A Bootstrap Test for the Comparison of Nonlinear Time
Series - with Application to Interest Rate Modelling

Holger Dettel & Rafael WeiBlbach*

1-Lehlrstuhl fir Stochastik, Fakultat fiir Mathematik, Ruhr-Universitdt Bochum, Bochum, Germany

1:Institut fiir Wirtschafts- und Sozialstatistik, Fachbereich Statistik, Universitdt Dortmund, Dortmund, Germany

June 20, 2006

Abstract

We study the drift of stationary diffusion processes in a time series analysis of the autoregression
function. A marked empirical process measures the difference between the nonparametric regres-
sion functions of two time series. We bootstrap the distribution of a Kolmogorov-Smirnov-type
test statistic for two hypotheses: Equality of regression functions and shifted regression functions.
Neither markovian behavior nor Brownian motion error of the processes are assumed. A detailed
simulation study finds the size of the new test near the nominal level and a good power for a vari-
ety of parametric models. The two-sample result serves to test for mean reversion of the diffusion
drift in several examples. The interest rates Euribor, Libor as well as T-Bond yields do not show
that stylized feature often modelled for interest rates.

1 Introduction

Modelling the development of interest rates is of ongoing interest in finance. Interest rate risk
is of great concern in risk management, and derivative products are a common way to hedge
risk in the capital market. Rational prices of interest rate derivatives depend upon the underlying
model. Triggered by the work of Black and Scholes (1973), stochastic differential equations defining
diffusion process models still underpin the valuation of financial derivatives written on many
references nowadays. In the seventies lack of computational power enforced a closed form solution.
To that end, Black and Scholes proposed the geometric Brownian motion as a model for the
underlying.

The volatility of the process is a predominant pricing factor for non-linear products, like options,
and much attention has been and still is payed to it. The second risk factor is the diffusion’s drift.
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On the one hand, drift is sometimes considered negligible as a risk factor, e.g. in the calculation
of regulatory capital for market risk according to the Basel regulations [see McNeil, Frey and
Embrechts (2005), pg 38] and especially for interest rates the macroeconomic theory does not
guarantee a drift as is the case for stock prices. On the other hand, drift is important for pricing
and many interest rate models devote effort to it [see e.g. Vasicek (1977), Cox, Ingersoll and Ross
(1985), Hull and White (1980), Brace, Gatarek and Musiela (1997)]. The statistical questions
that arise are the following: May drift be tested for existence, or for equality to a pre-specified
value, or for equality between different interest rates? We will restrict ourselves to the last case
because the first two have been discussed extensively in the literature [see e.g. Hjellvik, Yao and
Tjostheim (1998) or Dette and Spreckelsen (2004) and the references in these papers].

Valuation nowadays can be based on Monte Carlo simulation so that closed-from valuation is
not mandatory anymore. The specification of the right model for the reference asset has taken
its place. Many models can be simulated e.g. with the Euler scheme [see Fan (2005)]. The
geometric Brownian motion, as a starting point, models a constant drift. Additionally it models
independence of increments on the log-scale, implying that risk, e.g. the Value-at-Risk, increases
at a “square-root of time” order with respect to the risk horizon. That may not be crucial in
Value-at-Risk calculations of market risk, as those have one and ten days horizons. However, it
affects the pricing of long-range interest rate derivatives, like Swaps that can last twenty years.
Another area where the long range behavior becomes important is credit risk management: The
“credit equivalent” of a derivative product is a long range higher quantile of its mark-to-model
distribution. For interest rate derivatives it depends on the respective interest rate model.

As a consequence, in the interest rate market, risk-reducing mean reversion of the drift has been
introduced, e.g. with homoscedastic error in the Ornstein-Uhlenbeck process [Vasicek (1977)] and
heteroscedastic by Cox, Ingersoll and Ross (1985). A generalization is non-linear mean reversion
[Ait-Sahalia (1996)]. Mean reversion is not solely a model aspect for interest rates. Vlaar and Palm
(1993) model mean reversion of exchange rate and find evidence for their model with a y2-goodness-
of-fit test. An early economic explanation of potential reversion of prices is arbitrage. However,
e.g. for the Standard & Poor’s 500 Index basis changes Miller, Muthuswamy and Whaley (1994)
argue that corresponding negative autocorrelations are statistical illusion. Bonomo and Garcia
(1994) propose to refrain for modelling mean reversion for asset returns, as done before. Our
non-parametric test for the curve comparison surprisingly proves usefulness to seek for empirical
evidence of mean reversion. We demonstrate the deed in the field of interest rate modelling.
Before that we must be specific about the model we assume. We follow the stationarity model (5)
of Fan (2005), where drift (and volatility) are unspecified functions of the underlying and need
nonparametric estimation. In contrast to that model with Brownian motion error we account
for the well accepted deed that returns have non-gaussian error. Extensions include modelling of
jump events with Lévy-processes [Barndorff-Nielson and Shepard (2001)] and the work of Lando
(1998) where Cox processes model credit risk. Our bootstrap test does however assume existence
of of error-mean and variance. We do not consider the class of time-dependent models where the
drift is allowed to depend on time [see e.g. Hull and White (1990) or the popular model by Brace,
Gatarek and Musiela (1997)]. Our technical analysis refrains from considering covariates, even
though we are aware of long-term predictors like exchange rates having macroeconomic foundation
as well as empirical evidence [see e.g. Hoffmann and MacDonald (2006)].

Inference about the drift of time-continuous continuous state processes is in practice based on



time series data. The geometric Brownian motion implies a markov process [Karatzas and Shreve
(1991), Theorem 5.4.10]. It may be tested whether a diffusion is markovian and e.g. for a financial
time-continuous discrete-state process Lando and Skgdeberg (2002) finds non-markovian behavior
using a Cox regression. As our test is based on a time series model, we are able to relieve the
markovian assumption and allow the process to depend on the former realizations up to a specific
lag.

Nonlinear autoregressive models (NLAR) are a broad family and nonparametric models [see Jones
(1978)] allow for an arbitrary form of the regression function. The problem of nonparametric esti-
mation of the autoregression function has been considered frequently in the statistical literature,
see Masry (1996) as a reference. However two sample inference, e.g. to test the equality of two
regression functions, has received little attention although linked closely to the framework where
observations are independent. Here the literature is rich [see e.g. King, Hart and Wehrly (1991),
Delgado and Gonzédlez Manteiga (2001), Kulasekera (1995), Cabus (1998), Munk and Dette (1998),
Neumeyer and Dette (2003) among many others]. We adopt a Kolmogorov-Smirnov-type test of
Cabus (1998) to autoregressive dependent data with a marked empirical process as test statistic.
Along with the test for equality we develop a test for the hypothesis that the regression functions
are shifted.

A Monte Carlo simulation finds that size of the new test is sufficiently accurate for many drift
shapes. The power is good for several parametric alternative hypotheses, including linear mean
reversion. These results prove validity for homoscedastic and heteroscedastic errors and are es-
pecially true for the sample sizes of our applications. One example compares two very closely
related interest rates, the inter-bank offer rates Libor (in British Pound) and Euribor (in Euro).
The second example compares two loosely connected rates, the Euribor and the US treasury bond
yield. The example reveals the regression functions of the Libor and Euribor to be equal. As a
consequence we do not find mean reversion. The curves for the Euribor differ from the T-bond
yield curve, however, not significantly.

2 Nonparametric autoregressive models

Nonparametric autoregressive models were introduced by Jones (1978) and for the particular case
of comparing two (or more) financial time series we consider the heteroscedastic nonparametric
conditional heteroscedastic autoregressive models

(21) Xt:ml(Xt—17"'7Xt—p)+0-1(Xt—17"'aXt—p)€t; t= 1,...,”1
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where p € N is fixed and the random variables ; and 7, are assumed to be i.i.d. with mean
0 and variance 1. Throughout this paper we assume that (X;)icz and (Y;);ez are independent
and strictly stationary processes. The problem of estimating the regression functions m; and ms
(and 0%, 03) nonparametrically has found considerable interest in the literature [see e.g. Robinson
(1983), Tjgstheim (1994), Masry (1996) among many others|. Note that the models (2.1) or (2.2)
are only useful when p is small. For moderately large p the nonparametric form is usually difficult
to estimate because of the “curse of dimensionality”.



The problem of comparing the two regression curves m; and msy corresponding to nonparametric
conditional heteroscedastic autoregressive models has not been studied so far. On the other hand
the comparison of curves has been recently investigated in the context of samples with independent
observations e.g. by Neumeyer and Dette (2003).

In the present paper we are interested in the performance of the test proposed by Cabus (1998)
in the context of nonparametric conditional heteroscedastic autoregressive models. The results
of Neumann and Kreiss (1998) indicate that (under a suitable assumption of ergodicity) many of
the asymptotic properties for the independent case can be transferred to autoregressive models.
Therefore the main object of this paper is the investigation of the finite sample properties of Cabus’
(1998) test in the autoregressive setup. For the sake of brevity we concentrate on one testing
procedure but it is notable that similar results can be obtained for the procedures proposed by
Kulasekera (1995), Munk and Dette (1998), Dette and Neumeyer (2001) and Neumeyer and Dette
(2003) for a comparison of two regression curves based on samples with independent observations.
We are interested in the hypothesis of equal regression curves

(2.3) Hy :my=my versus Hfé DMy # my
and in the hypothesis of a shift between the two regression curves, that is
(2.4) Hi:mi=mgo+c forsome ceR; Hi:m;#mgog+cVceR.

In the context of two samples with independent observations Cabus (1998) adapted a proposal of
Zheng (1996) to the problem of testing the hypothesis (2.3) which can easily be transferred to the
problem of comparing curves corresponding to two autoregressive models. Therefore we propose
the marked empirical process

(25) Cnl,ng (ZEl, .. [Ep) =
T (Xsmi = Yo

Z Z (Xs —Y2) HK<h—j>I{ij <z Yy <y}
j=1

n1n2h1 s=p+1t=p+1

as basic tool for the construction of a test for the hypothesis (2.3). In (2.5) the quantities ny, no
denote the sample size of the two samples in (2.1) and (2.2), K : R — R is a symmetric kernel
(integrating to 1) and hy, ..., h, are bandwidths converging to 0 with increasing sample size. The
order of bandwidth convergence is tied to the consistency of the estimate.

Note that under appropriate assumptions [see e.g. Fan and Yao (2000)] it follows that

p

1 Y,

(26) E|(X,~Y)) ||FK<+”)I{XS,j§xj,n,jng}}
17 .7

j=
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where f; and f, denote the density of (X;_1,...,Xs_p) and (Ys_1,...,Ys_,), respectivley (for this
motivation we assume that the processes (X;);ez and (Y;)ez are strictly stationary). Obviously,
the right hand side of (2.6) vanishes for all z;,...,z, € R if and only if the null hypothesis (2.3)



is valid and therefore it is reasonable to reject this hypothesis for large values of the Kolmogorov
Smirnov statistic

(2.7) Toime = sup |Chyny(1,. .., 2p)]

L1se5Tp

In the following Section 3 we will investigate the finite sample properties of a bootstrap test based
on the statistic T;,, »,.

The problem of testing the hypothesis (2.4) of a shift between the two regression curves can
be reduced to the problem of comparing two regression curves. For this purpose we define m,
and My as the local linear estimate for the regression function based on the sample Xi,..., X,
and Y7,...,Y,,, respectively [see e.g. Wand and Jones (1995)] and note that for any zy =

(@8, 2T with fi (o) f2(xo) > 0 it follows approximately
(28) Xt = Xt — ml (xo) ~ mMq (Xt—la . ,Xt—p) — ml(l'(]) -+ O'1(Xt_1, Ce 7Xt—p)5t7
(29) K = }/; — mg(mo) ~ mg(Y,;,l, e 7thp> — m2<$0) + Ug()/;g,l. . ,K,p)ﬂt.

Obviously, the hypothesis (2.4) is satisfied if and only if
m(T1, ..., xp) =my(T1,...,2p) — mi(xg) = ma(xy,...,xp) = ma(xy,...,2,) — ma(zo)

and consequently we propose

(2.10)  Chymp(1,..0y2p) =
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as basic process for testing the hypothesis (2.4) of a shift between the regression functions m, and
mo. This hypothesis is rejected for large values of the Kolmogorov-Smirnov statistic

(2.11) Toyms = Sup |Coyny(21,. .., 2p)]

T1,esTp

and the finite sample properties of a bootstrap test based on the statistic T},, ,,, for the hypothesis
(2.4) will be investigated in Section 4.

3 Comparing curves with a wild bootstrap procedure

In this section we investigate the finite sample properties of the test which rejects the hypothesis
of equal regression curves (2.3) for large values of the Kolmogorov Smirnov statistic 7},, ,,, defined
in (2.7). The asymptotic properties of a standardized version of the stochastic process Cp, n,(+)
defined in (2.5) have been studied by Cabus (1998) in the case of two samples with independent
observations, who proved weak convergence to a Gaussian process with a covariance kernel de-
pending on certain features of the data generating process. Using similar arguments as given in
Hjellvik, Yao and Tjgstheim (1998) and Dette and Spreckelsen (2004) similar results could be
derived in the case of strictly stationary processes under appropriate mixing conditions. However,
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even in the independent case, the limiting distribution of the normalized Kolmogorov Smirnov
statistic is so complicated such that it cannot be directly used for the calculation of critical values
[see e.g. Cabus (1998)] and for this reason we propose to use the wild bootstrap procedure for
this purpose [see e.g. Wu (1986)].

To be precise let 7, denote the local linear estimate from the total sample X;,..., X, ,Yi,...,Y,,
with bandwidth ¢, define nonparametric residuals by

(31) ét = Xt—mg(Xt_l,...,Xt_p); t:p+1,...,n1,
(32) flt - }/;_mg(yt—h'"?}/t—p); t:p+17"'7n27

and bootstrap residuals by
(3.3) ef =&V mp =0 Var

where Vi1, ..., Vin,, Vonys -+ -, Van, are iid. random variables with masses (v/5 4 1)/2v/5 and
(v5—1)/2V/5 at the points (1—+/5)/2 and (14+v/5)/2 (note that this distribution satisfies E[V;;] =
0, E[V3] = E[V;}] = 1)). Following Neumann and Kreiss (1998) we generate bootstrap observations
from

(3.4) X; = my(Xeq,..., X4p) +ef; t=p+1,...,n,
(3.5) Y = my(Yier,....Yip) +0; t=p+1,... 0,

and calculate the stochastic process

C’;lm (xl, . xp) =
: Yt
* —J
nnh T Z Z X3 HK( >I{Xs—j§1’j}f{yt—j§%}
270278 - s=p+1t=p+1 -1
to obtain the bootstrap analogue of the Kolmogorov Smirnov statistic 7,, »,, i.e.
;1,77,2 = Sup | ni ng('r17"'7xp)|'
L1,..3Tp

For a € (0,1) let &

nim.l—a denote the (1—a) quantile corresponding to the bootstrap distribution,
ie.

P(T;;l ng — k:Ll,’nQ,l o | ynl,”Q) = Oé, Z = 172

where

Vi e = {X57Yt | 8:1,.-.,n1,t=1,...n2}

denotes the total sample. The null hypothesis (2.3) of equal regression curves is rejected whenever

(3.6) Ty > K

ni,na2,l—a"



ny | na 25 50 100
a | 25% | 5% 10% || 2.5% | 5% 10% || 2.5% | 5% 10%
(i) | 0.034 | 0.061 | 0.117 || 0.021 | 0.053 | 0.121 || 0.022 | 0.050 | 0.110
25 | (ii) | 0.034 | 0.058 | 0.109 | 0.037 | 0.061 | 0.113 || 0.021 | 0.048 | 0.103
(iii) | 0.024 | 0.056 | 0.108 || 0.020 | 0.047 | 0.095 || 0.023 | 0.047 | 0.112
(i) | 0.037 | 0.062 | 0.112 || 0.037 | 0.061 | 0.115 || 0.026 | 0.046 | 0.108
50 | (ii) | 0.027 | 0.048 | 0.101 || 0.028 | 0.057 | 0.112 || 0.025 | 0.048 | 0.107
(iii) | 0.022 | 0.050 | 0.113 || 0.024 | 0.048 | 0.100 || 0.023 | 0.046 | 0.093
(i) | 0.021 | 0.048 | 0.108 || 0.020 | 0.055 | 0.109 || 0.030 | 0.048 | 0.108
100 | (ii) | 0.029 | 0.056 | 0.106 || 0.031 | 0.057 | 0.108 || 0.028 | 0.051 | 0.100
(iii) | 0.022 | 0.050 | 0.113 || 0.021 | 0.045 | 0.094 || 0.027 | 0.050 | 0.098

Table 3.1. Simulated rejection probabilities of the bootstrap test (3.6) for the regression models
(i) - (iit) (corresponding to the null hypothesis) under homoscedasticity. The errors in the two
samples are normally distributed with mean 0 and variances o3 = o3 = 0.25.

ni n9 25 50 100
a | 25% | 5% 10% || 2.5% | 5% 10% | 2.5% | 5% 10%
(i) | 0.032 | 0.064 | 0.113 || 0.038 | 0.062 | 0.121 || 0.029 | 0.050 | 0.104
25 | (ii) | 0.023 | 0.059 | 0.109 || 0.027 | 0.055 | 0.108 || 0.021 | 0.042 | 0.096
(iii) | 0.014 | 0.032 | 0.084 || 0.017 | 0.041 | 0.089 || 0.023 | 0.046 | 0.104
(i) | 0.034 | 0.061 | 0.120 || 0.026 | 0.046 | 0.107 || 0.023 | 0.055 | 0.112
50 | (ii) | 0.026 | 0.048 | 0.105 || 0.032 | 0.050 | 0.109 || 0.026 | 0.051 | 0.103
(iii) | 0.021 | 0.041 | 0.089 || 0.021 | 0.052 | 0.102 || 0.020 | 0.041 | 0.089
(i) | 0.026 | 0.058 | 0.109 || 0.031 | 0.057 | 0.110 || 0.033 | 0.059 | 0.108
100 | (ii) | 0.031 | 0.054 | 0.106 || 0.022 | 0.047 | 0.099 || 0.024 | 0.053 | 0.098
(iii) | 0.021 | 0.041 | 0.092 || 0.019 | 0.042 | 0.093 || 0.023 | 0.047 | 0.096

Table 3.2. Simulated rejection probabilities of the bootstrap test (5.6) for the regression models
(i) - (iii) (corresponding to the null hypothesis) under heteroscedasticity. The errors e, and 1 in
model (2.1) and (2.2) are normally distributed and the variance functions are given by oy(x) =
0.1z, 09(x) = 0.1\/x.

In the simulation study we concentrate on the case of a first order autoregression, i.e. p =1 [see
also Neumann and Kreiss (1998)]. The bandwidth hy was chosen according to the simple rule of
thumb

(3.7) h {nl&g + nyo? }1/5
. 1= T Ny )

(ng + ny)?

where 67 and 63 are estimates of the integrated variance fol o?(x) fi(z)dz and fol o5 (x) fo()dr,

respectively [see Fan and Yao (2000), p. 375 or Rice (1984)]. The bandwidth for the calculation

. . . 5/6
of the bootstrap residuals was chosen slightly larger, i.e. g = hl/ :
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In all cases we simulated data according to the models (2.1) and (2.2) where the errors are standard
normally distributed and different variance functions are considered. B = 200 bootstrap replica-
tions were used for the calculation of the critical values k;, .., , and the rejection probabilities
were calculated from 1000 simulation runs. Our first results in Table 3.1 show the simulated
rejection probabilities for three models corresponding to the null hypothesis of equal regression

curves with homoscedastic errors, that is

(i) mi(x)
(i) ma(z)

(iii) my(z)

me(z) =1+0.1z
—0.1z

ma(z) =e

ma(x) = sin(27z)

The variances are given by o} = 02 = 0.25. In all cases we observe a rather accurate approximation
of the nominal level, even for very small sample sizes as ny = ny = 25. Other results, which are not
displayed here for the sake of brevity show a similar picture and we conclude that the proposed
bootstrap test is very reliable with respect to the approximation of the nominal level. In order
to investigate how heteroscedasticity affects these results we display in Table 3.2 the rejection
probabilities for the same regression functions, where oy (z) = 0.1z and oy(x) = 0.1y/2. Again the
level is approximated rather precisely and no substantial differences can be observed between the
homoscedastic and heteroscedastic case.

Secondly, we investigate the wild bootstrap test under several alternatives. For this purpose we
consider six models

(iv) my(z) =1+0.1z; mo(x) =1+09z

(v) my(x) =e 0% my(x)=e " 4o
(vi) my(z) = sin(27x); mo(z) = sin(27z) +
(vii) my(z) =1+ 0.1x; mo(z) =2+ 0.1z
(viil) my(z) = e ™; ma(z) =14e¢"

(ix) my(z) = sin(27z); mo(x) = sin(27rx) + 1

with standard normal distributed errors. In Table 3.3 we show the rejection probabilities of the
test in the case of homoscedasticity, that is o7 = o9 = 0.5, while Table 3.4 corresponds to the case
of heteroscedasticity considered in Table 3.2, that is o1(x) = 0.1z,09(x) = 0.1y/z. We observe
that in both cases all alternatives are rejected with reasonable probabilities. In the homoscedastic
case the results for models (vii) - (ix) indicate that the test is very sensitive with respect to shifts
between the two regression functions. In these examples the 5% rejection probabilities are at least
90 % and in nearly all cases larger than 99%. In the examples (v) and (vi) the difference between
the regression functions is my(x) —mo(z) = x, while it is 0.8z in the case (iv). In theses cases the
rejection probabilities vary between 65% and 85% depending on the sample sizes. The situation
in the heteroscedastic case is again very similar.



ny ng 25 50 100

o 25% | 5% 10% || 2.5% 5% 10% || 2.5% | 5% 10%
(iv) | 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
(v) |0.632 | 0.696 | 0.809 || 0.650 | 0.712 | 0.836 | 0.589 | 0.679 | 0.811
(vi) | 0.537 | 0.628 | 0.744 || 0.479 | 0.570 | 0.703 | 0.473 | 0.584 | 0.715
(vii) | 0.762 | 0.906 | 0.982 || 0.922 | 0.977 | 0.994 | 0.956 | 0.990 | 0.998
(viii) | 0.999 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
(ix) | 0.986 | 0.994 | 0.998 || 0.999 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000
(iv) | 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
(v) |0.666 | 0.731 | 0.842 || 0.644 | 0.726 | 0.839 | 0.656 | 0.739 | 0.848
50 | (vi) | 0.552 | 0.632 | 0.734 || 0.574 | 0.648 | 0.773 | 0.589 | 0.691 | 0.802
(vii) | 0.906 | 0.966 | 0.998 | 0.996 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000
(viii) | 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
(ix) | 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
(iv) | 1.000 | 1.000 | 1.000 || 1.000 | .1.000 | .1.000 || 1.000 | 1.000 | 1.000
(v) |0.652 | 0.717 | 0.821 || 0.670 | 0.750 | 0.852 | 0.686 | 0.763 | 0.847
100 | (vi) | 0.564 | 0.652 | 0.761 || 0.578 | 0.662 | 0.796 | 0.664 | 0.738 | 0.833
(vii) | 1.000 | 1.000 | 1.000 || 0.997 | 0.999 | 1.000 || 1.000 | 1.000 | 1.000
(viii) | 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
(ix) | 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

25

Table 3.3. Simulated rejection probabilities of the bootstrap test (3.6) for the regression models
(i) - (iz) (corresponding to the alternative). The errors g, and 1, in model (2.1) and (2.2)
are standard normally distributed and the variance functions are given by oi(z) = o3(x) = 0.25
(corresponding to the homoscedastic case).



ni

25

50

100

25

2.5%

5%

10%

2.5%

5%

10%

2.5%

5%

10%

0.885
0.472
0.502

0.907
0.501
0.618

0.922
0.578
0.722

0.911
0.489
0.573

0.927
0.553
0.679

0.958
0.612
0.794

0.961
0.517
0.587

0.971
0.571
0.711

0.982
0.687
0.783

0.439
0.801
1.000

0.699
0.902
1.000

0.875
0.968
1.000

0.792
0.990
1.000

0.847
0.995
1.000

0.951
1.000
1.000

0.840
1.000
1.000

0.928
1.000
1.000

0.979
1.000
1.000

50

0.901
0.498
0.544

0.937
0.521
0.631

0.955
0.602
0.731

0.931
0.513
0.618

0.950
0.554
0.697

0.972
0.634
0.799

0.972
0.543
0.682

0.981
0.597
0.771

0.990
0.712
0.865

0.627
0.815
1.000

0.808
0.929
1.000

0.838
0.987
1.000

0.901
0.995
1.000

0.961
0.998
1.000

0.992
1.000
1.000

0.982
1.000
1.000

0.996
1.000
1.000

1.000
1.000
1.000

100

0.921
0.521
0.561

0.961
0.578
0.631

0.978
0.683
0.740

0.951
0.541
0.584

0.971
0.599
0.665

0.989
0.702
0.786

0.999
0.579
0.708

0.999
0.618
0.779

0.999
0.753
0.858

0.706
0.842
1.000

0.866
0.941
1.000

0.961
0.992
1.000

0.958
0.998
1.000

0.988
1.000
1.000

0.995
1.000
1.000

0.999
1.000
1.000

1.000
1.000
1.000

1.000
1.000
1.000

Table 3.4. Simulated rejection probabilities of the bootstrap test (3.6) for the regression models
() - (iz) (corresponding to the alternative). The errors €, and 1, in model (2.1) and (2.2) are
normally distributed and the variance functions are given by o1(x) = 0.1z, 09(z) = 0.1\/.

ny

25

50

100

25

2.5%

5%

10%

2.5%

5%

10%

2.5%

5%

10%

0.027
0.022
0.040

0.048
0.045
0.078

0.105
0.107
0.141

0.029
0.020
0.041

0.057
0.043
0.074

0.105
0.094
0.129

0.023
0.021
0.037

0.057
0.046
0.068

0.109
0.096
0.118

50

0.022
0.021
0.042

0.057
0.060
0.073

0.109
0.111
0.136

0.019
0.026
0.033

0.047
0.050
0.065

0.098
0.099
0.117

0.020
0.021
0.023

0.041
0.051
0.060

0.088
0.108
0.112

100

0.025
0.024
0.041

0.056
0.043
0.071

0.106
0.096
0.121

0.025
0.025
0.034

0.054
0.049
0.068

0.108
0.107
0.114

0.028
0.022
0.028

0.059
0.048
0.058

0.110
0.108
0.109

Table 4.1. Simulated rejection probabilities of the wild bootstrap test for the hypothesis (2.4) in
the regression models [i] - [iii] in (4.1) (corresponding to the null hypothesis of a vertical shift).
The errors are homoscedastic and normally distributed with mean 0 and variances o3 = o3 = 0.25.
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4 Testing for a vertical shift between the regression curves

In the present section we study the finite sample performance of a wild bootstrap test for the
hypothesis of a vertical shift (2.4) which is based on the statistic T}, ,, defined in (2.11). Again
we restrict ourselves to the case p = 1 and note that the statistic 7, ,, is based on the “data”
(X;, X;_1) and (Y;,Y;_1) where X, and Y; are given by (2.8) and (2.9), respectively. Note that the
definition of this sample requires the specification of a point xg such that the regression functions
my and my can be estimated at zo with fi(xg)fa(zo) > 0, i.e. x¢ € supp(f1) N supp(fz). Because
in practice it is difficult to identify the support of the densities of the stationary distributions of
the time series (X;)iez and (Y;)iez, we choose

- TLlX. + NQY

Zo
ny + no

for this purpose, where X. and Y. denote the sample means. We used the re-scaled data (2.8) and
(2.9) in the wild bootstrap test described in Section 2 to obtain a test for a vertical shift between
the regression curves m; and ms. In Table 4.1 we display the simulated rejection probabilities
under the null hypothesis H§ : my = mq+c for some ¢ € R. In particular we consider the 3 models

1] my(z) = 0.1x; mo(z) =1+ 0.1z
(4.1) [ii] my(z) = exp(—0.1z); ma(z) = —0.5 + exp(—0.1x)
[iii] my(z) = sin(2rx);  ma(r) = 1+ sin(27x)

where the errors are homoscedastic and normally distributed with variances o} = o3 = 0.25. We

observe a very precise approximation of the nominal level in the models [i] and [ii], even if the
sample sizes are n; = ny = 25. On the other hand in the periodic model [iii] the approximation of
the nominal level is less accurate for smaller sample sizes, but rather reliable in the case nq,no > 50.

ny | ng 25 50 100

a | 25% | 5% 10% || 2.5% | 5% 10% | 2.5% | 5% 10%
[ij | 0.021 | 0.055 | 0.114 || 0.025 | 0.050 | 0.101 || 0.022 | 0.049 | 0.109
25 | [ii] | 0.023 | 0.059 | 0.112 || 0.027 | 0.055 | 0.108 || 0.021 | 0.043 | 0.094
[iii] | 0.015 | 0.040 | 0.083 || 0.017 | 0.041 | 0.086 || 0.020 | 0.046 | 0.106
[i] | 0.021 | 0.046 | 0.105 || 0.026 | 0.053 | 0.104 || 0.027 | 0.051 | 0.112
50 | [ii] | 0.020 | 0.047 | 0.100 || 0.032 | 0.050 | 0.111 || 0.032 | 0.058 | 0.108
[iii] | 0.029 | 0.068 | 0.115 || 0.019 | 0.040 | 0.090 || 0.021 | 0.052 | 0.109
[ij | 0.031 | 0.059 | 0.110 || 0.028 | 0.055 | 0.107 || 0.025 | 0.054 | 0.112
100 | [ii] | 0.030 | 0.061 | 0.112 || 0.022 | 0.054 | 0.096 || 0.022 | 0.045 | 0.093
[iii] | 0.021 | 0.058 | 0.113 || 0.027 | 0.059 | 0.121 || 0.032 | 0.059 | 0.109

Table 4.2. Simulated rejection probabilities of the wild bootstrap test for the hypothesis (2.4) in
the regression models [i] - [iii] in (4.1) (corresponding to the null hypothesis of a vertical shift)
under heteroscedasticity. The errors €; and n; in model (2.1) and (2.2) are normally distributed
and the variance functions are given by o1(x) = 0.1z, 09(z) = 0.1\/.
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In Table 4.2 we show the situation corresponding to the heteroscedastic case, where the variance
functions are given by o1(z) = 0.1z, 09(x) = 0.1y/x [see also Table 3.2 for the simulated rejection
probabilities of the test for the hypothesis (2.3) in the case of heteroscedastic errors]. Again
we do not observe substantial differences in the approximation of the nominal level between the
homoscedastic and heteroscedastic case.

In the remaining part of this section we study the behaviour of the wild bootstrap test for the
hypothesis (2.4) under some alternatives, that is

[iv] my(z) =14 0.1x; mo(z) =1+ 0.1z + 1/x

[v] mi(x) =1+0.1z; me(z) = 0.1z + sin(27z)

[vi] mi(x) = —0.5+ exp(—0.1x); ma(x) = exp(—0.1z) + 0.6z

[vil] mq(x) = sin(27x); mo(z) = 1+ sin(27z) 4 cos(2mx)
[viili] my(z) = sin(27x); meo(z) = sin(27rx) + sin(wx)

[ix] my(z) =e 0% mo(x) = e 1% 4 sin(27x)

In Table 4.3 we display the rejection probabilities in the case where the errors are again standard
normal distributed with variances o7 = 02 = 0.25. We observe that the power is usually lower
as in the case of testing for equality and that it depends sensitively on the alternative under
consideration. For example it is difficult for the bootstrap test to detect the differences m4(x) —
mo(z) = c+1/x or my(x) —mso(z) = ax+ c for some a € R [see example [iv] and [vi] in Table 4.3],
while the test has more power for alternatives of trigonometric type (see example [v], [vii] - [ix]).
The situation for the heteroscedastic case is depicted in Table 4.4 and shows a similar picture.
The alternative [iv] yields the lowest rejection probabilities, followed by the alternative [vi]. Again

differences of trigonometric type can be detected easier (see the examples [v], [vii], [viii] and [ix]).
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ny ng 25 50 100

o 25% | 5% 10% || 2.5% | 5% 10% || 2.5% | 5% 10%
[iv] | 0.048 | 0.092 | 0.196 || 0.058 | 0.133 | 0.225 || 0.095 | 0.168 | 0.281
[v] |0.218 | 0.333 | 0.442 || 0.439 | 0.553 | 0.664 || 0.553 | 0.647 | 0.724
25 | [vi] | 0.035 | 0.091 | 0.182 || 0.053 | 0.095 | 0.198 || 0.081 | 0.134 | 0.243
[vii] | 0.118 | 0.177 | 0.270 || 0.173 | 0.257 | 0.346 || 0.295 | 0.403 | 0.520
[viii] | 0.298 | 0.410 | 0.520 || 0.350 | 0.431 | 0.520 || 0.385 | 0.543 | 0.628
[ix] | 0.161 | 0.201 | 0.313 | 0.348 | 0.442 | 0.567 || 0.425 | 0.522 | 0.630
[iv] | 0.057 | 0.121 | 0.211 || 0.092 | 0.151 | 0.265 || 0.119 | 0.215 | 0.341
[v] | 0.245 | 0.352 | 0.458 || 0.514 | 0.607 | 0.694 || 0.700 | 0.760 | 0.818
50 | [vi] | 0.058 | 0.097 | 0.188 || 0.072 | 0.130 | 0.228 || 0.091 | 0.146 | 0.277
[vii] | 0.135 | 0.201 | 0.293 || 0.283 | 0.346 | 0.449 || 0.509 | 0.604 | 0.686
[viii] | 0.371 | 0.465 | 0.556 || 0.649 | 0.706 | 0.774 || 0.776 | 0.819 | 0.851
[ix] | 0.170 | 0.253 | 0.359 || 0.456 | 0.562 | 0.664 || 0.568 | 0.641 | 0.717
[iv] | 0.072 | 0.151 | 0.231 || 0.137 | 0.225 | 0.331 || 0.171 | 0.287 | 0.401
[v] |0.265 | 0.381 | 0.479 || 0.529 | 0.627 | 0.719 || 0.775 | 0.823 | 0.874
100 | [vi] | 0.072 | 0.129 | 0.221 || 0.087 | 0.167 | 0.278 || 0.121 | 0.202 | 0.341
[vii] | 0.148 | 0.221 | 0.317 || 0.304 | 0.382 | 0.497 || 0.634 | 0.699 | 0.752
[viii] | 0.435 | 0.513 | 0.583 || 0.683 | 0.736 | 0.794 | 0.869 | 0.904 | 0.927
[ix] | 0.179 | 0.274 | 0.386 || 0.491 | 0.636 | 0.712 || 0.652 | 0.741 | 0.823

Table 4.3. Simulated rejection probabilities of the wild bootstrap test for the hypothesis (2.4)
in the regression models [iv] - [iz] (corresponding to the alternative). The errors €, and 1, in
model (2.1) and (2.2) are standard normally distributed and the variance functions are given by

o?(x) = o3(x) = 0.25 (corresponding to the homoscedastic case).
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ni ng 25 50 100

o 25% | 5% 10% || 2.5% | 5% 10% || 2.5% | 5% 10%
[iv] | 0.070 | 0.148 | 0.267 || 0.108 | 0.178 | 0.276 || 0.123 | 0.198 | 0.284
[v] |0.170 | 0.278 | 0.408 || 0.370 | 0.481 | 0.608 || 0.359 | 0.570 | 0.688
25 | [vi] | 0.080 | 0.156 | 0.272 || 0.089 | 0.167 | 0.289 || 0.118 | 0.209 | 0.361
[vii] | 0.114 | 0.176 | 0.269 || 0.211 | 0.299 | 0.402 || 0.198 | 0.321 | 0.471
[viii] | 0.187 | 0.256 | 0.348 || 0.382 | 0.447 | 0.519 || 0.571 | 0.763 | 0.801
[ix] | 0.232 | 0.333 | 0.457 || 0.429 | 0.335 | 0.636 || 0.481 | 0.591 | 0.687
[iv] | 0.079 | 0.171 | 0.293 || 0.129 | 0.212 | 0.332 || 0.167 | 0.246 | 0.376
[v] |0.232 | 0.319 | 0.444 || 0.469 | 0.578 | 0.672 || 0.625 | 0.712 | 0.805
50 | [vi] | 0.107 | 0.182 | 0.310 || 0.146 | 0.238 | 0.384 || 0.228 | 0.350 | 0.502
[vii] | 0.163 | 0.221 | 0.299 || 0.369 | 0.438 | 0.519 || 0.625 | 0.792 | 0.748
[viii] | 0.219 | 0.295 | 0.379 || 0.413 | 0.489 | 0.562 || 0.773 | 0.823 | 0.868
[ix] | 0.275 | 0.373 | 0.499 || 0.499 | 0.588 | 0.674 || 0.656 | 0.743 | 0.826
[iv] | 0.085 | 0.199 | 0.317 || 0.148 | 0.241 | 0.352 || 0.198 | 0.304 | 0.432
[v] | 0.281 | 0.415 | 0.507 || 0.551 | 0.655 | 0.756 || 0.741 | 0.815 | 0.865
100 | [vi] | 0.178 | 0.213 | 0.357 || 0.188 | 0.288 | 0.425 || 0.274 | 0.403 | 0.558
[vii] | 0.198 | 0.257 | 0.381 || 0.406 | 0.464 | 0.527 || 0.741 | 0.782 | 0.825
[viii] | 0.244 | 0.321 | 0.413 || 0.459 | 0.528 | 0.592 || 0.902 | 0.920 | 0.944
[ix] | 0.294 | 0.421 | 0.587 || 0.557 | 0.648 | 0.735 || 0.739 | 0.808 | 0.857

Table 4.4. Simulated rejection probabilities of the wild bootstrap test for the hypothesis (2.4) in
the regression models [iv] - [iz] (corresponding to the alternative) under heteroscedasticity. The
errors €, and 1 in model (2.1) and (2.2) are normally distributed and the variance functions are
given by o1(x) = 0.1z, o9(x) = 0.1 /x.

5 Data example

In the present section we illustrate the application of the new tests in an analysis of interest rates.
Important interest rates are 3-month (London) inter-bank offer rates like the Libor (for British
Pound quoted debt) and the Euribor (for Euro quoted debt). Figure 5.1 depicts daily quotes
for the period of 12/30/1998 till 10/24/2005. Note that the curves show the interest rates as a
function of time, not as a function of tenor.

Inter-bank rates are the reference for many interest rate derivatives. Especially the Swap mar-
ket has become very liquid due to its standardized documentation [see International Swaps and
Derivatives Association Inc., New York (2002)]. Swap prices are even used for policy making of
central banks. The European Central Bank bases macroeconomic analysis of market expectations
on the Euribor-Swap rates [Durré (2006)].

It is clearly interesting to assess whether Euribor and Libor behave similar in terms of their
expected development over successive periods, say days. Financial derivatives are to a large extent
used to exploit arbitrage opportunities, i.e. to earn money risk-free. The idea of a technical time
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Figure 5.1: Daily 3-month Euribor (black line) and 3-month Libor (grey line) for 12/30/1998 till
10/24,/2005.

series analysis is now the following: Suppose an arbitrageur knows tomorrow’s expected price
of a financial product to be different from today’s. If tomorrow’s price is larger, she buys the
product now and sells it tomorrow. If the price is smaller she sells the product today - so-called
short-selling - and buys it tomorrow. It appears to be a one-sample problem, however, buying
essentially means exchanging cash with the product, two goods are involved. In general, arbitrage
is possible using several goods [see e.g. Neftci (2000)].

Hedging with cash is rare, we consider the case of two similar products and their prices. Exchanging
interest rates in different currency is easy: One can “swap” the one into the other with a cross-
currency Swap [see e.g. Miron and Swannell (1992)]. Using interest rates, i.e. prices for debt,
has serval points. On the one hand, we have long times series (around 1,800 days), so that our
findings for the size and power of the tests for moderate sample sizes (25 to 100 observations)
suggest that virtually any deviation from the null hypothesis will be detected. We may consider
the test as equivalence test [see e.g. Munk and Weilbach (1999)] and prove the null hypothesis.
On the other hand, the highly competitive and liquid market of interest rate derivatives suggests
arbitrage opportunities are already continuously exploited. This means for p = 1, the regression
curves should both be equal to bisecting lines, i.e.

(5.1) my(z) = me(z) =2 .

Libor and Euribor should be martingales. We will see which effect dominates.
Being more specific we could assume a certain model, e.g. a diffusion model like the Ornstein-
Uhlenbeck process (or Vasicek model [see Vasicek (1977)]). For the Euribor a stochastic differential
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equation (SDE) characterizes the behavior:
(52) dXt = K1 ((1/1 — Xt)dt + 0_1th1‘

Here, W' denotes a standard Brownian motion. The component «; in the drift is the long-run
mean, the “gravity” center of the mean reversion. Drift in the SDE is linked to the regression
function in definition (2.1). For a one day step, i.e. dt =1, we have

E(XyXi—1) = Xio1 + E(dXe| Xio1) = X1 + k1o — Xpq).

The regression curve writes as m(z) = a1z + by with a; = 1 — k1 and b; = k1. A similar time
series model holds for the Libor as an example for Y; in (2.1) with o9, W2, kg, aa, as and bs.
Figure 5.1 shows that the Libor is larger than the Euribor, so that clearly we can assume s > .
The regression curves m;(z) and ms(x) are now equal (and equal to the bisecting line) if and only
if the reversion “speed” vanishes, i.e. if k1 = k3 = 0. Under the parametric assumption of an
Ornstein-Uhlenbeck process our test for equality of regressors is a globally consistent test for the
hypothesis

H()i /<¢1:f£2:0.

Cox, Ingersoll and Ross (1985) assume a heteroscedastic extension of (5.2). Instead of the a con-
stant volatility o}, a time-homogeneous factor o;v/X; models the stylized fact of higher volatil-
ity during high interest rate regimes. Our formulation (2.1) accommodates for arbitrary time-
homogeneous heteroscedasticity. Again in the CIR model, testing for equal regression curves
corresponds to testing for k; = k3 = 0. Note that the linear regression function with one regressor
is an example studied in the simulation study of Sections 3.

In Figure 5.2 we display the regression E[X; | X; 1] = m1(X;_1) and E[Y; | Y;_1] = ma(Y,_1),
based on a local linear fit, where the bandwidth was chosen by least squares cross validation [see
Fan and Yao (2000)]. Note that we have assumed that the two curves can be represented by the
models (2.1) and (2.2) with p = 1. We observe that both regression functions are close to the
bisecting line. We adjust the descriptive result for noise by testing the (first) equality in (5.1)
with our test for the hypothesis of equal regression curves in (2.3). The bootstrap procedure yields
the p-value 0.822. Given the sample size, this gives evidence for the equality of the two regression
curves. Comparing Furibor and Libor gives strong evidence for both rates to be free of mean
reversion.

We have seen that beyond their different location - rates in British pound are uniformly larger
than rates in Euro - the two rates are very similar. What if we compare one of them to an interest
rate that has a different tenor (10 years instead of 3 months), another currency (US dollar instead
of Euro), a different originator (the United States instead of large banks) and a different data
recording frequency (monthly instead of daily).

For this purpose we consider a comparison of the 3-month Euribor (with monthly geometric aver-
ages) with the yields of the 10-year treasury bill, the T-bond. We have collected monthly averages
of the yields in 10-year US T-bonds (quoted in USD). The data comprises the 74 observations
between January 1999 and February 2005. Figure 5.3 on the left displays the rates, again station-
arity is plausible. The difference between the two curves is much more pronounced than between
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Figure 5.2: The local linear estimates of the regression functions mi(x) = E[X| X;_1] for 3-month
Euribor (left) and mo(z) = E[Y:|Yi—1] for 3-month Libor (right).

Euribor and Libor. Figure 5.3 on the right displays again the local linear estimates for the re-
gression functions. The slopes of the two curves do not appear to be totally equal. However, the
result of the test for equality is a p-value of 0.628. (The test for a shift yields a larger p-value.)
Considering the moderate number of observations, the large p-value can not be interpreted as
lack of arbitrage opportunities, but rather that large deviations from the null hypothesis do not
become evident. Substantial arbitrage is not possible.

6 Conclusion

In the construction of tests to compare autoregression functions we concentrate on broad assump-
tions. The shape of regression function, the volatility function and the dependence structure are
to a large extent unspecified. Motivation for our tests is the frequent occurrence of time series
data in econometrics and especially in finance. Marked empirical processes are typical building
blocks in time series analysis and guided by the quest for globally consistent tests we decide to
use a Kolmogorov-Smirnov-tpye statistic. Given the ambitious practical target we sacrifice the
tractability of asymptotic theory and bootstrap the null distribution with the additional gain of
good results in size and power. Aspects of bandwidth selection are kept scarce because we experi-
enced those to have little impact. Application to interest rate models demonstrates that the test
can serve to detect e.g. mean reversion, a stylized feature we have not been able to prove for the
three sample time series we analyzed.
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