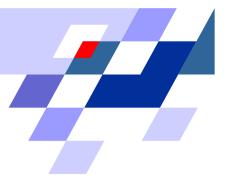
Fachbereich Informatik Lehrstuhl 6 — Informationssysteme und Sicherheit

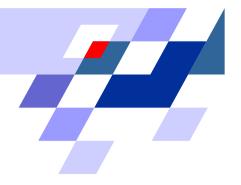
GI SIG SIDAR & SIG PET WORKSHOP ON PRIVACY RESPECTING INCIDENT MANAGEMENT

Evaluating the Design of an Audit Data Pseudonymizer Using Basic Building Blocks for Anonymity

Ulrich Flegel

April 2005, Dortmund




Overview

- APES Basic Building Blocks for Anonymity
 - Overview APES Project
 - Motivation for Evaluation
 - Basic Building Blocks
- Example Anonymity System: *Pseudo/CoRe*
 - Motivation for Audit Data Pseudonymization
 - Overview Pseudo/CoRe
 - Specific Building Block Requirements
- Evaluation of *Pseudo/CoRe*
 - Decomposition
 - Building Blocks Used
 - Results

Conclusion

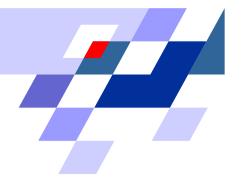
Anonymity and Privacy in Electronic Services *

Basic Building Blocks for Anonymity

APES: Anonymity and Privacy in Electronic Services

- surveys state-of-the-art anonymity systems: anonymous connections, web browsing, e-mail, e-payments, e-auctions, ...
- anonymity systems decomposed into reusable basic build blocks
 - easier to compare similar building blocks than complex anonymity systems
 - can systematically identify deficiencies given list of building blocks
 - can design anonymity systems by systematically composing building blocks

here: evaluate design of a given anonymity system:


- decompose into building blocks
- compare building blocks used to all similar building blocks to
- goal 1) identify room for improvement
- goal 2) identify deficiencies

The APES Basic Building Blocks Levels

- building blocks hide or remove identifying information at
 - **connection level:** provide anonymous communication channels
 - information may identify individuals
 implicitly: linking information along connection path by
 appearance: content, format, size, ...
 - **flow:** exploit knowledge about packet processing: order, timing, ...
 - **explicitly (appearance):** IP address in packet header, ...
 - compose building blocks to change appearance and flow
 - application level: provide anonymity in an application
 - mostly not *basic* building blocks, rather composed of elementary building blocks not offering anonymity alone
- need to be combined on both levels to achieve anonymity

An Example Anonymity System

*

Pseudo/CoRe

Pseudonymization with Conditional Reidentification

Audit Data Pseudonymization

audit data: (=log data)

• can be used to identify individual persons that use a service: performance monitoring, activity profiling

conflicting security requirements:

- accountability of misuse to protect victims
- individual desire for and right on anonymity / privacy

balancing conflicting security requirements:

- replace person identifying features in audit data with pseudonyms
- detection of misuse suspicions possible on pseudonymized audit data
- for a given misuse suspicion accountability can be established: only the involved pseudonyms can be disclosed

verification verification

organizational purpose binding

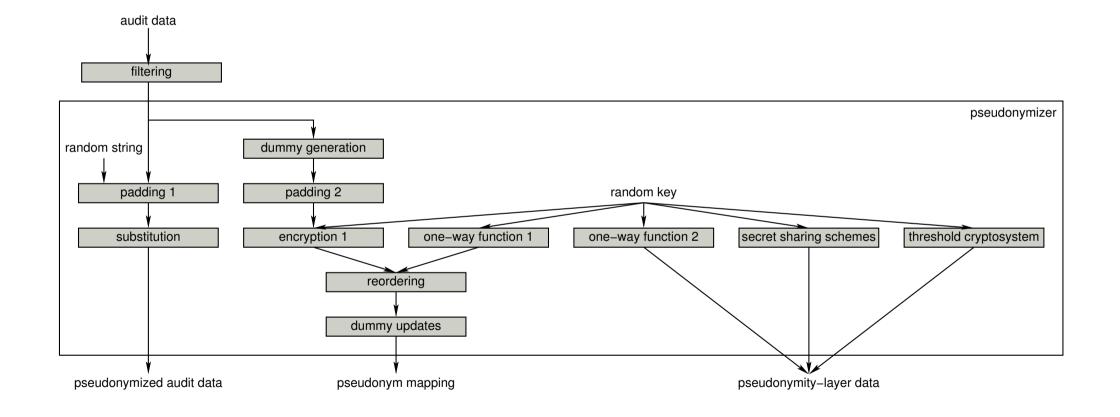
Specific Building Block Requirements

- SSO generally cannot observe user behavior, exception: inspection of pseudonymized audit data
- ⇒ **no connection-level anonymity** required
 - channel between audit component and pseudonymizer must be protected, easiest if channel is short and local, hence pseudonymize on device providing service and generating audit data
- \Rightarrow service responsiveness must not degrade substantially
 - device may get successfully hacked, hence move audit data to a secure location as soon as possible
- \Rightarrow pseudonymization must:
 - be performed on the fly
 - introduce no significant delay
 - keep up with audit data volume characteristic for the service

(a) & (b) \Rightarrow building blocks with **low computational complexity** and **low delay**


U. Flegel Evaluating a Pseudonymizer Using APES Basic Building Blocks

(a)


(b)

Evaluation of Pseudo/CoRe

Pseudonymization Approach Decomposed

Connection-Level Building Blocks Used

building block	connection-level		application lovel	
	appearance	flow	application-level	our approach
encryption	\checkmark		\checkmark	\checkmark
padding	\checkmark		?	\checkmark
substitution	\checkmark		?	\checkmark
compression	\checkmark			
reordering			?	\checkmark
latency		\checkmark		?
dummy activity		\checkmark	?	\checkmark
no replay		\checkmark		—
filtering		\checkmark	?	\checkmark
caching		\checkmark		—
broadcast		\checkmark	\checkmark	_
untraceable broadcast				
multiplexing		\checkmark		
bulletin board		\checkmark		

Application-Level Building Blocks Used

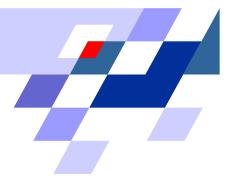
building block	connection-level		application-level	our approach
	appearance	flow	application-level	our approach
one-way function			\checkmark	\checkmark
(fair) blind signature			\checkmark	(?) / —
group signature			\checkmark	?
threshold cryptosystem			\checkmark	\checkmark
multi-party computation			\checkmark	?
homomorphic encryption			\checkmark	?
deniable encryption			\checkmark	_
secret sharing schemes			\checkmark	\checkmark
zero-knowledge			\checkmark	?
pseudonyms				? / 🗸
trusted third party			$\overline{\checkmark}$	$\overline{\checkmark}$

Evaluation Results

ad goal 1) identify room for improvement

- in the conceptual design under specific circumstances a more efficient building block could be used to hide pseudonym mapping updates
- six build blocks could be used to
 - reduce the power of the $\ensuremath{\mathsf{TTP}}$
 - replace the threshold cryptosystem
 - provide exploitable properties in of protected pseudonymity layer data
- probably none of the candidate building blocks will either satisfy the specific requirements of audit data pseudonymization wrt. computational complexity or delay
- ⇒ improvement possible only if requirements are relaxed to trade off stronger mechanisms against computational complexity or delay

ad goal 2) identify deficiencies


• none found

Conclusions About the APES Approach

- it is feasible to decompose the design of a given anonymity system
- informally analyzing the decomposed design can identify weaknesses and/or room for improvement
- the given building blocks for conditional anonymity were sufficient for our design; may be sufficient to build many systems for conditional anonymity
- the classification of building blocks is incomplete
- the list of basic building blocks for anonymity is not exhaustive
- \Rightarrow analysis results merely give strong indications based on the current state of knowledge

Contact

Software

Site: http://ls6-www.cs.uni-dortmund.de/pseudocore Support: pseudo-support@ls6.cs.uni-dortmund.de

Contact

Ulrich Flegel

- WWW: http://ls6-www.cs.uni-dortmund.de/~flegel
- Email: ulrich.flegel/at/udo.edu

