Intrusion detection in unlabeled data with quarter-sphere Support Vector Machines

Pavel Laskov Christin Schäfer Fraunhofer FIRST.IDA Berlin, Germany

Igor Kotenko SPIIRAS St. Petersburg, Russia

Unsupervised anomaly detection in IDS

- *Main idea*: search for anomalies in the data *without* training on the clean data.
- *Previous work*: (Eskin et al., 2002), (Lazarevic et al., 2003).
- Advantages: no need for training, no need for extensive amount of clean data.
- *Problems*: false alarm rates, performance.

- Reproduce the state-of-the-art results on the KDD Cup (DARPA '98) dataset (with the main focus on one-class SVM).
- Investigate the methods from the machine learning point of view.
- Investigate the behavior of anomaly detection methods with varying outlier percentages.

- Reproduce the state-of-the-art results on the KDD Cup (DARPA '98) dataset (with the main focus on one-class SVM).
- Investigate the methods from the machine learning point of view.
- Investigate the behavior of anomaly detection methods with varying outlier percentages.

Main result: we propose a new anomaly detection technique, a quarter-sphere SVM, which is particularly geared for data used in intrusion detection and is significantly faster than other one-class SVM methods.

KDD Cup dataset contains the total of 42 features computed for connections of TCP data from the DARPA '98 evaluation.

Source	Sample attributes	Туре
Basic connection properties	duration, service, src_bytes, dest_bytes	int, bool, string
Selected content features	logged_in, root_shell, num_shells	int, bool
Time window features	<pre>count, srv_count, serror_rate, rerror_rate</pre>	int, float
Connection window features	dst_host_count,	int, float

Fraunhofer Institut Rechnerarchitektur und Softwaretechnik

KDD Cup data: normalization

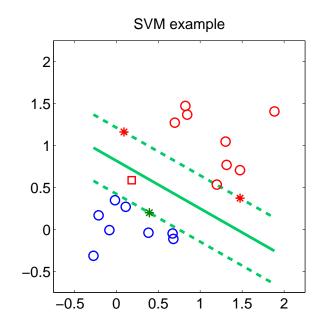
• *Numerical attributes*: replace the values with distance from mean in the number of standard deviations.

$$x_i^{(d)} \longleftarrow \frac{|x_i^{(d)} - \hat{\mu}^{(d)}|}{\hat{\sigma}^{(d)}}$$

• *Categorical attributes*: extend the space with card^(d) coordinates; assign the value of $\frac{1}{\text{card}^{(d)}}$ to coordinates matching the attribute's value.

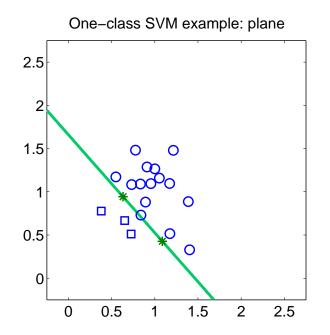
Support Vector Machines (SVM)

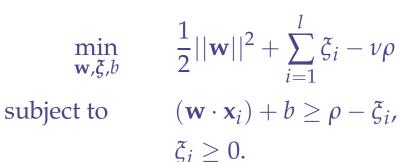
The main idea of SVM: separation of examples of two classes with a hyperplane producing a large margin:



 $\min_{\mathbf{w},\xi,b} \quad \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{l} \sum_{i=1}^{l} \xi_i$ subject to $y_i((\mathbf{w} \cdot \mathbf{x}_i) + b) \ge 1 - \xi_i,$ $\xi_i \ge 0.$

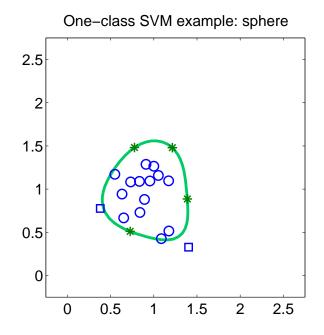
The main idea of the plane one-class SVM: separate data from the origin with a hyperplane:

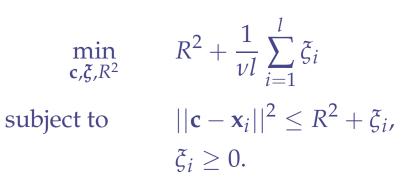




One-class SVM: sphere formulation

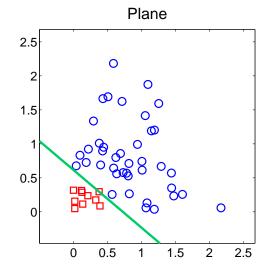
The main idea of the sphere one-class SVM: fit a hypersphere around the data:

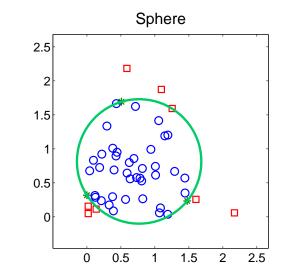




One-class SVM on non-negative data

Previous methods

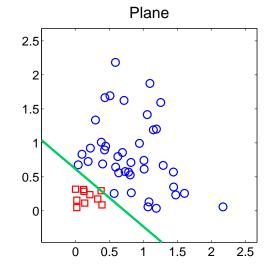


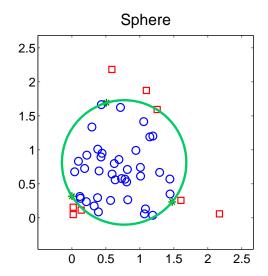


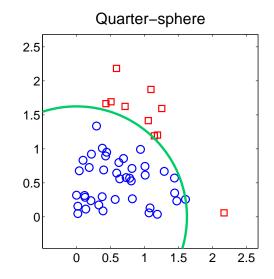
One-class SVM on non-negative data

Previous methods

New method





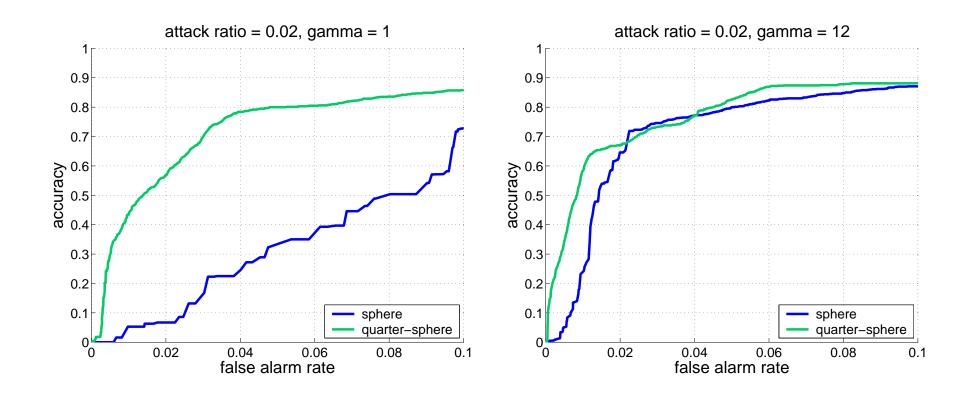


Algorithmically, the following *linear program* must be solved to apply a quarter-sphere SVM:

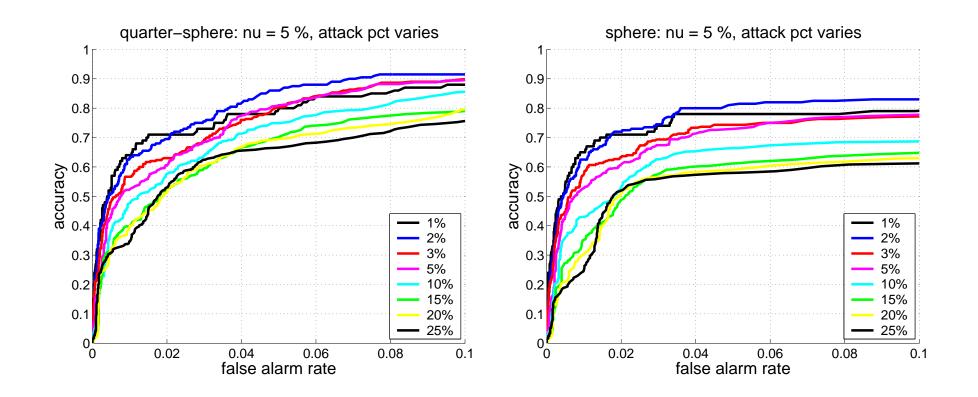
$$\max_{\alpha} \sum_{i=1}^{l} \alpha_i k(\mathbf{x}_i, \mathbf{x}_i),$$

subject to
$$0 \le \alpha_i \le C, \ i = 1, \dots, l,$$
$$\sum_{i=1}^{l} \alpha_i = 1.$$

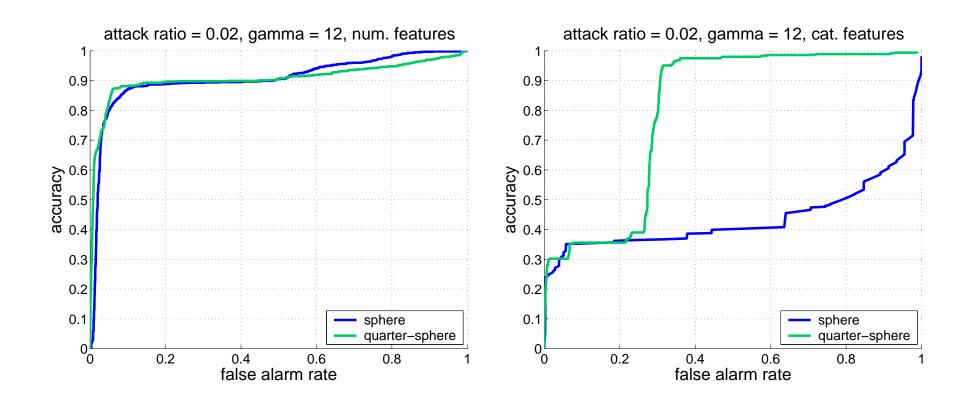
Results: Quarter-sphere vs. Sphere



Results: varying attack percentage



Results: numerical vs. categorical features



Conclusions

- Designing special-purpose anomaly detection techniques, suited for the data arising in IDS, can significantly decrease false alarm rates.
- What is most needed for the success of anomaly detection:
 - Precise understanding of *how* different mechanisms of anomaly detection work on the data arising in IDS.
 - Critical analysis with respect to *robustness*, i.e. operation under conditions that anomalies are not rare or their impact can significantly tilt the decision toward the anomaly.

