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Abstract

In this thesis, we discuss several aspects of the characterization of entangle-
ment in multipartite quantum systems, including detection, classification and
quantification of entanglement. First, we discuss triqubit pure entanglement
and propose a special true tripartite entanglement, the mixed entanglement,
besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W en-
tanglement. Then, based on quantitative complementarity relations, we draw
entanglement Venn diagrams for triqubit pure states with different entangle-
ments and introduce the total tangle τ (T ) to quantify total entanglement of
triqubit pure states by defining the union I that is equivalent to the total
tangle τ (T ) from the mathematical point of view. The generalizations of en-
tanglement Venn diagrams and the union I to N -qubit pure states are also
discussed. Finally, based on the ranks of reduced density matrices, we dis-
cuss the separability of multiparticle arbitrary-dimensional pure and mixed
states, respectively.
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Chapter 1

Introduction

Entanglement plays an important role not only in quantum mechanics but
also in quantum information theory (See, e.g., Refs. [1–8]). It is one of
the remarkable features that distinguishes quantum mechanics from classical
mechanics. The word “Entanglement” was first coined by Erwin Schrödinger
in 1935 [9].

Entanglement refers to quantum correlations between spatially-separated
physical systems that can be stronger than correlations allowed by classical
mechanics. It is this property of entanglement which caused that Einstein,
Podolsky and Rosen published a famous paper in 1935 [10] now celebrated as
EPR paper in which they raised fundamental questions about the complete-
ness of quantum mechanics. In the EPR paper, Einstein and his coauthors
constructed a wonderful scenario where one can immediately precisely pre-
dict the result of a measurement on one part of a system by measuring on
another part of the system even though the two parts are spatially separated
by a distance ≥ c(t − t0) (where c is the speed of the light and t and t0 are
the finial and initial time, respectively, when one puts the two parts of the
system in two different points.) after they have interacted with each other.
This is the so-called EPR paradox. Following this scenario, Einstein and his
coauthors concluded that quantum theory must be incomplete if the locality
were to be respected.

In the same year as the EPR paper appeared, Schrödinger introduced
the concept of entanglement in the paper “Present situation in quantum
mechanics” [9] for reacting to Einstein, Podolsky and Rosen’s criticism [10].
Schrödinger also introduced his famous cat (now called Schrödinger’s cat) as
an extreme illustration of entanglement. In this model, a cat and a decaying
atom, which are connected by a trigger and a vial of cyanide, are in a definite
entangled state. If the atom were to decay and trigger the release of cyanide,
the cat would die; otherwise the cat would live. The system composed of
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4 CHAPTER 1. INTRODUCTION

the decaying atom and the cat whose situation is unknown is in a typical
entangled state. The quantum mechanical description of the system is a
coherent superposition of one state in which the atom is still excited and the
cat is alive, and other state in which the atom has decayed and the cat is
dead. The state of the coherent superposition can be written as:

1√
2

(|excited, alive〉+ |decayed, dead〉) (1.1)

After three decades from the EPR paradox and the Schrödinger’s cat,
Bell made an essential progress on the debate of entanglement in 1964. In
the paper “On the Einstein-Podolsky-Rosen paradox” [11], Bell derived cor-
relation inequalities now called Bell’s inequalities, which can be violated in
quantum mechanics but have to be satisfied within every model that is local
and complete, the so-called local hidden-variable models. By Bell’s outstand-
ing contribution, it became possible to experimentally test whether the local
hidden-variable models can explain all observed physical phenomena.

Up to now, many experiments [12] on violations of Bell inequalities have
been reported. These experiments obviously invalidated the local hidden-
variable models and supported the quantum-mechanical view of nature. In
particular, the violation of Bell’s inequalities demonstrates the presence of
entanglement in quantum systems.

In 1989, Werner [13] introduced an important family of biqubit mixed
states, which are now called Werner states. Werner states do not violate any
Bell inequalities though they can be entangled states.

Thus, from the quantum mechanical point of view, we are still too far
from understanding entanglement, a counterintuitive quantum phenomenon
that lies at the heart of modern quantum theory.

On the other side, the attitude towards entanglement has been changed in
the last two decades from it being focused on the fundamental applications of
quantum mechanics (See, e.g., [1,3,4,6–8]), i.e., quantum information theory
including quantum computation and quantum communication.

In 1982, Feynman [14] suggested to use quantum systems to simulate
complicated quantum systems, a very hard task in the classical computer. In
1985, Deutsch [15] proposed the first algorithms based on the laws of quan-
tum mechanics. Deutsch’s algorithms, which found the field of quantum
computation, could solve certain tasks faster than any classical computer.
In 1994, Shor [16] discovered a polynomial-time quantum algorithm, which
tremendously saves computation time, for factorizing prime numbers of a
large integer. In 1997, Grover [17] proposed the search algorithm in quan-
tum systems. In 2001, Raussendorf and Briegel [18] introduced the one-way
computer in which entanglement lies at the core of the quantum computation.
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In parallel, the applications of entanglement in quantum communication
were developed. In 1984, Bennett and Brassard [19] proposed the first proto-
col in quantum cryptography, which is now called BB84 protocol and founded
the field of quantum cryptography. In 1991, Ekert [20] proposed the first
protocol for secret key distribution via entangled states. In 1992, Bennett
and Wiesner [21] introduced the scheme of quantum dense coding. In 1993,
Bennett and his coauthors [22] proposed the scheme of quantum teleporta-
tion. These two schemes and Shor’s breakthrough generated an avalanche of
interest in quantum information theory.

In experimental respect, much progress has been made in the last decade.
For example, Deutsch’s algorithm has been realized in an ion trap [23], Shor’s
algorithm has been implemented via nuclear magnetic resonance technique
[24], quantum teleportation has been experimentally realized via photons
[25], and so on. An extensive list of achievements can be found in Refs.
[1, 4–6,8].

Today, researchers treat entanglement not only as the heart of modern
quantum mechanics but also as a fundamental resource of quantum informa-
tion theory [8]. Thus it is of great importance to characterize entanglement
qualitatively and quantitatively in quantum mechanics and quantum infor-
mation theory (See, e.g., [1, 4, 5, 26–29]).

In this thesis, we will discuss the several aspects of characterizing en-
tanglement in multipartite quantum systems via different tools in different
cases. The thesis is organized as follows:

In chapter 2, we introduce the basic concepts and notations needed for
the understanding of the rest of the thesis. We give simple introductions
on several basic concepts in quantum mechanics and quantum information
theory, such as Hilbert space, qubit and density matrix. Then we give the
definition of entanglement in cases of pure and mixed states. Finally, we
introduce the present situation of characterizing entanglement, including de-
tecting, classifying and quantifying entanglement, which form the basis of
our study.

In chapter 3, we discuss triqubit pure states and propose a special true
tripartite entanglement, the mixed entanglement, which possesses the main
properties of the the Greenberger-Horne-Zeilinger (GHZ) entanglement [30]
and the W entanglement [31], simultaneously. Based on all linear combina-
tions of up to five basis vectors of triqubit pure states [32], we find that there
exist two inequivalent kinds of sets of four non-superfluous basis vectors for
mixed entanglement.

In chapter 4, we draw entanglement Venn diagrams for triqubit pure
states with different entanglements based on quantitative complementarity
relations [33–35]. Following them, we define the union I, invoking an analogy
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to set theory [36], for triqubit pure states. This allows us to introduce a new
quantity, named the total tangle τ (T ), for quantifying the total entanglement
of triqubit pure states. In fact, the union I and the total tangle τ (T ) are
equivalent to each other from the mathematical point of view. Then we
generalize the definition of the union I to N -qubit pure states and obtain
interesting bounds to the union I with different entanglements. We also
discuss an entanglement Venn diagram and the detailed formulation of the
union I (and the total tangle τ (T )) for N -qubit pure states in conjecture.

In chapter 5, we focus on multiparticle arbitrary-dimensional states based
on the ranks of the (reduced) density matrices. We derive two necessary and
sufficient conditions for entangled and fully entangled pure states. Then we
derive necessary conditions for the separability of mixed states, which are
equivalent to sufficient conditions for entanglement.

The conclusion and outlook form the final chapter.



Chapter 2

Characterization of
Entanglement

As mentioned in Chapter 1, it is of great importance to characterize entan-
glement in quantum mechanics and quantum information theory. In this
chapter, we will focus on this subject and give an introduction on the main
notations and concepts that will be used in the following chapters.

In the field of characterizing entanglement, there exist three main tasks,
which can be described as three questions as follows:

(1). “Is a state entangled at all?”
(2). “How does a state entangle?”
(3). “How much entanglement does a state possess?”

These three questions are stronger and stronger one by one on understanding
entanglement and can be considered to be a three-step subject on studying
entanglement.

For example, consider a multipartite state. The first step is to detect en-
tanglement of the state, i.e., to answer the first question. That is, one would
have the criterion to distinguish the entangled state from the separable state.
The second step is to classify entanglement of the state, i.e., to answer the
second question. That is, if the state is entangled, one would determine the
means that the state entangles. The third step is to quantify entanglement of
the state, i.e., to answer the third question. That is, one needs the measure
to quantitatively characterize entanglement of the state.

Much progress on characterization of entanglement with different degree
in different cases has been made (see the reviews, e.g., in Ref. [5, 8, 26–29]
and the references therein.), in particular, in the last decade. However, all of
these three questions are essentially open up to now (see, e.g., in Ref. [26–29]).
Since the number of articles about entanglement has enormously increased
during the last decade (for example, after the search with the key word

7
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“entanglement ” in website “http://www.arxiv.org/archive/quant-ph”, a lot
of results will be found.), it is almost impossible to give a complete overview
on this subject, and this is not the purpose of this chapter. We will rather
introduce some main and necessary concepts and notations on characterizing
entanglement that will be used in the following chapters. Of course, some
significant progress and fundamental work will be introduced even though
they have no direct relation with the work of this thesis.

This chapter is organized as follows: In section 1, we introduce several
basic concepts in quantum mechanics and quantum information theory. Then
we give the definition of entanglement of pure and mixed states. Finally, we
discuss the three tasks of characterization of entanglement in three sections,
respectively.

2.1 Several basic concepts

In this section, we introduce several basic concepts in quantum mechanics
and quantum information theory, such as, Hilbert space, qubit and density
matrix.

2.1.1 Hilbert space

Hilbert space, an infinite dimensional vector space usually denoted as H,
is a mathematical framework suitable for describing the concepts, systems,
principles, processes and laws of quantum mechanics. Formulating quantum
mechanics in terms of Hilbert spaces, first introduced by von Neumann, was
one of the most important steps in the development of modern quantum
physics. Thus it is necessary to give some introduction on Hilbert space
(also see, e.g., in Ref. [1–3]).

Hilbert spaceH as a special kind of complex vector space has the following
basic properties. Note that we will use Dirac’s notation to express vectors. A
complex column vector ~ψ is expressed by a ket vector |ψ〉. The corresponding
row vector is expressed by a bra vector 〈ψ|.

(1). Linearity: If two vectors |u〉, |v〉 ∈ H, for α, β ∈ C (Here the symbol
“C” denotes the set of complex numbers), then

α|u〉+ β|v〉 ∈ H. (2.1)

In particular, Hilbert space H contains a null element, 0, such that

|u〉+ 0 = |u〉 (2.2)

for any |u〉 ∈ H.
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(2). Inner product and norm: The inner product of a pair of vectors |u〉
and |v〉 corresponds to a complex number as

〈v|u〉 = 〈u|v〉∗ =
D∑

i=1

v∗i ui (2.3)

where the symbol “D” is the dimension of the vector.
The norm of vector |u〉, also called the length of vector, is defined as

||u|| ≡
√
〈u|u〉 ≥ 0, (2.4)

with the equality if and only if |u〉 = 0.
(3). Completeness: Any strongly convergent sequence of elements |un〉

for n →∞ has a limit |u〉 and the limit |u〉 is also an element of H. That is,
there is a unique element |u〉 ∈ H such that

||un − u||n→∞ → 0. (2.5)

Now we will discuss several important concepts of Hilbert space as follows.
(1). Dimension of Hilbert space: The dimension of a finite dimensional

Hilbert space H is defined as the maximal number of linear independent
vectors of H. A d-dimensional Hilbert space will be denoted as Hd.

(2). Orthogonality: Two vectors |u〉, |v〉 ∈ H are called orthogonal if

〈u|v〉 = 〈v|u〉 = 0. (2.6)

A set U ⊆ H is orthogonal if any two of its elements are orthogonal and
all its elements have norm 1. Orthogonal states (represented by orthogonal
vectors) are states that are independent of each other.

The importance of orthogonality in quantum mechanics is that whenever
a measurement is performed on a quantum system, if those quantum states
are mutually orthogonal, then the measurement can obtain distinguishable
outcomes. Otherwise no measurement can distinguish faithfully between
non-orthogonal states.

(3). Tensor product: Consider two vectors |u〉 and |v〉 as

|u〉 = (u1, u2, · · · , um)T ∈ H|u〉,
|v〉 = (v1, v2, · · · , vn)T ∈ H|v〉,

(2.7)

where the superscript “T” means the transpose of the vector. The tensor
product of |u〉 and |v〉, denoted as |u〉⊗ |v〉, is an (m ∗n)-dimensional vector
of Hilbert space H with elements

|u〉 ⊗ |v〉 = (u1|v〉, u2|v〉, · · · , um|v〉)T

= (u1v1, u1v2, · · · , u1vn, u2v1, · · · , umvn)T .
(2.8)
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Here the (m ∗n)-dimensional Hilbert space H is the so-called tensor product
of H|u〉 and H|v〉 which is written as

H = H|u〉 ⊗H|v〉. (2.9)

2.1.2 Qubit

One of the fundamental concept of classical information theory is the bit,
which takes one of the two possible values {0, 1}. The corresponding concept
of the bit in quantum information theory is called the quantum bit, or qubit
[37] for short. It describes a state in the simplest possible quantum system.

Consider a two-dimensional Hilbert spaceH, the smallest nontrivial Hilbert
space. Two basis vectors for the Hilbert space H are denoted in the following
way: (

1
0

)
= |0〉 and

(
0
1

)
= |1〉. (2.10)

Then a qubit is defined as a quantum state

|ψ〉 ≡ α|0〉+ β|1〉 (2.11)

where α, β are complex numbers that satisfy |α|2 + |β|2 = 1, and the overall
phase is physically irrelevant. Put another way, the state of a qubit is a unit
vector in a two-dimensional complex vector space. The special states |0〉 and
|1〉 form an orthonormal basis for this vector space.

We can perform a measurement that projects the qubit onto the basis
{|0〉, |1〉}. Then we will obtain the outcome |0〉 with probability |α|2, and
the outcome |1〉 with probability |β|2. Furthermore, except in the case α = 0
and β = 0, the measurement irrevocably disturbs the state of the qubit. After
the measurement, the qubit has been prepared in a known state (either |0〉
or |1〉) that differs (in general) from its initial state. If the value of the
qubit is originally unknown, there is no way to determine α and β with the
single projected measurement, or any other conceivable measurement. For
the classical bit, we can measure it without disturbing, and we can decipher
all of the information that it encodes. Thus the essential difference between
the classical bit and the qubit is that a classical bit has a state either 0 or
1 with the corresponding probabilities, while a qubit can be in a state other
than |0〉 or |1〉. That is, a qubit can be in a state linearly combined by
two basis vectors |0〉 and |1〉, which is the so-called superposition, a basic
difference of quantum world from classical world.

The ability of a qubit to be in a superposition state runs counter to our
“common sense” understanding of the physical world around us. As pointed
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|1

|0

..

.

Figure 2.1: Qubit represented by two electronic levels in an atom.

out, a classical bit is in a state either 0 or 1. By contrast, a qubit can exist
in a continuum of states between |0〉 and |1〉.

By the definition of the qubit in Eq. (2.11), any two-state quantum
system can be called a qubit when the two states span a two-dimensional
Hilbert space. This is more general, and the interpretation is more difficult.
Therefore, any two-state quantum system is a potential candidate for a qubit,
such as, the photon with two different polarizations, the nuclear spin with
different alignments in a uniform magnetic field, the single atom orbited by
an electron with two different states as shown in Fig. (2.1), and so on.

2.1.3 Density matrix

Similar to the state vector as the language to formulate quantum mechan-
ics, the density matrix is known as an alternate tool to describe quantum
systems. The alternate formulation of quantum mechanics by the density
matrix language extends mathematically the state vector approach, since it
provides a much more convenient means for thinking about quantum systems
whose states are not completely known, for example, mixed states.

Consider a quantum system which is in one of a number of pure states
{|ψi〉} with respective probabilities pi. We can call {|ψi〉, pi} an ensemble
of pure states, or a mixed state. The density matrix of this mixed state is
defined as

ρ ≡
∑

i

pi|ψi〉〈ψi|. (2.12)

If any one of the probabilities is equal to 1 while all the others are 0, then
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this definition of the density matrix in Eq. (2.12) is reduced to the case of
the pure state |ψ〉 as

ρ = |ψ〉〈ψ|. (2.13)

Thus the definition of the density matrix in Eq. (2.12) can also be rewritten
as

ρ ≡
∑

i

piρ
i (2.14)

where ρi = |ψi〉〈ψi|. It turns out immediately that all the formulation of
quantum mechanics can be re-expressed in terms of the density matrix lan-
guage.

From the definition of the density matrix in Eqs. (2.12) and (2.13), we
can obtain the following properties of density matrix ρ (the proofs of these
properties are omitted):

(1) ρ is self-adjoint (hermitian), i.e.,

ρ = ρ† (2.15)

where “ρ†” denotes the conjugate transposed matrix of ρ.
(2) ρ has trace equal to 1, i.e.,

Tr(ρ) = 1. (2.16)

(3) ρ is positive definite, i.e.,

ρ ≥ 0. (2.17)

(4) The inequality
Tr(ρ2) ≤ 1 (2.18)

holds, with equality if and only if ρ is a pure state. Then we easily get a
necessary and sufficient condition for a pure state as

ρ2 = ρ (2.19)

holds if and only if ρ is pure. From these properties we directly obtain that
ρ can be diagonalized, that the eigenvalues are all real and nonnegative, and
that the eigenvalues sum to one.

When considering a composite quantum system in terms of the density
matrix, the reduced density matrix is a necessary tool for describing sub-
systems. Consider a composite system ρAB of two systems A and B. The
reduced density matrix ρA for system A is defined as

ρA ≡ TrB(ρAB) (2.20)
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where TrB is a map of operators known as the partial trace over system B.
The partial trace is defined as

TrB(|a1〉〈a2| ⊗ |b1〉〈b2|) ≡ |a1〉〈a2|Tr(|b1〉〈b2|)
= |a1〉〈a2|〈b2|b1〉 (2.21)

where |a1〉 and |a2〉 are any two vectors on the state space of A, and |b1〉 and
|b2〉 are any two vectors in the state space of B.

The reduced density matrix ρA provides the correct measurement statis-
tics for measurements made on system A. For example, consider one of the
Bell states

|Ψ〉AB =
1√
2
(|0A1B〉+ |1A0B〉) (2.22)

Then

ρAB = |Ψ〉ABAB〈Ψ| = 1

2
(|01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |10〉〈10|)

=
1

2




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0




(2.23)
Tracing over qubit B, we obtain the reduced density matrix ρA as:

ρA = TrBρAB =
1

2
TrB(|01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |10〉〈10|)

=
1

2

(
1 0
0 1

)

(2.24)
It is the maximally mixed state.

2.2 Definition of entanglement

“What is entanglement?”

From the different starting points of research, physicists can give different
answers for this question. Here we will discuss this question in two different
cases of pure and mixed states, respectively, from the quantum mechanical
and quantum informational points of view.
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2.2.1 Pure states

In 1935, Schrödinger [9] gave the first qualitative definition of entanglement
as

If two separable bodies, each by itself known maximally, enter a
situation in which they influence each other, and separate again,
then there occurs regularly that which I have (just) called entan-
glement of our knowledge of the two bodies.

About the “strange” property of entanglement, he wrote
For an entangled state, “the best possible knowledge of the whole does not

include the best possible knowledge of its parts”. Thus “The whole is in a
definite state, the parts taken individually are not”.
This explanation is now understood as the essence of entanglement of pure
states.

In mathematical terms, entanglement of pure states is defined as: A pure
state ρ of N particles A1, A2, · · · , AN is called entangled when it can NOT
be written as

ρ = ρA1 ⊗ ρA2 ⊗ · · · ⊗ ρAN
=

N⊗
i=1

ρAi
(2.25)

where ρAi
is the single-particle reduced density matrix given by ρAi

≡ Tr{Aj}(ρ)
for {Aj|all Aj 6= Ai}. Otherwise the state is separable.

Let us consider the simplest case: a state |Ψ〉AB of two qubits A and B,
which are associated with two Hilbert spaces HA and HB, respectively. Then
state |Ψ〉AB is associated with Hilbert space H = HA ⊗HB whose elements
include the tensor products of the elements in two subspaces HA and HB,
such as |0A0B〉, |0A1B〉, |1A0B〉 and |1A1B〉. Because of the superposition of
quantum systems, any linear combinations of these four product states could
be possible, for example,

|ψ〉AB = α|00〉+ β|11〉 ∈ H. (2.26)

This state, which is called entangled state, cannot be described as the tensor
product of two states |a〉 ∈ HA and |b〉 ∈ HB. That is, there is no pair of
vectors |a〉 ∈ HA and |b〉 ∈ HB such that |ψ〉AB = |a, b〉. Thus, the existence
of entangled states is a direct consequence of the tensor product structure of
the Hilbert space describing composite quantum systems.

The most important property of entangled states is that they carry quan-
tum correlations, which are quite different from classical correlations. The
classical correlations are strictly restricted by Bell’s inequalities [11], whereas
the quantum correlations corresponding to entangled states may violate them.
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This is why with the correlations contained in entangled states we can per-
form things that are impossible using classical correlations.

In order to create entangled states out of product states, we need inter-
actions. If we do not have interactions, the Hamiltonian Ĥ describing the
evolution of systems A and B will be written as

Ĥ = ĤA ⊗ ÎB + ÎA ⊗ ĤB (2.27)

where ĤA (ĤB) is the Hamiltonian of system A (B) and Î is the identity
(unit) matrix. Since ĤA⊗ ÎB and ÎA⊗ĤB commute with each other, we have
the unitary evolution operator Û(t) acting on the composite system, which
can be always written as

Û(t) = ÛA(t)⊗ ÛB(t) (2.28)

where ÛA(t) (ÛB(t)) is the evolution operator acting on the system A (B).
The product state |ψ(0)〉AB = |a(0)〉 ⊗ |b(0)〉 will evolve into

|ψ(t)〉AB = (ÛA(t)|a(0)〉)⊗ (ÛB(t)|b(0)〉)
= |a(t)〉 ⊗ |b(t)〉 (2.29)

which is still a product state. Operators with the form (2.28) are called
local operators. Thus one says that entanglement cannot be created by local
operators (even with the help of classical communication).

2.2.2 Mixed states

The definition of entanglement of mixed states is more complex than the one
of pure states. In general, we would like to use the description introduced by
Werner in [13] as

A state is called entangled if it cannot be prepared by local operations (and
classical communication) out of a product state.

From this description, we directly get that entanglement can only be
produced by interactions.

In mathematical terms, the definition of entanglement of mixed states is
given as: A mixed state ρ of N particles A1, A2, · · · , AN , described by M
probabilities pj and M pure states ρj as ρ =

∑M
j=1 p

j
ρj, is called entangled

when it can NOT be written as

ρ =
M∑

j=1

pj

N⊗
i=1

ρj
Ai

(2.30)

where pj > 0 for j = 1, 2, · · · ,M with
∑M

j=1 pj = 1.
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2.3 Detection of entanglement

“Is a state entangled at all?”
At present, it is one of the hot fields in the characterization of entangle-

ment to find the criterion on the separability of quantum systems. Though
it is still an open question on detection of entanglement (see, e.g., [26–29]),
much progress has been made in the last few years (see, e.g., [38–41], and
the references in the reviews [28,29,42]). Here we will simply introduce some
basic concepts and significant results.

In general, the criteria on the separability of quantum states can be sep-
arated into operational entanglement criteria and non-operational entangle-
ment criteria. Here the word “operational” is used to emphasize, as pointed
out by Bruß [27], that an operational criterion can be applied to an explicit
density matrix ρ, giving some immediate answer like “ρ is separable,” or “ρ
is entangled,” or “this criterion is not strong enough to decide whether ρ is
separable or entangled.”

2.3.1 Operational criteria

First, we will introduce some operational entanglement criteria, such as, the
Schmidt decomposition, the partial transposition criterion, the reduction cri-
terion and the majorization criterion.

(1). Schmidt decomposition [2, 43]: Any bipartite pure state |ψ〉AB ∈
H = HA ⊗HB can be decomposed, by choosing an appropriate basis, as

|ψ〉AB =
m∑

i=1

αi|ai〉 ⊗ |bi〉 (2.31)

where 1 ≤ m ≤ min{dim(HA), dim(HB)}, and αi > 0 with
∑m

i=1 α2
i = 1.

Here |ai〉 (|bi〉) form a part of an orthonormal basis in HA (HB). The positive
numbers αi are called the Schmidt coefficients of |ψ〉AB and the number m
is called the Schmidt rank of |ψ〉AB.

If the Schmidt decomposition of a bipartite pure state has more than one
Schmidt coefficient, the state is entangled. Unfortunately, there is no general
Schmidt decomposition for any N -partite pure state until now though we
can generalize the Schmidt decomposition to more than 2 subsystems [44],
for example, the generalized Schmidt decomposition to triqubit pure states
has been proposed in [32].

However, for an N -partite quantum system in a pure state, it is possible
to detect the separability of the system with respect to all partitions of N
subsystems into 2 parts. If the system with respect to at least one partition
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of 2 parts is entangled as detected by the bipartite Schmidt decomposition,
the N -partite state is entangled. Of course, this method is quite fussy since
one has to check all partitions of 2 parts. (This is why we propose a way
to study the separability of a pure state based on the ranks of the reduced
density matrices in Chapter 5.)

(2). Partial transpose criterion [45]: The partial transpose of a composite
density matrix is given by transposing only one of the subsystems. For
example, consider ρ of two subsystems A and B, the partially transposed
matrix ρTA with respect to subsystem A is given by

(ρTA)mµ,nν = ρnµ,mν (2.32)

where the Latin indices, which have been transposed, are referring to sub-
system A and the Greek indices to subsystem B.

Then the partial transpose criterion can be described as:
If a state ρAB is separable, then

ρTA
AB ≥ 0 and ρTB

AB ≥ 0 (2.33)

hold.
It has been shown [46] that the positivity of the partial transpose is

a necessary and sufficient condition for the separability only for composite
states of dimension 2× 2 and 2× 3, while it is only a necessary condition for
higher dimensions.

(3). Reduction Criterion [47]: If a state ρAB is separable, then

ρA ⊗ ÎB − ρAB ≥ 0 and ÎA ⊗ ρB − ρAB ≥ 0 (2.34)

hold.
Similar to the partial transpose criterion, the reduction criterion is a

necessary and sufficient condition only for dimensions 2× 2 and 2× 3, and a
necessary condition in other cases.

(4). Majorization Criterion [48]: If a bipartite state ρAB is separable,
then

λ↓ρAB
≺ λ↓ρA

and λ↓ρAB
≺ λ↓ρB

(2.35)

have to be fulfilled. Here λ↓ρ denotes the vector consisting of the eigenvalues
of ρ, in decreasing order, and a vector x↓ is majorized by a vector y↓, denoted
as x↓ ≺ y↓, when

∑k
i=1 x↓i ≤

∑k
i=1 y↓i holds for k = 1, · · · , (d − 1), and the

equality holds for k = d, with d being the dimension of the vector. Zeros
are appended to the vectors λ↓ρA

and λ↓ρB
in (2.35), in order to make their

dimensions equal to the one of λ↓ρAB
.

The majorization criterion is only a necessary, not a sufficient condition
for separability.
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2.3.2 Non-operational criteria

Here, we will introduce two non-operational entanglement criteria, the posi-
tive maps and the entanglement witness.

(1). Positive maps [46]: Denoting the set of operators acting on Hilbert
space H1 by Ô1, and the set of operators acting on Hilbert space H2 by Ô2.
The operators Ô1 (/or Ô2) constitute a Hilbert space (the so-called Hilbert-
Schmidt space) denoted by H{Ô1} (/or H{Ô2}). The space of the linear
maps from Ô1 onto Ô2 is denoted by L(Ô1, Ô2). A linear Hermitian map
Λ ∈ L(Ô1, Ô2) is a transformation denoted as

Λ(Ô1) → Ô2, (2.36)

which
(i). is linear, i.e.,

Λ(αÂ + βB̂) = αΛ(Â) + βΛ(B̂) (2.37)

for any operator Â, B̂ ∈ Ô1, and α, β are complex numbers;
(ii). maps Hermitian operators onto Hermitian operators, i.e.,

Λ(Â) = Λ(Â†) = (Λ(Â))† (2.38)

for any operator Â ∈ Ô1.
A linear Hermitian map Λ ∈ L(Ô1, Ô2) is a positive map if it maps

positive operators in Ô1 onto positive operators in Ô2, i.e., for Â ∈ Ô1,

Â ≥ 0 =⇒ Λ(Â) ≥ 0. (2.39)

A positive map Λ ∈ L(Ô1, Ô2) is completely positive if for any tensor
extension Λ′ of the form

Λ′ = Î ⊗ Λ (2.40)

where
Λ′(Mn ⊗ Â) → Mn ⊗ Λ(Â), (2.41)

Λ′ is positive for all n, where Â ∈ Ô1, Mn stands for the set of the complex
matrices with dimension n × n, and Î here denotes the identity map on
Hilbert space H(Mn).

Then the positive map criterion can be described as:
A state ρ is separable if and only if for any positive map Λ,

(Î ⊗ Λ)ρ ≥ 0 (2.42)

holds.
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(2). Entanglement witness [46, 49]: A state ρ is entangled if and only if
there exists a Hermitian operator Ŵ such that

Tr(Ŵρ) < 0, (2.43)

and for any separable state ρsep

Tr(Ŵρsep) ≥ 0. (2.44)

Since violation of Bell’s inequalities is a manifestation of quantum entan-
glement, a natural separability criterion is constituted by Bell’s inequalities.
Werner [13] first pointed out that separable states must satisfy all possible
Bell’s inequalities. However, Bell’s inequalities are only necessary, not suffi-
cient conditions for separability. In fact, Bell’s inequalities are essentially a
special type of the entanglement witness.

Although both criteria, the positive map and the entanglement witness,
are necessary and sufficient for any bipartite system, they do not provide
us with a simple and operational procedure to check the separability of a
given state. Therefore the study of operational necessary and sufficient cri-
teria on separability of quantum systems is still a very hot field in quantum
information theory and quantum mechanics.

2.4 Classification of entanglement

“How does a state entangle?”
In fact, we can separate this question into two questions, i.e., to convert

the task of classifying entanglement into a two-step task. The first question
focuses on “how many subsystems in a multipartite state are indeed entan-
gled?” For example, triqubit pure states can be roughly classified into three
types, (fully) separable states, biseparable states and fully (true tripartite)
entangled states (We will discuss them in detail). Then for the entangled
states with the same number of entangled subsystems (exactly speaking,
with respect to the same partition of subsystem), we focus on the equiv-
alence classes of entanglement in different states [50–52]. For example, by
means of local operations and classical communication (LOCC) with nonzero
probability, i.e., stochastic LOCC (SLOCC) [52], there are two different kinds
of full (true tripartite) entanglement in triqubit pure states [31]. Any triqubit
fully entangled pure state can be converted into one of two standard forms,
namely either the GHZ state [30]

|GHZ〉 =
1√
2
(|000〉+ |111〉), (2.45)
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or the W state

|W〉 =
1√
3
(|001〉+ |010〉+ |100〉). (2.46)

Many methods of classification of entanglement (see, e.g., [31, 32, 38, 51,
53–61]) have been proposed in the last few years. Here we will introduce
several important methods.

2.4.1 Hierarchic classification

Based on the separability properties of certain partitions of systems into
subsystems, Dür et al. [55,56] proposed a complete, hierarchic classification of
a family of states, where the states, which have the same number of particles
and the corresponding particles have the same Hilbert-space dimensions, are
put into different levels of a hierarchy with respect to their entanglement
properties.

Let us introduce the concept of k-separable states with N (N ≥ k) parti-
cles [56]. A pure state ρ of N particles A1, A2, · · · , AN is called k-separable
with respect to a special partition into k parts if and only if ρ can be written
as

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk =
k⊗

j=1

ρj (2.47)

where ρj is the density matrix of the j-th part in the partition. This definition
can be directly generalized to the mixed state. A mixed state ρ, where
ρ =

∑M
i=1 piρ

i, is k-separable if and only if it can be written as

ρ =
M∑
i=1

piρ
i
1 ⊗ ρi

2 ⊗ · · · ⊗ ρi
k =

M∑
i=1

pi

k⊗
j=1

ρi
j. (2.48)

The basic idea of the hierarchic classification is to consider all possible
partitions of k parts for all k (k ∈ {2, 3, · · · , N}) and detect for each partition
whether the given state is k-separable or not. The procedure is divided into
levels, starting with k = N (level N), continuing with k = N − 1 (level
(N − 1)), · · · , until k = 2 (level 2). At each level k, we have all possible
partitions of k-separability and (or) k-inseparability. The different levels of
this structure are not independent of each other.

Consider two levels l and k, and suppose l < k. If a partition Pl of l parts
can be obtained from a partition Pk of k parts by joining some of the parts
of Pk, then we say that Pk is contained in Pl. On one hand, each partition
of k parts is contained in various partitions of l parts, while on the other
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hand, a number of different partitions of k parts can be contained in the
same partition of l parts.

l-separability with respect to all partitions of l parts, which contain a
certain partition Pk of k parts, is a necessary but not sufficient condition
for k-separability with respect to partition Pk. k-separability with respect
to a certain partition Pk of k parts implies l-separability with respect to all
partitions of l parts which contain the partition Pk. Therefore, k-separability
partly fixes the structure at lower levels l (l < k), while l-inseparability fixes
some properties at higher levels k. The hierarchic classification is constructed
in this way. Two states belong to the same separability class if they are
separable with respect to the same partition.

However, Bennett et al. proposed a kind of triqubit mixed states in [62].
In those states, the entanglement across any partition into 2 parts is zero, but
the state is entangled. That is, for a triqubit system separability with respect
to all partitions into 2 parts is not sufficient to guarantee 3-separability (i.e.,
full separability when considering each qubit as a separated part) of the
system.

2.4.2 Classifying triqubit mixed states

The Schmidt decomposition is a very good tool to study entanglement of
bipartite pure states. The Schmidt number provides an important variable
to classify entanglement. For example, using Schmidt numbers of a mul-
tiparticle pure state with respect to all possible partitions of the particles
into 2 parts, we can roughly classify this state, though it is very complex for
calculation.

For the further classification, we need the generalized Schmidt decompo-
sition. Though the general Schmidt decomposition for an N -qubit state is
unknown until now, a generalized Schmidt decomposition for triqubit pure
states [32] has been proposed so that the classification of triqubit pure states
is possible.

Another important method to classify entanglement is by local operations
and classical communication (LOCC) [51, 52]. Reversible local operations
among multipartite quantum systems are used to define equivalent classes in
the set of entangled states. Here the equivalent classes of entangled states
are said to contain the same kind of entanglement. This method leads to a
celebrated result that all kinds of biqubit entanglement are equivalent to the
Einstein-Podolsky-Rosen (EPR) entanglement [50].

By this method, Dür et al. [31] classified entanglement of triqubit pure
states ρABC into six inequivalent classes as:
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• Fully separable states with the form ρABC = ρA ⊗ ρB ⊗ ρB. This class
of entanglement can be denoted as A−B − C.

• Biseparable states including three inequivalent classes as:

1. Biseparable states with the form ρABC = ρA ⊗ ρBC . This class is
denoted as A−BC.

2. Biseparable states with the form ρABC = ρB ⊗ ρAC . This class is
denoted as B − AC.

3. Biseparable states with the form ρABC = ρC ⊗ ρAB. This class is
denoted as C − AB.

• Fully (true tripartite) entangled states including two inequivalent classes
as:

1. The GHZ class represented by the GHZ state.

2. The W class represented by the W state.

The classification of triqubit pure states will be discussed in Chapter 3 in
detail. Here we will focus on the case of triqubit mixed states.

Since any triqubit mixed state can be decomposed as convex combination
of pure states, triqubit mixed states can be classified by generalizing the
classification of pure states [58]. To this aim, Aćın et al. defined the following
classes:

• Class S of separable states, i.e., those that can be expressed as a convex
sum of projectors onto product vectors.

• Class B of biseparable states, i.e., those that can be expressed as a
convex sum of projectors onto product and bipartite entangled vectors
(A−BC, B − AC and C − AB).

• Class W of the W state, i.e., those that can be expressed as a convex
sum of projectors onto product, biseparable, and W-type vectors.

• Class GHZ of the GHZ state, i.e., the set of all physical states.

All these sets are convex and compact, and satisfy the relation

S ⊂ B ⊂ W ⊂ GHZ. (2.49)

States in the class S are not entangled. Only for the production of states
belonging to the classes W and GHZ, true tripartite entanglement is needed.
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Figure 2.2: (from [58]) Schematic structure of the set of all triqubit states.
S: separable class; B: biseparable class (convex hull of biseparable states
with respect to any partition); W class and GHZ class.

The formation of entangled states in the subset W|B requires W-type vectors
with true tripartite entanglement, but zero 3-way entanglement. Finally, the
class GHZ contains all types of entanglement, and in particular, GHZ-type
vectors are required to prepare states from the subset GHZ|W. These classes
are schematically shown by Aćın et al. [58] in Fig. (2.2).

The classification of entangled states of higher dimensions is still under
intensive research (see, e.g., Refs. [63–67]).

2.5 Quantification of entanglement

“How much entanglement does a state possess?”
Since there are many different kinds of entanglement, it is almost impos-

sible to find a general measure for all kinds of entanglement. Even for the
same kind of entanglement, there are several different measures with differ-
ent aspects. For example, we have measures such as von Neumann entropy,
relative entropy, concurrence, and so on, to quantify entanglement in biqubit
pure states. Therefore many measures of entanglement have been introduced
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in the last decade, for example, the relative entropy of entanglement [68,69],
the negativity [70], the robustness of entanglement [71, 72], the distillable
entanglement [51, 73], the entanglement of formation [51], the entanglement
cost [51, 74], the Schmidt measure [75], the universal measure of entangle-
ment [76], and other measures (see the references of the reviews, e.g., [77,78]).
Among them, one of the most important measures of entanglement is the en-
tanglement of formation. There have been several entanglement measures
which are related with the entanglement of formation, such as, the concur-
rence [79, 80], the I-concurrence [81, 82], the n-tangle [83, 84], and so on.
However, the quantification of entanglement is perhaps the most challeng-
ing open problem of modern quantum theory so far. We will give a simple
introduction on this topic.

2.5.1 Requirements for measures

Here we will list several conditions for a quantity E to be a good measure
of entanglement [68,85,86]. However, it is still an open question whether all
these conditions are indeed necessary (also sufficient) for a quantity to be a
good entanglement measure. In fact, some of the entanglement measures are
useful for practical application but they do not fulfill all the conditions that
will be listed.

(1). Normalization: Measure E vanishes on separable states and takes its
maximum on maximally entangled states. The normalization of the entan-
glement measure can be considered as two conditions, which are expressed
as:

(1-a). A state ρ is separable if and only if

E(ρ) = 0 (2.50)

holds.
(1-b). The entanglement of a maximally entangled state ρd

M of two d-
dimensional systems is given by

E(ρd
M) = log2d. (2.51)

(2). No increase under LOCC: Measure E of state ρ cannot increase
under any LOCC operation ΛLOCC , i.e.,

E(ΛLOCC(ρ)) ≤ E(ρ). (2.52)

(2-a). Local unitary invariance: Measure E of state ρ is invariant under
any local unitary Û , i.e.,

E(ÛρÛ∗) = E(ρ). (2.53)
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(3). Convexity: Measure E should be a convex function, i.e.,

E(λρ + (1− λ)σ) ≤ λE(ρ) + (1− λ)E(σ) (2.54)

for any two states ρ and σ, and 0 ≤ λ ≤ 1.
(4). Continuity: In the limit of vanishing distance between two density

matrices ρ and σ, the difference between their entanglements should tend to
zero, i.e.,

|E(ρ)− E(σ)| → 0 (2.55)

for ||ρ− σ|| → 0.
(5). Additivity: A certain number n of identical copies of the state ρ

should contain n times the entanglement of one copy, i.e.,

E(ρ⊗n) = nE(ρ). (2.56)

(6). Subadditivity: The entanglement of the tensor product of two states
ρ and σ should not be greater than the sum of the entanglements of each of
the states, i.e.,

E(ρ⊗ σ) ≤ E(ρ) + E(σ). (2.57)

2.5.2 Several important measures

Here we introduce the concepts of several important entanglement measures.
Some of them are necessary for the work in this thesis.

von Neumann entropy ES(ρAB) (see, e.g., [1]): For a bipartite pure state
ρAB, a good entanglement measure is the von Neumann entropy of its reduced
density matrices as

ES(ρAB) = S(ρA) = S(ρB) (2.58)

where

S(ρ) = −Tr(ρlog2ρ). (2.59)

We will discuss von Neumann entropy in detail in chapter 4.
Relative entropy S(ρ||σ): The relative entropy S(ρ||σ) of ρ to its closest

separable state σ is defined as

S(ρ||σ) ≡ Tr(ρ(log2 ρ− log2 σ))
= Tr(ρ log2 ρ)− Tr(ρ log2 σ).

(2.60)

Thus the relative entropy S(ρ||σ) can been seen intuitively as the “ distance”
of the entangled state ρ to its closest separable state σ, although it is not a
distance in the mathematical sense.
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Here the closest separable state σ of a given state ρ is defined as the
separable state that realizes the minimum of Eq. (2.60).

Distillable entanglement ED(ρ): The distillable entanglement ED(ρ) is
defined as, roughly speaking, the asymptotic ratio with which maximally
entangled states ρM can be distilled at most out of state ρ, i.e.,

ED(ρ) ≡ sup
{ΛLOCC}

lim
n→∞

nout
ρM

nin
ρ

(2.61)

where the supremum is taken over all possible distillation protocols via LOCC
operations. Thus ED(ρ) tells us how much entanglement we can extract
from a given state ρ, i.e., what is the ratio of the number of maximally
entangled states ρM over the needed input state ρ, maximized over all possible
distillation protocols.

Entanglement of formation EF (ρ): Any state ρ can be decomposed as a
convex combination of pure states ρi, i.e., ρ =

∑
i piρ

i. The entanglement
of formation EF (ρ) is defined as the averaged von Neumann entropy of the
reduced density matrices of ρi, minimized over all possible decompositions,
i.e.,

EF (ρ) ≡ inf
ρ=

∑
i piρi

∑
i

piES(ρi) (2.62)

where the infimum is taken over all possible decompositions of ρ. Thus EF (ρ)
is intended to quantify the resources needed to create an entangled state ρ.

The variational problem that defines EF (ρ) is extremely difficult to solve
[87]. However, some solutions for biqubit and bipartite systems are known
[80, 81], and some related entanglement measures have been introduced [83,
84]. We will discuss them in detail in the following part.

Entanglement cost EC(ρ): The entanglement cost EC(ρ) is defined as the
asymptotic ratio of the number of maximally entangled input states ρM over
the produced output entangled states ρ, minimized over all possible LOCC
operations, i.e.,

EC(ρ) ≡ inf
{ΛLOCC}

lim
n→∞

nin
ρM

nout
ρ

(2.63)

where the infimum is taken over all possible LOCC operations. EC(ρ) tell us
how expensive it is to create an entangled state ρ.

The distillable entanglement ED(ρ) and the entanglement cost EC(ρ) have
been shown to be lower and upper bounds for any entanglement measure
E(ρ), respectively, i.e., [88]

ED(ρ) ≤ E(ρ) ≤ EC(ρ). (2.64)
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It is also conjectured that the entanglement of formation EF (ρ) and the
entanglement cost EC(ρ) are identical, i.e., [51]

EF (ρ)
?
= EC(ρ). (2.65)

2.5.3 Concurrence and 3-tangle

Concurrence, which is related to the entanglement of formation, perhaps
is the most important entanglement measure for biqubit states. Here we
will introduce the concurrence and some measures proposed following the
concurrence.

The concurrence CAB of a biqubit state ρAB is defined as follows [80]. For
a given biqubit state ρAB, the “spin-flipped” density matrix ρ̃AB is introduced
as

ρ̃AB = (σy ⊗ σy)ρ
∗
AB(σy ⊗ σy) (2.66)

where ρ∗AB denotes the complex conjugated matrix of ρAB in the basis vectors
{|00〉, |01〉, |10〉 and |11〉}, and σy, one of Pauli matrices, in the same basis
vectors, is given by

σy =

(
0 −i
i 0

)
. (2.67)

As both ρAB and ρ̃AB are positive operators, it follows that the product
(ρABρ̃AB), though non-Hermitian, also has only real and non-negative eigen-
values. Let the square roots of the these eigenvalues, in decreasing order, be
denoted as λ1, λ2, λ3 and λ4. Then the concurrence CAB of ρAB is defined as

CAB ≡ max{0, λ1 − λ2 − λ3 − λ4}. (2.68)

For the special case in which ρAB is pure, the concurrence CAB can also be
written as

CAB = 2
√

det(ρA) = 2
√

det(ρB) (2.69)

where ρA (ρB) is the reduced density matrix of ρAB, and det(ρ), defined
as det(ρ) ≡ |ρ|, denotes the determinant of matrix ρ. It can be shown
that CAB = 0 corresponds to a separable state, CAB = 1 corresponds to the
maximally entangled state, such as, the Bell states.

Then the entanglement of formation EF (ρAB) is given by

EF (ρAB) = h(
1 +

√
1− C2

AB

2
) (2.70)

where h(x) is the binary entropy function as

h(x) = −x log2 x− (1− x) log2(1− x). (2.71)
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Similar to some papers (see, e.g., Ref. [83, 84] and [89–91] in which the
squared concurrence is applied to measure entanglement of quantum states)
after Wootters introduced the detailed formulation of the concurrence, we
would rather take the squared concurrence as the measure for entanglement
of two qubits in this thesis.

The generalization of the concurrence for a bipartite arbitrary-dimensional
state ρAB has been proposed by Rungta et al. with the name I-concurrence
[81,82]. The I-concurrence C(I)(ρAB) for a pure state ρAB of a dA×dB system
is simply related to the purity of the marginal density matrices as [81]

C(I)(ρAB) ≡
√

2(1− Tr(ρ2
A)) ≡

√
2(1− Tr(ρ2

B)) (2.72)

This definition is given in terms of the universal-inverter superoperator [81],
which has been shown to be a natural generalization to higher dimensions of
the spin flip for qubits.

Following the definition of the entanglement of formation, the I-concurrence
is extended to the mixed state ρAB by the convex roof as

C(I)(ρAB) ≡ inf
{pi,ρi}

(
∑

i

piC(I)(ρi)) (2.73)

where ρAB =
∑

i piρ
i for pure states ρi and the infimum is taken over all

possible decompositions of ρAB.
Relating with the Wootters’ definition of the concurrence for biqubit

states, Coffman, Kundu and Wootters [83] proposed an entanglement mea-
sure, named the 3-tangle, for quantifying 3-way entanglement in triqubit
pure states. Note that n-way entanglement [84] is one type of multiparticle
entanglement which critically involves all n particles and has the property
that tracing out any one or several ones of the n particles leaves the remain-
ing particles unentangled. For example, consider the GHZ state, in which,
after tracing out any one of the three qubits, the other two qubits are sepa-
rable [92]. Therefore the entanglement of the GHZ state is also called 3-way
entanglement, which is quite different from the entanglement of the W state.
(We will discuss them in detail in chapter 3.) For biqubit entangled states,
it is obvious from the definitions that 2-way entanglement is the same as
bipartite entanglement.

The 3-tangle, denoted as τ , of a triqubit pure state ρABC is defined as

τ = C2
i(jk) − C2

ij − C2
ik (2.74)

for i, j, k ∈ {A,B,C}. Here C2
i(jk) denotes the squared concurrence between

qubit i and pair of qubits (jk). After a detailed mathematical derivation [83],
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the 3-tangle τ is written as

τ = 4|d1 − 2d2 + 4d3| (2.75)

where




d1 = a2
000a

2
111 + a2

100a
2
011 + a2

010a
2
101 + a2

001a
2
110,

d2 = a000a111a100a011 + a000a111a010a101 + a000a111a001a110

+a100a011a010a101 + a100a011a001a110 + a010a101a001a110,
d3 = a000a011a101a110 + a111a100a010a001.

(2.76)

Here, for example, a000 denotes the coefficient of the basis vector |000〉 in the
wave function |ψ〉ABC of state ρABC with ρABC = |ψ〉ABCABC〈ψ|, where

|ψ〉ABC =
∑

i,j,k

aijk|ijk〉 (2.77)

for i, j, k ∈ {0, 1}. In a more standard form of algebra, τ can be rewritten
as

τ = 2
∣∣∣
∑

aijkai′j′manpk′an′p′m′εii′εjj′εkk′εmm′εnn′εpp′

∣∣∣ (2.78)

where the sum is over all the indices, and

{
ε00 = ε11 = 0,
ε01 = −ε10 = 1.

(2.79)

Recently, Lee, Joo and Kim [93] proposed an entanglement measure,
named the partial tangle, to represent the residual two-qubit entanglement
in a triqubit pure state.

The partial tangle, denoted as τij, of a triqubit pure state ρABC is defined
as

τij ≡
√
C2

i(jk) − C2
ik =

√
C2

ij + τ (2.80)

for i, j ∈ {A,B,C}. Thus we cannot say that τij represents only the entangle-
ment for two qubits in the composite system ρABC since τij is not equivalent
to Cij in general as in Eq.(2.80).

In Ref. [84], Wong and Christensen proposed a potential measure named
the n-tangle for quantifying the n-way entanglement of an n-qubit pure state.
This n-tangle, denoted as τ1···n, is defined as

τ1···n ≡ 2 | ∑ aα1···αnaβ1···βnaγ1···γnaδ1···δn

×εα1β1εα2β2 · · · εαn−1βn−1εγ1δ1εγ2δ2 · · · εγn−1δn−1εαnγnεβnδn

∣∣ (2.81)
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for all even n and n = 3. Here the ε terms are given in Eq. (2.79). The
a terms are the coefficients in the wave function |ψ〉 in terms of the basis
vectors as

|ψ〉 =
∑
i1···in

ai1···in|i1 · · · in〉. (2.82)

However, this generalization of the 3-tangle causes some trouble as can
be seen as follows. For example, consider the 4-qubit pure state |ψ〉ABCD

that is the tensor product of two singlet states as

|ψ〉ABCD =
1√
2
(|01〉AB − |10〉AB)⊗ 1√

2
(|01〉CD − |10〉CD). (2.83)

It is obvious that there is no 4-way entanglement in state |ψ〉ABCD, but a
simple calculation shows that the 4-tangle defined in Eq.(2.81) has a value
of 1 for this state.



Chapter 3

Mixed Entanglement in
Triqubit Pure States

As mentioned in the preceding chapter, characterizing entanglement of ar-
bitrary biqubit states, including detecting, classifying and quantify biqubit
entanglement, has been well solved. On detecting biqubit entanglement,
Peres [45] proposed a standard criterion to distinguish entangled biqubit
states from separable states. Bennett et al. [50] have shown that there is
only one class of biqubit entanglement, Bell entanglement, so that any biqubit
pure state can be concentrated by local operations and classical communi-
cations into maximally entangled states such as the Bell states. Wootters
and his colleagues [79,80] proposed the concurrence, related with the entan-
glement of formation introduced by Bennett et al. in [51], as the measure
of biqubit entanglement, which has been considered as the most important
measure of biqubit entanglement now.

Now multipartite entanglement is still under intensive research. With the
rapid development of quantum information theory (see, e.g., [1,4–6]), for the
simplest multipartite entanglement, triqubit entanglement, one contributes
not only to whether a triqubit state is entangled or not but also to how it
entangles and how much entanglement it possesses.

In this chapter, we will discuss triqubit pure entanglement and propose
a special true tripartite entanglement, the mixed entanglement, for triqubit
pure states. This chapter is organized as follows: In section 1, we discuss
the present problem of classifying triqubit pure entanglement and give the
motivation of our study. In section 2, we give some introductions on the
GHZ entanglement and the W entanglement. In section 3, we propose the
mixed entanglement in triqubit pure states and discuss it in detail. In the
finial section, with mixed entanglement, we discuss an interesting experiment
reported by Walther, Resch and Zeilinger in Ref. [94] recently and reveal some

31
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nature of entanglement changing in this experiment.

3.1 Motivation

On classifying entanglement of triqubit pure states, very many results have
been obtained in the last few years (see, e.g., [31,32,57,95–97,112]). Among
them, there are two significant results obtained by Aćın et al. in [32] and
Dür et al. in [31], respectively.

It has been proved that [99,100] the number of entanglement parameters
for any triqubit pure state is five and there exists a reference form in terms of
six basis vectors for any triqubit pure state by using repeatedly the biqubit
Schmidt decomposition. The five entanglement parameters are one phase
(all others can be absorbed) and four moduli of the coefficients among the
six basis vectors.

Then Aćın et al. [32] proved that there exist three inequivalent sets of
five basis vectors

{|000〉, |001〉, |010〉, |100〉, |111〉},
{|000〉, |001〉, |110〉, |100〉, |111〉},
{|000〉, |101〉, |110〉, |100〉, |111〉},

(3.1)

so that any triqubit pure state can be written as a linear combination of the
five basis vectors of one and the same set. That is, any triqubit pure entan-
glement is uniquely characterized by the five entanglement parameters. This
is the so-called generalized Schmidt decomposition to triqubit pure states.
Suppose to select the last set of sets (3.1), the generalized Schmidt decom-
position can be written as

|Ψ〉 = λ1|000〉+ λ2|101〉+ λ3|110〉+ λ4e
iϕ|100〉+ λ5|111〉 (3.2)

where we have chosen the fourth coefficient to carry the only relevant phase
and all λi > 0, 0 ≤ ϕ ≤ π,

∑
i λ

2
i = 1.

By defining a new quantity ∆ as

∆ =
∣∣λ4λ5e

iϕ − λ2λ3

∣∣2 , (3.3)

Aćın et al. introduced five Ji’s as




J1 ≡ ∆, ∈ [0, 1/4]
J2 ≡ λ2

1λ
2
2, ∈ [0, 1/4]

J3 ≡ λ2
1λ

2
3, ∈ [0, 1/4]

J4 ≡ λ2
1λ

2
5, ∈ [0, 1/4]

J5 ≡ λ2
1(∆ + λ2

2λ
2
3 − λ2

4λ
2
5).

(3.4)
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The Ji’s are indicators of entanglement in some sense: J1 (J2, J3) indicate
bipartite entanglement, J4 indicates GHZ entanglement, only when all of
them vanish there is no entanglement at all. Therefore pure states of three
qubits A, B and C can be classified into:

• Type 1 (product states or fully separable states): Ji = 0 for i =
1, 2, 3, 4, 5 but not all λi = 0 for i = 1, 2, 3, 4, 5. For example,

|Ψ〉 = λ2|101〉+ λ4e
iϕ|100〉. (3.5)

• Type 2-a (biseparable states): Ji = 0 for i = 1, 2, 3, 4, 5 except J1 (J2,
J3) when qubit A (B, C) is separable from the other two qubits. For
example,

|Ψ〉 = λ2|101〉+ λ3|110〉+ λ4e
iϕ|100〉. (3.6)

• Type 2-b (generalized GHZ states): Ji = 0 for i = 1, 2, 3, 5 but J4 > 0.
State |Ψ〉 is written as

|Ψ〉 = λ1|000〉+ λ5|111〉. (3.7)

• Type 3-a (tri-Bell states): λ4 = λ5 = 0. State |Ψ〉 is written as

|Ψ〉 = λ1|000〉+ λ2|101〉+ λ3|110〉. (3.8)

• Type 3-b (extended GHZ states): two of the three λ’s {λ2, λ3, λ4} are
equal to zero. One represented state |Ψ〉 is written as

|Ψ〉 = λ1|000〉+ λ2|101〉+ λ5|111〉. (3.9)

• Type 4-a: λ5 = 0. State |Ψ〉 is written as

|Ψ〉 = λ1|000〉+ λ2|101〉+ λ3|110〉+ λ4e
iϕ|100〉. (3.10)

• Type 4-b: λ2 = 0. State |Ψ〉 is written as

|Ψ〉 = λ1|000〉+ λ3|110〉+ λ4e
iϕ|100〉+ λ5|111〉. (3.11)

• Type 4-c: λ4 = 0. State |Ψ〉 is written as

|Ψ〉 = λ1|000〉+ λ2|101〉+ λ3|110〉+ λ5|111〉. (3.12)
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Reversible local transformations among multipartite quantum systems
are used to study equivalence classes in the set of entangled states [51, 52].
If two states can be transformed into each other by means of local opera-
tions and classical communication (LOCC) with nonzero probability, then
these two states have the same class of entanglement. By reversible local
transformations, Dür et al. [31] showed that there are two different classes
of true tripartite entanglement: the GHZ class, whose representative is the
GHZ state [30]

|GHZ〉 =
1√
2
(|000〉+ |111〉), (3.13)

and the W class, whose representative is the W state

|W〉 =
1√
3
(|001〉+ |010〉+ |100〉). (3.14)

It also has been shown [31, 57] that one can not exactly interconvert the
GHZ state and the W state under any LOCC. Besides these two inequivalent
classes of entanglement, there are four inequivalent classes of entanglement
which have been listed in Chapter 2 as the fully separable class and three
biseparable classes A−BC, B − AC and C − AB.

Experimentally, the GHZ state of three photons [101,102] and three Ry-
dberg atoms [103] have been observed. The W state also has been experi-
mentally realized via photons [104] and via trapped ions [105]. Recently, an
interesting experiment has been reported by Walther et al. in [94] that the
local conversion of GHZ states to approximate W states is realized based on
local positive operator valued measures (POVMs) and classical communica-
tion.

But in the 11th reference of Ref. [31], Dür et al. pointed out that their
results are not fully compatible with the results of Refs. [32, 57]. Recently,
some triqubit pure states with peculiar entanglement have also been reported
in [95–97,112] from several different respects. Thus the question of classifying
triqubit pure entanglement is still not completely solved. And the nature
of the entanglement changing in Walther et al.’s experiment is also worth
research.

3.2 GHZ entanglement and W entanglement

The GHZ state was first introduced by Greenberger, Horne and Zeilinger [30]
for the debate about whether quantum mechanics is a complete theory or not,
i.e., Einstein, Podolsky and Rosen’s criticism proposed in the EPR paper [10].
It is well known that using biqubit entangled states to test Bell’s inequality,
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the conflict with local realism only arises for statistical predictions. Green-
berger, Horne and Zeilinger showed that quantum-mechanical predictions
for certain measurement results on triqubit entangled states are in conflict
with local realism in cases where quantum theory makes definite, i.e., non-
statistical, predictions. That is, the quantum-mechanical predictions of the
GHZ state are in stronger conflict with local realism than the conflict of all
biqubit entangled states (see, e.g., Ref. [4]).

Gisin and Bechmann-Pasquinucci have pointed out that one of the main
properties of the GHZ entanglement is that it is very fragile under particle
losses [92], which means if one of the three qubits is traced out, the remaining
state is completely unentangled, i.e., separable. That is, for a state with GHZ
entanglement, any reduced state obtained by tracing the original state over
one of the three qubits retains no entanglement. Thus the GHZ entanglement
also is called the 3-way entanglement [83] and is quantified by the 3-tangle τ .
In triqubit pure states, GHZ entanglement exists for τ > 0 and the maximal
GHZ entanglement (in the GHZ state) for τ = 1.

In the contrast to GHZ entanglement, one of the main properties of W
entanglement is that it is robust under disposal of any one of the three qubits,
which means that for a state with W entanglement, the remaining state is
still entangled if any one of the three qubits is traced out. But there is no
3-way entanglement in states with W entanglement at all. That is, for a state
with W entanglement, three reduced states obtained by tracing the original
state over one of the three qubits retain bipartite entanglement while τ = 0
always holds in the original state. Thus W entanglement is considered to be
composed of three bipartite entanglements together.

Taking the squared concurrence as the measure of bipartite entanglement,
we have the following criterion: a pure state ρ of three qubits A, B and C
contains W entanglement if

min{C2
AB, C2

AC , C2
BC} > 0 (3.15)

holds. Dür et al. [31] introduced a measure for W entanglement, here denoted
as EW , as

EW ≡ C2
AB + C2

AC + C2
BC (3.16)

when condition (3.15) holds; otherwise the W entanglement is always zero
no matter that one or two of the three bipartite entanglements are greater
than zero. The W entanglement EW achieves its maximal value 4/3 in the
W state.

The common character of GHZ entanglement and W entanglement is that
both are composed of the three qubits together. Therefore they are called
true tripartite entanglement (sometimes also called full entanglement of three
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Figure 3.1: Diagrams for GHZ entanglement and W entanglement according
to their different properties. The three dots in the diagrams denote three
qubits A, B and C. In Diagram (a), the closed circle which connects the three
qubits presents GHZ entanglement. If one of the three qubits is lost, i.e., if
the circle is broken, GHZ entanglement would disappear and the remaining
two qubits connected by the broken circle are not entangled with each other.
Diagram (b) is for the W entanglement. Each short line which connects two
qubits means the bipartite entanglement of the two qubits. It is obvious from
Diagram (b) that the remaining two qubits connected by the short line are
still entangled with each other after one of the three qubits is lost.

qubits). In Fig. (3.1), we draw different diagrams for GHZ entanglement and
W entanglement according to their different properties.

3.3 Mixed entanglement

Without losing universality, suppose triqubit states are composed of three
spin-1/2 particles. Denoting the state of a particle with spin z component
m = 1/2 as |0〉 and the state with m = −1/2 as |1〉, then in the space of
triqubit states, there are eight basis vectors shown in Table (3.1) with the
total spin z component ±3/2 or ±1/2.

By the signs of the total spin z components, the eight basis vectors can
be classified into two sets, the positive set of |000〉, |001〉, |010〉 and |100〉,
and the negative set of the four remaining ones. By the number of particles
with the same sign of the single spin z components in one and the same basis
vector, the eight basis vectors can also be classified into two sets, the triple
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Table 3.1: Classifications of eight basis vectors by the different relations of
their spin z components.

Triple Double
Positive |000〉 |001〉 |010〉 |100〉
Negative |111〉 |110〉 |101〉 |011〉

set of |000〉 and |111〉, and the double set of the remaining ones. According
to the signs of the single spin z components of the corresponding particles
in different basis vectors, the eight basis vectors can be separated into four
complementary pairs as |000〉 and |111〉, |001〉 and |110〉, |010〉 and |101〉,
|100〉 and |011〉, where the sum of the two total spin z components in a pair
is equal to zero.

Now let us start the analysis of true tripartite entanglement in triqubit
pure states based on all linear combinations of up to five basis vectors. We
will take the squared concurrence and the 3-tangle as measures of 2- and
3-way entanglements, respectively.

States which are linear combinations of two basis vectors can only have
GHZ entanglement for τ > 0 as a form of true triqubit entanglement, and
only when the two basis vectors are one of the four complementary pairs.
These states are called generalized GHZ states in [32].

States which are linear combinations of three basis vectors can contain
either GHZ entanglement or W entanglement. When states are combined of
one of the four complementary pairs plus one of the remaining basis vectors,
there is GHZ entanglement for τ > 0 but no W entanglement since two of
the three bipartite entanglements are zero. These states are called extended
GHZ states in [32] and slice states in [57]. When states are combined of three
basis vectors such as |001〉, |010〉 and |100〉, there is only W entanglement
since condition (3.15) holds but no 3-way entanglement for τ = 0. It is worth
noting that [52] entanglement of states combined of |001〉, |010〉 and |100〉 is
the same as that of states combined of |101〉, |110〉 and |000〉, which is called
the tri-Bell states in [32], since these two states can be converted into each
other by the spin-flip transformation of the first qubit.

States combined of four basis vectors can have a special true tripartite
entanglement, the mixed entanglement, besides the GHZ entanglement and
the W entanglement. For a state of three qubits A, B and C with mixed
entanglement, on the one hand, there is 3-way entanglement, i.e., τ > 0,
in the state; on the other hand, three reduced density matrices ρAB, ρAC
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. .

.A

B C

Figure 3.2: Diagram for the mixed entanglement. The dots in the diagram
denote the qubits. The closed circle which connects the three qubits to-
gether represents the GHZ entanglement while three lines among the three
qubits represent three bipartite entanglement, which together compose the
W entanglement.

and ρBC all retain bipartite entanglement, i.e., condition (3.15) holds. The
diagram of the mixed entanglement is drawn in Fig. (3.2). States with
mixed entanglement can be constructed as linear combinations from two
different kinds of sets of non-superfluous four basis vectors from Table (3.1)
as explained below.

The first kind of the sets for combining states with mixed entanglement
contains one of the four complementary pairs plus two of the remaining basis
vectors in which the sum of the two total spin z components is ±1, for
example,

{|000〉, |001〉, |100〉, |111〉}, (3.17)

and a state based on this set can be written as

|Ψ〉 = λ1|000〉+ λ2|001〉+ λ3e
iϕ|100〉+ λ4|111〉 (3.18)

where the third coefficient is chosen to carry the only relevant phase and all
λi > 0, 0 ≤ ϕ ≤ π,

∑
i λ

2
i = 1. Entanglement of this state is as follows





τ = 4λ2
1λ

2
4,

C2
AB = 4λ2

2λ
2
3,

C2
AC = 4λ2

2λ
2
4,

C2
BC = 4λ2

3λ
2
4.

(3.19)
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From Eqs. (3.19), it is apparent that there must be mixed entanglement in
state (3.18) since all 2- and 3-way entanglements are greater than zero for
all λi > 0.

In mixed entanglement of state (3.18), the GHZ entanglement relates only
with the complementary pair |000〉 and |111〉, and the coefficients λ2 and λ3

of the two non-complementary basis vectors |001〉 and |100〉 do not contribute
to the GHZ entanglement; while the W entanglement relates with three basis
vectors |001〉, |100〉 and |111〉, the coefficient λ1 of basis vector |000〉 does
not contribute to the W entanglement. So basis vector |111〉 is the common
basis vector of two different kinds of entanglement, GHZ entanglement and
W entanglement.

In mixed entanglement based on the set (3.17) with all λi > 0 and∑
i λ

2
i = 1, GHZ entanglement τ from Eqs. (3.19) is strictly less than 1; it ap-

proaches that limiting value when λ1 and λ4 both approach 1/
√

2. Similarly,
W entanglement EW is strictly less than 4/3; it approaches that limiting
value when λ2, λ3 and λ4 approach 1/

√
3. That is, in mixed entanglement

based on the set (3.17), τ and EW are in the two open intervals as τ ∈ (0, 1)
and EW ∈ (0, 4/3).

The second kind of the sets for combining states with mixed entanglement
contains four basis vectors without the complementary pair in which the sum
of the four total spin z components is zero, for example,

{|001〉, |010〉, |100〉, |111〉}, (3.20)

and a state based on this set can be written as

|Ψ〉 = λ1|001〉+ λ2|010〉+ λ3e
iϕ|100〉+ λ4|111〉 (3.21)

where all λi > 0, 0 ≤ ϕ ≤ π, and
∑

i λ
2
i = 1. Its entanglement is as follows





τ = 16λ1λ2λ3λ4,
C2

AB = 4(λ1λ4 − λ2λ3)
2,

C2
AC = 4(λ2λ4 − λ1λ3)

2,
C2

BC = 4(λ3λ4 − λ1λ2)
2.

(3.22)

From Eqs. (3.22), it is clear that there can be mixed entanglement in state
(3.21) since all 2- and 3-way entanglements can be greater than zero for all
λi > 0. An obvious difference from mixed entanglement based on state (3.18)
is that in mixed entanglement based on state (3.21) GHZ entanglement and
W entanglement both are related to all four basis vectors. In particular,
omitting any one of the four basis vectors (note that this does not mean
discarding any one of the three qubits) will make the GHZ entanglement
disappear.
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An important feature of the set (3.20) is the possibility for exceptional
cases of mixed entanglement in state (3.21). Because for all λi > 0, although
GHZ entanglement is always greater than zero, one or more of the three kinds
of bipartite entanglement can be zero for suitable values of the coefficients so
that the W entanglement is equal to zero. Therefore the mixed entanglement
can disappear in these exceptional cases. The typically exceptional case of
the mixed entanglement is that all three kinds of bipartite entanglement are
equal to zero but only 3-way entanglement is left. Combining Eqs. (3.22)
and

∑
i λ

2
i = 1, we obtain that in this case, all four coefficients are equal to

1/2, and state (3.21) becomes

|Ψ〉 =
1

2
(|001〉+ |010〉+ |100〉+ |111〉) (3.23)

where the GHZ entanglement achieves its maximal value τ = 1. Note that
we here omit the only relevant phase eiϕ since from Eqs. (3.22) it is obvious
that eiϕ has no relation with the entanglement of the state. If the Hadamard
transformations

Ĥ =
1√
2

(
1 1
1 −1

)
(3.24)

are applied to the three qubits, state (3.23) is converted to the GHZ state.
Hence the state (3.23) is the GHZ state in disguise in fact but with the
different forms [52]. The exceptional cases mentioned above are the singular
points of the mixed entanglement based on set (3.20). Therefore here we
only concentrate on set (3.20) without the singular points so that state (3.21)
always possesses mixed entanglement. Without the singular points, mixed
entanglement based on set (3.20) is similar to the one based on set (3.17)
that τ and EW are in the two open intervals as τ ∈ (0, 1) and EW ∈ (0, 4/3).

A common character of the compositions of sets (3.17) and (3.20) for
mixed entanglement is that there is no superfluous basis vector among the
four basis vectors. That is, if any one of the four basis vectors in set (3.17) or
(3.20) is omitted, mixed entanglement of states based on them disappears.
Thus these four basis vectors in set (3.17) or (3.20) are the minimal compo-
sition for mixed entanglement, which cannot be compressed any more.

Besides the mixed entanglement, there are other cases of true tripartite
entanglement in states of four basis vectors, such as only the GHZ entan-
glement, only the W entanglement, and the GHZ entanglement plus one or
two of the three bipartite entanglements which can be called the extended
GHZ entanglement in the similar way to Ref. [32]. The differences among
the GHZ, W and mixed entanglements by their squared concurrences and
3-tangles are listed in Table (3.2).
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Table 3.2: Values of the three squared concurrences C2
AB, C2

AC and C2
BC , and

the 3-tangle τ for the different entanglements.

Entanglement C2
AB C2

AC C2
BC τ

GHZ entanglement = 0 = 0 = 0 > 0
W entanglement > 0 > 0 > 0 = 0
Mixed entanglement > 0 > 0 > 0 > 0

Since the three inequivalent sets of five basis vectors (3.1) can always
be decomposed into a set of type (3.17) or (3.20) plus one additional basis
vector, it is clear that the possibilities for entanglement include those just
discussed.

3.4 Discussion

Now consider the experiment on local conversion of the GHZ state to an
approximate W state reported by Walther et al. in [94].

In the first step of their method, they rewrite the GHZ state in the form
(3.23). Then they regard that the GHZ state (3.23) is a superposition of an
unwanted term, |111〉, and a W state. That is, they consider basis vector
|111〉 as an unwanted term of the W state in the form (3.23). In fact, any one
of the four basis vectors in the form (3.23) can be regarded as an unwanted
term of the W state. Because from Eqs. (3.22), it is obvious that if any
one of the four coefficients is equal to zero, the 3-tangle τ is zero while three
bipartite entanglements are greater than zero, and therefore there is only W
entanglement but no GHZ entanglement. Basis vectors |001〉, |010〉 and |100〉
are very familiar basis vectors of the W state, so it is quite natural to regard
basis vector |111〉 as the unwanted term.

Because one cannot exactly interconvert the GHZ state and the W state
each other under any LOCC, it is impossible to decrease any one of the
four coefficients in state (3.23) to be zero by LOCC. Walther et al. propose a
special scheme in which based on positive operator valued measures (POVMs,
a partial quantum measurement) and classical communication, the GHZ state
can be converted to an arbitrarily good approximation of the W state. The
main point of their scheme is to convert the maximal GHZ entanglement of
state (3.23) to mixed entanglement of state (3.21) under LOCC. From Eqs.
(3.22), it is clear that the key of the experiment is to decrease the coefficient
of one of the four basis vectors, say, the coefficient λ4 of the basis vector
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|111〉. With the coefficient λ4 going to zero, GHZ entanglement τ would be
going to zero while W entanglement would be going to its maximal amount
4/3 for the three remaining coefficients going to 1/

√
3. But the limit λ4 = 0

is impossible under LOCC, hence the GHZ entanglement will always remain
in the final state though it can be arbitrarily small. Therefore in the final
state of the experiment, there is mixed entanglement where W entanglement
possesses much more proportion than GHZ entanglement, that is, there is
only an approximate W state but not the exact W state locally converted
from the GHZ state.



Chapter 4

Entanglement Venn Diagram
and Total Tangle

In the preceding chapter, we proposed the mixed entanglement in triqubit
pure states in which there is not only 3-way entanglement but also three
2-way entanglements.

Following this result, we have two questions. The first question is about
the detailed relation of entanglement among three qubits. Unlike classical
correlations, quantum entanglement cannot be freely shared among many
objects. This is the so-called monogamy of entanglement which has been
discussed in [83,106,107]. For example, in a pure state of three qubits A, B
and C, if qubit A is maximally entangled with qubit B such as in one of the
Bell states

|φ〉AB =
1√
2
(|00〉+ |11〉), (4.1)

i.e., the entire state |Ψ〉ABC of the qubits A, B and C can be written as the
tensor product of state |φ〉AB of qubits A and B and state |ϕ〉C of qubit C
as

|Ψ〉ABC = |φ〉AB ⊗ |ϕ〉C , (4.2)

then qubit A (also qubit B) cannot be simultaneously entangled with qubit
C. Otherwise state |Ψ〉ABC would be mixed and qubits A and B are not max-
imally entangled with each other. Note that the maximally entangled mixed
states, which are those states that, for a given mixedness [108, 109], achieve
the greatest possible entanglement, have been studied (see, e.g., [109–111]).
The maximal entanglement in mixed states is not the maximal entanglement
we mentioned here. The maximal entanglement we mentioned here is the
absolutely maximal entanglement such as in the Bell states and in the GHZ
state. It has been shown in Ref. [112] that the maximal entanglement we
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mentioned here is only in the pure states. A less extreme form of this restric-
tion is if qubit A is partly entangled with qubit B, then qubit A can have
only a limited entanglement with qubit C. On the other side, entanglement
among the three qubits can be 2-way entanglement and (or) 3-way entangle-
ment. How can we understand the detailed relation of entanglement among
the three qubits when considering the restriction mentioned above and the 2-
and 3-way entanglements together? The second question is how to quantify
the total entanglement of a triqubit pure state. There can be 2- and 3-way
entanglements, simultaneously, in a state. Obviously, the concurrence and
the 3-tangle are not enough to quantify the total entanglement of the state.
It is necessary to introduce a new quantity for the total entanglement of a
triqubit pure state.

On the other hand, complementarity [113], one of the most important
principles in quantum mechanics, has been connected to entanglement in
biqubit systems [33]. Quantitative complementarity relations for multiqubit
systems have been discussed in [34,35].

In this chapter, we will discuss triqubit pure states based on quantitative
complementarity relations. An entanglement Venn diagram and the total
tangle will be introduced for characterizing entanglement. We also generalize
them for N -qubit pure states and obtain several interesting results.

This chapter is organized as follows. In section 1, we discuss the entropy
Venn diagram and point out the difficulty of the diagram when discussing
the detailed relation of entanglement among three qubits. In section 2, we
give quantitative complementarity relations for biqubit and multiqubit pure
states. In section 3, we introduce the entanglement Venn diagram and clearly
classify different entanglements of triqubit pure states. In section 4, we
introduce the total tangle τ (T ) for quantifying the total entanglement of a
triqubit pure states by defining the union I that is equivalent to the total
tangle τ (T ) from the mathematical point of view. In the final section, we
generalize the entanglement Venn diagram and the union I for N -qubit pure
states where we obtain bounds to the union I and a speculative formula for
the union I for N -qubit pure states.

4.1 Entropy Venn diagram

Based entirely on density matrices of quantum systems, Cerf and Adami
[114–116] presented a quantum mechanical extension of classical informa-
tion theory, i.e., quantum information theory, that allows for a consistent
description of entanglement. They found that unlike in classical information
theory, quantum conditional entropies can be negative when quantum en-
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tangled systems are considered. This phenomenon is completely forbidden
in classical information theory. The entropy Venn diagrams of three limiting
cases for the biqubit state have been drawn [115] to clearly illustrate the new
phenomenon. The concept of negative conditional entropies and the entropy
Venn diagram provide interesting insights into quantum entanglement.

Let us start from some simple introduction to classical information theory
(see, e.g., [1]). Consider a composite system of two classical variables A and
B. The Shannon entropy H(A) (sometimes also called the classical entropy)
of A is defined as a function of the probabilities of the different possible
values {a} that the variable A takes,

H(A) = −
∑

a

p(a)log2p(a) (4.3)

where the variable A takes on value a with probability p(a). Note that
limx→0(xlog2x) = 0. The Shannon entropy H(A) measures the amount of
uncertainty about A before we learn its value. From the viewpoint of the
information theory, the Shannon entropy of A quantifies how much informa-
tion we obtain, on average, when we learn the value of A. An analogous
definition holds for H(B). Then the joint entropy H(A,B) of variables A
and B is defined as

H(A,B) = −
∑

a,b

p(a, b)log2p(a, b), (4.4)

which measures the total uncertainty about the pair (A,B). The Shannon
entropy of A conditional on B (Shannon conditional entropy H(A|B)) is
therefore defined as

H(A|B) = H(A,B)−H(B) = −
∑

a,b

p(a, b)log2p(a|b) (4.5)

where p(a|b) = p(a, b)/p(b) is the probability of a conditional on b. H(A|B)
quantifies the remaining uncertainty about A when B is learned. The mutual
entropy H(A : B) (also denoted as H(A ∩B)) content of variables A and B
is written as

H(A : B) = H(A) + H(B)−H(A,B), (4.6)

which measures how much information the variables A and B have in com-
mon. In other words, it quantifies the (classical) correlations between the
two variables A and B.

From the definitions of these entropies, we have the following equations:
{

H(A : B) = H(A)−H(A|B),
H(A : B) = H(B)−H(B|A).

(4.7)
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H(A)

H(A|B)

H(B)

H(B|A)H(A:B)

Figure 4.1: Entropy Venn diagram for the bipartite systems A and B.

All of the various relations among different entropies can be deduced from
the entropy Venn diagram shown in Fig. (4.1).

In classical information theory, the conditional probability p(x|y) is a
number between 0 and 1, i.e., p(x|y) ∈ [0, 1]. Then the Shannon conditional
entropies are always non-negative, i.e.,

{
H(A|B) ≥ 0,
H(B|A) ≥ 0.

(4.8)

Thus the Shannon mutual entropy H(A : B) cannot be greater than the
entropies of any subsystem A or B, i.e.,

H(A : B) ≤ min{H(A), H(B)}. (4.9)

Now consider a quantum system of two qubits A and B. We denote
the density matrix of the entire state as ρAB and the two reduced density
matrices as ρA and ρB. The von Neumann entropy S(A) (sometimes also
called the quantum entropy) of quantum state ρA is defined as

S(A) = −Tr(ρAlog2ρA). (4.10)

Note that limρ→0(ρlog2ρ) = 0 as for the Shannon entropy. If λ
(A)
i are the

eigenvalues of ρA, then S(A) can be re-expressed as

S(A) = −
∑

i

(λ
(A)
i log2λ

(A)
i ). (4.11)

An analogous definition also holds for S(B).
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By analogy with the Shannon entropies, we have the following definitions
of the von Neumann entropies. The von Neumann joint entropy S(A,B) is
defined as

S(A,B) = −Tr(ρABlog2ρAB). (4.12)

The von Neumann conditional entropy S(A|B) is defined as

S(A|B) = S(A,B)− S(B) = −Tr(ρABlog2ρA|B) (4.13)

where ρA|B is a conditional “amplitude” matrix as

log2ρA|B = log2ρAB − log2(ÎA ⊗ ρB) (4.14)

ÎA =
(

1 0
0 1

)
is the unit matrix in the Hilbert space HA of qubit A. Thus

S(A|B) can be written as

S(A|B) = −Tr(ρABlog2ρAB) + Tr(ρABlog2(ÎA ⊗ ρB)). (4.15)

The matrix ρA|B is a quantum generalization of the classical conditional prob-
ability p(a|b), and it can be reduced to p(a|b) in the classical limit (that is, ρAB

has no non-diagonal elements). The von Neumann mutual entropy S(A : B)
(also denoted as S(A ∩B)) is defined as

S(A : B) = S(A) + S(B)− S(A,B). (4.16)

The Venn diagram of the von Neumann entropy, the analogy with the entropy
Venn diagram in quantum case, is shown in Fig. (4.2).

Though the von Neumann entropy can be considered a generalization of
the Shannon entropy, some properties of the Shannon entropy fail to hold
for the von Neumann entropy. This new phenomenon has many interesting
consequences for quantum information theory.

Consider the von Neumann conditional entropy S(A|B). We refer to ρA|B
as the “amplitude” matrix to emphasize that it retains the quantum phases
while the classical probability p(a|b) has no such content. However ρA|B is
not a density matrix but a Hermitian and positive semi-definite matrix (so
its eigenvalues are real and non-negative), since its eigenvalues can exceed
1. That is, in the classical case, p(a|b), as a probability distribution in a
conditional on b, satisfies 0 ≤ p(a|b) ≤ 1; but its quantum analogy ρA|B does
NOT satisfy 0 ≤ ρA|B ≤ 1 since it can have an eigenvalue greater than 1.

Here the notation ρA|B ≤ 1 means that the matrix (ÎA−ρA|B) is positive semi-
definite. The consequence is that the von Neumann conditional entropy can
be negative, a new important phenomenon in quantum information theory.
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S(A) S(B)

S(A|B) S(A:B) S(B|A)

Figure 4.2: Venn diagram of the von Neumann entropies for quantum system
of qubits A and B.

For example, let a quantum system of two qubits A and B be in one of
the Bell states

|Ψ〉 =
1√
2
(|01〉+ |10〉). (4.17)

Two reduced density matrices ρA and ρB are

ρA = ρB =
1

2

(
1 0
0 1

)
. (4.18)

Then two von Neumann conditional entropies S(A|B) and S(B|A) are

{
S(A|B) = S(A,B)− S(B) = −1,
S(B|A) = S(A,B)− S(A) = −1.

(4.19)

Thus the negativity of the conditional von Neumann entropies necessarily
results from ρA|B admitting an eigenvalue greater than 1. From Eqs. (4.19),
S(A|B) < 0 means the entropy of the entire system AB, S(A,B), can be
less than the entropy of one of its subsystems, a situation which is of course
forbidden in classical information theory.

From the subadditivity inequality for von Neumann entropies

S(A,B) ≤ S(A) + S(B) (4.20)

with equality if and only if ρAB = ρA ⊗ ρB, we obtain

S(A|B) ≤ S(A). (4.21)
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From the triangle (sometimes also called Araki-Lieb) inequality

S(A,B) ≥ |S(A)− S(B)|, (4.22)

we obtain
S(A|B) ≥ −S(A). (4.23)

Thus
|S(A|B)| ≤ S(A), (4.24)

which is different from the first inequality in Ineqs (4.8). These properties
also hold for S(B|A).

Let us consider the relation between the negativity of the conditional von
Neumann entropy and entanglement. If ρAB is separable, i.e.,

ρAB =
∑

i

piρ
i
A ⊗ ρi

B (4.25)

where pi > 0 are the probabilities of pure states ρi
AB = ρi

A ⊗ ρi
B, then

(ÎA ⊗ ρB)− ρAB =
∑

i

pi(ÎA − ρi
A)⊗ ρi

B. (4.26)

Since ρi
A and ρi

B are density matrices, (ÎA−ρi
A) ≥ 0 and ρi

B ≥ 0 always hold.
Thus, as the sum of positive matrices,

(ÎA ⊗ ρB)− ρAB ≥ 0 (4.27)

always holds. Therefore the matrix (−log2ρA|B) is positive semi-definite.
This immediately implies that

ρA|B ≤ 1 (4.28)

always holds for the separable state. Consequently, a necessary condition for
separability of state ρAB is that all the eigenvalues of the conditional ampli-
tude matrices ρA|B and ρB|A are NOT greater than 1, i.e., the conditional
von Neumann entropies S(A|B) and S(B|A) are not negative. Therefore
the negativity of the conditional von Neumann entropy straightway implies
entanglement of quantum systems.

For the von Neumann mutual entropy S(A : B), combining Eqs. (4.16)
and (4.19), we obtain

S(A : B) = S(A)− S(A|B). (4.29)

Eq. (4.29) obviously shows that S(A : B) can be greater than the entropy
of subsystem A since S(A|B) can be negative, while its classical analogy
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H(A : B) cannot be greater than the entropy of any of the subsystems.
Using Ineqs. (4.20) and (4.22), we obtain

0 ≤ S(A : B) ≤ 2min{S(A), S(B)}, (4.30)

which is different from Ineq. (4.9).
As the generalization of the Shannon mutual entropy H(A : B), the von

Neumann mutual entropy S(A : B) measures not only quantum correlations
(i.e., entanglement) but also classical correlations between two qubits A and
B. In the classical limit, S(A : B) reduces to H(A : B). But the von
Neumann mutual entropy can NOT discriminate purely quantum correlations
(entanglement) from classical correlations. There are three limiting cases of
the correlations between two qubits A and B: completely independent, the
maximal classical correlation and the maximal entanglement. Their entropy
Venn diagrams are shown in Fig. (4.3).

In Fig. (4.3-I), two qubits are completely independent. The state of the
entire system is the tensor product of the states of two qubits A and B, and
each qubit is in the maximally mixed state, i.e.,

ρA = ρB =
1

2
(|0〉〈0|+ |1〉〈1|) =

1

2

(
1 0
0 1

)
,

ρAB = ρA ⊗ ρB =
1

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

(4.31)

Thus
{

ρA|B = ρA ⊗ ÎB ⇒ S(A|B) = S(A) = 1

ρB|A = ÎA ⊗ ρB ⇒ S(B|A) = S(B) = 1
=⇒ S(A : B) = 0. (4.32)

In Fig (4.3-II), two qubits have the maximal classical correlations but no
entanglement. The entire state is the 50/50 mixture of states |00〉〈00| and
|11〉〈11| or states |01〉〈01| and |10〉〈10|, for example,

ρA = ρB =
1

2
(|0〉〈0|+ |1〉〈1|) =

1

2

(
1 0
0 1

)
,

ρAB =
1

2
(|00〉〈00|+ |11〉〈11|) =

1

2




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 .

(4.33)
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A B(II)

0 1 0

A B(III)

−1 2 −1

A B(I)

0 11

Figure 4.3: Entropy Venn diagrams of biqubit states AB for three limiting
cases. Here we select S(A) = S(B) = 1. (I): Two qubits A and B are com-
pletely independent, i.e., without classical and quantum correlations. (II):
Two qubits have the maximal classical correlations but no entanglement.
(III): Two qubits are maximally entangled, where S(A|B) and S(B|A) both
get their minimal value -1, and S(A : B) gets the maximal value 2, which
are completely forbidden in the classical cases.

Thus

{
S(A|B) = S(B|A) = 0,
S(A : B) = 1.

(4.34)

All properties of systems in Figs. (4.3-I) and (4.3-II) correspond with the
properties of the Shannon entropies.

In Fig. (4.3-III), two qubits are maximally entangled with each other.
The entire state is one of the Bell states while the two reduced states are the
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maximally mixed states, for example,

ρAB =
1

2
(|00〉+ |11〉)(〈00|+ 〈11|) =

1

2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 .

ρA = ρB =
1

2
(|0〉〈0|+ |1〉〈1|) =

1

2

(
1 0
0 1

)
,

(4.35)

Thus {
S(A|B) = S(B|A) = −1,
S(A : B) = 2.

(4.36)

This case is forbidden in classical information theory.
It has been pointed out that the negativity of conditional entropies result

from entanglement. The entropy Venn diagrams for biqubit states clearly
illustrate the difference between classical correlations and quantum correla-
tions, i.e., entanglement. Since entropy Venn diagrams of biqubit states can
help us understand entanglement between two qubits, we naturally have the
idea to generalize the entropy Venn diagram for more than two qubits.

Let us consider the generalization of the entropy Venn diagram for triqubit
pure states, the simplest instance of multipartite quantum systems. The var-
ious concepts of the von Neumann entropy for biqubit states can be general-
ized to the ones for triqubit states as follows. The entropy Venn diagram for
a triqubit state is shown in Fig. (4.4).

The basic concepts of the von Neumann entropy for triqubit states can
be straightforwardly generalized from the ones of biqubit states, such as
S(A), S(B), S(C), the bi-joint entropies S(A,B), S(A,C) and S(B, C), and
the tri-joint entropy S(A,B,C). Conditional entropies, such as S(A|(B, C)),
S(B|(A,C)) and S(C|(A,B)), quantify the entropy of one of the three subsys-
tems when the other two subsystems are known. For example, S(A|(B, C))
is written in analogy with Eq. (4.13) as

S(A|(B, C)) = S(A,B,C)− S(B, C). (4.37)

Conditional entropies, such as S((A,B)|C), S((A,C)|B) and S((B, C)|A),
quantify the entire entropy of two of the three subsystems when the last
subsystem is known. For example, S((A,B)|C) is written as

S((A,B)|C) = S(A,B,C)− S(C). (4.38)

Mutual conditional entropies, such as S((A : B)|C), S((A : C)|B) and S((B :
C)|A), quantify the bi-mutual entropy between two of the three subsystems
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S((A:B)|C) S((A:C)|B)

S((B:C)|A)

S(A:B:C)

S(A|(B,C))

S(C|(A,B))S(B|(A,C))

S(A)

S(B) S(C)

Figure 4.4: Entropy Venn diagram for a state of three qubits A, B and C.

when the last subsystem is known. For example, S((A : B)|C) is written in
analogy to Eq. (4.29) as

S((A : B)|C) = S(A|C)− S(A|(B, C))
= S(A,C) + S(B, C)− S(C)− S(A,B,C).

(4.39)

The tri-mutual entropy S(A : B : C) (also denoted as S(A ∩ B ∩ C)) is
written in analogy to Eq. (4.29) as

S(A : B : C) = S(A : B)− S((A : B)|C). (4.40)

Using Eq. (4.39), S(A : B : C) can be written in detail as

S(A : B : C) = S(A) + S(B) + S(C)
−S(A,B)− S(A,C)− S(B, C) + S(A,B,C).

(4.41)

In the preceding section, we have pointed out that there are the GHZ
entanglement, the W entanglement and the mixed entanglement as the form
of the true tripartite entanglement in triqubit pure states. We draw entropy
Venn diagrams for the GHZ state and the W state in Fig. (4.5). From
Fig. (4.5), we found that it is not enough to exactly detect the class of
entanglement of a triqubit pure state according to its entropy Venn diagram.
Only for the GHZ state, the diagram is sufficient. But for the W state, the
state with the non-maximal GHZ entanglement and the state with the mixed
entanglement, entropy Venn diagrams are not enough to distinguish them.
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∆

∆
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Figure 4.5: Entropy Venn diagrams for the GHZ state (I) and the W state
(II), where ∆ = log23− 2/3 ≈ 0.9183.

That is, in general, entropy Venn diagrams can NOT show us the detailed
situation of entanglement in triqubit pure states. There is no difference
between 2- and 3-way entanglements in entropy Venn diagrams.

Thus from the viewpoint of understanding detailed entanglement among
three qubits and characterizing (including classifying and quantifying) entan-
glement of triqubit pure states, the entropy Venn diagram is not a good tool
though it is well known that the concept of entropy is the most important
parameter in the information theory.

4.2 Quantitative complementarity relations

Complementarity, first introduced by Niels Bohr in 1928 [113], is one of the
most important principles in quantum mechanics. The concept of comple-
mentarity (see, e.g., [117, 118]) in its full generality states that a quantum
system may possess properties that are equally real but mutually exclusive.
It is well known that in classical world, the objects can be precisely described
with the completeness demanded by classical dynamics. For example, we can
unambiguously combine the space-time coordinates of objects with the dy-
namical conservation laws that govern their mutual interactions. However,
in quantum world, the precise description of a quantum object, in general,
is precluded by complementarity. Some of the elements that complement
each other to make up a complete classical description of a quantum object
are actually mutually exclusive, and these complementary elements are all
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necessary for the description of various aspects of the quantum object.
An alternative statement of complementarity, which makes reference to

experimental arrangements or measurements, states that information about
a quantum object obtained under different experimental arrangements can-
not always be comprehended within a single causal picture. Thus, from
the experimental point of view, complementarity in quantum world can be
considered as the natural generalization of the classical concept of causality
though they are quite different in nature.

This is not to be regarded as a deficiency of the experimenter or the
experimental techniques. It is rather a law of nature that, whenever an at-
tempt is made to measure precisely one of the pair of canonical variables, the
other is changed by an amount that cannot be too closely calculated without
interfering with the primary attempt. This is fundamentally different from
the classical situation, in which a measurement also disturbs the system that
is under observation, but the amount of the disturbance can be calculated
and taken into account. Thus, Bohr has pointed out that complementar-
ity implies the “impossibility of any sharp separation between the behavior
of atomic (quantum) objects and their interaction with the measuring in-
struments which serve to define the conditions under which the phenomena
appear” [113]. Therefore the complementarity principle typifies the funda-
mental limitations on the classical concept that the behavior of quantum
systems can be described independently of the means by which they are
observed.

In single quantum systems, there are two typical examples of complemen-
tarity. The first example is the uncertainty principle, developed by Heisen-
berg in 1927 [119]. According to this principle, it is impossible to specify
precisely and simultaneously the values of both members of particular pairs
of physical variables that describe the behavior of a quantum system. The
members of these pairs of variables are canonically conjugate to each other in
the hamiltonian sense, for example, the rectangular coordinate x of a particle
and the corresponding component of momentum px. To put it more quanti-
tatively, the uncertainty principle states that the order of magnitude of the
product of the uncertainties in the knowledge of the two variables must be
at least ~ (Plank’s constant h divided by 2π) as

4x · 4px & ~. (4.42)

This relation means that a component of the momentum of a particle can-
not be precisely specified without loss of all knowledge of the corresponding
component of its position at that time, that a particle cannot be precisely
localized in a particular direction without loss of all knowledge of its momen-
tum component in that direction, and that in intermediate cases the product
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of the uncertainties of the simultaneously measurable values of corresponding
position and momentum components is at least of the order of magnitude of
~. The smallness of Plank’s constant h makes the uncertainty principle of
interest primarily in connection with systems of quantum size.

The second example of complementarity in single quantum systems is the
wave-particle duality of a photon, a long-standing debate over the nature of
light [120]. This type of complementarity is often illustrated by means of
two-way interferometers: A classical particle can take only one path, while a
classical wave can pass through both paths and therefore display interference
fringes when the two partial waves are recombined. Depending on their state,
quantum mechanical systems, such as photons, electrons, and so on, can
behave like particles (go along a single path), like waves (show interference),
or remain in between these extreme cases by exhibiting particlelike as well
as wavelike behavior (this is the so-called wave-particle duality).

Two quantities have been introduced for the wave-particle duality of
quantons: the visibility V of the interference fringes after recombination of
the two partial waves, which quantifies the wavelike behavior, and the pre-
dictability P , which measures the probability that the system will go along
a specific path, i.e., the particlelike behavior. A quantitative expression for
the complementarity [121–126] is the inequality

V 2 + P 2 ≤ 1, (4.43)

which states that the more particlelike a system behaves, the less pronounced
the wavelike behavior becomes.

In composite quantum systems consisting of two or more quantum par-
ticles, complementarity has been studied in the last few years. Some im-
portant progress has been made, such as complementarity relations between
single and two-particle fringe visibilities [123,124], between distinguishability
and visibility [125], between the coherence and predictability in a quantum
eraser [126], and so on, and some of them have been experimentally verified
(see, e.g., [127]).

On another hand, the concept of entanglement is involved inevitably in
the study of composite quantum systems. Naturally, we would like to ask
whether entanglement that constitutes a physical feature of quantum systems
can be incorporated into complementarity. Some authors have explored this
question and obtained some important results, such as complementarity rela-
tions between coherence and entanglement [128], between distinguishability
and entanglement [129], between local and nonlocal information [130], be-
tween multipartite entanglement and mixedness for special classes of N -qubit
systems [131], and so on.
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Recently, Jakob and Bergou [33] made an important progress by deriving
quantitative complementarity relations for biqubit pure states. They showed
that an arbitrary normalized pure state |Ψ〉AB of qubits A and B satisfies
the expression

C2 + S2
k = 1 (4.44)

for k ∈ {A,B}. Here C denotes the concurrence between qubits A and B,
i.e., quantifies the entanglement between qubits A and B. S2

k denotes the
single entity of the single partite properties (wave-particle duality) of qubit
k and is written as

S2
k = V 2

k + P 2
k . (4.45)

Additionally, Jakob and Bergou have noted that Eq. (4.44) becomes an
inequality when applied to a biqubit mixed state.

In the language of quantum information theory, the quantitative comple-
mentarity relations (4.44) can be understood in such a way that the reality
of qubit k in a biqubit pure state is separated into two parts: the nonlocal
reality (i.e., entanglement) and the local reality (i.e., the single particle prop-
erties). Here the quantity C2 measures the nonlocal reality of qubit k and
the quantity S2

k measures its local reality. It has been shown that the con-
currence C remains invariant under local unitary transformations [80]. For
the single entity S2

k of qubit k, though its two constituents V 2
k and P 2

k can
be changed under local unitary transformations into (V ′

k)
2 and (P ′

k)
2, they

satisfy the condition
V 2

k + P 2
k = (V ′

k)
2 + (P ′

k)
2, (4.46)

so that the entity S2
k remains unchanged. In particular, S2

k can be all visibility
with no predictability or, alternatively, all predictability with no visibility.

All quantities in Eqs. (4.44) and (4.45) can be calculated from the density
matrix of the initial state and the reduced density matrices. The detailed
method of calculating the concurrence C has been displayed in the preceding
chapter. Here we only consider the visibility Vk and the predictability Pk of
qubit k. First, let us introduce the single-qubit reduced density matrix ρk,
which is defined as

ρk ≡ Trj(ρ) (4.47)

for j 6= k. Here ρ is the density matrix of the initial biqubit pure state.
The visibility Vk, which quantifies, e.g., the fringe visibility in the context of
two-slit interference experiments, is written as

Vk = 2|Tr(ρkσ
(k)
+ )| (4.48)

where

σ
(k)
+ =

(
0 1
0 0

)
(4.49)
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is the raising operator acting on qubit k. The predictability Pk, which quan-
tifies, e.g., the a priori information whether the particle is more likely to take
the upper or lower path in an interferometer, is written as

Pk = |Tr(ρkσ
(k)
z )| (4.50)

where

σ(k)
z =

(
1 0
0 −1

)
(4.51)

is one of Pauli matrices acting on qubit k.
More recently, Tessier in [34] and Peng et al. in [35] generalized quan-

titative complementarity relations to multiqubit pure systems. Especially,
Peng et al. in [35] have experimentally verified some of quantitative com-
plementarity relations in a biqubit system using nuclear magnetic resonance
techniques.

For a pure state of N qubits A1, A2, · · · , AN , the following quantitative
complementarity relations were suggested [34,35]

τk(Rk) + S2
k = 1 (4.52)

where k = 1, 2, · · · , N and Rk denotes the set of the (N−1) qubits other than
qubit Ak. Similarly to the case of biqubit pure states, τk(Rk) quantifies the
nonlocal reality of qubit Ak, which measures entanglement between qubits
Ak and the remaining (N − 1) qubits and remains invariant under local
unitary transformations. S2

k quantifies the local reality, i.e., the single particle
property, of qubit Ak as shown in the case of biqubit pure states. τk(Rk), the
squared I-concurrence proposed in [81] indeed, is given by

τk(Rk) = 2[1− Tr(ρ2
k)]. (4.53)

Here the single-qubit reduced density matrix ρk of N -qubit state is given by

ρk ≡ Tr{j}(ρ) (4.54)

for {j|all j 6= k} where ρ is the density matrix of the initial N -qubit pure
state.

By Eq. (4.80), τk(Rk) and S2
k satisfy the following inequalities

{
0 ≤ τk(Rk) ≤ 1,
0 ≤ S2

k ≤ 1.
(4.55)

The two extremal cases for qubit Ak are τk(Rk) = 1 (S2
k = 0), for example, in

the N -qubit GHZ state [92], and τk(Rk) = 0 (S2
k = 1), for example, in a fully

separable state.
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CAB
2SA

2 S2
B

BA

Figure 4.6: Entanglement Venn diagram for state ρ of two qubits A and
B. The common area of two qubits, denoted as C2

AB, means entanglement
between the two qubits A and B. The two remainding areas of qubits A
and B, denoted as S2

A and S2
B, mean the single-partite properties of the two

qubits A and B, respectively.

4.3 Entanglement Venn diagram

It has been shown that the entropy Venn diagram provides some interesting
insights into quantum entanglement in biqubit states. However, it meets
some difficulty to show the detailed entanglement in multiqubit systems.
In this section, we introduce entanglement Venn diagrams for biqubit and
triqubit pure states based on quantitative complementarity relations. With
them, we can clearly understand the detailed entanglement among the qubits,
especially in triqubit pure states in which the entropy Venn diagram meets
some difficulty. This allows us to further discuss entanglement of multiqubit
systems. First, we will introduce entanglement Venn diagrams for biqubit
pure states and compare them to entropy Venn diagrams. Then we will
introduce entanglement Venn diagrams for triqubit pure states and discuss
the classification of triqubit entanglement by different forms of entanglement
Venn diagrams.

First consider a pure state ρ of two qubits A and B. Quantitative com-
plementarity relations can be written as

{ C2
AB + S2

A = 1,
C2

AB + S2
B = 1.

(4.56)

That is, each qubit is composed of two parts: the nonlocal reality quantified
by C2 and the local reality S2. The entanglement Venn diagram of state ρ is
shown in Fig. (4.6).
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Figure 4.7: Entanglement Venn diagrams of biqubit pure states for two ex-
tremal cases of entanglement: (I) for separable states as two disjoint circles;
(II) for the maximally entangled states as one circle, which means the entire
overlap of the two qubits.

In Fig. (4.6), each qubit is represented by a circle with two parts cor-
responding to the two realities of the qubit. The common area of the two
qubits means their entanglement and is quantified by the squared concur-
rence C2

AB. The relative complement of qubit B in qubit A, A|B, expresses
the single-partite property S2

A of qubit A. Similarly, the relative complement
of qubit A in qubit B, B|A, expresses the single-partite property S2

B of qubit
B.

In contrast to the correlations (including classical and quantum correla-
tions) between the two qubits in state ρ, there are only two cases between
the two qubits, separable or entangled, from the entanglement point of view.
The two extremal cases of entanglement between the two qubits A and B,
separable (C2

AB = 0) and maximally entangled (C2
AB = 1), are shown in Fig.

(4.7).
For separable states, there is no entanglement between the two qubits, i.e.,

C2
AB = 0, while the single-partite properties S2

A and S2
B both are the maximum

1. Thus there are two disjoint circles in the entanglement Venn diagram as
Fig. (4.7-I). For entangled states, there is certainly a common area between
the two qubits in entanglement Venn diagrams. If the entanglement C2

AB of
the states achieves its maximum 1, then S2

A and S2
B both are the minimum

0. The corresponding entanglement Venn diagram is shown as one circle in
Fig. (4.7-II).

Now consider a pure state of three qubits A, B and C. Quantitative
complementarity relations can be written as

τi(jk) + S2
i = 1 (4.57)
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where i, j, k ∈ {A,B,C}. The nonlocal reality τi(jk) of qubit i, i.e., entangle-
ment between qubit i and pair of qubits (jk), can be presented as [83]

τi(jk) = τ + C2
ij + C2

ik (4.58)

where τ is the 3-tangle quantifying 3-way entanglement among all three
qubits together, C2

ij (or C2
ik) is the squared concurrence quantifying 2-way

entanglement between qubits i and j (or k). Then we obtain three detailed
quantitative complementarity relations as





τ + C2
AB + C2

AC + S2
A = 1,

τ + C2
AB + C2

BC + S2
B = 1,

τ + C2
AC + C2

BC + S2
C = 1,

(4.59)

where 0 ≤ τ, C2s, S2s ≤ 1.
From these relations, we can see a two-step separation of a qubit, for

example, qubit A, in triqubit pure states. In the first step, we separate qubit
A into two parts, the nonlocal reality τA(BC) and the local reality S2

A, as
Eq. (4.57). In the second step, we sequentially separate the nonlocal reality
τA(BC) into two kinds of parts, one kind related with 3-way entanglement τ
and another kind with two 2-way entanglements C2

AB and C2
AC . In the end,

qubit A is separated into three different kinds of parts, one related with the
single-partite property S2

A, one with the two 2-way entanglements C2
AB and

C2
AC , and one with the 3-way entanglement τ .

Representing each of the three qubits as a circle, we draw an entanglement
Venn diagram for a triqubit pure state in Fig. (4.8) to intuitively illustrate
entanglement among the three qubits. With the mathematical terminology
of set theory, we explain the physical meanings of every subarea in Fig. (4.8).
Consider qubit A as the focus, shown as a bold-faced circle in Fig. (4.8). The
relative complement of pair of qubits (BC) in qubit A, A|(B ∪C), expresses
the single particle property S2

A of qubit A. The intersection of qubit A with
pair of qubits (BC), A ∩ (B ∪ C), expresses entanglement τA(BC) between
qubit A and pair of qubits (BC). The intersections (A∩B)|C and (A∩C)|B
express 2-way entanglements C2

AB and C2
AC of qubit A with B and with C,

respectively. The intersection A ∩ B ∩ C expresses 3-way entanglement τ
among all three qubits together. The cases of qubits B and C are similar to
the one of qubit A.

Now consider the different types of entanglement in triqubit pure states.
The first type is fully separable states denoted as ρ ∈ {13}={states with
form ρA ⊗ ρB ⊗ ρC}. There is no common area among the three qubits in
the entanglement Venn diagram as shown in Fig. (4.9-I). The second type
is biseparable states denoted as ρ ∈ {11, 21} = {states with form ρA ⊗ ρBC ,
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Figure 4.8: Entanglement Venn diagram for a pure state of three qubits A,
B and C.

ρB ⊗ ρAC , ρC ⊗ ρAB}. In these states, there is only one 2-way entanglement
between two of the three qubits. That is, one of the three qubits is separable
from the two remaining qubits while the two remaining qubits are entangled
with each other. For example, state ρ = ρA⊗ ρBC , qubit A is separable from
pair of qubits B and C while qubits B and C are entangled with each other.
Quantitative complementarity relations can be written as





S2
A = 1,
C2

BC + S2
B = 1,

C2
BC + S2

C = 1.
(4.60)

The corresponding entanglement Venn diagram is shown in Fig. (4.9-II-a)
where there is no intersection between qubit A and pair of qubits BC but
an intersection between qubits B and C. In the extremal case entanglement
C2

BC achieves the maximum 1. Its entanglement Venn diagram is shown in
Fig. (4.9-II-b) as two disjoint circles where one of the circles expresses sepa-
rable qubit A and another of the circles expresses the maximal entanglement
between qubits B and C.

The last type is fully entangled states denoted as ρ ∈ {31}={states with
form ρABC}, including the W entanglement, the GHZ entanglement and the
mixed entanglement. This entanglement is called the full entanglement of the
three qubits, full entanglement for short, or the true tripartite entanglement.
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Figure 4.9: Entanglement Venn diagrams for separable and biseparable
triqubit pure states: (I) for fully separable states as three disjoint circles;
(II-a) for biseparable states, for example, ρ = ρA⊗ρBC , as one disjoint circle
and two joint circles; (II-b) for biseparable states with one maximal 2-way
entanglement as two disjoint circles in which one circle means separable qubit
A while another circle means the entire overlap of two maximally entangled
qubits B and C.

For states of the W entanglement, there is no 3-way entanglement (τ = 0) but
three 2-way entanglements so that quantitative complementarity relations
can be written as 



C2

AB + C2
AB + S2

A = 1,
C2

AB + C2
BC + S2

B = 1,
C2

AC + C2
BC + S2

C = 1.
(4.61)

The corresponding entanglement Venn diagram is shown in Fig. (4.10-I)
as three bi-mutual joint circles without intersection of all three qubits. For
states of the GHZ entanglement, there is no 2-way entanglement (C2s = 0)
but only 3-way entanglement so that there is only an intersection among
the three qubits in the entanglement Venn diagram. For the GHZ state, its
3-way entanglement τ achieves its maximum 1 so that all qubits have only
nonlocal realities but no local realities. Its entanglement Venn diagram is
shown in Fig. (4.10-II) as one circle, the entire overlap of the three qubits.
For states of mixed entanglement, all 2- and 3-way entanglements are greater
than zero so that all intersections among the qubits exist in entanglement
Venn diagram as Fig. (4.10-III).

With the help of these entanglement Venn diagrams, we can clearly un-
derstand the detailed entanglement among the three qubits. For different
entanglements, the corresponding entanglement Venn diagrams are differ-
ent. From entanglement Venn diagrams, we can also find some properties of
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Figure 4.10: Entanglement Venn diagrams for triqubit pure states with dif-
ferent classes of full entanglement: (I) for the W state where there is no
intersection among all three qubits together but three mutual intersections
of two of the three qubits; (II) for the GHZ state as one circle, which means
the entire overlap of the three qubits; (III) for states of mixed entanglement
where all intersections among the qubits exist.

corresponding entanglement. In one word, we construct a one-to-one map-
ping between the forms of entanglement Venn diagrams and the classes of
entanglement.

4.4 Total tangle

In the preceding section, we introduced entanglement Venn diagrams for
triqubit pure states, in which we can clearly classify different entanglements.
In this section, we will define a new quantity, named the union I, for triqubit
pure states based on the entanglement Venn diagram as in Fig. (4.8). Some
requirements for a quantity to be a good measure of entanglement have be
listed in Chapter 2. The union I does not satisfy the normalization of the
entanglement measure, one of the requirements for the entanglement mea-
sure. Thus a new quantity, named the total tangle τ (T ), will be introduced
for quantifying the total entanglement of triqubit pure states, especially for
states with mixed entanglement, by the union I. In fact, the union I and the
total tangle τ (T ) are equivalent to each other from the mathematical point of
view. This will be clear from the definition of the total tangle τ (T ). But be-
ing the measure of entanglement, the total tangle τ (T ) has some other merits
than the union I according to the requirements.

It has been pointed out that there are the 2- and 3-way entanglements,
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simultaneously, in states with mixed entanglement so that the squared con-
currence and the 3-tangle are not enough to quantify this entanglement. For
example, for two states ρI and ρII both with the mixed entanglement, if the
W entanglement of state ρI is greater than the one of state ρII while the
GHZ entanglement of state ρI is less than the one of state ρII , how can we
compare total entanglement of these two states? The simplest case of such
comparison is whether we can compare entanglements of two states, one with
GHZ entanglement and another with W entanglement, and how to compare.
These problems can be easily solved by the union I (and the total tangle
τ (T )) which will be introduced in this section.

Based on the entanglement Venn diagram as shown in Fig. (4.8), we
define the union, denoted as I, of a triqubit pure state, invoking an analogy
to set theory, as

I = τ + C2
AB + C2

AC + C2
BC + S2

A + S2
B + S2

C . (4.62)

With Eqs. (4.59), we can rewrite Eq. (4.62) in two different ways. In the
first way, by one of Eqs. (4.59), the union I can be rewritten as

I = 1 + C2
ij + S2

i + S2
j (4.63)

where i, j ∈ {A,B,C}. Since C2s, S2s are greater than or equal to zero, the
union I can assume the minimum value 1 when C2

ij = S2
i = S2

j = 0 holds, for
example, in the GHZ state.

In the second way, we can transform Eqs. (4.59) into the form





S2
A = 1− τ − C2

AB − C2
AC ,

S2
B = 1− τ − C2

AB − C2
BC ,

S2
C = 1− τ − C2

AC − C2
BC .

(4.64)

Putting these relations to Eq. (4.62), we obtain

I = 3− 2τ − (C2
AB + C2

AC + C2
BC). (4.65)

Since τ and C2s are greater than or equal to zero, the union I can assume the
maximum value 3 when τ, C2s = 0, for example, in a fully separable state.

From Eq. (4.65), we can see that the union I is related not only to 3-way
entanglement (quantified by τ), but also to all 2-way entanglements (quanti-
fied by C2s). Thus the union I is a quantity which involves all entanglements
of a triqubit qubit state. It is a potential measure of total entanglement for
triqubit pure states. From the entanglement Venn diagrams introduced in the
preceding section, entanglement of triqubit pure states is more complex than
the one of biqubit pure states so that it is impossible to completely quantify
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the entanglement of triqubit pure states by only one parameter, such as the
squared concurrence C2s or the 3-tangle τ . The union I quantifies the entan-
glement of a triqubit pure state from the respect of the whole state. That
is, the union I answers the question “How much entanglement, including 2-
and 3-way entanglements, does a state possess?” Therefore, from the value
of the union I of a state, in general, we do not determine the class of the
entanglement of the state but know the amount of the total entanglement
of the state. The union I can give a definite answer about the class of the
entanglement of the state only in the following two extremal cases: the fully
separable state when the union I satisfies I = 3 and the GHZ state when the
union I satisfies I = 1.

Now let us discuss triqubit pure states of different entanglements by the
union I in detail.

Case 1: fully separable states ρ ∈ {13}. A triqubit pure state is fully
separable if and only if all the three qubits have no entanglement, i.e., no
nonlocal reality, τi(jk) = 0 for i, j, k ∈ {A,B,C}, but only single reality,
S2

i = 1 for i ∈ {A,B,C}. That is all 2- and 3-way entanglements are zero,
i.e., τ, C2s = 0. Thus, by Eq. (4.65 ), a triqubit pure state is fully separable
if and only if its union I = 3. Therefore the union I = 3 is a necessary and
sufficient condition on triqubit fully separable pure states ρ ∈ {13}.

Case 2: biseparable states ρ ∈ {11, 21}. For triqubit biseparable pure
states, for example, states with form ρA⊗ρBC , qubit A has no entanglement
(i.e., no nonlocal reality, τA(BC) = 0, but only single reality, S2

A = 1) while
qubits B and C are entangled with each other, i.e.,

{
τ = C2

AB = C2
AC = 0,

0 < C2
BC ≤ 1.

(4.66)

The union I can be written as

I = 3− C2
BC . (4.67)

Combining Eq. (4.66), we obtain the range for the union I of biseparable
states as

2 ≤ I < 3 (4.68)

where the lower bound can be achieved by states with maximal bipartite
entanglement between two of the three qubits, that is, the product states of
one of the Bell states with a single-qubit pure state.

Case 3 : fully entangled states ρ ∈ {31}. Since the lower bound to the
union I for states ρ ∈ {11, 21} is 2, the unique possibility of states with
I < 2 is fully entangled. Thus I < 2 is a sufficient condition on triqubit fully
entangled pure states ρ ∈ {31}.
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Case 3-I: states with W entanglement ρ ∈ {W entanglement}. For exam-
ple, state |Ψ〉 with the following wave function

|Ψ〉 = α|100〉+ β|010〉+ γ|001〉 (4.69)

where α, β, γ 6= 0 and |α|2 + |β|2 + |γ|2 = 1. There is no 3-way entanglement,
i.e., τ = 0, but three 2-way entanglements, i.e., 0 < C2s ≤ 1. The three
2-way entanglements can be calculated by Eq. (4.69) so that the union I is
written as

I = 3− 4(|αβ|2 + |αγ|2 + |βγ|2) (4.70)

With the conditions α, β, γ 6= 0 and |α|2 + |β|2 + |γ|2 = 1, we obtain the
range for the union I of states with the W entanglement as

5

3
≤ I < 3 (4.71)

where the lower bound 5/3 is achieved only by the W state with α = β =
γ = 1/

√
3.

Case 3-II: states with GHZ entanglement ρ ∈ {GHZ entanglement}. For
example, state |Ψ〉 with the following wave function

|Ψ〉 = α|000〉+ β|111〉 (4.72)

where α, β 6= 0 and |α|2 + |β|2 = 1. There is no 2-way entanglement, i.e.,
C2s = 0, but only 3-way entanglement, i.e., 0 < τ ≤ 1. Thus the union I can
be written as

I = 3− 8|αβ|2 (4.73)

With the conditions α, β 6= 0 and |α|2 + |β|2 = 1, we obtain the range for the
union I of states with GHZ entanglement as

1 ≤ I < 3 (4.74)

where the lower bound 1 is achieved only by the GHZ state with α = β =
1/
√

2.
Case 3-III: states with mixed entanglement ρ ∈ {mixed entanglement}.

For example, state |Ψ〉 with the following wave function

|Ψ〉 = α|000〉+ β|001〉+ γ|100〉+ λ|111〉 (4.75)

where α, β, γ, λ 6= 0 and |α|2 + |β|2 + |γ|2 + |λ|2 = 1. There are not only three
2-way entanglements but also 3-way entanglement, simultaneously. With
the concrete formulae of all 2- and 3-way entanglements, the union I can be
written as

I = 3− 8|αλ|2 − 4(|βγ|2 + |βλ|2 + |γλ|2). (4.76)
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Table 4.1: Relations of the union I and triqubit pure states with different
entanglements.

States Range of I Case of extremum
ρ ∈ {13} I = 3 fully separable state
ρ ∈ {11, 21} 2 ≤ I < 3 Bell state ⊗ single-qubit state
ρ ∈ {W entanglement} 5/3 ≤ I < 3 the W state
ρ ∈ {GHZ entanglement} 1 ≤ I < 3 the GHZ state
ρ ∈ {Mixed entanglement} 1 < I < 3 NO

With the conditions α, β, γ, λ 6= 0 and |α|2 + |β|2 + |γ|2 + |λ|2 = 1, we obtain
the range for the union I of states with the mixed entanglement as

1 < I < 3 (4.77)

where the union I has no extremal value.
Table (4.1) lists the relations of the union I and triqubit pure states with

different entanglements.
In the introduction of entanglement measures, we have listed several re-

quirements for a quantity E to be a good entanglement measure. One of them
is the normalization of the measure. Since here we consider only the qubit, a
2-level quantum system, the normalization of the measure can be re-expressed
by stating that state ρ is separable if and only if E(ρ) = 0 holds and the
entanglement of a maximally entangled state is given by E(ρM) = log22 = 1.

According to these two conditions, the union I is not a good entanglement
measure by its value. We have shown that state ρ is separable if and only if
its union I = 3 holds; and state ρ is the maximally entangled state if and only
if I = 1 holds. At the same time, the union I is decreasing with increasing
entanglement of the state from Eq. (4.65). Thus we need to introduce a new
quantity based on the union I. The new quantity can fulfill the requirements
and be a good entanglement measure.

Based on Eq. (4.65), we introduce a quantity, denoted as τ (T ), as

τ (T ) ≡ 3− I

3− 1
=

1

2
(3− I). (4.78)

Invoking an analogy to the names of 3-tangle [83] quantifying 3-way entan-
glement and the partial tangle [93] quantifying the residual two-qubit entan-
glement, we call the quantity τ (T ) the total tangle of a triqubit pure state.
Combining Eqs. (4.65) and (4.78), the total tangle τ (T ) is written in detail
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as

τ (T ) = τ +
1

2
(C2

AB + C2
AC + C2

BC). (4.79)

All the conclusions of the union I obtained above can be directly trans-
formed into the ones re-expressed in the term of the total tangle τ (T ). By the
value of the total tangle τ (T ), we quantify total entanglement of a triqubit
pure state. For example, state ρ is separable if and only if its total tangle
τ (T ) = 0 holds, and ρ is maximally entangled if and only if its total tangle
τ (T ) = 1 holds. Similar to the union I, when the value of the total tangle
τ (T ) of a state lies in the open interval between 0 and 1, i.e., τ (T ) ∈ (0, 1),
we do not determine the class of the entanglement but the amount of the
total entanglement of the state. For example, let us take τ (T ) = 2/3, which is
equivalent to I = 5/3, the state may be the W state, but it can also belong
to the GHZ entanglement or to the mixed entanglement.

4.5 Generalization

In the preceding sections, we introduced entanglement Venn diagrams and
the union I for triqubit pure states. Note that we would rather use the union
I than the total tangle τ (T ) though both are equivalent and can be easily
transformed into each other. This is since the union I directly corresponds
to set theory and can be understood intuitively.

4.5.1 Interesting bounds

Let us recall quantitative complementarity relations for N -qubit pure states.
For a pure state of N qubits A1, A2, · · · , AN , the following quantitative com-
plementarity relations were suggested [34,35]

τk(Rk) + S2
k = 1 (4.80)

where k = 1, 2, · · · , N and Rk denotes the set of the (N − 1) qubits other
than qubit Ak. Here τk(Rk) quantifies the nonlocal reality of qubit Ak, which
measures entanglement between qubits Ak and the remaining (N−1) qubits.
S2

k quantifies the local reality, i.e., the single particle property, of qubit Ak.
By quantitative complementarity relations, qubit Ak in an N -qubit pure

state is described by two parts, the nonlocal reality τk(Rk) and the local
reality S2

k , where the sum of the two parts, denoted as Ik, is always equal
to 1. If qubit Ak is regarded as a subset k composed of two parts, where
two parts and the area of subset k correspond to τk(Rk), S2

k , and Ik of qubit
Ak, respectively, then an N -qubit pure state can be regarded as a set of N
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subsets. In other words, we can construct a map between a set of N subsets
and an N -qubit pure state, where subset k corresponds to qubit Ak, the
intersection of subset k with other subsets to entanglement τk(Rk) between
qubit Ak and the remaining (N − 1) qubits, and the relative complement of
the intersection in subset k to the single particle property S2

k of qubit Ak.
To put the discussion of entanglement on a more solid basis, we define

the union, denoted as I, of an N -qubit pure state, invoking an analogy to
set theory, as

I ≡ I1 ∪ I2 ∪ · · · ∪ IN . (4.81)

Because of Ik = 1 for k = 1, 2, · · · , N , the union I reaches the maximum
value N when all qubits are disjoint, for example, in a fully separable state,
and the minimum value 1 when all qubits overlap completely, for example,
in the N -qubit GHZ state. It is shown in Fig. (4.11) that all N -qubit pure
states lie in the ring with radius 1 ≤ I ≤ N .

Theorem 1 (Separability Criterion). An N-qubit pure state is fully sep-
arable if and only if its union I is equal to N , i.e.,

I = N. (4.82)

Proof. —In set theory, since the area of any subset is 1, the union I of the set
composed of N subsets is N if and only if N subsets are disjoint, that is, if
there is no intersection among N subsets. According to the map between the
set of N subsets and the N -qubit pure state, “there is no intersection among
N subsets” means there is no entanglement among N qubits. Therefore
an N -qubit pure state is fully separable if and only if its union I satisfies
I = N .

In other words, the union I of an N -qubit pure state satisfies I < N if
and only if the qubits intersect, that is, if the state is entangled. It is shown
in Fig. (4.11) that all N -qubit fully separable pure states lie on the periphery
of the circle with radius I = N , while all N -qubit entangled pure states lie
in the ring with radius 1 ≤ I < N .

Since the local reality of each qubit in an N -qubit pure state can be
obtained, for the purpose of practical operation, the separability criterion
can also be presented as: an N -qubit pure state is fully separable if and only
if

N∑

k=1

S2
k = N (4.83)

holds, otherwise the state is entangled. For an N -qubit pure state, Eq. (4.83)
holds if and only if S2

k = 1 (τk(Rk) = 0) for k = 1, 2, · · · , N hold, i.e., the
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state is fully separable. Therefore we can operationally distinguish N -qubit
entangled pure states from separable ones by calculating the sum of the local
realities of N qubits.

Now consider the partition of N -qubit pure states with the help of par-
tition theory (some applications of partition theory can also be seen in
[55,56,63]). A partition of N qubits is given by

{1r1 , 2r2 , · · · , iri , · · · , N rN} (4.84)

with
∑N

i=1 iri = N , and the number of parts k =
∑N

i=1 ri, where, for example,
iri , the base i is the number of qubits in the part, the superscript ri is the
number of parts with the same number of qubits.

Here we only consider a special partition of an N -qubit pure state where
each part is the minimal composition of qubits, which can not be separated
any more without destroying entanglement of the state. That is, we only
consider the partition of an N -qubit pure state where either the part consists
of a single qubit or all the qubits in one and the same part, suppose M(> 1)
qubits, are in an M -qubit fully entangled state so that the entanglement of
the N -qubit state would be destroyed if the part were separated any more.
For example, for N = 6, {11, 21, 31} denotes all possible partitions of 6 qubits
into 3 parts, where the 3 parts consist of 1, 2 and 3 qubits, respectively. Here
consider the part with 2 qubits, the qubits therein are entangled each other,
but the part is entirely separable from the other two parts. Note that there
may be many partitions that correspond to the same number k of parts which
are all called k-partite splits, for example, {11, 21, 31}, {23} and {12, 41} are
all called 3-partite splits of 6 qubits.

Corollary 2. For an N-qubit entangled pure state with k-partite splits, where
1 ≤ k < N , the lower bound to the union I is k, i.e.,

k ≤ I < N. (4.85)

Proof. —For an N -qubit entangled pure state with k-partite splits, if the
part consists of only one qubit, its entirety is always equal to 1. If the part
consists of more than one qubit, suppose M qubits, its entirety can achieve
the lower bound 1 when these M qubits are in the M -qubit GHZ state.
Therefore the lower bound to the union I, which is the sum of entireties of
the k parts, is k when the entirety of each part reaches its lower bound 1.

It is shown in Fig. (4.11) that the N -qubit entangled pure states with
k-partite splits lie in the ring with radius k ≤ I < N , while either the part
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I

Figure 4.11: Distribution of N -qubit pure states via the amount of the union
I.

consists of a single qubit or all the qubits in the part, suppose M qubits, are
in the M -qubit GHZ state, the N -qubit state lies on the periphery of the
circle with radius I = k.

Corollary 3. An N-qubit entangled pure state with the union I < 2 must be
fully entangled.

Proof. —According to Corollary 2, if the union I of an N -qubit pure state
satisfies I < 2, the number k of the part of the state must be 1. Namely
the state with the union I < 2 must be a 1-partite split, which can not be
separated any more. Therefore an N -qubit pure state with the union I < 2
must be fully entangled.

Thus I < 2 is a sufficient condition on the N -qubit fully entangled pure
state. It is shown in Fig. (4.11) that the states, which lie in the ring with
radius 1 ≤ I < 2, must be fully entangled.

Because of the complete overlap of all qubits, the N -qubit GHZ state
possesses the minimal amount of the union I = 1, which lies on the periphery
of the circle with radius I = 1 in Fig. (4.11).

4.5.2 Detailed formulations

The exact formulations of the measures for N -way entanglement are unknown
until now. We cannot formulate the detailed union I and draw an entangle-
ment Venn diagram for an N -qubit pure state as in the case of the triqubit
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pure state. But guided by the detailed union I and entanglement Venn dia-
grams for triqubit pure states, we conjecture a few results for N -qubit pure
states.

In a pure state of qubits A, B and C, for example, focusing on qubit A,
the nonlocal reality τA(BC) of qubit A can be separated into two different
kinds of parts. One kind of part is the 3-way entanglement. Another kind of
parts are the 2-way entanglements involving qubit A. Consider now a pure
state of four qubits A1, A2, A3 and A4. By analogy with the case of the
triqubit pure state, focusing on qubit A1, the nonlocal reality τA1(A2A3A4) of
qubit A1 can be separated into three different kinds of parts. The first kind
of part is the 4-way entanglement τA1A2A3A4 . The second kind of parts are
the 3-way entanglements τA1A2A3 , τA1A2A4 and τA1A3A4 involving qubit A1.
The third kind of parts are the 2-way entanglements C2

A1A2
, C2

A1A3
and C2

A1A4

involving qubit A1. Thus we conjecture the following detailed quantitative
complementarity relation of qubit A1 in a 4-qubit pure state:

4-way entanglement︷ ︸︸ ︷
τA1A2A3A4 +

3-way entanglements︷ ︸︸ ︷
τA1A2A3 + τA1A2A4 + τA1A3A4 +

2-way entanglements︷ ︸︸ ︷
C2

A1A2
+ C2

A1A3
+ C2

A1A4︸ ︷︷ ︸
nonlocal reality

+ S2
A1︸︷︷︸

local reality

= 1.

(4.86)
Analogous relations also hold for qubits A2, A3 and A4.

We show the entanglement Venn diagram for a pure state of four qubits
A1, A2, A3 and A4 in Fig. (4.12). By analogy with the case of the triqubit
pure state, we consider qubit A1 as the focus, shown as a bold-faced circle in
Fig. (4.12). The relative complement of tripe of qubits (A2A3A4) in qubit A1,
A1|(A2∪A3∪A4), expresses the single-particle property S2

A1
of qubit A1. The

intersection of qubit A1 with triple of qubits (A2A3A4), A1 ∩ (A2 ∪A3 ∪A4),
expresses entanglement τA1(A2A3A4), i.e., the nonlocal reality of qubit A1. The
intersections (A1∩A2)|(A3∪A4), (A1∩A3)|(A2∪A4) and (A1∩A4)|(A2∪A3)
express three 2-way entanglements C2

A1A2
, C2

A1A3
and C2

A1A4
. The intersections

(A1∩A2∩A3)|A4, (A1∩A2∩A4)|A3 and (A1∩A3∩A4)|A2 express three 3-way
entanglements τA1A2A3 , τA1A2A4 and τA1A3A4 . The intersection A1∩A2∩A3∩A4

expresses 4-way entanglement τA1A2A3A4 . The cases of qubits A2, A3 and A4

are similar to the one of qubit A1.

By Fig. (4.12), the union I for a 4-qubit pure state can be written in
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Figure 4.12: Entanglement Venn diagram for a pure state of four qubits A1,
A2, A3 and A4.

detail as

I =

4-way entanglement︷ ︸︸ ︷
τA1A2A3A4 +

3-way entanglements︷ ︸︸ ︷
τA1A2A3 + τA1A2A4 + τA1A3A4 + τA2A3A4

+

2-way entanglements︷ ︸︸ ︷
C2

A1A2
+ C2

A1A3
+ C2

A1A4
+ C2

A2A3
+ C2

A2A4
+ C2

A3A4

+ S2
A1

+ S2
A2

+ S2
A3

+ S2
A4︸ ︷︷ ︸

local realities

.

(4.87)

By Eq. (4.86), we have

S2
A1

= 1− τA1A2A3A4 − (τA1A2A3 + τA1A2A4 + τA1A3A4)
−(C2

A1A2
+ C2

A1A3
+ C2

A1A4
).

(4.88)
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In the same way, we can obtain three similar expressions for S2
A2

, S2
A3

and
S2

A4
. Then we have

I = 4− 3

4-way entanglement︷ ︸︸ ︷
τA1A2A3A4 −2(

3-way entanglements︷ ︸︸ ︷
τA1A2A3 + τA1A2A4 + τA1A3A4 + τA2A3A4)

−(

2-way entanglements︷ ︸︸ ︷
C2

A1A2
+ C2

A1A3
+ C2

A1A4
+ C2

A2A3
+ C2

A2A4
+ C2

A3A4
).

(4.89)
The total tangle τ (T ) for a 4-qubit pure state can be written as

τ (T ) = 4− I
4− 1

=

4-way entanglement︷ ︸︸ ︷
τA1A2A3A4 +

2

3
(

3-way entanglements︷ ︸︸ ︷
τA1A2A3 + τA1A2A4 + τA1A3A4 + τA2A3A4)

+
1

3
(

2-way entanglements︷ ︸︸ ︷
C2

A1A2
+ C2

A1A3
+ C2

A1A4
+ C2

A2A3
+ C2

A2A4
+ C2

A3A4
).

(4.90)
Consider two typical 4-qubit pure states, the 4-qubit GHZ state and the

4-qubit W state. For the 4-qubit GHZ state

|GHZ〉4 =
1√
2
(|0000〉+ |1111〉), (4.91)

there is no 2- and 3-way entanglement but only a 4-way entanglement with
the maximum 1, i.e.,

{
τX = 1 for X = A1A2A3A4;
τX = 0 for others.

(4.92)

The total tangle τ (T ) of the state is

τ (T ) = τA1A2A3A4 = 1. (4.93)

For the 4-qubit W state

|W〉4 =
1

2
(|1000〉+ |0100〉+ |0010〉+ |0001〉), (4.94)

there is no 3- and 4-way entanglement but only six 2-way entanglements.
These six 2-way entanglements are given in [31] as

C2
AiAj

=
1

4
(4.95)
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for Ai, Aj ∈ {A1, A2, A3, A4}. Then the total tangle τ (T ) is

τ (T ) =
1

3
(C2

A1A2
+ C2

A1A3
+ C2

A1A4
+ C2

A2A3
+ C2

A2A4
+ C2

A3A4
) =

1

2
. (4.96)

Now consider a pure state of N qubits A1, A2, · · · , AN . We introduce a
quantity τ

(m)
Ai

which is defined as the sum of all m-way entanglements related
with qubit Ai as

τ
(m)
Ai

≡ τAi···Am︸ ︷︷ ︸
m

+ · · ·+ τAi···AN︸ ︷︷ ︸
m

. (4.97)

For example, N = 4,




τ
(2)
Ai

= τAiAj
+ τAiAk

+ τAiAl
,

τ
(3)
Ai

= τAiAjAk
+ τAiAjAl

+ τAiAkAl
,

τ
(4)
Ai

= τAiAjAkAl
,

(4.98)

for Ai, Aj, Ak, Al ∈ {A1, A2, A3, A4}. Here we substitute τAiAj
for C2

AiAj
to

denote the squared concurrence between qubits Ai and Aj. Because the lo-
cal reality S2

Ai
quantifies the single-partite property of qubit Ai, by analogy

with the m-way entanglement, we can call the single-partite property S2
Ai

the 1-way entanglement, denoted as τ
(1)
Ai

, of qubit Ai. Of course, the 1-way

entanglement τ
(1)
Ai

is not true entanglement at all. That is, we substitute τ
(1)
Ai

for S2
Ai

to denote the local reality of qubit Ai. Then the quantitative com-
plementarity relation for qubit Ai in an N -qubit pure state can be written,
as speculated in [35], as

N∑
m=1

τ
(m)
Ai

= τ
(1)
Ai︸︷︷︸

local reality

+ τ
(2)
Ai

+ · · ·+ τ
(N)
Ai︸ ︷︷ ︸

nonlocal realities

= 1 (4.99)

where τ
(1)
Ai

is related with the local reality of qubit Ai while all the others are
related with the nonlocal realities of qubit Ai.

We also introduce another quantity τ (m) which is defined as the sum of
all m-way entanglements in the state as

τ (m) ≡ τA1A2···Am + · · ·+ τA(N+1−m)···AN
. (4.100)

For example, N = 4,




τ (2) = τAiAj
+ τAiAk

+ τAiAl
+ τAjAk

+ τAjAl
+ τAkAl

,
τ (3) = τAiAjAk

+ τAiAjAl
+ τAiAkAl

+ τAjAkAl
,

τ (4) = τAiAjAkAl
,

(4.101)
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for Ai, Aj, Ak, Al ∈ {A1, A2, A3, A4}. The definition (4.100) also holds for the
1-way entanglements (i.e., the local realities) as

τ (1) = τ
(1)
A1

+ τ
(1)
A2

+ · · ·+ τ
(1)
AN

=
N∑

i=1

τ
(1)
Ai

. (4.102)

From the definitions of τ
(m)
Ai

and τ (m) for an N -qubit pure state, we have
the following relation

τ (m) =
1

m

N∑
i=1

τ
(m)
Ai

. (4.103)

For example, N = 4 and m = 2,

4∑
i=1

τ
(2)
Ai

= τ
(2)
A1

+ τ
(2)
A2

+ τ
(2)
A3

+ τ
(2)
A4

= 2(τA1A2 + τA1A3 + τA1A4 + τA2A3 + τA2A4 + τA3A4)

= 2τ (2).

(4.104)

By the definition of the union I for an N -qubit pure state in Eq. (4.81),
we can write the detailed union I as

I =
N∑

m=1

τ (m) = τ (1)︸︷︷︸
local realities

+
N∑

m=2

τ (m)

︸ ︷︷ ︸
nonlocal realities

. (4.105)

From the viewpoint of characterization of entanglement in the N -qubit pure
state, the local realities τ (1) are unwanted terms in the union I. By Eq.
(4.99), we have

τ
(1)
Ai

= 1−
N∑

m=2

τ
(m)
Ai

. (4.106)

Combining Eqs. (4.102) and (4.103), we have

τ (1) = N −
N∑

i=1

N∑
m=2

τ
(m)
Ai

= N −
N∑

m=2

mτ (m).

(4.107)
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Thus

I = N −
N∑

m=2

mτ (m) +
N∑

m=2

τ (m)

= N −
N∑

m=2

(m− 1)τ (m).

(4.108)

The total tangle τ (T ) for an N -qubit pure state can be written as

τ (T ) = N − I
N − 1

= 1
N − 1

N∑
m=2

(m− 1)τ (m).
(4.109)

For the N -qubit GHZ state

|GHZ〉N =
1√
2

(|00 · · · 0〉+ |11 · · · 1〉), (4.110)

there is no entanglement but only an N -way entanglement with the maximum
1, i.e., {

τ (N) = 1,
τ (m) = 0 for 1 ≤ m < N.

(4.111)

The total tangle τ (T ) is given by

τ (T ) = τ (N) = 1. (4.112)

For the N -qubit W state

|W〉N =
1√
N

(|10 · · · 0〉+ |01 · · · 0〉+ · · ·+ |00 · · · 1〉), (4.113)

there is only the 2-way entanglements which are given by [31]

τAiAj
=

4

N2
(4.114)

for i, j ∈ {1, 2, · · · , N}. There are (N(N − 1)/2) 2-way entanglements in the
N -qubit W state. Then we have

τ (2) =
N(N − 1)

2
· 4

N2
=

2(N − 1)

N
. (4.115)

Thus the total tangle τ (T ) is written as

τ (T ) =
1

N − 1
τ (2) =

2

N
. (4.116)



Chapter 5

Multiparticle Entanglement

In the preceding chapter, we have discussed quantum systems in which the
Hilbert-space dimensions of all particles are the same and equal to 2, such
as spin-1/2 particles, so that each particle can be regarded as a qubit.

In this chapter, we will discuss quantum systems where the particles have
arbitrary Hilbert-space dimensions. That is, in a quantum system which will
be discussed in this chapter, the Hilbert-space dimension of the particle can
be any positive integer greater than 1, and different particles can have differ-
ent Hilbert-space dimensions. For simplicity, we omit the words “multipar-
ticle arbitrary-dimensional” in the following part of this chapter. Another
important difference from the preceding chapter is that in this chapter we
will use the ranks of the (reduced) density matrices of the states as the tool to
characterize entanglement of the states. In this chapter, we will focus on the
following two questions. One is the first task of characterizing entanglement:
“is a state entangled or not?”, i.e., detection of entanglement. Another is
one subtask of the second task of characterizing entanglement: “is a state of
several subsystems entangled or not?”.

This chapter is organized as follows: In section 1, we discuss the case of
pure states. We propose two necessary and sufficient conditions for entangled
and fully entangled pure states, respectively. Then we present a procedure to
find a special partition, which has been mentioned in the preceding chapter,
of a given quantum systems where every part of the special partition contains
either X(> 1) fully entangled particles or only a single particle. In section 2,
we discuss the case of mixed states. We propose necessary conditions for the
separability of mixed states, which naturally lead us to obtain a sufficient
condition for entanglement of the states. In a similar way we propose neces-
sary conditions to determine the separability properties of the partitions of
all particles in a given mixed state based on hierarchic relations among all
possible partitions of the particles.

79
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For convenience, we will use the following notation in this chapter. For a
state ρ of N particles A1, A2, · · · , AN , the reduced density matrix obtained
by tracing ρ over particle Ai is written as

ρR(i) = TrAi
(ρ) (5.1)

where R(i) denotes the set of the remaining (N − 1) particles other than
particle Ai. The reduced density matrix obtained by tracing ρ over particles
Ai and Aj is denoted as

ρR(i,j) = TrAj
(ρR(i)) = TrAj

(TrAi
(ρ)). (5.2)

Here the sequence of tracing particles Ai and Aj over the initial state ρ
doesn’t influence the finial result, i.e.,

ρR(i,j) = TrAj
(TrAi

(ρ)) = TrAi
(TrAj

(ρ)). (5.3)

In the same way,
ρR(i,j,k) = TrAi

(TrAj
(TrAk

(ρ))), (5.4)

and so on. In view of these successive relations, ρ can be called 1-level-higher
density matrix of ρR(i) and 2-level-higher density matrix of ρR(i,j); ρR(i) can
be called 1-level-higher density matrix of ρR(i,j) and 2-level-higher density
matrix of ρR(i,j,k); and so on.

It is obvious that the number of the 1-level-higher density matrices of a
reduced density matrix can be greater than 1. And a density matrix can be
the 1-level-higher density matrix of several different reduced density matrices.
For example, the 1-level-higher density matrices of ρR(i,j) are ρR(i) and ρR(j).
At the same time, the reduced density matrix ρR(i,j) is the 1-level-higher
density matrix of the reduced density matrices ρR(i,j,k), ρR(i,j,l), ρR(i,j,m), and
so on.

In an N -particle state, a density matrix of M (1 ≤ M ≤ N) particles
has (N −M) 1-level-higher density matrices and is the 1-level-higher density
matrix of M (NOT including the case of M = 1) reduced density matrices.
If the density matrix contains only 1 (M = 1) particles, it is impossible
that such density matrix is the 1-level-higher density matrix of some density
matrix because such density matrix cannot be traced any more. In Fig. (5.1),
a state ρ of three particles A, B and C is taken as the example to show these
successive relations.

5.1 Pure states

In this section, we will discuss entanglement of pure states based on the
ranks of the (reduced) density matrices. Thus it is necessary to consider the
definition of the rank of a matrix.
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ρ
ABC

ρR(A)=ρBC ρ =ρACR(B)
ρ =ρR(C) AB

ρ =ρCR(A,B) ρ =ρR(A,C) B
ρ =ρR(B,C) A

Figure 5.1: Successive relations among (reduced) density matrices of a state
ρ with three particles A, B and C. For two density matrices at the two
ends of each arrow, the density matrix at the starting point of the arrow is
a 1-level-higher density matrix of the density matrix at the end point.

The rank of a matrix ρ, denoted as rank(ρ), is defined as the maximal
number of linearly independent row vectors (also column vectors) in the
matrix ρ.

It is clear from this definition that

0 ≤ rank(ρ) ≤ min{m,n} (5.5)

where m (n) is the number of rows (columns) in the matrix ρ. Here rank(ρ) =
0 holds if and only if ρ is the zero matrix.

According to this definition, the rank of the density matrix of a pure state
has the following basic property:

Lemma 4. A state is pure if and only if the rank of its density matrix ρ is
equal to 1, i.e.,

rank(ρ) = 1. (5.6)

Proof. —A state ρ is pure if and only if ρ2 = ρ holds, that is, ρ is a projection
operator onto a one-dimensional subspace so that only one eigenvalue is equal
to 1, all the other ones being zero. Thus the number of linearly independent
row vectors of ρ is equal to 1. Therefore rank(ρ) = 1 holds for a pure state
ρ.

Conversely, for a density matrix ρ with rank(ρ) = 1, since there is only
one linearly independent row vector of ρ, it is possible to rewrite the density
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matrix in a new form with only one element, whose value is equal to 1, by
selecting a suitable basis. In that basis, ρ2 = ρ is evident and hence ρ is
pure.

5.1.1 Entanglement and full entanglement

Based on this basic property, a necessary and sufficient condition for a pure
state to be entangled is obtained as follows.

Lemma 5. A pure state is entangled if and only if the rank of at least one
of its reduced density matrices is greater than 1.

Proof. —If a pure state is entangled, according to Schrödinger’s definition of
entanglement: “The whole is in a definite state, the parts taken individually
are not”, then at least one of the states obtained by tracing the original state
over some particles is mixed. By Lemma 4, the rank of this reduced state is
greater than 1. Conversely, if the rank of one reduced density matrix of a
pure state is greater than 1, then the reduced state is mixed, and according
to Schrödinger’s definition, the original state is entangled.

From Lemma 5 it is obvious that a pure state is entangled if and only if at
least one reduced state of the original state is mixed. Of course, an entangled
pure state can have more than one mixed reduced states. For example, both
reduced density matrices of state |Ψ〉 = (1/

√
2)(|01〉 − |10〉) (one of the Bell

states) are mixed.

An important subclass of the multiparticle entangled states are the so-
called fully entangled states [60, 61], which cannot be reduced to mixtures
of states where a smaller number of particles are entangled. For example,
triqubit states that are not of the forms ρ1 ⊗ ρ23, ρ2 ⊗ ρ13, and ρ3 ⊗ ρ12, or
mixtures of these states are fully entangled, such as the GHZ state. In terms
of the ranks of reduced density matrices, we obtain the following necessary
and sufficient condition for a pure state to be fully entangled:

Theorem 6. A pure state is fully entangled if and only if the ranks of its all
reduced density matrices are greater than 1.

Proof. —A pure state is fully entangled if and only if every particle and every
multi-particle combination in the system are entangled with the remaining
particles. That is, the states of every individual particle and every individual
multi-particle combination are mixed, i.e., the ranks of all reduced density
matrices are greater than 1, and vice versa.
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An N -particle pure state has

N−1∑
n=1

N !

n!(N − n)!
= 2N − 2 (5.7)

reduced density matrices. Thus a pure state is fully entangled if and only if
its all (2N − 2) reduced density matrices are mixed.

If at least one (but not all) of the reduced states is pure, then the initial
entangled state is partially entangled but not fully entangled, That is, for a
given entangled pure state, if the rank of at least one reduced density matrix
is equal to 1, then one or some of all particles in the state are separable
from the remaining particles. This problem will be discussed in the next
subsection.

5.1.2 Classification

As mentioned in Chapter 2, one subtask of classification of multipartite en-
tanglement is to determine the separability of the state with respect to parti-
tions. That is, for a given entangled pure state, which particles are entangled
with each other? In this subsection, we will present a simple procedure to
determine the type of entanglement. In this procedure, we separate all the
particles in a given pure state of N particles, without destroying entangle-
ment of the initial state, into the parts of a special partition, where every
part contains either X (1 < X ≤ N) fully entangled particles or only a single
particle.

For a given pure state ρ, if its particles are separated into two parts U
and V , then the Schmidt decomposition of state ρ is written as

ρ =
k∑

i=1

λi|ui〉〈ui| ⊗ |vi〉〈vi| (5.8)

where |ui〉 ∈ HU , |vi〉 ∈ HV and
∑k

i=1 λi = 1 with λi > 0. Here the number
k is called the Schmidt rank of ρ, which is the rank of the reduced density
matrix ρU (and ρV ):

rank(ρU) = rank(ρV ). (5.9)

Thus if a pure state has one pure (or mixed) reduced state, then the state has
at least two pure (or mixed) reduced states. Then we obtain the following
useful Lemma:
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Lemma 7. Given a pure state ρ, if its particles are separated into two parts
U and V , then rank(ρU) = 1 holds if and only if these two parts are separable,
i.e.,

ρ = ρU ⊗ ρV . (5.10)

Proof. —If rank(ρU) = 1 holds, then rank(ρV ) = 1 holds by Eq. (5.9),
thus states ρU and ρV are pure by Lemma 4. According to the proposition
in Ref. [132]: “For two systems U and V , whenever U is in a pure state,
no correlation exists between U and V ”, states ρU and ρV are separable.
Therefore the whole pure state ρ can be written as ρ = ρU ⊗ ρV .

Conversely, if ρ is pure and separable with respect to the two parts U and
V , that is, ρ = ρU ⊗ ρV , then the ranks obey (see, e.g., [133])

rank(ρ) = rank(ρU) ∗ rank(ρV ) = 1, (5.11)

and hence rank(ρU) = rank(ρV ) = 1.

Using the results obtained above, we construct the following procedure to
find a special partition of a given pure state ρ of N particles A1, A2, · · · , AN ,
where each part is the minimal set of particles which cannot be separated
any more without destroying entanglement of the initial state, so that the
particles are separable when they are in different parts but entangled when
they are in one and the same part. Our procedure consists in successively
searching for all subsets of growing size which are separable from the rest
of the system in the sense of Lemma 7. The maximal set size which has to
be checked for separability is bN/2c (the maximal integer less than or equal
to N/2), since along with every separable set of size M , its complement of
size (N −M) also is of course separable from all other particles according to
Lemma 7. In more detail the procedure works as follows:

Step 1. Calculate the rank of ρR(i) for all particles. By Lemma 7, if
rank(ρR(i)) = 1 holds, then ρ factorizes as ρ = ρAi

⊗ρR(i). Suppose there exist
M1, 0 ≤ M1 ≤ N , particles that satisfy rank(ρR(i)) = 1, then ρ is the tensor
product of M1 single-particle parts and a part of (N −M1) particles. After
this step, it is impossible that there exists a separable single particle in the
(N−M1)-particle part. Thus if (N−M1) ≤ 3 holds, then the procedure ends
since the (N − M1)-particle part cannot contain further separable subsets;
otherwise, i.e., if (N −M1) > 3 holds, we perform the next step.

Step 2. For the part of the remaining N2, N2 = N − M1, particles,
calculate the rank of ρR(i,j) for all two-particle combinations. If there exist
M2, 0 ≤ M2 ≤ bN2/2c, two-particle combinations that satisfy rank(ρR(i,j)) =
1, then the part of N2 particles is the tensor product of M2 two-particle
parts and a part of (N2 − 2M2) particles. If (N2 − 2M2) ≤ 5 holds, the
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procedure ends since all separable single particle and 2-particle combinations
have already been found in these two steps. Otherwise, i.e., if (N2−2M2) > 5
holds, we perform the next step.

· · · · · · · · ·
Step X. Following the preceding steps, for the part of NX , NX =

N − ∑X−1
i=1 (i ∗ Mi), particles, calculate the rank of ρR(X) for all X-particle

combinations in these NX particles, where for a certain X-particle combina-
tion, R(X) denotes the set of the remaining (NX −X) particles other than
the particles in this combination. If there exist MX , 0 ≤ MX ≤ bNX/Xc,
X-particle combinations that satisfy rank(ρR(X)) = 1, then the part of NX

particles is written as the tensor product of MX X-particle parts and a part
of (NX−X ∗MX) particles. In a similar consideration in the preceding steps,
if (NX −X ∗MX) ≤ (2X +1) holds, the (NX −X ∗MX)-particle part cannot
contain further separable subsets since all separable x-particle, x ≤ X, com-
binations have already been found by assumption, then the procedure ends.
Otherwise, i.e., if (NX − X ∗ MX) > (2X + 1) holds, we perform the next
step.

The following steps are similar to step X. In the end, if we obtain separa-
ble parts in the procedure, then state ρ can be written as the tensor product
of those parts. If we do not obtain any separable part in the procedure, then
state ρ is fully entangled.

As an example to explain the procedure in detail, we use the following
six-qubit pure state

|Ψ〉 =
1

2
(|000000〉+ |000111〉+ |011000〉+ |011111〉). (5.12)

• Step 1. Calculating rank(ρR(i)) for all qubits:

rank(ρR(1)) = 1 =⇒ ρ = ρA1 ⊗ ρR(1). (5.13)

Since (6− 1) > 3, we continue.

• Step 2. Calculating rank(ρR(i,j)) for all 2-qubit combinations in the
part of the remaining 5 qubits:

rank(ρR(2,3)) = 1 =⇒ ρR(1) = ρ(A2,A3) ⊗ ρR(1,2,3). (5.14)

Since (5− 2) < 5, we end the procedure.

In the end, state ρ can be written as

ρ = ρA1 ⊗ ρ(A2,A3) ⊗ ρ(A4,A5,A6). (5.15)

This procedure is shown in Fig. (5.2) as a tree.
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(A ,A )32
ρ

R(A )1
ρρ

A1

ρ

 

ρ
4 5 6( ) A ,A ,A 

Figure 5.2: Tree form of the procedure of the six-qubit pure state |Ψ〉 =
(1/2)(|000000〉 + |000111〉 + |011000〉 + |011111〉). In the diagram, all parts
which consist of no subpart are the minimal nonseparable sets of qubits
so that the initial state is written as the tensor product of all these parts
ρ = ρA1 ⊗ ρ(A2,A3) ⊗ ρ(A4,A5,A6).

5.2 Mixed states

In this section, we focus on entanglement of mixed states.

5.2.1 Separability of states

In terms of the ranks of reduced density matrices, we obtain the following
necessary conditions for separable states:

Theorem 8. If a state ρ of N particles A1, A2, · · · , AN is separable, then
the rank of any reduced density matrix of ρ must be less than or equal to the
ranks of all of its 1-level-higher density matrices, i.e.,

rank(ρR(i)) ≤ rank(ρ) (5.16)

holds for any Ai ∈ {A1, A2, · · · , AN}; and
{

rank(ρR(i,j)) ≤ rank(ρR(i))

rank(ρR(i,j)) ≤ rank(ρR(j))
(5.17)

holds for any pair of all particles; and so on.

Proof. —For simplicity, here we only prove (5.16). The remaining inequali-
ties can be proved in a similar way.
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A separable mixed state ρ of N particles A1, A2, · · · , AN and its reduced
density matrix ρR(i) can be written as





ρ =
M∑

j=1

pjρ
j =

M∑
j=1

pj

N⊗
i=1

ρj
Ai

ρR(i) =
M∑

j=1

pjρ
j
R(i) =

M∑
j=1

pj

N⊗
k=1
k 6=i

ρj
Ak

.

(5.18)

According to Lemma 4, any pure state can be considered a basis vector in its
vector space. Thus M pure states ρj, where ρj =

⊗N
i=1 ρj

Ai
∈ ⊗N

i=1HAi
for

j = 1, 2, · · · ,M , are M basis vectors that span a vector space U ⊂ ⊗N
i=1HAi

.
Here HAi

denotes the Hilbert space of particle Ai. The maximal number of
linearly independent vectors among these M basis vectors is the rank of ρ,
rank(ρ), and at the same time, it is the dimension of vector space U .

In a similar way, M basis vectors ρj
R(i), where ρj

R(i) =
⊗N

( k=1
k 6=i )

ρj
Ak

∈
⊗N

( k=1
k 6=i )

HAk
for j = 1, 2, · · · ,M , span a vector space V ⊂ ⊗N

( k=1
k 6=i )

HAk
with

the dimension rank(ρR(i)).

From the construction of the vector spaces U and V it is clear that V is
a linear subspace of U , and hence its dimension is not greater than that of
U . This proves (5.16) since the dimensions of the vector spaces are equal to
the ranks of the density matrices.

The separability conditions (5.16,5.17) for mixed states are not sufficient.
For example, an important family of the biqubit mixed states are the so called
Werner states [13], which are mixtures of a maximally entangled biqubit pure
state and the separable biqubit maximally mixed state. These states are fully
characterized by the fidelity F , which measures the overlap of the maximally
entangled biqubit pure state with the Werner states. Though the Werner
states do satisfy the separability conditions (5.16,5.17), they are entangled
for F > 1/2.

The necessary (but not sufficient) conditions (5.16,5.17) for a mixed state
to be separable are logically equivalent to the following sufficient (but not
necessary) conditions for a mixed state to be entangled:

Corollary 9. Given a mixed state ρ, if the rank of at least one of the reduced
density matrices of ρ is greater than the rank of one of its 1-level-higher
density matrices, then the state ρ is entangled.
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{1, 3 }1 1

{1, 2 }2 1

{1 }4

{4 }1

{2 }2

ABCD

B−C−AD

A−BCD B−ACD C−ABD D−ABC AB−CD AC−BD AD−BC

A−B−C−D

A−B−CD A−C−BD A−D−BC C−D−ABB−D−AC

Figure 5.3: Hierarchic relations among all possible partitions of four particles
A, B, C and D. The five different kinds of partitions are listed on right side
of the figure.

5.2.2 Separability with respect to partitions

For a given mixed state, there are hierarchic relations among all possible
partitions of the particles (e.g. in Ref. [55, 56]). For example, consider a
partition of all particles into i parts. If we allow some of the parts to act
together as a new composite part, then we obtain a new partition into j parts
with j < i. In Fig. (5.3), we take a state of four particles A, B, C and D as
an example to show the hierarchic relations among all possible partitions of
the particles.

In a way similar to the proof of the separability conditions (5.16,5.17),
we obtain the following interesting separability properties of the partitions
of the particles in a given mixed state:

Corollary 10. Consider a mixed state ρ =
∑M

j=1 p
j
ρj and a partition of the

particles. If any two parts U and V in the partition are separable, that is,
the state of the composition (U + V ) of parts U and V can be written as

ρ(U+V ) =
M∑

j=1

pjρ
j
(U+V ) =

M∑
j=1

pj(ρ
j
U ⊗ ρj

V ) (5.19)

where ρj
U ∈ HU , ρj

V ∈ HV and ρj
(U+V ) ∈ H(U+V ), then the ranks of the two

reduced density matrices ρU and ρV both are less than or equal to the rank of
ρ(U+V ), i.e., {

rank(ρU) ≤ rank(ρ(U+V ))

rank(ρV ) ≤ rank(ρ(U+V )).
(5.20)
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The M basis vectors ρj
U and the M basis vectors ρj

V span two linear sub-
spaces of the composite vector space spanned by the M basis vectors ρj

(U+V ).

Thus as the dimensions of the two linear subspaces, rank(ρU) and rank(ρV )
both are not greater than rank(ρ(U+V )), the dimension of the composite vec-
tor space, Corollary 10 is proved. The Werner states again show that the
separability conditions for mixed states in Corollary 10 are not sufficient.

The necessary separability conditions for the partitions in Corollary 10
can again be reformulated as sufficient entanglement conditions of the par-
titions: given a mixed state and a partition of the particles, consider any
two parts in the partition. If the rank of at least one of the reduced density
matrices of the two parts is greater than the rank of the density matrix of
the composition of these two parts, then these two parts are entangled.
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Chapter 6

Conclusion and Outlook

The characterization, including detection, classification and quantification,
of entanglement is perhaps the most challenging open problem of modern
quantum theory. Several aspects of this problem have been discussed in this
thesis and some interesting results have been obtained for understanding
entanglement.

Summing up, the results obtained in this thesis are listed as follows:

• Mixed entanglement of triqubit pure states. Taking the squared con-
currence and the 3-tangle as measures of 2- and 3-way entanglement,
we proposed a special true tripartite entanglement, the mixed entan-
glement, which possesses properties of both GHZ entanglement and W
entanglement, simultaneously. There exist two inequivalent kinds of
sets of four non-superfluous basis vectors for constructing states with
mixed entanglement. With one of the two sets, we discussed Walther,
Resch and Zeilinger’s experiment [94] and contributed to the clarifica-
tion of its nature.

• Entanglement Venn diagrams for triqubit pure states. Based on quan-
titative complementarity relations for triqubit pure states, we drew
an entanglement Venn diagram for such states to intuitively illustrate
entanglement among the three qubits. Then we showed different en-
tanglement Venn diagrams for triqubit pure states with different en-
tanglements. These diagrams helped us obtain a clear picture of the
relations among the three qubits in different entanglements.

• Union I (total tangle τ (T )) for quantifying total entanglement of a
triqubit pure state. By the entanglement Venn diagram, we intro-
duced a new quantity, named the union I, for triqubit pure states. The
detailed formulation of the union I for a general triqubit pure state has

91
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been given. Then we discussed the properties of the union I for different
entanglements. Due to its convenient properties as a measure of entan-
glement, we introduced the total tangle τ (T ) that is equivalent to the
union I from the mathematical point of view. An important advantage
of the total tangle τ (T ) is that it can quantify the total entanglement
of a triqubit pure state which neither the squared concurrence nor the
3-tangle can.

• Bounds to the union I in N -qubit pure states. Invoking an analogy
to set theory, we gave a definition of the union I for an N -qubit pure
state based on quantitative complementarity relations. This allowed
us to prove operational necessary and sufficient separability criteria for
N -qubit pure states, to formulate lower bounds to the union I for N -
qubit pure states with different types of entanglement and to prove a
sufficient condition for full entanglement.

• Detailed formulations of the union I for N -qubit pure states in conjec-
ture. We generalized the entanglement Venn diagram to pure states of
more than three qubits based on speculated quantitative complemen-
tarity relations. This allowed us to formulate the detailed forms of the
union I for N -qubit pure states as a conjecture. The formulations of
the total tangle τ (T ) for N -qubit pure states have been given by the
corresponding union I.

• Multiparticle entanglement and ranks of density matrices. First, we dis-
cussed multiparticle pure-state entanglement by ranks of the reduced
density matrices. Two necessary and sufficient conditions on entangled
and fully entangled states have been proposed. Then we derived neces-
sary conditions for the separability of multiparticle arbitrary-dimensional
mixed states.

Following the results obtained in this thesis, there are many interesting
problems for further research. Some of them are listed below:

• Detailed formulations of the union I for N -qubit pure states. We have
obtained a detailed formulation of the union I for N -qubit pure states
in this thesis, but the derivation of the union I is only based on specu-
lated detailed quantitative complementarity relations. Thus validating
the correctness of our results is necessary. One possibility of solving
this problem is the search for exact definitions of measures for N -way
entanglement which are unknown until now.
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• Entanglement Venn diagrams and the union I for mixed states. In this
thesis, we discussed the entanglement Venn diagram and the union I
only in the case of pure states. Quantitative complementarity relations
of mixed states have been discussed in [33, 34]. How to generalize our
results about the entanglement Venn diagram and the union I to mixed
states is an interesting and challenging problem for further research.
We have made some attempts in this direction.

• Relations between two tools for studying entanglement: ranks of re-
duced density matrices and the positivity of the partial transpose. It is
well known that the positivity of the partial transpose, introduced by
Peres in 1996 [45], is a very important necessary condition for entangle-
ment. Combinations of the rank and positive partial transpose criteria
have been used to study the separability properties of some special
composite systems [134–136]. It is an interesting problem for further
research to investigate the relation between these two approaches in
more detail.
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Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[23] S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H.
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[81] P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn,
Phys. Rev. A 64, 042315 (2001).

[82] P. Rungta and C. M. Caves, Phys. Rev. A 67, 012307 (2003).

[83] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306
(2000).

[84] A. Wong and N. Christensen, Phys. Rev. A 63, 044301 (2001).

[85] G. Vidal, J. Mod. Opt. 47, 355 (2000).

[86] M. Donald, M. Horodecki, and O. Rudolph, J. Math. Phys. 43, 4252
(2002).

[87] K. G. H. Vollbrecht and R. F. Werner, quant-ph/0010095.

[88] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 84,
2014 (2000).

[89] X. Wang, Phys. Rev. A 66, 034302 (2002).

[90] V. Subrahmanyam, Phys. Rev. A 69, 022311 (2004).



100 BIBLIOGRAPHY

[91] I. Bose and A. Tribedi, Phys. Rev. A 72, 022314 (2005).

[92] N. Gisin and H. Bechmann-Pasquinucci, Phys. Lett. A 246, 1 (1998).

[93] S. Lee, J. Joo, and J. Kim, Phys. Rev. A 72, 024302 (2005).

[94] P. Walther, K. J. Resch, and A. Zeilinger, Phys. Rev. Lett. 94, 240501
(2005).

[95] E. F. Galvão, M. B. Plenio and S. Virmani, J. Phys. A 33, 8809 (2000).

[96] Y.-X. Huang, Y.-F. Yu, and M.-S. Zhan, Chin. Phys. Lett. 20, 1423
(2003).

[97] F. Pan, D. Liu, G. Lu, and J. P. Draayer, Phys. Lett. A 336, 384
(2005).

[98] D. Cavalcanti and M. O. T. Cunha, phant-ph/0506035.

[99] N. Linden and S. Popescu, Fortschr. Phys. 46, 567 (1998).

[100] J. Schlienz and G. Mahler, Phys. Lett. A 224, 39 (1996).

[101] D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A.
Zeilinger, Phys. Rev. Lett. 82, 1345 (1999).

[102] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A.
Zeilinger, Nature 403, 515 (2000).

[103] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M.
Raimond, and S. Haroche, Science 288, 2024 (2000).

[104] M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter,
Phys. Rev. Lett. 92, 077901 (2004).

[105] C. F. Roos et al., Science 304, 1478 (2004).

[106] B. M. Terhal, quant-ph/0307120.

[107] M. Koashi and A. Winter, Phys. Rev. A 69, 022309 (2004).

[108] S. Bose and V. Vedral, Phys. Rev. A 61, 040101 (2000).

[109] T.-C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro,
and F. Verstraete, Phys. Rev. A 67, 022110 (2003).

[110] S. Ishizaka and T. Hiroshima, Phys. Rev. A 62, 022310 (2000).



BIBLIOGRAPHY 101

[111] W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, Phys.
Rev. A 64, 030302 (2001).

[112] D. Cavalcanti, F. G. S. L. Brandão, and M. O. Terra Cunha, Phys.
Rev. A 72, 040303 (2005).

[113] N. Bohr, Nature (London) 121, 580 (1928).

[114] N. J. Cerf and C. Adami, quant-ph/9610005.

[115] N. J. Cerf and C. Adami, Phys. Rev. Lett. 79, 5194 (1997).

[116] N. J. Cerf and C. Adami, Physica D 120, 62 (1998).

[117] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynamn Lectures
on Physics Vol. III (Addison-Wesley, Reading, 1965).

[118] A. Messiah, Quantum Mechanics, (North-Holland, 1970).

[119] W. Heisenberg, “The physical content of quantum kinematics and
mechanics.” in Quantum Theory and Measurement, edited by J. A.
Wheeler and W. H. Zurek (Princeton U. Press, Princeton, NJ, 1983).

[120] K. Simonyi, Kulturgeschichte der Physik, (Verlag Harri Deutsch, Thun,
1990).

[121] W. K. Wootters and W. H. Zurek, Phys. Rev. D 19, 473 (1979).

[122] D. M. Greenberger and A. Yasin, Phys. Lett. A 128, 391 (1988).

[123] G. Jaeger, M. A. Horne, and A. Shimony, Phys. Rev. A 48, 1023 (1993).

[124] G. Jaeger, A. Shimony, and L. Vaidman, Phys. Rev. A 51, 54 (1995).

[125] B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996).

[126] B.-G. Englert, and J. A. Bergou, Opt. Commun. 179, 337 (2000).

[127] A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampe, Rev.
Mod. Phys. 60, 1067 (1988).

[128] B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich,
Phys. Rev. A 62, 043816 (2000).

[129] J. Oppenheim, K. Horodecki, M. Horodecki, P. Horodecki, and R.
Horodecki, Phys. Rev. A 68, 022307 (2003).



102 BIBLIOGRAPHY

[130] S. Bose and D. Home, Phys. Rev. Lett. 88, 050401 (2002).

[131] G. Jaeger, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys.
Rev. A 68, 022318 (2003).

[132] B. d’Espagnat, Conceptual Foundations of Quantum Mechanics, Sec-
ond Edition, (W. A. Benjamin, Inc., Reading, Massachusetts), p. 52.

[133] H. Lütkepohl, Handbook of Matrices, (John Wiley & Sons, Chichester,
1996).

[134] B. Kraus, J. I. Cirac, S. Karnas, and M. Lewenstein, Phys. Rev. A 61,
062302 (2000).

[135] S. Karnas and M. Lewenstein, Phys. Rev. A 64, 042313 (2001).

[136] S.-M. Fei, X.-H. Gao, X.-H. Wang, Z.-X. Wang, and K. Wu, Phys. Rev.
A 68, 022315 (2003).



Acknowledgements

I would like to thank a number of people who have supported, helped
and encouraged me during the work of this thesis. Without them, the work
presented here would have been impossible.

First, I am especially grateful to my supervisor Prof. Dr. Hellmut Keiter.
As the head of the group, he is an optimistical, humorious and friendly theo-
retical physicist and creates a pleasant and prolific atmosphere for research.
With the rich knowledge on quantum theory and the solid basis of modern
mathematics, he gave me enormous guidance, help and suggestions in the
progress of this thesis. His sharp insights and intuition on quantum theory
form a constant source of inspiration for my work. I learn much from him,
which will be of great benefit to me in all my life.

Then I would like to thank Prof. Dr. Joachim Stolze for his friendly way
and his cooperative attitude which made me to be never afraid of asking him
any kind of questions which often led to fruitful discussions. In particular,
I’m most appreciative of him for critical reading of my other manuscripts for
publication.

I also thank Prof. Dr. Jiangfeng Du for his continuous encouragement
and lots of creative advice. I thank Dr. Xinghua Peng for her help on a
professional and personal level, especially, for introducing me quantitative
complementarity relations for quantum systems.

I thank Dr. Robert Nöker, Klaus Baumgartner, Peter Karbach and all the
other members of T1 and T2 for the nice and inspiring working atmosphere
in Dortmund.

I am deeply indebted to Mrs. Keiter for her solicitude on my life, espe-
cially at the beginning time when I was in Dortmund.

I thank Prof. Dr. Dongping Tian in Xi’an Jiaotong University for his
continuous support.

Finally, I am also extremely grateful to my mother, my father and all the
other members of my large family for their infinite solicitude.

103


