
Technical University Vienna

Alert Verification
Determining the Success of Intrusion Attempts

Christopher Kruegel Technical University Vienna
William Robertson University of California, Santa Barbara

DIMVA 2004 2

Technical University Vienna

Overview

• Motivation
– problem of irrelevant alerts

• Alert verification
– verify success of attack
– passive and active mechanisms

• Prototype
– Snort extension

• Evaluation

• Conclusions

DIMVA 2004 3

Technical University Vienna

Motivation

• Intrusion detection systems produce large amounts of alerts

• Often, administrators ignore these alerts because
– there are too many of them
– there are too many irrelevant ones

• Two main strategies to reduce alerts
1. combine, summarize, and correlate alerts
2. remove irrelevant alerts (or greatly reduce their priorities)

DIMVA 2004 4

Technical University Vienna

Irrelevant AlertsIrrelevant Alerts

Irrelevant Alerts

• Alert classification

– Type 1 (true positive)
alert raised in response to successful attack

– Type 2 (non-relevant positive)
alert raised in response to actual attack that failed its objectives

– Type 3 (false positive)
alert raised in response to benign event

DIMVA 2004 5

Technical University Vienna

Irrelevant Alerts

NonNon--relevant positive examplerelevant positive example

• Infected machine launches a Code Red attack against Apache
web server (running on Linux host)

• Intrusion detection system (IDS) faithfully reports attack

ProblemProblem

• IDS reports an actual attack (cannot call it a false alarm)

• However, target host is not vulnerable (cannot call it a relevant attack)

• Even worse when web server is a Microsoft IIS, but it is patched

DIMVA 2004 6

Technical University Vienna

Alert Verification

• Alert verification
– process of verifying the success of attacks
– allows IDS to distinguish between true positives (Type 1 alerts)

and non-relevant and false positives (Type 2 and Type 3 alerts)
– allows IDS to suppress an alert or reduce its priority

• Requirements
– accuracy

• the alert verification process should correctly tag all successful and
unsuccessful alerts

• quality of input data
• timeliness of input data

DIMVA 2004 7

Technical University Vienna

Alert Verification

• Requirements (cont.)
– low impact

• the verification process should not interfere with regular operations
– ease-of-use

• Classification
– according to verification technique

1. context-based technique
2. forensics-based technique

– according to point in time when verification data is gathered
1. passive alert verification
2. active alert verification

DIMVA 2004 8

Technical University Vienna

Alert Verification Techniques

• Context-based verification
– model properties of networks and hosts
– model requirements of attacks (based on these properties)
– check whether an attack can possibly success, given a particular

network configuration
– example

• host operating system is a modeled property
• Code Red attack requires a Microsoft Windows target
• attacks against Linux hosts can be suppressed

– related work
• M2D2 [Morin, 2002]
• Real-time Network Awareness [Roesch, 2003]

DIMVA 2004 9

Technical University Vienna

Alert Verification Techniques

• Forensics-based verification
– check for known outcome of attacks
– checkable and visible traces of attacks
– known outcome has to be defined for attacks similar to

misuse-based IDS signatures or virus signatures
– example

• worm is known to create a certain Windows Registry entry

– related work
• Cisco IDS [2004]

DIMVA 2004 10

Technical University Vienna

Alert Verification Classification

• Passive alert verification
– gather context information once (or at regular intervals)
– information is available previously to attack

• Active alert verification
– gather context information or forensic data after alert is generated
– information is gathered in response to attack
– mechanisms can be divided into following groups

• active with remote access
• active with authenticated access
• active with dedicated sensor support

DIMVA 2004 11

Technical University Vienna

Passive Alert Verification

• A priori information about
– host operating system, services and configuration, and

network topology

• Possibility to check
– if target host and service exist,
– if service is reachable, and
– if service is potentially vulnerable

+ basically no impact on network operations
+ can be managed at network level (no host support needed)
- database of network and hosts must be created and maintained
- information can be stale (i.e., out-of-date)
- limitations to the amount of information that can be gathered

DIMVA 2004 12

Technical University Vienna

Active Alert Verification

With remote access

– a network connection to the target of the attack is needed
– allows active scanning in response to attack

• Information can be gathered about
– status and changes of services (using also passive information)
– actual vulnerabilities

• Vulnerability scanner
– checks remotely for vulnerabilities
– often ships with a large database of checks that can be performed

DIMVA 2004 13

Technical University Vienna

Active Alert Verification

+ information is current
+ can be managed at network level (no host support needed)
+ large amount of checks already exist
- possible impact on network operations and services

• bandwidth consumption and service crashes
- vulnerability scanner is not completely accurate

• Vulnerability scanner can produce
– false positives (no loss compared to IDS only)
– false negatives (problematic, but unlikely as a vulnerability scanner

performs a basic variation of corresponding attack)

DIMVA 2004 14

Technical University Vienna

Active Alert Verification

With authenticated access

– verification process disposes of local (user) access to target host
– run scripts and system commands

• Information gathered about
– file integrity or existence of suspicious files
– system status about processes and network connections

+ current and accurate information
+ basically no impact on network operations
- requires host support
- checks have to be developed

DIMVA 2004 15

Technical University Vienna

Active Alert Verification

With dedicated sensor support

– verification process disposes of local (user) access to target host
– dedicated sensors are installed and configured

• Information gathered about
– kernel level events, system calls

+ current information
+ high-quality audit data
+ basically no impact on network operations
- requires sensors to be installed and configured
- checks have to be developed

DIMVA 2004 16

Technical University Vienna

Prototype

• Active alert verification prototype
– uses the remote access technique
– based on NASL scripts written for Nessus vulnerability scanner
– implemented as a patch to Snort IDS

• Nessus
– widely-used, open source vulnerability scanner
– many high quality checks available
– very modular and easy to integrate
– extensible NASL (Nessus Attack Scripting Language) language

DIMVA 2004 17

Technical University Vienna

Prototype

• Snort patch
– extension of Snort’s alert processing pipeline
– intercepts alerts before being passed to output plug-ins
– multiple verification threads

• ensures high throughput if checks are waiting for time outs

• Selection of appropriate vulnerability check
– based on CVE ID
– both defined by Snort alerts and NASL scripts
– when no matching script is found, alert remains unverified and is simply

passed on

• All alerts are appropriately tagged and passed to output plug-ins

DIMVA 2004 18

Technical University Vienna

Prototype

• Snort-AV prototype system
– no setup overhead

• as easy as setting up Snort

– covers a significant fraction of Snort alerts

– well maintained
• patch against latest Snort version 2.1.3

– reasonably popular
• about 5.000 downloads

– readily available
http://www.cs.ucsb.edu/~wkr/projects/ids_alert_verification/

DIMVA 2004 19

Technical University Vienna

Evaluation

• Synthetic benchmark

– Snort-AV on a test bed with an attacker and a victim host

– evaluation set consisting of
1. nine working exploits against popular services such as Apache, bind,

sshd, sendmail, wu-ftpd
2. full scan using Nessus

– Snort generated 6,659 alerts, of which only 24 alerts were relevant
– among those 24 relevant alerts were all nine exploits
– all 24 relevant alerts were correctly verified, the rest was suppressed

DIMVA 2004 20

Technical University Vienna

Evaluation

• Real world benchmark

– Snort-AV with two honeypots
• Snort-2.0.2
• Linux RedHat 7.2
• Windows 2000

– during a 14 days period
• 164.415 alerts in response to attacks against RedHat 7.2
• 79.198 alerts in response to attacks against Windows 2000

– verification process results
• 161.166 attacks (98.3%) against RedHat 7.2 tagged as unsuccessful
• 78.785 attacks (99.4%) against Windows 2000 tagged as unsuccessful

DIMVA 2004 21

Technical University Vienna

Evaluation

• Real world benchmark (cont.)

– most attacks were
• Slammer and Nachia worms
• scan activity against ports commonly used by web proxy and socks proxy

– unsuccessful attacks were manually checked
• possible because many attacks target non-existing services

– significant fraction of alerts were non-relevant positives
• despite the fact that an out-of-the-box Snort was used

• Limitations
– alert verification quality depends on quality of Nessus
– CVE ID sometimes imprecise

DIMVA 2004 22

Technical University Vienna

Conclusions

• Real world systems produce a large amount of alerts
– in particular, non-relevant positives are a problem

• Alert verification is a process that determines the success of attacks to suppress
irrelevant alerts

• Classification
– context-based versus forensics-based techniques
– passive versus active verification techniques

• Snort-AV
– prototype of an active alert verification system with remote access
– integrates the Nessus vulnerability scanner into the Snort IDS
– effective in synthetic and real world experiments

