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Abstract

Interactions of single nucleotide polymorphisms (SNPs) are assumed

to be responsible for complex diseases such as sporadic breast cancer.

Important goals of studies concerned with such genetic data are thus to

identify combinations of SNPs that lead to a higher risk of developing

a disease and to measure the importance of these interactions.

There are many approaches based on classification methods such

as CART and Random Forests that allow measuring the importance

of single variables. But with none of these methods the importance of

combinations of variables can be quantified directly.

In this paper, we show how logic regression can be employed to

identify SNP interactions explanatory for the disease status in a case-

control study and propose two measures for quantifying the impor-

tance of these interactions for classification. These approaches are
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then applied, on the one hand, to simulated data sets, and on the

other hand, to the SNP data of the GENICA study, a study dedicated

to the identification of genetic and gene-environment interactions as-

sociated with sporadic breast cancer.

Keywords: Single Nucleotide Polymorphism, Feature Selection, Va-

riable Importance Measure, GENICA

1 Introduction

Even though humans share far more than 99% of their DNA, there are still

millions of differences between the DNA of two individuals. The most com-

mon – and so far the best investigated – type of such variations are single

nucleotide polymorphisms (SNPs). A SNP occurs when a single nucleotide

is altered, i.e. when (usually two) different sequence alternatives exist at a

single base pair position. To distinguish a SNP from a mutation, the less

frequent variant has to occur in at least 1% of the population. Since the hu-

man genome is diploid, i.e. consists of two pairs of chromosomes, each SNP

is explained by two bases. Therefore, each SNP can take three realizations:

– Homozygous reference genotype: Both bases explaining the SNP are

the more frequent variant.

– Heterozygous variant genotype: One of the bases is the more frequent

and the other is the less frequent variant.

– Homozygous variant genotype: Both bases are the less frequent variant.

SNPs are assumed to alter the risk for developing a particular disease.

It is, however, very unlikely that individual SNPs play an important role
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in the development of complex diseases such as sporadic breast cancer. In-

stead, high-order interactions of SNPs are supposed to explain the differences

between low and high risk groups (Garte, 2001).

In an association study concerned with SNP data, it is thus of interest to

construct classification rules of the following type:

“If SNP A is of the heterozygous variant genotype AND SNP B is of the

homozygous variant genotype OR both SNP C AND D are NOT of the

homozygous reference genotype,

then a person has a higher risk to develop the disease of interest.”

A procedure developed for solving exactly this type of problems is logic

regression (Ruczinski et al., 2003) which attempts to identify Boolean combi-

nations of binary variables for the prediction of, e.g., the case-control status

of an observation.

Other classification methods such as CART (Breiman et al., 1984), Bag-

ging (Breiman, 1996), Random Forests (Breiman, 2001) and Support Vector

Machines (Vapnik, 1995) can also be applied to SNP data (Schwender et

al., 2003). But in comparisons with, on the one hand, CART and Random

Forests (Ruczinski et al., 2004), and on the other hand, with other regression

procedures (Kooperberg et al., 2001, Witte and Fijal, 2001), logic regression

has shown a good performance when applied to SNP data.

Another goal when analyzing SNP data is to quantify the importance of

the identified SNPs and SNP interactions for classification. Many classifica-

tion methods provide approaches to measure the importances of variables.

Examples are the variable importance measures of Random Forests or CART,

and the squared weights used in RFE-SVM (Guyon et al., 2002) for recursive

feature elimination with support vector machines. These methods, however,
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do not allow to compute the importance of interactions of variables directly

unless these interactions are included as variables into the procedure. This,

however, is impractical since analyzing only 50 variables would lead to more

than 250,000 input variables if we were interested in interactions up to four-

way interactions.

Thus, methods are needed that just use the variables themselves as inputs

into the model but enable us to identify combinations of variables and to

quantify the importance of these interactions. In this paper, we propose

approaches based on logic regression that exactly fulfill these needs.

The paper is organized as follows: In Section 2, a brief introduction to

Boolean algebra and logic regression is given. While we describe a method

based on logic regression and bootstrapping for identifying potentially in-

teresting interactions in Section 3, two measures for quantifying the impor-

tance of the interactions are proposed in Section 4. In Section 5, these

approaches are applied to simulated data sets and to the SNP data of the

GENICA study, a study dedicated to the identification of genetic and gene-

environment interactions associated with sporadic breast cancer.

2 Logic Regression

Logic regression is an adaptive regression methodology for predicting the

outcome in classification and regression problems based on Boolean combi-

nations of variables such as

S1 : “SNP S is not of the homozygous reference genotype,”

or

S2 : “SNP S is of the homozygous variant genotype,”
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i.e. of binary variables that are either true or false. These variables can be

negated by the operator C (e.g., SC
2 means “SNP S is NOT of the homozygous

variant genotype.”) and combined to a logic expression by the operators ∧
(AND) and ∨ (OR).

In logic regression, these logic expression are represented by logic trees (for

an example, see Figure 2.1). Logic trees, however, cannot only be employed

as nice graphical representations of logic expressions, but also to generate

new logic trees in the search for the best model. Permissible moves in this

tree-growing process are alternating an operator or a variable, respectively,

pruning or growing a branch, and adding or removing variables (for details,

see Ruczinski et al., 2003).

FIGURE 2.1. Logic tree representing the logic expression L = (A∧BC)∨ ((C ∨
D) ∧ EC).

In a case-control study, e.g., logic regression searches for the logic expres-

sion L that best explains the cases. If L is true for a new observation, this

observation will be classified as case.

Logic regression, however, not only allows to grow a single tree but

also provides the possibility to adaptively construct several logic expressions

Li, i = 1, . . . , p, and to combine them by a generalized linear model

5



g (E(Y )) = β0 +

p∑
i=1

βiLi

with response Y , parameters βi, i = 0, . . . , p, and link function g. Since our

interest centers on case-control studies we assume g to be the logit function.

Even though the logic expression displayed in Figure 2.1 is still relatively

easy to interpret, it becomes more complicated to interpret such expressions

the more variables they contain. Therefore, we propose to convert each logic

expression into a disjunctive normal form (DNF), i.e. an OR-combination of

AND-combinations. The DNF of the logic tree L = A ∧BC ∨ (C ∨D) ∧EC

displayed in Figure 2.1 is, e.g., given by

L = (A ∧BC) ∨ (C ∧ EC) ∨ (D ∧ EC).

The advantage of the DNF is that interactions are directly identifiable

since they are given by the AND-combinations. The above logic expression,

e.g., consists of the three interactions A ∧ BC , C ∧ EC and D ∧ EC and is

true if at least one of these conjunctions is true.

To avoid redundancy the DNF should only consist of prime implicants,

i.e. minimal AND-combinations. If, e.g., A∧B ∧C and A∧B ∧CC are part

of the DNF, then C will be redundant and only the prime implicant A ∧ B

is needed.

Our goal is to identify all interactions that might have an influence on

the risk of developing a disease. Therefore, we are not interested in obtain-

ing a minimal DNF, i.e. a DNF consisting of a minimum number of prime

implicants, but a DNF containing all prime implicants. Schwender (2006)

presents a fast algorithm based on matrix algebra for generating such a DNF

of a logic expression.
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3 Identification of Interesting Interactions

One of the search algorithms used in logic regression is based on the Markov

Chain Monte Carlo approach. Kooperberg and Ruczinski (2005) run this

algorithm on the whole data set not to find a single best logic regression

model but to obtain a large collection of models that fit almost as well as

the best one. This set is then used to identify combinations of variables

occurring frequently in these models, and these interactions are assumed to

be the most important ones.

Contrary to Kooperberg and Ruczinski (2005), we propose a subset-based

approach in which the default search algorithm of logic regression, i.e. sim-

ulated annealing, is applied to different subsets of the data. More precisely,

we suggest the following procedure called logicFS for the identification of

potentially interesting variables and interactions that might be explanatory

for the case-control status of an observation.

Algorithm 1 (logicFS – Identification of Interesting Interactions)

1. Draw a bootstrap sample of size n from the n observations of the data

set of interest.

2. Construct a logic regression model based on the bootstrap sample.

3. Convert each of the logic expressions into a disjunctive normal form

consisting of prime implicants.

4. Repeat steps 1.-3. B times.

Some of the interactions identified by logicFS are very important for the

prediction. Others are not important at all, or might actually be obstructive
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for a good classification. It is, hence, necessary to quantify the importance

of each of these potentially interesting interactions.

4 Measuring the Importance of Identified In-

teractions

For a first impression of which variables or interactions might be important

or not, the proportion of models generated by logicFS that contain a specific

interaction can be computed for each identified interaction. This is similar

to the approach used by Kooperberg and Ruczinski (2005) to quantify the

importance of the variables and combinations of variables.

It is, however, assumed that some of the SNP interactions are explana-

tory for only a small subset of patients. Such interactions will hardly be

found, and it is likely that they appear only in very few of the models. They

would thus be called unimportant by the above measure even though they

are actually very important for the correct prediction of some of the patients.

Moreover, a suitable measure should quantify how much a particular interac-

tion improves the classification. This improvement should not be computed

on the same data set on which the classification rule has been trained but on

an independent data set containing new observations.

Since in logicFS a logic regression model is constructed based on a subset

of the data the out-of-bag (oob) observations, i.e. the observations not con-

tained in the bootstrap sample, can be employed to estimate the importance

of the interactions.

As mentioned in Section 2, there exists both a single and a multiple trees

approach of logic regression. While logicFS can handle either of these me-

thods, different importance measures are employed for the two approaches.
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In the single tree case, the importance of a prime implicant, i.e. a variable

or an interaction, P for classification is computed by

VIMSingle =
1

B

( ∑

b: P∈Lb

(
Nb −N−

b

)
+

∑

b: P 6∈Lb

(
N+

b −Nb

)
)

, (4.1)

where

Lb is the set of prime implicants identified in the bth iteration of

logicFS, b = 1, . . . , B,

Nb is the number of oob observations in the bth iteration that are

correctly classified by the logic regression model constructed in

the bth iteration,

N−
b /N+

b is the number of oob observations correctly classified by the bth

model after P has been removed from / added to the model.

We thus compare how well the logic regression models perform when P is

part of the logic expressions or not to get a measurement of the influence of

P on the correct classification.

In the multiple tree case, it is not possible to unambiguously add an

interaction to one of the logic trees since it is not clear to which of the logic

expressions it should be appended. The prime implicant P is, therefore, only

removed from (and not added to) the models, and the multiple tree measure

is determined by

(a) calculating the number Nb of correctly classified oob observations for

each of the B iterations,

(b) removing P from all models,
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(c) recalculating the number of correctly classified oob observations – now

denoted by N?
b – for each of the B iterations,

(d) and computing

VIMMultiple =
1

B

B∑

b=1

(Nb −N?
b )

=
1

B

∑

b: P∈Lb

(Nb −N?
b ) .

(4.2)

The multiple tree measure is similar to the variable importance measure

of Random Forests. The only difference is that Breiman (2001) does not

remove the variable from the CART trees but permutes the outcome of the

variable once and computes N?
b based on the permuted outcomes.

For a particular interaction, a large value of both (4.1) and (4.2) corre-

sponds to a high importance of this interaction, whereas a value of about

zero leads to the assumption that the interaction has no importance for clas-

sification. A prime implicant showing a negative importance is obstructive

for a good classification since the number of misclassifications will increase

if this interaction is added to the the model.

5 Application to SNP Data

In this section, we apply logicFS and the two variable importance measures

(4.1) and (4.2) to simulated and real SNP data. Since the input variables

of logic regression and hence of logicFS have to be binary, each SNP Si, i =

1, . . . , m, is split into the two variables

Si1 : “At least one of the bases explaining Si is of the homozygous

variant genotype,”
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and

Si2 : “Both bases are of the homozygous variant genotype.”

These dummy variables are used instead of the SNPs themselves, where Si1

codes for a dominant variation, and Si2 for a recessive effect.

5.1 Simulated SNP Data

To investigate if our procedures are able to identify the influential interac-

tions in case-control studies, we employ two simulations: In the first simu-

lation, we are particularly interested in the stability of the approaches, i.e.

whether logicFS always identifies the interactions intended to be influential,

and whether the importance of an interaction provided by either (4.1) or

(4.2) is always about the same, when the approaches are applied to the same

data set. The goal of the second simulation is to determine if our procedure

can cope with real association studies in which single interactions might have

moderate effects and a high percentage of the cases cannot be classified by

the measured SNPs.

To examine the former issue, data of 1,000 observations (500 cases and

500 controls) and 50 SNPs are simulated, where an observation is classified

as a case if one of the following four logic expressions is true:

– S12 (explaining 100 cases),

– SC
21 ∧ S32 (150),

– S42 ∧ S52 ∧ S62 (100),

– S72 ∧ S82 (150).
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Apart from the SNP values explaining the cases, the values of each of the

50 SNPs are randomly drawn such that the minor allele frequency, i.e. the

frequency of the less frequent variant, of each SNP lies between 0.2 and 0.4,

and the Hardy-Weinberg equilibrium is fulfilled.

Using 100 Bootstrap samples and allowing a maximum of 20 variables in

each of the logic expression models, logicFS is applied to this data set twice –

once with the single tree approach and once with the multiple tree approach

allowing three logic trees to grow. Afterwards, the single and the multiple

tree measure are computed for each of the interactions in the respective

approaches. This procedure is repeated 50 times.

TABLE 5.1. Numbers of variables and interactions appearing in a particular

number of iterations when logicFS is applied 50 times to the simulated SNP data

set using both the single and the multiple tree approach.

Iterations 1 2 3-10 11-47 48 49 50

Single Tree 72 15 21 17 3 0 9

Multiple Tree 4,649 739 1,022 154 1 4 16

Table 5.1 shows how many of the identified interactions appear in how

many of the 50 iterations. In the single tree approach, e.g., 72 interactions

appear only once, and 15 in two of 50 iterations. Only 9 of the interactions

found in the single tree approach and 16 of the interactions in the multi-

ple tree approach are identified in all 50 iterations. Figure 5.1 displays the

median and the 25% and 75% quantiles of the 50 values of the importance

measures for each of these 9 respectively 16 interactions.

In the single tree case, only the four interactions explanatory for the cases

and the three two-way interactions contained in the explanatory three-way
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FIGURE 5.1. Single tree (left panel) and multiple tree (right panel) measures

of the interactions identified in all 50 iterations of the application of logicFS to

the simulated SNP data set. For each of these 9 or 16 interactions, the solid dot

represents the median and the bold line the interquartile range of the 50 values of

the single or multiple tree measure, respectively. “!” denotes the complement of a

variable, and “&” is synonymous to “∧”.

interaction are identified with a positive importance in all iterations. As

expected from the fact that typically about 37% of the observations are out-

of-bag, the two-way interactions have an importance a little smaller than

0.37 · 150 = 55.5 and S12 has an importance slightly smaller than 37. Figure

5.1 also reveals that the single tree estimates of the importances are very

stable since they do not differ much between the 50 iterations.

As in the single tree case, the top 3 logic expressions are the two explana-

tory two-way interactions and S12. The three-way interaction shows the 6th

highest importance and is surrounded by the binary variables belonging to

the two two-way interactions. The latter also explains why the importance

of the two-way interactions is smaller in the multiple tree case compared

to the single tree case: Even though the importances of both the variables

themselves and the corresponding two-way interactions are computed sepa-
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rately, they are considered jointly in the computation. This might also be a

reason for the larger variances of the estimates – compared to the single tree

measure.

As a second simulation, SNP data are considered that are more realistic

for a genetic association study. Data of 1,000 observations and 50 SNPs are

generated, where each SNP exhibits a minor allele frequency of 0.25. The

case-control status y of each observation is randomly drawn from a Bernoulli

distribution with mean Prob(Y = 1), where

logit (Prob(Y = 1)) = −0.5 + 1.5L1 + 1.5L2

with L1 = S61 ∧ SC
71 and L2 = SC

31 ∧ SC
91 ∧ SC

10,1.

Thus, the probability of being a case in this association study is 0.378

even if an observation exhibits none of the two interactions intended to be

explanatory for the case-control status. A reason for this might be that there

are other genetic or environmental factors that have not been surveyed in this

study but have an influence on the disease risk.

This procedure is repeated 50 times such that 50 data sets are generated.

The mean number of cases and controls over these data sets for the different

TABLE 5.2. Probabilities for being a case when showing none, one or both of

the influential interactions, and the mean number of cases and controls over the

50 simulated data sets.

Interactions Probability Cases Controls

0 0.378 388 232

1 0.731 91 245

2 0.924 3 40
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probabilities of being a case are summarized in Table 5.2.

Both the single tree approach with a maximum of six variables and the

multiple tree approach with two trees and a maximum of eight variables are

applied to each of these data sets using B = 50 iterations.

Table 5.3 reveals that the two SNP interactions intended to be influential

for the disease risk are detected in all of the 50 data sets. Moreover, they

are identified as the two most important expressions in almost any of these

data sets, where S61∧SC
71 mostly ranks first with a mean importance of 18.88

in the single and 15.19 in the multiple tree approach, and SC
31 ∧ SC

91 ∧ SC
10,1

ranks second with a mean importance of 12.21 or 6.44, respectively. If one

of these interactions ranks third (or lower), then the expressions identified to

be more important typically contain this or the other influential interaction

plus another variable.

TABLE 5.3. Ranks of the two SNP interactions intended to be influential for

the case-control status in the applications of both the single and the multiple tree

approach to each of the 50 simulated data sets.

S61 ∧ SC
71 SC

31 ∧ SC
91 ∧ SC

10,1

Rank Single Multiple Single Multiple

1 45 42 5 6

2 4 6 42 32

3 1 2 3 10

4 0 0 0 2
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5.2 The GENICA Study

The GENICA study (http://www.genica.de) is carried out by the Interdisci-

plinary Study Group on Gene EN vironment Interaction and Breast CAncer

in Germany, a joint initiative of researchers dedicated to the identification of

genetic and environmental risk factors associated with sporadic breast can-

cer. This age-matched and population-based case-control study has been ini-

tially launched within the activities of the German Human Genome Project

(DHGP) and continues until present.

Even though exogenous risk factors such as reproduction variables, hor-

mone variables and life style factors have also been assessed, we here focus

our interest on a subset of the genotype data of the GENICA study. More

precisely, data of 1,258 women (609 cases and 649 controls) and 40 SNPs be-

longing to the DNA repair or the xenobiotic and drug metabolism pathway

are available for our analysis.

All observations having more than five missing values as well as SNPs

having more than 10% missing values or fewer than 30 women showing not

the homozygous reference genotype are removed from the analysis leading

to a total of 35 SNPs and 1,191 women (561 cases and 630 controls). The

remaining missing values are replaced SNP-wise by random draws from the

marginal distribution.

For the application of logicFS to the GENICA SNP data, each of the

SNPs is again coded by two dummy variables. Only 59 of these 70 binary

variables are used in the analysis since for each of the other 11 variables there

are less than ten women for which this variable is true.

Using B = 200 iterations logicFS is then applied to this data set twice –

once with a single tree and a maximum of 10 variables contained in this tree,

and once allowing three trees to grow with a maximum of 16 variables in all
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three trees combined.
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FIGURE 5.2. Single tree (left panel) and multiple tree (right panel) importances

of the interactions identified in the analysis of the GENICA SNP data set. Since

the SNP names are too long for graphical representation, they are coded.

In the single tree case, this leads to the detection of 1,052 potentially

interesting SNPs and SNP interaction, whereas in the multiple tree case 1,589

potentially interesting SNPs and SNP interactions are identified. Figure 5.2,

however, reveals that just one interaction, namely !X18 & X20 or decoded

ERCC2 6540C
1 ∧ ERCC2 188801,

consisting of two SNPs from the gene ERCC2 (Excision Repair Cross-Com-

plementing group 2; formerly XPD) seems to be associated with the case-

control status. If thus ERCC2 6540 (refSNP ID: rs1799793) is of the ho-

mozygous reference genotype and ERCC2 18880 (rs1052559) is not of this

genotype, then a women will have a little higher risk of developing breast

cancer.

The moderate importances of the other interactions in the single tree case

are mostly due to the inclusion of ERCC2 6540C
1 in each of these expressions.
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6 Discussion

A common and important task in genetic association studies is the identifi-

cation of SNPs and SNP interactions associated with a covariate of interest,

e.g., a disease. Since SNP interactions are assumed to be more influential

than individual SNPs an appropriate method needs to be able to identify

such interactions. For a good prediction of the covariate of interest, this

method should, in addition, provide a possibility to quantify the importance

of interactions.

In this paper, we have introduced a procedure called logicFS based on a

combination of bootstrap and logic regression for the identification of poten-

tially interesting logic expressions that, e.g., represent SNP interactions, and

two measures for quantifying the importance of these features for classifica-

tion in case-control studies.

In the applications to simulated SNP data, all logic expressions intended

to be explanatory for the case-control status of the observations are identified

in any of the repetitions always having the highest importances. In the

analysis of the GENICA SNP data set, only one interaction between two

SNPs of the ERCC2 gene could be detected that slightly increases the risk

of developing breast cancer. This supports the findings of Justenhoven et al.

(2004).

Since the goal of a case-control study is the construction of a classifi-

cation rule based on as few variables as possible, the identification of SNP

interactions associated with the case-control status is just the first but a very

important step. In a next step, one could, e.g., take the k most important

features, or all interactions exceeding a specific importance, and use them as

binary variables in logic regression or in any other classification procedure.

The variable importance measures are currently restricted to analyses
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of data with a binary outcome. They can, however, be extended to, e.g.,

QTL (Quantitative Trait Loci) studies in which the covariate of interest is

quantitative. In this case, the sums of squares would replace the numbers

of correctly classified observations in (4.1) and in (4.2), and the signs of the

differences in (4.1) and (4.2) would have to be changed. Since logic regression

already comprises linear regression (Ruczinski et al., 2003), logicFS can be

used as is to identify interactions associated with the quantitative trait.

In this paper, we have employed simulated annealing for model search

since this is the standard search algorithm in logic regression. But our me-

thod is not restricted to this algorithm. Neither it is restricted to logic

regression. logicFS and – at least – the single tree measure can be applied

to any procedure whose output is a logic expression.

Moreover, logicFS itself can be employed as a classification procedure

since it can actually be viewed as a bagging (Breiman, 1996) version of logic

regression. Using the output of logicFS, the case-control status of a new

observation can be predicted by majority voting, i.e. by assigning the obser-

vation to the class predicted by the majority of the B logic regression models,

or by averaging over the class probabilities. Since logic trees and CART trees

are related – each logic tree can be transformed into a CART tree, and vice

versa – logic trees might also be instable classifiers. It is, therefore, likely

that the bagging version of logic regression might improve the classification.

All the approaches presented in this paper have been implemented in the R

package logicFS that can be downloaded from http://www.bioconductor.org,

the web page of the Bioconductor project (Gentleman et al., 2004). This

package also contains a version of logicFS enabling to perform bagging on

logic regression models.
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