe at 295 K [45].
The band gap absorption for
different values x displays the
dependence of the band gap en-
ergy on the manganese concen-
tration.

1.2.4.1 Band gap shift

Systems like (Cd,Mn)Te, where one of the components (cations or anions or both)
is substituted iso-electronically by other ions, are called ”alloys” or ”solid solutions”.
Substituting ions have the same number of valence electrons and therefore they do not
serve as donors or acceptors. In the case of low Mn2+ content x, the band structure
of the diluted material system resembles qualitatively that of the constituent material
shown in Fig. 1.2(b). Since the diluted system possesses the same crystal structure and
the sp bands originate from the electrons of the constituent atoms, only quantitative
changes are induces by the presence of the magnetic ions. An important point is
that the band gap energy Eg can change strongly with the Mn2+ content. E.g. for
Cd1−xMnxTe the shift of the band gap energy was found to depend linearly on the
manganese concentration x [88, 31]

Eg(T = 300K) = (1.528 + 1.316x)eV,

Eg(T = 80K) = (1.586 + 1.501x)eV,

Eg(T = 10K) = (1.595 + 1.592x)eV,

Eg(T = 4.2K) = (1.606 + 1.592x)eV,

(1.21)

which is predicted by the virtual crystal approximation (VCA). This result is valid
only for x < 0.77. For higher concentrations the crystallographic structure of zinc-
blende-type changes to the NiAs-type, which results in strong changes of the electronic
structure.

The shift of the band gap can be e.g. observed in absorption spectra, where band
gap absorption strongly suppresses the intensity of the transmitted light. Fig. 1.7
shows linear absorption spectra for bulk Cd1−xMnxTe crystals with x = 0.25, 0.35 and
0.4 at room temperature, where the variation of the band gap energy is described by
Eq. (1.21).
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Figure 1.8: Schematic energy
level diagram of the 3d electron
states of Mn2+. In the crystal
field the free ion states are split.
Dashed arrows correspond to
intra-Mn2+ transitions. An ap-
plied magnetic field leads to ad-
ditional Zeeman splitting.

1.2.4.2 d states in crystal and magnetic field

Beside the influence of the magnetic ions on the electronic band structure, also the
magnetic properties of the host material are strongly changed by the magnetic mo-
ments of the impurity ions. The magnetic ions introduce magnetic moments to the
(dia)magnetic host system. In the following, first the optical properties resulting from
intra-Mn2+ electronic transitions are discussed and subsequently the magnetic proper-
ties caused by the electronic d states of the Mn2+ ions are considered.

Fig. 1.8 shows the electronic d states of the manganese ions for the free ion, in the
crystal field and in an applied magnetic field. The free Mn atom has the electronic
configuration (Ar)3d54s2. According to Hund’s rules, the 3d electrons form the ground
state 6S with S=5/2 and L=-2-1+0+1+2=0. The excited states 4P , 4D, 4F and 4G
with L=1,2,3 and 4 are obtained by one spin flip leading to S=3/2, where 4G is the
energetically lowest excited state.

In the crystal the Mn2+ d levels hybridize with the sp bands of the host material
leading to broadened d bands. The crystal field is mainly induced by the four next
neighboring Te anions and lifts the (2L+1)-fold degeneracy. Since the ground state is
not degenerated, no splitting occurs and the resultant state in the crystal field is labeled
6A1 according to the group theoretical transformation properties. The degenerated
excited states 4G are split by the crystal field into the energy levels labeled with 4T1,
4T2,

4E and 4A1 [89]. In the case of the free ion, transitions between the ground state
6S and the excited states 4G are forbidden by the parity and by the selection rule
∆S = 0. In the crystal field the parity is broken since no local inversion symmetry
is given. Also the selection rule ∆S = 0 is not strictly valid because of spin-orbit
coupling. Thus the transition 6A1 →4 T1 becomes allowed and plays an important
role for the optical properties. The transition energy is about 2.2 eV. At high Mn
concentration x & 0.4 around and above 2.2 eV the optical properties are dominated
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by the transition 6A1 →4 T1 and transitions from the valence to the conduction band
can be suppressed. The temperature dependence of the band gap energy and the
intra-Mn2+ transitions have the same qualitative character [31]. Unexpectedly the
transitions 6A1 →4 T1,

4 T2,
4 E,4 A1 have been found to be broadened about 100 meV

even for very low concentration x [31, 90], although they should reflect narrow atomic-
like states/transitions.

In an external magnetic field Bz, the ground state 6A1 splits due to the spin S = 5/2
into six energy levels labeled with mS = −5/2,−3/2,−1/2, 1/2, 3/2, 5/2. The Zeeman
splitting is given by ∆Ez[meV ] = 0.116gMnmSB[T ], where gMn = 2 is the Landé
factor according to Eq. (1.3), and thus is on the order of a few meV below 10 T.
Spin paramagnetism arises with a magnetization given by Eq. (1.2), where J = S and
non-interacting free magnetic moments are assumed.

1.2.4.3 d − d exchange interaction

In real systems the exchange interaction between localized magnetic moments of the
magnetic ions can be of big importance. The exchange interaction is based on the
Coulomb repulsion and the Pauli principle and can lead to long-range magnetic or-
dering. Note that collective phenomena are not induced by magnetic dipole-dipole
interaction, since the interaction energy is too low to explain e.g. the presence of
ferromagnetism at room temperature. Magnetic dipole-dipole interaction is only im-
portant for magnetic properties at temperatures below a few Kelvin. Here magnetic
dipole-dipole interaction will be neglected.

Different forms of exchange interaction can be distinguished:

1. Direct exchange between magnetic ions

2. Indirect exchange via nonmagnetic ions

3. Indirect exchange via free carriers

In opposite to some magnetic materials as e.g. Fe or Cu, where the distance between the
magnetic ions is small and the d orbitals can partially overlap leading to direct exchange
interaction, in diluted magnetic semiconductors the magnetic ions are separated by a
relatively large distance and the exchange interaction is mediated by nonmagnetic ions
or carriers. First, the indirect exchange via nonmagnetic ions will be discussed.

The Hamiltonian to describe the exchange interaction includes an isotropic and
an anisotropic contribution. The isotropic contribution is the Heisenberg Hamilton
operator, which is given by Eq. (1.6). Here only two Mn ion spins at the lattice sites i
and j are considered and the Hamiltonian can be described by [91]

Ĥd−d exchange = Ĥisotropic + Ĥanisotropic, (1.22)

Ĥisotropic = −JijSi · Sj, (1.23)

Ĥanisotropic = −Dij · (Si × Sj), (1.24)
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Figure 1.9: Energy levels of
two antiferromagnetically cou-
pled Mn ions in a magnetic field
(calculated by Eq. 1.26). At
low magnetic fields the antifer-
romagnetic ground state S=0,
m=0 is the lowest state. Due
to the Zeeman splitting with
raising magnetic field succes-
sive the states S=1, m=1 and
S=2, m=2 become the lowest
states. The inset shows the
step-like increase of the magne-
tization [94].

where Jij is the isotropic and Dij is the anisotropic exchange constant. The vector Dij

of the anisotropic Dzyaloshinskii-Moria exchange interaction [53] is perpendicular to
the plane of the two Mn ions and the intermediate Te ion. The coupling of the Mn ions is
mediated via virtual hopping processes of the 5p electrons of the Te ion (superexchange
interaction). This effect is correlated to the pd hybridization. The mediation of the
exchange interaction by anions [92] leads to antiferromagnetic exchange interaction for
nearest-neighbors JNN and next-nearest-neighbors JNNN . In Cd1−xMnxTe the nearest-
neighbors exchange integral JNN=-6.3 K is found to be about five times larger than
JNNN [93].

The Hamiltonian to describe the nearest-neighbors exchange interaction in a mag-
netic field is given by [95]

Ĥ = −2JNNS1 · S2 − gMnµB(m1 + m2)B , (1.25)

where the product of the spin operators S1 and S2 can be calculated by

2S1 · S2 = S2 − S2
1 − S2

2 .

The eigenvalues of the spin operators S2
i are Si(Si + 1) with S1 = S2 = 5/2. Then the

eigenvalues of the Hamiltonian are given by

E = −JNN

(
S(S + 1)− 35

2

)
− gMnµBmSB , (1.26)

where S = 0, 1, .., 5 is the total spin of the two Mn ion system and mS = −5,−4, .., 4, 5
is the magnetic quantum number. The energy levels are shown in Fig. 1.9. At low
magnetic fields the total spin of the ground state of two antiferromagnetically coupled
Mn ions is zero (S=0). The antiferromagnetically coupled ions do not contribute to
the magnetization M . At high magnetic fields (>10 T) the antiferromagnetic exchange
interaction between nearest-neighbors can be overcome leading to a steplike raise of
the magnetization. Considering only nearest-neighbors, steps in the magnetization
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Figure 1.10: Effective
parameters S0(x) and
T0(x) to calculate
the magnetization
in Cd1−xMnxTe ac-
cording to Eq. (1.2)
with the substitu-
tions S → S0(x) and
T → T + T0(x) [96].

appear if gMnµBmSB = 2JNNS(S + 1) is fulfilled. For gMnµBmSB > 2JNNS(S + 1),
the two Mn ion states with S = 1, 2, 3, 4, 5 (mS < 0) are energetically below the
antiferromagnetic ground state S = 0 (mS = 0) of two nearest-neighbors. In Fig. 1.9
the lowest state is shown by the bold line and changes of the lowest state are marked by
circles. The experimental determination of the magnetic field strengths, at which the
steps in the magnetization occur, enable to calculate the nearest-neighbors exchange
integral JNN .

In a more complicated way, antiferromagnetic clusters, which include more than two
antiferromagnetically coupled Mn ions, lead to such a steplike behavior, but the steps
are considerable smaller and appear at lower magnetic fields, since JNN > JNNN >
JNNNN > ... . Thus a linear increase of the magnetization can be observed at high
magnetic fields. Furthermore the exchange constants JNN and JNNN are given for
averaged Mn distances. This averaging leads also to a broadening of the steps and
thus a nearly linear increase of the magnetization.

So the antiferromagnetic d-d exchange interaction leads to a reduction of the mag-
netization in a magnetic field. For high Mn concentration the magnetization of the
Mn system cannot be described by the Brillouin function given by Eq. (1.2) However,
an empirical expression with phenomenological fitting parameters [97] was found to
describe the magnetization sufficiently. This requires the substitutions S → S0(x)
and T → T + T0(x) in Eq. (1.2), where the effective temperature T0(x) influences the
shape of the Brillouin function and the effective spin S0(x) corrects the magnitude
of M . Fig. 1.10 shows the effective parameters, which will be used to calculate the
magnetization in Cd1−xMnxTe in Ch. 3.
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Figure 1.11: Magnetic phase
diagram of Cd1−xMnxTe. At
high temperature and low Mn
concentration x the paramag-
netic phase is present. Due to
the Mn-Mn interaction at low
temperature a short-range an-
tiferromagnetic ordering (spin-
glass phase) is observed. Data
are taken from: phase transi-
tion [100], data a and b [101],
data c [102], data d [103] and
data e [104].

1.2.4.4 Spin glass phase

Beside the paramagnetic phase at high temperature, also a spin-glass phase at low tem-
perature exists in Cd1−xMnxTe [98]. The phase transition between the paramagnetic
and the spin-glass phase is revealed e.g. by a cusp in the temperature dependence of
the static magnetic susceptibility measured at low magnetic fields, especially an irre-
versible remanent magnetization [99] is observed, but no anomaly of the specific heat
is found at the critical temperature Ta. The magnetic phase diagram of Cd1−xMnxTe
is shown in Fig. 1.11.

In the spin-glass phase no long-range magnetic ordering [97] is present and the spins
are macroscopically disordered. Differences are observed between experimental data
obtained using field-cooled and zero-field-cooled sample preparation. The formation of
the spin-glass phase is attributed to the magnetic dipole-dipole and the d−d exchange
interaction [100], which results in a possible frustration of the antiferromagnetic spin
alignment. Since the antiferromagnetic exchange raises with Mn concentration, it is
obvious that the spin-glass behavior is closely related to the presence of clusters.

1.2.4.5 sp − d exchange interaction

Beside the d− d interaction between the magnetic ions also sp− d interaction between
the delocalized s and p band electrons and the localized d electrons of the magnetic ions
is of importance for the magneto-optical properties in diluted magnetic semiconductors.
Here the Zeeman splitting (Eq. (1.13)) and the Landau-level quantization (Eq. (1.17))
in a magnetic field will not be considered, since in wide-gap diluted magnetic semicon-
ductors in many cases these effects can be neglected compared to the giant Zeeman
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splitting discussed below. The fact that the Zeeman and the Landau-level splitting can
be neglected results from the large effective masses m∗e,h and the g-factors ge,h, which
are in the order of magnitude of one, of the sp band carriers.

The sp − d exchange interaction can be described by the Kondo-like exchange
Hamiltonian [105]

Ĥsp−d exchange = −
∑

i

J(r−Ri)Si · σ , (1.27)

where Si and Ri are the spin operator and the coordinates of the i-th Mn ion and r and
σ denote the spin operator and the coordinates of the band electron. J(r−Ri) is the
sp− d exchange integral and the summation over all Mn ions in the crystal has to be
considered. Since the wave functions of the s and p electrons are extended compared
to the dimension of the unit cell, the following approximations can be used:

• In the molecular field approximation instead of the Mn spins Si the thermally
averaged spin < S > is used.

• In the virtual crystal approximation the summation over all Mn ion sites i is
substituted by a summation over all cation sites j weighted with the Mn concen-
tration x.

If the magnetic field is applied along the z axis of the paramagnetic system, the averaged
localized spin < S >=< Sz > and the delocalized spin σ = σz can be substituted by
their z components. Then the Hamiltonian is given by

Ĥsp−d exchange = −xσz < Sz >
∑

j

J(r−Rj) (1.28)

and has the periodicity of the lattice. This enables to use the eigenfunctions of the
undiluted crystal to determine the eigenvalues of Ĥsp−d exchange. The eigenvalues of

Ĥsp−d exchange can be calculated using first order perturbation theory. Then the energy
variations of the conduction and valence bands are given by

∆EΓ6 = xN0α < Sz > mS, mS = ±1

2
, (1.29)

∆EΓ8 =
1

3
xN0β < Sz > mJ , mJ = ±1

2
,±3

2
, (1.30)

where

N0α = < S|J |S > = 220 meV, (1.31)

N0β = < P |J |P > = − 880 meV, (1.32)

are the exchange integrals of the conduction and the valence band using s-like and
p-like eigenfunctions S and P , respectively. The values of the exchange integrals are
given for Cd1−xMnxTe [31]. The averaged localized spin value is given by

< Sz >= S0B 5
2
(

5gMnµBB

2kB(T + T0)
) . (1.33)

A systematic behavior of the exchange constants α and β is found for all Mn, Fe
or Co-based diluted magnetic II-VI semiconductors:
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Figure 1.12: (a) Giant Zeeman splitting of the conduction (Γ6) and valence (Γ8) band
at the Γ point. Electric-dipole allowed one-photon transitions with ∆mJ = 0,±1 are
shown by arrows. In the Faraday geometry (H ‖ k) the optical transitions labeled
with a,b and c,d are allowed in combination with the emission of σ+ and σ− circular
polarized light, respectively. The transitions e and f are excitable with linear polarized
light in the Voigt geometry (H ⊥ k). (b) Giant Zeeman splitting of the exciton of
Cd0.9Mn0.1Te as a function of the magnetic field in the Faraday configuration [106].

• The exchange constants have opposite sign: α > 0 and β < 0.

• The absolute value of β is larger than that of α: |β| > |α|.

• The Mn concentration does not influence the exchange constants: α 6= α(x) and
β 6= β(x).

The physical explanation for this behavior is given by two competing mechanisms [107]:

• The 1/r-Coulomb potential leads to an exchange interaction between the s and
p band carriers and the d electrons and gives a positive contribution to the ex-
change integrals αpot > 0 and βpot > 0. Thus the Coulomb interaction favors a
ferromagnetic alignment of the band carriers and the localized electrons.

• The hybridization of the wave functions of the p band electrons and the d electrons
gives a negative contribution to the exchange integral βhybrid > 0 and so favors an
antiferromagnetic alignment of the p band electrons and the localized d electrons.
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From the symmetry point of view, the s− d hybridization is forbidden at the Γ
point and thus αhybrid = 0 vanishes and is determined only by the Coulomb
interaction α = αpot > 0.

Furthermore the contribution of the p − d hybridization is found to be stronger than
the contribution of the Coulomb potential, which explains the relation |β| > |α| and
the absolute value of β = βpot + βhybrid < 0. Concluding, α and β are dominated by
s − d and p − d interaction and thus correlated to the conduction and valence bands,
respectively.

Fig. 1.12(a) shows schematically the giant Zeeman splitting of the valence and the
conduction bands. Electric-dipole allowed one-photon transitions with ∆mJ = 0,±1
are shown by arrows. In the Faraday geometry (H ‖ k) the optical transitions labeled
with a,b and c,d are allowed in combination with the emission of σ+ and σ− circular
polarized light, respectively. The transitions e and f are excitable with linear polarized
light in the Voigt geometry (H ⊥ k). The optical transitions shown by arrows display
the exchange splitting of the free-exciton ground state (to be compared to two-photon
transitions discussed in Ch. 3). Fig. 1.12(b) shows this exchange splitting of the exciton
[106]. Typical values of ∆EGZ are on the order of 10-100 meV at low temperature and
high magnetic field and depend strongly on the concentration of the magnetic ions. In
Cd1−xMnxTe, ∆EGZ varies up to about 120 meV.

The magneto-optical properties are strongly influenced by this giant Zeeman split-
ting. Moreover a wide spectrum of features is induced by the sp − d exchange inter-
action. Giant Faraday rotation is due to a large difference in dispersion for opposite
circular polarizations of light in the Faraday geometry, which is also induced by the
giant Zeeman splitting. Another example is the magnetically induced semiconductor-
semimetal transition in narrow-gap DMS [31]. Furthermore magnetic ordering phe-
nomena as the magnetic polarons as well as antiferro- and ferromagnetic coupling can
be induced by the sp− d exchange interaction.

1.3 Nonlinear magneto-optics

1.3.1 Nonlinear optics

The development of the laser in 1960 by Maiman [108] based on the theoretical con-
siderations by Schawlow and Townes [109] provided a basis for experimental nonlinear
optics. By means of lasers, the generation of light fields with a field strength of >106

V/m became possible. Such high field strengths enable to excite electronic transitions
by multiple photons. The excitation leads to a nonlinear polarization P describing the
amplitude of the dipole moment in the material. The polarization is Taylor expanded
in ascending powers of the electric field E

Pi = ε0

3∑
j=1

χ
(1)
ij Ej + ε0

3∑
j,k=1

χ
(2)
ijkEjEk + ε0

3∑
j,k,l=1

χ
(3)
ijklEjEkEl + . . . , (1.34)
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where χ(m) is the electric susceptibility of m-th order and ε0 is the dielectric constant.
At low field strengths the higher order terms are negligible compared to the linear
term χ(1) representing the linear response of the material to the electric field. However
the nonlinear response of the material to the electric field becomes important for high
field strengths. The second term of the Taylor expansion describes different nonlinear
processes explained in the following. Solving the equation Pnl = ε0χ

(2)E1E2 with the
approach Ei ∼ eiωit + e−iωit leads to the nonlinear polarization Pnl ∼ ei(ω1+ω2)t +
ei(ω1−ω2)t + . . ., where ω1 and ω2 are the frequencies of the incident light waves. The
first term describes the sum frequency generation (SFG), whereas photons with the
frequency ωSFG

3 = ω1 + ω2 are generated. The special case ω1 = ω2 represents the
second harmonic generation (SHG), which is used as a tool to investigate the magnetic
properties of different materials in this work. SHG was studied first by Franken using
a ruby laser to generate SHG in quartz [1]. The second term reproduces the difference
frequency generation (DFG), whereas photons with the frequency ωDFG

3 = ω1−ω2 are
generated. Another process described by χ(2) is the optical parametric amplification
(OPA). Thereby a weak signal can be amplified by means of the optical parametric
amplification. The optical parametric oscillation explains the effect that an incident
light wave (P) is split into two light waves, the signal (S) and the idler (I) light wave,
whereas the photon energies are correlated by ωP = ωS + ωI . This effect is used to
realize the optical parametric oscillator (OPO), which is explained in more detail in
Chapter 1.3.4.2. The third and also higher terms of the Taylor expansion describe
multiple photon processes, where more than three photons are involved (e.g. the third-
harmonic generation (THG)). Nonlinear processes offer a higher degree of freedom
compared to linear optical processes. The increased degree of freedom derives from
the possibility to chose the propagation direction as well as the polarization of each
involved photon independently. Due to different selection rules, some transitions can
be excited with nonlinear processes, which are forbidden for linear optical processes.
This enables to use nonlinear optical techniques to obtain complementary or hardly
accessible information about the properties of the investigated system. In the following
the nonlinear polarization will be used as a source in the inhomogeneous wave equation
in Chapter 1.3.1.1.

1.3.1.1 Nonlinear wave equation

The self-contained electromagnetic theory is based on the Maxwell equations and the
Lorentz force [110]. The propagation of electromagnetic waves can be derived from the
Maxwell equations

div E =
ρ

ε0

, (1.35)

div B = 0 , (1.36)

rotE = −∂B

∂t
, (1.37)

rotB = ε0µ0
∂E

∂t
+ µ0j , (1.38)
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whereas E and B are the electric and the magnetic field, ρ and j are the electric
charge density and the electric current, and ε0 and µ0 are the permittivity and the
permeability, respectively. Thereby the electric charge density ρ and the electric current
j can be described by means of a multipole expansion [111]

ρ = ρ0 − div P− grad(div Q̂) + . . . (1.39)

j = j0 + rotM− ∂

∂t
div Q̂ + . . . (1.40)

where P is the electric dipole moment, M is the magnetic dipole moment and Q̂ is the
electric quadrupole moment.

In the case that no free carriers and currents are present in the material, the terms
ρ0 and j0 vanish. Applying the operation O× to Eq. 1.37 and using the Eqs. 1.35 and
1.38, the inhomogeneous nonlinear wave equation

rot(rotE) + ε0µ0
∂2E

∂t2
= −µ0

∂2P

∂t2
− µ0rot

∂M

∂t
+ µ0div

∂2Q̂

∂t2
(1.41)

can be obtained. The nonlinear sources are given by terms of the electric dipole, the
magnetic dipole and the electric quadrupole. Considering the SHG, the terms can be
written as follows:

electric dipole moment : Pi(2ω) = ε0χ
(ED)
ijk Ej(ω)Ek(ω) , (1.42)

magnetic dipole moment : Mi(2ω) =
c

ε0n(ω)
χ

(MD)
ijk Ej(ω)Ek(ω) , (1.43)

electric quadrupole moment : Qij(2ω) =
ε0c

2iωn(ω)
χ

(EQ)
ijkl Ek(ω)El(ω) . (1.44)

The leading order term is given by the electric dipole moment. Higher order terms con-
tribute significantly to the SHG signal if whether the electric dipole term is forbidden
(see Ch. 5.2.2) or the higher order terms are enhanced (see Ch. 2.6).

1.3.1.2 Second harmonic generation (SHG)

The process of the second harmonic generation is shown schematically in Fig. 1.13. Two
photons of the light field E(ω) excite the ground state. The first photon creates an
excitation from the ground state |g > to an intermediate state |i >. The intermediate
state can be a virtual state or a real eigenstate, which is excited during a short time
range ∆t obeying the Heisenberg uncertainty principle ∆E ·∆t ≥ ~. Here ∆E is the
energy difference between the energy of the exciting photon and the difference between
the energies of the excited state and the ground state. The second photon can generate
the transition from the intermediate state to the final state during the time ∆t. The
final state decays by coherent emission of a photon creating the light field E(2ω).

The quantum mechanical description of the process of second harmonic generation
is given by means of the transition probability [112]

ωfg ∝
∑

i

< g|ĤWW (2~ω)|f >< f |ĤWW (~ω)|i >< i|ĤWW (~ω)|g >

(Ef − Eg − 2~ω)(Ei − Eg − ~ω)
, (1.45)
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Figure 1.13: Illustration of the SHG
process. Two photons of the light field
E(ω) generate an excitation from the
ground state to the final state. In a
coherent process the SHG light field
E(2ω) is generated. The intermediate
states can be real or virtual states.

where Eg, Ei and Ef are the energies of the states |g >, |i > and |f >, respectively, and

ĤWW (~ω) and ĤWW (2~ω) are the operators specifying the interaction. The summation
takes into account all possible intermediate states. The interaction between light and
matter is described by the interaction Hamilton operators considered in Ch. 1.3.1.3,
which are given by the electric dipole operator, the magnetic dipole operator, the
electric quadrupole operator or higher order terms. The denominator of Eq. 1.45
reveals resonances in the cases that the energy of the first exciting photon is close to
the energy difference between the intermediate state and the ground state or the energy
of the emitted photon is close to the energy difference between the final state and the
ground state. Close to resonances the transition probability increases strongly. This
effect leads to very strong and spectrally narrow SHG signals.

1.3.1.3 Light-matter interaction

The interaction between light and matter is described by the Hamiltonian discussed in
the following. In the case of non-interacting electrons the Hamilton operator depends
on the properties of the particles, which are given by the mass m, the charge q = −e
and the momentum p. The influence of the periodic structure of the crystal is taken
into account by the potential V . In an electromagnetic field the minimum substitution
of the momentum operator p̂ → p̂ − eÂ, where Â is the vector potential, and the
consideration of the energy contribution of the electric field E and the magnetic field
B leads to the Hamiltonian

Ĥ =
∑
e−

[
1

2m
(p̂− eÂ)2 − eV ] +

ε0

2

∫
(E2 + c2B2)d3r (1.46)

=
∑
e−

(
p̂2

2m
− eV ) + (

e2

2m
Â2 − e

m
p̂Â) +

ε0

2

∫
(E2 + c2B2)d3r (1.47)

= ĤElectrons + ĤInteraction + ĤFields . (1.48)

Thereby the transformation of the Hamiltonian enables to separate the contributions
ĤElectrons, ĤInteraction and ĤFields. ĤElectrons is a contribution which reflects the motion
of non-interacting electrons in the potential V . ĤFields describes the energy contri-
bution originating from the electric and magnetic fields. The interaction between the
applied fields (e.g. the light fields) and the charged particles is described by ĤInteraction.
The nonlinear part Ĥ ′Interaction = e2

2m
Â2 explains the diamagnetic properties of the ma-

terial. For example the diamagnetic shift of the exciton energy in semiconductors,
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which is proportional to H2, can be described with this term. In the following the lin-
ear part Ĥ ′′Interaction = −e

m
p̂Â, which describes the interaction between light and matter

and explains transitions between the eigenstates |g >, |i > and |f >, is considered.
Using a multipole expansion of the vector potential

Â = A0êe
±ik(ω)r ≈ A0ê(1± ik(ω)r), (1.49)

it is possible to distinguish different transitions. Here ê is the unit vector and A0 is
the amplitude of the vector potential. The first term of the multipole expansion in
Eq. (1.49) leads to the electric dipole term ĤED = eEr. The second term reveals
the magnetic dipole term ĤMD ∼ k × µ, where µ is the magnetic moment, as well
as the electric quadrupole term ĤEQ ∼ (kr)(eEr). These operators can be inserted
into Eq. (1.45) to calculate the transition probability for each process. Thereby the
magnetic dipole and electric quadrupole processes are weaker by a factor of the fine
structure constant α ' 1

137
compared to the electric dipole process [112]. In many

cases the optical approach kr << 1 is suitable, since λ = 2π
k

is much larger than the
lattice constant a ∼ |r|. Therefore usually only the electric dipole term is considered.
It will be shown in Ch. 2.6, that this is not always sufficient, especially for the case of
magnetic-field-induced SHG in semiconductors.

1.3.2 Magnetic second harmonic generation (SHG) contribu-
tions

Beside the ”crystallographic” SHG contribution χ
(2)
ijk different SHG contributions re-

flecting the magnetic properties of the material can occur. One example is the magnetic
SHG contribution which is observed in NiO and will be discussed in Ch. 5. This contri-
bution displays the long-range ordering of the magnetic moments. Another example is
the magnetic-field-induced SHG contribution, e.g. observed in semiconductors (Ch. 2).
In this case the magnetic SHG contribution can be only observed in an applied magnetic
field. In opposite to the crystallographic SHG contribution the magnetic SHG contribu-
tion allows the investigation of the magnetic properties determined by the spins within
the material. The spins are magnetic moments, which can be described by a current
density j(r). Since the current density changes its direction under time-inversion, also
the magnetic moments and therefore the spins are inverted. Thus the magnetic SHG
contribution in magnetically ordered materials behaves as a c-tensor in many cases.
An exception is e.g. NiO, since the magnetic SHG contribution depends quadratically
on the antiferromagnetic order parameter and therefore is described by an i-tensor
[113]. In opposite the crystallographic SHG contribution is always time-invariant and
characterized by an i-tensor.

In the case that the system is magnetically ordered and the magnetic SHG con-
tribution is time-noninvariant another restriction for the magnetic SHG results. The
application of the time-inversion leads to a change of the sign of the nonlinear sus-
ceptibility in the magnetically ordered phase, whereas in the magnetically disordered
phase, reflecting only the crystallographic symmetry, the sign of the susceptibility does
not change. Therefore the magnetic SHG contribution must vanish in the magnetically
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disordered phase and only the crystallographic contribution is observable. This effect
is observed e.g. in CuB2O4.

In the case of magnetically disordered materials, e.g. diamagnetic or (diluted) para-
magnetic semiconductors, the nonlinear susceptibility is time-invariant and therefore
described by an i-tensor. The application of a magnetic field induces the magnetic
SHG.

Due to the fact that the magnetic SHG contribution is, according to experience,
orders of magnitude weaker than the crystallographic contribution [114], the determi-
nation of the non-vanishing tensor components is necessary to separate the crystallo-
graphic and the magnetic contribution by means of polarization selection rules. This
concept is used for the detection of the magnetic SHG contribution in this work.

1.3.3 Symmetry of tensors

The symmetry is of particular importance in physics. The consideration of symmetry
allows to determine fundamental laws. For example the conservation laws of energy,
momentum and angular momentum are based on the homogeneity of time and space
and the isotropy of space, respectively [115]. The symmetry of a system allows to
determine symmetry constraints of physical properties, e.g. whether a physical process
is allowed and which tensor components are involved. Therefore the basic is given
by the Neumann principle [83, 85]. The Neumann principle reveals that the physical
properties of a system possess at least the same symmetry properties as the system
itself. Therefore the application of each symmetry operation of the system to the
tensors describing its physical properties should display the invariance of the tensors.
This leads to a set of linear equations, which has to be solved to obtain constraints for
the vanishing of tensor components. Thus the description of the physical property is
simplified.

The optical properties of solid states considered in this work are described by the
optical nonlinear susceptibilities. These susceptibilities are characterized by a tensor
of rank n. The general transformation of a tensor χ̂ is given by

χ′ijk...n =
∑

p

∑
q

∑
r

. . .
∑

u

lipljqlkr . . . lnuχpqr...u , (1.50)

where the transformation matrix is composed by the tensor components lxy. By means
of Eq. 1.50, transformations of the coordinate system of the tensor can be performed
using rotation matrices. Such transformations are used in this work to calculate the
rotational anisotropy of the SHG signal. A detailed description of the calculation of
the rotational anisotropy is given in Ch. 5.

Tensors can be classified by means of their transformation properties. The inversion
operator Î transforms the spatial coordinates r → −r. This leads to an inversion of
the chirality of the coordinate system. Tensors can be classified to be polar or axial
tensors depending on their properties with respect to the inversion operation:

polar tensor : χ′ijk...n = lipljqlkr · . . . · lnu · χpq...u , (1.51)

axial tensor : χ′ijk...n = −lipljqlkr · . . . · lnu · χpq...u , (1.52)
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where Einstein’s sum convention has to be considered. The components of the inversion
matrix (lij) are given by lij = −δij using the Dirac’s delta function. The eigenvalues
of the parity operator are PÎ = ±1, since twice application of the operator should
re-establish the primary handedness.

The theoretical consideration of the time-inversion operation T̂ is based on the for-
mal substitution t → −t. Similar to the inversion operation, the eigenvalues of the
time-inversion operation are PT̂ = ±1. Twice application leads to the primary ”direc-
tion of time”. Tensors, which change sign under time-inversion, are called c-tensors
(change tensor), whereas tensor, which are invariant under time-inversion, are called
i-tensors. The consideration of the time-inversion operation is only reasonable, if no di-
rection of time is preferential. Considering macroscopic systems, which maximize their
entropy in order to achieve a thermodynamical state of equilibrium, the time-inversion
operation is not suitable. This is the case if dissipative processes (e.g. absorption effects
or transport properties) are involved. In the case of dynamical effects, e.g. propagating
electromagnetic waves exciting a crystal, the time-inversion of such dynamical effects
has to be considered as well. Often the terminology of reciprocal and non-reciprocal ef-
fects is used instead of i- and c-tensors. In this work the terminology of i- and c-tensors
is chosen.

The classification of a tensor using space inversion as well as time inversion and the
symmetry of the system enables to determine its non-vanishing tensor components.
These non-vanishing tensor components can be determined by means of books dis-
cussing group theory [83, 84]. Note that tensor components, which are allowed by
symmetry, might be weak or forbidden by another reason. The other way round the
vanishing of forbidden tensor components is unconditional.

The determination of the selection rules for the SHG process enables to simulate
the SHG anisotropy. This is a powerful tool to get insight into the involved SHG
mechanisms as will be shown in Ch. 2. Another possibility is to determine the symmetry
of a system by means of the observed non-vanishing tensor components (see Ch. 4.3.5).

1.3.4 Experimental setup

In order to generate a detectable SHG intensity in the sample, a high intensity of the
incident light is required. Additionally, for SHG spectroscopy a tunable light source
is indispensable. Therefore a laser system consisting of a Nd:YAG laser and a BBO-
based optical parametric oscillator (OPO) is used. The magnetic properties of the
investigated materials are studied at low temperatures and in high magnetic fields
generated by a split-coil cryostat.

1.3.4.1 Nd:YAG-laser

As a light source a solid-state Nd:YAG laser pumped by flash lamps is used. The
optically active material consists of a yttrium aluminium garnet crystal doped with
neodymium. The Nd:YAG laser is operated at a fixed repetition rate of 10 Hz with
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Figure 1.14: Optical compo-
nents of an OPO: The OPO
consists of a pivoted BBO crys-
tal and a resonator with di-
electric mirrors (reflection co-
efficients Ri). The third har-
monic of the light emitted by
a Nd:YAG laser generates two
light waves with different fre-
quencies, the so-called signal
and idler light waves, in the
BBO crystal.

a pulse duration of 7 ns. A maximum pulse energy of 850 mJ at 1.17 eV (1064 nm)
can be reached. The laser is Q-switched by a Pockels cell and generates light with
a spectral line width of about 0.1 meV. Two KD*P (KH2PO4) crystals stabilized in
temperature serve to generate the second and, subsequently, the third harmonic of
the fundamental light wave at 2.33 eV (532 nm) and 3.49 eV (355 nm), respectively.
The efficiency of the generation of the third harmonic is about 20 % with respect to
the energy of the fundamental light wave. The third harmonic, which is separated
from the second harmonic and the fundamental light wave by dielectric mirrors and a
Pellin-Broca prism, is used to pump the OPO.

1.3.4.2 Optical parametric oscillator (OPO)

The optical parametric oscillator consists of a nonlinear crystal in an optical resonator.
Fig. 1.14 shows schematically the operating mode of an OPO. The OPO is pumped
by the third harmonic of the Nd:YAG laser. In a nonlinear process the incident light
field (P) induces two light fields, the so-called idler (I) and signal (S) beams, where
conventionally the light wave with the higher energy is termed signal. This process
corresponds to the reversed sum-frequency generation. The special case, that the
energies of the idler and the signal light wave are equal, represents the reversed SHG
process.

Conservation of energy and momentum for the nonlinear process of the parametric
oscillation are given by

Conservation of energy : ωP = ωS + ωI , (1.53)

Conservation of momentum : nP ωP = nSωS + nIωI , (1.54)

with ki = niωi/c,

where ωi is the frequency, ki is the wave number and ni is the refraction index of
the light wave i. The energy of the idler and signal light wave are tuned using the
phase matching condition given by Eq. 1.54, which is satisfied using the birefringence
in anisotropic crystals. Thereby the ordinary incident third harmonic of the Nd:YAG
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Figure 1.15: Dispersion rela-
tion of a BBO crystal calcu-
lated by the Sellmeier formula.
The energies of the idler and
signal light waves are given as
a function of the tuning angle
between the propagation direc-
tion of the incident light wave
and the optical z axis of the
BBO crystal. For the exper-
iments the idler light wave is
used in the energy range from
0.6-1.6 eV (emphasized line).

laser is polarized perpendicular to the extraordinary idler and signal light waves. The
phase matching condition is fulfilled by a rotation of the BBO crystal (as shown in
the following) and so varying the extraordinary refraction indices nS and nI (so-called
type-I OPO). This leads to a tuning of the respective energies.

The OPO resonator consists of two dielectric mirrors. These mirrors are arranged in
the plan-parallel Fabry-Perot configuration [116]. The third harmonic of the Nd:YAG
laser is injected through the first mirror. The idler and signal light wave are extracted
by means of the second mirror. Specific wideband mirrors, which are suitable for the
full spectral range of 0.4-3.1 eV, are used and possess a reflectivity of 99 % and 70 %,
respectively, with respect to the signal energy.

The nonlinear crystal beta barium borate β-BaB2O4 (BBO) with a special antire-
flection coating for the third harmonic (355 nm) of the Nd:YAG laser is used. The
crystal possesses the symmetry C3v and features strong birefringence. This enables to
tune the phase matching condition in a large idler and signal energy range using only
small angles of rotation of the crystal [117]. Due to the low dispersion and the high
transmission in the energy range 0.4-6.5 eV, a large spectral range is accessible [118]. In
the case that the BBO crystal is pumped by the third harmonic of the Nd:YAG laser,
the OPO can be in principle used as a light source in the spectral range of 0.5-3 eV. In
this study only the idler light wave is used, permitting spectroscopic experiments in the
range of 0.6-1.6 eV and thus allowing measurement of SHG spectra from 1.2 to 3.2 eV.
The intrinsic line width of an BBO-based OPO varies from ∼1 meV at ~ωI = 0.6 eV
to &30 meV at ~ωI = 1.75 meV. Injection seeding is a possibility to reduce the line
width to ∼0.01 meV. In this work a monochromator is used to improve the spectral
resolution of the SHG signal. The used type-I OPO features an angle of 30 % between
the surface normal and the optical axis. Fig. 1.15 shows the dispersion relation of such
a type-I BBO crystal given by the Sellmeier formula. Thereby refraction indices are
calculated analytically [118]. Only relative small tuning angles of 25-33◦ are necessary
to tune the idler and signal energies in the wide range aforementioned. The maximum
conversion efficiency IS+II

IP
of a BBO crystal with a length of 15 cm is about 30 %.

For the SHG experiments the idler light wave is used and the signal light wave and
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the third harmonic of the Nd:YAG laser are suppressed by optical filters. A maximum
pulse energy of the idler light wave of 10 mJ at 2.3 eV can be reached, where the pulse
duration is about 5 ns.

A detailed study of the spectral properties of optical parametric oscillators using
BBO is given in Ref. [119].

1.3.4.3 Experimental configuration

The idler light wave of the OPO is used to investigate the SHG signal in transmission
and reflection geometry. Proper polarizations of the fundamental (idler) light wave
are chosen by the use of a Glan-Thompson prism and a computer-controlled rotatable
achromatic half-wave plate (application range: 0.5-1.77 eV). In some experiments, the
SHG signal is exited by circularly polarized light and circularly polarized light (SHG)
are detected, which is achieved by using achromatic quarter-wave plates. The incident
light is focussed onto the sample mounted inside of a superconducting split coil cryostat.
External magnetic fields up to 11 T are applied in the Voigt geometry perpendicular
to the direction of the light propagation or in the Faraday geometry parallel to the
direction of light propagation. In the Voigt geometry the magnetic field is aligned
exactly perpendicular to the direction of light propagation in order to avoid Faraday
rotation of both, the fundamental and the SHG light polarization within the sample
and the windows of the cryostat. The sample temperature is varied from 1.6 up to 300
K. The observed SHG intensities are normalized by the squared pulse energy of the light
transmitted through the sample using a quartz plate and a joule meter. A computer-
controlled rotatable polymer polarizing foil is used to investigate the SHG polarization.
Optical filters are used to separate the fundamental and SHG light behind the sample.
In order to suppress scattered light as well as two-photon luminescence, which is strong
in semiconductors at low temperatures, a double pass prism monochromator with a
resolution of 0.5-10 meV is used. Finally the transmitted SHG light is focussed onto a
liquid nitrogen-cooled charge-coupled-device camera (CCD). The CCD chip possesses
a resolution of 1024×256 pixel elements with a pixel size of (25 µm)2 and provides
sensitivity in the spectral range of 1.1-4 eV (Si chip). However, high sensitivity is only
given in the range 1.2-3.5 eV, which fortunately coincides with the spectral SHG range
accessible with the idler beam of the OPO. The integrated SHG signal is transmitted
to a computer. A special computer program controls the OPO and the simultaneously
driven monochromator, the polarizing components, the strength of the magnetic field
as well as the temperature within the cryostat and the CCD camera. Fig. 1.16 shows
the experimental setup.

Rotational anisotropy of the SHG signal can be measured by rotating the polariza-
tion planes of the incident and SHG light wave simultaneously. The polarization plane
of the incident beam is controlled by a rotation of the achromatic half-wave plate, and
the polarization plane of the detected SHG light wave is chosen by a proper orientation
of the polymer polarizing foil.
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Figure 1.16: Experimental Setup: SHG/THG: second/third harmonic, OPO: optical
parametric oscillator, GP: Glan prism, WP: λ/2 wave plate, L: quartz lens, F: opti-
cal filter, Ref: reference (joule meter), Q: fused quartz plate, A: analyzer foil, MC:
monochromator, PC: computer, CCD: charged-coupled-device camera.



Chapter 2

Diamagnetic semiconductors

Most of the undoped semiconductors such as Si, Ge, GaAs, CdTe are diamagnets. Their
atomic or ionic structure is spin-compensated and therefore the interaction with an
applied magnetic field occurs mainly via orbital degree of freedom. Thus the interaction
with an applied magnetic field is very weak and characterized by a negative magnetic
susceptibility with a negligible temperature dependence [30].

In this section second harmonic generation (SHG) in diamagnetic semiconductors
will be discussed. GaAs has been chosen for the present study since it is one of the
most important semiconductors both for fundamental physics and for technological
applications. Recent publications show the continuing interest to the nonlinear optical
properties of this material [24, 120, 121, 122].

In this work, second harmonic generation is studied in the semiconductor gallium
arsenide (GaAs) in a broad spectral and temperature range. Magnetic-field-induced
SHG (MFISH) in the spectral range near the band gap in GaAs is observed. MFISH
spectra reveal well-defined polarization properties and characteristic magnetic-field
and temperature dependencies. The polarization properties investigated by rotational
anisotropy are explained by model calculations based on a phenomenological analysis.
The rotational anisotropy of the MFISH signal distinctly differs from that obtained
in the electric-dipole approximation. Therefore nonlocal contributions in the nonlin-
ear optical susceptibility, indicating that nonlinear magneto-optical spatial-dispersion
comes together with the electric-dipole term, must be involved in order to explain the
MFISH signal. Optical transitions between Landau-levels are found to be responsi-
ble for the observed MFISH spectra. Therefore orbital quantization is the source of
magnetic-field-induced SHG in diamagnetic III-V semiconductors such as GaAs. These
mechanisms of magnetic-field-induced SHG are also important for other semiconduc-
tors. Cadmium telluride (CdTe) serves as an example for a II-VI semiconductor. Fur-
thermore the influence of the sample quality on the MFISH signal is discussed for GaAs
and (Cd,Mg)Te. For this study only semiconductors possessing zinc-blende structure
are chosen. Their advantage is the possibility to suppress fully the crystallographic
SHG by a proper sample orientation and, thus, MFISH can be studied without per-
turbing crystallographic SHG contribution.
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2.1 Crystal structure

GaAs crystallizes in the cubic space group P43m. The corresponding point group
symmetry is 43m. Fig.2.1 shows the unit cell, where the lattice constant is a = 5.65 Å.

Figure 2.1: Crystal Structure of GaAs. Ga3+ and As3− ions occupy two fcc lattices
shifted by a quarter of the diagonal along a 〈111〉 axis. The unit cell is shown along
〈001〉 (a) and 〈110〉 (b) direction.

Two fcc lattices which are shifted by a quarter of the diagonal along a 〈111〉 axis and
occupied by Ga3+ and As3− ions, respectively, build up the crystal.

The symmetry group 43m, describing the investigated semiconductors GaAs, CdTe
as well as Cd1−xMgxTe and Cd1−xMnxTe, contains the symmetry elements

1 , 3(2) , 6(2) , 4(±3) , 3(±4) , (2.1)

where e.g. 3(±4) denotes a fourfold rotation around one of the three symmetry axes
followed by an inversion operation [83].

2.2 Polarization selection rules for SHG

Based on the crystallographic symmetry discussed above, the selection rules for dif-
ferent SHG processes will be determined and used as a basis for the analysis of the
rotational anisotropy of SHG signal. Since the crystallographic electric-dipole SHG
process is the simplest process, which in most cases provides the strongest SHG con-
tribution, it will be discussed first. However, this work is focussed on SHG processes
induced by the application of an external magnetic field, i.e. on magnetic-field-induced
SHG (MFISH). In order to detect the MFISH contributions, experiments are performed
for specific crystal orientations, where the crystallographic SHG is fully suppressed due
to symmetry reasons.

Since the crystal is non-centrosymmetric, SHG is allowed in the electric-dipole (ED)
approximation. Then the leading order SHG polarization P(2ω) can be written as [3, 4]

Pi(2ω) = ε0χijkEj(ω)Ek(ω), (2.2)
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where E(ω) is the electric field at the fundamental frequency. This equation defines
the crystallographic contribution to SHG. The nonlinear SHG susceptibility χijk has
been investigated in several works [24, 123]. Microscopically, χijk is given by the non-
centrosymmetric part of the electric charge density. It is a polar third-rank tensor with
non-vanishing components [83]

χxyz = χxzy = χyxz = χyzx = χzxy = χzyx, (2.3)

where x, y and z denote the crystallographic axes.

In the following the polarization dependence of the SHG signal, namely its rota-
tional anisotropy, will be calculated for different experimental geometries. For that
purpose the tensor components given by Eq. (2.3) with respect to the crystal coordi-
nate system will be first transformed into the coordinate system of the laser light beam,
which depends on the experimental geometry, and then will be inserted into Eq. (2.2).

The coordinate system of the light waves is given by the wave vectors k(ω) ‖ k(2ω)
and the electric field vectors E(ω) and E(2ω) of the fundamental and the second
harmonic (SH) light wave, respectively. The crystallographic coordinate system is
defined by the crystallographic axes x, y and z.

First the rotational anisotropy for (110) crystal orientation and normal light in-
cidence with k ‖ [110] will be calculated. The results are given in Fig. 2.2(a). For
convenience in presentation of the calculated rotational anisotropy, light propagating
along the [101] axis, which is an equivalent axis to [110], will be considered. For the
polarization geometry E(2ω) ‖ E(ω), the SHG anisotropy is given by

I(2ω)SHG
‖ ∝ |χxyz[cos(ϑ)− cos(3ϑ)]|2. (2.4)

For E(2ω) ⊥ E(ω)

I(2ω)SHG
⊥ ∝ |χxyz[−

1

3
sin(ϑ) + sin(3ϑ)]|2 (2.5)

is derived. In Eqs. (2.4) and (2.5) the rotational anisotropy is given as function of the
angle ϑ between the polarization plane of the fundamental light and the crystallographic
axis [010].

For another geometry, considering (111) crystal orientation, with light propagating
along the [111] axis the SHG anisotropy is described by

I(2ω)SHG
‖ ∝ |χxyz cos(3θ)|2 (2.6)

in the case of E(2ω) ‖ E(ω), and

I(2ω)SHG
‖ ∝ |χxyz sin(3θ)|2 (2.7)

is obtained for E(2ω) ⊥ E(ω). Here the rotational anisotropy is given as a function of
the angle θ between the polarization plane of the fundamental light and the crystallo-
graphic axis [112]. Figure 2.2 shows simulations of the crystallographic SHG anisotropy
using Eqs. (2.4)-(2.7).
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Figure 2.2: Simulations of crystallographic SHG rotational anisotropy for the geome-
tries E(2ω) ‖ E(ω) and E(2ω) ⊥ E(ω) for (110)≡(101) and (111) crystal orientations,
based on Eqs. (2.4)-(2.7). In this presentation k is oriented perpendicular to the figure
plane along crystallographic axes [101] and [111] in panels (a) and (b), respectively.

For (001)-oriented samples χijk does not provide crystallographic SHG for normal
light incidence. This is remarkable, as it allows to study MFISH signals without their
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interference with crystallographic signals.

In the following the MFISH signal will be discussed for (001) crystal orientation
and normal light incidence with k ‖ [001]. The leading order SHG contribution in a
static magnetic field H(≡ H(0)), which has to be distinguished from H(ω) of the light
field, can be described by

Pi(2ω) = ε0iχijklEj(ω)Ek(ω)Hl. (2.8)

This contribution is related to perturbations of the charge and spin distribution by the
external magnetic field. The magnetic-field-induced nonlinear susceptibility χijkl is an
axial fourth-rank i-tensor with non-vanishing components [83]

−χxyyx = χxzzx = χyxxy = −χyzzy = −χzxxz = χzyyz,

−χxyxy = χxzxz = χyxyx = −χyzyz = −χzxzx = χzyzy,

−χxxyy = χxxzz = χyyxx = −χyyzz = −χzzxx = χzzyy.

(2.9)

The analysis of the tensor components χijkl in Eq. (2.9) shows that MFISH described
by Eq. (2.8) is forbidden in the Faraday geometry (k ‖ H) [124]. Without loss of
generality one can select the magnetic field direction along the z-axis (H ‖ z). In this
case only tensor components with the last index l = z contribute. On the other hand,
due to (k ‖ z) the first three indices cannot be equal to z (i, j, k 6= z). No components
fulfilling these conditions can be found in Eq. (2.9).

For the Voigt geometry (k ⊥ H), especially with k ‖ z and H ‖ x, only the un-
derlined tensor components in Eq. (2.9) contribute to the SHG signal. Due to the
permutability of the two exciting photons at the fundamental frequency, the compo-
nents χyxyx = χyyxx cannot be distinguished. Therefore only two tensor components,
χxyyx and χyxyx, are independent. Using Eq. (2.8) for the MFISH polarization and
applying a transformation of the coordinate system, the MFISH rotational anisotropy
can be calculated. In the case of E(2ω) ‖ E(ω), the anisotropy in electric-dipole ap-
proximation is given by

I(2ω)MFISH
‖ ∝ | − (χxyyx + 2χyxyx)[sin(ϕ) + sin(3ϕ)]|2, (2.10)

and for E(2ω) ⊥ E(ω)

I(2ω)MFISH
⊥ ∝ |χxyyx[3 cos(ϕ) + cos(3ϕ)]

+ χyxyx[−2 cos(ϕ) + 2 cos(3ϕ)]|2 (2.11)

is derived for light propagating along the [001] axis. Here the MFISH intensity is given
as a function of the angle ϕ between the polarization plane of the fundamental light and
the crystallographic axis [010]. Fig. 2.3 shows the rotational anisotropy for the specific
choice of tensor components −χxyyx = χyxyx. Note that the shape of the anisotropy
pattern given by I(2ω)MFISH

‖ in Eq. (2.10) does not depend on the choice of values for

χxyyx and χyxyx. In contrast, the shape of the anisotropy pattern given by I(2ω)MFISH
⊥

in Eq. (2.11) varies strongly with the choice of values for χxyyx and χyxyx.
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Figure 2.3: Simulations of MFISH rotational anisotropy for the geometries E(2ω) ‖
E(ω) and E(2ω) ⊥ E(ω) for (001) crystal orientation based on Eqs. (2.10)-(2.11)
taking into account the electric-dipole approximation with light wave vector k ‖[001]
and external magnetic field H ‖[100].

It will be shown in Ch. 2.6, that the electric-dipole approximation is not sufficient
to model the rotational anisotropy of the MFISH signal in semiconductors with zinc-
blende structure like GaAs, CdTe, (Cd,Mg)Te and (Cd,Mn)Te. To solve this problem,
higher nonlinear susceptibility terms have to be taken into account.

MFISH contributions can be generally described by P2ω

M2ω

Q2ω

 ∝

 χeeem χeemm χemmm

χmeem χmemm χmmmm

χqeem χqemm χqmmm

 EωEωH
EωHωH
HωHωH

 , (2.12)

where Hω ≡ H(ω) is the magnetic field at the fundamental frequency and M2ω ≡
M(2ω) and Q2ω ≡ Q(2ω) are the magnetization and electric-quadrupole polarization
at the MFISH frequency, respectively. All nonlinear susceptibilities contributing to
Eq. (2.12) are symmetry-allowed for the point group 43m [83]. However, nonlinear
processes, which include more than two magnetic quantities, such as χemmm, χmemm,
χmmmm and χqmmm or involving both, an electric-quadrupole polarization and a mag-
netic quantity, such as χqemm, will be neglected, since they are believed to be small. The
remaining contributions χeemm, χmeem and χqeem, which involve either two magnetic
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quantities or an electric-quadrupole polarization, can be rewritten as

Pi(2ω) = ε0χijklmEj(ω)Ek(ω)kl(ω)Hm, (2.13)

so that nonlinear magneto-optical spatial-dispersion is taken into account. The ap-
pearance of the wave vector k(ω) arises from the multipole expansion of the vector
potential up to the first order, which is given by

A = A0e · exp(±ik(ω)r) ≈ A0e(1± ik(ω)r), (2.14)

where e is the unit vector and A0 is the amplitude of the vector potential. The term
A0e leads to the electric-dipole SHG contribution considered in Eqs. (2.2) and (2.8).
The next order term A0e ik(ω)r represents both, the magnetic-dipole and the electric-
quadrupole approximation, leading to the ik-dependence of the MFISH contributions
described by Eq. (2.13).

The nonlinear susceptibility tensor χijklm is an axial time-invariant fifth-rank tensor.
The full set of non-vanishing tensor components is given by [125, 83]

−χxyzxx = χxzyxx = χyxzyy = −χyzxyy = −χzxyzz = χzyxzz

−χxyzzz = χxzyyy = χyxzzz = −χyzxxx = −χzxyyy = χzyxxx

−χxzyzz = χxyzyy = χyzxzz = −χyxzxx = −χzyxyy = χzxyxx,

−χxyxzx = χxzxyx = χyxyzy = −χyzyxy = −χzxzyz = χzyzxz

−χxxyzx = χxxzyx = χyyxzy = −χyyzxy = −χzzxyz = χzzyxz

−χxyxxz = χxzxxy = χyxyyz = −χyzyyx = −χzxzzy = χzyzzx

−χxxyxz = χxxzxy = χyyxyz = −χyyzyx = −χzzxzy = χzzyzx

−χxyyzy = χxzzyz = χyxxzx = −χyzzxz = −χzxxyx = χzyyxy

−χxyyyz = χxzzzy = χyxxxz = −χyzzzx = −χzxxxy = χzyyyx

−χxxxyz = χxxxzy = χyyyxz = −χyyyzx = −χzzzxy = χzzzyx.

(2.15)

Due to the permutability of the two exciting photons, the components −χxyzxx = χxzyxx

of the first set of tensor components cannot be distinguished and therefore must vanish.
For the same reason, the second and third (χxyzzz = χxzyzz), fourth and fifth (χxyxzx =
χxxyzx) and sixth and seventh (χxyxxz = χxxyxz) set of tensor components are equal.

The analysis of the tensor components shows that MFISH described by Eq. (2.13)
is forbidden in the Faraday geometry (k ‖ H ‖ z), since tensor components of type
χijklm with i, j, k 6= z and l,m = z are not allowed.

Underlined tensor components denote MFISH contributions, which can be excited
in the Voigt geometry with k ‖ z and H0 ‖ x. In this geometry, the tensor components

χyxxzx, χyyyzx, χxxyzx = χxyxzx (2.16)

provide MFISH. Thus only the tensor components χyxxzx, χxxyzx and χyyyzx are in-
dependent. Using Eqs. (2.8) and (2.13) for the MFISH polarization and applying a
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transformation of the coordinate system, the MFISH rotational anisotropy can be cal-
culated for the case that electric-dipole and spatial-dispersion MFISH are induced. For
E(2ω) ‖ E(ω), the anisotropy is given by

I(2ω)MFISH
‖ ∝ | − (χxyyx + 2χyxyx)[sin(ϕ) + sin(3ϕ)]

+ (χyxxzx + 2χxxyzx)[cos(ϕ)− cos(3ϕ)]

+ χyyyzx[3 cos(ϕ) + cos(3ϕ)]|2, (2.17)

and for E(2ω) ⊥ E(ω)

I(2ω)MFISH
⊥ ∝ |χxyyx[3 cos(ϕ) + cos(3ϕ)]

+ χyxyx[−2 cos(ϕ) + 2 cos(3ϕ)]

+ χyxxzx[3 sin(ϕ)− sin(3ϕ)]

− χxxyzx[2 sin(ϕ) + 2 sin(3ϕ)]

+ χyyyzx[sin(ϕ) + sin(3ϕ)]|2 (2.18)

is derived for light propagating along the [001] axis. The MFISH intensities shown in

Figure 2.4: Simulations of MFISH rotational anisotropy for the geometries E(2ω) ‖
E(ω) and E(2ω) ⊥ E(ω) for (001) crystal orientation based on Eqs. (2.17)-(2.18) taking
into account the electric-dipole terms as well as the spatial dispersion terms (k ‖ [001]).
The following parameters have been chosen based on the results of Ref. [16]: χxyyx=3,
χyxyx=3, χyxxzx=8, χxxyzx=1 and χyyyzx=170.
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Fig. 2.4 are given as a function of the angle ϕ between the polarization plane of the
fundamental light and the crystallographic axis [010]. Specific values for the tensor
components chosen to simulate the rotational anisotropy are given in the caption.

The MFISH rotational anisotropy in Fig. 2.4 is calculated for (001) crystal orien-
tation, where the crystallographic SHG does not provide any contribution. In case of
(110) or (111) crystal orientations, MFISH can be also observed, but it comes together
with the crystallographic SHG, which is about an order of magnitude stronger than
MFISH. In order to avoid possible interference effects between MFISH and crystallo-
graphic SHG, for the following experimental studies of MFISH an exact (001) crystal
orientation will be used.

Above, the theoretical macroscopic model on the basis of symmetry analysis is
given. In the following experimental part, the effect of magnetic field, temperature,
SHG energy and polarization angle ϕ on the MFISH intensity will be studied. E.g.
at a fixed temperature and for a fixed electronic transition, the rotational anisotropy
will be investigated as a function of the magnetic field. In general, a variation of
the experimental conditions can lead to strong changes of the shape of the rotational
anisotropy pattern. For an arbitrary angle ϕ the MFISH intensity I(2ω)MFISH

‖,⊥ (ϕ)

displays a superposition of all five tensor components, which is described by Eqs. (2.17)
and (2.18). Special cases are

I(2ω)MFISH
‖ (ϕ = 0◦) ∝ |χyyyzx|2 (2.19)

I(2ω)MFISH
⊥ (ϕ = 90◦) ∝ |χyxxzx|2 (2.20)

I(2ω)MFISH
⊥ (ϕ = 0◦) ∝ |χxyyx|2, (2.21)

where the MFISH intensity is not given by a superposition of several tensor components,
but is proportional to a single tensor component.

2.3 Description of GaAs, CdTe and Cd1−xMgxTe

samples

The investigated III-V semiconductor GaAs samples have been fabricated by three dif-
ferent methods: (i) 10 µm gas-phase-epitaxy layer grown on a semi-insulating GaAs
(001) substrate [126] (no. F-239(2)), (ii) 2 µm epilayer grown by molecular-beam epi-
taxy on (001) GaAs substrate (no. p338) and (iii) (001)-oriented 0.5 mm thick platelet
of bulk GaAs grown by the Bridgman method. The sample of type (i) has a very
low defect density of 1014 cm−3 and most of the experimental data shown below are
obtained with this sample. The samples of types (ii) and (iii) have a defect density
of about 1015 cm−3. They show very similar experimental features compared to the
sample (i), but with weaker and broader spectral lines. The comparative study of these
samples is given in Ch. 2.9.

II-VI semiconductor samples have been fabricated in the Institute of Physics, War-
saw, by molecular-beam epitaxy on (001) GaAs/Cd0.72Mg0.28Te hybrid substrates.
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1 µm thick epilayers have been grown on top of a Cd0.8Mg0.2Te buffer layer and
have been overgrown by a 50 nm Cd0.8Mg0.2Te cap layer to reduce undesired sur-
face effects. Three samples are studied with epilayers of CdTe (no. 121304D),
Cd0.99Mg0.01Te (no. 102805C) and Cd0.92Mg0.08Te (no. 102805A). The band gap Eg

of Cd1−xMgxTe increases with raising Mg content and is described by the dependence
Eg = (1.606 + 1.755x) eV. Therefore, the buffer, cap and hybrid substrate layers of
Cd1−xMgxTe are transparent at energies of the fundamental light and SHG signals of
the examined materials.

2.4 Crystallographic SHG in GaAs

It has been shown in Ch. 2.2, that in (001)-oriented GaAs samples the crystallographic
SHG is absent for normal light incidence. Therefore, for measuring the crystallographic
SHG, the GaAs samples are tilted by 45◦ around the [010] axis. Note, that the internal
angle is significantly less than 45◦ due to the refractive index of GaAs, which varies
strongly with the wave length [127]. However, a variation of the internal angle does
not change the shape of the rotational anisotropy pattern, but influences only the
SHG intensity. Crystallographic SHG measured over a wide spectral range below and
above the fundamental band gap Eg = 1.519 eV is shown in Fig. 2.5. The vanishing
of the signals for specific polarizations, which can be clearly seen from the rotational
anisotropy diagram, confirms that the signal is solely formed by the SHG process and
has no luminescence contribution. Luminescence is an optical process of lower order
as compared to SHG and it is expected to display isotropic signals in cubic materials.

In the allowed geometry [E(2ω) ⊥ E(ω) ‖ [101]] a strong decrease of the SHG
intensity is found around the band gap energy. This decrease does not display the pure
spectral dependence of the squared nonlinear optical susceptibility given by Eq. (2.2).
One of the reasons for that can be the reabsorption of the SHG light with energies
exceeding the GaAs band gap energy. Another reason can be given due to the energy
dependence of the SHG coherence length. It decreases continuously with raising energy,
both below and above the band gap. Below the band gap, the coherence length at
normal incidence can be calculated as [128]

lcoh =
λ

4 | n(ω)− n(2ω) |
, (2.22)

where λ is the fundamental wavelength and n(ω) and n(2ω) are the refractive indices at
the fundamental and second harmonic frequencies, respectively. Estimated values for
the refractive index at 6 K show, that the coherence length decreases from ∼2 µm at
1.3 eV to ∼1 µm at 1.5 eV [16]. Above the band gap, the coherence length is reduced
to the value of the attenuation length given by [3]

lcoh =
1

β
=

λF

2πk
, (2.23)

where β is the imaginary part of the wave vector above the band gap, and k is the
absorption coefficient. Estimated values show that the coherence length decreases from
∼1 µm at 1.6 eV to ∼0.7 µm at 2 eV [16].
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Figure 2.5: Spectral dependence of crystallographic SHG in a GaAs sample of type (i)
tilted by 45◦. SHG spectra measured at T=6 K are shown for the electric-dipole allowed
[E(2ω) ⊥ E(ω) ‖ [101]] and forbidden [E(2ω) ‖ E(ω) ‖ [101]] polarization geometries.
The inset shows the rotational anisotropy detected at 2.0 eV and T=300 K in two
geometries: E(2ω) ‖ E(ω) (light grey shaded area and open dots) and E(2ω) ⊥ E(ω)
(grey shaded area and filled dots).

A fit of the experimental SHG anisotropy using Eqs. (2.4) and (2.5) is shown in
the inset of Fig. 2.5. Note that the shape of the crystallographic anisotropy does not
vary with the SHG energy and the temperature. Good agreement between experimental
data and simulations (shaded areas) is received confirming a high structural and optical
quality of the sample as well as its proper orientation. A misalignment larger than 1◦

between the crystallographic axes and the laboratory coordinate system would cause an
observable distortion of the SHG rotational anisotropy patterns. Therefore, rotational
anisotropy of the SHG signal is used to control the proper orientation of the samples.

2.5 Magnetic-field-induced SHG (MFISH) in GaAs

In the following the crystallographic contribution to the SHG signal due to χijk will
be suppressed using normal light incidence in (001)-oriented samples. This enables the
detection of pure MFISH signals.
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Figure 2.6: (a) MFISH
spectra in GaAs for Fara-
day geometry (H ‖ k(ω) ‖
z) at different magnetic
fields. Circularly (σ−) po-
larized light is chosen for
excitation and detection.
(b) Landau-level fan dia-
gram of MFISH peak en-
ergies. Circles are ex-
perimental data with sym-
bol sizes scaled by the
MFISH intensity. Good
agreement is found be-
tween peak energies and
optical transition energies
between Landau-levels cal-
culated from Eq. (2.24) for
Ne = Nh (solid lines). The
dashed line gives the liter-
ature data for the diamag-
netic shift of the 1s-exciton
state.

2.5.1 Faraday geometry

First, MFISH experimental data measured in the Faraday geometry (H ‖ k(ω) ‖ z) will
be presented. The symmetry considerations based on Eqs. (2.8) and (2.13) suggest,
that in this case MFISH is not allowed. However, a set of narrow SHG transitions
induced by the external magnetic field is observed. The peak energies of these lines
shift with high accuracy according to the known spectrum of magneto-excitons in GaAs
[129, 130]. MFISH spectra measured with circularly polarized excitation and detection
photons are shown in Fig. 2.6(a) for different magnetic fields. No signal is detected
at zero magnetic field. With increasing magnetic field a set of narrow lines shifting to
higher energies appears and gains in intensity. The strongest peak is observed at the
lowest SHG energy. This line is labelled as X-line and is associated with the 1s-exciton
state, as will be show below.

The magnetic field dependence of the peak energies is plotted in Fig. 2.6(b), where
the symbol sizes are scaled by the MFISH intensity. Such a presentation of the results is
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typical for the fan-chart diagram of magneto-excitons measured by linear spectroscopy
methods like absorptions, reflection and photoluminescence excitation spectroscopy.
The shift of the lowest line shows a very good coincidence with the diamagnetic shift
of the 1s-exciton state in GaAs [129, 130], which is traced by a dashed line. It starts
from 1.516 eV, which is the 1s-exciton energy at zero magnetic field. The exciton
binding energy in GaAs is 4.2 meV and the band gap, which corresponds to the optical
transition from the top of the valence band to the bottom of the conduction band, has
an energy of 1.519 eV at a temperature of 6 K. A calculation of the magneto-exciton
spectrum is beyond the scope of this work. Instead, the solid lines in Fig. 2.6(b)
display optical transitions between Landau-levels of free electrons and holes, whose
orbital motion is quantized by the magnetic field [131]. The magneto-exciton states
are expected to be a few meV below the Landau-levels due to Coulomb effects.

The Landau-level transitions are calculated by

E = Eg +
e~
c

[
1/2 + Ne

m∗e
+

1/2 + Nh

m∗h

]
H, (2.24)

where Eg = 1.519 eV is the GaAs band gap energy, m∗e = 0.067me and m∗hh = 0.51me

are the electron and heavy-hole effective masses [132] and Ne = Nh = 0, 1, 2, ... are
the Landau-level quantum numbers. Here the Zeeman splitting of Landau-levels is
not taken into account since it does not exceed 1 meV below 7 T, which is below the
experimental resolution of the setup.

A comparison between the experimental data and the calculated lines reveals, that
the MFISH transitions, which are located 2-5 meV below the calculated Landau-level
energies, can be indeed assigned to the magneto-exciton states. It will be show below
(see Fig. 2.12), that the MFISH lines in the Faraday geometry are observable even in
a larger spectral range up to 1.70 eV.

2.5.2 Voigt geometry

According to the analysis provided in Ch. 2.2, MFISH in the Voigt geometry (H ‖
x, k(ω) ‖ z) is allowed in both, the electric-dipole and the magneto-optical spatial-
dispersion, approximations given by Eqs. (2.8) and (2.13), respectively. This prediction
is in good agreement with the experimental data shown in Fig. 2.7. The observed
MFISH signal originates from the strongest component χyyyzx. It is measured for
E(2ω) ‖ E(ω) ‖ y in magnetic fields up to 11 T and is about five times stronger than the
MFISH in the Faraday geometry (for details see Fig. 2.12). Other experimental features
are qualitatively similar to what has been found for the Faraday geometry. A set of
narrow lines appears with increasing magnetic field. The lines gain in intensity and shift
to higher energies. Their energies, which are compared with the calculated Landau-
level energies in Fig. 2.7(b), demonstrate good coincidence. The main difference is
the rich structure of peaks related to each Landau-level transition. It originates from
the field-induced mixing of magneto-exciton states due to the complex energy and
spin structure of the valence band. This phenomenon is well established for the linear



54 Diamagnetic semiconductors

Figure 2.7: (a) MFISH
spectra at different mag-
netic fields in GaAs
(Voigt geometry). (b)
Landau-level fan diagram
of MFISH peak energies.
Circles are experimental
data with symbol sizes
scaled by the MFISH
intensity. Solid lines
present optical transitions
between Landau-levels
calculated from Eq. (2.24)
for Ne = Nh. The dashed
line gives the literature
data for the diamagnetic
shift of 1s-exciton state.

spectra of magneto-excitons in GaAs and other semiconductors with zinc-blende crystal
structure.

In the following the dependence of the MFISH intensity will be studied as a function
of the magnetic field.

2.5.3 Magnetic field dependence of MFISH intensity

An increase of the MFISH intensity of the strongest X-line is shown in Fig. 2.8 for the
Faraday (filled circles) and the Voigt (open circles) geometry. For both geometries a
quadratic dependence of the MFISH intensity on the magnetic field strength is found.
The H2-fit to the experimental data is given by a solid line. The intensity of the MFISH
signal is proportional to the square of the nonlinear polarization, i.e. I(2ω) ∝ |P(2ω)|2.
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Figure 2.8: MFISH intensity of the X-
line as a function of magnetic field in
Faraday and Voigt geometry in GaAs.
Experimental data are shown by sym-
bols. Intensities are normalized to the
signal in the Voigt geometry, which is
stronger by a factor of five compared to
that in the Faraday geometry. The solid
line is a H2-fit to the data.

Therefore it can be concluded, that the nonlinear polarization P (2ω) depends linearly
on H. This result is in full agreement with the conclusions of the phenomenological
approach given by Eqs. (2.8) and (2.13). Such a dependence is characteristic for the
MFISH signals due to the orbital quantization of the electronic states, which is contrary
to the MFISH based on the spin quantization (see Ch. 3). This quadratic dependence
of the MFISH intensity on the magnetic field will be discussed below in more detail in
combination with the rotational anisotropy for all nonlinear tensor components in the
Voigt geometry.

Figure 2.9: Slope α of the quadratic dependence of the MFISH intensity on the mag-
netic field I(2ω) ∼ αH2 vs. Landau-level quantum numbers Ne − Nh. Results are
based on the experimental data for (a) Faraday geometry given in Fig. 2.6 and (b)
Voigt geometry given in Fig. 2.7.
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Fig. 2.9 shows the slope α of the quadratic dependence of the MFISH intensity
on the magnetic field I(2ω) ∼ αH2 for the transitions X, 0 − 0, 1 − 1, 2 − 2, 3 − 3
and 4 − 4 in the Faraday and Voigt geometries. The results are obtained from a fit
to the experimental data presented in Figs. 2.6 and 2.7. In the Faraday geometry
with exception of the first Landau-level transition (0 − 0), the slope does not vary
significantly with the Landau-level quantum number and even reveals the same value
for the X-line. In opposite, in the Voigt geometry the α value for the X-line exceeds
significantly the slopes of all other transitions. One can see an increasing tendency
for the slope values with raising Landau-level quantum number. In the following the
X-line will be studied as an example for the set of observed lines.

2.5.4 Temperature dependence of MFISH signal

The MFISH signal is rather robust against an increase of temperature and it can
be detected up to 200 K as is shown in Fig. 2.10(a). With increasing temperature
the MFISH lines lose intensity and shift to lower energies. Surprisingly, the thermal
broadening of these lines is very weak as it is illustrated by the inset. The dominant
mechanism responsible for the shift of the MFISH lines is the decrease of the GaAs
band gap energy with decreasing temperatures. This is confirmed by Fig. 2.10(b) where
the MFISH peak positions are compared with the expected temperature shifts for the
1s-exciton and Landau-level transitions [132].

The dependence of the integrated intensity of the 1s-exciton (X-line) on the temper-
ature is given in the inset of Fig. 2.10(b). The decrease of the MFISH intensity cannot
be described by a mono-exponential form and therefore no specific activation energy
can be assigned. One of the possible mechanisms for the temperature dependence of
the MFISH intensity is carrier-phonon scattering, which perturbs the cyclotron motion
of the free carriers and therefore violates the orbital quantization. For excitonic lines in
linear optical spectra, the scattering causes a broadening of the lines. This is definitely
not the case for MFISH spectra as is shown by the inset of Fig. 2.10(a). It can be
suggested, that the difference comes from the coherent origin of the SHG process. The
temperature stability of the MFISH line width may be explained in analogy to X-ray
Bragg scattering on the crystal lattice. Thermal motion of atoms leads to a decrease
of the X-ray signal intensity, which is described by the Debye-Waller factor in the case
of the Bragg scattering [30]. The line width, however, remains constant due to the
fact, that signal contributions of many unit cells interfere constructively only, if the
interference constraint is fulfilled.
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Figure 2.10: (a) MFISH
spectra at different temper-
atures in GaAs (Voigt ge-
ometry). (b) MFISH peak
energies vs. temperature.
Circles are experimental
data with symbol sizes
scaled by the MFISH inten-
sity. Solid lines present op-
tical transition energies be-
tween Landau-levels calcu-
lated from Eq. (2.24) for
Ne = Nh at B = 7 T com-
bined with the temperature
dependence of the GaAs
band gap [132]. The inte-
grated MFISH intensity of
the X-line is given in the in-
set.

2.5.5 Transmission vs. reflection geometry

Due to the fact, that GaAs is transparent at the fundamental frequency (~ω < Eg),
absorption only appears for the SHG light above the band gap (2~ω > Eg). In this
case the transmission geometry (k(ω) ‖ k(2ω) ‖ z) can be used. Nevertheless, for
materials, which possess absorption even at the fundamental frequency, the reflection
geometry (−k(ω) ‖ k(2ω) ‖ z) is an alternative. In this case the same selection rules
as for transmission geometry are valid and thus the same rotational anisotropy, which
is calculated above, is expected.

Fig. 2.11 shows MFISH spectra for the transmission and reflection geometry. In
both cases the MFISH spectra are found to be very similar with respect to the spectral
position of the observed peak energies as well as their relative peak intensities. The
only difference is that the MFISH intensity is found to be about one order of magnitude
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Figure 2.11: MFISH spectra in (a) transmission geometry (k(ω) ‖ k(2ω) ‖ z) and (b)
reflection geometry (−k(ω) ‖ k(2ω) ‖ z). In both cases the polarization geometry is
E(2ω) ‖ E(ω) ‖ y (χyyyzx). The ordinate scale shows MFISH intensity in arbitrary
units, but the ratio between intensities for different geometries is relevant. The insets
show the rotational anisotropy.

weaker in the reflection geometry. A possible explanation might be, that MFISH is
generated mainly by the reflected beam at the fundamental frequency and thus the
pump power to induce the MFISH is drastically reduced. The observed line widths
of the X-line are of comparable magnitude (1-2 meV) and close to the experimental
resolution limit. The rotational anisotropy for the transmission and reflection geometry
does not differ significantly and is shown in the insets of Fig. 2.11. In the following
only the transmission geometry will be considered due to the higher MFISH intensity.

2.6 Rotational anisotropy and magneto-spatial dis-

persion

In this chapter, experimental data of the characteristic polarization dependence of the
MFISH signal are discussed. It will be shown, that the electric-dipole approximation
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Figure 2.12: MFISH spec-
tra in GaAs for k(ω) ‖
z and different magnetic
field orientations. In the
Voigt geometry the light
is linearly polarized: (a)
Electric-dipole component
χxyyx [E(2ω) ⊥ E(ω) ‖
y], (b) Polarization ge-
ometry E(2ω) ⊥ E(ω)
with ϕ = 140◦ dis-
playing an interference of
all five tensor components,
(c) Spatial-dispersion com-
ponent χyyyzx [E(2ω) ‖
E(ω) ‖ y], (d) In the Fara-
day geometry σ− circularly
polarized light is used for
excitation and σ+ polarized
MFISH is detected. The or-
dinate scale shows MFISH
intensity in arbitrary units,
but the ratio between inten-
sities for different geome-
tries is relevant.

is not sufficient for modeling the rotational anisotropy, and further terms have to be
considered. Also the spectral and magnetic field dependencies of the different tensor
components will be analyzed.

MFISH spectra, measured in different polarization configurations and magnetic field
geometries at normal light incidence, are shown in Fig. 2.12. The applied magnetic
field induces SHG signals consisting of a set of narrow lines in the spectral range of
1.51-1.70 eV. Here the extended energy range is displayed compared to the data given
in Figs. 2.6 and 2.7.

In this Chapter, only the Voigt geometry spectra [Figs. 2.12(a)-(c))] are discussed.
Their comparison with the Faraday geometry data is given in Ch. 2.7.

High spectral resolution (<1 meV) is reached by using a narrow monochromator slit
leading to a lower MFISH intensity and therefore the signal-to-noise ratio decreased.
MFISH signals measured for E(2ω) ⊥ E(ω) and shown in Figs. 2.12(a) and (b) are
allowed in the electric-dipole approximation described by Eq. (2.8). In the case of (a) it
is given by the pure fourth-rank tensor component χxyyx. For (b) it could be explained
by a contribution of the tensor components χxyyx and χyxyx. The signal measured
in E(2ω) ‖ E(ω) and shown in Fig. 2.12(c) corresponds to the χyyyx electric-dipole
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Figure 2.13: MFISH
rotational anisotropy
in GaAs for geome-
tries E(2ω) ‖ E(ω)
(light shaded areas
and open circles) and
E(2ω) ⊥ E(ω) (dark
shaded areas and filled
circles) measured at
T =6 K and H =7 T.
The experimental data
are given by circles
and the shaded areas
represent simulations
using Eqs. (2.17) and
(2.18). Note that a
proper description
cannot be given in
the electric-dipole ap-
proximation based on
Eqs. (2.10) and (2.11)
and displayed in panel
(e). Panel (f) shows
the crystal orientation
in the experiment.

component, which, however, is forbidden. It becomes allowed taking into account the
spatial-dispersion mechanism, which gives an MFISH contribution χyyyzx (fifth-rank
tensor). Surprisingly, the MFISH intensity in the case of the χyyyzx component is 50
times larger than that for the electric-dipole allowed χxyyx component. It confirms, that
the electric-dipole approximation is not sufficient and the magneto-spatial dispersion
mechanism given by Eq. (2.13) is required for an adequate description of MFISH signals.

In the following the characteristic rotational anisotropy for different MFISH lines
is considered. Thereby information about the underlying nonlinear optical processes is
received. The MFISH intensities shown in Fig. 2.13 are given as a function of the angle
ϕ between the polarization plane of the fundamental light and the crystallographic axis
[010] for the E(2ω) ‖ E(ω) and E(2ω) ⊥ E(ω) geometries.
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The rotational anisotropy of the MFISH signal features diverse twofold patterns
which cannot be explained using only the electric-dipole approximation leading to
a rotational anisotropy given by Eqs. (2.10) and (2.11) and shown exemplarily by
Fig. 2.13(e). In conclusion, the magneto-spatial dispersion mechanisms, allowing e.g.
the fifth-rank tensor component χyyyzx, is of big importance for the MFISH signals in
GaAs.

The experimental data from Fig. 2.13 are fitted using Eqs. (2.17) and (2.18) and by
taking into account, that the nonlinear optical susceptibilities are represented by com-
plex numbers. Note that the real and imaginary parts of the nonlinear susceptibility,
which are correlated to each other by the Kramers-Kronig equation, can vary strongly
with the parameters of the experiment (e.g. the magnetic field strength, photon energy
and temperature). This would lead in turn to strong changes in the shape of the rota-
tional anisotropy. A Fortran program based on a modified Marquardt procedure [133]
is used to fit the experimental data at each photon energy. The results of this com-
putation are displayed in Fig. 2.13(a)-(d) by shaded areas. Good agreement between
experimental and calculated MFISH intensities is found for all rotational anisotropies.
This indicates that an approach, which includes both, electric-dipole and magneto-
spatial dispersion, contributions is sufficient to describe the whole variety of observed
MFISH signals.

2.6.1 Spectral dependence

In this part, the fitting procedure as well as the physical meaning of the fitting param-
eters will be discussed in more detail.

Considering the fact, that the tensor components of the nonlinear susceptibilities
χxyyx, χyxyx, χyxxzx, χyyyzx and χxxyzx are represented by complex numbers, a set of
ten fitting parameters is involved. One of the parameters [here: Im(χxxyzx)=0] can be
fixed, which means a certain choice for the phase of the set of complex parameters.
Unfortunately, the remaining set of nine parameters depends on the starting values
used for the fitting procedure. Thus the set of fitting parameters is not unique and
cannot be attributed to the real and imaginary parts of the nonlinear susceptibility.
However, the absolute values of three tensor components |χxyyx|, |χyxxzx| and |χyyyzx|
are determined uniquely by this fitting procedure. An alternative possibility is to
measure these values directly from the MFISH intensity for ϕ = 0◦, 90◦ as can be
seen from Eqs. (2.19)-(2.21). It leads to the same values of the tensor components as
determined with the fitting procedure. No direct access to the absolute values of the
tensor components |χyxyx| and |χxxyzx| can be obtained, since these components cannot
be probed separately, because ϕ 6= 0◦, 90◦ is required to obtain their contributions.
But for ϕ 6= 0◦, 90◦ all tensor components contribute and an interference of the
imaginary and real parts of all components occurs [Eqs. (2.17) and (2.18)].

The set of absolute values of the tensor components obtained by the fitting pro-
cedure is given in Fig. 2.14 as function of the SHG energy. Fig. 2.14(a) shows the
electric-dipole components described by a fourth-rank tensor, whereas Fig. 2.14(b)
reveals the magneto-spatial dispersion components described by a fifth-rank tensor.
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Figure 2.14: Spectral dependence of the absolute values of the MFISH tensor compo-
nents in GaAs (a) electric-dipole components of χijkl-type, (b) magneto-spatial disper-
sion components of χijklm-type.

Strong changes of the slopes close to the GaAs band gap at 1.519 eV and a continuous
decrease with increasing MFISH energy are confirmed. The reasonable magnitude of
the error bars indicates a high reliability of the tensor component values found by the
fitting procedure.

2.6.2 Magnetic field dependence

The magnetic field dependence of the tensor component χyyyzx shown in Fig. 2.8 is
discussed above. Here the magnetic field dependence of the MFISH signal for different
polarization geometries is discussed. Fig. 2.15(a)-(c) shows rotational anisotropy pat-
terns for different magnetic fields. In the following specific polarizations are considered
in order to explain the complex polarization dependence of the MFISH signal. In pan-
els (a)-(c) triangles give the MFISH contribution of I(2ω)MFISH

‖ (ϕ = 0◦) ∝ |χyyyzx|2,
whereas data given by squares display the result of interference of all five tensor com-
ponents I(2ω)MFISH

‖ (ϕ = 30◦) according to Eq. (2.17). Panel (d) gives the magnetic
field dependence of the MFISH intensity for these polarization geometries. In the case
of ϕ = 0◦, a quadratic dependence on the magnetic field is found for the MFISH in-
tensity, whereas for ϕ = 30◦, surprisingly, a linear dependence is revealed. In order to
explain this linear dependence, the absolute values of the tensor components obtained
by the fitting procedure are considered. They are shown in Fig. 2.16.

The component |χyxxzx| is rather weak and thus can be neglected. The specific
field dependence found for |χyxyx|2 as well as the linear dependence for |χxxyzx|2 can
be explained as follows. For ϕ 6= 0◦, 90◦, the MFISH intensity is given by a complex
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Figure 2.15: MFISH
rotational anisotropy
of the X-line in GaAs
measured at T =6 K.
In panel (d) specific
polarization geome-
tries are chosen to
determine the MFISH
intensity dependence
of I(2ω)MFISH

‖ (ϕ =

0◦) ∝ |χyyyzx|2
(triangles) and
I(2ω)MFISH

‖ (ϕ = 30◦)

(squares) on magnetic
field.

Figure 2.16:
Magnetic field
dependence of the
absolute values
of the MFISH
tensor components
in GaAs for the
X-line at T =6 K
obtained by the
fitting procedure.
(a) electric-dipole
components of
χijkl-type, (b)
magneto-spatial
dispersion com-
ponents of χijklm-
type.
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interference of all tensor components. This leads to the fact that the fitting procedure
does not result in an unique set of parameters. Therefore the tensor components χyxyx

and χxxyzx cannot be determined. One of the combinations for these components,
that allows to describe the rotational anisotropies from Fig. 2.15, is given in Fig. 2.16.
In contrast, the squared tensor components |χxyyx| and |χyyyzx| can be determined
uniquely, as can be seen from Eqs. (2.21) and (2.19), respectively. Both components
display a quadratic behavior on the magnetic field, which is in full accordance with
Eqs. (2.8) and (2.13) and thus with the macroscopic model, since I(2ω)MFISH ∝ H2.

2.7 Comparison of Faraday and Voigt geometries

2.7.1 MFISH spectra

MFISH spectra obtained in the Faraday geometry with circularly polarized light (line)
and the Voigt geometry with linearly polarized light (shaded area) are compared in
Fig. 2.17. This comparison reveals some important differences.

The MFISH intensity in the Voigt geometry is found to be about five times stronger.
This is not very surprising, as the nonlinear susceptibility tensor components are sym-
metry forbidden for the Faraday geometry (see Ch. 2.2) and cannot be described on
the basis of Eqs. (2.8) and (2.13).

One of the explanations for the observation of the relatively strong MFISH signal in
the Faraday geometry is based on a possible contribution of the crystallographic SHG
mechanism. One can clearly see in Fig. 2.17 the existence of a background signal in
the Faraday geometry, while it is not observed in the Voigt geometry. It is attributed
to residual crystallographic SHG. Its interference with the magnetic SHG may explain
the experimentally observed MFISH for the Faraday geometry.

Another possible explanation is the following: The magnetic field lifts the spin
degeneracy of the Landau-levels and induces a spin quantization, which is characterized
by the spin splitting µB (ge + gh) H. Here µB is the Bohr magneton and ge(h) are the
g-factors of conduction band electrons and valence band holes. Even though the spin
splitting is small (it does not exceed one meV below 10 T), it might influence the
MFISH process in the Faraday geometry, since the spin inversion symmetry is broken.
This mechanism is similar to the MFISH process, which will be discussed for diluted
magnetic semiconductors featuring giant Zeeman splitting in Ch. 3. For a description
of the MFISH process in the Faraday geometry the additional spin degree of freedom
would have to be taken into account.

Spectra in the Voigt geometry feature more lines and peak energies differ from
those in the Faraday geometry. This originates from the symmetry of the conduction
and valence band states and its modification for different configurations of the applied
magnetic field and light wave vector. A detailed discussion will be given below.

The amplitude of the MFISH lines decreases with increasing energy for both field
orientations, but the character of the decrease differs qualitatively for the two geome-
tries. It can be seen from Fig. 2.12, where MFISH spectra in an extended energy
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Figure 2.17: MFISH
spectra in GaAs. In
the Faraday geometry
circular σ− polarized
light is chosen for
excitation and σ+

polarized MFISH is
detected (intensity is
multiplied by a factor
of 5). For comparison,
the MFISH contri-
bution χyyyzx (Voigt
geometry) using linear
polarizations is given
by the shaded area.

Figure 2.18: Spectral dependence of
the MFISH intensity described by
χyyyzx for different Landau-levels in
the Voigt geometry. The MFISH sig-
nal increases with the MFISH en-
ergy of the corresponding Landau-
level transition Ne − Nh (e.g. 3-3,
4-4), which is tuned by varying the
magnetic field. Above 1.58 eV the
MFISH intensity decreases rapidly.

range up to 1.70 eV are displayed. The MFISH spectrum (d) for the Faraday geometry
demonstrates a smooth intensity decrease within the whole energy range.

A remarkable feature of the spectra in the Voigt geometry is the abrupt decrease
of intensity between 1.58 and 1.59 eV. In Fig. 2.12(a)-(c) it is shown for H = 7 T,
and it can be followed on the fan chart of Fig. 2.7(b). It is indeed linked to a certain
spectral energy and not to the Landau-levels, which pass this energy with increasing
magnetic field. To illustrate that, the intensities of the 3-3 and 4-4 MFISH lines in
the Voigt geometry are plotted in Fig. 2.18. The strong decrease above 1.58 eV has
been established for all MFISH tensor components. A possible explanation for this
cut-off energy at 1.59 eV might be the optical-phonon scattering. Note that the energy
difference between this cut-off energy and the GaAs band gap (or 1s-exciton ground
state) is about 70 meV, which is rather close to the energy of two optical phonons of
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2×~ωLO=2×36.6 meV in GaAs.

2.7.2 Fan charts

In contrast to the good description of the MFISH signal in the Faraday geometry by
the model of Landau-levels [see Fig. 2.6(b)], this model is not sufficient to explain
the MFISH signal in the Voigt geometry [see Fig. 2.7(b)]. In general, the Coulomb
interaction between electrons and holes has to be taken into account, which compli-
cates the Landau-level diagram leading to a rich fan chart of magneto-excitons [130].
In opposite to the Coulomb interaction, which possesses a spherical symmetry, the
Landau-level quantization features a cylindrical symmetry with an symmetry axis de-
fined by the magnetic field. Consequently, no exact mathematical solution including
both interactions can be formulated for the exciton. Instead, approximations for the
limits of low and high magnetic fields have to be considered. In the case of low mag-
netic fields ~ωc � R, where ωc is the cyclotron frequency and R is the exciton binding
energy (exciton Rydberg), the Coulomb interaction dominates over the magnetic con-
finement, and gives R ≥4.2 meV for the 1s-exciton and ≥1 meV for the binding energy
of the 2s-exciton in GaAs. The magnetic field is considered by perturbation theory,
leading to a diamagnetic shift ∝ H2. In the case of high magnetic fields ~ωc � R
the Landau-level quantization, which is characterized by the cyclotron energy given by
~ωe

c ≈ 1.75 meV/T for the electron states, prevails. Then the Coulomb interaction is
treated by perturbation theory. Both descriptions are not suitable in the magnetic field
range of a few Tesla, where ~ωc ∼ R. In this case the magneto-excitons reveal a com-
plicated spectrum already in linear absorption experiments [130]. Even richer spectra
are expected for MFISH induced by two photons, which gives a higher flexibility to
fulfill the angular momentum conservation. Therefore additional optical transitions,
which are inactive for linear spectroscopy, might become allowed.

A possible explanation for the different fan charts in the Voigt and the Faraday
geometry is the following: The bulk crystal has no intrinsic preferential direction.
Such directions are introduced by experimental conditions: (a) by the magnetic field
orientation, and (b) by the propagation direction of the fundamental light. In the
Faraday geometry, these two directions coincide and only one preferential direction is
present. The Landau-level orbital movement of the carriers is perpendicular to k(ω)
and therefore is in-plane of the light polarizations. In contrast, in the case of the Voigt
geometry two such axes, which are perpendicular to each other, H ‖ x and k(ω) ‖ z,
exist. Therefore the Landau orbital movement occurs in a plane, in which also the light
propagation is located, which represents a geometry with lowered symmetry, so that
more complex SHG selection rules are expected, leading to a richer magneto-exciton
spectrum [see Fig. 2.7(b)].

Note that the strongest observed component in the Voigt geometry is χyyyzx

(Fig. 2.16), where the polarizations of all light waves are parallel to the y axis, which
is in the plane of the orbital movement caused by H ‖ x. In this case the polarizations
can only couple to the movement of the carriers along the y axis but not along the z
axis since k(ω) ‖ z. In accordance with the previous argumentation, no χxxxzx MFISH
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signal is observed, where polarizations of the light waves are parallel to the magnetic
field H ‖ x [see I(2ω)MFISH

‖ (ϕ = 90◦) in Fig. 2.13(a)-(d)]. Strong MFISH contribu-
tions are also found, if the polarization of either the MFISH or the fundamental light
wave has a component in the plane of the orbital movement ([see I(2ω)MFISH

‖ (ϕ = 0◦),

I(2ω)MFISH
⊥ (ϕ = 0◦) or I(2ω)MFISH

⊥ (ϕ = 90◦) in Fig. 2.13(a)-(d)]. This indicates, that
the MFISH couples to the orbital movement of the carriers and therefore the orbital
quantization plays a key role.

2.8 Magnetic-field-induced SHG in CdTe

So far the MFISH process is discussed for the III-V semiconductor GaAs. In order to
prove the general nature of the observed phenomena, the II-VI semiconductor CdTe
is chosen for further studies. The MFISH data are found to be very similar to the
features observed in GaAs.

Fig. 2.19(a) shows MFISH spectra of CdTe in the Voigt geometry. In an applied
magnetic field, a SHG signal appears consisting of a set of narrow lines in the spectral
range from 1.59 to 1.67 eV. With increasing magnetic field, these lines shift to higher
energies and gain in intensity. The intensity increase is proportional to H2 as can be
seen from the corresponding fit to the data for the strongest X-line (1s-exciton) in the
inset, which is similar to GaAs (see Fig. 2.8). The X-line width is found to be less
than 4 meV.

The fan chart of the MFISH lines is given in Fig. 2.19(b). Similarly to GaAs, these
lines can be assigned to magneto-exciton states. The diamagnetic shift of the 1s-exciton
state [134] given by the dashed line follows well the X-line. At zero magnetic field it
starts from 1.596 eV, which is the 1s-exciton energy in CdTe at T = 6 K. The solid lines
in Fig. 2.19(b), which trace optical transitions between Landau-levels, are calculated
using Eq. (2.24) with the following parameters for CdTe at T = 6 K: Eg = 1.606 eV,
m∗e = 0.096 m0 and m∗hh = 0.674 m0 [134]. Here the exciton spin splitting, which does
not exceed 0.1 meV below 10 T, is not taken into account.

The MFISH intensities shown in Fig. 2.20 are given as a function of the angle
ϕ between the polarization plane of the fundamental light and the crystallographic
axis [010] for the E(2ω) ‖ E(ω) and E(2ω) ⊥ E(ω) geometries. Similar to GaAs,
the rotational anisotropy of the MFISH signal features complicated twofold patterns.
The MFISH rotational anisotropy is simulated by means of Eqs. (2.17) and (2.18).
Good agreement between experimental and calculated MFISH intensities is found for
all rotational anisotropies.

Fig. 2.21 shows the spectral dependence of the absolute values of the tensor com-
ponents obtained from the fit of the rotational anisotropy data. As in GaAs (compare
with Fig. 2.14), strong changes of the slope close to the band gap and a continuous
decrease with increasing MFISH energy are observed.

Concerning the magnetic field dependence of the MFISH signal, an important differ-
ence to GaAs appears. Fig. 2.22 shows rotational anisotropy of the X-line for different
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Figure 2.19: (a) MFISH
spectra of CdTe at differ-
ent magnetic fields in Voigt
geometry and at T = 6 K.
The inset shows the in-
tegrated intensity of the
strongest X-line vs. mag-
netic field. The solid line
is a H2-fit to the data. (b)
Landau-level fan chart di-
agram of the MFISH peak
positions: circles are ex-
perimental data with in-
tensities given by the sym-
bol size. Solid lines
give optical transitions be-
tween Landau-levels calcu-
lated from Eq. (2.24) for
Ne = Nh. The dashed
line gives literature data
for the diamagnetic shift of
1s-exciton state [134].

magnetic fields. The magnetic field dependence of I(2ω)MFISH
‖ (ϕ = 0◦) ∝ |χyyyzx|2

and I(2ω)MFISH
‖ (ϕ = 30◦) is given in panel (d). For both cases a quadratic magnetic

field dependence of MFISH intensity is found. This is in partial contrast to GaAs
[Fig. 2.15(d)], where a linear field dependence is observed for I(2ω)MFISH

‖ (ϕ = 30◦).

Fig. 2.23 shows that also the absolute values of all five MFISH tensor components
increase quadratically with the magnetic field, which is in opposite to the observa-
tion in GaAs (Fig. 2.16). Thus, in CdTe the experimental data are in full accor-
dance with the macroscopic model described by Eqs. (2.8) and (2.13), which leads to
I(2ω)MFISH ∝ H2.

The entirety of these findings shows that the MFISH phenomena in CdTe manifest
themselves in a very similar fashion as in GaAs. This leads to the conclusion that very
similar MFISH properties can be expected for the wide class of semiconductor and
insulator materials with zinc-blende crystal structure.
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Figure 2.20: MFISH
rotational anisotropy
in CdTe for the ge-
ometries E(2ω) ‖ E(ω)
(light shaded areas
and open circles) and
E(2ω) ⊥ E(ω) (dark
shaded areas and filled
circles) at T = 6 K
and H = 10 T. Experi-
mental data are given
by circles and shaded
areas represent simula-
tions using Eqs. (2.17)
and (2.18).

Figure 2.21: Spectral
dependence of the
absolute values of the
MFISH tensor compo-
nents in CdTe obtained
from simulation of the
rotational anisotropies
shown in Fig. 2.20: (a)
electric-dipole com-
ponents of χijkl-type,
(b) magneto-spatial
dispersion components
of χijklm-type.
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Figure 2.22: (a)-(c):
MFISH rotational
anisotropy of the
X-line in the geome-
tries E(2ω) ‖ E(ω)
(light shaded areas
and open circles) and
E(2ω) ⊥ E(ω) (dark
shaded areas and filled
circles) in CdTe at
T = 6 K. (d): Specific
polarization geome-
tries are chosen to
determine the MFISH
intensity dependence
of I(2ω)MFISH

‖ (ϕ =

0◦) ∝ |χyyyzx|2
(triangles) and
I(2ω)MFISH

‖ (ϕ = 30◦)

(squares) on the
magnetic field.

Figure 2.23: Magnetic
field dependence of
the absolute values
of the MFISH tensor
components in CdTe
for the X-line at
T = 6 K obtained by
the simulation of the
rotational anisotropies
shown in Fig. 2.22. (a)
electric-dipole com-
ponents of χijkl-type,
(b) magneto-spatial
dispersion components
of χijklm-type.
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2.9 Crystal quality

It is well-known, that the structural quality of the crystal is of big importance for
achieving an efficient SHG signal. This results from the coherent nature of the SHG
process, where the coherence length is an important parameter. The same is expected
for MFISH signals. Indeed, a strong correlation of the MFISH efficiency with the
structural quality of the studied samples is found. In this part, two sets of samples
with different approaches for the manipulation of the structural quality are examined.
The first approach deals with the binary GaAs semiconductor grown by various tech-
nological procedures. Here the main difference comes from the density of the defects
(see Ch. 2.3). The second approach exploits the concept of ternary alloys. It is ex-
amined for the Cd1−xMgxTe alloy, which is extended from the binary CdTe alloy by
an isoelectronic substitution of Cd2+ cations by Mg2+ cations. This causes structural
imperfections due to an inhomogeneous distribution of Mg2+ ions in the cation sublat-
tice. Also the optical properties are influenced, e.g. the absorption edge is shifted to
higher energies and broadened due to the alloy fluctuations.

2.9.1 GaAs

MFISH spectra for three different GaAs samples are shown in Fig. 2.24. For all samples
the spectra are found to be similar with respect to the spectral peak positions, although
the peak intensities vary significantly. Also the width of the MFISH lines differs from
sample to sample. E.g. the width of the X-line is 1.9 meV, 6.3 meV and 5.1 meV
for samples of type (i), (ii) and (iii), respectively. This is in good agreement with
the higher density of defects in samples (ii) and (iii). As one can see in Fig. 2.24,
with increasing line width the SHG intensity decreases about two orders of magnitude.
Therefore, both criteria indicate that the sample (i) possesses the highest quality and
the most efficient MFISH signal.

The rotational anisotropy of the X-line for different types of GaAs samples is shown
in the insets of Fig. 2.24. All anisotropy patterns reveal roughly a similar shape for
each sample compared to the strong changes for different energies in Fig. 2.13(a)-
(d). Differences are attributed to the influence of the crystal quality on the nonlinear
susceptibility tensor components.
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Figure 2.24: Influence of the sample quality on the MFISH spectra in GaAs. (i) 10
µm gas-phase-epitaxy layer, (ii) 2 µm epilayer grown by molecular-beam epitaxy, (iii)
0.5 mm platelet of bulk GaAs grown by the Bridgman method.

2.9.2 (Cd,Mg)Te

For the ternary alloy (Cd,Mg)Te, the structural quality is influenced by the Mg2+

content. Fig. 2.25 shows MFISH spectra for Cd1−xMgxTe samples with magnesium
concentrations of x = 0, 0.01 and 0.08. In comparison to the spectra shown for GaAs
in Fig. 2.24, the magneto-exciton structure is less pronounced. In the case of x = 0.01
the exciton states related to the 0− 0, 1− 1 and 2− 2 Landau-level transition can be
traced. However, for x = 0.08 only lines associated with the 0−0 and 1−1 transitions
are observable and higher transitions are broadened and not distinguishable. In this
case the number of observed magneto-exciton transitions can serve as a criterium for
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Figure 2.25: Influence of the magnesium concentration on the MFISH spectra and the
rotational anisotropy in Cd1−xMgxTe. (a) x = 0, (b) x = 0.01 (c) x = 0.08. Magnetic
field is applied in the Voigt geometry.

the crystal quality. With increasing Mg concentration the MFISH intensity decreases
by an order of magnitude and the X-line broadens from about 5 up to 9 meV.

Note that in Cd1−xMgxTe also a quadratic magnetic field dependence of the MFISH
intensity corresponding to the χyyyzx component is found, which is presented for the
Mg concentrations x = 0.01 and 0.08 in Fig. 2.26 and is similar to the results for x=0
shown in the inset of Fig. 2.19(a).
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Figure 2.26: MFISH intensity vs.
magnetic field (Voigt geometry) in
Cd1−xMgxTe with x = 0.01 and 0.08
for the component χyyyzx. Experimental
data are shown by symbols. Solid lines
are H2-fits to the data.

The insets of Fig. 2.25 display the rotational anisotropy of the X-line. Strong
changes of the shape of the anisotropy patterns are observed indicating strong changes
of the structural quality. Thus the quality of the crystal, which decreases with increas-
ing Mg concentration, strongly influences the MFISH signal.

In this Chapter it is demonstrated that the various parameters of MFISH like the
signal intensity, line broadening, number of distinguishable lines, as well as rotational
anisotropy patterns are very sensitive to the structural quality of the materials. This
may serve as a basis for optical methods for material characterization.
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2.10 Summary

Magnetic-field-induced SHG is investigated in the diamagnetic semiconductors GaAs,
CdTe and (Cd,Mg)Te possessing a direct band gap. Magneto-exciton states are found
to be the basis for the MFISH process. Therefore orbital quantization of electronic
states is the major source of MFISH in diamagnetic semiconductors. MFISH intensity
is shown to depend quadratically on the strength of the magnetic field. Nonlinear
magneto-optical spatial-dispersion is revealed to be necessary for explaining the MFISH
process. The macroscopic analysis is based on symmetry considerations. Simulations of
rotational anisotropy taking into account electric-dipole and magneto-spatial dispersion
contributions show a good agreement with the experimental data.

A possible explanation of the involvement of higher order processes to the SHG
by the application of a magnetic field is the following. The field induces an orbital
quantization of free carrier states in conduction and valence bands. This leads to a
strong increase of the density of states at the discrete Landau-level energies. Potentially
this might cause the enhancement of higher order contributions. These magneto-spatial
dispersion contributions show a characteristic length scale on the order of the light wave
vector k(ω).

MFISH spectroscopy beyond the electric-dipole approach combined with the ap-
plication of external magnetic fields leads to new possibilities to study electronic and
spin structures of semiconductors and their heterostructures. MFISH spectroscopy is a
supplementary method and an alternative to linear optical methods. Exemplarily, the
rotational anisotropy of the MFISH intensity varying with the MFISH energy might
reflect the Bloch-function contributions to the Landau-levels. This might enable to
obtain experimental information about the Bloch-function, which is hardly accessible
by other optical methods.

The general nature of the observed MFISH phenomena is proved since the same
MFISH process is found in III-V and II-VI semiconductors. Hopefully, the experiments
will motivate the development of a microscopic theory, which is required for getting a
better understanding of the involved physical mechanisms.
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Chapter 3

Diluted magnetic semiconductors

Diluted magnetic semiconductors (DMS) are a large group of materials featuring plenty
of various electronic, magnetic, optical and magneto-optical properties. In this group,
diamagnetic ions at cation positions in the crystal structure of alloys on the basis of II-
VI (e.g. CdTe, ZnSe, ZnO) or III-V (GaAs, GaN) semiconductors are partially replaced
by paramagnetic ions as Mn, Ni, Fe, etc. [31, 106, 134]. Due to these magnetic ions
with partially filled (3d)n or (4f)n shells, spin-dependent coupling between localized d-
or f -states and s- and p-band-states occurs. This coupling mechanism based on the
exchange interaction between carriers and localized ions can lead to magnetic ordering.
A well known example is the Ga1−xMnxAs system with x ∼ 0.05 − 0.06, where the
ferromagnetic Curie temperature raises up to 100-150 K and even higher [135, 136].
The exchange interaction between holes and localized spins leads to phenomena as the
magnetic-field-induced metal-insulator transition, the formation of the bound magnetic
polarons etc. Moreover, this interaction leads to the giant Zeeman splitting of valence
and conduction bands and impurity levels and therefore to giant Faraday rotation [137]
and nonreciprocal linear birefringence in the Voigt configuration [32]. This gives rise to
important practical applications of magnetic semiconductors as nonreciprocal devices
in optical telecommunication systems.

Application of a magnetic field to a DMS medium leads to magnetic-field-induced
symmetry breaking and can cause new optical nonlinearities. Different types of
magnetic-field-induced SHG can be distinguished. In magnetically ordered materi-
als phase transitions can be induced by a magnetic field leading to new allowed tensor
components or single domains can be created which increases the existing SHG signal
[25, 7]. In ferri- and ferromagnetic materials a spontaneous magnetization can be con-
trolled by the magnetic field and magnetization-induced SHG is observed [138, 7]. Re-
cently magnetization-induced SHG was observed in ferromagnetic Ga1−xMnxAs [139].
Applying a magnetic field to para- or diamagnetic materials reduces the symmetry
and therefore new SHG contributions are induced. Magnetic-field-induced SHG in
diamagnetic semiconductors is discussed in Ch. 2.

In this chapter, orbital and spin quantization of electronic states as a driven mecha-
nism of magnetic-field-induced SHG in the semiconductor Cd1−xMnxTe (x = 0− 0.64)
will be discussed. SHG spectra with well-defined polarization properties and character-
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istic magnetic-field and temperature dependencies are observed around the band gap in
Cd1−xMnxTe. These phenomena are explained by specific nonlinear processes for the
interaction of light with the magnetized medium, taking into account Landau-orbital
and Zeeman-spin quantization of semiconductor bands. Subsequently, MFISH will be
used to study spin glass phase magnetic properties.

Cd1−xMnxTe is chosen for the present study as being one of the most studied
DMS. It is a model material for fundamental physics and is also used for technological
purposes. It was found as a very good magneto-optical medium for non-reciprocal
devices and high-resolution Faraday microscopy at low temperatures [140]. Strong
thermally induced self-focussing of a laser beam near the band-edge was observed in
Cd1−xMnxTe (0 < x < 0.6) at room temperature [141]. Measurements of the absolute
values of the SHG coefficient d41 in the transparency region at λ=1.5 µm using bulk
Cd1−xMnxTe characterize it as a promising nonlinear-optical material [142].

3.1 Macroscopic description of SHG

Similar to GaAs and CdTe, (Cd,Mn)Te crystallizes in the zinc-blende structure de-
scribed by the non-centrosymmetric point group 43m. From the symmetry point of
view in the electric-dipole approximation [2, 3, 4] the leading order SHG polarization
P(2ω) is given by Eq. (2.2) and is discussed in Ch. 2.2. For (001)-oriented samples,
the crystallographic SHG vanishes for normal light incidence. Then the MFISH con-
tribution is assumed to be be described by

Pi(2ω) = ε0iχijklEj(ω)Ek(ω)Bl(0)

+ ε0χijklmEj(ω)Ek(ω)kl(ω)Bm(0), (3.1)

according to Ch. 2.2. Here B(0) = µ0[H(0)+M(0)] is the magnetic induction, H(0) is
the static external magnetic field and M(0) is the magnetization of the medium. The
magnetic-field-induced nonlinear susceptibilities χijkl and χijklm as well as the resulting
rotational anisotropy are discussed in detail in Ch. 2.2.

3.2 Band structure in magnetic field

The process of SHG in the vicinity of the semiconductor band gap involves electronic
states from the bottom of the conduction band and the top of the valence band.
Application of a magnetic field gives rise to Landau-level (LL) orbital quantization
[131] and to spin splitting due to the Zeeman effect. For the sake of simplicity, the
Coulomb attraction between electrons and holes will not be considered. For modeling
the optical spectrum, here only transitions between LLs with equal quantum numbers
N = 0, 1, 2, .. for electron and hole are considered, since they have the largest oscil-
lator strength and therefore dominate in the spectra as is shown above. With these
approximations, the energy spectrum near the band gap can be described by:

E = Eg + ELL(N) + EZ(S, J) + EGZ(S, J). (3.2)
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Figure 3.1: Giant Zeeman
splitting diagram: In a
magnetic field the con-
duction (Γ6) and valence
(Γ8) bands split accord-
ing to Eq. (3.4). The
optical transitions between
the electronic states are la-
beled by 1-8. Transitions
2 and 7 are forbidden for
single-photon processes, as
they require a change of
the spin by ±2.

Here ELL describes the LL quantization. The third term in Eq. (3.2) accounts for the
spin splitting due to the Zeeman effect:

EZ(Se, Jh) = (Sege + Jhgh)µBH, (3.3)

with projections on the field direction of the electron spin Se = ±1
2

and the hole total
angular momentum Jh = ±3

2
,±1

2
. ge(h) are the g-factors of electrons (holes). µB is the

Bohr magneton. The last term in Eq. (3.2) is the giant Zeeman splitting in diluted
magnetic semiconductors [31]:

EGZ(S, J) = xS0N0(
β

3
J − αS)B 5

2

[
5µBgMnH

2kB(TMn + T0)

]
, (3.4)

where gMn=2. kB is the Boltzmann constant, and TMn is the temperature of the Mn-
spin system (in the experiment TMn = T ). S0 and T0 are phenomenological parameters
describing the Mn-Mn antiferromagnetic interactions. B 5

2
is the modified Brillouin

function. N0α=220 meV and N0β=-880 meV are the exchange integrals for the con-
duction and valence band states, interacting with the localized magnetic moments of
the Mn2+ ions [31]. Fig. 3.1 shows schematically the giant Zeeman splitting described
by Eq. (3.4). The possible transitions between the electronic states are labeled by 1-8.
These labels of the electronic transitions will be used in the following. ∆EGZ , which
is defined by

∆EGZ = EGZ(+
1

2
, +

3

2
)− EGZ(−1

2
,−3

2
), (3.5)

gives the energy splitting of the exciton states in a magnetic field.

The competition between the terms ELL(N) and EGZ(S, J) is shown in Fig. 3.2.
The energy level diagrams are calculated for different Mn concentrations. Spin and
orbital quantization have different functional dependencies on the magnetic field. EGZ

saturates with increasing field, whereas ELL and EZ increase linearly. In diamagnetic
wide band gap semiconductors EZ is one or two orders of magnitude smaller than ELL.
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Figure 3.2: Influence of the Mn concentration x on the band structure of Cd1−xMnxTe
in a magnetic field: (a) x=0: the Landau-level contribution ELL(N) dominates the
band structure, (b) x=0.001: the Landau-level contribution ELL(N) and the giant
Zeeman splitting EGZ(S, J) influence the band structure significantly, (c) x=0.02: the
giant Zeeman splitting EGZ(S, J) dominates. Modeling is done for T = 2 K.

For example, in CdTe at H=10 T the exciton Zeeman splitting does not exceed 0.1 meV,
while the cyclotron energy amounts to 10 meV (see Fig. 3.2(a)). By contrast, in diluted
magnetic semiconductors EGZ varies up to 100 meV, and can become considerably
larger than ELL (see Figs. 3.2(c)). Therefore in (Cd,Mn)Te one can realize situations
in which either orbital or spin quantization dominates. The investigation of their
interplay becomes possible, if EGZ is on the order of ELL (see Figs. 3.2(b)).

3.3 Description of Cd1−xMnxTe samples

Three different types of Cd1−xMnxTe samples are investigated:

(A) Cd1−xMnxTe epilayers with concentrations x > 0.1 are grown by molecular
beam epitaxy on (001)-oriented GaAs substrates. CdTe is used as a buffer layer
on which a 10 µm epitaxy layer of Cd1−xMnxTe is grown. Samples with x = 0.04
(no. 121404A), 0.08 (no. 52505D), 0.12 (no. 052505C), 0.16 (no. 121404B), 0.18
(no. 52505A), 0.22 (no. CT485), 0.36 (no. 121404C) and 0.64 (no. 121504B) are in-
vestigated. For these samples, Eg varies from 1.67 eV to 2.62 eV.

(B) Cd1−xMnxTe epilayers with concentrations x < 0.1 are grown by molecular
beam epitaxy on (001)-oriented GaAs substrates. Cd0.8Mg0.2Te (Eg=1.96 eV) is used
as a buffer layer on which a 1 µm epitaxy layer of Cd1−xMnxTe is grown. On top, a
50 µm Cd0.8Mg0.2Te layer is grown to prevent surface effects. Experimental results for
x = 0.001 (Eg=1.61 eV) (no. 052705A) are presented here.
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Figure 3.3: (a) Band structure of samples of type (A) and (B). (b) Experimen-
tal geometry with k(ω) ‖ z for (001)-oriented samples. Exemplarily polarizations
E(2ω) ‖ E(ω) ‖ y are shown.

(C) Cd1−xMnxTe bulk single crystals are grown by the Bridgman method. The ori-
entation of the crystals is checked by X-ray technique. The thickness of the coplanar
(110) and (100) platelets vary in the range of 0.2 − 0.9 µm. The samples are charac-
terized by optical absorption and photoluminescence (PL) spectra given in Ref. [45].
Samples with x = 0.24, x = 0.35 and x = 0.40 are investigated. Only experimental
results for x = 0.24 are presented here.

Fig. 3.3(a) shows the band structures of samples of type (A) and (B).

Fig. 3.3(b) shows schematically the experimental geometry. The coordinate system
of the light waves is given by the wave vectors k(ω) ‖ k(2ω) and the polarizations E(ω)
and E(2ω) of the fundamental and the SHG light wave, whereas the crystallographic
coordinate system is defined by the crystallographic axes x, y and z. Exemplarily, the
figure shows the polarizations geometry E(2ω) ‖ E(ω) ‖ y with k(ω) ‖ k(2ω) ‖ z.
Applying a static magnetic field H ‖ x, this geometry is described by the tensor
component χyyyzx in Eq. (2.13). Exact 90◦ angle between light propagation k ‖ z and
magnetic field direction H ‖ x is very important in order to avoid any Faraday rotation
of the fundamental and SHG light polarization in the sample.
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3.4 Crystallographic SHG

The crystallographic SHG contribution has been investigated in several works [45, 123].
In order to measure the crystallographic SHG, the (001)-oriented Cd0.84Mn0.16Te sam-

Figure 3.4: Crystallographic SHG spectrum and rotational anisotropy in a
Cd0.84Mn0.16Te sample of type (A) for the geometry E(2ω) ‖ E(ω) with ϑ = 54◦

according to Eq. (2.4). The inset shows the rotational anisotropy for the geometries
E(2ω) ‖ E(ω) (light grey shaded area and open dots) and E(2ω) ⊥ E(ω) (grey shaded
area and filled dots).

ple is tilted by 45◦ around the [010] axis (see Ch. 2.4). Crystallographic SHG in
transmission geometry in a wide spectral range is shown in Fig. 3.4 for Cd0.84Mn0.16Te
of type (A). A strong decrease of the SHG intensity is found close to the band gaps of
GaAs (1.519 eV), CdTe (∼1.596 eV) and Cd0.84Mn0.16Te (∼1.861 eV). This decrease
does not display the pure spectral dependence of the squared nonlinear optical suscep-
tibility given by Eq. (2.2). Note that reabsorption of the SHG light reduces the SHG
intensity strongly around each band gap. In the following the continuous decrease of
the coherence length will be considered below and above the band gaps influencing the
SHG spectrum. Similar to GaAs, below the band gap the coherence length for the
SHG light at normal incidence can be calculated by Eq. (2.22). Above the band gap
the coherence length is reduced to the value of attenuation length given by Eq. (2.23).
Both mechanisms explain the strong decrease of the SHG intensity close to each band
gap. SHG below each band gap is believed to be generated in the accordant layer of the
sample (see also Fig. 3.24 and the detailed discussion in Ref. [45]), and reabsorption
leads to a vanishing of the SHG signal above each band gap. Note that the excitation



3.5 Magnetic-field-induced SHG 83

of the exciton is parity forbidden for the SHG process described by Eq. (2.2). For this
reason no X-line is observed in the crystallographic SHG spectrum.

The angular dependence of the rotational anisotropy of the SHG signal can be
calculated on the basis of Eqs. (2.4) and (2.5). A fit on the experimental data is
shown by the inset of Fig. 3.4 for Cd0.84Mn0.16Te. Relatively good agreement between
experimental data and simulations (shaded areas) is observed confirming a proper
orientation of the sample. The distortion of the anisotropy (open data points) indicates,
that the structural and optical quality is not very good compared to that of the GaAs
and CdTe epilayers investigated in Ch. 2. Probably, strain between different layers of
the heterostructure or inhomogeneity cause this distortion. Furthermore the strong
rotational anisotropy evidences, that no two-photon luminescence is detected and the
signal is fully contributed by SHG. In the case of two-photon luminescence, an isotropic
signal is expected since it is a lower order process.

3.5 Magnetic-field-induced SHG

In the following the crystallographic SHG contribution χijk will not be considered
since it is suppressed by a proper choice of the experimental geometry. (001)-oriented
Cd1−xMnxTe samples and normal light incidence are used allowing no generation of
crystallographic SHG.

The MFISH contribution is studied as a function of the photon energy, magnetic
field, temperature and azimuthal orientation of light polarizations in the following.
First, wide range MFISH spectra will be discussed for a Cd0.84Mn0.16Te sample of type
(A). Then the spin quantization induced MFISH contribution around the band gap of
Cd0.96Mn0.04Te is considered. Subsequently, the influence of the Mn concentration on
the observed features will be shown.

3.5.1 Wide range spectra

Fig. 3.5(a) shows typical MFISH spectra of a Cd1−xMnxTe sample of type (A). A sketch
of the band gap structure is given in Fig. 3.5(b). Since the hole crystal is transparent
for the fundamental light at the frequency ω (~ω < 1.5 eV ) and the band gap energies
of the stacked layers GaAs, CdTe and Cd1−xMnxTe increase along the direction of the
light propagation, MFISH from all layers is observable and no band gap absorption of
the MFISH in the following layer(s) appears. Above 1.5 eV and 1.6 eV the MFISH
signals generated in the GaAs and CdTe layers, respectively, can be observed and
are spectrally well separated due to the different band gap energies. Depending on the
concentration x, the MFISH signal induced in Cd1−xMnxTe is also separated spectrally
(Eg(x) >1.6 eV).

MFISH spectra for a specific polarization at T=5 K for normal light incidence are
shown by Fig. 3.5(a) for H=0 T and H=9 T. Note that at zero magnetic field only a
weak signal (gray area) is observed below 1.6 eV, which might be attributed to residual
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Figure 3.5: (a) MFISH
spectrum for k(ω) ‖ z
and H(0) ‖ x
in GaAs/CdTe/
Cd0.84Mn0.16Te. Due
to the difference in
the band gap energies
of GaAs, CdTe and
Cd1−xMnxTe, the
MFISH contributions
are spectrally well
separated. (b) Band
structure of samples
of type (A): GaAs
(001) substrate is
used to grow a CdTe
buffer layer and, on
top, a Cd1−xMnxTe
epilayer. The sketch
shows the energy gap
of the different layers
in combination with
the SHG processes.

photoluminescence. The absence of the signal above 1.6 eV confirms the proper sup-
pression of the crystallographic SHG contribution. The applied magnetic field induces
a SHG signal consisting of a set of narrow lines in the spectral ranges 1.52-1.59 eV
and 1.60-1.68 eV. These MFISH contributions, which are generated in the diamagnetic
semiconductor layers GaAs and CdTe, are discussed in Ch. 2. Another MFISH contri-
bution consisting of a set of narrow lines as well as a spectrally broad background is
present in the spectral range 1.75-2.40 eV which is related to the Cd0.84Mn0.16Te layer.
The center of the set of narrow lines found in the spectral range 1.80-1.95 eV coincides
with the band gap energy Egap = 1.86 eV of Cd0.84Mn0.16Te at 4.2 K. The line width
of the narrowest line at 1.8 eV is (20±3) meV. A maximum splitting between the lines
of about 120 meV is observed. The exact spectral positions of the lines depend on the
polarizations of the light waves, which will be discussed in the following.
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Figure 3.6: (a) MFISH
spectra of Cd0.96Mn0.04Te
measured for k(ω)‖z and
H‖x for two polarization
combinations. (b) Peak po-
sitions of the MFISH lines
vs. magnetic field. Dots
are experimental data with
relative intensities given by
the symbol sizes. Lines give
the energies of optical tran-
sitions calculated according
to Eqs. (3.2) and (3.4) with
S0=1.68 and T0=1.8 K.

3.6 Spin quantization induced SHG

In this section, the MFISH contribution near the band gap of Cd1−xMnxTe will be
considered more detailed by variation of the magnetic field and the temperature.

3.6.1 Field dependence

Fig. 3.6(a) shows SHG spectra obtained near the band gap of Cd0.96Mn0.04Te (Eg =
1.67 eV) at different magnetic fields (T=5 K). The spectra radically differ from those of
GaAs or CdTe. They feature eight lines, which shift and gain intensity with increasing
magnetic field. The energy splitting ∆EGZ between the strongest peaks labelled 1 and
8 amounts to 57 meV > ELL = 10 meV at H=7 T, which is a typical value for the giant
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Figure 3.7: (a) Tempera-
ture dependence of MFISH
spectra of Cd0.96Mn0.04Te
measured for k(ω)‖z and
H‖x for two polariza-
tion combinations. (b)
MFISH peak energies in
Cd0.96Mn0.04Te vs. tem-
perature at H=7 T. Dots
are experimental data with
intensities given by the
symbol sizes. Solid lines
are calculations account-
ing for the temperature
dependencies of the giant
Zeeman splitting and of the
band gap [88].

Zeeman splitting of heavy-hole exciton states in Cd0.96Mn0.04Te, as measured, e.g., in
reflectivity [31]. Note that as compared to the diamagnetic GaAs and CdTe, MFISH
signal appears in (Cd,Mn)Te at the energies of the spin-split optical transitions. The
line width is about 4 meV and is independent of H, which is similar to the MFISH line
width for CdTe (see Ch. 2).

The energy shifts of the eight lines in magnetic field are given in Fig. 3.6(b) by sym-
bols. Lines indicate the energies calculated according to Eqs. (3.2) and (3.4) for the op-
tical transitions between the spin-split conduction and valence bands in Cd0.96Mn0.04Te.
A very good agreement is achieved between experimental results and calculations, con-
firming the assignment of the optical transitions, which is shown more detailed by the
scheme in Fig. 3.1. Note, that the transitions 2 and 7, highlighted by the dashed
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lines, require a change of angular momentum by ±2 and therefore cannot be excited
by one-photon processes (compare to Fig. 1.12(b)). However, it is possible to address
them by SHG, since two photons are involved in the excitation process.

3.6.2 Temperature dependence

In order to prove unambiguously, that the mechanism of MFISH generation originates
from spin quantization, the specific temperature dependence of the spin splitting in
diluted magnetic semiconductors is exploited. ∆EGZ depends strongly on the polar-
ization of the Mn spins and therefore on the temperature TMn of the Mn-ions. The
energy shifts of the two strongest MFISH lines 1 and 8 in the temperature range from
2 to 270 K are given in Fig. 3.7. With increasing temperature the giant Zeeman split-
ting decreases continuously, and this is accompanied by a strong reduction of the SHG
intensity. The peak energies can be well reproduced by Eqs. (3.2) and (3.4) plus the
known dependence for the temperature shift of the band gap in (Cd,Mn)Te at H=0 T
[88]. The results of this modeling are shown by the solid lines. The line width in-
creases from ∼4 meV at 2 K up to ∼7 meV at 100 K due to carrier-Mn spin exchange
scattering.

3.6.3 Spin quantization

From the data in Figs. 3.6 and 3.7 it is obvious, that the MFISH in (Cd,Mn)Te is
controlled by the giant Zeeman splitting. In the following the MFISH intensity inte-
grated over the strongest line 1 as well as the giant Zeeman splitting will be discussed
as functions of the magnetic field and the temperature. The variation of ∆EGZ shown
in Figs. 3.8(c) and (d) is in good agreement with the calculations based on Eqs. (3.2)
and (3.4) (solid line). In addition the MFISH intensity dependence on the magnetic
field as well as on the temperature is described by the same modified Brillouin function,
which is shown in Figs. 3.8(a) and (b). Therefore, an important experimental finding
is, that the SHG intensity in Cd0.96Mn0.04Te is proportional to the spin splitting.

For deeper insight, in Fig. 3.9 the experimentally obtained dependence of the
MFISH intensity on ∆EGZ , which is tuned by a variation of either the magnetic field
or the temperature, are plotted. One data set is measured at T=5 K for H varied in
the range 0− 7 T (closed circles), and another set is taken at H=7 T for temperatures
ranging between 6 − 200 K (open circles). The data sets are in close coincidence and
can be well described by a linear dependence. The dependence I(2ω) ∝ ∆EGZ addi-
tionally confirms, that the MFISH in paramagnetic (Cd,Mn)Te is determined by the
spin-splitting.

3.6.3.1 Spin-splitting as a source of MFISH

In the following a possible explanation of the vanishing of the MFISH signal in zero
magnetic field is given. If the electronic states involved in the SHG process are spin-
degenerated in zero magnetic field, the spin-contribution to SHG might vanish, because
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Figure 3.8: Integrated MFISH intensity vs. magnetic field (a)and temperature (b) and
giant Zeeman splitting vs. magnetic field (c) and temperature (d) in Cd0.96Mn0.04Te.
Solid lines are fits to the data using the Brillouin function of Eq. (3.4).

the spins possess a randomly distributed phase and therefore the SHG contributions
annihilate each other. When the magnetic field is applied, the degeneracy is lifted,
since the wave functions of different spin states have different phases. With increasing
field the mixing of states with different phases decreases and thus the MFISH intensity
might increase. It may be expected, that the phase of the MFISH signal from spin states
with opposite spin directions lead to a phase difference of 180◦ of the according MFISH

Figure 3.9: Integrated SHG
intensity as a function of
the giant Zeeman split-
ting ∆EGZ , which is con-
trolled either by the mag-
netic field at a fixed tem-
perature (closed circles) or
by the temperature at a
fixed magnetic field (open
circles). The line is a linear
interpolation of the experi-
mental data.
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Figure 3.10:
Rotational anisotropy
of the MFISH sig-
nals for the optical
transitions 1-5 and
8 in Cd0.96Mn0.04Te.
The anisotropy is
given for geometries
E(2ω) ‖ E(ω) (light
shaded areas and
open circles) and
E(2ω) ⊥ E(ω) (dark
shaded areas and filled
circles) at 5 K and 7 T.
The experimental data
are given by circles and
shaded areas present
simulations.

signals. Hints for such an interference are observed in MFISH spectra in positive and
negative magnetic fields [143].

In comparison, the orbital quantization induced MFISH can be explained by an
increasing density of states at the Landau-levels, which leads to a resonance enhance-
ment of the SHG process and thus to the observed intensity increase. In opposite,
spin splitting lifts the degeneracy of the spin states and might increase the degree of
coherence of the spin states contributing to the spin-induced SHG process.

3.6.4 Rotational anisotropy

The MFISH rotational anisotropies shown by Fig. 3.10 are recorded as a function of
the azimuthal angle ϕ between the crystallographic [010] axis and the fundamental
MFISH polarization E(ω) for the E(2ω) ‖ E(ω) and E(2ω) ⊥ E(ω) geometries.
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The rotational anisotropy of the MFISH signal features diverse twofold patterns
which cannot be explained using only the electric-dipole approximation described by
the nonlinear susceptibility χijkl in Eq. (3.1). The experimental data for the rotational
anisotropy have been fitted simultaneously for both geometries taking into account
the complexity of the nonlinear optical susceptibilities χijkl and χijklm in Eqs. (3.1).
The fitting procedure is described in more detail in Ch. 2.6.1. The calculated curves
are shown by lines with shaded areas. Similar to the results for diamagnetic semi-
conductors, a good agreement between experimental and calculated MFISH intensities
is found for the rotational anisotropy, indicating that a combination of electric-dipole
and spatial-dispersion mechanisms is responsible for the observed nonlinear optical
phenomena in diluted paramagnetic semiconductors.

3.6.4.1 Spectral dependence

Figure 3.11: Spectral dependence of the absolute values of the MFISH tensor com-
ponents in Cd0.96Mn0.04Te: (a) electric-dipole components of χijkl-type, (b) magneto-
spatial dispersion components of χijklm-type.

The set of absolute values of the tensor components obtained by fitting the rota-
tional anisotropies, which are shown in Fig. 3.10, is given in Fig. 3.11 as a function
of the SHG energy at 7 T and 5 K. Note that values for |χyxyx| and |χxxyzx| are not
unique and thus no physical meaning can be attributed, but values for |χxyyx|, |χyxxzx|
and |χyyyzx| can unambiguously be determined and thus reveal the absolute values of
the nonlinear susceptibility tensor components (see detailed discussion in Ch. 2.6.1).
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Figure 3.12:
Rotational anisotropy
of the MFISH signals in
Cd0.96Mn0.04Te for ge-
ometries E(2ω) ‖ E(ω)
(light shaded areas
and open circles)
and E(2ω) ⊥ E(ω)
(dark shaded areas
and filled circles) for
the transition 1. The
experimental data are
given by circles and
shaded areas present
simulations.

Fig. 3.11(a) shows the electric-dipole components described by a fourth-rank tensor,
whereas Fig. 3.11(b) reveals the magneto-spatial dispersion components described by
a fifth-rank tensor. Significant changes of the absolute values are found for the tran-
sition 1 and 8, which reveal the highest MFISH intensity. Absolute values for the
transitions 2-5 feature only minor differences. The reasonable magnitude of the error
bars indicates a high reliability of the tensor component values found by the fits.

3.6.4.2 Magnetic field dependence

In Ch. 3.6.3, the magnetic field dependence of I(2ω)MFISH
‖ (ϕ = 45◦), which is equiv-

alent to the geometry E(2ω) ‖ E(ω) ‖ [1̄10] and shown in Fig. 3.8(a), is found to be
described by the modified Brillouin function.

Here the magnetic field dependence of the MFISH signal for other polarization
geometries will be considered. Fig. 3.12(a)-(d) shows rotational anisotropy patterns
for different magnetic fields for the transition 1. Only minor changes of the shape of
the patterns are observed between 10 T and 0.5 T. The very low MFISH intensity at
0 T shown in Fig. 3.12(d) can be attributed to residual crystallographic SHG due to
its characteristic rotational anisotropy (compare to the rotational anisotropy shown
in Fig. 3.4, note that the axes of the polar diagrams do not coincide). On the basis
of these rotational anisotropy data the absolute values of the tensor components are
calculated by the fitting procedure.

Fig. 3.13 shows the squared absolute values of the MFISH tensor components ob-
tained by the fitting procedure. In full accordance to the data presented in Fig. 3.8(a),
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Figure 3.13: Magnetic
field dependence of
the squared absolute
values of the MFISH
tensor components
in Cd0.96Mn0.04Te for
the transition 1 at
1.8 K obtained by the
fitting procedure. (a)
electric-dipole com-
ponents of χijkl-type,
(b) magneto-spatial
dispersion components
of χijklm-type.

the fitted tensor components |χyxxzx|, |χxxyzx| and |χyxyx| reveal a magnetic field depen-
dence, which can be described by the modified Brillouin function (solid lines) leading to
the conclusion that pure spin quantization induced MFISH is observed for these com-
ponents. In contrast, the tensor component |χyyyzx| displays a quadratic magnetic field
dependence (solid line) as observed for diamagnetic semiconductors shown in Fig. 2.23.
Thus this contribution is attributed to orbital quantization induced MFISH. The com-
ponent |χxyyx| reveals a strange magnetic field dependence, which might be explained
by an interference between spin and orbital quantization induced contributions.

Recapitulating, the squared absolute value of the unambiguously determined tensor
component |χyxxzx| displays a MFISH intensity, which is described by the modified
Brillouin function and thus the nonlinear polarization Pi(2ω) is found to be linear
proportional to the magnetization. Note that the macroscopic model would lead to a
quadratic dependence of the nonlinear polarization Pi(2ω) on the magnetization. This
discrepancy might be solved by adding an factor 1/|M(0)| to the magnetization term
in Eq. (3.1). In opposite, the squared absolute value of the unambiguously determined
tensor component |χyyyzx|, which is attributed to the orbital quantization induced
MFISH contribution, is found to depend quadratically on the external magnetic field,
which is in full accordance with the macroscopic model.

3.7 Interplay of spin and orbital quantization

Above a detailed discussion of the spin quantization induced SHG in paramagnetic
Cd0.96Mg0.04Te is given. In Ch. 2, orbital quantization induced SHG in diamagnetic
semiconductors is discussed, e.g. for CdTe. Next, the interplay of both MFISH mech-
anisms, the orbital and the spin quantization, will be investigated. With decreasing
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Figure 3.14: MFISH spec-
tra of Cd0.999Mn0.001Te as
a function of the mag-
netic field for k(ω)‖z and
H(0)‖x. The inset shows
the SHG peak energy vs.
magnetic field.

Mn concentration x, the giant Zeeman splitting and therefore the MFISH intensity
originated by spin quantization of the electronic states decreases. On the other hand
with increasing Mn concentration the crystal quality gets worse and thus the orbital
quantization induced SHG intensity decreases. For a proper concentration value x,
both contributions, the orbital and spin quantization SHG, are of the same order of
magnitude. This allows the investigation of orbital and spin quantization contributions
simultaneously. For this purpose, samples with low Mn concentration of type (B) are
chosen, where Cd0.8Mg0.2Te instead of CdTe is used as a buffer layer in order to avoid
MFISH contributions of CdTe which could not be separated spectrally from MFISH
contributions of Cd1−xMnxTe with very low Mn concentrations.

Fig. 3.14 shows the magnetic field dependence of the MFISH signal, which features a
narrow line near the band gap of Cd0.999Mn0.001Te (Egap=1.608 eV), at 1.7 K for normal
light incidence. With increasing magnetic field, this line shifts from the extrapolated
value of 1.608 eV at zero magnetic field to higher energies and gains in intensity. The
line width is less than 4 meV as in the case of CdTe. Neither crystallographic SHG nor
PL signal is detected at zero field, confirming the proper suppression of both signals.
The magnetic field dependence of the MFISH peak energy as a function of the magnetic
field displays the diamagnetic shift of the 1s exciton, which is shown in the inset where
the peak intensities are represented by the symbol sizes. Note that the maximum
giant Zeeman splitting is only on the order of 1 meV at 10 T and therefore below the
experimental resolution limit.

Fig. 3.15 shows the magnetic field dependence of the MFISH peak intensity at 1.7 K.
Below 4 T, the dominant mechanism contributing to the MFISH intensity is the giant
Zeeman splitting. In this range, the magnetic field dependence is well described by
the dotted line, which is derived by the modified Brillouin function given by Eq. (3.4)
using the literature values S0=2.5 and T0=0 (taken from Fig. 1.10). Thus the MFISH
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Figure 3.15: MFISH inten-
sity of Cd0.999Mn0.001Te vs.
magnetic field: dots are ex-
perimental data while lines
represent calculations. Be-
low 4 T the SHG inten-
sity depends linear on the
magnetization M described
by the giant zeeman split-
ting given by Eq. (3.4) (dot-
ted line). Above 4 T the
MFISH intensity is propor-
tional to the squared mag-
netic field H2 (dashed line).
A fit to the data including
both dependencies is shown
by the solid line.

intensity is found to be linear proportional to the magnetization. Above 2 T, the
contribution from giant Zeeman splitting is saturated. With increasing field (H >4 T),
the MFISH intensity increases quadratically with the magnetic field as can be seen
from the corresponding fit to the data (dashed line). This quadratic dependence of the
MFISH intensity on the magnetic field is discussed in detail for diamagnetic CdTe in
Ch. 2. A fit to the data, including both dependencies, is shown by the solid line. A
good agreement between the experimental data and the simulation is found. Thus both
mechanisms, the spin and the orbital quantization, contribute to the MFISH signal.

Figs. 3.16(a) and (b) show the temperature dependence of the MFISH signal at
2 T and 10 T, respectively, in the temperature range between 1.7 to 50 K. In both
cases the energy shift of the spectral lines follows the temperature decrease of the
Cd0.999Mn0.001Te band gap energy and the giant Zeeman splitting ∆EGZ ∼1 meV can
be neglected. For magnetic fields below 4 T (see Fig. 3.16c), the decrease of the MFISH
intensity is linear proportional to the magnetization indicating, that the decrease of
the magnetization is the dominant mechanism. The solid line (dark grey area) is
derived from the modified Brillouin function given by Eq. 3.4. The estimated orbital
quantization induced contribution at 2 T (light grey area) can be neglected. Above 4 T
both effects, spin splitting and orbital quantization, contribute to the MFISH signal.
Fig. 3.16(d) presents the MFISH intensity as a function of the temperature at 10 T.
The dotted line (dark grey area) is calculated by the modified Brillouin function for
10 T using the same parameters as chosen for the calculation of the modified Brillouin
function for 2 T. This Brillouin function displays the MFISH contribution induced
by the giant Zeeman splitting. Additionally, an orbital quantization induced SHG
contribution is present at high magnetic fields shown by the light grey area.

This demonstrates, that both effects, the orbital and the spin quantization of elec-
tronic states, induce MFISH in Cd0.999Mn0.001Te. The magnetic field leads to giant
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Figure 3.16:
MFISH spectra of
Cd0.999Mn0.001Te as a
function of the tem-
perature: (a) H = 2 T,
(b) H = 10 T. MFISH
intensity vs. temper-
ature: (c) H = 2 T,
only spin quantiza-
tion induced SHG (d)
H = 10 T, spin and
orbital quantization
induced SHG.

Zeeman splitting, which clearly dominates the MFISH mechanism at low magnetic
fields. The magnetic field and temperature dependence of the MFISH intensity is
described by the modified Brillouin function. Another dominant process is that the
magnetic field induces Landau-level quantization. Thereby the Zeeman splitting of the
Landau-levels is much smaller than the giant Zeeman splitting in Cd1−xMnxTe and
does not contribute significantly to the MFISH mechanism. In the case of the orbital
quantization induced contribution, the MFISH intensity depends quadratically on the
strength of the magnetic field.

3.8 MFISH dependence on the Mn concentration

In this section, the influence of the Mn concentration on the MFISH signal will be
discussed.
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Figure 3.17: (a) MFISH
spectra of Cd0.64Mn0.36Te
as a function of magnetic
field for k(ω)‖z and H‖x.
The spectral dependence of
the MFISH signal can be
modeled by a Gauß fit
of two superposed curves
with a line width >48 meV
(solid lines). (b) Giant
Zeeman splitting diagram
of the MFISH peak posi-
tions: dots are experimen-
tal data with relative in-
tensities given by the sym-
bol sizes. Solid lines
give optical transition ener-
gies between giant Zeeman
split bands calculated from
Eq. (3.4).

3.8.1 High Mn concentration

Above, Cd1−xMnxTe with low manganese concentration is investigated in order to
specify the interplay between spin and orbital quantization induced MFISH. Here
Cd1−xMnxTe with high manganese concentration will be considered.

Fig. 3.17(a) shows the magnetic field dependence of the MFISH spectra near the
band gap of Cd0.64Mn0.36Te (type (A) sample with Egap = 2.05 eV) at 4.5 K. At zero
magnetic field a weak signal is observed. Possible explanations are, that whether the
crystallographic SHG contribution is not fully suppressed or SHG induced by strain, e.g.
between different layers, appears. In an applied magnetic field, the observed MFISH
signal consists of two overlapping lines. The splitting between these lines arises from
the magnetic field. The observed spectral dependence of the MFISH signal can be
modeled by a Gauß fit to the data revealing, that two broad lines with a line width
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Figure 3.18: (a) MFISH
spectra at different temper-
atures in Cd0.64Mn0.36Te at
H = 8 T. Note that MFISH
is found even at 300 K
(inset). (b) MFISH peak
energies vs. temperature.
Dots are experimental data
with intensities given by the
symbol sizes. Solid lines
are calculations accounting
for the temperature depen-
dencies of the giant Zeeman
splitting and of the band
gap.

>48 meV are superposed. For the following analysis of the spectra, these two lines are
fitted by superposed Gauß curves plotted as lines in Fig. 3.17(a).

Fig. 3.17(b) shows the magnetic field dependence of the MFISH energies of the two
electronic transitions 1 and 5. The parameters S0=0.2 and T0=15.5 K are used to
calculate the modified Brillouin function given by Eq. (3.4). Note that for a high man-
ganese concentration of x = 0.36 only the transitions 1 and 5 are observed, whereas
for x = 0.04 the full set of eight transitions is observed (Fig. 3.6). However, good
agreement between experimental data for the MFISH peak energies vs. magnetic field
and the giant Zeeman splitting calculated by Eq. 3.4 is observed for the transitions 1
and 5. This indicates that spin quantization is also the origin of MFISH in strongly
doped diluted paramagnetic semiconductors. A possible explanation of the absence of
the other MFISH lines in the spectra in Cd0.64Mn0.36Te can be given by the inhomo-
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geneous distribution of the manganese ions leading to an inhomogeneous broadening
of the lines. Therefore the MFISH peak intensity decreases with increasing Mn con-
centration. Furthermore a distinction between the lines becomes impossible due to the
large line width.

The temperature dependence of the MFISH spectra for Cd0.64Mn0.36Te at 8 T is
shown by Fig. 3.18(a) in the temperature range of 4.5-300 K. Due to the inhomogeneous
broadening, the distinction of the two observed lines is difficult and so the dominant
mechanism to describe the temperature behavior of the peak energies is the shift of the
band gap energy. Because of inhomogeneous broadening due to the Mn distribution,
the line width is about 50 meV. The line width does not vary significantly with the
temperature. Note that the MFISH signal can be observed even at room temperature,
as shown in the inset of Fig. 3.18(a). The MFISH intensity at room temperature is
about one order of magnitude smaller compared to the signal at 4.5 K

MFISH peak energies obtained by Gauß fits on the spectral data are presented in
Fig. 3.18(b). Below 80 K, a good description of the SHG peak energies can be given
by the modified Brillouin function (solid lines) combined with the dependence for the
temperature shift of the band gap energy [88]. Above 80 K, a distinction between the
transitions 1 and 5 is not possible.

Figure 3.19: Integrated MFISH intensity vs. magnetic field (a)and temperature (b) and
giant Zeeman splitting vs. magnetic field (c) and temperature (d) in Cd0.96Mn0.04Te.
Solid lines are fits to the data using the Brillouin function of Eq. (3.4).

On the basis of the data shown in Figs. 3.17 and 3.18, the magnetic field and
temperature dependence of the MFISH intensity as well as the giant Zeeman splitting
can be determined. Figs. 3.19(a) and (c) show the magnetic field dependence of the
integrated MFISH intensity and the giant Zeeman splitting, respectively. Good agree-
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ment between the experimental data and the calculations using Eq. (3.4) (solid lines)
is found. Figs. 3.19(b) and (d) show the temperature dependence of the integrated
MFISH intensity and the giant Zeeman splitting. It is not possible to calculate the
giant Zeeman splitting from the experimental data presented in Fig. 3.18 at high tem-
peratures, which results from the broadening of the lines and the strong decrease of
the MFISH intensity. The experimental data for the MFISH intensity deviate from the
calculated modified Brillouin function (solid line in Fig. 3.19(b)). Note that at zero
magnetic field (see Fig. 3.19(a)) and high temperature (see Fig. 3.19(b)) a residual
SHG intensity is observed. This deviation from the modified Brillouin function might
be partly explained by a crystallographic SHG contribution. However, a possible in-
fluence of the Mn-Mn interaction and/or clusters [31] to the MFISH signal at high Mn
concentration cannot be excluded so far.

In conclusion, due to inhomogeneous broadening of the lines in the MFISH spectra
in Cd1−xMnxTe with high Mn concentration , the spectral distinction between different
MFISH lines becomes impossible. Thus the complete set of eight possible transitions
cannot be observed.

3.8.2 Comparison for different Mn concentrations

Above, the MFISH mechanisms in Cd1−xMnxTe are discussed exemplarily on the basis
of experimental data for the specific concentrations x = 0.001 (low concentration),
x = 0.04 (intermediate concentration) and x = 0.36 (high concentration). In this
section the properties of the MFISH signal will be investigated as a function of the
manganese concentration.

MFISH spectra for Cd1−xMnxTe with x=0.64, 0.36, 0.22, 0.18, 0.16, 0.12, 0.08, 0.04,
0.001 and 0 are shown in Fig. 3.20(a)-(j). Starting from binary CdTe (see Fig. 3.20(i)),
the MFISH signal is induced by orbital quantization and the MFISH process is shown
to be described on the basis of the Landau-level model (see Ch. 2). With increasing
Mn concentration in CdTe, the orbital quantization induced MFISH intensity decreases
rapidly. This phenomenon is discussed in Ch. 2.9.2 for Cd1−xMgxTe, where the influ-
ence of the presence of nonmagnetic magnesium ions on the MFISH intensity is shown.
Thus with increasing Mn concentration the orbital quantization induced MFISH con-
tribution becomes weaker. Additionally, with increasing concentration of magnetic
ions (e.g. Mn2+), a spin-quantization induced MFISH contribution appears gaining in
intensity. For very low manganese concentration x (see Fig. 3.20(h)) the giant Zeeman
splitting is below the resolution limit and a single line is observed close to the band gap
energy. Above x=0.001 the giant Zeeman splitting becomes observable and amounts
to a value of about 120 meV for x=0.16 (Fig. 3.20(d)), where the spectral separation
of the lines 1-8 is maximal. For x >0.18 the inhomogeneous broadening rules out the
possibility to distinguish between all eight lines. In particular, for x=0.36 only two
transitions (lines 1 and 5) are distinguishable (Fig. 3.20(a)). Also the observed giant
Zeeman splitting decreases, which is attributed to the creation of clusters limiting the
applicability of the model of free spins from which the (unmodified) Brillouin function
is derived (see Ch. 1.2.4.3).
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Figure 3.20:
Dependence
of the spectral
features of
the MFISH
signal of
Cd1−xMnxTe
on the man-
ganese con-
centration
x=0.64..0
(a)-(j). The
MFISH spec-
tra are mea-
sured for
k(ω)‖z and
H‖x under
comparable
conditions
(H=7..10 T,
T=1.7..6 K,
E(2ω) ‖
E(ω) ‖ <
110 >).
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Figure 3.21: (a)-(j): Ro-
tational anisotropy of
the MFISH signals in
Cd1−xMnxTe for geome-
tries E(2ω) ‖ E(ω) (light
shaded areas and open cir-
cles) and E(2ω) ⊥ E(ω)
(dark shaded areas and filled
circles). The experimental
data are given by circles and
shaded areas present simula-
tions. Comparable conditions
(H=7..10 T, T=1.7..5 K, line
1) are used to compare the
anisotropy for different Mn
concentrations x.
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The rotational anisotropies of the line 1 for different Mn concentrations x under
comparable conditions (H=7..10 T, T=1.7..6 K) are shown in Fig. 3.21. The rotational
anisotropies of the MFISH signal feature a rich variety of twofold patterns. The ex-
perimental data for the rotational anisotropy have been fitted by the same procedure
discussed above. The calculated curves are shown by lines with shaded areas. Good
agreement between experimental and calculated MFISH intensities is found for the
rotational anisotropy for all Mn concentrations x.

Figure 3.22: Dependence of the absolute values of the MFISH tensor components on the
manganese concentration x in Cd1−xMnxTe for line 1: (a) electric-dipole components
of χijkl-type, (b) magneto-spatial dispersion components of χijklm-type.

The set of absolute values of the tensor components obtained by the fitting proce-
dure are shown in Fig. 3.22 as a function of the Mn concentration x. Fig. 3.22(a) shows
the electric-dipole components described by a fourth-rank tensor, whereas Fig. 3.22(b)
reveals the magneto-spatial dispersion components described by a fifth-rank tensor.

The absolute value of the tensor component |χyyyzx|, which is attributed to the or-
bital MFISH contribution (see discussion of Fig. 3.13(b)), decreases exponentially with
increasing Mn concentration. This is reasonable since with increasing concentration
of impurity ions the orbital MFISH contribution decreases strongly. In contrast, the
absolute value of the tensor component |χyxxzx| increases quadratically with increasing
x, which is in accordance with an expected increase of the spin quantization induced
MFISH contribution with raising Mn concentration. The tensor component |χxyyx|
reveals an oscillatory behavior [|χxyyx| ∼ cos(c · x + α)]. This might be explained by
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Figure 3.23: In-
tegrated SHG in-
tensities for differ-
ent Mn concentra-
tions x as func-
tions of the gi-
ant Zeeman split-
ting ∆EGZ , which
is controlled by the
magnetic field at
4.5 K. The lines
are linear inter-
polations of the
experimental data.
Saturated MFISH
intensities are nor-
malized to 1.

an interference between the spin and the orbital induced MFISH contributions, which
would be in accordance with the data for |χxyyx|2 for x=0.04 shown in Fig. 3.13(a),
where also an interference is observed. Since |χyxyx| and |χxxyzx| are not determined
unique, their behavior will not be discusses here.

Fig. 3.23 shows the dependence of the MFISH intensity on the giant Zeeman split-
ting for different Mn concentrations x. The data sets are measured at T=4.5 K for H
varied in the range 0 − 10 T and can be well described by a linear dependence. The
dependence I(2ω) ∝ ∆EGZ confirms, that the MFISH in paramagnetic (Cd,Mn)Te is
determined by the spin splitting for Mn concentration in the range 0.001 < x < 0.36.

3.9 Spin glass phase

In this section, the spin glass-like magnetic properties in Cd1−xMnxTe will be inves-
tigated. Therefore a bulk Cd0.76Mn0.24Te sample of type (C) is used. Note that a
remanent magnetization, which is a characteristic property of the spin glass phase and
will be discussed below, is only observed in this sample.

3.9.1 Wide range spectra

Fig. 3.24 shows crystallographic (grey line) and magnetic (black area) SHG spectra
in the large spectral range of 1.6-3.2 eV for a (110)-oriented Cd0.76Mn0.24Te sample of
type (C) at 6 K. Note that for normal light incidence the crystallographic contribution,
which is discussed in Ch. 3.4, is allowed for (110)-oriented Cd1−xMnxTe. The SHG and
MFISH intensities are given in arbitrary units, but the relative values for SHG and
MFISH are of importance. Note that the crystallographic SHG contribution is about
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Figure 3.24: Spectral dependence of the crystallographic (grey line) and magnetic
(black area) SHG contribution in (110) ≡ (101̄) oriented Cd0.76Mn0.24Te of type (C).
The intensities are given in arbitrary units, but the relative values for SHG and MFISH
are of importance.

two orders of magnitude stronger than the MFISH contribution. In the following the
strong crystallographic SHG contribution is suppressed using the polarization geometry
E(2ω) ‖ E(ω) ‖ [010]. Thereby the detection of the weaker magnetic SHG contribution
becomes possible. In a magnetic field, a MFISH signal consisting of a ∼100 meV broad
band at 1.8 eV and a narrow line with a line width of ∼15 meV at about 1.93 eV
appears. The magnetic field and temperature behavior of this narrow line, which is
close to the band gap Egap = 1.99 eV of Cd0.76Mn0.24Te, will be investigated below.

3.9.2 SHG signal coupled to spin glass phase

MFISH spectra for different magnetic fields are shown by Fig. 3.25(a). With decreasing
magnetic field, the MFISH lines shift from ∼1.94 eV at 7 T to ∼1.98 eV at 0 T
proving their magnetic origin. An important finding is, that the MFISH intensity
is not influenced by the magnetic field as shown by the inset of Fig. 3.25(a) (filled
dots). This is in contrast to the linear dependence of the MFISH intensity on the giant
Zeeman splitting and thus on the magnetic field as found for Cd1−xMnxTe samples of
type (A) and (B) shown in Fig. 3.23. Therefore the magnetic properties of this sample
of type (C) are expected to be very different, which will be considered more detailed
below. For magnetic SHG being present also at zero magnetic field, the terminology of
MSHG (magnetic SHG) will be used instead of MFISH (magnetic-field-induced SHG).
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Figure 3.25: (a) Magnetic
field dependence of MFISH
spectra in Cd0.76Mn0.24Te
of type (C). Solid lines cor-
respond to fits on the data
using two Gauß functions.
MFISH peaks shift with
decreasing magnetic field
to higher energy. The in-
set shows the MFISH in-
tensity and the line width
vs. the magnetic field.
Note that the MFISH in-
tensity does not vary with
the applied magnetic field.
Thus, below the terminol-
ogy of MSHG (magnetic
SHG) will be used instead
of MFISH (magnetic-field-
induced SHG). (b) Giant
Zeeman splitting diagram
of the MFISH peak po-
sitions: dots are experi-
mental data with relative
intensities given by the
symbol sizes. Solid lines
give optical transition en-
ergies between giant Zee-
man split bands calculated
from Eq. (3.4) with S0=0.5
and T0=8.4 K.

The line widths found by fitting the spectral dependence of the MFISH intensity using
two Gauß functions are 6 meV and 15 meV at 6 T and 6 K. The line width does not
vary strongly with the magnetic field as shown by the inset of Fig. 3.25(a) for the
energetically lowest line.

The magnetic field dependence of the MFISH peak energies, which are also obtained
by fitting the spectral dependence of the MFISH intensity using two Gauß functions, is
shown by Fig. 3.25(b). Lines correspond to calculations of the giant Zeeman splitting
using Eq. (3.4) with the effective spin S0=0.5 and the effective temperature T0=8.4 K
taken from Fig. 1.10. Note that in Cd0.76Mn0.24Te only the transition 1 is observed.
Good agreement between experimental data for the MFISH peak energies vs. the
magnetic field and calculations (solid line) is revealed. The dashed line, which is
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Figure 3.26: Temperature
dependence of the MSHG
signal in Cd0.76Mn0.24Te of
type (C) at 0 T. Note that
the sample was cooled to
6 K in an applied magnetic
field of 7 T before. The in-
set shows the MSHG inten-
sity vs. temperature.

shifted by 9 meV with respect to the solid line, describes the energetically higher
MFISH peak. A possible explanation of this energy shift might be given by strain
inside the bulk sample, which influences the energy of the electronic band states.

Fig. 3.26 shows MSHG spectra for different temperatures at zero magnetic field.
Before, these MSHG spectra were measured, the sample was cooled to 6 K in an applied
magnetic field of 7 T. With decreasing magnetic field (at 6 K) the MSHG peaks shift
as shown in Fig. 3.25. However, the MSHG intensity does not vary with the magnetic
field. Note that at zero magnetic field the MSHG intensity features the same intensity
as found for high magnetic fields. With increasing temperature, the MSHG intensity
decreases continuously. The inset of Fig. 3.26 presents the temperature dependence of
the integrated MSHG intensity near the band gap, which reveals a cusp at ∼6 K and a
vanishing of the MSHG signal above 30 K. After raising the temperature and thereby
reducing the MSHG signal, a reduction of the temperature is not sufficient to recover
the MSHG signal. This indicates, that no long-range magnetic ordering is present. The
MSHG signal can only be recovered by applying a magnetic field at low temperature.
A similar behavior was reported for the spin glass-like magnetic phase in Cd1−xMnxTe,
which appears at low temperature [31, 144]. The inset of Fig. 3.26 and the previous
discussion reveal that the MSHG signal displays such a spin glass behavior. The
vanishing of the MSHG signal above 30 K indicates, that short-range ordering vanishes.
Note that the MSHG coupled to these spin glass magnetic properties, especially the
remanent magnetization, are only observed in one Cd0.76Mn0.24Te sample of type (C).

3.9.3 Mn concentration vs. anomaly temperature

Although the MSHG signal coupled to the remanent magnetization, which is a char-
acteristic spin glass magnetic property, is only observed in Cd0.76Mn0.24Te of type
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Figure 3.27: Dependence of the anomaly temperature Ta on the Mn concentration x
in Cd1−xMnxTe: (a) x = 0.16, integrated MFISH intensity for E(2ω) ‖ E(ω) ‖ [110] at
H=7 T, (b) x = 0.36, integrated MFISH intensity for E(2ω) ‖ E(ω) ‖ [1̄10] at H=8 T,
(c) x = 0.64, SHG peak intensity at E(2ω)=2.625 eV for E(2ω) ‖ E(ω) ‖ [1̄10] at
H=0 T, measured after field cooling (H=8 T, T<2 K).

(C), anomalous temperature dependencies are also found for Cd1−xMnxTe of type (A).
Fig. 3.27 shows the temperature dependencies of the MFISH intensity for Mn concen-
trations x = 0.16 (a), x = 0.36 (b) and x = 0.64 (c). In the case of x = 0.16 and
T >1.8 K, only the normal temperature dependence described by the modified Bril-
louin function (Eq. (3.4)) is observed (a). Thus Ta < 1.8 K is found for x = 0.16. For

Figure 3.28: Magnetic phase
diagram of Cd1−xMnxTe. At
high temperature and low Mn
concentration x the paramag-
netic phase is present. Due to
the Mn-Mn interaction at low
temperature a short-range an-
tiferromagnetic ordering (spin
glass phase) is observed. Refer-
ences for literature data (open
circles) and phase transition
(solid line) are given in the cap-
tion of Fig. 1.11. MFISH and
MSHG data are shown by filled
circles and filled triangle, re-
spectively.



108 Diluted magnetic semiconductors

higher manganese concentrations, anomalies in the temperature dependence appear.
For x = 0.24, 0.36 and 0.64 the anomaly temperatures Ta = 6 K (inset of Fig. 3.26),
9 K (Fig. 3.27(b)) and 24.6 K (Fig. 3.27(c)) are found, respectively. Here the anomaly
temperature Ta is defined by a cusp in the temperature dependence of the MFISH
intensity.

The anomaly temperature values found by means of MFISH and MSHG are rep-
resented by filled circles and filled triangle, respectively, in Fig. 3.28. The observed
anomaly temperatures coincide with high accuracy with the spin glass phase transition
temperatures reported in literature (open circles in Fig. 3.28) [98]. Therefore MFISH
and MSHG can be used as a tool to probe the spin glass magnetic properties.
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3.10 Summary

In conclusion, a detailed description of the magnetic properties of Cd1−xMnxTe for
different Mn concentrations is revealed by magnetic-field-induced SHG. Two impor-
tant forms of quantization of electronic states, which appear in an applied magnetic
field, are found to originate the MFISH signal in Cd1−xMnxTe. On the one hand, in
paramagnetic Cd1−xMnxTe the magnetic field induces giant Zeeman splitting. The
MFISH intensity is shown to depend linear on the giant Zeeman splitting described by
the modified Brillouin function. For high Mn concentrations, this mechanism clearly
dominates the MFISH process. By contrast to linear optics, the complete set of eight
transitions between the giant Zeeman split valence and conduction bands can be ob-
served in the MFISH data. Furthermore the magnetization-induced SHG is observed
even at room temperature. On the other hand, the magnetic field induces Landau-level
quantization. This process is present in diamagnetic (e.g. CdTe) as well as the diluted
paramagnetic (e.g. Cd1−xMnxTe) semiconductors. It is shown, that Landau orbital
and Zeeman spin quantization of electronic states are driven mechanisms of magnetic-
field-induced SHG in the semiconductor Cd1−xMnxTe. Additionally, the possibility to
investigate the magnetic properties of the spin glass phase in Cd1−xMnxTe by means
of MSHG and MFISH is shown.

The mechanisms of spin and orbital quantization of the valence and conduction
bands being the origin of MFISH can be relevant for different types of semiconductors,
having various crystallographic and electronic band structures.

For more detailed insight, microscopic model calculations of MFISH accounting for
the electronic band structure of specific semiconductors are required. This is underlined
by the fact, that the phenomenological analysis cannot fully explain the data, as it
would give a MFISH intensity that is proportional to the square of the spin-splitting,
which is in contrast to the observations.
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Chapter 4

Antiferromagnetic insulators

In this section the power of the SHG technique for the investigation of antiferromagnets
will be demonstrated. Copper borate (CuB2O4) is chosen since its magnetic structure
is rather complicated. CuB2O4 is a non-centrosymmetric magnetically ordered mate-
rial. The unusual coexistence of a ‘weak’ Dzyaloshinskii-Moria type ferromagnetism
and an incommensurate magnetic ordering stimulates interests [145, 146]. Due to the
complexity of the magnetic structure, the analysis and interpretation of experimental
results is rather complicated. For example, the interpretations of diffraction data lead
to contradictory proposals of magnetic structures [146, 147, 148]. Therefore, CuB2O4

is a good material for demonstrating the potential of magnetic-field-induced second
harmonic generation (MFISH).

A rich spectrum of magnetic effects is observed in CuB2O4. Three different types of
magnetic-field-induced SHG (MFISH) processes are investigated in the antiferromag-
netic two-sublattice compound CuB2O4. Giant MFISH intensities, which are already
visible to the naked eye, are spectrally studied. The sublattice selective and resonance
enhanced contributions are compared to results obtained by linear optical methods
measuring linear absorption, photoluminescence and linear birefringence. Since MFISH
couples to the magnetic structure, it is possible to distinguish the sublattices and de-
termine the respective order as well as their interaction. Magnetic phase diagrams
for both sublattices are constructed for different geometries. The domain structure is
investigated by phase-sensitive SHG measurements.

The following types of MFISH can be distinguished:

(A) In magnetically disordered materials (or sublattices) the external magnetic field
reduces the symmetry in a perturbative way. Thereby new SHG contributions appear.
The only known example is a weak surface induced MFISH signal at fixed frequency
from Si [17].

(B) In magnetically ordered materials (or sublattices), where the magnetic field
induces a phase transition, new SHG components appear. These new SHG components
are only observed in the spin-flop phase of Cr2O3 [71] and the system of hexagonal
manganites [149].
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(C) In magnetically ordered materials (or sublattices), where an existing SHG signal
is enhanced by the magnetic field, a single-domain state with maximum magnetization
is created. This leads to an increase of the existing SHG contributions. Such processes
are given in Ref. [14]. Thereby the source of these SHG contributions is the intrinsic
magnetic order and the externally applied magnetic field is only used to manipulate
the magnetic order.

As will be shown, all three MFISH mechanisms are observed very clearly and with
high MFISH intensities in CuB2O4.

4.1 Crystal properties

4.1.1 Crystal structure

CuB2O4 crystallizes in the tetragonal space group I42d [150]. The corresponding point
group symmetry is 42m. The unit cell consists of 12 formula units, where the lattice
constants are given by a = 11.484 Å and b = 5.620 Å. BO4 tetrahedrons and two
nonequivalent Cu2+ sublattices build up the crystal shown in Fig.4.1. Cu2+ ions at 4b

Figure 4.1: Crystal Structure of CuB2O4: (a) Unit cell, (b) Cu2+ ions and local sur-
rounding at 4b and 8d sites.

sites are surrounded by four oxygen atoms in planar quadratic coordination, so that
the local symmetry is 4. Cu2+ ions at 8d sites occupy distorted octahedral positions
with exceptionally large separation of 3.069 Å from the two apical O2− ions [150]. The
local symmetry is 2.

The symmetry group 42m, describing CuB2O4, contains the following symmetry
operations:

1 , 2x , 2y , 2z , 2xy , 2−xy ,±4z , (4.1)
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where 4z denotes a fourfold rotation around the optical z axis followed by an inversion
operation. The symmetry axes ±xy denote the diagonals between the crystallographic
axes x and y.

4.1.2 Magnetic structure

Magnetic properties of CuB2O4 originate from the Cu2+ spin 1/2 and interaction of 4b
and 8d sublattices. Above the Néel temperature TN = 21 K, CuB2O4 is paramagnetic.
Below TN it is antiferromagnetic. At 10 K < T < 21 K the 4b site exhibits com-
mensurate easy-plane antiferromagnetism with weak Dzyaloshinskii-Moria type ferro-
magnetic component [146, 147, 148]. Thereby the antiferromagnetically ordered spins
cause a weak ferromagnetic moment within the tetragonal plane (001), which results
from a slight derivation from the ideal antiferromagnetic alignment. The exchange
interaction between 4b ions is transferred via boron and oxygen ions (Cu-O-B-O-Cu)
[147]. At 10 K the spontaneous magnetic moment is about 0.56 emu/g [147]. The
8d site remains disordered according to contemporary belief [146, 148, 72, 151]. Below
T ∗ = 10 K incommensurate antiferromagnetism with possible 8d-site ordering is found.
The incommensurate order can be described by a spin density wave with a wave vector,
which vanishes at T ∗ and exceeds the value of the lattice constants below T ∗. The spin
arrangement is assumed to be described by a spin helix [146]. Another phase transition
at . 2 K is reported [152].

4.1.3 Energy level diagram

Starting from the undisturbed atomic Cu2+(3d9) eigenstates, the energy level diagram
is derived for the different Cu2+ sites by taking the ligand field into account. The
ligand field lowers the symmetry of the free Cu2+ ion, which is described by the rotation
group D+

2 , and therefore lifts the degeneracy of the Cu2+(3d9) eigenstates. Considering
the local symmetries 4 and 2, the split eigenstates are described by the symmetry
representations Γ1 + 2Γ2 + Γ3 + Γ4 and 3Γ1 + 2Γ2, respectively [84]. The sequence of
these energy levels is obtained by the following assumptions:

(1) The energy scales with the degree of overlap between the wave function of the
Cu2+ and O2− ions.

(2) The influence of the remote apical O2− ions in the case of the 8d site is small,
since the distance to the Cu2+ ion is large compared to the in-plane distance. Therefore
on the one hand splitting of xz and yz states will be neglected since the experimental
resolution is not sufficient as will be shown. On the other hand, the transition energies
between the ground state x2 − y2 and the excited states xy, yz/xz and 3z2 − r2 are
similar in the case of 4b and 8d sites.

(3) The splitting of xz and yz states in the case of the 4b site can be neglected,
since it is determined by a variation of the Cu2+-O2− in-plane distance, which is only
2.6% [150].

The obtained energy level diagram is shown by Fig. 4.2. The symmetry representa-
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Figure 4.2: Energy Level Diagram of CuB2O4. Electronic states, local symmetry, and
coordination of Cu2+(3d9) ions at 4b and 8d sites in CuB2O4. Wave functions (sketches
taken from [153]) are given in terms of the local coordinate system (x,y,z) whose axes are
defined by the connections between the central Cu2+ ion and the square or undistorted
octahedron of O2− ligands at the respective sites. Local symmetry is given in bold
italics. Sequence of levels is discussed in the text. Coordination is shown for the Cu2+

ion (filled spheres) with the nearest O2− ligands (open spheres). Apostrophize axes are
those of the global coordinate system (x’,y’,z’).

tions are linked to the Cu2+ d-wave functions by comparison with their eigenfunctions.
Note that the Cu2+ d-wave functions are mixed with O2− p-wave functions because of
the broken centrosymmetry.

Note that CuB2O4 is a wide-gap transition-metal oxide with d−d transitions below
the band gap Eg = 3.5-4 eV. Therefore, in opposite to the semiconductors discussed
in chapters 2 and 3, in CuB2O4 electronic states of the valence and conduction bands
are of no big importance for the following investigation of the magnetic properties
depending on the d states of the Cu2+ ions.

4.1.4 Samples

The CuB2O4 bulk single crystals are grown by the method of spontaneous crystalliza-
tion while slowly cooling the melt of the ternary system Li2O-CuO-B2O3 [154]. Using
this method, it is possible to grow crystals with a size of ∼1 cm3 and high optical
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quality checked by microscope. To obtain the desired crystallographic orientations the
crystals are cut and polished into (110), (010) and (001) platelets. The thickness varies
in the range of 60 − 100 µm. Laue diffraction is used in order to orient the samples
[155].

4.2 Linear optical methods

In this section the linear optical techniques used in the experiments are introduced.
Results obtained by linear birefringence, photoluminescence and linear absorption ex-
periments will be shown.

4.2.1 Linear birefringence

Linear birefringence is an intrinsic material property, which is described by different
refraction indices n‖ 6= n⊥ for different polarization directions. The indices ‖ and ⊥ de-
note polarization directions parallel and perpendicular to the optical axis, respectively.
As a consequence, retardation effects appear, since the light speed in a material is given
by c′ = c/n, where c is the light speed in vacuum. The retardation axis is defined to be
the axis of fast light propagation. By means of linear birefringence, linearly polarized
light can be transformed into elliptically or circularly polarized light and vice versa. In
general, beside linear birefringence also dichroism can be present in a material. Dichro-
ism is described by different absorption coefficients α‖ 6= α⊥ for different directions of
light polarization. Dichroism can result in a rotation of the polarization plane. In
the following the experimental setup and the experimental procedure to measure the
temperature dependence of the linear birefringence is explained.

In order to measure the linear birefringence of CuB2O4, a helium-neon (HeNe) laser
is used as a light source. Proper linear polarization of the light wave is chosen by the
use of a Glan-Thompson prism and a half-wave plate. The linear polarization axis is
oriented at +45◦ with respect to the retardation axis of the photoelastic modulator
(PEM) explained below. Subsequently a quarter-wave plate generates circular polar-
ization. To control the temperature the sample is mounted in a cryostat. The light
propagates along the [010] axis through the (010) oriented CuB2O4 crystal. Behind
the sample a photoelastic modulator (PEM-90 from Hinds Instruments) connected to
a lock-in-amplifier is used in order to enhance the signal-to-noise ratio. The PEM re-
tardation axis is aligned parallel to the [101] axis of the (010)-oriented CuB2O4 sample.
The fused silica bar of the PEM is made to vibrate with a resonant frequency of about
50 kHz and an oscillating birefringence is induced. Afterwards, the light passes an
analyzer, which is oriented at −45◦ with respect to the PEM retardation axis, and is
detected by a photodiode. Fig. 4.3 shows the experimental setup and the experimental
results for a (010) oriented CuB2O4 sample.

In the following the procedure to measure the linear birefringence will be described
[156]. Initially the linear polarizer (half-wave plate) and the analyzer are aligned per-
pendicular to each other in order to suppress the transmitted light, which is detected
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Figure 4.3: Measurement of the linear birefringence in CuB2O4: Dichroism α‖ 6= α⊥
of the sample is compensated by a proper alignment of the polarizer (half-wave plate)
and the analyzer at a fixed temperature (6 K). Linear birefringence n‖ 6= n⊥ of the
sample is compensated by a computer-controlled quarter-wave plate, whose rotation
angle is shown for different temperatures. In order to increase the signal to noise ratio,
a photoelastic modulator (PEM) and a lock-in-amplifier are used. The inset shows the
experimental setup, which is described in the text.

by the photo diode. Then the dichroism α[001] 6= α[100] of the sample is compensated by
an adjustment of the half-wave plate, which is confirmed by a minimal signal detected
by the photo diode, at a fixed temperature (T=6 K). During the measurement the tem-
perature dependent linear birefringence n[001] 6= n[100] of the sample is compensated by
a rotation of the computer-controlled quarter-wave plate at each temperature. Assum-
ing that the dichroism only changes negligible with the temperature, the birefringence
is measured as a function of the temperature, which is shown in Fig. 4.3.

The experimental curve in Fig. 4.3 shows the arbitrary rotation angle of the quarter-
wave plate vs. the temperature and features a local minimum at 9.9 K, which displays
the magnetic phase transition at 10 K. Additionally an inflection point at 20.8 K in-
dicates the magnetic phase transition at 21 K. Both features are not well pronounced.
Due to the following reasons, this method is not very sensitive. Absorption effects, espe-
cially the temperature dependence of the absorption, are neglected. However, CuB2O4

is highly absorbing at the wavelength of the HeNe laser (632.8 nm, 1.96 eV). Thus
measurements of the linear birefringence in the transparency region of CuB2O4 might
provide higher sensitivity. A possible improvement might also be the use of a tunable
light source in order to exploit the spectral degree of freedom. In addition the measured
birefringence includes crystallographic and magnetic contributions, which makes the
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detection of the magnetic phase transitions difficult. The crystallographic contribution
to the linear birefringence can be suppressed by using (001) oriented CuB2O4 samples,
where the propagation direction of the light is parallel to the optical axis. However,
possible contributions to the linear birefringence caused by strain or defects remain.
In conclusion, this method is not very appropriate to obtain access to the magnetic
properties of the Cu2+ sublattices.

4.2.2 Linear absorption

Linear absorption measurements are carried out in the range of 1.3 − 2.5 eV using
a Cary 2300 spectrophotometer and a 0.85 m SPEX monochromator. The sample
is cooled by a closed cycle refrigerator to 20 K. Absorption spectra reveal a strong
polarization and light propagation direction dependence, which are shown in Fig. 4.4
for different experimental geometries. Due to the transmission window above 2.5 eV

Figure 4.4: Linear absorption spectra in CuB2O4: α spectrum with (001) oriented and
σ/π spectra with (010) oriented CuB2O4 at H = 0, T = 20 K. k and E denote wave
vector and polarization of the incoming light wave at frequency ω. The inset shows
exemplarily the temperature dependence of the first line at 1.41 eV in the σ spectrum.
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and below the polarization dependent absorption edge (3.5-4.0 eV [155]), the CuB2O4

crystals appear blue.

Narrow and broad transitions in CuB2O4 are observed and up to 70 well-resolved
phonon sidebands are found. Since most wide-gap transition-metal oxides with d − d
transitions below the band gap absorption bands reveal broad and featureless absorp-
tion spectra below the band gap [157, 158, 159], different mechanisms should be in-
volved in CuB2O4. The well pronounced fine structure in CuB2O4 might be explained
as follows. The boron ion B3+ is very small, since it has the same electron configura-
tion as the helium atom. This might lead to an increased probability density of the
outer electrons of the oxygen ions O2− in the vicinity of the boron ions, whereas it is
decreased in the vicinity of the copper ions Cu2+ [160]. Thus a strong hybridisation of
the electronic orbitals of the oxygen ion O2− and the boron ion B3+ might be expected,
whereas the hybridisation between the Cu2+ and O2− ions would be weak. Conse-
quently the Cu2+ energy levels would reproduce the sharp atomic Cu2+ levels shown
in Fig. 4.2. In opposite, in cuprates with large ions as e.g. La2CuO4, where lanthanum
ions are present instead of boron ions, the large ions occupy more space and the oxygen
electrons are shifted more to the copper ions leading to a stronger hybridization and
thus to a broadening of the sharp electronic energy levels, which might explain, that
no fine structure is observed in cuprates with large ions.

In CuB2O4, the α and σ spectra feature six sharp lines at [1.403 eV, 1.667 eV,
1.913 eV] and [1.577 eV, 1.873 eV, 2.120 eV]. These two groups of lines are related to
the transitions between the electronic states of the 4b and 8d sites of the Cu2+ ions,
respectively. In opposite, the π spectrum only reproduces the second group of lines,
since the incoming z-polarized light does not couple to the Cu2+ 4b site, whose local
coordination plane is perpendicular to the z axis (see Fig. 4.1(b)). In the case of the
Cu2+ 8d site, light with any chosen polarization is absorbed due to its tilted position
with respect to the crystallographic axes. Therefore the sublattices can be separated
with linear absorption by polarization selection rules.

A critical limitation of linear absorption experiments is revealed by the inset in
Fig. 4.4. While absorption displays the lines in Fig. 4.4 as electronic transitions, it is
nonetheless insensitive to magnetic ordering, as can be seen from the constant absorp-
tion value between 5 K and 25 K. However, it will be shown in section 4.3, that the
magnetic structure is revealed by MFISH.

4.2.3 Photoluminescence

Another linear optical technique used in this work to study the magnetic properties of
CuB2O4 is the photoluminescence (PL). Here an incident light field excites the sample
at a fixed wavelength and the photoluminescence light is detected. Thereby the spectral
dependence of the PL intensity can be studied. Relaxation processes between the
excitation and the photon emission are of big importance. These relaxation processes
are mostly based on the phonon scattering. PL spectroscopy enables access to states,
which are energetically below the excitation energy and can be excited during the
relaxation process. Note that also imperfections (trap states) can provide a strong PL
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Figure 4.5: Schematic diagram
of the d energy levels of CuB2O4

(solid lines) and the PL pro-
cess. PL excitation at 2.33 eV
(dashed arrow) followed by re-
laxation processes (dotted ar-
rows) leads to the PL signal
(solid arrows). Note that trap
states (dotted lines below d
states) are involved in these pro-
cesses.

signal [161]. Fig. 4.5 shows schematically the excitation, possible relaxation and PL
emission processes in CuB2O4.

For the PL measurements the following experimental setup is used. The photo-
luminescence is excited by linearly polarized light emitted by a frequency doubled
continuous-wave Nd:YAG laser (ESH = 2.33 eV). A split-coil cryostat generates mag-
netic fields up to 7 T in the Faraday geometry. The photoluminescence signal generated
in the (001) oriented CuB2O4 sample passes a quarter-wave plate and an analyzer in
order to study the polarization dependence of the PL light. The PL signal is also
studied spectrally using a 1.5 m triple grating monochromator and a CCD camera.

Photoluminescence spectra are shown in Fig. 4.6. The only observed photolumines-
cence signal is emitted in the spectral ranges 1.38-1.40 eV and 1.526-1.534 eV, where
sets of narrow lines are observed (Fig. 4.6(a), (c)). The line widths of the narrowest
lines, e.g. the line at 1.3895 eV at 7 T shown in Fig. 4.6(a), are found to be about
0.1 meV. Thus a lower limit for the life time of the occupied states can be calculated to
be 40 ps using the Heisenberg uncertainty principle. Note that inhomogeneous broad-
ening might be involved or lines might be not resolved and therefore the lifetime can
be orders of magnitude larger than 40 ps. PL signals nearby 1.39 eV and 1.53 eV are
attributed to the lowest transitions of the Cu2+ 4b and 8d sites, respectively, since the
spectral positions are rather close to the energetically lowest lines found in the absorp-
tion spectra. It is shown above, that these lines reveal access to the two sublattices.
The PL lines are shifted and enhanced by an applied magnetic field as can be seen from
Fig. 4.6(a), (c). Note that no significant difference between the circular polarizations
σ+ and σ− of the PL light is found in the PL spectra and the PL intensity. However,
no shift of the PL peak energies with increasing temperature is observed. The temper-
ature dependence of the integrated PL signals nearby 1.39 eV (Fig. 4.6(b)) reveals an
anomaly at 10 K and a strong decrease of the PL signal with increasing temperature
below 21 K. This confirms that the Cu2+ ions at the 4b sites are magnetically ordered
below 21 K and that another phase transition at 10 K is present. In contrast, the
integrated PL signals nearby 1.53 eV displays only the anomaly at 10 K but does not
show any feature around 21 K. This is also in accordance with the reported property
of the magnetic structure, that the Cu2+ ions at the 8d sites are magnetically disor-
dered below 21 K, and that a magnetic ordering occurs at 10 K. Thus the magnetic
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sublattices can be distinguished by means of PL spectroscopy and different magnetic
behavior is found.

Figure 4.6: Photoluminescence in CuB2O4 in reflection geometry: (a) and (c) show PL
spectra at 0 T and 7 T for different spectral ranges. σ+ polarized PL light is detected
in the Faraday geometry (k ‖ H ‖ [001]) at T = 6 K. The line width of the narrow
transitions is about 0.1 meV. (b) and (d) show the temperature dependence of the
integrated photoluminescence signal (integrated over the spectral ranges shown in (a)
and (c), respectively). Magnetic phase transitions at 10 K and 20 K can be identified.

However, in opposite to the SHG technique discussed below, PL spectroscopy pro-
vides only indirect access to the magnetic sublattices due to the fact, that relaxation
processes and traps are involved in the PL process sketched in Fig. 4.5. Furthermore
no indication for interaction between sublattices is found.

In conclusion, by means of linear optical techniques it is possible to observe some
features caused by the magnetic structure, but no satisfactory access to the Cu2+ sub-
lattices using linear optical techniques is reached. In the next chapter the technique of
nonlinear magneto-optics will be introduced to obtain new and complementary infor-
mation about the magnetic structure.
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4.3 Nonlinear optical methods (SHG)

4.3.1 SHG processes

The simplest nonlinear optical process is second harmonic generation (SHG). Since
CuB2O4 possess a non-centrosymmetric crystal structure, the SHG process is allowed
in the electric-dipole approximation

Pi(2ω) = ε0χ
′
ijkEj(ω)Ek(ω), (4.2)

with ~E(ω) and ~P (2ω) as electric field of the incident fundamental light and SHG
polarization induced in the crystal. Taking into account the crystallographic symmetry
42m the nonlinear susceptibility tensor χ′ijk transforms as a polar i-tensor of third-
rank. Therefore the allowed tensor components are restricted to have indices xyz and
permutations [83]. This crystallographic SHG contribution is investigated in Refs. [47,

155] and will not be considered here. A suitable choice of polarizations for ~E(ω) and
~P (2ω) is used to suppress the crystallographic SHG contribution.

SHG in the presence of a static magnetic field ~H0 is described by

Pi(2ω) = ε0iχijklEj(ω)Ek(ω)H0
l , (4.3)

where χijkl represents the magnetic-field-induced SHG (MFISH) susceptibility which

is an axial fourth-rank tensor and time-invariant (T̂ χ̂ = +χ̂ with T̂ as time reversal)
in the case of A-type MFISH and time-noninvariant (T̂ χ̂ = −χ̂) in the case of B-type
and C-type MFISH respectively.

4.3.2 Spectral separation of Cu2+ sublattices

In the following the MFISH process will be used to investigate the magnetic properties
of the two Cu2+ sublattices. Therefore the spectral, temperature and magnetic field
dependence will be investigated. Fig. 4.7 shows polarization dependent MFISH spectra
of CuB2O4. The inset in Fig. 4.7(b) reveals an increase of the MFISH intensity in
the magnetic field by 3 orders of magnitude. Without magnetic field, the MFISH
intensity is below the detection limit, and no residual crystallographic SHG is observed
confirming its proper suppression.

At µ0Hx = 7 T this, according to the following discussion of Fig. 4.9(d), A-type
MFISH signal is of the order of magnitude as SHG in crystalline quartz, and thus
exceeding the reported effect (see e.g. Ref. [17]) by many orders of magnitude. The
MFISH spectrum displays sets of narrow zero-phonon lines (line width < 1 meV)
corresponding to d − d transitions of the Cu2+(3d9) ions. Additionally a spectrally
broad background is formed by phonon-assisted transitions (line width > 100 meV).
The MFISH signal bears resemblance to the linear absorption by means of spectral
features, but the main advantage in the case of the MFISH process is the sensitivity
to the magnetic properties of CuB2O4.
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Figure 4.7: Polarization dependence of sublattice sensitive MFISH in CuB2O4. MFISH
spectra of (010) oriented CuB2O4 in a static magnetic field applied along the x axis.
Inset (b) shows the magnetic-field dependence of MFISH. Susceptibilities χijkl refer to
Eq. (4.3).

4.3.2.1 Distinction of sublattices by polarization selection rules

Comparing the MFISH spectra for χxxxx, χzxxx, and χzzzx shown in Fig. 4.7(a)-(c), three
sets of zero-phonon transitions are observed leading to the following classification:

(1) lines at 1.410 eV, 1.675 eV, 1.910 eV

(2) lines at 1.575 eV, 1.875 eV, 2.120 eV

(3) a line at 2.820 eV.

Lines presented by group (1) are associated to transitions of the Cu2+{4b} ion.
Those are reproduced by the χxxxx and χzxxx components as well as by α and σ polarized
light in linear absorption (see Fig. 4.4). However, lines of group (1) are absent in the
MFISH spectra showing χzzzx as well as in π spectrum of linear absorption, because
the Cu2+{4b} ion and its four O2− ligands form a planar structure in the xy plane,
which does not couple to z polarized incident light. Lines presented by group (2) are
associated to transitions of the Cu2+{8d} ion. They are reproduced by the χzzzx and
χzxxx components as well as for α, σ and π polarized light in linear absorption. Since
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the Cu2+{8d} ion and its six O2− ligands form a tilted tetrahedron with respect to the
crystallographic axes, light with any polarization is absorbed. Group (3) contains one
line at twice the photon energy of the 1.410 eV line from group (1). It does not indicate
an electronic state, but a two-photon transition enhanced by a resonant single-photon
transition to the intermediate state at 1.410 eV [113].

The spectra shown by Figs. 4.4 and 4.7 are in full agreement with Fig. 4.2. Both
Cu2+ sites reveal three transitions from the x2 − y2 ground state to the xy, yz/xz and
3z2− r2 states. Due to the estimation that the influence of the remote apical O2− ions
of the 8d site is small, the transition energies for the 4b and 8d sites are similar.

4.3.2.2 Magnetic ordering of the sublattices

After associating the groups of lines (1)-(3) to the sublattices of CuB2O4, their magnetic
properties can be investigated. Fig. 4.8 shows MFISH spectra of the component χzxxz.

Figure 4.8: Magnetic phase dependence of sublattice sensitive MFISH in CuB2O4.
MFISH spectra of component χzxxz of (010) oriented CuB2O4 in a static magnetic field
applied along the z axis. Commensurate antiferromagnetic phase: (a) 11 K, 30 mT.
(b) 6 K, 7 T. Paramagnetic phase: (c) 26 K, 7 T.

This component is chosen, since it reproduces both groups of lines and therefore both
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sublattices. As shown by the inset of Fig. 4.7(b) no MFISH intensity is generated
without externally applied magnetic field. Applying a low magnetic field of 30 mT at
11 K is sufficient to observe the lines of group (1) representing the 4b site (Fig. 4.8(a)).
In contradiction to the ordering of the 4b site at low magnetic fields, the 8d site remains
disordered since no lines of group (2) are observed. In a high magnetic field of 7 T and
at 6 K, additional contributions of lines of group (2) appear (Fig. 4.8(b)) indicating
an alignment for the 8d site. Raising the temperature above the Néel temperature to
26 K at 7 T leads to a vanishing of the lines correlated to the 4b site, whereas the lines
correlated to the 8d site are still observed (Fig. 4.8c). Therefore the MFISH component
χzxxz of the lines of group (2) indicates the presence of a paramagnetic component of
the 8d site.

4.3.3 Coupling between sublattices

In order to have a closer look at the magnetic ordering and coupling of the 4b and
8d sites, the strongest transitions at 1.410 eV and 1.875 eV will be studied using
variations of temperature and magnetic field. The dependence of the MFISH signal
on the temperature at different magnetic fields is shown in Fig. 4.9. The MFISH

Figure 4.9: Coupling of sublattices in CuB2O4 for H‖x. Temperature dependence of
MFISH intensity at (a,b) 4b and (c,d) 8d sites in static magnetic fields applied along
the x axis of (010) oriented CuB2O4.

intensity at 1.410 eV reproducing the magnetic ordering of the 4b site (Figs. 4.9(a),
(b)) in the range of 10 K < T < 21 K is saturated at 50 mT, which indicates a
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saturation of the weak ferromagnetic moment accompanying the antiferromagnetic
order. Therefore the temperature and magnetic field dependence of the magnetic order
parameter is revealed. In the case of the 8d site, at 1.875 eV both ferromagnetic
(Fig. 4.9(c)) and paramagnetic (Fig. 4.9(d)) behavior are observed depending on the
detected polarization x or z of the MFISH signal, respectively. Apparently the magnetic
ordering of the Cu2+ ions at the 4b site is partly transferred to the Cu2+ ions at the
8d site, where it coexists with a disordered paramagnetic component.

In opposite to contemporary belief [146, 148, 72, 151], measurements of the MFISH
reveal a partial coupling between the 4b and 8d sublattices in the commensurate anti-
ferromagnetic phase in an applied magnetic field.

Similar results are obtained in static magnetic fields applied along the z axis. The

Figure 4.10: Coupling of sublattices in CuB2O4 for H‖z. Temperature dependence of
MFISH intensity at (a,b) 4b and (c,d) 8d sites in static magnetic fields applied along
the z axis of (010) oriented CuB2O4.

temperature dependencies of the MFISH signals at different magnetic field are shown
in Fig. 4.10. The weak ferromagnetic moment accompanying the antiferromagnetic
order is oriented along the z axis in this case.

The magnetic field dependencies of the MFISH signals at 11 K with magnetic fields
applied along the z axis are shown in Fig. 4.11. At 1.410 eV the MFISH signal remains
nearly constant at magnetic fields higher than 50 mT reproducing the saturation of
the weak ferromagnetic moment. In contrast at 1.875 eV the MFISH signal increases
with the magnetic field even above 1 T indicating the alignment of the paramagnetic
component. Below 1 T the component χxxxz (Fig. 4.11(a), (c)) reveals the same slope



126 Antiferromagnetic insulators

Figure 4.11: Coupling of sublattices in CuB2O4. Magnetic field dependence of MFISH
intensity at (a,b) 4b and (c,d) 8d sites at 11 K. The magnetic field is applied along the
z axis of (010) oriented CuB2O4.

of the MFISH intensity for both, 1.410 eV and 1.875 eV, displaying the transfer of the
magnetic ordering from the 4b to the 8d site.

4.3.4 Magnetic phase diagrams of 4b and 8d sites

At µ0H . 1 T, only A- and C-type MFISH are observed. A-type MFISH is shown, e.g.
in Figs. 4.9(d) and 4.10(d), and is discussed above. C-type MFISH will be investigated
more detailed in section 4.3.6. However, at µ0H > 1 T and low temperature (T∼6 K),
Figs. 4.9(a), (b) and 4.10(a), (b) reveal B-type MFISH caused by field-induced phase
transitions. The magnetic phase diagrams of CuB2O4 for H ⊥ z and H ‖ z geometries
are shown by Fig. 4.12. The dependence of the phase boundaries in the magnetic
phase diagram with applied magnetic field H ⊥ z is found to be independent on
the direction of H in the xy plane. The incommensurate purely antiferromagnetic
phase I is suppressed in the magnetic field by the weakly ferromagnetic commensurate
phases labelled II and III respective different directions of magnetization. At 0 K
quenching appears at the extrapolated fields µ0Hx = 1.6 T (I→II) and µ0Hz = 30 T
(I→III). The respective phase transitions are of second (I→II) and first (I→III) order,
indicating gradual (I→II) and abrupt (I→III) reorientation of spins shown by the
insets of Fig. 4.12. A comparison of our data with recent neutron diffraction data [162]
revealing a magnetic phase transition for µ0H = 1.3 T with H ‖ [110] at 4.2 K evidences
good agreement (neutron diffraction data are shown by grey triangle in Fig. 4.12(a)).
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Figure 4.12: Magnetic phase diagrams of CuB2O4. The magnetic field/temperature
plane is shown for (a) in-plane (H ‖ ρ with ρ ⊥ z) and (b) uniaxial (H ‖ z) magnetic
field. Insets: SHG intensity ISHG or magnetization M ∝ ±I0.5

SHG in dependence of
magnetic field for selected points in the phase diagram. Grey triangle (a) corresponds
to neutron diffraction data [162].

In the case of the 8d site, the components χxxxx and χxxxz uncover similar magnetic
phase boundaries as found for the 4b site (Fig. 4.12) indicating the partial coupling to
the 4b site, while the components χzxxx and χzxxz display pure paramagnetic behavior
in the hole phase diagram.

4.3.5 Determination of the magnetic symmetry

The magnetic symmetry will be determined by means of observation of non-vanishing
MFISH tensor components according to the Neumann principle [83]. Therefore first
the rotational anisotropy has to be studied in order to reveal non-vanishing tensor
components.

The MFISH rotational anisotropy shown by Fig. 4.13 is recorded at 2~ω=1.91 eV
(4b site) in the commensurate antiferromagnetic phase (at 6 K with an applied mag-
netic field of 7 T along z) as a function of the azimuthal angle ϕ of the fundamental
and the MFISH polarization for the E(2ω) ‖ E(ω) and E(2ω) ⊥ E(ω) geometries.
These experimental data are modeled simultaneously for both geometries assuming
the presence of the MFISH components χxxxz and χzxxz, which are observed in the
MFISH spectra shown above. For the polarization geometry E(2ω) ‖ E(ω), the SHG
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Figure 4.13: MFISH anisotropy in
CuB2O4. The rotational anisotropy is
measured at 2~ω =1.910 eV in geome-
tries E(2ω) ‖ E(ω) (light shaded area
and open circles) and E(2ω) ⊥ E(ω)
(dark shaded area and filled circles). Ex-
perimental data (dots) and simulations
(shaded areas) are shown.

anisotropy is given by

I(2ω)MFISH
‖ ∝ |1

4
χxxxz[cos(3ϕ) + 3 cos(ϕ)] +

1

4
χzxxz[sin(3ϕ) + sin(ϕ)]|2 (4.4)

and for the geometry E(2ω) ⊥ E(ω)

I(2ω)MFISH
⊥ ∝ |1

4
χxxxz[− sin(3ϕ)− sin(ϕ)] +

1

4
χzxxz[cos(3ϕ) + 3 cos(ϕ)]|2 (4.5)

is calculated. The calculated curves (with parameters χxxxz = −χzxxz) are shown
by lines with shaded areas. Good agreement between experimental and calculated
MFISH intensities is found for rotational anisotropy indicating, that tensor components
different to χxxxz and χzxxz are negligible for this geometry and this photon energy. In
the case of H ‖ x, the components χxxxx and χzxxx contribute to the MFISH intensity
(Fig. 4.7(a), (b)). In the case of the 8d site also the component χzzzx is observed
(Fig. 4.7(c)).

MFISH described by Eq. (4.3) from χxxxx, χzxxx and χzzzx is allowed for the mag-
netic point groups 1, 1, 2, m, 2/m and eight trigonal or hexagonal groups [83]. The
trigonal and hexagonal groups are ignored due to their incompability with the tetrag-
onal lattice. The groups 1 and 2/m do not allow a ferromagnetic moment and are
not taken into account. Excluding monoclinic symmetry, only groups 2 and m remain.
Group m with a twofold [110] symmetry axis points to a magnetic structure with a
ferromagnetic moment parallel to the symmetry axis. In contrast group 2 indicates a
magnetic structure with mirror plane (100), (010) or (001) and in-plane ferromagnetic
moment. Figs. 4.9 and 4.10 and their respective discussion show, that the ferromag-
netic moment can be oriented either along the x or z axis by an external magnetic field
of 50 mT without further reduction of magnetic symmetry. Therefore the magnetic
symmetry of the commensurate antiferromagnetic phase of CuB2O4 is found to be 2
with the mirror plane xz and an in-plane weak ferromagnetic moment.
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4.3.6 Antiferromagnetic domain structure

4.3.6.1 Hysteresis of C-type MFISH

Magnetic fields below 50 mT can be used to align the weak Dzyaloshinskii-Moria type
ferromagnetic moment in the xz plane (section 4.3.4). These manipulations of the weak
ferromagnetic moment can be used to investigate the commensurate antiferromagnetic
ordering and its respective domain structure. In the following part the MFISH of C-
type will be considered in an applied magnetic field H ‖ x in order to investigate the
magnetic phase II. The saturation of the weak ferromagnetic moment along the x axis
in a magnetic field leads to the generation of a single-domain state. MFISH of C-type
is shown by Fig. 4.14(a). The dependence of the MFISH intensity on the temperature

Figure 4.14: Hysteresis in the magnetic phase II in CuB2O4. (a) Dependence of MFISH
intensity on the temperature at low magnetic fields. Saturation of MFISH signal at
µ0Hx < 30 mT (11 K). (b) Hysteresis curve obtained by M ∝ ±I0.5

SHG.

at low magnetic fields reveals a saturation of the MFISH signal at µ0Hx < 30 mT
(11 K). Since the MFISH intensity couples quadratically to the external magnetic field
as shown by the lower inset of Fig. 4.12(a) the hysteresis in Fig. 4.14(b) is obtained by
M ∼ I0.5

SHG, where M is the magnetization. The coercive field of this hysteresis does
not exceed the resolution limit of 0.5 mT. The formation process of domains within
the hysteresis will be investigated in the following.

4.3.6.2 Domain structure

Before investigating the antiferromagnetic domain structure in phase II experimen-
tally, group theoretical considerations will be done. The crystallographic symmetry of
CuB2O4 is 42m with 8 symmetry elements given by Eq. (4.1) and thus the order of
the non-magnetic symmetry group is 8. Additionally the time-inversion symmetry in-
creases this number by a factor of 2 and altogether 16 symmetry elements exist, which
leads to the order of the paramagnetic symmetry group of 16. The magnetic symmetry



130 Antiferromagnetic insulators

of a single domain is determined to be 2 (section 4.3.5). The antiferromagnetic sym-
metry group 2 has the two symmetry elements 1 and 2z [83], and thus the order of the
antiferromagnetic symmetry group is 2. The number of possible domains is given by
the ratio of the order of the paramagnetic to that of the antiferromagnetic symmetry
group, which is 16/2=8. Four orientational domains, with two 180◦-domains each, can
be present. The four different orientational domains are transformed into each other by
the symmetry elements of the crystallographic point group 42m, which are not present
in the antiferromagnetic point group 2z combined with the time-inversion symmetry
(section 1.1.2.4). Different 180◦-domains are transformed into each other by applica-
tion of the time inversion operator. Investigations of the domain structure of CuB2O4

will be rather complicated, since eight different domains are allowed accompanying
the interactions between both sublattices. A distinction of 180◦-domains requires an
experimental phase-sensitive technique, which is explained in the following.

4.3.6.3 Phase-sensitive experimental setup

The experimental setup to investigate domains in CuB2O4 shown by Fig. 4.15 allows

Figure 4.15: Experimental setup to investigate the domain structure in CuB2O4. The
technique is based on the interference of a crystallographic SHG contribution of quartz
and a MFISH component of CuB2O4. A Soleil-Babinet compensator is used as a phaser
shifter and allows phase-sensitive measurements. An analyzer is used to obtain a high
contrast of interference by choosing a proper light polarization [79].

the phase-sensitive investigation of MFISH [79]. The incident linearly polarized light at
the frequency ω generates MFISH in the CuB2O4 crystal and crystallographic SHG in
crystalline quartz. Polarizations of MFISH and SHG are chosen to be perpendicular to
each other and coincide with the axes of the Soleil-Babinet compensator, which acts as
a phase shifter. A Soleil-Babinet compensator offers different tunable refraction indices
n‖ 6= n⊥ because of a specific arrangement of quartz plates. This causes different phases
for light waves propagating with polarizations parallel and perpendicular to the axes
of the Soleil-Babinet compensator. By tuning the effective thickness of the wedge-
shaped Soleil-Babinet compensator crystals, the phase between MFISH and SHG can
be controlled. An analyzer projects both polarizations onto a certain axis allowing the
detection of interference between MFISH and SHG. The angle of the analyzer is varied
from 10◦-80◦ with respect to the x axis of the CuB2O4 crystal in order to achieve the
highest contrast of interference, which is observed if the MFISH and SHG intensity
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are of the same magnitude (I(2ω)MFISH ' I(2ω)SHG). The transmitted light at the
frequency 2ω is imaged onto a cooled CCD camera using a telephoto lens. The optical
resolution is about 10 µm2.

In the (010) oriented CuB2O4 crystal, the MFISH components χxxxx and χzxxx are
generated by incident x-polarized light. The component χxxxx is suppressed by a proper
polymer polarizing foil in front of the quartz crystal. Note that the special polarization
foil transmits light at the fundamental frequency ω, which is polarized parallel to the
x axis of the CuB2O4 crystal, with low absorption at 11 K in order not to suppress
the generation of the crystallographic SHG contribution in quartz. The interference
between χzxxx of CuB2O4 and χxxx of quartz is then studied phase-sensitive.

4.3.6.4 MFISH imaging

Since the crystallographic SHG contribution of quartz χ′xxx is not influenced by the
magnetic field, it acts as a reference to observe changes in the MFISH intensity and
phase. Images of the CuB2O4 crystal are shown by Fig. 4.16. At zero field only SHG

Figure 4.16: Images of CuB2O4 crystal at different magnetic fields. Interference be-
tween the crystallographic SHG component χ′xxx of quartz and the MFISH component
χzxxx at 1.41 eV and 11 K is used in order to investigate the domain structure. Since
no boarders but a gradual increase of the MFISH intensity is observed the domains
size is believed to be below the optical detection limit (< 10 µm).

signal from quartz is observed, since the MFISH signals caused by very small domains
in CuB2O4 interfere destructively. An applied magnetic field influences the orientation
of the weak ferromagnetic moment of the domains. With increasing field the MFISH
component χzxxx increases leading to interference with the component χ′xxx. A gradual
increase of the MFISH intensity and the absence of domain walls are found below
30 mT. This points to a random distribution of domains with domain sizes below the
optical detection limit (< 10 µm). The balance of the distribution of domain is changed
by the magnetic field and finally approaches a single domain state with maximal MFISH
signal at 30 mT. This result is not peculiar, since the domain structure and interactions
between the sublattices are rather complicated and frustration of the antiferromagnetic
ordering is possible.
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Figure 4.17: Phase measure-
ment of MFISH signal in
CuB2O4. Variation of the
thickness of the Soleil-Babinet
compensator crystal changes
the relative phase between
SHG and MFISH leading to
the observed interference. E.g.
a phase shift of ∆φMFISH =
135◦ is observed for ±30 mT at
2~ω=1.41 eV.

4.3.6.5 Phase sensitive measurements

Although the domains are too small for visualization, the alignment of the weak ferro-
magnetic moment by the applied magnetic field can be investigated by phase measure-
ments of the MFISH signal shown by Fig. 4.17. A variation of the effective thickness
of the Soleil-Babinet compensator crystal changes the relative phase between SHG and
MFISH by φSBC leading to the detected interference signal. The interference signal is
given by

I(2ω)MFISH+SHG ∝ |E ′(2ω)MFISH |2 + |E ′(2ω)SHG|2

+ 2 · |E ′(2ω)MFISH | · |E ′(2ω)SHG| · cos(φMFISH − φSHG + φSBC),

(4.6)

where E ′(2ω)MFISH = E(2ω)MFISH · cos(β) and E ′(2ω)SHG = E(2ω)SHG · sin(β)
are the projections of the light fields E(2ω)MFISH ∝ |χzxxx| · exp(iφMFISH) and
E(2ω)SHG ∝ |χ′xxx| · exp(iφSHG) generated in the CuB2O4 sample and the quartz
reference, respectively, onto the polarization direction of the analyzer. β denotes the
polarization direction of the analyzer and is given with respect to the x axis of the
CuB2O4 sample. φMFISH and φSHG are the phases of the light fields. If tuning the
phase φSBC , an interferogram as shown in Fig. 4.17 is obtained. E.g. at 2~ω=1.41 eV
a phase shift of ∆φMFISH = 135◦ of the MFISH signal is observed for ±30 mT. The
magnetic field dependence of the MFISH phase is shown for different MFISH ener-
gies in Fig. 4.18. Phase shifts of 90◦ at 2~ω=1.91 eV and 180◦ at 2~ω=1.41 eV are
observed. 180◦ phase shifts are believed to indicate a spin-rotation as is known for
180◦-domains [79]. The origin of the asymmetry of the phase hysteresis of the MFISH
signal at 2~ω=1.41 eV is not clarified. A possible explanation might be given by pin-
ning effects, e.g. due to impurities or defects. The 90◦ phase shift at 2~ω=1.91 eV
might be caused by orientation domains. However, the phase shifts of 90◦ and 180◦

cannot be easily attributed to selected domains in CuB2O4. In addition, a comparison
between MFISH phase and intensity (Fig. 4.18(b)) reveals hysteresis phenomena linked
to different scales of the magnetic field, whose origin is not understood so far.
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Figure 4.18: Phase hysteresis of MFISH signal in CuB2O4. Magnetic field dependence
of the MFISH phase is shown for different SHG energies. Observed phase shifts of 90◦

(a) and 180◦ (b) point to a correlation to the domain structure. The dashed line in
(b) shows the magnetization M ∝ I0.5

MFISH . (c) and (d) show schematically the weak
ferromagnetic moment of orientation domains and 180◦-domains, respectively. The
MFISH phase difference for two 180◦-domains is expected to be ∆φMFISH = 180◦ due
to the domain definition [79]. In the case of orientation domains, a phase difference of
∆φMFISH = 90◦ might be possible.

In conclusion, access to the complicated domain structure is very difficult, since
eight different domain contributions to the domain structure can be present in CuB2O4.
Furthermore only very small domains are formed preventing their distinction.
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4.4 Summary

Giant MFISH generation opens new degrees of freedom for investigating the mag-
netic and electronic properties of matter. CuB2O4 is used as a model system for an
antiferromagnetic with a complicated magnetic structure possessing two inequivalent
sublattices. Unusually sharp and intense spectral lines both in linear absorption and
MFISH spectra are found. These spectral lines permit site selective access to the elec-
tronic and magnetic structure of CuB2O4. In opposite to linear optical techniques
being whether insensitive to the magnetic ordering (linear absorption) or possessing
other disadvantages, the MFISH is more advantageous to investigate the magnetic
properties of CuB2O4. The MFISH signal reveals commensurate and incommensurate
antiferromagnetic ordering and coupling of the MFISH signal to the weak ferromag-
netic component for the 4b site is observed. Strong coupling between the sublattices
transfers this order to the 8d site, where it coexists with a discoupled paramagnetic
component of the Cu2+ moment. Spontaneous and magnetic-field-induced phase tran-
sitions are observed and magnetic phase diagrams are presented. Strong anisotropy of
the MFISH signal is used to determine the magnetic symmetry. The investigation of the
domain structure reveals a rather complicated magnetic structure with its multiplicity
of different magnetic domains.

Since the spectral degree of freedom is shown to provide sublattice selectivity, sub-
lattice dynamics can be studied by means of the MFISH technique. Another possibility
is to investigate sublattice ordering and sublattice interactions in multiple ordered ma-
terials.
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Chapter 5

Distribution of antiferromagnetic S
and T domains in NiO

5.1 Introduction

Nickel oxide (NiO) is one of the most promising antiferromagnetic compounds for device
applications (e.g. on the field of data storage based on the exchange bias effect [35]).
NiO possesses a simple crystallographic and a well-known magnetic structure with an
ordering temperature far above the room temperature. It is possible to grow large single
crystals as well as thin films. The antiferromagnetic structure of NiO bulk crystals,
surfaces and interfaces have been studied in Refs. [163, 78, 164, 165]. Furthermore the
possibility of ultrafast manipulation of the antiferromagnetic order parameter of NiO
bulk crystals was shown [40]. In particular, the exchange-bias properties of NiO have
been studied both as static phenomenon [166, 167, 168] and in ultrafast experiments
[169] in order to develop new possibilities for data storage.

This interest in applications of NiO shows the necessity for experimental tech-
niques to investigate the antiferromagnetic ordering. Knowledge of the distribution of
antiferromagnetic domains is necessary because the domain structure is relevant for
strongly correlated systems [170], magnetization dynamics [171] and the exchange-bias
effect [172]. However, imaging of antiferromagnetic domains is only possible with a
few methods. Neutron diffraction possesses only low spatial resolution and fast time-
resolved measurements are impossible. Linear optical experiments are sensitive to
antiferromagnetic domains in specific cases only.

The antiferromagnetic domain structure of NiO was studied by polarization mi-
croscopy [173, 174], neutron diffraction [175] and x-ray diffraction [176] between about
1960 and 1980. Due to the fact that NiO forms 24 different antiferromagnetic domains
most of the reported results were obtained for artificially prepared samples with simple
domain structures only. Furthermore the distinction between different domains using
polarization microscopy is only possible considering relative differences of the refractive
index in the order of 10−5 [173, 174] and therefore is very sensitive to perturbations as
strain or interfaces in multilayer structures. In the case of arbitrary samples forming
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complex domain structures as used for contemporary experiments this approach is not
suitable to access the domain structure. X-ray dichroism was used to image antiferro-
magnetic domains in NiO [78] but since diffraction experiments do not provide access
to dynamical processes in antiferromagnetic domain structures on ultrafast time scales
(< 100 ps) the development of an optical approach is necessary.

Therefore in this work the optical second harmonic generation (SHG) is used to
investigate the antiferromagnetic domain structure in arbitrary NiO samples. A high
degree of discrimination between all possible types of orientational domains is reached.
Simulations of the rotational anisotropy of the SHG signal will be derived for all pos-
sible orientational domains as well as for typical superpositions of domains. Then the
distribution of domains will be investigated experimentally in two types of bulk sam-
ples. As-grown crystals display a random distribution of all types of S and T domains
with a size of < 1 µm. In contrast oxygen annealed samples reveal T domains with
a size of ∼ 100 µm and a random distribution of the three associated S domains of
. 1 µm. Near T domain walls S domains of ∼ 10 µm with the spin orientation pinned
by the adjacent T domain are observed.

5.2 Theory

5.2.1 S and T domains in NiO

NiO belongs to the well-known group of binary 3d-transition metal oxides RO (R =
Mn, Fe, Co, Ni, Cu) [177]. It possesses the centrosymmetric cubic structure of rock salt
described by the point group m3m above the Néel temperature TN = 523 K. Below
TN the spins of the Ni2+ ions are ordered ferromagnetically in {111} planes along
〈112〉 axes [178, 78], whereas adjacent {111} planes are ordered contrary forming an
antiferromagnetic ordering. This leads to a contraction of the cubic unit cell along
the stacking directions [179] of the ferromagnetic planes reducing the crystallographic
point symmetry to 3m. The possible 〈111〉 stacking directions represent the four T
domains (twin domains). Additional smaller contractions along the spin directions
〈112〉 lead to a further symmetry reduction to 2/m as crystallographic and magnetic
point symmetry describing the three S domains (spin domains) for each T domain.
[178, 179]. Altogether 12 orientational domains shown by Table 5.1 can be formed
by NiO. Considering also 180◦-domains obtained by time-inversion (spin-reversal) of
the S domains, altogether 24 domains can be distinguished. Since 180◦-domains are
also transformed into each other by a translation by (1

2
, 1

2
, 1

2
) their definition is am-

biguous and 180◦-domains will not be considered in the following. Nevertheless their
distinction would be possible with a phase-sensitive SHG technique as demonstrated
in Section 4.3.6.3. The domain structure is shown schematically in Fig. 5.1(a) and (b).
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Table 5.1: Crystallographic orientations of S and T domains in NiO. For each T domain
shown in the upper row, the spin orientations of the accordant three S domains are
given below. Note that the assignment of the T domains coincides with that chosen in
Ref. [78], while the assignment of the S domains differs because of symmetry reasons
employed in the following.

S\T T1[1, 1, 1] T2[1, 1, 1] T3[1, 1, 1] T4[1, 1, 1]
S1 [1, 1, 2] [1, 1, 2] [1, 2, 1] [2, 1, 1]
S2 [2, 1, 1] [1, 2, 1] [2, 1, 1] [1, 1, 2]
S3 [1, 2, 1] [2, 1, 1] [1, 1, 2] [1, 2, 1]

5.2.2 Magnetic second harmonic generation (MSHG)

In opposite to linear optical effects like Faraday and Kerr rotation measuring the ab-
solute magnetization and therefore being unsuitable for antiferromagnetic compounds,
nonlinear optical processes like SHG also couple to the antiferromagnetic order param-
eter [7]. For NiO it was shown, that magnetic-dipole type SHG

Pi(2ω) = ε0χijk(~̀
2)Ej(ω)Hk(ω) (5.1)

is present below TN [113, 111, 180]. Thereby the incident electromagnetic fields with the
frequency ω denoted by Ej(ω) and Hk(ω) induce a polarization Pi(2ω) at the doubled
frequency. The coupling between the incident electromagnetic fields and the induced
polarization is described by the nonlinear susceptibility χ̂(~̀2). This nonlinear suscepti-
bility depends quadratically on the antiferromagnetic order parameter ` and therefore
the MSHG intensity I ∝ |~P (2ω)|2 can be used to investigate the antiferromagnetic
structure of NiO [113].

(The terminology of MSHG (magnetic SHG) instead of MFISH (magnetic-field-
induced SHG) is used here, since the MSHG also appears in zero magnetic field.)

5.2.3 MSHG in S and T domains

In order to calculate the rotational anisotropy of the MSHG signal in NiO for all 12
orientational domains and also for superpositions of related S and/or T domains, first
the Cartesian coordinate systems (CCS) adopted to the orientation of the S domains,
the T domains, the cubic crystal and the experimental geometry will be defined. Then
non-zero susceptibilities χijk(~̀

2) will be determined on the basis of the magnetic point
symmetries. These non-zero susceptibilities are identical for all 12 S domains, since the
domains only differ due to their orientation but not due to their structure. Afterwards
the tensor components will be transformed from the local CCS of any domain into
the global CCS of the light beam probing the domain structure. Finally Eq. (5.1) in
combination with the transformed nonlinear susceptibility tensor will be used to obtain
the polarization dependence and so the rotational anisotropy of the MSHG signal.
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Figure 5.1: Antiferromagnetic structure of NiO and Cartesian coordinate systems used
to describe MSHG on T and S domains: (a) Orientation of Ni2+ spins along the 〈112〉
direction in ferromagnetic planes stacked antiferromagnetically along the 〈111〉 axis.
Here the S1(T1) domain is shown. (b) Orientation of spins in the S2 and S3 domain
of the T1 domain. (c) CCS of an S domain. (d) CCS of a T domain. (e) CCS of the
cubic crystal. (f) CCS of the experiment.

5.2.3.1 Coordinate systems (CCS)

The four different CCS necessary for the tensor transformations from the local to the
global CCS are shown in Fig. 5.1(c)-(f). The first CCS (label: S) is that of an S



140 Distribution of antiferromagnetic S and T domains in NiO

domain. According to Ref. [83] its zS and xS axis lie along the, respectively, spin
direction and stacking direction of the domain. The second CCS (label: T) is that of
a T domain. According to Ref. [83] its yT and zT axis lie along the, respectively, spin
direction and stacking direction of the domain. The third CCS (label: C) is that of
the paramagnetic cubic crystal. Its xC , yC , and zC axes are defined by the connection
between a Ni2+ ion and its nearest O2− neighbors. The fourth CCS (label: E) is
that of the experiment. Its xE and yE axis are defined by the, respectively, electric
and magnetic field of the incoming linearly polarized fundamental light with the wave
vector ~k ‖ ~zE. In the following the light will be considered to be incident perpendicular
to one of the {111} planes of the NiO crystal. This plane will be defined to be the
(111)C plane and the T domain with stacking direction perpendicular to (111)C as T1.

Therefore the angle ∠(~k, ~zT ) is 0◦ for the domain T1 and 70.5◦ for the domains T2,3,4.

5.2.3.2 Tensor components

The tensor χ̂(~̀2) is an axial third-rank i-tensor. The set of nonzero components is
derived from Tables 7 and 3 in Ref. [83] with χijk = χikj as additional constraint
because of interchangeability of the two photons contributing to MSHG [180, 181]. If
S domains are considered, the magnetic point symmetry 2/m leads to

χS
zxx(S),

χS
xxz(S) = χS

xzx(S),

χS
xyz(S) = χS

xzy(S),

χS
zzz(S),

χS
zxy(S) = χS

zyx(S),

χS
zyy(S),

χS
yyz(S) = χS

yzy(S),

χS
yxz(S) = χS

yzx(S). (5.2)

Here and in the following ijk(X) stands for iXjXkX , i.e., tensor components in the
CCS labeled X.

5.2.3.3 Tensor transformation

In order to obtain the polarization dependence of the MSHG signal, the tensor com-
ponents from Eq. (5.2) are transformed into the CCS of the experiment and inserted
in Eq. (5.1). A transformation between CCS is described by

χdst.
ijk = Rii′Rjj′Rkk′χ

src.
i′j′k′ . (5.3)

The vectors ~R1i, ~R2i, ~R3i composing the transformation matrix R̂ are given by the x, y
and z axis of the source CCS (src.) in the coordinates of the destination CCS (dst.). For
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NiO the transformation is composed of subsequent transformations S → T → C → E
with the labels referring to the CCS defined above. In the exemplary case of the domain
S1(T1), this leads to

R̂E←S1(T1) = R̂E←CR̂C←T1R̂T1←S1 (5.4)

=

 0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ
1 0 0

 , (5.5)

with

R̂T1←S1 =

 0 1 0
0 0 1
1 0 0

 , (5.6)

R̂C←T1 =

 1/
√

2 1/
√

6 1/
√

3

−1/
√

2 1/
√

6 1/
√

3

0 −2/
√

6 1/
√

3

 , (5.7)

R̂E←C =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 ·

 1/
√

2 −1/
√

2 0

1/
√

6 1/
√

6 −2/
√

6

1/
√

3 1/
√

3 1/
√

3

 , (5.8)

where ϕ is the rotation of the plane of polarization of the incident light with the
[1,−1, 0]C direction defining ϕ = 0◦ for ~k ‖ [111]C . For the other S domains the ex-
pression for the transformation is much more complex than in Eqs. (5.5)–(5.8) be-
cause of additional tilting of the involved CCS with respect to one another. Inserting
Eq. (5.2) into Eq. (5.3) and the result of this into Eq. (5.1) reveals the components
of the MSHG susceptibility in the CCS of the experiment. In the following the po-
larization dependence of the MSHG contribution ~P‖(2ω) polarized parallel to ~E(ω) is

determined. In the CCS of the experiment, this corresponds to ~P‖(2ω) ‖ ~E(ω) ‖ ~xE and
~H(ω) ∝ ~k × ~E(ω) ∝ ~zE × ~xE = ~yE, so that only the susceptibility χxxy(E) has to be
calculated. This leads to

χ
S1(T1)
xxy(E)(ϕ) =

1

4
(χS

zyy(S) − χS
zzz(S))(cos(3ϕ)− cos(ϕ))

+
1

2
χS

yyz(S)(cos(3ϕ) + cos(ϕ)), (5.9)

χ
S2(T1)
xxy(E)(ϕ) = χ

S1(T1)
xxy(E)(ϕ− 120◦), (5.10)

χ
S3(T1)
xxy(E)(ϕ) = χ

S1(T1)
xxy(E)(ϕ + 120◦) (5.11)



142 Distribution of antiferromagnetic S and T domains in NiO

for the S domains of the T1 domain and to

χ
S1(T2)
xxy(E)(ϕ) =

1

27
(
1

4
χS

zzz(S) −
27

12
χS

zyy(S) + 2χS
zxx(S) + 4χS

xxz(S))(cos(3ϕ)− cos(ϕ))

− 1

6
χS

yyz(S)(cos(3ϕ) + cos(ϕ))

+

√
2

9
χS

yxz(S)(sin(3ϕ) + sin(ϕ))

+

√
2

9
(χS

zxy(S) + χS
xyz(S))(sin(3ϕ)− sin(ϕ)), (5.12)

χ
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12
sin(ϕ) +
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χS
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√

3 sin(3ϕ) + 3
√
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√
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√
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cos(ϕ))
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√
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√
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cos(3ϕ)− 5

√
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cos(ϕ))
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√
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yxz(S)(−
1

2
sin(3ϕ) + sin(ϕ) +

5
√

3

6
cos(3ϕ) +

2
√

3

3
cos(ϕ))

+

√
2

9
χS

zxy(S)(−
1

2
sin(3ϕ)− sin(ϕ) +

5
√

3

6
cos(3ϕ) +

2
√

3

3
cos(ϕ)),

(5.13)

χ
S3(T2)
xxy(E)(ϕ) = χ

S2(T2)
xxy(E)(ϕ + ϕ0) (5.14)

with ϕ0 = 2 arctan(1/
√

33) = 21.79◦ for the S domains of the T2 domain.

For the S domains of the T3 and T4 domains one gets

χ
Sm(T3)
xxy(E)(ϕ) = χ

Sm(T2)
xxy(E)(ϕ + 120◦), (5.15)

χ
Sm(T4)
xxy(E)(ϕ) = χ

Sm(T2)
xxy(E)(ϕ− 120◦). (5.16)

Note that the spins of the S2(Tn) and S3(Tn) domain (n ∈ {2, 3, 4}) include the
same angle with the wavevector of the incoming light which explains the simple relation
between Eq. (5.13) and Eq. (5.14). For fixed m, the Sm(Tn) domains (n ∈ {2, 3, 4}) are
transformed into one another by ±120◦ rotations which explains the simple relation
between Eqs. (5.12)–(5.14) and Eqs. (5.15) and (5.16).

The intensity of the MSHG signal from a single domain Sm(Tn) is given by

IMSHG(ϕ) ∝ |χSm(Tn)
xxy(E) (ϕ)|2. Simulations of IMSHG for all S domains on the basis of

Eqs. (5.9)–(5.16) are shown in Figs. 5.2—5.5 and will be discussed in the experimental
section.
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5.2.3.4 Superposition of domains

In general, crystals are not in a single-domain state so that MSHG contributions from
many domains overlap one another. Even if contributions from different domains are
separated spatially, by imaging techniques interference occurs at the border between
neighboring domains or for successive domains passed by the laser beam. Samples
are characterized by the lateral dimension ld of the domains in relation to the spatial
resolution lr of the detector. If the distance between spots in different domains is
smaller than lr the corresponding contributions to MSHG superpose coherently [182].
This is expressed by the equation

Icoh.(ϕ) ∝

∣∣∣∣∣∑
m,n

χ
Sm(Tn)
xxy(E) (ϕ)

∣∣∣∣∣
2

. (5.17)

In opposite incoherent superposition is expressed by

Iinc.(ϕ) ∝
∑
m,n

∣∣∣χSm(Tn)
xxy(E) (ϕ)

∣∣∣2 . (5.18)

If samples with only large domains (ld � lr) or small domains (ld ≤ lr) are considered,
the MSHG intensity can be exclusively described by Eq. (5.18) or Eq. (5.17), respec-
tively. SHG in samples with medium sized domains is described by a weighted addition
of Eqs. (5.17) and (5.18), but for clarity the discussion is restricted to the end cases
only.

In panel (d) of Figs. 5.2–5.5 the anisotropy of the MSHG signal is shown for coherent
superposition of MSHG contributions from a random distribution of small S domains
within a large T domain. This leads to

χT1

xxy(E)(ϕ) =
3

4
(χS

zyy(S) − χS
zzz(S) + 2χS

yyz(S)) cos(3ϕ), (5.19)

χT2

xxy(E)(ϕ) = − 1

18
(χS

zyy(S) − χS
zzz(S) + 2χS

yyz(S))(
7

2
cos(3ϕ) + cos(ϕ))

+

√
2

3
(χS

yxz(S) − χS
zxy(S)) sin(ϕ), (5.20)

χT3

xxy(E)(ϕ) = χT2

xxy(E)(ϕ + 120◦), (5.21)

χT4

xxy(E)(ϕ) = χT2

xxy(E)(ϕ− 120◦). (5.22)

Likewise, panel (e) shows the result for the case that the S domains are not small
so that incoherent superposition of the MSHG contributions occurs. Fig. 5.6 shows
the anisotropy of the SHG signal for the case that SHG contributions from a random
distribution of all 12 orientational domains superimpose in a coherent or incoherent
way.
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Figure 5.2: Anisotropy of the MSHG signal from the S domains of the T1 domain of
NiO. Lines and grey areas are derived from an overall fit of MSHG susceptibilities. (a)
Domain S1(T1). (b) Domain S2(T1). (c) Domain S3(T1). (d) Coherent superposition of
MSHG from a random assembly of the S(T1) domains. (e) Incoherent superposition of
MSHG from a random assembly of the S(T1) domains. (f) Sketch of the 12 orientational
domains with S(T1) domains emphasized. The insets in (d) and (e) are scaled to 10%
of the associated anisotropy plots. The azimuthal angle refers to ϕ in Eq. (5.8).
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Figure 5.3: Anisotropy of the MSHG signal from the S domains of the T2 domain of
NiO. Lines and grey areas are derived from an overall fit of MSHG susceptibilities. (a)
Domain S1(T2). (b) Domain S2(T2). (c) Domain S3(T2). (d) Coherent superposition of
MSHG from a random assembly of the S(T2) domains.(e) Incoherent superposition of
MSHG from a random assembly of the S(T2) domains. (f) Sketch of the 12 orientational
domains with S(T2) domains emphasized. The azimuthal angle refers to ϕ in Eq. (5.8).
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Figure 5.4: Anisotropy of the MSHG signal from the S domains of the T3 domain of
NiO. Lines and grey areas are derived from an overall fit of MSHG susceptibilities. (a)
Domain S1(T3). (b) Domain S2(T3). (c) Domain S3(T3). (d) Coherent superposition of
MSHG from a random assembly of the S(T3) domains. (e) Incoherent superposition of
MSHG from a random assembly of the S(T3) domains. (f) Sketch of the 12 orientational
domains with S(T3) domains emphasized. The azimuthal angle refers to ϕ in Eq. (5.8).



5.2 Theory 147

Figure 5.5: Anisotropy of the MSHG signal from the S domains of the T4 domain of
NiO. Lines and grey areas are derived from an overall fit of MSHG susceptibilities. (a)
Domain S1(T4). (b) Domain S2(T4). (c) Domain S3(T4). (d) Coherent superposition of
MSHG from a random assembly of the S(T4) domains. (e) Incoherent superposition of
MSHG from a random assembly of the S(T4) domains. (f) Sketch of the 12 orientational
domains with S(T4) domains emphasized. The azimuthal angle refers to ϕ in Eq. (5.8).
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Figure 5.6: Anisotropy of the MSHG signal from a random assembly of all 12 orien-
tational domains. (a) Coherent superposition of contributions from different domains.
(b) Incoherent superposition of contributions from different domains. The azimuthal
angle refers to ϕ in Eq. (5.8).

5.3 Experiment

5.3.1 Samples and setup

In the experiment (111) oriented samples prepared from bulk single crystals grown by
the flame-fusion method are used. The samples are polished with Syton dispersion
and vary in thickness between 50 and 100 µm. Both as-grown crystals and crystals
annealed in oxygen are investigated. For annealing the samples are heated to 1400 K
and cooled to room temperature at a rate of 2 K/min in a gas stream of 90% argon and
10% oxygen flowing at 10 l/min. Before annealing, crystals are brownish and domain
structures are not noticeable by polarization microscopy. After annealing, samples are
greenish and T domains in the order of ∼ 100 µm are resolved.

In order to conduct the experiments, the experimental setup shown by Fig. 1.16
is used. The anisotropy of the MSHG signal is measured by rotating the linear po-
larization of the incident light with an achromatic wave plate and transmitting only
the component of the MSHG light polarized parallel to the incident light through a
polymer polarizing foil. The MSHG light is imaged with a telephoto lens onto a cooled
CCD camera. Because of the high Néel temperature of 523 K, the experiments are
carried out at room temperature. At this temperature the largest MSHG intensity is
observed at 2.06 eV, which is therefore chosen as MSHG photon energy [40]. Although
the data of only one sample will be discussed in the following, results are reproduced
on more than 5 different specimen.
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5.3.2 Fit of MSHG data and distribution of domains

5.3.2.1 Data and fits

Figures 5.2–5.5 show the anisotropy of the MSHG signal measured on different spots of
the sample annealed in oxygen. With few exceptions (see below), the sample displays
only the four types of MSHG anisotropy shown in panel (d) of Figs. 5.2–5.5. Fig-
ures 5.3(d), 5.4(d), and 5.5(d) display a similar polarization dependence with twofold
symmetry. They only differ by a phase of ±120◦ in the angular dependence. In con-
trast to that, a sixfold symmetry of the MSHG is found in Fig. 5.2(d). This is exactly
the behavior expressed by Eqs. (5.19)–(5.22). Therefore oxygen annealing is assumed
to lead to a distribution of large T domains composed of a random distribution of
small S domains. Based on this assumption, imaging experiments reveal the T domain
structure sketched in Fig. 5.7.

Within one of the T1 domain regions, whose twofold MSHG anisotropy stands
in distinct contrast to the sixfold polarization dependence of the MSHG signal in
Fig. 5.2(d) are observed. This points to the occurrence of single large S(T1) domains.
Figs. 5.2(a)–5.2(c) show that all three S domains composing the T1 domain are observed
as single domains.

Further arguments confirming the assignment of domains in Figs. (5.2)–(5.5) are
discussed in the following section.

A fit of the data in Figs. 5.2(a)–5.2(c) and Figs. 5.2(d)–5.5(d) reveals values for the
tensor components χS

ijk(S). First Eqs. (5.9)–(5.11) are fitted to the SHG data for the

S(T1) domains in Fig. 5.2(a)–(c) and

χS
zyy(S) − χS

zzz(S)

χS
yyz(S)

= 0.93± 0.14 (5.23)

is found for the tensor components involved. Next Eqs. (5.20)–(5.22) are fitted to the
SHG data for the domains T2, T3, T4 in panel (d) of Figs. 5.3–5.5. This leads to

χS
yxz(S) − χS

zxy(S)

χS
zyy(S) − χS

zzz(S) + 2χS
yyz(S)

= 0.009± 0.006 (5.24)

for the ratio between the tensor components contributing to the, respectively, sine and
cosine contributions to the SHG anisotropy. Apparently SHG susceptibilities of the
type χijk with ijk as permutation of xyz are 1–2 orders of magnitude smaller than
the dominating susceptibilities with 2 or 3 equal indices. This result is in compliance
with the observation, that in none of the antiferromagnetic compounds investigated
thus far SHG from a symmetry-allowed magnetic tensor component χijk (with ijk as
permutation of xyz) was observed [7]. The errors are given by fluctuations of the fit
parameters obtained for different data sets as well as the fitting error itself.

Since single S domains of the T2, T3, T4 domain are not observed, the remaining
SHG susceptibilities in Eq. (5.2) cannot be fitted. In order to be able to illustrate the
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symmetry relation between the SHG anisotropy of the S domains in Figs. 5.3–5.5 the
following assumptions are made: (i) χS

ijk(S) = 0 for any ijk which is a permutation of

xyz. In view of Eq. (5.24) and the subsequent remarks this assumption is reasonable.
(ii) χS

zxx(S) = χS
zyy(S) = χS

xxz(S) = χS
yyz(S). This is an arbitrary assumption, only chosen

for the purpose of illustration. With a different choice for the four tensor components
the length of the double lobes making up Figs. 5.3(a) (domain S1(T2)) and 5.3(b)
(domain S2(T2)) will change. However, the SHG anisotropy of all other S domains
will change in accordance with this, because of the symmetry relations expressed by
Eqs. (5.14)–(5.16).

5.3.2.2 Discussion of domain structures

Figures 5.2–5.5 and the associated Eqs. (5.9)–(5.16) show, that in general all 12 ori-
entational domains possess a different SHG anisotropy. However, particularly when in
addition to single domains random distributions of domains are considered, two types
of degeneracy may occur:

(i) Coherent superposition of the signal from the three S domains making up the
domain T1 and coherent superposition of the signal from all 12 orientational domains
lead to the same SHG anisotropy. This is the only true degeneracy, which occurs
independent of the value of the susceptibilities χS

ijk(S). This ambiguity is easily solved
by taking into account the overall distribution of domains in the sample. For a random
distribution of all 12 orientational domains the anisotropy of the SHG signal will be
uniform in the whole sample, whereas for a coexistence of the three S domains of the
T1 domain or a coexistence of three S domains making up the T2,3,4 domain, regions
with a different SHG anisotropy will be observed.

(ii) Additional accidental degeneracies may occur for specific values of the tensor
components χS

ijk(S). For example, coherent superposition of the signal from the three
S domains making up the domain T2, T3, or T4 and SHG from the, respectively,
S1(T1), S3(T1), or S2(T1) single domain may lead to the same SHG anisotropy if
r = (χS

zyy(S) − χS
zzz(S))/χ

S
yyz(S) = 10/9 = 1.11. Ambiguities of this type can be solved

in two ways. On the one hand, the accidental degeneracy will disappear when the
photon energy is tuned because of the different spectral dependence of independent
SHG susceptibilities. On the other hand, the overall distribution of domains in the
sample can be taken into account just as in case (i). In the experiment both tests are
applied in order to acquire the assignment of domains in Fig. 5.7. For example, the
error margin of r = 0.93 in Eq. (5.23) for the SHG anisotropy in Figs. 5.2(a)–5.2(c)
does not include the degeneracy value of 1.11 (note that in contrast one finds r = 1.16
for Fig. 5.3(d)). The regions exhibiting the SHG anisotropy in Figs. 5.2(a)–5.2(c) are
all located within the T1 domain and have a completely different structure than the
other T domains. Both tests therefore point to single S(T1) instead of T domains with
a random distribution of S domains.

The analysis of the domain structure on the basis of Eqs. (5.9) to (5.16) with
additional tests for accidental degeneracies as described reveals the domain structure
in Fig. 5.7 for one of the investigated samples. The sample exhibits all four T domains
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Figure 5.7: Sketch of the domain structure after oxygen annealing which is found in
the NiO sample discussed in the text.

whose lateral dimensions are in the order of 100 µm. With few exceptions discussed
below, the T domains consist of random distributions of the three S domains making up
the respective T domain. The superposition of SHG contributions from the different S
domains occurs coherently, which points to a lateral dimension of the S domains in the
order of . 1 µm, i.e., below the resolution of the telephoto lens used in the experiment.
Coherent interference according to Eq. (5.17) is clearly confirmed by the anisotropy
of the SHG signals which resembles panel (d), but never panel (e), of Figs. 5.3–5.5.
In the case of the T1 domain, the distinction between coherent and incoherent SHG
interference is more subtle than in the case of the other T domains, because it is given
by the ratio between the minimum and the maximum value of the SHG intensity I(ϕ).
As shown in Figs. 5.2(d) and 5.2(e) this value is 0 and 6% for coherent and incoherent
interference, respectively. A fit to the data points reveals a ratio of (3 ± 6)% for
SHG from the center of the T1 domains and a ratio of (12 ± 6)% for the sum of the
SHG intensities from the three large S domains sketched in Fig. 5.7. In spite of the
errors, this indicates the correct tendency for, respectively, coherent and incoherent
superposition.

As depicted in Fig. 5.7, large S(T1) domains are only found near the boundary to
a neighboring T domain. For all the large S(T1) domains observed in the vicinity of a
domain T 6=T1, cos ∠(zS(T1), zT 6=T1) = 0.94 is found, which is the highest possible value
compatible with the magnetic structure of NiO. This points to a tendency of the Ni2+

spins to orient parallel to the stacking direction of ferromagnetic planes (and, thus, the
distortion) in the adjacent T domain.

In contrast to the samples annealed in oxygen, the untreated samples do not display
any domain structures. Fig. 5.6(a) reveals a sixfold anisotropy of the SHG signal, which
is found on all spots of the sample. As mentioned in the discussion of case (i) in this
Section, this corresponds to coherent superposition of SHG from all 12 orientational
domains. Incoherent superposition can be excluded on the basis of Fig. 5.6(b). Thus,
as-grown samples posses a random distribution of S and T domains with a size which
is in the range of . 1 µm.
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5.4 Summary and application

By means of MSHG it is possible to distinguish between the 12 orientational domains
and between typical distributions of S or T domains in NiO. The distinction is made
by measuring the anisotropy of the SHG signal. In contrast to other techniques, the
discrimination between the three S domains of a selected T domain is particularly
clear. Ambiguities in the assignment of domains are ruled out by tuning the frequency
of the probe laser to the appropriate photon energy and by the analysis of the overall
distribution of domains. SHG topography thus allows one to study arbitrary domain
structures in as-grown crystals. Untreated NiO samples are found to possess a random
distribution of all S and T domains with a lateral size in the order of . 1 µm. After
annealing in oxygen, a distribution of T domains of ∼ 100 µm made up by a random
distribution of the three corresponding S domains of . 1 µm is observed. Next to a T
domain wall, large S domains of ∼ 10 µm are formed, apparently because of a tendency
of the Ni2+ spins to orient along the stacking direction of ferromagnetic planes in the
adjacent T domain.

SHG offers major advantages for investigating the distribution of domains in NiO
as well as in other antiferromagnetic compounds. The high selectivity of the technique
and spatial resolution in the order of 1− 10 µm allow to study complex compositions
of domains as they are found in as-grown samples or heterostructures. Confusion from
overlapping domain structures encountered by integrative techniques like polarization
microscopy or neutron diffraction are avoided because only a region with the thickness
of the optical absorption length contributes to the SHG signal. SHG is a robust tech-
nique, which is not hampered by defects, impurities, or strain and which is applicable
to both, bulk samples and thin films or heterostructures. Surface contributions to the
magnetic signal can be suppressed or enhanced by using, respectively, nanosecond or
femtosecond laser pulses for probing the structure [14, 7]. Because of the unparal-
leled temporal resolution of optical experiments, SHG is the only technique allowing
to study correlations between domain structures, which are known to play a major
role in the physics of exchange-bias compounds [169, 172], and ultrafast magnetization
processes. This is confirmed in recent experiments, which demonstrated a distinctly
different temporal evolution of the antiferromagnetic state in NiO samples with large
domains (∼ 100 µm) as compared to NiO samples with small domains (< 1 µm) within
100 ps after the excitation with an intense 100-fs laser pulse [183]. The experiment
confirms that nonlinear optics is not only a powerful alternative to the already existing
techniques but, in fact, indispensable for studying contemporary aspects of antiferro-
magnetism.
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Symbols and abbreviations

symbol meaning

4b, 8d Cu2+ sites in CuB2O4

a lattice constant
A vector potential
α fine structure constant, α ' 1/137
aB Bohr radius
α, α(ω) absorption coefficient

b lattice constant
B magnetic field
B magnetic induction
BJ(y) Brillouin function
BBO β-BaB2O4

c0 speed of light in vacuum (299 792 458 m s−1)
C Curie constant
CB conduction band
CCD charge-coupled device camera
CCS Cartesian coordinate system
CdTe cadmium telluride
Cd1−xMnxTe cadmium manganese telluride
Cr2O3 chromium oxide
Cu2+ copper ions
CuB2O4 copper borate

d label for d electrons
de−h exciton diameter
DMS diluted magnetic semiconductors
δij Dirac’s delta function
∆E energy difference
∆EGZ giant Zeeman splitting
∆Ez Zeeman splitting
∆SO split-off energy between heavy and light hole bands



156 Symbols and abbreviations

e electron, unit charge (1.602176 ·10−19 C)
E, Eex energy, exchange energy
EF Fermi level
Eg band gap energy
E(k), Ee,h(k) dispersion, of the conduction/valence band
E electric field vector
Ei i-th electric light field
ED electric dipole
eV electron volt (1.602176 ·10−19 J)
εr, ε0 dielectric constant, in vacuum

fcc face-centered cubic
FWHM full width at half maximum
φnlm eigenfunctions of the hydrogen atom

ge electron g factor
gJ Lande factor
G free enthalpy
GaAs gallium arsenide
Γi conduction (i = 6) or valence band (i = 7, 8) symmetry
Γ-point point of high symmetry

h hole
hh heavy hole

Ĥ Hamiltonian
HNe(y) Hermite polynomials
H magnetic field strength
HC coercive field strength
HeNe helium-neon laser
~ h/2π= 1.054571· 10−34 J s= 6.582118· 10−16 eV s

i integer index i = 0, 1, 2 . . .
i complex unity
I light intensity

Î inversion operator

j integer index i = 0, 1, 2 . . .
j electric current
J total angular momentum
Jz z-component of the angular momentum
Jij exchange integral

kB Boltzmann constant 1.38062 · 10−23JK−1

k wave vector
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K Kelvin
KD∗P KH2PO4

lh light hole
lcoh coherence length
ld lateral domain dimension
~̀ antiferromagnetic order parameter
L orbital angular momentum
Lz z-component of the orbital momentum
LO, LA longitudinal optical, longitudinal acoustic
λ wavelength

m z-component of the angular momentum
m0 electron mass (9.109381 · 10−31 kg)
m∗ effective mass
m∗e, m∗h, m∗X effective electron/hole/exciton mass
M magnetization, magnetic dipole moment
MS saturated magnetization
Mn2+ manganese ions
MD magnetic dipole
MFISH magnetic-field-induced second harmonic generation
MSHG magnetic second harmonic generation
meV milli electron volt
mJ milli joule
µm micrometer
µ magnetic moment
µ reduced mass
µr, µ0 permeability, in vacuum
µB Bohr magneton
µ(T ) chemical potential

n refractive index
N0α, N0β exchange integrals of the conduction, valence bands
N(EF ) density of states at the Fermi level
Nd:YAG yttrium aluminium garnet doped with neodymium
Ni2+ nickel ions
NiO nickel oxide
nm nanometer

OPO optical parametric oscillator

p label for p (band) electrons
P polarization, electric dipole moment
p impulse operator
PL photoluminescence
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ps picosecond
Ψ wavefunction

Q̂ electric quadrupole moment

R resistivity, reflectivity
r, R spatial position
Ryd Rydberg constant
% electric charge density

s label for s (band) electrons
S entropy
S spin
< S > averaged spin
Sz z-component of the spin
S0 effective spin
Si spin of the i-th electron, ion or atom
SiTj spin domain i of twin domain j
SHG second harmonic generation
SO split-off band
σ± circular polarization
σx,y,z Pauli-matrices

t time
T temperature, Tesla
T0 effective temperature
Ta anomaly temperature
TC Curie temperature
TN Neel temperature

T̂ time inversion operator
Θ Neel temperature
τ relaxation time

VB valence band

ωγ photon frequency
ωC cyclotron frequency
Ω Ohm

x manganese concentration
X exciton
χpara, χdia, χmag para/dia/magnetic susceptibility
χNe(x̃) eigenfunctions of the harmonic oscillator
χijk.. nonlinear optical susceptibilities



Symbols and abbreviations 159



Bibliography

[1] P. Franken, A. Hill, C. Peters, & G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).

[2] N. Bloemberg, Nonlinear Optics (Benjamin, New York, 1965).

[3] Y. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

[4] R. Boyd, Nonlinear Optics (Academic, New York, 1992).
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[33] L. Néel, Ann. Phys. Paris 18, 5 (1932).

[34] H. Bizette, C. Squire, & B. Tsai, Comptes Rendus Acad. Sci. Paris 207, 449
(1938).

[35] W. H. Meiklejohn & C. P. Bean, Phys. Rev. 105, 904 (1957).

[36] A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, & T. Rasing, Nature 429,
850 (2004).

[37] P. W. Anderson, The Theory of Superconductivity in the High-TC Cuprate Su-
perconductors (Princeton University Press, Princeton, 1997).



162 BIBLIOGRAPHY

[38] C. Tsang, R. E. Fontana, T. Lin, D. E. Heim, V. S. Speriosu, B. A. Gurney, &
M. L. Williams, IEEE Trans. Mag. 30, 3801 (1994).

[39] S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E.
Scheuerlein, E. J. OSullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu,
M. Rooks, P. L. Trouilloud, R. A. Wanner, & W. J. Gallagher, J. Appl. Phys.
85, 5828 (1999).

[40] N. P. Duong, T. Satoh, & M. Fiebig, Phys. Rev. Lett. 93, 117402 (2004).
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of great help. Valuable comments of G. Nair from the MIT in Massachusetts are
appreciated.

Thanks for the technical support to Klaus Wiegers and Thomas Stöhr, whose
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Christian Sandfort, Oliver Schöps, Gregor Dasbach, Gerhard Ortner, Marcel Arlt, Vi-
tali Anikeyev and Vasily Temnov, for the good working atmosphere and having a nice
time.



Acknowledgements 179

Finally, I would like to thank my parents Roswitha and Karl-Heinz Sänger for always
encouraging me and for their support in all situations. My beloved wife Alexandra
Sänger and my lovely daughter Lara Sänger have always encouraged me:

These words from my heart, that’s true,

can hardly express my bond to you.

You fill a big hole in my life.

I am lucky that you are my child and my wife.

My heart is yours

and my future is you.

These thoughts are forever

I love you (two).

based on Warren Southard


	Motivation
	Introduction
	Magnetism
	Disordered magnetic systems
	Ordered magnetic systems
	Magnetic symmetry

	Semiconductors
	Band structure
	Excitons
	Dia- and paramagnetism of free carriers
	Diluted magnetic semiconductors (DMS)

	Nonlinear magneto-optics
	Nonlinear optics
	Magnetic second harmonic generation (SHG) contributions
	Symmetry of tensors
	Experimental setup


	Diamagnetic semiconductors
	Crystal structure
	Polarization selection rules for SHG
	Description of GaAs, CdTe and Cd1-xMgxTe samples
	Crystallographic SHG in G97A115
	Magnetic-field-induced SHG (MFISH) in G97A115
	Faraday geometry
	Voigt geometry
	Magnetic field dependence of MFISH intensity
	Temperature dependence of MFISH signal
	Transmission vs. reflection geometry

	Rotational anisotropy and magneto-spatial dispersion
	Spectral dependence
	Magnetic field dependence

	Comparison of Faraday and Voigt geometries
	MFISH spectra
	Fan charts

	Magnetic-field-induced SHG in C100T101
	Crystal quality
	GaAs
	(Cd,Mg)Te

	Summary

	Diluted magnetic semiconductors
	Macroscopic description of SHG
	Band structure in magnetic field
	Description of Cd1-xMnxTe samples
	Crystallographic SHG
	Magnetic-field-induced SHG
	Wide range spectra

	Spin quantization induced SHG
	Field dependence
	Temperature dependence
	Spin quantization
	Rotational anisotropy

	Interplay of spin and orbital quantization
	MFISH dependence on the Mn concentration
	High Mn concentration
	Comparison for different Mn concentrations

	Spin glass phase
	Wide range spectra
	SHG signal coupled to spin glass phase
	Mn concentration vs. anomaly temperature

	Summary

	Antiferromagnetic insulators
	Crystal properties
	Crystal structure
	Magnetic structure
	Energy level diagram
	Samples

	Linear optical methods
	Linear birefringence
	Linear absorption
	Photoluminescence

	Nonlinear optical methods (SHG)
	SHG processes
	Spectral separation of Cu2+ sublattices
	Coupling between sublattices
	Magnetic phase diagrams of 4b and 8d sites
	Determination of the magnetic symmetry
	Antiferromagnetic domain structure

	Summary

	Appendix
	Distribution of antiferromagnetic S and T domains in NiO
	Introduction
	Theory
	S and T domains in NiO
	Magnetic second harmonic generation (MSHG)
	MSHG in S and T domains

	Experiment
	Samples and setup
	Fit of MSHG data and distribution of domains

	Summary and application

	Publications
	Symbols and abbreviations
	Bibliography
	List of figures
	Index
	Curriculum vitae
	Acknowledgements

