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1. Introduction

During the last decade the development of high-throughput postgenomic biotechnolo-

gies has resulted in the production of exponentially expanding quantities of biological

data, such as genomic, proteomic, and metabolomic expression data. Along with the

increasing amount of available data, a lot of novel statistical methods for analysing this

new type of data have been developed and proposed in the literature.

One of the main and probably first addressed issues is to compare the expressions

in different tissue types, such as healthy and cancerous cells, to detect which cell

components are differentially expressed and therefore possibly associated with different

phenotypes, such as diseases. In the context of gene expression data this kind of

analysis is referred to as ‘Determination of differentially expressed genes’ and its main

goal is to identify the genes whose disregulation, e.g. up- or down-regulation, leads

to diseases. The practical advantage of identifying these genes is straighforward:

Differentially expressed genes can be seen as candidates for useful points of application

for pharmaceutical treatments and/or diagnostic tests. Interesting publications on this

field of research are given by: [37], [38], [48], and [17] among others.

Another as important but more fundamental issue in the context of gene expres-

sion data is to understand how the expressions of genes are regulated, and to identify

the relationships and interations between genes. Traditional approaches to systems

biology and functional genomics are based on mathematical description of putative

pathways in terms of coupled differential equations with the objective to obtain a

deeper understanding of the exact nature of the regulatory circuits and their regulation
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1. Introduction

mechanisms. However, the availability of high-throughput postgenomic data of different

nature has recently prompted substantial interest in reverse engineering the network

and pathways in an inferential way from the data themselves. So, the idea behind this

kind of analysis is not to compare the expressions of genes in different tissues, but to

extract the relationships between the genes from data taken from one special cell type.

The final goal is to understand the mechanisms that sustain life and/or cause genetic

diseases by pathologically relevant mutations.

From a molecular biological point of view it is known that such complex systems can be

analysed as a whole entity only. Because such complex systems exhibit a behaviour that

is hardly explainable from the properties of its individual molecules, and consequently,

modelling single components separately does not lead to useful results. For that reason

several more and less sophisticated machine learning reverse engineering methods, such

as Bayesian networks (e.g. [22]), Gaussian graphical models (e.g. [43]), and Relevance

networks (e.g. [7]), have been applied to gene (protein and metabolite) expression

data. But although such reverse engineering approaches raise the question of how much

confidence one can have in networks reconstructed from sparse and noisy gene expression

data, only serveral publications about assessing the accuracy of reverse engineering

can be found in the literature. One of the first evaluations was carried out by [44].

The authors simulated a complex biological system at different levels of organisation,

involving behaviour, neural anatomy, and gene expression of songbirds. They then

tried to infer the structure of the known true genetic network from the simulated gene

expression data with Bayesian networks. In a related study, [26] evaluated the accuracy

of reverse engineering gene regulatory networks with Bayesian networks from data

simulated from realistic molecular biological pathways, where the latter were modelled

with a system of coupled differential equations. This network was also used in an

earlier study by [54], who investigated the inference accuracy of deterministic linear

and log-linear models. While all three publications certainly shed some light on the

accuracy of reverse engineering in systems biology, they only investigated a particular

inference method and hence do not allow a cross-method comparison between different

7



1. Introduction

machine learning approaches.

In order to adress this shortcoming, an evaluation study was carried out by Pournara

(see [39]). The author compared Gaussian graphical models and Bayesian networks

on synthetic data generated from networks with random structures and different gene

regulation mechanisms, where the latter differed with respect to the cooperative or

competitive interactions between transcription factors regulating the same gene.

The focus of the research presented in this doctoral thesis was motivated by and is based

on the ideas of Pournara (see [39]), but improves this earlier work in lots of important

aspects. So for example a further learning method: the approach of Relevance networks

has been included and, in order to capture uncertainty inherent in learning from sparse

and usually noisy expression data, the most modern machine learning algorithms, such

as MCMC sampling schemes for Bayesian networks or a novel shrinkage estimator for

Gaussian graphical models, have been implemented and applied. Another important

improvement follows from the fact that the present cross-method comparison is not only

based on synthetic data generated from random network structures, but also includes

real expression data gathered from the cytometric protein signalling network which

is well-known and described in detail in the systems biology literature. In addition,

certainly further synthetic data sets had to be generated, but thereby the same

biologically realistic network topology was utilised. Finally, as more and more often

interventional data, that is data in which the expression of some nodes (genes, proteins,

etc.) are up- and/or downregulated by experimental conditions, are collected in systems

biology, it has been distinguished between pure observational and interventional test

data sets. Especially, Bayesian networks can deal with and benefit from interventions,

so that much more clues about the causal direction of the interactions between the

nodes can be revealed.

In this context a further aspect of this doctoral thesis is a detailed comparison

between two different stochastic models (scoring metrics) for Bayesian networks. A lot
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1. Introduction

of publications can be found in the literature which describe the application of one of

these models to expression data, and usually there is only few or even no justification

for the choice of the stochastic model. Researchers using the continuous Gaussian

Bayesian network model which can not model any non-linear relationships in the data

often simply argue that a discretisation would incur too much information loss. On the

other hand researchers using the discrete multinomial Bayesian network model argue

that there may be non-linearity in the data, so that the more flexible modelling tool

is preferable. But as no comparison between the performance of these two stochastic

models for Bayesian networks can be found in the literature either, the practical

meaning of this theoretical difference has never been investigated in detail. To fill this

gap the cross-method evaluation mentioned above was extended to such a Bayesian

network specific cross-model comparison (see Section 5.6).

Another aspect of this thesis is a case study dealing with the identification of in-

teracting genes in a gene expression data set taken from healthy human kidney cells.

The data set was made available by the German company Boehringer Ingelheim Pharma

GmbH & Co. KG (Biberach, Germany) for a confidential analysis, and in accord with

the company a strategy for the analysis was mapped out. The strategy and some

results of this analysis of real expression data using Bayesian network methodology are

presented in Chapter 4.

Because no satisfactory software program for the different Bayesian network machine

learning approaches and models is available to date, all algorithms described in this

thesis have been implemented using the programming language provided by the software

package Matlab developed by the Mathworks company. Much time had to be spend on

these implementations, as Markov Chain Monte Carlo sampling of Bayesian network is a

complex task. Especially, Bayesian network inference via MCMC is computational very

expensive, so that efficient implementations had to be used. Although the developed

library of self-written Matlab programs is not a part of this thesis, it is planed on

making it freely available on the internet sometime.
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1. Introduction

This doctoral thesis is organised as follows:

Chapter 2 provides brief introductions to the most fundamental concepts and methods

of molecular biological research, such as introductions to cell biology and systems

biology (2.1), to Affymetrix GeneChip biotechnology (2.2), and to gene regulatory

networks from a biological point of view (2.3).

Afterwards in Chapter 3 detailed statistical descriptions of the different graphical mod-

els (reverse engineering machine learning methods) which have been compared in the

evaluation study are given. More precisely, after two sections devoted to the Informa-

tion bottleneck algorithm for data discretisation (3.1) and a general introduction to gene

networks from a more mathematical point of view (3.2), the statistical theory behind

the reverse engineering machine learning methods: Relevance networks (3.3), Gaussian

graphical models (3.4), and Bayesian networks (3.5) are presented, whereby for each

method the most modern learning algorithms are included. The theory chapter closes

with two sections describing the concept of the Receiver Operator Characteristic (3.6)

and two synthetic data generators (3.7).

Details on the kidney cell gene expression data analysis are given in Chapter 4. Espe-

cially, some results are presented that have not been published yet.

Chapter 5 is dedicated to the comparative evaluation study, that is the main part of

this thesis. After a more detailed motivation of the study (5.1), follows a description of

the cytometric signalling network (5.2). Subsequently, an example data set is used to

illustrate of some statistical aspects (see 5.3), which then - due to space limitations - had

to be omitted in the subsequent sections. Finally, the actual evaluation study is described

in the last three sections. Precisely, after Section 5.4 presenting the applied parameter

settings, there is a presentation of some results of a kind of screening experiment that

has been used to extract two more special questions which are then issued in the nest

two sections. Section 5.6 is dedicated to an extensive cross-method comparison between

Relevance networks, Gaussian graphical models and Bayesian networks. And Section 5.7

compares the two different stochastic models for Bayesian networks in detail. Finally,
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1. Introduction

the most important results of the screening experiments as well as the two more detailed

cross-method comparisons are briefly summarised in Section 5.8.

Chapter 6 concludes the thesis with a discussion of the results and gives an outlook to

future work.
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2. Molecular biological concepts and

methods

This second chapter provides some brief introductions to the most fundamental concepts

and methods of molecular biological research. Thereby not only the well-known funda-

mentals of cell biology are described, but also some methods and principles of modern

research in the field of sytems biology are adressed. Due to space limitations the descrip-

tions are restricted to the most important aspects, which are necessary and sufficient for

understanding the basic idea of reverse engineering regulatory networks from expression

data.

2.1. Cell biology and systems biology

Within this section a quick introduction to systems biology (functional genomics) is

given. The introduction focuses on some molecular biological aspects that are relevant

for the statistical analysis of expression data. Thereby all biological aspects are

predominantly seen as information transfer processes only.

All processes within biological cells are regulated by interactions between DNA,

mRNA, proteins, and metabolites. These cellular processes are necessary to enable the

cells of an living organism to differentiate to specialised cells during development, and

to response to different environmental conditions during lifetime. The characteristics

(phenotype) of an organism depend on the phenotypes of its cells, and the information

12



2. Molecular biological concepts and methods

necessary for the development of the phenotype of a cell is encoded in molecular units

referred to as genes.

Omitting almost all biological details, the human DNA (desoxyribonucleic acid) consists

of 23 double stranded DNA molecules which are organized as chromosomes and carry

the complete genetic information (genome) of a living cell. Thereby the different DNA

sequences on the chromosomes can be seen as molecular units and are referred to as genes.

Each of these genes contains the information (code) for synthesizing functional molecular

units called proteins. The synthesis of a protein from a gene is regulated by control

mechanisms at different stages, such as transcription, RNA splicing, translation and post-

translational modifications. The process of building a mRNA (messenger ribonucleic

acid) copy of the code of a gene is called transcription, and is started by the binding of

a transcription factor to the DNA sequence of that gene. During the transcription the

instruction for the creation of a protein is transferred from DNA to mRNA. Subsequently,

in the translation process the mRNA copy is used for the synthesis of a new protein.

Thereby to each codon (triple of nucleotides) on the mRNA a special amino acid is

matched, and the resulting composed sequence of amino acids is the synthesised protein.

For short, each gene is a sequence on a DNA molecule, from which a complex molecular

machinery within cells can read information necessary for manufacturing a particular

type of protein. The mRNA is a transcribed copy of the information carried by a DNA

sequence (gene) which is used to move the information contained in the DNA to the

translation machinery, where finally the corresponding protein is synthesised.

The proteins which are synthesised by genes not only serve as transcription factors

which bind to regulatory sites of other genes, but also as enzymes for metabolic

reactions, or as components of signal pathways. So, proteins can be seen as the main

functional components within living cells. Especially, the binding of proteins to the

cis-regulatory domain of other genes usually leads to the synthesis of other specific

proteins by these genes, so that in the end complex molecular pathways come into

being. These pathways regulate the major functions of living cells, whereby especially

the proteins are necessary for cell life processes. Although genes do not interact directly

13



2. Molecular biological concepts and methods

with each other within these pathways, their expressions (activities) indirectly, that is

over the synthesis of proteins, dictate the expressions of other genes. More precisely,

it depends on the concentrations of the different synthesised proteins as well as on

the presence of metabolites in the cells to which extend the expression of another

gene is influenced. So, the expression of each different gene is a complex process,

regulated through both indirect interactions with other gene‘s expressions and other

cell component‘s concentrations.

Almost all cells in a living organism contain the same genome (set of genes), nonetheless

the syntesised protein concentrations and so the phenotype can be totally different. For

this reason it is clear that the cellular regulation strongly depends on the expressions of

the genes (gene profile).

The biological principle of systems biology in general is to understand the rela-

tionships between all these cell components, and to explain which responses are given

by these regulatory mechanisms to different cellular conditions. Thereby it is rarely

possible to measure all cell components simultaneously. Usually only gene expressions,

or protein concentrations, or metabolom concentrations can be measured by biological

experiments. But as these cellular components interact (at least) indirectly with each

other, such measurements are very useful to shed some light into the cellular regulatory

meachanisms. In particular, the gene expressions in each living cell regulate the

production of proteins, that is the final expression of the genetic information, which

then regulates almost all cellular processes in biological systems.

One of the most powerful technologies for monitoring the amount of mRNA transcripts

for ten thousands of genes within a cell is briefly described in the next Section 2.2.

And the last Section 2.3 is dedicated to gene networks which can be used in molecular

biology to describe the complex regulatory mechanisms exclusively on the gene level,

whereby proteins and metabolites are omitted from consideration. More precise and

detailed descriptions of the basic molecular biology concepts can be found in [1] and [4].

14



2. Molecular biological concepts and methods

2.2. Affymetrix genechips

A lot of different technologies have been recently developed for gathering gene expres-

sion data. One of the most powerful and famous such biotechnologies are Affymetrix

genechips. In this section a very brief description of Affymetrix genechips, which were

introduced in 1996 (see [31]), is given.

Affymetrix genechips belong to the type of high density oligonucleotide microarrays

which are printed using a lithographic masking process, and allow the monitoring of

expression levels for ten thousands of genes in a cell simultaneously. The idea behind

oligonucleotide arrays is to measure the amount of mRNA transcripts in a solution ex-

tracted from a cell, whereby the cell is the experimental sample of interest in this context.

As each mRNA transcript is the copy of a DNA sequence (gene) which contains the code

for a protein which was obviously going to be synthesised within the experimental cell,

the amount of mRNA transcripts reflects the expression (activity) of the corresponding

gene.

A high density oligonucleotided array consists of ten thousands of orderly arranged

spots, each containing many copies of a unique probe, that is a set of chemically

synthesised short cDNA (complementary desoxyribonucleic acid) sequences (synthetic

oligonucleotides) that can bind specific target mRNA molecules in a solution. Thereby,

as for each sequenced gene specific cDNA target molecules are known, each spot can

be designed to bind only the specific mRNA molecule transcripts which belong to one

single gene. Usually, the collection of the gene specific spots on an array is arranged,

so that all spots on the array collectively represent the entire genome of a cell. For

example, Affymetrix chips are designed for representing the genome of human cells.

If mRNA transcripts are isolated from an experimental cell, labelled with fluores-

cent tags, and hybridized to such oligonucleotide arrays, the cDNA on each spot binds

its complementary mRNA target-molecules, that is the labelled mRNA transcripts of

15



2. Molecular biological concepts and methods

the gene for which the spot was designed. Afterwards due to the fluorescent tags, for

each spot the amount of transcript in the solution that was binded can be scanned

using a fluorescence camera. The measured fluorescent intensities reflect the amount

of binding and so the amount of mRNA transcripts in the solution extracted from the

experimental cell. Ideally, there is a one-to-one correspondance between array spots and

genes, so that each of these measurements represents the detected amount of a specific

mRNA transcript, which in turn can be interpreted as the expression of one specific

gene. For short, Affymetrix genechips can be used to measure the expression levels of

the genes in a human cell by measuring the amount of mRNA transcripts in it.

However, as there is also nonspecific background binding, that is binding between the

cDNA on the array and mismatching mRNA from the experimental cell, nonspecific

background binding can falsify the measurements. Therefore, usually each gene is rep-

resented by 14-20 spots on the array and each of these spots not only contains cDNA

oligonucleotides being a perfect match (PM) to the corresponding mRNA, but also mis-

matching (MM) cDNA oligonucleotides. Thereby, mismatching cDNA is synthetically

created by substituting one single nucleotide in the central position of the corresponding

perfect match cDNA sequence of nucleotides. The difference between the amount of

binding to the perfect match (PM) and to the mismatching (MM) cDNA can be inter-

preted as the amount of binding being exclusively due to specific binding, as the amount

of background binding should be the same for the perfect match and the mismatching

cDNA. Usually, the average of the differences between the amounts of binding to the

perfect match and the mismatching cDNA for all (14-20) spots, being designed for the

same gene, are outputed as the final expression level measurement of this gene.

Further details on the technological aspects involved in microarrays can be found in [31],

[30], and [35].
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2. Molecular biological concepts and methods

2.3. Gene networks

A gene network is a graphical representation of interactions between genes. Thereby

these relations between genes are usually represented as if the expressions of genes would

directly affect the expression levels of other genes. It is not explicitly mentioned that

the interactions between genes are actually mediated by proteins, metabolites or other

protein-metabolite-complexes as described in Section 2.1. From this point of view, gene

networks must be interpreted as a very rough simplification of the real molecular bio-

logical regulatory mechanisms within cells. But on the other hand, gene networks are

capable of representing the indirect interactions between genes, that is the final effect of

the activity of one gene to the other‘s activities, whereby the exact detailed molecular

biological mechanisms are omitted. And since these omitted molecular biological mech-

anisms are often still unknown anyway, at least the known relations on the gene levels

can be described in a concise way. So, especially if bearing in mind that all relations

between gene expressions always depend on proteins and metabolites, gene networks can

be interpreted as if the mediating interactions on the proteome and metabolome level

were implicitely represented within them. The focus of gene network representations is

simply on how changing expressions of genes are related to the expressions of other genes

without raising the claim to describe the mediating paths.

Therefore, and especially as often only gene expression data are available, e.g. from mi-

croarray based measurements (see Section 2.2), gene networks can be seen as a first but

important step towards uncovering the complete biochemical regulatory mechanisms in

cells. Once the relations between the genes are known, biologists can search for the me-

diating paths between these indirect gene-gene relations, and add the newly-discovered

regulatory details on the proteome and metabolome level to the gene networks already

available.

In analogy protein and metabolite networks are graphical representations of interact-

ing proteins or metabolites, whereby all intermediating components are omitted in the

graphical representations.

17



3. Statistical theory

In this chapter the mathematical details for all methods, applied for the present doc-

toral thesis, are given. First, in Section 3.1 the Information bottleneck algorithm for data

discretisation is described. Afterwards a brief introduction to graphical models in gen-

eral is given in Section 3.2. Different graphical models and the corresponding machine

learning methods for reverse engineering gene regulatory networks with these models

are presented in Sections 3.3, 3.4, and 3.5. As Bayesian networks are usually sampled

with Markov Chain Monte Carlo (MCMC) simulations Subsection 3.5.3 deals with two

different MCMC sampling schemes. The next Section 3.6 focuses on some ROC curve

based criteria for assessing the goodness of performance of reverse engineering methods.

Finally, two simulation methods for generating synthetic network data are described in

Section 3.7.

3.1. The Information bottleneck algorithm

Although discretisation of data always incurs a certain information loss, it is often

necessary to discretise data sets for applying statistical methods which are based

on discrete observations, such as discrete Bayesian networks with multinomial node

distributions. In gene expression data the discretisation usually contains three values,

under-expressed (‘-1’), not differentially expressed (‘0’) and over-expressed (‘+1’),

depending on whether the expression rate is significantly lower than, similar to, or

higher than ‘control’, respectively. One simple way to discretise the values of continuous

variables to these three levels is the application of quantile discretisation. For each

18



3. Statistical theory

domain variable Xi (i = 1, ...n) the lowest third of the values is labeled state ‘-1’, the

next third is labeled state ‘0’ and the highest third is labeled state ‘+1’. More generally,

quantile-discretisation can be used to discretise continuous variables into any number of

discrete levels.

Nevertheless, more suitable is the application of an information-preserving discretisation

procedure, i.e. a discretisation procedure which retains as much information about the

dependencies between the domain variables as possible. Instead of considering each

variable independently during the discretisation, information-preserving algorithms

choose discretisation levels by considering all domain variables simultaneously. This

section focuses on an extension of the agglomerative Information bottleneck algorithm

which was first applied in the context of gene expression data by [22]. This algorithm

chooses levels for each variable in terms of the mutual information between pairs of

variables. The goal is to minimize the total pairwise information loss.

As the mutual information is defined for discrete variables only, the Information

bottleneck algorithm requires the application of an initial discretisation procedure first.

For the remainder of this section is it assumed that the continuous domain variables

Xi (i = 1, ...n) have been independently discretised into M ∈ N (M>3) levels using

quantile discretisation.

The non-negative pairwise mutual information MI(X, Y ) between two (discrete)

variables X and Y each with M different discrete levels out of the set {1, ..., M} is

defined as follows:

MI(X, Y ) =
M∑

i=1

M∑

j=1

P (X = i, Y = j) · log2

(
P (X = i, Y = j)

P (X = i) · P (Y = j)

)
(3.1)

and can be empirically estimated by replacing the theoretical probabilities through the

corresponding portions of a sample of size m: (xu, yu)(u = 1, ..., m) from the joint

probability distribution PX,Y of X and Y .
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For i and j ∈ {1, ..., M} is valid:

̂P (X = i) =
| {u ∈ {1, ..., m} |xu = i} |

m
(3.2)

̂P (X = i, Y = j) =
| {u ∈ {1, ..., m} |(xu, yu) = (i, j)} |

m
(3.3)

Plugging-in these empirical estimators given in Formulae (3.2) and (3.3) in Formula (3.1)

leads to the estimator ̂MI(X, Y ), whereby it is necessary to define: 0 · log2(0) := 0.

The mutual information score Ŝw for a variable Xw out of the set {X1, ..., Xn} is defined

as the sum of the (empirical) pairwise mutual information values between Xw and the

other n − 1 variables:

Ŝw = Ŝ(Xw) =
n∑

v = 1

v 6= w

̂MI(Xw, Xv) (3.4)

The Information bottleneck algorithm is a stepwise procedure consisting of two loops.

Stepwise (outer loop) for each variable (inner loop) some neighbouring pair of discreti-

sation levels are coalesced into one single level, reducing the number of discretisation

levels of all variables by one in each step of the outer loop. More precisely, the inner

loop iterates over each of the variables X1, ..., Xn to determine for each of these variables

simultaneously which single coalescence of neighbouring levels reduces the mutual

information score (between that variable and the n-1 others to be also discretised in this

outer step) the least. The outer loop is finished when for each variable all observations

have been discretised into three levels.

In the first step, coalescing the neighbouring discrete levels u and u + 1 (u ∈
{1, ..., M − 1}) of variable Xw to a new discrete level U leads to the following mutual
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information loss:

L(Xw, u) =
n∑

v = 1

v 6= w

M∑

j=1

P (Xw ∈ U, Xv = j) · log2

(
P (Xw ∈ U, Xv = j)

P (Xw ∈ U) · P (Xv = j)

)

−
n∑

v = 1

v 6= w

M∑

j=1

1∑

t=0

P (Xw = u + t, Xv = j) · log2

(
P (Xw = u + t, Xv = j)

P (Xw = u + t) · P (Xv = j)

)

(3.5)

For each variable the algorithm coalesces the levels u0 and u0 + 1 with L(Xw, u0) ≤
L(Xw, u) for all u ∈ {1, ..., M − 1} at the end of the inner loop, before continuing with

the next step of the outer loop. Consequently, as the coalescing is implemented at the

end of the inner loop, the results of the outer loop steps do not depend on the order in

which the variables are considered in the inner loop.

Stepwise (outer loop) the number of discrete levels for each variable reduces by one until

only three levels per variable remain. For further information see [22].

3.2. Introduction to graphical models

Traditional approaches to systems biology are based on mathematical description of

putative pathways in terms of coupled differential equations with the objective to obtain

a deeper understanding of the exact nature of the regulatory circuits and their regulation

mechanisms. However, the availability of high-throughput postgenomic data of different

nature has recently prompted substantial interest in reverse engineering the network and

pathways in an inferential way from the data themselves. That is, one major goal of

modern biology research is to take large sets of biological data, usually correlational, and

eludicate functional interactions between elements in a causal pathway network. Such

efforts have led to developments and applications of different graphical model machine

mearning inference methods to predict biological pathways. Usually, the goal is to learn

about a model of the system not for prediction but for discovering the domain structure.
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For example, one may want to understand the mechanism by which genes in a cell

produce proteins, which in turn cause other genes to express themselves or prevent them

from doing so. Hence, from a mathematical point of view the following situation is

given. There are different biological variables Xi (i=1,...,n), e.g. each measuring the

expression of a certain gene in a cell, and a measured sample of size m of these domain

variables is available (x1j , ...., xnj) (j=1,...,m). That is xij is the value (e.g. expression)

of the i-th domain variable (e.g. gene or protein) in the j-th sample. The statistical

goal is to find all dependencies between these n domain variables. Lots of different

graphical modelling frameworks for discovering these dependencies have been proposed

in the literature. And although they are based on different statistical aspects and ideas,

most of them lead to the same kind of result. That is, a mathematical graph representing

all dependencies between the n domain variables. Such a mathematical graph consists

of a set of nodes, whereby each node corresponds to a domain variable. And the edges

between the nodes of the graph correspond to probabilistic dependencies between the

domain variables. More precisely, the domain variables X1, ..., Xn can be considered as

in one-to-one correspondence with the nodes X1, ..., Xn in a graph and the graphical

structure (set of edges) determines the relationships between them. For that reason the

terms ‘variables’ and ‘nodes’ can be used interchangeably in the context of graphical

models.

The meaning of the edges is different for different modelling frameworks, and depends

on the theoretical statistical idea behind these models. For example, in a Relevance

network framework (see 3.3) an edge may simply mean that the corresponding two

nodes (variables) are strongly correlated, while the same edge in a Bayesian network

model usually has a much more complicated meaning (see 3.5). Different graphical model

frameworks are described in detail in the next sections. Since all graphical models can

be combined with different learning algorithms they will be synonymously referred to as

(reverse engineering) machine learning methods in this thesis.

Especially, in Bayesian network methodology it can be distinguished between directed

and undirected edges in a mathematical graph. That is using a Bayesian network model
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for reverse engineering a gene network from an expression data set usually leads not

only to connections (undirected edges) between the domain nodes, but also to some arcs

(directed edges). These edges, pointing from one node to another, can be interpreted as

causal relations. If there is an edge pointing from node A to node B, one may conclude

that gene A causes gene B, e.g. gene A activates or inhibits gene B. On the other hand,

an undirected edge indicates that the corresponding two genes are related in some joint

biological regulation process or interaction, but there is no possibility to conclude about

causality.

3.3. Relevance networks

The method of Relevance networks, proposed by [6], is exclusively based on pairwise

association scores, and therefore represents a very simple machine learning method for

reverse engineering regulatory networks. A suitable association score is computed for

all pairs of domain variables Xi and Xj (i, j ∈ {i = 1, .., n}) from the values observed

for these variables. Thereby, in the context of gene regulatory networks each variable

usually corresponds to a gene, and its values to the measured expressions of this gene.

The authors propose the mutual information (see 3.1) as an appropriate association score.

This requires a discretisation of the data, which can be carried out with the Information

bottleneck algorithm (see 3.1). Alternatively, for continuous data the standard Pearson

correlation coefficient can be used:

corr(x, y) =
1/m

∑m
i=1(xi − x̄) · (yi − ȳ)√

1/m
∑m

i=1(xi − x̄)2
√

1/m
∑m

i=1(yi − ȳ)2
(3.6)

where x = (x1, ..., xm) and y = (y1, ..., ym) are the m-dimensional observations of two

different domain variables with empirical means x̄ and ȳ.

With regard to the graphical model representation the domain variables are interpreted
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as the nodes of a network. So, as already pointed out before, they can be seen as in

one-to-one correspondance to the network nodes (see 3.2). Each variable Xi represents

a network node Xi (i=1,...,n).

The association scores are compared with a threshold parameter, and the nodes whose

pairwise association score exceeds this threshold are linked by an undirected edge. In

statistical terminology such a Relevance network based on the Pearson correlation is

referred to as a ’covariance graph’. The threshold parameter can be estimated by a

randomization test so as to keep the number of false positive edges below an a priori

specified tolerance level. However, this approach is usually too conservative in that it

discards too many true positive edges, and hence some explorative modification of the

threshold parameter is usually required. For further information see [6].

3.4. Gaussian graphical models

A more complex machine learning method is given by Gaussian graphical models

(GGMs). These models are based on the assumption that the observed data for the

domain variables (i.e. nodes in the network) are distributed according to a multivari-

ate Gaussian distribution N(µ,Σ). The (i,j)-th element Σi,j in the covarianve matrix

Σ is proportional to the correlation coefficient between node Xi and Xj . But a high

correlation coefficient between two nodes must not necessarily indicate a direct causal

association. Not rarely a high correlation coefficient may be due to an indirect associa-

tion only, e.g. both nodes may depend on another network node. Consequently, a high

correlation coefficient between two variables provides only weak evidence for a direct

association. And actually only the direct dependencies between nodes are of interest

for the construction of regulatory networks. To avoid this shortcoming of Relevance

network methodology (see 3.3), partial correlations are considered in Gaussian graphical

models instead. That is, the strength of a direct association between two nodes Xi and

Xj is measured by the partial correlation coefficient πi,j which describes the correlation

between these nodes conditional on all the other network nodes. From the theory of nor-
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mal distributions it is known that the partial correlation coefficients πi,j can be easily

computed from the inverse Ω = Σ−1 of the covariance matrix Σ [12]. More precisely, it

holds:

πi,j =
−ωi,j√
ωi,i · ωj,j

, (3.7)

whereby ωi,j are the elements of matrix Ω.

Hence, in order to reconstruct a Gaussian graphical model from a given data set D,

one typically employs the following procedure. From the data set D, the empirical

covariance matrix is estimated and inverted to obtain Ω, subsequently the entries πi,j

of the partial correlation matrix Π can be computed using Formula (3.7). Afterwards

the interpretation is as follows: Small elements πi,j in the resulting partial correlation

matrix Π correspond to weak partial correlations, and the corresponding nodes become

not connected by an edge. On the other hand, high entries correspond to strong partial

correlations, so that there is reason to believe that a direct association between the

corresponding two nodes.

The disadvantage of this procedure, is that the empirical covariance matrix can only

be inverted if the number of observations exceeds the number of nodes in the network.

This condition is usually not satisfied for many real applications in systems biology,

such as reverse engineering gene regulatory networks with microarray data.

In order to learn a Gaussian graphical model from a data set in which the number of

variables exceeds the number of observations, i.e. a singular covariance matrix is given,

[42] and [43] introduced the following modified schemes:

3.4.1. Small sample point estimation of partial correlations

In [42] the authors propose three conceptually simple methods to obtain estimates of the

partial correlation coefficient matrix Π for Gaussian graphical models from sparse data,

that is data, where the number of nodes exceeds the number of observations (n > m).
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They show that these estimators can be used to infer regulatory networks with high

accuracy from such sparse data.

• First, they propose to use the Moore-Penrose pseudoinverse, which is a generalisa-

tion of the standard matrix inverse, but can also be applied to singular matrices.

That is the inverse of the covariance matrix Σ−1 is simply replaced by the Moore-

Penrose inverse Σ+. For non-singular matrices (given if n < m), the Moore-Penrose

pseudoinverse is equal to the standard matrix inverse Σ−1. And for singular ma-

trices it can be computed as follows: Σ+ = V (ET E)−1EUT , where Σ = UEV T is

the singular value decomposition representation of the covariance matrix Σ. The

final estimator Ω̂1 for Ω is given by:

Ω̂1 =
(
Σ̂

)+
. (3.8)

The subsequent transformation of Ω̂1 (see Formula (3.7)) leads to the observed

partial correlation estimator : Π̂1.

• Second, they propose to estimate the covariance matrix Σ by using the mean of

the covariance estimators Σ̂(Db) for B (e.g. B = 1000) different bootstrap samples

with replacement D1, ..., DB generated from the original data set D. Subsequently

the mean of these bootstrap covariance matrix estimators can be inverted using

the Moore Penrose inverse. The resulting estimator for Ω is given by:

Ω̂2 =

(
1

B
·

B∑

b=1

Σ̂(Db)

)+

. (3.9)

Using the Transformation 3.7 yields the partial bagged correlation estimator : Π̂2.

• Third, they propose to invert each bootstrap sample estimate Σ(Db) (b=1,...,B)

using the Moore Penrose inverse, and to estimate Ω by the mean of theses bootstrap

estimates. The resulting estimator Ω̂3 is given by:
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Ω̂3 =
1

B
·

B∑

b=1

Σ̂(Db)
+
. (3.10)

Using the Transformation 3.7 yields the bagged partial correlation estimator : Π̂3.

3.4.2. Regularized estimation of partial correlations

In a more recent publication ([43]) the same authors present an alternative novel regular-

ized covariance estimator (shrinkage covariance estimator) which is based on the concept

of shrinkage and exploits the Ledoit Wolf lemma [29] for analytic calculation of the op-

timal shrinkage. This novel shrinkage estimator Σ̂4 is guaranteed to be non-singular, so

that it can be inverted to obtain a new estimator Ω̂4 = (Σ̂4)
−1 for the matrix Ω, and is

based on the following theoretical idea. It is known that the (unconstrained) maximum

likelihood estimator Σ̂ML for the covariance matrix Σ has a high variance if the number

of nodes exceeds the number of observations (n > m). On the other hand there are lots

of possible constrained estimators that have a certain bias but a much lower variance.

The shrinkage approach combines the maximum likelihood estimator with one of these

constrained estimators Σ̂C in a weighted average:

Σ̂4 = (1 − λ)Σ̂ML + λΣ̂C , (3.11)

where λ ∈ [0, 1] denotes the shrinkage intensity. The authors show that this regular-

ized estimator outperforms both single estimators in terms of accuracy and statistical

efficiency. Furthermore they show that the Ledoit Wolf lemma can be used to estimate

the otimal shrinkage intensity λ, and recommend to restrict the constrained estimator

Σ̂C by assuming that the network variables (nodes) are pairwise uncorrelated (Σi,k = 0

for i 6= k) but may have unequal variances (Σi,i 6= Σk,k for i 6= k). Omitting the tech-

nical details which can be found in [43] the authors show that the optimal shrinkage

covariance estimator Σ̂4 = (Σ̂4)i,j is then given by:
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(Σ̂4)i,j =





s2
ii, i = j

s2
ij · min

{
1, max

{
0, 1 − λ̂⋆)

}}
, i 6= j




 (3.12)

whereby the optimal shrinkage is given by:

λ̂⋆ =

∑n−1
i=1

∑n
j=i+1

̂V ar(r2
ij)∑n−1

i=1

∑n
j=i+1(r

2
ij)

2
. (3.13)

In Formula (3.12) s2
ij is the empirical covariance between variables Xi and Xj :

s2
ij =

1

m − 1

m∑

k=1

(xik − xi)(xjk − xj) (3.14)

and r2
ij is the corresponding empirical correlation:

r2
ij =

s2
ij√

s2
ii · s2

jj

(3.15)

The variances of the correlations in Formula (3.13) can be estimated as follows:

̂V ar(r2
ij) =

m

(m − 1)3

m∑

k=1

(wkij − wij)
2 (3.16)

with: wkij =
(√

s2
ii · s2

jj

)−1
· (xki − xi)(xkj − xj)

i, j ∈ {1, ..., n} and k ∈ {1, ..., m} and wij = 1
m

∑m
k=1 wkij .

In these equations xik (k=1,...,m) is the k-th observation of the i-th domain variable Xi

(i=1,...,n).

Computing the inverse of Σ̂4 and applying Formula (3.7) as usual leads to the shrinkage

estimator Π̂4 of the partial correlation coefficient matrix Π.
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3.5. Bayesian networks

The most sopisticated machine learning method (graphical model) for reverse engineering

gene regulatory networks that was applied within this doctoral thesis is the Bayesian net-

work (BN) approach. Unlike the other modelling frameworks Bayesian networks (BNs)

permit stochastic, combinatorial and non-linear relationships among domain variables.

The probabilitic nature of these networks is capable of handling noise inherent in the

biological process. Beyond it, a Bayesian network approach towards modelling regula-

tory networks is attractive because of its solid basis in statistics, which enables to deal

with stochastic aspects of biological systems. Consequently, BNs are interpretable and

flexible models for representing probabilistic relationships between multiple interacting

variables. At a qualitative level, the graphical structure of Bayesian network describes

the relationships between the domain variables in the form of conditional independence

relations (see 3.5.1). At a quantitative level, (local) relationships between variables are

described by (conditional) probability distributions (see 3.5.2). Formally, a BN is defined

by a graphical structure G, a family of (conditional) probability distributions F, and their

parameters q, which together specify a joint distribution over all domain variables. Two

different Markov Chain Monte Carlo (MCMC) schemes for learning Bayesian networks

(BNs) from data by a model-averaging approach are presented in Subsection 3.5.3.

3.5.1. Introduction to Bayesian networks

A Bayesian network is defined by a triple (G,F,q), whereby G is the graphical structure,

F is a family of probability distributions, and q the set of parameters for the family F.

This subsection focuses on the graphical structure G.

The graphical structure G of a Bayesian network consists of a set of n nodes X1, ..., Xn

and a set of directed edges between these nodes. Thereby as usual each node Xi repre-

sents the corresponding random domain variable Xi (i=1,...,n), while the directed edges

indicate conditional dependence relations between these variables. If there is a directed

edge pointing from node X to node Y , then X is called a parent (node) of Y , and Y
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Figure 3.1.: Example of a Bayesian network (DAG) with 5 nodes

is called a child (node) of X. And if a node Z can be reached by following a path of

directed edges, starting at node X, Z is called a descendant of X, while X is called an

ancestor of Z. An important feature of these graphical structures of Bayesian networks

(BNs) is that there is no path of directed edges leading from a node to itself. That is

no node can be one of its own ancestors or descendants. This means that the graph-

ical structure has to be a directed acyclic graph, called DAG, without paths, such as

X1 → X2 → X3 → X1. Due to this characteristic of G the joint probability distribution

P (X1, ..., Xn) in Bayesian networks can be factorised into a product of simpler distrib-

utions (see below). For example in Figure 3.1, where an example of a simple DAG for

a Bayesian network over five domain variables is given, the nodes B and C are parents

of node D, node E is a child of node D, and node E is a descendant of all four other

nodes. That is A, B, C, and D are ancestors of node D. The set of all parents pa(X)

of a node X, is simply defined as the set of all nodes from which an edge points to node

X. If node X and node Y have one or more common children, Y is called a coparent of

X and vice versa. Considering again the DAG in Figure 3.1, node B and node C are

coparents of each other, as they have a common child D. The parent sets are given by:

pa(A) = {}, pa(B) = pa(C) = {A}, pa(D) = {B, C}, and pa(E) = {D}.
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The dependency structure in Bayesian networks is based on the concept of the Markov

blanket. That is, the conditional distribution of a variable Xi, given the other n-1

variables, just depends on the nodes in the Markov blanket M(Xi) of node Xi. And the

Markov blanket M(.) of a node is the set of its children, parents, and coparents. That

is for i=1,...,n:

P (Xi|X1, ..., Xi−1, Xi+1, ..., Xn) = P (Xi|M(Xi)).

More precisely conditioning on its children in M(Xi) renders Xi independent from its

other descendants, and conditioning on its parents in M(Xi) renders Xi independent

from its other ancestors. Furthermore Xi depends on a coparent only, if on one of their

common children is also conditioned. Otherwise Xi and the corresponding coparent are

independent of each other. As a first consequence, this yields that node Xi, given all its

ancestors Xi1, .., Xil, just depends on its parents pa(Xi). That is for i=1,...,n:

P (Xi|Xi1, ..., Xil) = P (Xi|pa(Xi)).

Using the theorem of the total probability on a suitable ordering of the domain variables,

implied through a permutation σ:

P (Xσ(1), ..., Xσ(n)) = P (Xσ(1)) ·
n∏

i=2

P (Xσ(i)|Xσ(i−1), ..., Xσ(1))

the application of these characteristcs leads to the following factorisation of the joint

probability distribution in Bayesian networks:

P (X1, ..., Xn) =
n∏

i=1

P (Xi|pa(Xi)) (3.17)
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For a detailed derivation of this formula see [27]. The factors in the product in For-

mula (3.17) are referred to as local probability distributions. For the DAG represented

in Figure 3.1 the application of Formula (3.17) yields the following factorisation of the

joint probability distribution:

P (A, B, C, D, E) = P (A) · P (B|A) · P (C|A) · P (D|B, C) · P (E|D)

The main advantage of the factorisation is that the joint probability distribution of

the domain variables X1, ..., Xn becomes a product of simpler conditional probability

distributions.

It can be summarised that directed acyclic graphs (DAGs) imply sets of (in-)dependence

assumptions for Bayesian networks. But more than one DAG can imply exactly the

same set of (in-)dependencies. For example the following two DAGs (G1): X1 → X2 and

(G2): X1 ← X2 over the two nodes domain X1, X2 both imply that the variables X1 and

X2 are not stochastically independent. This leads to identical probability distributions

for both DAGs:

P (X1, X2|G1) = P (X1) · P (X2|X1) = P (X1, X2) = P (X2) · P (X1|X2)

= P (X1, X2|G2)

This means that the graphs G1 and G2 only show alternative possibilities of describing

the same set of conditional independence relations. Consequently, the independence

assumptions of a Bayesian network can not be uniquely represented by DAGs. If two

DAGs over the same domain assert the same set of independence assumptions among

the variables, those graphs are said to be equivalent. This relation of graph equivalence

imposes a set of equivalence classes over DAGs. The directed acyclic graphs within an

equivalence class have the same underlying undirected graph, but may disagree on the

direction of some of the edges.
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Figure 3.2.: Example of two equivalent DAGs

Figure 3.2 shows two DAGs over the domain {A, B, C, D} which are equivalent, although

there are three edges with opposite orientation. But in the end both graphs represent

two independence relations only. The variables A and D as well as the variables C

and D are independent conditional on variable B. All the other pairs of variables are

immediately connected by an edge, and are therefore not stochastically independent.

This can also be seen when using the factorisation rule of the joint probability distribution

(see Formula (3.17)) for both DAGs:

P (A, B, C, D|DAG1) = P (A|B, C) · P (B|D) · P (C|B) · P (D)

P (A, B, C, D|DAG2) = P (A) · P (B|A) · P (C|A, B) · P (D|B)

because both factorisations can be easily transformed to: P (A, B, C) · P (D|B).

[49] proof that two directed acyclic graphs are equivalent if and only if they have the

same skeleton and the same set of v-structures. The skeleton of a directed acyclic graph

(DAG) is defined as the undirected graph resulting from ignoring all edge directions.

And a v-structure denotes a configuration of two directed edges converging on the same
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node without an edge between the parents (see [8]). More precisely, a v-structure in a

DAG is an ordered triple of pairwise different nodes (Xi, Xj , Xk) with (i, j, k) ∈ {1, ..., n}
such that: (1) the DAG contains the directed edges Xi → Xj and Xk → Xj , and (2)

there is no edge between Xi and Xk. The two DAGs in Figure 3.2 have the same v-

structures, namely none. The DAG in Figure 3.1 has the following set of v-structures:

(B, D, C) and (C, D, B).

The two well-known scoring metrics for Bayesian networks (DAGs) derived in the litera-

ture (see 3.5.2) are score-equivalent, that is, lead to the same scores for equivalent DAGs.

Consequently, using these metrics only equivalence classes can be learnt from data not in-

dividual DAGs within each class. But this restriction is not disavantageous. Far from it,

score-equivalence is desirable, because equivalent DAGs assert the same set of conditional

independencies, and therefore must be seen as equally expressive. Thus, the application

of a non-score-equivalent criteria which arbitrarily prefers a DAG of an equivalence class

is not useful. [8] shows that equivalence classes of DAGs can be uniquely characterised

and represented using completed partially directed acyclic graphs (CPDAGs). CPDAGs

contain both directed and undirected edges and cyclic in the sense that they contain no

directed cycles. Every directed edge X → Y of a CPDAG denotes that all DAGs of this

class contain this edge, while every undirected edge X−Y in this CPDAG-representation

denotes that some DAGs contain the directed edge X → Y , while others contain the

oppositely orientated edge X ← Y . Given a directed acyclic graph G the CPDAG rep-

resentation of its equivalence class can be constructed efficiently. With respect to the

v-structures it has to be decided for every directed edge if it is reversible or not. An

edge of G is not reversible (compelled) if and only if this directed edge is present in every

DAG G‘ equivalent to G. Otherwise the edge is reversible. Every edge participating in a

v-structure is non reversible. But not every non reversible edge necessarily participates

in a v-structure, because the reversal of such an edge can lead to other v-structures.

As an example consider the edges of the DAG in Figure 3.1. As mentioned above the

v-structures of this DAG are given by: (B, D, C) and (C, D, B). So, the edges B → D

and C → D are compelled. Furthermore, although not participating in a v-structure,
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the edge D → E is compelled, because its reversal would lead to four new v-structures,

namely: (E, D, C), (C, D, E), (B, D, E), and (E, D, B). Table 3.1 lists the edges of all

three DAG members of the corresponding equivalence class, and Figure 3.3 shows the

CPDAG representation of this class, in which the edges A → B and A → C become

undirected. The simultaneous reversal of both edges A → B and A → C of the DAG

in Figure 3.1 would lead to new v-structures (B, A, C) and (C, A, B), and so to a DAG

that is not equivalent to the three DAGs in Table 3.1. An algorithm that takes as input

a DAG, and outputs the CPDAG representation of the equivalence class to which that

DAG belongs, can be found in [9].

Figure 3.3.: The CPDAG of the DAG presented in Figure 3.1.

Graph Reversible edges Compelled edges

CPDAG (Figufe 3.3) A — B A — C B → D C → D D → E

DAG1 (Figure 3.1) A → B A → C B → D C → D D → E

DAG2 A ← B A → C B → D C → D D → E

DAG3 A → B A ← C B → D C → D D → E

Table 3.1.: Representation of the three DAGs of an equivalence class

35



3. Statistical theory

3.5.2. Stochastic models for Bayesian networks

After having described Bayesian networks at a qualitative level through directed acyclic

graphs (DAGs) in the last subsection, the two major stochastic models for Bayesian net-

works are presented now. These parametric models specify the distributional form F and

the parameters q of the local probability distributions P (Xi|pa(Xi)) (i=1,...,n). That

is, they assert a distribution to each domain node Xi in dependence of its parent nodes

pa(Xi). Thereby the set of parent nodes is implied through DAGs in Bayesian network

methodology. Those local probability distributions together specify the joint probabil-

ity distribution of all domain variables P (X1, ..., Xn) when the factorisation rule (see

Formula (3.17)) is applied. Consequently, given a data set these parametric models can

be used to score DAGs with respect to their posterior probabilities P (DAG|data, F, q).

Neglecting the parametrical parameters F and q the posterior probability of a directed

acyclic graph G0 given a data set D can be represented as follows:

P (G0|D) =
P (G0, D)

P (D)
=

P (D|G0) · P (G0)∑
G∈Ω P (D|G) · P (G)

, (3.18)

whereby P(G) (G ∈ Ω) is the prior probability over the space Ω of all possible DAGs for

the domain X1, ..., Xn. P (D|G) is the marginal likelihood, that is the probability of the

graph G given the observed data D.

As the number of possible directed acyclic graphs (DAGs), that is the cardinality of the

set Ω, grows exponentially with the number of domain nodes n, the denominator on the

right hand side of Formula (3.18), which is a sum over the whole model space Ω, is not

tractable for high n(>6). But the denominator does not depend on the directed acyclic

graph G0 itself. So, it is sufficient to consider the numerator of Formula (3.18) only, as

it is proportional to the posterior probability (score) of G0:

P (G0|D) ∝ P (D|G0) · P (G0).
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When the marginal likelihood of the data is interpreted as the integral over all possible

parameter values q for the Bayesian network model (G0, F, q), it can be derived:

P (D|G0) · P (G0) = P (G0) ·
∫

f(D, q|G0))dq =

∫
f(D|q, G0)f(q|G0)dq, (3.19)

whereby the parameter vector q = q(F, G0), and especially its dimension depends on

the distributional form F as well as on the graph G0 which specifies the dependencies

between the domain variables. Asserting a stochastic model specifies the functional form

of the likelihood f(D|q, G0) and thereby the parameter space. The interpretation of the

likelihood as an integral over the parameter space protects against data over-fitting, as

it includes a penalty for model complexity. As the likelihood can be seen as an average

probability of generating the data D over all possible parameter vectors q, it balances

the ability of the Bayesian network model to explain the data with the ability to do

so economically. Instead of estimating a single parameter-setting, e.g. the maximum-

likelihood estimator of q, all possible parameter vectors are permitted in the prior distri-

bution f(q|G0). Such an approach is well known in the field of statistics, and referred to

as a Bayesian modelling approach (BMA). What follows is the definition of two different

stochastic models (scoring metrics) that can be asserted and realised within this BMA

setting (see Formula (3.19)). Thereby the term P (D|G0) ·P (G0) in Formula (3.19) is de-

noted as the score of G0. Furthermore, it is assumed that a data set D of m independent

observation vectors ~D.j of the n domain variables is given. D = ( ~D.1, ..., ~D.m) whereby

the matrix element Dij is the value of the i-th domain variable in the j-th observation.

The simplest prior distribution over DAGs P (G) with G ∈ Ω is a uniform distribution.

That is each DAG G has the same probability P (G) = 1
|Ω| . In this case the prior proba-

bilities cancel out in Formula (3.18). Consequently, the graph prior could be ignored in

all further derivations.
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An alternative common prior over DAGs is the following one: For all G ∈ Ω:

P (G) =
1

π

n∏

i=1



 n − 1

|pa(Xi)|




−1

(3.20)

where π is a normalisation constant. This prior depends on the cardinalities of the

parent sets in the DAG and is given by a product, where each factor corresponds to a

domain variable. So, this prior over DAGs can be interpreted, as if it is decomposed into

a product of priors over parent sets. One prior for each variable. Thereby the priors

over parent sets depend on the cardinalities of these sets only. And for the prior over

parent sets holds that the probability that a domain node has k parents is the same for

each cardinality k = 0, 1, 2, ..., because

∑

pa(Xi):|pa(Xi)|=k



 n − 1

|pa(Xi)|




−1

= 1.

This prior penalises DAGs in which the domain variables have parent sets of high car-

dinalities without loosing interpretability. Implicitly, it is assumed that the vector of

cardinalities of parent sets (|pa(X1)|, ..., |pa(Xn)|) is uniformly distributed. With regard

to the MCMC procedure (see Subsection 3.5.3.2 and Subsection 3.5.3.1) it is important

to mention that not only the prior given in Formula (3.20) can be decomposed into a

product where each factor corresponds to a domain variable, but also the uniform prior.

The latter one can be simply represented as the following product: P (G) =
∏n

i=1 |Ω|− 1
n .

The factors in the factorisations of both graph priors are referred to as local parent set

priors and will be denoted P(pa(Xi)) in following formulae.

In the next two subsections two stochastic models for Bayesian networks will be de-

scribed. For both models it will be shown that the likelihoods P (D|G) for any directed

acyclic graph G can also be decomposed into products. That is in analogy to the fac-

torisation in Formula (3.17) the likelihoods will be of the form:

P (D|G) =
n∏

i=1

P (Xi = DXi
|pa(Xi) = Dpa(Xi)) =

n∏

i=1

Score(Xi|D, pa(Xi)) (3.21)
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Thereby DXi
and Dpa(Xi) represent the data set D reduced to the indicated variables,

that is the relevant data for that particular factor. The likelihood factors are referred to

as local scores. In the following two subsections the graph prior won‘t be factorised. But

instead of multiplying the graph prior to the likelihood (see Formula 3.21), the graph

prior P(G) can be factorised, so that there is one factor (local parent set prior) P(pa(Xi))

for each local score Score(Xi|D, pa(Xi)) (i=1,...,n). The possibility of factorising the

graph prior is especially important with regard to the MCMC sampling schemes.

3.5.2.1. Discrete multinomial Bayesian scoring metric

The first parametric model for Bayesian networks is the discrete multinomial model which

asserts a multinomial distribution to each domain variable. The resulting scores are usu-

ally referred to as the BDe scores. Although, as multinomial distributions can deal with

discrete observations only, it is necessary to discretise the data D in advance, the BDe

score is a very flexible modelling tool which allows to model non-linear relationships and

interactions between the domain variables. So, there is a certain trade off between the

information loss incurred through data discretisation and modelling flexibility. Assum-

ing that the domain variables are discrete with r possible realisations, respectively have

been discretised accordingly, it can be assumed that each local probability distribution

P (Xi|pa(Xi)) (i=1,...,n) is a collection of multinomial distributions, one distribution for

each possible realisation of the parent variables in pa(Xi), that is for each configuration

of the parent variables. Then it can be defined for i=1,...,n:

P (Xi = k|pa(Xi) = j) = θijk. (3.22)

In other words θijk is the probability that domain variable Xi takes on its k-th value

(k=1,...,r), given the j-th parent configuration of pa(Xi) (j=1,...,ri). The values ri, that

is the number of different parent configurations, depend on the cardinalities of pa(Xi),

and are given by ri = r|pa(Xi)|.
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For the parameters holds 0 ≤ θijk ≤ 1 and

r∑

k=1

θijk = 1.

For convenience, it is useful to define additionally:

θ = (θ1, ..., θn)

whereby θi = (θijk)
j=1,...,ri

k=1,...,r , so that θi are the parameters for the local probability distri-

bution of the i-th domain variable Xi.

This multinomial distribution assumption combined with the assumption of having m

independent observations of the domain D.1, ..., D.m in a data set D can be used to

obtain the following presentation of the likelihood f(D|θ, G0):

f(D|θ, G0) =
m∏

l=1

f(D.l|θ, G0) =
m∏

l=1

n∏

i=1

P (Xi = Dil|θi, pa(Xi) = ψil), (3.23)

whereby Dil represents the value of the i-th variable in the l-th observation, and ψil

represents the configuration of pa(Xi) in the l-th case. The latter decomposition is due

to the factorisation rule (see Formula (3.17)) in Bayesian networks. By grouping terms,

this term can be rewritten as follows:

f(D|θ, G0) =
n∏

i=1

ri∏

j=1

r∏

k=1

θ
Nijk

ijk , (3.24)

where Nijk is the number of observations in D in which variable Xi has the value k and

the configuration of pa(Xi) is j. Substituting this into the BMA approach Formula (3.19)

leads to:

P (D|G0) · P (G0) = P (G0) ·
∫ n∏

i=1

ri∏

j=1

r∏

k=1

θ
Nijk

ijk · f(θ|G0)dθ (3.25)
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Assuming global and local parameter independence (see [24] for further details) what

means for the parameter prior:

f(θ|G0) =
n∏

i=1

f(θi|pa(Xi)) =
n∏

i=1

ri∏

j=1

f(θij1, ..., θijr),

yields:

P (D|G0) · P (G0) = P (G0) ·
∫ n∏

i=1

ri∏

j=1

r∏

k=1

θ
Nijk

ijk ·
n∏

i=1

ri∏

j=1

f(θij1, ..., θijr)d(θij1, ..., θijr)

By using the independence of the terms, this integral of products can be converted to a

product of integrals:

P (D|G0) · P (G0) = P (G0) ·
n∏

i=1

ri∏

j=1

∫ (
r∏

k=1

θ
Nijk

ijk

)
· f(θij1, ..., θijr)d(θij1, ..., θijr) (3.26)

[24] show that the Dirichlet distribution which is the conjugate prior for the multinomial

distribution leads to the analytical tractability of this integral, that is a closed-form

solution of Formula (3.26).

For i=1,..,n and j=1,...,ri the Dirichlet prior (θij1, ..., θijr) ∼ DIR(αij1, ..., αijr) is given

by:

f(θij1, ..., θijr) =
r∏

k=1

θ
αijk−1
ijk · Γ (

∑r
k=1 αijk)∏r

k=1 Γ (αijk)
,

where αijk are unknown hyperparameteres and Γ(.) is the gamma function. Using this

Dirichlet prior in Formula (3.26) leads to P (D|G0) · P (G0)

= P (G0) ·
n∏

i=1

ri∏

j=1

∫ (
θ

Nijk

ijk

) r∏

k=1

θ
αijk−1
ijk · Γ (

∑r
k=1 αijk)∏r

k=1 Γ (αijk)
d(θij1, ..., θijr) (3.27)
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[10] derive the following closed-form solution of this product of multiple integrals:

P (D|G0) · P (G0) = P (G0) ·
n∏

i=1

ri∏

j=1

Γ(αij)

Γ(Nij + αij)
·

r∏

k=1

Γ(Nijk + αijk)

Γ(αijk)
, (3.28)

where Nij =
∑r

k=1 Nijk and αij =
∑r

k=1 αijk. The unknown hyperparameters αijk

can be interpreted as pseudo-counts (see [34] for further details). That is αijk can be

interpreted as the number of imaginary observations in which the event Xi = k and

pa(Xi) = j has occured (in some virtual database). Especially Formula (3.28) is the

factorisation of the likelihood (see Formula (3.21)) for the discrete multinomial Bayesian

network BDe model. The local scores are given by:

Score(Xi|D, pa(Xi)) =

ri∏

j=1

Γ(αij)

Γ(Nij + αij)
·

r∏

k=1

Γ(Nijk + αijk)

Γ(αijk)

[5] proves that the following choice of the hyperparameters:

αijk = α · 1

r · rj
, (3.29)

whereby α > 0 is referred to as total prior precision, leads to score-equivalence. As

discussed in Subsection 3.5.1 score-equivalence means that DAGs that assert the same

set of independence relations among the domain variables obtain the same likelihood

score, that is are equally strong supported by the data. Usually, the total prior precision

α is set equal to 1 what renders the prior distribution over the parameters uninformative,

as it leads to relatively low hyperparameters αijk (which can be interpreted as pseudo

counts).

It can be summarised that the discrete multinomial BDe scoring metric for Bayesian

network models (G, F, q) over a domain of discrete variables has a closed-form solution

that can be computed using Formula (3.28).
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3.5.2.2. Continuous Gaussian Bayesian scoring metric

The second parametric model for Bayesian networks is the continuous Gaussian model

which asserts a Gaussian distribution to each domain variable. The resulting scores are

usually referred to as the BGe scores for Bayesian networks. More precisely, using the

Gaussian BGe-scores each domain variable Xi is interpreted as a normally distributed

random variable, whose mean value E[Xi] depends on the values of its parent variables.

That is, if a DAG G is given in which node Xi has u parent nodes Xi1 , ..., Xiu , the

distribution of Xi is given by:

Xi ∼ N(µi +
n∑

j=1

bij · (xj − µj), σ
2
i ), (3.30)

where µi is the unconditional mean of Xi, σ2
i is the conditional variance of Xi given

the realisations X1 = x1,...,Xn = xn, and the coefficients bij reflect the strengths of

the dependencies between Xi and the other domain variables. Thereby holds bij = 0

if j 6∈ {i1, ..., iu}, so that the realisation xi of Xi is interpreted in dependence of the

realisations xi1 , ..., xiu of the parent variables Xi1 , ..., Xiu only. In other words each

coefficient bij 6= 0 represents an edge in the directed acylic graph (DAG) G which points

from node Xj to node Xi.

The coefficients bij and the conditional variances σ2
i can be used to compute the precison

matrix W of the joint multivariate Gaussian distribution of the n domain variables with

the following recursive formula [18]:

Recursive Transformation:

• Set W (1) = 1 and define ~bi as the following column vector of length i-1: ~bi =

(b1,i, ..., bi−1,i)
T (i=1,...,n).

43



3. Statistical theory

• For i=1,...,n-1 compute W (i + 1) from W (i), σ2
i , and ~bi+1 as follows:

W (i + 1) =




W (i) +
(
~bi+1 ·~bT

i+1 · σ2
i+1

)
−~bi+1 · σ2

i+1

−~bT
i+1σ

2
i+1 σ2

i+1




W (n) is the precison matrix W for the joint Gaussian distribution of the domain variables

X1, ..., Xn. As usual the covariance matrix Σ is the inverse of the precison matrix:

Σ = W−1. Additionally defining the unconditional mean vector µ = (µ1, ..., µn)T , the

joint Gaussian distribution is given by: (X1, ..., Xn) ∼ N(µ,Σ). In analogy to the

derivation of the BDe score (see Subsection 3.5.2.1) [18] derive a scoring metric for

Gaussian Bayesian networks. As their derivation is extensive and complicated, only the

main steps are presented in this subsection. First of all, they assume that the prior

distribution over the unknown parameter vector µ is a Gaussian distribution with mean

µ0 and precison matrix ν · W with ν > 0, whereby the matrix W in turn is Whishart

distributed with α > n + 1 degrees of freedom and precison matrix T0. That is:

• P (µ = µ⋆|µ0, νW ) = (2π)−
n
2 · |ν · W | 12 · e− 1

2
·(µ⋆−µ0)T νW (µ⋆−µ0)

• P (W = W ⋆|T0) = c(n, α) · |T0|
α
2 · |W ⋆|α−n−1

2 · e− 1
2
·trace(T0·W ⋆).

Thereby |.| is the determinant and trace(.) is the sum of the diagonal elements of the

input matrix. The factors c(n, α) are given by:

c(n, α) =

(
2

α·n
2 · π

n(n−1)
4 ·

n∏

i=1

Γ

(
α + 1 − i

2

))−1

. (3.31)

The matrx T0, the vector µ0 as well as the degrees of freedom α and the factor ν are

unknown parameters that have to be specified in advance and can be used to include

some background knowledge about the domain. The assessement of these parameters is

briefly discussed at the end of this subsection.

Subsequently, [18] show that this normal-Wishart prior assumption is sufficient for

deriving a score for complete Gaussian Bayesian networks, that is for DAGs with as
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many edges as possible representing that all domain variables are pairwise dependent.

Such a complete DAG is for example given if each bij in Formula (3.30) is unequal to

zero for i<j. An as bij 6= 0 reflects an edge pointing from variable Xj to Xi, this in turn

means that domain variable Xi (i=2,...,n) has the parent nodes pa(Xi) = {X1, ..., Xi−1}
with X1 having no parent nodes. Alternative complete DAGs - all lying in the same

equivalence class - can be obtained by permutating the order of the domain variables to

Xσ(1), ..., Xσ(n) and setting pa(Xσ(i)) =
{
Xσ(1), ..., Xσ(i−1)

}
afterwards.

The BGe-score of such a complete DAG GC derived in [18] is then given by:

P (D|GC) · P (GC) = (2π)−
n·m
2 · ( ν

ν + m
)

n
2 · c(n, α)

c(n, α + m)
· |T0|

α
2 · |Tm|−α+m

2 , (3.32)

whereby m is the number of independent observations in the data set D, the function

c(., .) is defined in Formula (3.31), and the matrix Tm is given by:

Tm = T0 +
m∑

j=1

(D.j − D) · (D.j − D)T +
ν · m
ν + m

· (µ0 − x) · (µ0 − x)T (3.33)

In Formula (3.33) D is the mean vector of the m observation vectors D.j in the data set D.

Subsequently, [18] show that it is possible to derive the BGe score for any DAG under

two fairly weak assumptions of parameter independence: P (σ2
1, ..., σ

2
n, ~b1, .., ~bn|G) =

∏n
i=1 P (σ2

i ,
~bi|G), and parameter modularity: P (σ2

i ,
~bi|G) = P (σ2

i ,
~bi|pa(Xi)). So,

parameter independence means that the unknown parameters of the local probability

distributions (see Formula (3.30)) are stochastically independent of each other, and

parameter modularity means that the prior distribution of the parameters of these local

probability distributions depend on the parent variables only.

Under these two assumptions can be derived (see [18]) that the BGe score of any

Gaussian Bayesian network G0 can be computed as follows:
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P (D|G0) · P (G0) = P (G0) ·
n∏

i=1

P (D(Xi,pa(Xi))|GC)

P (D(pa(Xi))|GC)
(3.34)

where D(pa(Xi)) is the data set D restricted to the variables in pa(Xi), and D(Xi,pa(Xi))

is the data set D restricted to the variables in pa(Xi) ∪ Xi. GC represents a complete

DAG over the variables to which the corresponding data set D(.) is restricted. Therefore,

Formula (3.32) can be used on reduced data sets to compute the BGe score of any DAG

G0 over the domain X1, ..., Xn. Formula (3.34) provides the factorisation of the likelihood

(see Formula (3.21)) for the continuous Gaussian Bayesian network BGe model. The

local scores are given by:

Score(Xi|D, pa(Xi)) =
P (D(Xi,pa(Xi))|GC)

P (D(pa(Xi))|GC)

In addition, [18] give a heuristic method for encoding prior knowledge about the

domain when assessing the unknown prior parameters T0 and µ0. They recommend

to build a prior Gaussian Bayesian network with respect to the user‘s knowledge.

For example, a Bayesian network without any edges in which every variable has a

standard Gaussian N(0, 1) distribution. This prior network, that is the specification

of the network parameters µ, bij , and σ2
i , which in turn specify the parameters of the

multivariate normal N(µ,Σ) over the domain, can be used to obtain the following

reasonable prior parameters:

• µ0 = µ

• T0 = ν(α−n−1)
ν+1 · Σ

The parameters ν > 0 and α > n+1 are referred to as the user‘s equivalent sample sizes

for µ0 and T0. The higher these equivalent sample size parameters are selected the more

information is implied through the prior network.
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From a Bayesian Statistics point of view, when there isn‘t any prior knowledge, the

prior parameters should be choosen as uninformative as possible to avoid parameter

over-fitting. On the other hand, an inadequately specified prior network can lead

to some serious bias of the results, so that it is not useful to specify an absolutely

unrealistic prior network. E.g. if the measured variables of a domain can have positive

realisations only with very low variances, it is surely inadequate to assume a prior

network of independent Gaussian distributed variables with mean zero and a very

high variance. So, there is a certain trade-off between overfit and bias. The author

of this thesis holds the view that an uninformative network prior must satisfy the

following conditions: the means of all variables as well as the variances are equal, and

all correlations between the domain variables are zero, so that it is assumed that each

domain variable is independently and identically N(µ,σ2) distributed. Furthermore,

the equivalent sample sizes should be set as small as possible, when there is no prior

knowledge about the domain. But it is not clear how to specify the two parameters of

the Gaussian distribution.

Because of some systematic differences in the means and variances of the variables of

the synthetically generated data for the comparative evaluation study (see Section 5),

it was decided to normalise each data set before analysing it. Consequently, it holds

for each test data set used in the study that all its variables have mean zero and a

variance of one. Although it must be seen a little critical, after a good deal of thought,

it was decided to set the two prior parameters of the BGe Bayesian network scoring

metric correspondingly. That is µ = 0 and σ2 = 1. The justification of this approach

is as follows: Firstly, mainly the correlations between the domain variables contain

information about possible network edges. All correlations are set to zero in the prior

network described above, so that the most important prior parameters (with regard

to the extraction of gene networks) are choosen uninformative. Secondly, since the

equivalent sample sizes will be choosen as small as possible, it can be concluded that

the prior network has not much influence on the results at all, so the prior network

does not protect much against overfitting anyway. (The validity of this second point
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was empirically checked on lots of test data sets.) Thirdly, this approach guarantees

that the parameter prior is equally informative for all test data sets. That is, there is

no effect of the true realisation‘s nature on the learning performance. Especially, since

the functional relationships between the variables are more or less arbitrarily specified

before generating synthetic data, it would be left to chance how much the prior net-

work of independent standard Gaussian distributions fits the nature of the real test data.

However, for interventional data sets these two prior parameters can not be specified

as adequately as for pure observational data. For pure observational data it does not

depend on whether a domain variable is considered as a child or parent node: in both

cases its empirical variance and its empirical mean (as well as its empirical covariances)

are the same. But this is not true for intervened nodes in interventional data sets

(see Subsection 3.5.5). In the case of interventional data it is necessary to exclude

some realisations of the network domain whenever an intervened node is considered as

a child node, and its local score given a parent set is computed. More precisely, all

realisations, where this intervened child node was activated or inhibited by experimental

conditions, must be excluded when its local score given its parent set is computed.

So, the empirical means, variances, and covariances of all domain variables depend on

the remaining realisations only. Consequently, the means and variances of all domain

variables differ with respect to the node that is considered as child node. Either the child

node is a non-intervened node so that all realisations of the network domain can be used

to comute these empirical characteristics, or the child node is an intervened node, so that

certain realisations have to be excluded from the computations of these characteristics.

Nevertheless, for such interventional data sets exactly the same prior parameters µ =

0 and σ2 = 1 were selected. As a consequence when an intervened node is scored,

there is automatically a certain discrepancy between the two prior parameters and the

corresponding empirical parameters - even when the interventional data set has been

normalised.

Although it was not expected, it will be seen in Section 5.6 that the learning performance
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of the BGe Bayesian network model on interventional data is sensitive to the prior

network in some extreme cases. So, in real applications it is advisable to select the prior

network with extreme caution.

3.5.3. MCMC sampling of Bayesian networks

In this section two different Markov Chain Monte Carlo (MCMC) methods for sampling

directed acyclic graphs (DAGs) G0 of Bayesian networks from the posterior distribution

P (G0|D) (see 3.18) are presented. For all stochastic models of the corresponding

Bayesian networks both MCMC methods can be used for sampling. Therefore we

assume within this section that a Bayesian network is given by the triple (G0, F, q),

whereby as described in Section 3.5.2 G0 is a DAG, F describes the distributional form,

and q = q(F, G0) is the corresponding parameter vector.

Based on an independent sample D = (D.1, ..., D.m) of the joint probability dis-

tribution of the domain variables P (X1, ...., Xn) the objective of interest is learning

the network structure behind the variables. In the context of Bayesian networks

one possible method of learning is to search for the DAG that is most supported by

the data D. Statistically this means to determine, on the basis of the data D, the

DAG whose independency assumptions best represents the mechanism that generated

the data. This DAG G∗ maximises the posterior distribution and therefore satisfies:

P (G∗|D) ≥ P (G|D) for all directed acylic graphs G. A comparison of several heuristic

search procedures, such as Greedy-Search algorithms, can be found in [23]. But

biological expression data are usually sparse, that is, the amount of data is small

relative to the number of parameters of a Bayesian network model. Therefore data

over-fitting must be expected, if trying to represent the dependency structure behind

the variables by one single DAG. And especially the DAG G∗ that maximises the

posterior distribution possibly gives no adequate, but an over-fitted insight into the

relations between the domain variables. Consequently, it is more appropriate to report

conclusions from more than one DAG.
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Since direct sampling from the posterior distribution:

P (G0|D) =
P (G0, D)

P (D)
=

P (D|G0) · P (G0)∑
G∈Ω P (D|G) · P (G)

,

is intractable due to the intractability of the normalisation factor in the denominator,

Markov Chain Monte Carlo (MCMC) schemes can be adopted to generate samples from

this posterior distribution. Two different MCMC sampling schemes defined in the space

of DAGs (Structure-MCMC by [32]) and node orders (Order-MCMC by [15]) have been

proposed in the literature and will be presented in the following two subsections.

In general, a Markov Chain Monte Carlo (MCMC) sampling scheme can be used to

generate a sample s1, s2, ... from a discrete target distribution P ⋆(.) with state space S

(|S| < ∞). This is accomplished by constructing a Markov Chain in the space S whose

distribution converges to the desired posterior distribution P ⋆(.) as stationary one. The

MCMC simulation scheme consists of evaluating at each step an acceptance probability

with which a new state can replace the current state.

More precisely, the general mechanism of a Markov Chain (Mn)n∈N with state space S

is given by:

P (Mn+1 = x) =
∑

y∈S

T (x|y) · P (Mn = y) (3.35)

for all x ∈ S and n ∈ N . Thereby T(x|y) is the transition kernel which denotes the

probability of a transition from state y to state x. In addition an initial distribution

P (M1 = z) (z∈ S) is defined. If T (x, x) > 0 for all states x, and if for all x, y ∈ S

there exists an integer k, so that P (Mn+k = x|Mn = y) > 0, it is guaranteed that

the distribution of (Mn)n∈N converges to a stationary one P∞. That is, for all z ∈ S

holds: P (Mn = z) → P∞(z) for n → ∞. This is due to the fact that these conditions

of irreducibility and aperiodicity are sufficient conditions for ergodicity of the Markov

Chain (Mn). And ergodicity is a sufficient condition for stationarity for n → ∞. See [19]

for further details. The stationary distribution is determined by the transition kernel
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T (.|.), and does not depend on the initial distribution. The equation of detailed balance:

T (x|y)

T (y|x)
=

P ⋆(x)

P ⋆(y)
(3.36)

for all states x and y is a sufficient condition for that the stationary distribution is the

desired posterior distribution: P∞(.) = P ⋆(.). Equation (3.36) can be easily fulfilled

when decomposing the transitions at each ’time-index’ n into two parts.

In a first step a new state x for Mn+1 is proposed with a proposal probability Q(x|y)

which depends on the current state y of Mn. Thereby the new state x has to be unequal

to the current state y. Afterwards, in the second step the new state x is accepted with

an acceptance probability A(x|y) as new state of the Markov Chain at n + 1. If it is not

accepted, the new state at n + 1 is set equal to the current state y. This procedure is

reiterated for all n > 0.

The transition probabilities are then given by: T (x|y) = Q(x|y) · A(x|y) for all x, y ∈ S

with x 6= y and

T (x|x) =
∑

y ∈ S

y 6= x

(1 − A(y|x)) · Q(y|x) (3.37)

The equation of detailed balance is accomplished if the acceptance probability is choosen

as follows: A(x|y) = min {1, R(x|y)}, whereby

R(x|y) =
P ⋆(x) · Q(y|x)

P ⋆(y) · Q(x|y)
(3.38)

As R(x|y) is equal to 1
R(y|x) , it immediately follows that R(x|y) > 1 ⇔ R(y|x) < 1 and

consequently hold the following two equivalence relations:

• A(x|y) = 1 ⇔ A(y|x) = 1
R(x|y)

• A(x|y) = R(x|y) ⇔ A(y|x) = 1
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This means for the ratio of transition probabilities:

T (x|y)

T (y|x)
=

Q(x|y) · A(x|y)

Q(y|x) · A(y|x)
=

Q(x|y)

Q(y|x)
· R(x|y) =

Q(x|y)

Q(y|x)
· P ⋆(x) · Q(y|x)

P ⋆(y) · Q(x|y)
=

P ⋆(x)

P ⋆(y)

so that the equation of detailed balance (see Formula (3.36)) is fulfilled.

The proposal probabilities Q(.|.) which have to be defined in advance depend on

the design of the transitions in the state space S, that is on the particular MCMC

sampling scheme. So, they will be described together with the two MCMC sampling

schemes in the following two subsections.

3.5.3.1. Structure-MCMC

The Structure-MCMC approach of [32] is a Markov Chain Monte Carlo (MCMC) sam-

pling scheme that generates a sample of DAGs G1, G2, G3, ... from the posterior distrib-

ution P ⋆(.) = P (.|D). So, the state space S is the set of all valid DAGs. The proposal

probabilities Q(G|G⋆) are defined as follows:

Q(G|G⋆) =






1
|Π(G⋆|) , G ∈ Π(G⋆)

0 , G /∈ Π(G⋆)






Thereby Π(G⋆) denotes the neighbourhood of G⋆, that is the collection of all DAGs that

can be reached from G⋆ by deletion, addition or reversal of one single edge. |Π(G⋆)| is

the cardinality of this collection. As the new graph G has to be an acyclic one too, it

has to be checked which edges can be added to G⋆, and which edges can be reversed in

G⋆, without violating the acyclicity-constraint. Some details on how to determine these

edges are given in C. Appendix III.

[32] show that these proposal probabilities lead to an ergodic Markov Chain in the space

of all valid DAGs if the acceptance probabilities are set to A(G|G⋆) = min {1, R(G|G⋆)},
where R(.|.) was defined in (3.38).

Adding and removing of edges is needed for reaching ergodicity. Edge reversals just lead

to a faster convergence of the Markov Chain as shown in [20]. However, [32] point out
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that the reversal of reversible edges directly leads to a DAG within the same equivalence

class (for details see Section 3.5.1). They conclude that one of the drawbacks of using

a Markov Chain in the space of DAGs is that the Markov Chain may visit equivalence

classes proportionally to their sizes (in terms of how many DAG members they have).

In order to alleviate this problem, they recommend to allow reversals of compelled edges

only. This can be accomplished by modifying the neigbourhoods with regard to this

restriction (see C. Appendix III). Furthermore, a reasonable approach adopted in most

applications of Bayesian networks to the reverse engineering of gene (or protein) regula-

tory networks is to impose a limit on the cardinality of the sizes of parent node sets. This

limit is referred to as fan-in. Each domain node in a DAG can have at most fan-in parent

nodes then. The practical advantage of the restriction on the maximum number of edges

converging on a node is a reduction of the computational complexity, which improves

the convergence of the Markov Chain in the Structure-MCMC simulation. Fan-in re-

strictions can be justified in the context of expression data as many experimental results

have shown that the expression of a gene is usually controlled by a comparatively small

number of active regulator genes, while on the other hand regulator-genes themselves

seem to be nearly unrestricted in the number of genes they regulate. The imputation

of such a fan-in restriction leads to a further reduction of a DAG‘s neighbourhood. All

DAGs that contain nodes with too many parents, that is more than the fan-in value,

have to be removed from the respective neighbourhoods (see C. Appendix III).

The main advantage of the proposal probabilities mentioned above is that it is efficient

to compute R(G|G⋆), when G and G⋆ differ by a single edge only. Inserting the proposal

probabilities Q(G|G⋆) in the formula for R(G|G⋆) (see Formula 3.38) leads to:

R(G|G⋆) =
P (G|D) · 1

|Π(G⋆)|

P (G⋆|D) · 1
|Π(G)|

=

P (D|G)·P (G)
P (D) · 1

|Π(G⋆)|

P (D|G⋆)·P (G⋆)
P (D) · 1

|Π(G)|

=
P (D|G)

P (D|G⋆)
· P (G)

P (G⋆)
· |Π(G⋆)|
|Π(G)|

As the likelihoods P (D|G) and P (D|G⋆) can be factorised into products of local scores

(see Formula (3.21)), and as the priors P (G) and P (G⋆) can be factorised into products

of local parent set priors (see Formula (3.5.2)), it follows that for DAGs that differ by

one edge only, most of the factors cancel out. If for example Xi has the parent set
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pa(Xi) = {Xj , Xk} in G⋆ and the edge Xj → Xi is deleted in G, then R(G|G⋆) is given

by:

R(G|G⋆) =
P (pa(Xi) = {Xk})

P (pa(Xi) = {Xj , Xk})
· Score(Xi|D, {Xk})
Score(Xi|D, {Xj , Xk})

· |Π(G⋆)|
|Π(G)|

The Structure-MCMC approach of [32] for sampling DAGs from their posterior

distribution can be summarised as follows:

• Initialisation: Choose an arbitrary DAG G1 and set M1 = G1. For example

initialise the Markov Chain by the empty DAG containing no edges.

• Iteration: For i=1,2,3,...: Given a realisation Gi = G⋆ of Mi randomly choose a

neighbour DAG G of G⋆ from the proposal distribution:

Q(G|G⋆) =






1
|Π(G⋆)|) , G ∈ Π(G⋆)

0 , G /∈ Π(G⋆)






Accept the randomly choosen DAG G with the acceptance probability A(G|G⋆) =

min {1, R(G|G⋆)}. If G is accepted, set Mi+1 = G. Otherwise leave the Markov

Chain unchanged, that is, set Mi+1 = G⋆.

As it takes ‘some time’ until the Markov Chain converges to its stationary distribution,

the idea is to sample from the Chain for ‘long enough’ to ensure that it has reached its

stationary distribution. The time until then is called the burn-in time and the DAGs

sampled in this ‘time’ are usually rejected and thrown away. Any further sample can be

seen as sample from the posterior distribution. But as there is no sufficent condition that

guarantees that convergence is reached, there is need for some convergence diagnostics,

such as trace plot diagnostics.
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3.5.3.2. Order-MCMC

The Order-MCMC approach of [15] is a Markov Chain Monte Carlo (MCMC) sampling

scheme that generates a sample of domain node orderings O1, O2, O3, ... from the pos-

terior distribution P ⋆(.) = P (.|D) over node orderings. So, the state space S is the set

of all n! possible orderings of the domain nodes. Afterwards in a second step a sample

of DAGs G1, G2, G3, ... can be obtained by sampling DAGs out of the sampled node

orderings.

Each ordering O = (Xσ(1), ..., Xσ(n)) of the domain variables X1, ..., Xn is implied

through a permutation σ. The meaning of such an ordering in the context of Order-

MCMC is as follows: O represents the set of all DAGs for which holds Xσ(i) /∈ pa(Xσ(j))

if σ(j) preceds σ(i) in the permutation vector σ = (σ(1), ..., σ(n)). Only if Xσ(j) succeeds

Xσ(i) in σ the relation Xσ(i) ∈ pa(Xσ(j)) is valid. That is the j-th variable Xσ(j) in the

ordering O is not allowed to have parents that are standing to the right of Xσ(j) in O.

The valid parent sets of Xσ(j) are restricted to variables that are standing to the left.

Consequently, node Xσ(1) must have the empty parent set pa(Xσ(1)) = ∅, node Xσ(2)

can have either the empty parent set ∅ or the set
{
Xσ(1)

}
, node Xσ(3) is allowed to have

one of the following 4 parent-sets: ∅,
{
Xσ(1)

}
,
{
Xσ(2)

}
,
{
Xσ(1), Xσ(2)

}
, etc.

The likelihood P (D|O) of a given node ordering O can be computed efficiently, as the

selection of the parent-set for one node with respect to O does not lead to any additional

restrictions for another. That is for each node its parent set can be selected independently

with respect to the ordering. Or in other words, as long as the restrictions implied

through the ordering O are regarded for each node, it is guaranteed that no cycles will

come into being. Therefore the likelihood can be obtained by summing the products

of local scores and local parent set priors for each domain node over the set of all valid

parent-sets, and then multiplying these sums. Thereby it is important that the prior

over DAGs as well as the likelihood of a DAG can be decomposed into a product where

each factor corresponds to a node. As described in Section 3.5.2, this holds for both

priors. Furthermore, it could be seen from Formula (3.28) and Formula (3.34) that such
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a factorisation of the likelihood into local scores is given for the discrete multinomial and

the continuous Gaussian Bayesian network model. Consequently, the likelihood of the

node ordering O = (Xσ(1), ..., Xσ(n)) is given by:

P (D|O) =
n∏

i=1

∑

P∈Vi(σ)

P (pa(Xi) = P ) · Score(Xi|pa(Xi) = P, D) (3.39)

whereby Vi(σ) denotes the system of all parent sets that are valid for domain variable Xi

with respect to the given ordering. If a fan-in restriction is imposed, the systems Vi(σ)

are restricted to sets of cardinalities not higher than the fan-in restriction.

The idea of Order-MCMC is to construct a Markov Chain that converges to the posterior-

probability over node orderings, that is P (O|D). This can be accomplished by using

the construction presented in Section 3.5.3. The equation of detailed balance (see For-

mula (3.36)) states that the Markov Chain converges to the posterior probability, if for

the ratio of transition probabilities holds:

T (O|O⋆)

T (O⋆|O)
=

P (O|D)

P (O⋆|D)
(3.40)

where O is a node ordering that can be reached from the current node ordering O⋆.

And the equation of detailed balance in turn can be easily fulfilled by decompos-

ing the transition probabilities into products of proposal and acceptance probabilities:

T (O2|O1) = Q(O2|O1) · A(O2|O1) Thereby the acceptance probabilities depend on the

proposal probabilities (see Formula (3.38)), which in turn depend on the way the tran-

sitions are designed in the space of node orderings. [15] recommend to use a simple

flip-operator which exchanges one node for another in the ordering. This leads to the

following proposal probabilities:

Q(O|O⋆) =






2
n·(n−1) , O ∈ Π(O⋆)

0 , O /∈ Π(O⋆)






Thereby Π(O⋆) is the set of all node orderings O† = (Xσ†(1), ..., Xσ†(n)) that can be
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reached from O⋆ by flipping two nodes in O⋆, and leaving all other nodes in the ordering

unchanged. More presisely, the ordering O† = (Xσ†(1), ..., Xσ†(n)) can be reached from

O⋆ = (Xσ⋆(1), ..., Xσ⋆(n)) if and only if for the corresponding permutations σ† and σ⋆

holds: | {1, ..., n} : σ⋆(i) = σ†(i)| = n − 2. Moreover, as σ† and σ⋆ are permutations, it

follows that there is exactly one pair (j, k) ∈ {1, ..., n}2 of integers with: σ⋆(j) = σ†(k)

and σ⋆(k) = σ†(j). The proposal probability Q(.|O⋆) is a uniform distribution over all

n·(n−1)
2 possibilities of exchanging two nodes for each other in O⋆.

To guarantee convergence to the desired posterior distribution, the acceptance

probabilities must be set to A(O|O⋆) = min {1, R(O|O⋆)}, where R(.|.) was defined in

Formula (3.38) (see Subsection 3.5.3 for further details). If a uniform prior over all n!

possible node orderings is assumed, that is P (O) = 1
n! for every ordering O, the term

R(O|O⋆) is given by:

R(O|O⋆) =
P (O|D) · 2

n·(n−1)

P (O⋆|D) · 2
n·(n−1)

=

P (D|O)·P (O)
P (D)

P (D|O⋆)·P (O⋆)
P (D)

==
P (D|O)

P (D|O⋆)

The likelihoods P (O|D) and P (O⋆|D) can be computed using Formula (3.39). But as

the orderings O = O(σ) and O⋆ = O(σ⋆) differ by the exchange of two nodes Xσ(j)

and Xσ(k) only, the factors for the nodes that precede Xσ(j) or succeed Xσ(k) in both

orderings do not change in Formula (3.39), that is Vi(σ) = Vi(σ
⋆) for i < j as well as for

i > k. Consequently, the ratio of likelihoods reduces to:

P (D|O)

P (D|O⋆)
=

k∏

i=j

∑
P∈Vi(σ) P (pa(Xi) = P ) · Score(Xi|pa(Xi) = P, D)

∑
P∈Vi(σ⋆) P (pa(Xi) = P ) · Score(Xi|pa(Xi) = P, D)

(3.41)

To avoid unnecessary computations it is advisable to precompute for each domain

node the scores of all its possible parent sets in advance, that is before starting the

MCMC-Order simulation. So, instead of computing lots of local scores again and again

within each Order-MCMC step, for each node the local scores of its valid parent sets

can be searched in precomputed lists and summed up in the MCMC steps accordingly.
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When a sufficiently restrictive fan-in K is imposed, the computational complexity of

this pre-processing is of order nK+1. However, for domains with lots of nodes, that

is high number of variables n, or unrestricted fan-in, it is not an useful way to store

all these local scores. This is due to the fact, that for searching the valid parent-sets

in extensive precomputed and stored lists, lots of computational time is needed, so

that the Order-MCMC algorithm becoms too slow then. [15] recommed some heuristic

computational tricks for such domains with lots of variables.

The Order-MCMC approach of [15] for sampling node orderings from their pos-

terior distribution can be summarised as follows:

• Initialisation: Choose an arbitrary node ordering O1 and set M1 = O1. For

example initialise the Markov Chain by a randomly determined node ordering.

• Iteration: For i=1,2,3,...: Given a realisation Oi = O⋆ of Mi randomly choose

an ordering O out of the set Π(O⋆) (which consists of all node orderings that can

be reached from O⋆ by exchanging two nodes for each other and leaving all other

nodes in the ordering O⋆ unchanged) from the proposal distribution:

Q(O|O⋆) =






2
n·(n−1) , O ∈ Π(O⋆)

0 , O /∈ Π(O⋆)






Accept the randomly choosen ordering O with the acceptance probability

A(O|O⋆) = min {1, R(O|O⋆)}. If O is accepted, set Mi+1 = O. Otherwise leave

the Markov Chain unchanged, that is, set Mi+1 = O⋆.

In analogy to the Structure-MCMC approach it takes ‘some time’ until the Markov

Chain converges to its stationary distribution. So, one has to sample from the Chain

for ‘long enough’ to ensure that it has reached its stationary distribution. After the

burn-in time the DAGs can be seen as sampled from the posterior distribution. So,

Order-MCMC ouptputs a sample of node orderings O1, ...OM which, if convergence of

the Markov Chain was actually reached, is a sample from the posterior distribution over
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node ordering P (O|D).

The idea of Order-MCMC is to use this sample to obtain a sample of DAGs. That is for

each sampled ordering Oi = Oi(σ
i) a DAG Gi can be sampled out of the posterior distri-

bution P (G|Oi(σ
i), D), that is the posterior distribution over DAGs given the ordering

Oi and the data D. Conditional on the node ordering, for each node its parent set can be

sampled independently with respect to its valid parent-sets in Oi. So, for each domain

node Xi its parent set can be sampled out of the following posterior distributions:

P (pa(Xi) = P0|Oi(σ
i), D) =

I{Vi(σ
i)}(P0)·P (pa(Xi)=P0)·Score(Xi|pa(Xi)=P0,D)

∑
P∈Vi(σ

i) P (pa(Xi)=P )·Score(Xi|pa(Xi)=P,D)

Thereby the indicator function I{Vi(σi)}(P0) is equal to one if the condition P0 ∈ Vi(σ
i)

is true, and zero otherwise. Subsequently, the complete DAG can be obtained straight-

forwardly: For each domain variable and each of its parent nodes there is one edge

pointing from the parent nodes to the node itself. Due to the ondition on the node

ordering the final DAG that consists of all these edges is guaranteed to be an acyclic

one. So for each sampled node ordering a DAG can be obtained, so that in the end a

DAG sample G1, ..., GM becomes extracted from the outputed sample of node orderings

O1 = O1(σ
i), ..., OM = OM (σM ).

Although [15] show that Order-MCMC is superior to Structure-MCMC with regard to

convergence and mixing of the resulting Markov Chain, there is a substantial drawback

of the Order-MCMC sampling scheme. Using Order-MCMC the prior over DAGs, which

has usually a substantial influence on the posterior probabilities and the outcome of the

inference, cannot be defined explicitly. More precisely, the assumption that each ordering

O has the same prior probability P (O) leads to a change of the form of the originally

determined prior over DAGs P (G). DAGs that are consistent with more orderings

are more likely than DAGs consistent with fewer orderings. For instance, the DAG

without any edge can be sampled out of all n! node orderings, while a DAG of the type

Xσ(1) → Xσ(2) → .... → Xσ(n) can be sampled out of one single node ordering, namely
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O = (Xσ(1), ..., Xσ(n)), only. [15] argue that ‘the standard priors over DAGs are often

used not because they are particulary appropriate for a task, but rather because they

are simple and easy to work with’ and justify their approach with the argument that

‘a DAG that is consistent with more orderings makes fewer assumptions about causal

ordering, and therefore should be more likely a priori’. In addition [15] present results of

simulation studies for domains with small n which show that the bias in the prior over

DAGs implied through Order-MCMC is of minor degree only.

3.5.4. Relation-Features

Either the Structure-MCMC sampling scheme (see Subsection 3.5.3.1) or the Order-

MCMC sampling scheme (see Subsection 3.5.3.2) can be used to obtain a sample of

DAGs from the posterior distribution P (G|D) over directed acyclic graphs. Once such a

DAG sample G1, ..., GM is present, it is useful to search for ‘features’ that are common

to most of the DAGs in the sample. Informally, a ‘feature’ indicates the presence of

a particular directed or undirected edge or a particular set of edges in a DAG or its

CPDAG representation. Thus ‘features’ can be seen as structural properties of Bayesian

networks. Especially, the posterior probabilities of these ‘features’ given the data D are

quantities of interest.

Figure 3.4.: A CPDAG for a domain with 5 variables {A, B, C, D, E}

[14] recommend to convert each sampled DAG into its CPDAG (see Subsection 3.5.1)
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first. How to convert between DAGs and CPDAGs is described in detail in [9]. Subse-

quently, it can be searched for ‘features’ in the extracted CPDAG sample, whereby each

CPDAG consists of directed and undirected edges. For the remainder of this section it

is assumed that the DAG sample G1, ..., GM has been converted into the correspond-

ing CPDAG sample. For example, the CPDAG presented in Figure 3.4 contains the

following relation-features:

• a directed edge from A to B: ‘A → B’

• an undirected edge between A and E: ‘A—E’

• a directed path from A to D: ‘A → B → D’

• etc.

More formally, a feature F is a binary indicator-variable over the space of DAGs, which

is 1 if the feature is present in a certain DAG, and 0 otherwise. Thereby the features

are usually characterised through properties of the corresponding CPDAG.

F : Ω → Ω⋆ → {0, 1}

where Ω represents the space of DAGs and Ω⋆ is the space of CPDAGs.

The most important features are the following ones. Thereby X and Y are two

nodes in a CPDAG G.

• Order-relation-features If the CPDAG G contains a directed path, that is a

path from node X to node Y in which all edges are directed, then X and Y are in

order-relation. More precisely, there is an order-relation ‘F⊲(X, Y ) = 1’ in G if and

only if X is an ancestor of Y in G. In Figure 3.4 the order-relations are given by

F⊲(A, B) = 1, F⊲(C, B) = 1, F⊲(B, D) = 1, and F⊲(A, D) = 1. There are no other

order-relations. Therefore all other order-relation-features are of measure zero. In
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the context of gene expression data order-relations can be seen as indications for

causation. F⊲(X, Y ) = 1 means that X is a cause of Y .

• Markov-relation-features The nodes X and Y are in Markov-relation in G,

if there is an (directed or undirected) edge between them, or if they have a

common child node Z, that is if there are two directed edges ‘X → Z’ and

‘Y → Z’ converging on the same common child node Z. Markov-relations

are symmetric, that is the relationship FM (X, Y ) = FM (Y, X) holds. In Fig-

ure 3.4 there are 8 Markov-relations implied through (directed and undirected)

edge connections: FM (A, E) = 1, FM (E, A) = 1, FM (A, B) = 1, FM (B, A) = 1,

FM (B, C) = 1, FM (C, B) = 1, FM (B, D) = 1, and FM (D, B) = 1 as well as two

additional Markov-relations since nodes A and C have a common child, namely

B: FM (A, C) = 1 and FM (C, A) = 1. In the context of gene expression data a

Markov-relation indicates that the two genes are related in some joint biological

regulation process or interaction.

• Directed- and Undirected-edge-relation-features The nodes X and Y are

in directed-edge-relation in G if there is a directed edge ‘X → Y ’ from X to Y .

Accordingly, they are in undirected-edge-relation in G if there is an undirected edge

‘X—Y ’ between X and Y in G. Directed-edge-relations are special cases of order-

relations. In Figure 3.4 there are two undirected-edge-relations: F−(A, E) = 1 and

F−(E, A) = 1 as well as three directed-edge-relations: F→(A, B) = 1, F→(B, D) =

1, and F→(C, B) = 1.

• Individual-edge-relation-features There is an individual edge relation from

X to Y in G, if there is eiter a directed edge from X to Y or an undirected

edge between X and Y . In Figure 3.4 there are five individual-edge-relations:

F≻(A, B) = 1, F≻(C, B) = 1, F≻(B, D) = 1, F≻(A, E) = 1, and F≻(E, A) = 1.

The next question is to what extend the data D support a particular feature F . If the

data are sparse there can be many DAGs (CPDAGs) that explain the data equally well.
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Unfortunately, these DAGs (CPDAGs) can have very different sets of edges. Conse-

quently, there are DAGs (CPDAGs) that contain a feature while others do not. There-

fore, for every feature of interest F one has to estimate the posterior probability P (F |D)

of this feature given the data D. This probability is also called the confidence of the

feature and is given by:

P (F |D) =
∑

G∈Ω

F (G) · P (G|D) (3.42)

Because exact computation of the posterior probability is impractical due to the fact that

the number of valid DAGs in Ω is exponential in the number of variables n, this posterior

probability has to be estimated by the aid of the sample G1, ..., GM . An estimator is

given by the fraction of DAGs (CPDAGs) that contain the feature of interest. For each

feature F the corresponding estimator is given by:

̂P (F |D) =
1

M

M∑

i=1

F (Gi) (3.43)

Although pairwise relation-features give some insight into the biological phenomena cap-

tured by the data, the view remains limited to pairwise relations. Therefore, [14] discuss

how to identify broader structures with the aid of individual confidences of the Markov-

relation-features. Within their framework pairwise relations are brought together with

the aim to extract sub-graphs with a high concentration of Markov-relation-features of

high confidence. Their score-based approach is presented in A. Appendix I.

3.5.5. Analysing interventional data with Bayesian networks

Although most of the available biological expression and pathway data bases are passively

observed (that is so called observational data), sometimes experimenters can manipu-

late single domain variables in some experiments and observe the resulting values of

the other domain variables. Such data are called ideal interventional data. Since in

these interventional experiments the manipulated variables are usually either inhibited
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(down-regulated) or activated (up-regulated) by the experimenter, e.g. through special

experimental conditions, their values are not stochastic any longer. From a theoretical

point of view this means that the values of these variables are deterministically assigned

specific values. Thus these values obtained by experimental intervention can not depend

on the values of the other domain variables. But on the other hand these assigned values

can influence the values of other domain variables. Consequently, the intervened data

points are extremely useful for discovering causal relationships (directed edges). Under

fairly weak conditions a combination of observational and ideal interventional data can

be analysed using Bayesian networks. These conditions are described in detail in [51] for

the BDe scoring metric and in [50] for the BGe scoring metric. Only two little modifi-

cations are necessary.

First, in the likelihoods, which are products of local scores (see Formula (3.21)), each

local score becomes restricted to those relevant data points where the variable itself was

not intervened.

That is the likelihood for pure observational data (see Formula (3.21)):

P (D|G) =
n∏

i=1

P (Xi = DXi
|pa(Xi) = Dpa(Xi)) =

n∏

i=1

Score(Xi|D, pa(Xi))

has to be replaced by:

P (D−|G) =

n∏

i=1

P (Xi = D−i
Xi
|pa(Xi) = D−i

pa(Xi)
) =

n∏

i=1

Score(Xi|D−i, pa(Xi))

D− is a set of n data sets D−i (one for each domain variable Xi) in which the intervened

observations of the indicated variable are deleted from D. More precisely, D−i
Xi

consists of

the observations of domain variable Xi, where Xi itself was not intervened. Accordingly,

D−i
pa(Xi)

consists of the observations of the variables in the parent set pa(Xi), where

their common child node Xi was not intervened.

Secondly, the definition of equivalence classes (see Subsection 3.5.1) must be changed.

While for pure observational data sets two DAGs assert the same set of independency

assumptions among the domain variables, if and only if they have the same skeleton
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and the same set of v-structures (see Subsection 3.5.1), this definition of ‘equivalence’

does not make sense for data sets which are a mixture of observational and ideal

interventional measurements.

To see that, it is useful to consider a very simple example. If in a domain with two vari-

ables A and B, node B is set to the deterministic value b through experimental condition,

then this manipulation can not influence the distribution of node A in DAG G1: ‘A → B’,

as A does not depend on B in G1. That is the probability P (A = a, B = b|G1, B = b)

reduces to P (A = a). On the other hand in DAG G2: ‘A ← B’ the manipulation of

node B causes a change in the distribution of node A, as A depends on B. That is

P (A = a, B = b|G2, B = b) is equal to P (A = a|B = b). Thus although both DAGs

are equivalent with the same CPDAG representation ‘A—B’, the (in-)dependence rela-

tions differ for interventional data points. While for the non-interventional observations

holds P (A, B|G1) = P (A, B|G2), the conditional distributions P (A, B|G1, B = b) and

P (A, B|G2, B = b) are different.

[47] show that two DAGs assert the same set of (in-)dependence assumptions among

the variables for a mixture of observational and ideal interventional data if and only if

they are equivalent, that is have the same skeleton and the same set of v-structures, and

additionaly the same set of parents for each domain variable which was manipulated in

at least one observation. The resulting equivalence classes are referred to as transition-

sequence equivalence or TS equivalence classes. Two DAGs that assert the same set of

independency assumptions among the variables for a mixture of observational and ideal

interventional data are said to be TS-equivalent.

All edges being connected with an intervened node become automatically directed in

the CPDAG representation, if the concept of TS equivalence is used. As a consequence

new v-structures come into being and further edges not entering or leaving an intervened

node become directed too. Thus, usually much more information about causality can

be gained from interventional data. The algorithms of [9] that can be used to convert

DAGs to CPDAGs and vice versa, if the usual concept of equivalence is used, can be
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easily adapted to the concept of TS equivalence. In the original DAG for each node, that

was intervened at least in one observation, two dummy nodes have to be added as parents

of this node. That is for each intervened node two dummy nodes and for both dummy

nodes one directed dummy edge pointing from the dummy node to the intervened node

are added. Subsequently, the new DAG including dummy nodes and directed dummy

edges can be converted into its CPDAG representation, using the algorithm of [9]. Due

to the addition of directed dummy edges new v-structures result, and thus edges of the

original DAG become directed due to the new v-structures. Finally, the deletion of all

dummy nodes and dummy edges from the extracted CPDAG-representation results in

the CPDAG representation of the original DAG without any dummy node in terms of

TS equivalence.

How to obtain the TS equivalence CPDAG for the simple network ‘A → B’, in which

node B was intervened, is illustrated in Figure 3.5. Due to the addition of two dummy

parent nodes D1 and D2 for the intervened node B, the edge from A to B participates in

four v-structures, e.g. (A, B, D1), and so becomes directed. After removing the dummy

components, the edge is left directed. If node B hadn‘t been an intervened one, the

dummy nodes wouldn‘t have been added to the two real domain nodes, and the edge

would have been an undirected one in the CPDAG representation, as there would not

have been any v-structure.

Figure 3.5.: Converting DAGs into CPDAGs for TS equivalence

In analogy the DAG ‘A ← B’ becomes converted to the CPDAG ‘A ← B’ if TS equiva-

lence is applied, as the reversal of the edge would lead to new v-structures, so its direction
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is not reversible either.

3.6. Measures for goodness of performance

Various reverse engineering machine learning methods which can be used to infer the

architecture of biochemical pathways and regulatory networks have been proposed in

the literature. The most important and widely used methods have been described at

the beginning of this chapter. Usually these methods are applied to biological data,

whereby the real regulatory mechanisms are unknown. So, they can be used to generate

new hypotheses about biological phenomena, which either can be confirmed by the

information in biological data bases or traditional molecular biology experiments, or

otherwise must be seen with caution. Although the statistical model behind the machine

learning method may find relations that are supported by the available exprseeion data,

there is no guarantee whether these findings represent real biological relationships or

not. Therefore it is necessary to test the performance of a machine learning method

before applying it to real biological expression data, where the regulatory relationships

are unknown. Such a performance test can be done by generating data from a known

synthetic network and searching with the machine learning method for the relationships

in the data. Different methods of generating synthetic regulatory network data are

described in Section 3.7. Afterwards, the findings can be compared with the relations

in the known true network topology (graph), and the ‘gooddness’ of the method‘s

performance can be evaluated. Alternatively, the findings derived from real biological

data can be compared with a biologically accepted ‘true gold standard network (graph)’,

that is a regulatory network that can be considered as a reliable one with respect to the

molecular biological ‘up-to-date’ knowledge.

This section deals with the concept of ROC curves and AUROC values that can

be used to evaluate the ranking quality of machine learning methods. In the context

of graphical models each possible edge of the domain obtains a confidence-score, e.g. a
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A → B A ← B A—B A B

TP 1 1 1 0

UGE FP 0 0 0 0

TN 0 0 0 0

FN 0 0 0 1

TP 1 0 1 0

DGE FP 0 1 1 0

TN 1 0 0 1

FN 0 1 0 1

Table 3.2.: Comparison between the undirected graph evaluation (UGE) and the directed graph eval-

uation (DGE) for a true directed edge from node A to node B: A → B. The top row shows

the learnt edges. TP stands for true positive count, FP stands for false positive count, TN

stands for true negative count, and FN stands for false negative count.

posterior probability, that indicates the confidence of its presence given the model and

the data. So, all possible edges can be ranked with respect to their confidence-scores.

ROC curves visualise the distribution of the true edges within this ranking in terms

of sensitivity and specificity, so that the performance can be visually evaluated. More

precisely, ROC curves visualise which fraction of the true edges can be found if accepting

different fractions of false edge findings. AUROC values, which can be computed from

such ROC curves, summarise the ‘goodness of ranking’ in integer values. The concept

of ROC curves and AUROC values was originally introduced in signal detection theory

(see [13]), and was first applied in the context of learning graphical models by [26].

In analogy to the theoretical graphical models presented at the beginning of this chapter,

it is assumed that the true regulatory network Gtrue (or at least a gold standard network)

for a set of n domain variables X1, ..., Xn is given. The true network is a graph which

consists of directed edges information eij (i, j ∈ {1, ..., n}). eij indicates a directed

edge pointing from domain node Xi to node Xj , and eij = 1 means that this edge is

present, while eij = 0 means that there is no edge from Xi to Xj in Gtrue. Inference

methods usually ouput confidence-scores instead. That is for each directed edge eik

a confidence score ψ(eik), such that the confidence increases with increasing values of
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ψ(eik), is outputed. Using a cut-point for the outputed confidence-scores the inference

method‘s output can be discretised into a graph G, where each edge is either present or

absent. As the inference method applied to learning Gtrue are based on different models,

this discretisation may lead to an undirected, a directed, or a partially directed graph

G.

To assess the performance of the learning method in terms of ROC curves, two different

criteria can be applied. The first approach, referred to as the undirected graph evaluation

(UGE), discards the information about the edge directions altogether. To this end, Gtrue

is replaced by its skeleton, where the skeleton of a general graph is defined as the graph in

which two nodes are connected by an undirected edge whenever these nodes are connected

by any type of edge in the original graph. More precisely, each directed edge information

eik is simply replaced by the undirected edge information e⋆
ik = max {eik, eki} ∈ {0, 1}.

The methods based on undirected edges, such as Relevance networks and Gaussian

graphical models, output confidence-scores for undirected edges only. That is each pair

of confidence-scores (ψ(eik), ψ(eki)) with ψ(eik) = ψ(eki) can be directly compared with

the corresponding undirected edge information pair (e⋆
ik, e

⋆
ki). For Bayesian networks,

which are based on directed eges, the posterior probabilities of the symmetric undirected-

edge-relation-features can be used to build pairs of confidence-scores for the UGE criteria.

The second approach, referred to as the directed graph evaluation (DGE), compares the

learnt graph G with the original graph Gtrue. Thereby for the Relevance networks and the

Gaussian graphical models a learnt undirected edge (ψ(eik),ψ(eki)) with ψ(eik) = ψ(eki)

is interpreted as a superposition of two directed edges, pointing in opposite directions.

That is ψ(eik) is compared with eik and ψ(eki) is compared with eki at the same time.

Consequently, even if there is an edge between Xi and Xk in Gtrue, there is always a

false positive finding, as eik 6= eki . For Bayesian networks, which are based on directed

eges, the posterior probabilities of the individual-edge-relation-features can be used as

confidence-scores ψ(eik). A comparison of the two scoring schemes is shown in Tables 3.2

and 3.3.

What follows is the exact mathematical description of ROC curves and AUROC values.
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A → B A ← B A—B A B

TP 0 0 0 0

UGE FP 0 0 0 0

TN 0 0 0 1

FN 1 1 1 0

TP 0 0 0 0

DGE FP 1 1 0 0

TN 1 1 0 2

FN 0 0 2 0

Table 3.3.: Comparison between the undirected graph evaluation (UGE) and the directed graph eval-

uation (DGE) if there is no connecting edge between node A and node B in the true graph:

‘A B’. The top row shows the learnt edges. TP stands for true positive count, FP stands

for false positive count, TN stands for true negative count, and FN stands for false negative

count.

This methodology can be used for both criteria: for the UGE as well as for the DGE

scheme.
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Figure 3.6.: Example of ROC curves

As mentioned above eik denotes an directed edge from node Xi to node Xk and the infer-

ence method outputs a confidence-score ψ(eik) for each edge. Let ǫ(θ) = {eik|ψ(eik) > θ}
denote the set of all edges whose confidence-scores exceed a given confidence-threshold

θ. For a given threshold θ the number of true positive (TP), false positive (FP),

and false negative (FN) edge findings can be counted, and the true positive rate
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TPR = TP/(TP + FN) and the false positive rate FPR = FP/(TN + FP ) can be

computed. The true positive rate TPR is also referred to as sensitivity, and the false

positive rate FPR is also referred to as inverse specificity.

But rather than selecting an arbitrary value for the threshold θ, this procedure can be

repeated for several values of θ and the ensuing TPR scores can be plotted against the

corresponding FPR scores. This gives the receiver operator charcteristic (ROC) curves.

Loosely speaking, such ROC curves show which rate of erroneously learnt edges (FPR)

must be accepted to obtain a desired recovery rate of true positive edges (TPR). As

an example, the ROC curves of two different methods for learning the relationships in

a domain are given in Figure 3.6. The thin diagonal dashed line is a reference line. It

corresponds to a ‘virtual’ learning method that asserts the same confidence-score to all

possible edges. Consequently, it either outputs that no edge is present at all (TPR=0

and FPR=0) or it outputs that all edges are present (TPR=1 and FPR=1). And there

are no further grades in between. Alternatively, the ‘virtual’ method can be interpreted

as a ‘random’ predictor method which assigns random confidence-scores to the edges.

From this point of view the diagonal dashed ROC curve can be interpreted as the

expected ROC curve for such a random method. The dashed thick line corresponds

to a ‘bad’ learning method as the TPR (sensitivity) is lower than the FPR (inverse

specificity). The thick solid line corresponds to a ‘good’ learning method as the TPR

rates are higher than the FPR rates for all thresholds. Especially, for the same FPR

rate (x-axis)the ‘good’ method recovers more true edges than the ‘bad’ method and the

‘random’ method.

Different AUROC values can be computed from such ROC curves. Firstly, it is often

useful to compute the complete area under the ROC curve (AUROC1), where larger

values indicate better performances. However, the right change of the inverse specificity

(FPR) is usually of no practical interest as the number of false positive (FP) counts, in

absolute terms, would be unreasonably high. For this reason it is sometimes better to
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AUROC-UGE Area under the whole ROC curve, obtained from undirected

edges

AUROCǫ-UGE Area under the left part of the ROC curve with FPR<ǫ,

obtained from undirected edges

AUROC-DGE Area under the whole ROC curve, obtained from directed

edges

AUROCǫ-DGE Area under the left part of the ROC curve with FPR<ǫ,

obtained from directed edges

Table 3.4.: Figures of merit for evaluating the performance of a method.

compute the area under the ROC curve up to a small, pre-specified upper limit on the

FPR: FPR < ǫ. This yields the AUROCǫ score. For example, ǫ = 0.1, corresponds to an

upper bound on the false positive rate (FPR) of 10 percent. In the end, this leads to four

different ‘figures of merit’ for assessing the performance of a machine learning inference

method, which are summarised in Table 3.4. However, in the comparative evaluation

study (see Chapter 5) the performances of the different machine learning methods will

be mainly measured in terms of AUROC1 values (representing the complete areas under

the ROC curves), as the specified threshold ǫ = 0.1 is arbitrarily selected, and so may

distort the results in favour of some machine learning methods.

The computation of the area under the ROC curve can be done by numerical integration,

e.g. the trapezodial method. Using trapezoidal numerical integration for the ROC curves

in Figure 3.6 the ‘bad’ method obtains the value: AUROC1 = 0.397, and the ‘good’

method obtains the value AUROC1=0.741. The reference line leads to the reference

value AUROC1 =0.5. So, these AUROC values reveal that the ‘good’ method clearly

outperforms the ‘bad’ and the ‘random’ learning method.

3.7. Generating synthetic network data

In this subsection two methods of generating data from a synthetic regulatory network

are presented. As before, it is assumed that a domain with n variables X1, ..., Xn is
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given, and that the ‘qualitative structure’ of the true regulatory network for the domain

is known. In this context ‘qualitative structure’ means that only the complete directed

edge information eij (i, j ∈ {1, ..., n}) is known, while the exact relationships (regulatory

mechanisms) are unknown. That is, eij indicates a directed edge pointing from domain

node Xi to node Xj , and it is known, whether this edge is present (eij = 1) or not

(eij = 0). Furthermore, it is assumed that the edge information belongs to a DAG, that

is a directed acyclic graph. Given this qualitative information (the DAG) of the network,

the regulatory mechanisms can be implemented as a Bayesian network with Gaussian

scoring metric (BGe) (see Subsection 3.7.1) or as a steady-state-approximation to a sys-

tem of coupled differential equations (see Subsection 3.7.2). Although the former method

of generating data is surely less biologically realistic, it is useful to include such data,

as they can be learnt much more easily than data sets generated with more complicated

methods. Furthermore, it is assumed that at most three edges can point on the same

domain node, that is for each node Xi the cardinality of the set {Xi|eij = 1} is restricted

to a so called fan-in of size three.

Especially in Netbuilder, the noise level was specified in terms of ‘dynamic’ noise in-

stead of adding some ‘observational’ (‘experimental’) noise (in the sense of erroneous or

improper expression measurements) after having generated the data. That is, the reali-

sations of each domain node X having k parent nodes P1,...,Pk is the sum of the ‘signals’

transmitted from these parent nodes in form of a functional relationship: f(P1,...,Pk)

and some additional random noise ǫ. Afterwards X transmits its realisation of the form

f(P1,...,Pk)+ǫ to its child nodes. As mentioned before, alternatively, it could have been

specified that X transmits exclusively its deterministc part f(P1,...,Pk) (without the noise

variable ǫ) to its child nodes. Then ǫ could be interpreted as subsequently added ‘obser-

vational’ noise. But as such noise weakens direct as well as indirect associations between

the domain variables in equal measure, it was decided to use ‘dynamic’ noise instead.

Different levels of noise were specified in the Netbuilder data generator, while in the

Gaussian data generator no different noise levels were distinguished.
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3.7.1. Bayesian network data generator

Within the Bayesian network data generator non-interventional observations for each

domain node can be sampled from the following univariate Gaussian distributions:

Xi ∼ N(
n∑

j=1

bij(xj − µj), σ
2
i ) (3.44)

Thereby xj represents the value of the j-th domain variable Xj . All variances σ2
i are

set to 0.01, and the regression coefficients bij are independently sampled from uniform

distributions over the intervals [−2,−0.5] ∪ [0.5, 2] if there is an edge pointing from

node Xj to node Xi (eji = 1). Otherwise, that is if there is no edge from Xj to Xi

(eji = 0), the corresponding regression coefficients are set equal to zero. It follows from

Formula (3.44) that the means E[Xj ] = µj of all variables are 0. From a statistical

point of view, after having sampled the regression coefficients, the Gaussian distribution

of domain variable Xi in Formula (3.44) can be interpreted as the following conditional

distribution: P (Xi| {Xj = xj |j ∈ {1, ..., n} : eji = 1}). Subsequently, observations can

be sampled from these distributions.

But if the distribution of a variable Xi depends on the realisations of other nodes, that

is if the set {Xj : eji = 1} is non-empty, the realisations of those other domain variables

have to be sampled in advance. But as the ‘qualitative structure’ of the network is

assumed to be a DAG, that is a directed graph without any cycles, a simple recursive

algorithm can be used to sample observations for the parents of each node beforehand.

Mathematically more precisely, the nodes have to be sorted topologically first, so that

a node ordering Xσ(1), ..., Xσ(n) results, in which every node exceeds ist parents nodes

(see [9])). Afterwards the observations of the variables can be sampled with respect to

the topological ordering.

Intervened observations can be sampled as follows: The values of inhibited (down-

regulated) variables are sampled from a Gaussian N(0|0.01) distribution and the val-
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ues for activated (up-regulated) variables are sampled from the Gaussian distribution

of Xi conditional on the set {Xi < q0.025 ∨ Xi > q0.975}, whereby qα represents the α

-quantile of Xi‘s unconditional distribution. Thereby, the parameters of the uncondi-

tional Gaussian distribution of Xi can be computed from the sampled regression coef-

ficients bij and variance-parameters σ2
i = 0.01 of the conditional distributions in For-

mula (3.44) using the recursive transformation algorithm presented at the beginning of

Subsection 3.5.2.2. In the notation intoduced in Subsection 3.5.2.2 the unconditional

Gaussian distribution of domain variable Xi is N(0, Σi,i). Whereby Σi,i = (W−1)i,i is

the i-th diagonal element of the covariance matrix, which in turn is the i-th diagonal

element of the inverse of the precison matrix W . See Subsection 3.5.2.2 for further

details.

Sampling from a N(0|0.01) can be interpreted as sampling a ‘weak’ expression (signal),

while sampling from the conditional P (Xi|Xi < q0.025 ∨ Xi > q0.975) leads to signals

that are ‘stronger’ than 95 percent of the pure observational signals of the unconditional

distribution of Xi. Especially, for intervened observations of Xi the values are sampled

independently from the realisations of the set {Xj |eji = 1}. That is, although the values

of intervened observations may influence the realisations of other domain variables, if

there are edges pointing away from them, they themselves do not depend on any other

node, even if there are edges pointing on them.

Finally, the Bayesian network data generator can be modified, so that non-linear and

interacting regulations can be modelled. This can be done by simply adding some non-

linear regression terms to Formula (3.44). For variables without parents nothing changes,

for variables with one or three parents Formula (3.44) is replaced by:

Xi ∼ N(
n∑

j=1

(1 − p) · bij(xj − µj) +
n∑

j=1

p · (−1) · bij · |xj − µj |, σ2
i ), (3.45)

And for variables with two parents both coefficients bij 6= 0 are forced to have the same

sign.
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Afterwards Formula (3.44) can be replaced for:

Xi ∼ N(

n∑

j=1

(1 − p) · bij(xj − µj) + p · (−1)
∑

j 6=k

f(bij , bik, xj , xk), σ
2
i ), (3.46)

whereby

f(bij , bik, xj , xk) = I{bij ·bik>0}

√
|xj − µj | ·

√
|xk − µk| · sign((xj −µj) · (xk −µk)) (3.47)

In Formula (3.45) and Formula (3.46) the user defined parameter p ∈ [0, 1] represents

the strength of the non-linearity. For p = 0 there is no non-linearity and for p = 1

there is exclusively non-linear-regulation. The non-linearity is obtained by adding either

squareroot or absolut value terms. These terms have to be used instead of the more

‘usual’ quadratic and product terms, because the latter ones do not lead to values that

are comparable to the values of the linear effects. I{.} is the indicator function. Due

to the non-linear terms holds that for p > 0 the means µj of all variables with parents

become unequal to zero. So, they must be computed numerically in advance. But instead

of computing these means they can also be estimated by the sample mean of some million

observations generated independently for each variable. But here again, if a variable Xi

depends on the realisations of other nodes, that is if the set {Xj : eji = 1} is non-empty,

the realisations (means) of those variables have to be sampled (estimated) in advance.

The following algorithm can be used:

Procedure for estimating the theoretical means:

1. Sort the domain nodes topologically with respect to the given DAG, that is find

an ordering Xσ(1), ..., Xσ(n) of the domain nodes, in which each node exceeds its

parent nodes. Thereby σ is a permutation of the set {1, ..., n}. An algorithm for

sorting the nodes of a DAG topologically is given in [9].

2. Define a vector V of length n, in which the estimated means can be stored, and

define a (n, M)-matrix X, in which the M realisations for each of the n domain
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variables can be stored.

Initialise both the vector V and the matrix M with zero entries.

• For i=1,...,n:

Sample M realisations of variable Xσ(i). Thereby it depends on the cardi-

nality of the set
{
Xσ(i) : ejσ(i) = 1

}
, whether the Gaussian distribution in

Formula (3.44), (3.45), or (3.46) must be used for sampling. However, in the

corresponding formula replace for j = 1, ..., n the mean µj by the j-th entry

of the vector V .

– Then, for k=1,...,M:

Replace the observation xj by the (j,k)-th element of X in the formula,

and sample a value x for variable Xσ(i) from the resulted distribution.

Store the sampled value x as (σ(i),k)-th entry of matrix X.

• Compute the empirical mean of the σ(i)-th row of X, and store it as the

σ(i)-th entry of the vector V .

3. Output the vector V and output the matrix X. The j-th element of V is an

estimation of the parameter µj .

If the estimations in vector V are based on a very high number of sampled observations

M , e.g. M=10 million, the estimations become good enough, so that the unknown

true parameters µj can be replaced by these estimations. Afterwards, a synthetic data

set can be generated using the conditional Gaussian distributions in Formulae (3.44),

(3.45), and (3.46).

As for p > 0 different non-linear terms are added to the original equation, the

joint distribution of the variables P (X1, ..., Xn) as well as the unconditional distribu-

tions P (Xi) are no longer Gaussian distributions. Only the conditional distributions

P (Xi| {Xj = xj |eji = 1}) are still Gaussian. Consequently, for p > 0 intervened obser-
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vations can not be sampled as described above. But such observations can be generated

using the following procedure instead:

Procedure for sampling interventional non-linear data:

1. Input the vector V and the matrix X which were outputed from the procedure for

estimating the theoretical means (see above).

2. For each domain variable Xi use the i-th entry of V as an estimation of its mean

µi = E[Xi] as before, and compute the empirical 0.025-quantil q0.025 and the

empirical 0.975-quantil q0.975 of the set {Xi,1, ..., Xi,M}, that is the i-th row of X.

3. Sample inhibited observations of Xi from the distribution N(V (i), 0.01), and

activated observations from a discrete uniform distribution over the set:

{x ∈ {Xi,1, ..., Xi,M} |x < q0.025 ∨ x > q0.975}.

This procedure guarantees that the signals of inhibited observations become very weak,

as they are sampled from a Gaussian distribution around the estimated mean µ̂i =

V (i). And as it can be seen from the Formulae (3.44), (3.45), and (3.46), the signals

‘transmitted’ to other nodes are always given by the deviations between the realisation

xi and the mean µi, which was replaced by the estimation V (i). Hence the transmitted

signal of inhibited observations xi − V (i) has zero mean and variance 0.01. The signals

of activated nodes become strong, as they are sampled from a set of observations that

are ‘stronger’ than 95 percent of the pure observational signals in average.

3.7.2. Netbuilder data generator

As a second synthetic data generator the software package Netbuilder (see [52, 53]) can

be used. It can be assumed that the data sets generated with Netbuilder are much more

biologically realistic than the data sets from the Gaussian network generator. Net-

builder is an interactive graphical tool for representing and simulating genetic regulatory

networks in multicellular organisms. It models the co-regulation between interacting
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genes with the sigma-pi calculus which corresponds to a steady-state-approximation to

the system of coupled differential equations. In this approach genes are modelled as

sigma-pi units, which were introduced by [40] as nodes in higher order neural networks

to avoid linear separability constraints associated with first-order neural networks.

Boolean functions and logic gates can be expressed in a sigma-pi formalism, and their

input and output are not restricted to boolean values. Sigma-pi units are combinatorial,

so simpler units connected can lead to a very complex module.

So far gene regulatory processes and systems have usually been modelled with a

chemical kinetic approach based on enzyme-substrate intercation, that is a detailed

mathematical description of the individual chemical reactions that form a biochemical

pathway. See B. Appendix II for some more details. But as the number of parameters

necessary to specify such systems is extremely large, it is useful to simplify these models

while maintaining their main characteristics.

Ignoring time delays inherent in transcription and translation the system can be

modelled with a set of coupled ordinary differential equations (ODEs). Assuming a

steady state of this sytem, it is possible to derive a set of equations that describe the

concentration of products as non-linear functions of combination of substrates. The

resulting equations are a combination of multiplications and sums of sigmoidals. So

instead of solving the steady-state approximation to ODEs explicitly, it is possible to

model the system using the sigma-pi-formalism. This approach, which can be applied

using the software package Netbuilder, simplifies the modelling task by avoiding the

need for an explicit solution of the system of ODEe, but maintains the qualitative

behaviour of the system of interacting components.

In addition to standard continuous AND and OR regulation mechanisms (ports)

implemented in Netbuilder, which correspond to purly cooperative and inhibitory gene

interactions, continuous XOR ports can be constructed. This allows to model mixed

cooperative-inhibitory interactions, and increases the amount of non-linearity in the

interaction patterns. The parameters corresponding to these interactions can be chosen

at random. Besides the intrinsic difficulty in obtaining ‘realistic’ parameters, it can be
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stressed that the objective is not to mimic some particular experimental signal, but

rather to generate signals that are typical of a given topology. The difficulty in learning

the networks from the generated data in this way can be increased by adding some

(additive) observational noise, for which different signal-to-noise ratios (SNR) can be

used. For further details on the package Netbuilder and the sigma-pi-formalism see

[52, 53].

Netbuilder is a very flexible software tool which offers a lot of different options for

generating semi-realistic gene expression data, so that due to space limitations only the

functional relationships which were actually used for generating data for the comparative

evaluation study (see Section 5), are presented here:

The realisations of domain nodes which have no parent variables are simply sampled from

independent uniform distributions over the interval [0,1]. The realisations of domain

nodes X having parent nodes Pi, whereby in analogy to the definition for Bayesian

networks each node from which an edge points to X is a parent node of X, depend on

the realisations pi of these parent nodes Pi as well as on an additive noise variable ǫ

having a Gaussian distribution with mean zero and variance σ2. Thereby in most cases

three different noise levels were distinguished: weak noise (σ = 0.01), medium noise

(σ = 0.1), and strong noise (σ = 0.3). Using the following simple auxiliary function:

f(x) =






0, x < 0

x, x ∈ [0, 1]

1, x > 1






there is the following functional relationship between the parent nodes Pi and X:

If there is only one parent node P with realisation p, by default Netbuilder sets the

corresponding realisation x of X simply to: x = f( p
p+1 + ǫ). For parent sets of higher

cardinalities Netbuilder was in most cases configured, so that there are OR-regulation
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ports. For two parents P1 and P2 being realised as p1 and p2, such an OR-port leads to

the following functional relationship:

x = f(OR(p1, p2) + ǫ) = f
(

p1

p1+1 + p2

p2+1 ×
(
1 − p1

p1+1

)
+ ǫ

)
.

For more than two parents the realisation x of X is obtained by successive usage of

such OR-ports. For example if X has three parents Pi with realisations pi (i=1,2,3),

then the realisation x can be computed as follows: x = f(OR(OR(p1, p2), p3) + ǫ) what

in turn leads to:

x = f(p1 + p2 + p3 − p1p2 − p1p3 − p2p3 + p1p2p3 + ǫ).

Without giving the formula explicitly for three parent variables Pi with realisations pi

(i=1,...,4) the realisation x is given by x = f(OR(OR(OR(p1, p2), p3), p4) + ǫ), etc.

Moreover, it was decided to generate interventional data by setting the realisations x of

an intervened node X (independently of all other domain nodes) either to x = f(1 + ǫI)

if the intervention is an activation (up-regulation), or to x = f(ǫI) if the intervention is

an inhibition (down-regulation). For intervened observations the noise variable ǫI was

set to a N(0, 0.012) Gaussian distribution. That is the variance of this noise variable ǫI

is independent of the variances (standard deviations) choosen for the noise variables ǫ

of the other domain variables (σ=0.01, σ=0.1, and σ=0.3).

Alternatively, AND ports can be used in Netbuilder. AND ports are defined as follows:

x = f(AND(p1, p2) + ǫ) = f
(

p1

p1+1 × p2

p2+1 + ǫ
)

.

And in analogy to the OR ports described above, for more than two parents the

realisation x of X can then be obtained by successive usage of such AND-ports. For
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example if X has three parents Pi with realisations pi (i=1,2,3), then the realisation x

using AND ports can be computed as follows: x = f(AND(AND(p1, p2), p3) + ǫ) what

leads to:

x = f( p1

p1+1 × p2

p2+1 × p3

p3+1 + ǫ).

Furthermore, for target nodes having exactly two parent nodes, AND and OR regulation

ports can be combined to obtain so called XOR regulation ports. For a variable X having

two parent nodes P1 and P2 with realisations p1 and p2 its realisation x given such an

XOR port can be computed as follows:

x = f(XOR(p1, p2) + ǫ) = f(AND (OR(1 − p1, p2), OR(p1, 1 − p2)) + ǫ)

Table 3.5 gives an overview to which realisations the three different types of Netbuilder

regulation ports lead. Thereby it is assumed that the target node has two parent nodes

P1 and P2 with different realisations p1 and p2. It can be seen that especially the XOR

regulation port yields a non-linear relationship between the nodes P1 and P2 and their

target node.

P1 and P2 OR(P1, P2) AND(P1, P2) XOR(P1, P2)

p1 = 0 and p2 = 0 0 0 0.25

p1 = 0 and p2 = 1 0.5 0 0

p1 = 1 and p2 = 0 0.5 0 0

p1 = 1 and p2 = 1 0.75 1 0.25

Table 3.5.: Realisations of a child node given different values of its two parent nodes P1 and P2 for the

three regulation ports implemented in the Netbuilder software. Normally, some noise ǫ is

added to these realisations.
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In this chapter the utility of the Bayesian network methodology presented in Section 3.5

for modelling gene regulatory networks is demonstrated. Within the scope of a cooper-

ation with the ‘Bioinformatics - Genomic Group’ of the company Boehringer Ingelheim

Pharma GmbH Co. KG the gene expression measurements of the mRNA levels of 200

genes in healthy human kidney cells were made available for analysing them with a

Bayesian network approach. Due to a foregoing data exploration these genes appeared

to be the most relevant ones for the pathogenesis of the human kidney cell carcinoma.

4.1. Data description and background

Originally, the ‘Bioinformatics - Genomic Group’ of the company Boehringer Ingelheim

Pharma GmbH Co. KG measured the expression levels of 22,283 genes in 60 healthy and

15 carcinoma-diseased human kidney cells. These human kidney cells were taken from

the kidney tissues of 75 different human individuals, whereby 60 individuals had no kid-

ney disease while 15 individuals suffered from a kidney-cell-carcinoma. The purpose of

their data collection was to identify the most significantly differentially expressed genes

in healthy and carcinoma-diseased cells as well as to identify the interacting genes.

Consulting the results of a precedent analysis by [28], the 200 genes which appeared to

be the most significantly differentially expressed ones in healthy and carcinoma-diseased

cells, were selected for a further analysis. The objective of interest of this continuative

analysis was to identify the interactions between these 200 genes under healthy condi-

tions. Consequently, an independent gene expression profile sample of size 60 taken from
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healthy probands was available for the analysis. For each sample profile the measure-

ments of the expression levels of those 200 genes, which due to the precedent analysis

are supposed to play a key role in the pathogenesis of the kidney cell carcinoma, were

available for modelling a Bayesian network. There were no missing values in the obser-

vational data set consisting of 200 rows and 60 columns, one row for each gene and one

column for each measurement.

4.2. Data preparation

According to the orders of the company that had collected the data, it was decided

to analyse the data set using the discrete Bayesian network model in combination with

Structure-MCMC sampling scheme. Thus the data set had to be discretised first. For the

discretisation the Information bottleneck algorithm was used. More precisely, in a first

step standard quantile discretisation was used to obtain 20 different discrete expression

levels per gene. (Each level of each gene containing exactly three observations apiece.)

Subsequently, the quantile discretised data set was used to initialise the Information

bottleneck algorithm. Through the application of this information preserving algorithm

the data were finally discretised to have three different discrete levels for each gene:

under-expressed (-1), normally expressed (0), and over-expressed (+1).

4.3. Implementation and parameter settings

For reducing the computational costs of a Structure-MCMC Bayesian network simula-

tion on a network domain with 200 variables, the (maximal) fan-in was set equal to

three. Furthermore it was decided to consider reversals of non-compelled edges as in-

valid, to speed up the convergence a little bit. The total prior precision of the discrete

multinomial Bayesian network model was set to one what renders the distribution of the

prior parameters uninformative, because this choice can be interpreted as a ratio of one

pseudo-count to sixty real counts (observations). The graph prior was set to an uniform
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distribution over DAGs. To assert convergence of the simulations, it was decided to per-

form three independent Strcuture-MCMC runs over the domain, each run with a burn-in

length of 20 million simulations. Afterwards, the next 80 million DAGs of each MCMC

run were sampled. Since no biological prior-knowledge was available, it was decided to

initialise the first run with an empty DAG without any edges, while the other two MCMC

runs were initialised with two randomly selected DAGs. Using the self-written Matlab

software, some weeks of computation time was needed for performing these three MCMC

simulations. For each independent MCMC run trace-plot diagnostics along it gave an

indication for convergence. But plotting the relation-feature confidences of different runs

against each other as well as computing correlation coefficients revealed that the MCMC

runs had led into different regions of the posterior-probabilities, such as local maxima.

The Pearson correlation coefficients for the confidences of the Markov-relation-features

can be found in Table 4.1. Although these coefficients are insufficiently low, it could be

seen from discrete frequency-tables, that at least a certain convergence was given. Espe-

cially about 150 Markov-relation-features obtained high confidences in all three MCMC

runs. So, it was decided to use the means of the Markov- and Order-relation-feature con-

fidences, that were estimated for the three independent runs, to extract sub-networks.

Using the means of all three independent runs, it could be ensured that in the end only

those relation-features obtained a high confidence which were attached importance in all

three ‘regions’ of the posterior probability.

1st run 2nd run 3rd run

1st run 1.000 0.623 0.618

2nd run 0.623 1.000 0.656

3rd run 0.618 0.656 1.000

Table 4.1.: Correlation coefficients between confidences of Markov-releation-features for the three in-

dependent MCMC runs
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4.4. Results

Using the means of the confidences of the three independent Structure-MCMC runs the

algorithm of [14] was used (see A. Appendix I) to extract sub-graphs. The algorithm

was initialised by several different triplets of nodes being pairwise in Markov-feature-

relation of confidence higher than tM = 0.75. Subsequently, that is during the algorithm,

confidences lower than tF = 0.5 were set to zero, so that exclusively undirected edges

corresponding to a Markov-relation-feature with a confidence higher than 0.5 could be

included into the sub-graphs. Afterwards a direction was given to some of the undirected

edges using the following heuristic rule. Each undirected edge ‘X—Y ’ in an extracted

sub-graph is supposed to point from node X to node Y if and only if the corresponding

Order-relation-feature confidence F⊲(X, Y ) exceeds 75 percent of the Markov-relation-

feature confidence FM (X, Y ) = FM (Y, X). In the end, 14 sub-graphs could be extracted

which can be found in [21], whereby in the technical report the pseudo-names X1, ..., X200

had to be used instead of the real gene names, because the data set was made available

for a confidential analysis only. Within this doctoral thesis only one example using the

real gene names can be given (see Figure 4.1). The edge between the genes ‘VRK2’ and

‘KIAA0779’ has a Markov-relation-feature confidence of 0.6731 only. All other edges

between the genes correspond to Markov-relation-features with confidences higher than

0.75. A direction was given to those edge-connections where a high Order-relation-feature

confidence was given as explained above.

4.5. Conclusions

Although it is possible to interpret such sub-graphs from a statistical point of view, there

is no possibility to confirm the extracted hypotheses about the regulatory mechanisms

statistically. This is due to the fact that there is a difference between statistical and

biological explanations. A low statistical confidence for a feature does not mean that

it does not exist, but rather that the data set does not support it. On the other hand,
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Figure 4.1.: Example of an extracted sub-network from the kidney cell expression data

a feature of high confidence might be a false positive one, that is a feature supported

by the data by chance without having any biological reason. But nonetheless it is

assumable - at least if the sub-graphs are biologically plausible, that is if there is no

biological contradiction against the extracted mechanisms - that such findings provide

some useful references for biologists, as they can focus their attention on them. The

outputed regulatory mechanisms can be seen as extracted hypotheses which may be

confirmed either by traditional molecular biology experiments or by the collection of

further expression data for the involved genes in the sub-graphs.

4.6. Discussion

Due to time limitations of the project it was impossible to perform further Structure-

MCMC runs on the kidney cell expression data. So, the project had to be finished,

although the question, whether already a sufficient degree of convergence to the posterior

probability was given, could not be answered adequately. Running Order-MCMC instead

of Structure-MCMC simulations was impossible, as the latter one had been too time

consuming for a domain with n = 200 nodes. Discrete multinomial Bayesian networks

were prefered to continuous Gaussian Bayesian networks because the gene expression
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measurements in the data set seemed to be very noisy. As it is known in Statistics

that data discretisation yields a certain robustness against erroneous measurements, the

discrete multinomial model was thought to be more useful. The application of other

network models, such as Gaussian graphical models and Relevanve networks, was not

wanted by the ‘Bioinformatics - Genomic Group’ of the company Boehringer Ingelheim

Pharma GmbH Co. KG.

The stochastic details and the results of this gene expression data analysis were presented

as a talk at the workshop ‘Complex stochastic systems in Biology and Medicine’ in

Munich on 7.10.2004 and as a poster presentation at the ‘Workshop on Statistics in

Genomics and Proteomics’ in Lisbon on 6.10.2005.

88



5. Comparative evaluation

5.1. Motivation of research

For inferring the architecture of biochemical pathways and regulatory networks from

high-throughput postgenomic data various reverse engineering methods have been

proposed in the literature. The most important machine learning methods among them

have been described in detail in Chapter 3. But although it is important to understand

their relative merits and shortcomings, no satisfactory cross-method comparisons

between these different machine learning approaches can be found in the literature.

Most of the evaluation studies that have been performed to assess the accuracy of

reverse engineering, such as [54], [44] or [26], have investigated one particular inference

method only.

In order to adress this shortcoming, an extensive evaluation study was carried

out by [39]. The author compared Gaussian graphical models (GGMs) and Bayesian

networks (BNs) on synthetic data generated from networks with random structures

and different gene regulation mechanisms, where the latter differed with respect to the

cooperative or competitive interactions between transcription factors regulating the

same gene.

The comparative study presented in this Chapter is motivated by and based on

the ideas of [39], but improves this earlier work in some important aspects, so that

more understanding for this problem is established. In detail, thought has been given
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to the following seven aspects to strengthen and upgrade the explanatory power of such

a cross-method comparison:

1. Realistic network architecture

Instead of considering random network structures, the structure of the well-

investigated cytometric network is used as the true network, so that a topology

which is biologically realistic and relevant is taken for granted. It has been decided

to use the cytometric network, as for this signalling network real biological ex-

pression data are freely available and the real causal relationships are known from

biological experiments (see [41]), so that a gold-standard network topology for the

data is given.

2. Methodical improvement (BNs)

The learning algorithm for Bayesian networks (BNs) has been improved. In order

to capture uncertainty inherent in learning from sparse and noisy data, directed

acyclic graphs (DAGs) have been sampled from the posterior distribution with

Markov Chain Monte Carlo (MCMC) simulations. Such MCMC approaches are

methodologically much more consistent than the optimization scheme applied in

[39]. Especially, all four combinations of sampling scheme (Structure-MCMC and

Order-MCMC) and Bayesian network model (discrete multinomial and continuous

Gaussian) have been distinguished during the screening phase of the evaluation

study.

3. Methodical improvement (GGMs)

The inference for Gaussian graphical models (GGMs) has also been improved.

The approach adopted by [39] is based on the PC algorithm of [45] only. In the

present study, more recent algorithms for stabilizing the estimate of the inverse

of the covariance matrix have been used, what is important due to intrinsic noise

in postgenomic data. More precisely, it has been distinguished between three

different bagging estimators as well as a novel shrinkage based estimator during

screening.
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4. Inclusion of Relevance networks

A further reverse engineering method has been included in the study: the approach

of Relevance networks proposed by [6], whereby it has always been distinguished

between both Relevance networks based on pairwise mutual information scores and

Relevance networks based on Pearson correlations during the screening phase.

5. Inclusion of real biological data

Not only synthetic data sets, generated using more or less realistic data generators,

have been included, but also real biological data sets have been used. Such real

data sets could be used for the cross-method comparison, as real data for the

cytometric network are freely available and the cytometric network archtitecture

is sufficiently known from lots of molecular biological experiments.

6. Inclusion of interventional data

The reverse engineering methods have not only been compared on observational

but also on interventional data. Thereby especially real interventional data sets,

which are usually rarely available, could be used for the cross-method comparison.

7. A detailed comparative evaluation of the two scoring metric for Bayesian

networks

In addition the two different scoring metrics BGe and BDe for Bayesian net-

works were cross-compared on different test data sets with different degrees of

non-linearity.

5.2. The cytometric network

The cytometric network is a biologically well-known signalling network which describes

the intracellular relationships between different molecules involved in signal transduc-

tion, that is the transmission of signals within living cells. So, the cytometric network

describes a cascade of cellular protein-signalling. From a biological point of view,
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special enzymes (protein kinases) modify other target proteins (substrates) by adding

phosphate groups to them (phosphorylation) what usually leads to a functional change

of the targets, so that further chemical reactions follow in the signalling cascade. As

protein kinases are known to regulate the majority of cellular pathways as well as many

aspects that control cell growth, disregulated kinase activity can lead to diseases, such

as cancer.

Node Name Phosphorylated protein or phospholipid

X1 RAF Raf phosphorylated at position S259

X2 ERK MAPKs Erk1 and Erk2 (extracellular signal-regulated kinases)

phosphorylated at T202 and Y204

X3 P38 MAPKs p38 isoforms phosphorylated at T180 and Y182

X4 JNK Stress-activated protein kinases

phosporylated at T183 and Y185

X5 AKT Protein kinase B (PKB) phosphorylated at S473

X6 MEK Mek1 and Mek2 phosphorylated at S217 and S221

X7 PKA Phosphorylation of protein kinase A substrates

X8 PLC Phosphorylation of phospholipase C-γ (PLCγ) on Y783

X9 PKC Phosphorylation of protein kinase C on S660

X10 PIP2 Phosphatidylinositol 4,5-bisphosphate (PIP2)

X11 PIP3 Phosphatidylinositol 3,4,5-triphosphate (PIP3)

Table 5.1.: The meaning of the abbreviations in the cytometric signalling network shown in

Figure 5.1. Mitogen-Activated-Protein-Kinease is abbreviated by MAPKs.

Measurements of the expression levels of n = 11 different phosporylated proteins and

phospholipid components of the cytometric network were made in thousands of human

immune system cells, and the conventionally accepted interactions between these 11

molecules in human immune system cells (as well as in almost all mammalian cells)

are shown in Figure 5.1. Thereby some intermediating molecules were omitted from
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the graphical presentation, as no measurements for them were available. Furthermore,

some indirect interactions, that is interactions mediated through molecules not shown

in the graph, are represented as if they were direct interactions. All these interactions

in Figure 5.1 are biologically accepted signalling molecule interactions, reported in the

biological literature. See [41] for a literature review. Consequently, the directed acyclic

graph (DAG) which can be derived from the graphical representation, can be regarded

as a gold-standard graph topology for the data. The names of the components of the

cytometric network can be found in Table 5.1

In addition to about 1200 pure observational measurements, that is observations made

under general experimental conditions, the n = 11 molecules in the signalling cascade

were also measured after 9 different molecular interventions. To this end the n = 11

components in the cascade were also profiled 15 minutes after 9 different stimulations

of the network. For each of these molecular interventions more than 600 measurements

were made, whereby an effect on the molecules in the cascade could be observed for 6

of these perturbations only. As from these useful 6 interventions is known that they

predominantely lead to an activation or inhibition of only one single molecule in the

cascade, they can be considered as ideal interventions.

While the pure observational real cytometric measurements could be analysed without

any further data preprocessing, it turned out that the interventional real measurements

could not be used without preprocessing. Because not rarely, there was a clear

discrepancy between expected and observed concentrations for intervened nodes, e.g.

some inhibitions had not led to low concentrations while some activations had not led

to high concentrations. The missing changes in concentrations are not surprising, as

most of the experimental interventions affected the activity of its target instead of its

concentration. Correspondingly, for some intervened nodes the measured concentrations

do not reflect the strength of the true activity of the corresponding node, as for the

pure observational measurements. Therefore, it was decided to replace in each real
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interventional cytometric data set the values of the activated (inhibited) nodes by the

maximal (minimal) concentration of that node measured under observational conditions

(general perturbation of the system). Afterwards, quantile-normalisation was used

to normalise each real interventional data set. That is for each of the 11 variables

(proteins) its m realisations were replaced by quantiles of the standard normal distri-

bution N(0, 1). More precisely, for each of the 11 variables (proteins) its j-th highest

realisation was replaced by the
(

j
m

)
-quantile of the standard normal distribution,

whereby the ranks of identical realisations were averaged. Identical realisation always

occurred in the interventional real data sets, because as described above, in a first

preprocessing step for each interventional realisation the value of the intervened node

was replaced by the lowest (if inhibited) or highest (if activated) value of the values

which were observed for the intervened node under general perturbation in that data set.

A brief summary of the effects of the six molecular interventions on the measured

molecules activities can be found in Table 5.2. The three molecular interventions having

no observable effect on the cascade, were completely discarded from the analysis. More

details on the probe preparations, the exact experimental conditions as well as more

information about the stimulatory agents can be found in [41].

Reagent Effect

AKT-inhibitor inhibits AKT

G06976 inhibits PKC

Psitectorigenin inhibits PIP2

U0126 inhibits MEK

Phorbol Myristate acetate activates PKC

8-bromo Adenosine 3‘,5‘-cyclic Monophosphate activates PKA

Table 5.2.: Effects of the ideal interventions on the cytometric network.
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Figure 5.1.: Architecture of the cytometric signalling network

More information about the nodes can be found in Table 5.1. From a mathematical point

of view, the cytometric network is a directed acyclic graph (DAG) with 11 nodes and 20

directed edges between its nodes.
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5.3. A concrete example

This section gives some insight into the strategy of Bayesian network learning via Markov

Chain Monte Carlo (MCMC) simulations. The corresponding statistical theory can be

found in Section 3.5. Using a concrete data example, it is demonstrated in detail how

convergence can be monitored, and how the final result can be evaluated when the true

network topology is known. Furthermore, it is shown that the applied stochastic model

(BDe or BGe) as well as the applied sampling scheme influence the result. To this end, a

pure observational data set with n = 1000 observations and without any non-linear reg-

ulation was generated using the Bayesian network generator presented in Section 3.7.2,

whereby the true graph was set to the cytometric network with n = 11 nodes. After-

wards the data set was analysed using all four combinations of stochastic model (BGe

and BDe) and MCMC sampling scheme (Structure-MCMC and Order-MCMC). For each

of these combinations some independent MCMC runs were accomplished.

5.3.1. Convergence monitoring

To obtain a first impression of the convergence and mixing of a MCMC simulation,

trace-plot performance monitors can be used. Although such trace-plot diagnostics can

give some useful indications for convergence, they are no sufficient citeria for it. In trace

plots characteristical parameters of equidistant outputs, that is stated of the generated

Markov Chain outputed at equidistant iteration steps, are plotted along the run. When

a Markov Chain outputs directed acyclic graphs (DAGs), it is often useful to consider

trace-plots of their scores and their total number of directed edges. Additionally, trace

plots of the acceptance ratios are often considered. A trace plot of the acceptance ratios

uses the ratio between the number of accepted and rejected proposed candidate DAGs

of the run as characteristical parameter of the MCMC run itself. Thereby the ratios

are computed from the frequencies of acceptances and rejections that occurred until the

current iteration step. For instance, four different trace plots for the first Order-MCMC

run on the data set, whereby the discrete multinomial model (BDe) was used, are shown
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Figure 5.2.: Four trace plots for the first discrete multinomial Order-MCMC run, whereby each 200-th

ordering was sampled, and altogether 100,000 iterations were accomplished. On the y-axis

are plotted top down:

(1) the logarithmic likelihoods of the sampled node orderings,

(2) the logarithmic likelihoods of the DAGs sampled from these orderings,

(3) the number of edges of the sampled DAGs,

(4) and the acceptance ratios of the MCMC run.
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in Figure 5.2.

The trace-plots in Figure 5.2 indicate, that convergence of the Order-MCMC run may

be given. Already after a small number of iterations, the likelihoods of the sampled

orderings as well as the likelihoods of the DAGs sampled from these orderings reach

a ‘plateau’, that is all succeeding likelihoods are of comparable size. The number of

edges of the DAGs sampled along the run fluctuates around 19 right from the start, and

the acceptance-ratios seem to converge too. So, as there is no more change in all these

monitored characteristical parameters long before the end of the run, it can be concluded

that there is no trend being in contradiction to the convergence of the corresponding

BDe-order run. But although this gives reason to believe that the generated Markov

Chain has sampled from the true posterior probability over orderings, it might be that

the run got stuck in a local maximum in the space of orderings, that is became trapped

in a local region of orderings with high posterior probabilities. Possibly, Order-MCMC

runs with other orderings as initialisations reach stationary behavior on different regions

in the space of node orderings. Consequently, it is necessary to perform further Order-

MCMC runs on the same data set using alternative initialisations. If and only if all these

runs converge to the same region of the state-space, it can be concluded that convergence

is actually reached. To assert, whether this is the case for different independent MCMC

runs, it is useful to look at scatter plots of the confidences of pairwise relation-features

(see Subsection 3.5.4). If the confidences are the same for all independent runs, these

runs have outputed DAGs from the same region of the posterior distribution, and it is

assumable that the runs have sampled from the true posterior probabilities. Otherwise,

that is if the confidences differ systematically, there is a clear contradiction against the

hypothesis that all runs have converged to the same stationary distribution, so that the

MCMC results of all these runs should be discarded. Since from a theoretical point

of view convergence will be reached after ‘enough’ iterations, the most likely reason for

unsufficient convergence is that the run was stopped after too few MCMC iteration steps.

Scatter plots for all four combinations of stochastic Bayesian network model and MCMC

sampling scheme can be found in Figure 5.3. Each time the confidences of the undirected
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Figure 5.3.: Scatter plots for all four combinations of stochastic Bayesian network model and MCMC

sampling scheme. Each time the confidences of the undirected edge relation-features of

two independent MCMC runs were plotted against each other.

(1) top left: Order-MCMC using the discrete multinomial model (BDe)

(2) top right: Structure-MCMC using the discrete multinomial model (BDe)

(3) botton left: Order-MCMC using the continuous Gaussian model (BGe)

(4) bottom right: Structure-MCMC using the continuous Gaussian model (BGe)

For each Order-MCMC run 100,000 MCMC iterations were accomplished, whereby

after a burn-in period of length 20,000 each 200-th DAG was sampled. For the Structure-

MCMC 1,000,000 MCMC iterations were accomplished, whereby after a burn-in period

of 200,000 each 2,000-th DAG was sampled.
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edge relation-features estimated from the outputed DAGs of two independent MCMC

runs were plotted against each other. Tt can be clearly seen from these plots that there

is a strong level of convergence for the Order-MCMC runs, while the Structure-MCMC

runs have not converged yet. This trend could be confirmed by looking at scatter plots

of further independent MCMC runs. The Order-MCMC sampling scheme converges

after a very small number of iterations, while even 1 million iterations are too few for

convergence of the Structure-MCMC sampling scheme on this data set. The most likely

explanation for the insufficient degree of convergence is that n = 1000 observations lead

to a distribution of the true posterior distribution which has lots of ‘peaks’, that is

local maxima. So, Structure-MCMC gets often trapped, and it takes much time until

these peaks can be left by single edge operations. To produce a solid argument for

this speculation, it is useful to have a look at the trace plots of the likelihoods for the

corresponding MCMC runs. In Figure 5.4 the outputed likelihoods for both Structure-

MCMC runs using the discrete multinomial Bayesian network model can be found, and

it can be clearly seen that the likelihoods of these runs have become comparable not

before the 610,000-th MCMC iteration. So, the Structure-MCMC runs (especially the

second run), were stooped too early and had to be continued (see caption of Figure 5.4

for details).

When the confidences of the undirected edge relation-features obtained from the Order-

MCMC runs using the continuous Gaussian (BGe) and the discrete multinomial (BDe)

Bayesian network model are plotted against each other (see Figure 5.5), it can be seen

that the different Bayesian network models BDe and BGe lead to different results for

the same data set.
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Figure 5.4.: Trace plots of the logarithmic likelihoods for both Structure-MCMC runs using the discrete

multinomial Bayesian network model (BDe). For clarity, the iteration steps belonging to

the burn-in period have been omitted. It clearly seems that the 2nd run, which was

initialised by an empty DAG without any edges, got trapped somewhere till the 610,000-

th iteration. Then suddenly, the run seems to leave this region, and the likelihoods become

comparable to the likelihoods of the first run, which was initialised by a Greedy-Search

optimized DAG. Consequently, it can be assumed that the second Structure-MCMC run

has reached stationarity not before the 610,000-th iteration. So, at least the second MCMC

run was stopped too early.

It was decided to continue both Structure-MCMC runs, and to extend the burn-in period

to the last iteration accomplished so far. Afterwards, for both runs 400 new DAGs were

sampled out of the next 800,000 iterations, and it could be seen from trace plots as well

as scatter plots that the convergence level had clearly improved.
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Figure 5.5.: Scatter plot of confidences of the undirected edge relation-features of the discrete multino-

mial Bayesian network model (BDe) versus the continuous Gaussian Bayesian network

model (BGe). For both Bayesian network models the confidences were estimated from the

outputs of the first Order-MCMC run.
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5.3.2. Evaluation of performance

At the end of the last subsection it could be seen that both Bayesian network models

lead to different results for the data set generated with the Gaussian Bayesian network

generator. The goodness of performance can be evaluated using ROC curves and

AUROC values, as the true network topology from which the data set was generated is

known (see Section 3.6). For predicting the set of undirected edges of the true graph,

that is its skeleton, the undirected edge relation-features can be used. The corresponding

ROC curves for the first Order-MCMC runs can be found in Figure 5.6. From these ROC

curves can be clearly seen that both Bayesian network models assert the highest confi-

dences predominantly to the true edges, as there is an abrupt ascent in both ROC curves

on the left-most of the plot. It even seems that the discrete BDe model performs a little

bit better. But then for false discovery rates higher than 0.05 the continuous Gaussian

model (BGe) becomes clearly superior to the multinomial model (BDe). For example,

for a false discovery rate (FDR) of size 0.1, the discrete multinomial models (BDe) yields

a sensitivity (TPR) of approximately 0.4 only, while the continuous Gaussian models

(BGe) already reaches a sensitivity higher than 0.8. Some AUROC values for different

thresholds can be found in Table 5.3. The entries of this table reveal the same trend

already seen in the corresponding ROC curves. Only for very small false discovery rates

the continuous Gaussian model is a little inferior to the discrete multinomial model.

For higher false discovery rates the continuous Gaussian model becomes clearly superior.

This section was used to demonstrate how to assert convergence of MCMC runs,

and how to evaluate the performance of different stochastic Bayesian network models in

detail. In the following sections no more mention of these details is made. However, for

all further MCMC runs excactly this strategy was used to assert, whether a sufficient

degree of convergence was given, and to evalute the goodness of performance. If an

insufficient degree of convergence was observed, the results were discared, and the

corresponding runs were repeated with a longer burn-in period. Although this happend

rarely, on those seldom occassions the strategy was to set the burn-in period of the new
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Figure 5.6.: ROC curves for the discrete multinomial (BDe) and the continuous Gaussian (BGe)

Bayesian network models, computed from the outputed DAGs of the first Order-MCMC

runs. For the prediction of the undirected edges of the true network, that is its skeleton,

the estimated undirected edge relation-features were used.

runs equal to the total number of iterations of the discarded runs. Afterwards, exactly

the same sampling scheme as before was used. Surprisingly, this simple strategy was

effectual, that is always led to a sufficient degree of convergence of the new MCMC

runs.
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AUROCǫ

Model Run ǫ = 0.01 ǫ = 0.05 ǫ = 0.10 ǫ = 1.00

BDe-order 1 0.00070 0.01469 0.03714 0.72143

2 0.00079 0.01607 0.03857 0.71571

BGe-order 1 0.00057 0.01422 0.05500 0.90500

2 0.00061 0.01531 0.05643 0.91000

reference — 0.00005 0.00125 0.00500 0.5000

Table 5.3.: AUROCǫ values for different thresholds ǫ of the false discovery rate (FDR).

The true graph of the cytometric network consists of 11 nodes and 20 undirected edges.

So, there are 20 true positive (TP) undirected edges and 35 true negative (TN) edges

among all 55 possible undirected edges. Consequently, the different thresholds for the false

discovery rate (FDR): 0.01, 0.05, 0.10, and 1.00 correspond to 0.35, 1.75, 3.5 and 35 false

negative (FN) undirected edges.

5.4. Comparative evaluation study

- Parameter settings

This section briefly describes the preparation of the data as well as some parameter

settings for the comparative evaluation study.

All data discretisations were accomplished using the Information bottleneck algorithm of

[22]. Thereby in a first discretisation step, a simple quantile discretisation procedure was

used to obtain 50 (if N=1000 observations), 20 (if N=100 observations), or 5 (if N=10

observations) discrete levels as initialisation of the Information bottleneck algorithm.

Afterwards these discrete levels were reduced to three (‘-1’, ‘0’, and ‘+1’) by applying

the Information bottleneck algorithm. The three final levels can be easily interpreted as

up-regulation (‘+1’), down-regulation (‘-1’), and no difference from the baseline (‘0’).

For the Bayesian network approaches self-implemented Matlab functions were used.

Thereby two different scoring metrics had to be implemented: the BDe model and

the BGe model. The BDe score is based on a multinomial distribution with a Dirichlet

prior, whose hyperparameters have to satisfy certain constraints to ensure the likelihood-
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equivalence of the score; see Subsection 3.5.2.1. These hyperparameters can be inter-

preted as pseudo-counts and their exact values depend on the size of a global hyperpara-

meter α which was set equal to 1; this renders the prior distribution over the parameters

very uninformative. The BGe score is based on a linear Gaussian distribution with a

normal-Wishart prior. Again, the hyperparameters can be interpreted as pseudocounts

from a prior network. To make the prior distribution over these parameters as uninforma-

tive as possible too, it was assumed that each domain node is stochastically independent

and standard Gaussian distributed. That is, the prior network was set to the empty one

(in which all nodes are unconnected). Furthermore the equivalent sample sizes were set

to the smallest possible values subject to the constraint that the covariance matrix is

non-singular.

As prior over graphs the distribution which is uniform over parent cardinalities subjet

to a fan-in restriction of three was used.

To ensure convergence of the Markov Chain Monte Carlo (MCMC) runs for Bayesian

network learning, each test data set was analysed using two independent MCMC runs.

For Order-MCMC both independent runs were initialised by random node orderings.

For Structure-MCMC the first run was initialied by a graph without any edges, and

the second run was initialised by a graph found by greedy Hill Climbing. The burn-in

lengths of all Structure-MCMC runs were set to 200 thousand. Afterwards 800 thou-

sand Structure-MCMC simulations were performed, whereby each 2000-th graph was

sampled leading to a graph sample of size 400 for each Structure-MCMC run. The

burn-in lengths for Order-MCMC were set to 20 thousand, and afterwards 80 thousand

MCMC-simulation were performed, whereby from each 200-th node-ordering a graph

was sampled, also leading to a graph sample of size 400. Consequently, all Bayesian

network MCMC learning results are based on 800 graphs sampled from two independent

Structure-MCMC or Order-MCMC runs.

The computations for the Gaussian graphical models were carried out with the software

provided by [42].
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5.5. Comparative evaluation study

- Screening

The first step of the comparative evaluation study can be seen as a kind of screening

experiment which had been used to reduce the number of different machine learning

reverse engineering methods whose performances subsequently were compared in more

detail (see Section 5.6 and Section 5.7). During screening it was distinguished between

all 10 different learning methods described in Chapter 3. A short summary of these

methods is given in Table 5.4.

In this screening phase exclusively observational (non-interventional) test data sets were

used and the undirected edges evaluation scheme (UGE) presented in Section 3.6 was

used for evaluating and comparing the performances. Test data sets were generated

by sampling from the real cytometric data and by generating linear observational data

with the Bayesian network data Generator (see Section 3.7.1). From both sources 5

data sets of size N = 100 as well as 5 data sets of size N = 10 were generated, so that

in the end 20 data sets were available for the screening experiment. While N = 100

represents an usual sample size for such expression data, N = 10 was used to include

the case where the number of observations N is lower than the number of network

nodes n = 11. Tables 5.5 and 5.6 give the empirical means and standard deviations of

the AUROC1 and AUROC0.1 scores obtained for the test data sets, and what follows

is an interpretation of these results, whereby p-values of two-sided one sample t-tests

are used as descriptive measures for substantiating the differences (findings). Thereby

it is important to mention that these p-values can not be interpreted in the sense of

confirmative statistical tests, as no correction for multiple testing was applied. That

is neither the overall error rate nor the false discovery rate was controlled. So, the

t-test p-values were simply used to describe the pairwise differences with meaningful

statistical characteristics.

Looking at the Bayesian network (BN) results only, it can be seen that there is not
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much difference between the two sampling schemes Structure-MCMC and Order-MCMC.

For the continuous BN model (BGe) as well as for the discrete BN model (BDe) with

both sampling schemes in all cases approximately the same mean AUROC scores are

obtained. The lowest p-value of size 0.1399 is given for the data sets from the Gaussian

generator for N = 10 and the AUROC1 score. This finding indicates that theBayesian

network sampling scheme has no substantial influence on the output. Therefore and as

Order-MCMC is computational less expensive than Structure-MCMC for the cytometric

domain with n = 11 variables only, it was decided to restrict on the Order-MCMC

sampling scheme for Bayesian network learning during the more detailed comparisons in

the following sections. Furthermore it can be seen from the results of the Order-MCMC

sampling scheme that the continuous BN-model (BGe) seems to outperform the discrete

BN-model (BDe) on these test data sets. For the synthetic Gaussian data for all four

combinations of sample size N and AUROCǫ criterium the corresponding t-test p-values

lay between 0.0035 and 0.0141. This result is not surprising as there are exclusively linear

relationships in the Gaussian data, so that the disadvantage that the discretisation incurs

an information loss, can not be compensated by the modelling flexibility of the discrete

BN model (BDe). For the real cytometric expression data, for which it is not known

whether there is non-linear regulation or not, there is only one low p-value of size 0.0205

for the case N = 10 and the AUROC0.1 criterion. As it strongly depends on the strength

of non-linear regulation in the data, it was decided to compare the performance of BGe-

order and BDe-order on data sets with different degrees of non-linear-regulation in more

detail in Section 5.7.

Comparing the performance of Relevance networks based on the Pearson correlation

(REL-PC) and the performance of Relevance networks based on the pairwise mutual

information score (REL-MI) the same trend can be observed. That is REL-PC outper-

forms REL-MI on the Gaussian data having no non-linear regulation (p-values 0.0002,

0.0083, 0.0588, and 0.1220) as well as on the real data when the AUROC0.1 criterion

is used (p-values 0.0803 for N = 100 and 0.0152 for N = 10). Only for the AUROC1

criterion REL-MI performs slightly better.
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Method Model Training scheme

REL-MI Mutual information Relevance Direct computation of pair-

network wise association structures

REL-PC Pearson correlation Relevance Direct computation of pair-

network wise association structures

GGM-1 Gaussian graphical model Observed partial correlation

GGM-2 Gaussian graphical model Partial bagged correlation

GGM-3 Gaussian graphical model Bagged partial correlation

GGM-4 Gaussian graphical model Shrinkage based estimator

BN-BGe-struct Bayesian network with BGe score Structure MCMC

BN-BGe-struct Bayesian network with BGe score Order MCMC

BN-BDe-struct Bayesian network with BDe score Structure MCMC

BN-BDe-struct Bayesian network with BDe score Order MCMC

Table 5.4.: Methods. This table represents an overview of the machine learning methods compared

during the screening phase of the evaluation study.

The results for the four different Gaussian graphical model (GGM) learning approaches

are less systematic. But the shrinkage based estimator of the partial correlation

matrix (GGM-4) performs clearly better than the other three GGM estimators on

the Gaussian data with N = 10 when the AUROC1 criterion is used (p-values 0.0081

(GGM-1), 0.0097 (GGM-2), and 0.0059 (GGM-3)) and in the end yields the highest

mean AUROC score in 5 of eight cases. Only for the Gaussian data with N = 100

(GGM-2) and the cytometric data with N = 10 when the AUROC0.1 citerion is used

(GGM-3) another estimator leads to the highest average AUROC score. Thereby the

lowest t-test p-value is higher than 0.06. Although these results do not show a clear

superiority of the shrinkage based estimator (GGM-4), it was decided to take the

results of a comparative study which had been carried out beforehand by the inventors

of these learning methods for Gaussian graphical models (see [42],[43]) as well as

profitable discussions and communications with these authors into consideration, which

altogether point out that the shrinkage based estimator for GGM models is superior

to the other three estimators. Beyond this justification it was decided to compare

the different GGM estimators on further observational data sets generated with the
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N = 100 N = 10

AUROC1 AUROC0.1 AUROC1 AUROC0.1

mean std-dev mean std-dev mean std-dev mean std-dev

BGe-order 0.8848 0.0543 0.0612 0.0157 0.7909 0.0488 0.0364 0.0092

BGe-struct 0.8631 0.0480 0.0573 0.0154 0.7712 0.0600 0.0342 0.0105

BDe-order 0.7060 0.0694 0.0262 0.0171 0.6274 0.0994 0.0139 0.0099

BDe-struct 0.7009 0.0630 0.0232 0.0120 0.6354 0.0791 0.0111 0.0079

REL-MI 0.6439 0.1159 0.0207 0.0122 0.6280 0.0737 0.0136 0.0090

REL-PC 0.6809 0.0816 0.0286 0.0123 0.7123 0.0646 0.0267 0.0114

GGM-1 0.9154 0.0364 0.0719 0.0090 0.5857 0.0616 0.0100 0.0076

GGM-2 0.9154 0.0374 0.0731 0.0105 0.6426 0.0905 0.0199 0.0115

GGM-3 0.9117 0.0347 0.0717 0.0095 0.5769 0.0826 0.0086 0.0045

GGM-4 0.8814 0.0373 0.0504 0.0153 0.7657 0.0627 0.0296 0.0095

Table 5.5.: Results for the observational Gaussian data (sample sizes N = 100 and N = 10)

Netbuilder generator (see Subsection 3.7.2). The results of this additional study affirm

the truth of the latter statement to a certain degree and can be found in D. Appendix IV.

At the end of the screening phase it was decided to perform the following two more

detailed comparisons. In a first step it seems to be useful to cross-compare all three

model classes, that is the continuous Bayesian network model (BN-BGe), the Gaussian

graphical model (GGM), and the Relevance network model based on Pearson correlation

coefficients (REL-PC), in more detail. Thereby with respect to the results obtained

during the screening phase, the following decisons were made: Firstly, it is obviously

sufficient to consider one MCMC sampling scheme for the Bayesian network approach

only. With regard to lower computational costs the Order-MCMC sampling scheme was

choosen. Secondly, in the context of Gaussian graphical models it is effectual to apply

the shrinkage based estimator for the partial correlation matrix only, because the latter

one yield the best results during the screening phase, and was never much worse than

the other estimators based on bagging. Thirdly, including the discrete Bayesian network

model (BN-BDe) or the Relevance network based on pairwise mutual information scores
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N = 100 N = 10

AUROC1 AUROC0.1 AUROC1 AUROC0.1

mean std-dev mean std-dev mean std-dev mean std-dev

BGe-order 0.6904 0.0376 0.0379 0.0108 0.5636 0.0373 0.0176 0.0062

BGe-struct 0.6780 0.0349 0.0374 0.0112 0.5664 0.0470 0.0176 0.0064

BDe-order 0.6620 0.0410 0.0348 0.0052 0.5452 0.0611 0.0074 0.0024

BDe-struct 0.6537 0.0555 0.0339 0.0057 0.5457 0.0685 0.0087 0.0033

REL-MI 0.6729 0.0561 0.0303 0.0070 0.5674 0.0604 0.0081 0.0036

REL-PC 0.6680 0.0546 0.0393 0.0094 0.5449 0.0769 0.0190 0.0042

GGM-1 0.6663 0.0705 0.0351 0.0092 0.5271 0.0845 0.0073 0.0039

GGM-2 0.6706 0.0713 0.0360 0.0102 0.5351 0.0988 0.0103 0.0051

GGM-3 0.6611 0.0725 0.0356 0.0103 0.6080 0.1040 0.0087 0.0075

GGM-4 0.6854 0.0542 0.0393 0.0093 0.5663 0.0506 0.0177 0.0059

Table 5.6.: Results for observational real cytometric data (sample sizes N = 100 and N = 10)

(REL-MI) does not make so much sense in such a cross-comparison, as these models

can benefit exclusively if there are non-linear regulatory mechanisms in the data, that

is mechanisms that can not be learnt by the former models. So supposably, it simply

depends on the degree of non-linearity in the data, whether the latter models outperform

the former ones or not. But to explore, whether this speculation is correct, it is useful to

compare the performance of the two different stochastic models for Bayesian networks

(BN-BGe and BN-BDe) in a second step on data sets with different degrees of non-

linearity.
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Method Model Training scheme

RN Relevance network Pearson Correlation.

GGM Gaussian graphical model Shrinkage based estimator

BN Bayesian network Order MCMC with BGe score

Table 5.7.: Overview of the three machine learning methods tested in this first more detailed cross-

method comparison.

5.6. Detailed comparison between Bayesian networks, Gaussian

graphical models, and Relevance networks

In this section the performances of the three model classes: Bayesian networks (BN),

Gaussian graphical models (GGM), and Relevance networks (RN) are cross-compared

and evaluated in more detail using lots of different test data sets. An overview of the

applied training schemes can be found in Table 5.7.

Test data sets were sampled from the freely available real cytometric expression data, and

synthetically generated with the Netbuilder software tool as well as the self-implemented

Gaussian data generator. Details about these data generators and especially about the

applied parameter settings can be found in Section 3.7. Thereby (unless otherwise noted)

Netbuilder data were generated using OR ports, as OR regulation ports lead to almost

linear relationships between the domain variables.

It is important to mention that it was decided to normalise each test data set, so that

each domain variable (node) has empirical mean zero and empirical variance one, directly

after generating it. Such a normalisation was included to avoid that there is a systematic

difference in the (empirical) variances between variables having no parent nodes and

variables having lots of parent nodes. During the screening experiments it could be seen

that both data generators had led to such a systematical difference. For example, for

the Gaussian data generator holds that variables with lots of parent nodes tend to have

a higher variance than variables without parents.

At the beginning exclusively the gold-standard graph topology of the cytometric network

topology was used as true graph for the synthetic data. But since this gold-standard
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cytometric graph topology contains few v-structure only, four of its twenty directed edges

were deleted at a later point of the analysis to obtain a graph with more v-structures.

Including a graph topology with more v-structures is important for the cross-method

comparison, as the CPDAG representation of such a directed acyclic graph with many

v-structures contains more directed edges, so that the Bayesian network approach can

benefit with regard to the directed graph evaluation scheme (DGE). For the remainder

of this chapter the true gold standard cytometric graph topology is referred to as DAGO

and the modified graph topology is referred to as DAGV . The CPDAG-representations

of these two graphs are shown in Figure 5.7. It can be seen that the CPDAG of the

original cytowmetric graph DAGO contains seventeen undirected and only three directed

edges, while the modified graph DAGV contains three undirected and thirteen directed

edges.

In a first step, for each of the three test data sources (available real expression data

and the two data generators) five observational and five interventional data sets with

N = 100 observations per set were generated. The interventional data sets were

composed by N1 = 16 pure observational data points and by Ni = 14 data points

(i = 1, ..., 6) for each of the six different ideal interventions (see Table 5.2 in Section 5.2).

The standard deviation of the noise variables in Netbuilder was set to the medium level

(σ = 0.1) and exclusively OR regulation ports were used. The observational Gaussian

data were generated as described in Subsection 3.7.2.

For all three methods under comparison the thirty test data sets were analysed, and

the corresponding AUROC1 values for both figures of merit (UGE and DGE) were

computed. Figure 5.8 shows for each data source a coloured scatter plot of these

AUROC1 values. In these scatter plots the AUROC1 scores of the Relevance network

approach (RN) are plotted against the corresponding AUROC1 scores of the other two

methods BN (in red) and GGM (in blue). Each scatter plot contains the AUROC1

values for all four combinations of data type (observational and interventional) and

figure of merit (UGE and DGE). The combinations are characterised by different

symbols (see caption of Figure 5.8).
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(a) CPDAG(DAGO) (b) CPDAG(DAGV )

Figure 5.7.: CPDAG-representations of both directed acyclic graphs. The modified cytometric graph

DAGV was obtained by deleting the following four directed edges: (1) PKC→RAF, (2)

PKA→MEK, (3) PLC→PIP2, (4) PKC→PKA of the original gold-standard cytometric

graph DAGO shown in Figure 5.1. Comparing the two panels, it can be seen that the

four edge deletions have led to an immense increase in the number of directed edges in

the CPDAG-representation.
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Scatter plot (a) refers to the Gaussian data, and it can be seen that Bayesian networks

(BN) as well as Gaussian graphical models (GGM) outperform the Relevance network

method (RN), as all points are located above the diagonal line. For the pure observa-

tional data sets BNs and GGMs achieve approximately the same overall performance in

terms of the AUROC1 scores. Only for the interventional data sets Bayesian networks

substantially outperform GGMs.

Scatter plot (b) refers to the Netbuilder data, and it can be seen that all red symbols

are located above the diagonal line as well as above the corresponding blue ones, so that

BNs obviously outperform the other two methods. Furthermore, it seems that the RNs

perform better than the GGMs for the pure observational data, as the empty symbols

in blue are located below the diagonal line.

For the real cytometric expression data (c) there does not seem to be any difference

between the method‘s performances for the observational data. All empty symbols

are located around the diagonal line. Only for the interventional data BNs ouperform

GGMs which in turn outperform RNs.

Tables containing one-sample t-test p-values which reflect these findings numerically

can be found in E. Appendix V.

Panel (a) of Figure 5.8 raises the question, why there is not so much difference between

the Gaussian graphical models (GGMs) and the Bayesian networks (BNs) for pure

observational Gaussian distributed data sets. To address this issue it was decided to

generate further five pure observational data sets with the Gaussian data generator for

each of two different sample sizes N=10 and N=1000. Scatter plots of the AUROC1

values for all three sample sizes can be found in Figure 5.9. From the scatter plots

can be seen that the less sophisticated Relevance network approach (RN) becomes

outperformed by the other two methods, since all points are located above the diagonal

line. Thereby it seems that the superiority of the more sopisticated methods raises

with the sample size. But anyway more interesting is the comparion between BNs and
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(b) NETBUILDER DATA (σ = 0.1)
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(c) REAL DATA

Figure 5.8.: Scatter plots of AUROC1 values: RN versus GGM (in blue) and RN versus BN (in red).

Empty symbols represent observational data sets and filled symbols represent interven-

tional data sets. The DGE figures of merit that take the edge directions into consideration

are represented by triangles, while the UGE figures of merit that discard the edge direc-

tions are represented by circles.
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GGMs.

Comparing the locations of the filled and the empty symbols in panels (a)-(c) reveals

that there is no big difference between the performance of Bayesian networks and

Gaussian graphical models. It seems that Bayesian networks (BN) are slightly superior

to GGMs for sample size N=10 when the UGE figure of merit is used, while for N=100

there does not seem to be a difference. And for sample size N=1000 Bayesian networks

(BNs) outperform GGMs only in terms of the DGE figure of merit.

Tables containing one-sample t-test p-values which reflect these findings numerically

can be found in F. Appendix VI.

To see whether Bayesian networks (BNs) show a better performance than Gaussian

graphical models (GGMs) at least in the left, usually biologically more interesting, area

of the ROC curves, where the amount of false positive (FP) extracted edges is low,

exactly the same analysis was repeated using the AUROC0.1 scores instead of AUROC1

scores. The corresponding scatter plots as well as a table with t-test p-values can be

found in G. Appendix VII. But the results of this analysis are consistent with the findings

already reported above. Only for N=10 the inferiority of Relevance networks disappears

when AUROC0.1 scores are computed.

In the end it seems that Bayesian networks (BNs) even for pure observational Gaussian

distributed data often perform at least slightly better than Gaussian graphical models,

but it does not seem that these differences are significant.

Another reason for GGMs and BNs performing equally well for the pure observational

Gaussian distributed test data, may be the fact that the cytometric graph topology

has few v-structures only. Therefore for all six combinations of parameter settings five

observational data sets were generated using the alternative graph topology DAGV

as true network. This analysis actually led to a very clear result. For sample sizes

N=100 and N=1000 generated from the modified graph topology DAGV having lots of

v-structures, Bayesian networks (BNs) outperform Gaussian graphical models (GGMs)

abundantly clear. Although due to space limitations not all scatter plots and tables can
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(c) N=1000

Figure 5.9.: Scatter plots of AUROC1 values: RN versus GGM (empty symbols) and RN versus BN

(filled symbols). Exclusively observational data sets were generated with the Gaussian

data generator. Thereby three different sample sizes N were used. See text for further

information. The DGE figures of merit that take the edge directions into consideration are

represented by triangles, while the UGE figures of merit that discard the edge directions

are represented by circles

be given in this thesis, the scatter plots for both graph topologies DAGO and DAGV

using the original parameter setting (N=100 and σ = 0.1) are given in Figure 5.10.

Once again from panel (a) can be seen that there is no difference in performance for

the observational data sets using DAGO. But when DAGV is used instead, Gaussian

graphical models are outperformed by Bayesian networks for both figures of merit

and both data types (observational and interventional). As before, there are tables

containing one-sample t-test p-values available which confirm these findings numerically

(see H. Appendix VIII).

It can be summarised that Bayesian networks outperform Gaussian graphical models on

Gaussian distributed data sets especially if there are either interventions or v-structures

in the true network architecture. Otherwise there is no clear trend, and both methods

seem to perform equally well. Except for the small sample sizes (N=10) and the DGE
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(a) DAGO and N=100
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(b) DAGV and N=100

Figure 5.10.: Scatter plots of AUROC1 values: RN versus GGM (in blue) and RN versus BN (in red).

All data sets were generated with the Gaussian data generator. Thereby two different

graph topologies DAGO and DAGV were used. As usual: Empty symbols represent

observational data sets and filled symbols represent interventional data sets. The DGE

figures of merit that take the edge directions into consideration are represented by tri-

angles, while the UGE figures of merit that discard the edge directions are represented

by circles
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figure of merit the learning performance of Relevance networks on Gaussian distributed

data is clearly inferior to the performance of the other two more sophisticated methods:

Bayesian networks and Gaussian graphical models. The latter proposition is independent

of the graph topology and does not depend on whether there are interventions either.

But the problem associated with this finding is that Gaussian distributed data are not

biologically realistic, so that the result is only of theoretical meaning. The Netbuilder

tool is a software with which more biologically realistic expression data can be generated,

so that it is useful to compare the performances on such semi-realistic data in more detail.

To this end for all six combinations of three different noise levels: weak (σ = 0.01),

medium (σ = 0.1), and strong (σ = 0.3) noise, and the two different graph topologies:

DAGO and DAGV 5 observational as well as 5 interventional data sets were generated

using the Netbuilder software tool. Once again exclusively OR regulation ports were

used. Overlaid coloured scatter plots of the outputed AUROC1 scores: RN versus GGM

(in blue) and RN versus BN (in red) are given in Figure 5.11.

From these scatter plots (panels (a) to (f) in Figure 5.11) can be seen that the more

realistic (non-Gaussian) synthetic Netbuilder data have led to non-systematic AUROC1

scores. As the scatter plot in panel (b) was already discussed above, it can be used as

a starting point for further interpretations. Looking at panel (e), that is the same noise

level σ but another network topology DAGV , reveals that the inclusion of v-structures

is clearly for the benefit of BNs and GGMs while the less sophisticated RNs which can

not distinguish between direct and indirect interactions become inferior: all points are

above the diagonal line, so for both types of data and both figures of merit RNs are

outperfomed. Furthermore it can be seen that BNs are also superior to GGMs, as the

red points lay above the corresponding blue ones. Only if the UGE figure of merit is

used for observational data (red and blue empty circles), this superiority is not strongly

pronounced. From the panels on the right ((c) and (f)) can be seen that a strong noise

(σ = 0.3) leads to a deterioration of these trends. Exclusively for the interventional

data the Bayesian networks (Bns) are clearly superior to both other methods (red filled

symbols). The scatter plots on the left (panels (a) and (d)) reveal a strange relationship.
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(b) DAGO (σ = 0.1)
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(c) DAGO (σ = 0.3)
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(d) DAGV (σ = 0.01)
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(e) DAGV (σ = 0.1)
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(f) DAGV (σ = 0.3)

Figure 5.11.: Scatter plots of AUROC1 values: RN versus GGM (in blue) and RN versus BN (in red).

All data sets were generated with Netbuilder using OR regulation ports. Thereby three

different noise levels σ as well as two different graph topologies DAGO and DAGV were

used. See text for further information. As before: Empty symbols represent observational

data sets and filled symbols represent interventional data sets. The DGE figures of merit

that take the edge directions into consideration are represented by triangles, while the

UGE figures of merit that discard the edge directions are represented by circles
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On the one hand, if the DGE figure of merit is used Bayesian networks are superior

to both other methods for the interventional data as usual. But on the other hand,

if the UGE figure of merit is used for this low noise level σ = 0.01 Bayesian networks

(BNs) perform worse for interventional than for observational data, and especially BNs

are outperformed by Relevance networks for DAGO (see panel (a)) and by Gaussian

Graphical models for DAGV (see panel (d)). Tables that contain one-sample t-test p-

values for these Netbuilder data sets which confirm these findings numerically can be

found in I. Appendix IX).

Especially, comparing the locations of the red symbols in panels (a) and (d), that is

their y-coordiantes, with the corresponding locations in panel (b) and panel (e), it can

be seen that Bayesian networks perform worse on Netbuilder with low dynamical noise

(σ = 0.01) than on Netbuilder data with a higher dynamical noise (σ = 0.1). And

although it is certainly less pronounced, in principle the same trend can be seen for the

Gaussian Graphical Models (blue symbols) and Relevance networks. (For the Relevance

networks one has to look at the x-coordinates of the symbols to see that.) These findings

raise two questions. Firstly, why do all three methods under comparison perform worse

for the low noise level (σ = 0.01) than for the medium (σ = 0.1) or even the strong

(σ = 0.3) noise? And secondly, it is not clear why interventions are not for the benefit of

Bayesian networks (BNs) in terms of the UGE figure of merit when there is only weak

noise in the data.

An educated guess is that the non-linear functional OR(.)-relationships between con-

nected nodes in Netbuilder automatically lead to some indirect associations between

unconnected nodes which are sometimes stronger than the true associations. As an ex-

ample a small network with n = 3 nodes only can be considered in which one node P

has two child nodes C1 and C2, that is there are two edges P → Ci (i=1,2) in the true

network. In this case there is no direct interaction between the two child nodes. But

as C1 and C2 have a common parent node P , there is an indirect relationship between

them. When generating Netbuilder data from this simple network without adding any

noise, the realisations of both child nodes Ci are deterministic non-linear functions of
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the parent node P . That is for each realisation p ∈ [0, 1] of P both children get the

realisation ci = p
1+p

(i=1,2). So, this also implies a deterministic and actually linear

functional relationship between the two child nodes, because it holds c1 = c2. Conse-

quently, as the methods under comparison model linear relationships in the data, an

edge between the child nodes is stronger supported by the data than the two true edges.

The deterministic relationship between the child nodes can be weakend by the addition

of noise, which renders the values of each child node more similar to that of P than that

of the other child. Taking this theoretical consideration into account, it is clear that

the noise forms the basis for reverse engineering the true network topology from data.

For example, adding independent Gaussian distributed noise variables ǫi ∼ N(0, σ2) as

usually done in Netbuilder yields: Ci = P
1+P

+ ǫi, so that the linear relationship between

C1 and C2 becomes diluted. It holds: C1 = C2 +ǫ⋆ with ǫ⋆ = (ǫ2 − ǫ1)) ∼ N(0, 2σ2). On

the other hand, between P and Ci there is the relationship: Ci = P
1+P

+ ǫi. So, although

the deterministic part of the relationship between the two child nodes is linear, the ad-

ditional noise ǫ⋆ has twice as much variance. As a consequence it can be concluded that

for small noise levels σ the association between the two children C1 and C2 is stronger

than the association between P and the child nodes Ci (i=1,2). On the other hand it is

clear that too high noise levels σ not only destroy the indirect interaction between C1

and C2, but also hides the two regular relationship between P → C1 and P → C2, so

that learning the true network topology is not possible either.

To verify this theoretical claim empirically, it was decided to generate and analyse some

test data sets from simple network topologies using different noise levels. In a first step for

each of 14 different noise levels σ ∈ {0, 0.01, 0.02, 0.03, 0.06, 0.1, 0.2, 0.3, 0.6, 1, 2, 3, 6, 10}
25 Gaussian distributed data sets of size n = 100 were generated for two different

graphs topologies G(Pi, C) and G(P, Ci) both consisting of 4 nodes only. In G(Pi, C)

three parent nodes Pi have a common child C with the dependence structure: C =

1/3 · (P1 + P2 + P3) + N(0, σ2), so that each parent node Pi has exactly the same

influence on the common child C. Thereby the realisations for the three parent nodes

have been sampled from independent standard Gaussian distributions Pi ∼ N(0, 1). For
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G(P, Ci) an ’opposite’ dependence structure was choosen, that is Ci = 1/3 ·P +N(0, σ2),

so that three child nodes Ci have a common parent P . Each child node obtains the same

signal from node P . The realisations of node P were sampled from a standard Gaussian

distribution P ∼ N(0, 1). With regard to the CPDAG representations in the context

of Bayesian network methodology (see Subsection 3.5.1) all three edges of G(Pi, C) are

directed while the three edges in GP,Ci
are undirected.

Trace plots of the AUROC1 means with error bars representing the AUROC1 standard

deviations for the 14 different noise levels σ are shown in Figure 5.12. From the UGE

trace-plots for topology G(Pi, C) (top, left) can be seen that that all three methods

perform equally well, and that the mean AUROC1 scores decrease for high noise levels

only. As the three parent variables are stochatically independent, low noise levels σ do

not cause any problems. That is even when there is no noise in the data (σ = 0) there

is no indirect association between unconnected nodes. From the corresponding trace

plot of the DGE figure of merit (bottom, left) can be seen that Bayesian networks are

superior to the other two methods. This is due to the fact that all three edges in the

CPDAG-representation of G(Pi, C) are directed, that is the CPDAG is is identical to the

graph itself, so that all three edge directions can be learnt by Bayesian networks. For the

second graph topology G(P, Ci) in which the strength of indirect associations between

the child nodes Ci depends on the noise level σ, the curves show another progression.

When there is no noise in the data (σ = 0) the true network can not be learnt by

Relevance networks and Bayesian networks. Both methods reach an AUROC1 score

mean about 0.5 corresponding to the expected AUROC value of a random predictor.

The reason for that is that there is a deterministic linear relationship between each

pair of domain variables, so that all possible edges are equally supported by the data.

However, Gaussian graphical models (GGMs) reach the maximum AUROC1 score mean

of size 1, indicating that the true network can be learnt although there are such linear

relationships. As it is clear that the theoretical partial correlations are the same for all

possible edges, this can be an effect of shrinkage only. Obviously the shrinkage approach

enables GGMs to distinguish between the true and the non-present edges. Actually, the
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Figure 5.12.: Trace plots of the AUROC1 means with error bars representing the AUROC1 standard

deviations for the three methods under comparison: Bayesian networks (black line),

Gaussian graphical models (blue line), and Relevance networks (red line). For each of 14

different noise levels (σ) 25 Gaussian-distributed test data sets were generated using two

simple graph topologies with 4 nodes each. In the first topology G(Pi, C) (left panels)

three parent nodes Pi have a common child node C with: C = 1/3 · (P1 + P2 + P3) +

N(0, σ2), and in the second topology G(P, Ci) (right panels) one parent node P has three

child nodes Ci with: Ci = 1/3 · P + N(0, σ2). For both networks and all three methods

the UGE (top) as well as the DGE (bottom) figures of merit were computed. See text

for further information.
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outputed partial correlations are only slightly different, so that this must be interpreted

as a more or less pure artificial effect. But for slightly higher noise levels (0 < σ ≤ 0.06)

it can be seen that Gaussian graphical models (GGMs) as well as Relevance networks

(RNs) perform perfectly, while Bayesian networks (BNs) perform worse. Obviously BNs

have the biggest problem with these low noise levels. Finally, for higher noise levels

(σ > 0.06) all three methods perform equally well in terms of the UGE figure of merit,

whereby again the mean AUROC1 scores decrease with increasing noise levels σ. The

corresponding DGE figure of merit trace-plots (bottom, right) for topology G(P, Ci)

reveal that the BNs are outperformed by the other two methods for small (σ < 0.03)

and high (σ > 0.3), while on the other hand BNs are superior for the noise levels in

between. Thereby it is surpring that BNs can learn the edge directions, although all

three edges in G(P, Ci) are undirected in the CPDAG-representation. As this behaviour

is strange it was decided to consider the outputed DAG samples of the Order-MCMC

runs in more detail. And actually it could be seen that the high DGE scores must

be interpreted as artificial effects too. Because not rarely the CPDAGs of the sampled

DAGs have the following constellation of edges: Ck—P → Ci ← Cj , that is a v-structure

with two directed edges from P and another child node Cj converging on Ci as well as

an undirected edge between the parent node P and the third child node Ck. Replacing

the three child nodes Ci, Cj , and Ck for all six possible permutations of them, the three

correct directed edges P → Ci, P → Cj , P → Ck appear twice while all other directed

edges appear only once. As a consequence, the three true directed edges get often slightly

higher posterior probabilities than all other (directed) edges, what in turn leads to high

AUROC scores. Neglecting the findings which are probably due to artificial effects only, it

can be summarised that low noise levels are to the disadvantage of the Bayesian network

(BN) approach. Obviously especially BNs are sensitive to indirected associations. This

may be due to the fact that Bayesian networks - in contrast to Relevance networks

and Gaussian graphical models - can consult more than one edge for explaining the

realisations of a network node. That is, for a target node X which is directly associated

with a node Y as well as indirectly associated with another node Z, both nodes Y and
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Z can be used to explain the realisations of the target X. In the context of Relevance

networks there is no adjustment for such indirect associations either, but at least it can

be expected that the true association leads to a stronger correlation than the indirect

one. Only for Gaussian graphical models, which are based on partial correlations, there

is adjustment for all other domain variables, so that such indirect association become

weaker than for the other two methods. From a theoretical point of view the same

adjustment is given for Bayesian networks, as it is sufficient to select the nodes which

are directly associated with the target node X as parent nodes of X. But practically is

seems that the adjustement in the context of BNs is less effective than the adjustment

reached by computing partial correlations, when the indirect association is only slightly

weaker than the direct association, or when the indirectly associated node Y can be used

in addition to the directly associated node Z to explain the target node X. Especially

the second case could be observed for small noise levels σ and the network topology

G(P, Ci). Most of the outputed DAGs had the following type of edge constellation Ck—

P → Ci ← Cj , so that obviously an indirectly associated node Cj was used in addition

to the directly associated node P to explain the realisation of the target node Ci.

To demonstrate that small noise levels σ can cause problems for all three methods under

comparison, it was decided to continue with the little network analysis. More precisely,

the deterministic linear functional relationships between the connected nodes in both

graph topologies (see above) were transformed using the hyperbolic tangent function

to obtain weaker linear associations between the child and parent nodes. From this

analysis (see J. Appendix X) could be seen that all three methods can not learn the true

(direct) relationships in graph topology G(P, Ci) when such a non-linear transformation

in combination with a low noise level σ is given.

These findings obtained from the little network diagnostic show that there are some

problems associated with small noise levels. Especially for the synthetic Netbuilder data,

low noise levels σ lead to strong indirect associations between unconnected nodes which

have the same parent set. And not rarely these indirect associations are even stronger

than the true direct associations represented by edges (i.e. direct causal relationships).
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Therefore, these findings give an answer to the question, why all three methods under

comparison performed worst for the Netbuilder data with low noise level in Figure 5.11.

The bad performance is simply due to the fact that there are lots of strong indirect

linear associations in Netbuilder data when a low noise level σ is used. Furthermore, the

little network diagnostic reveals that especially Bayesian networks (BNs) tend to extract

additional false edges from these indirect linear associations.

But it is still unclear why Bayesian networks (BNs) can not benefit from the interventions

for such small noise levels when the UGE figure of merit is used.

First of all, since learning the correct edge directions of the true network is much more

difficult than learning its skeleton, that is the set of edge connections ignoring the edge

directions, it is not surprising that Bayesian networks (BNs) reach higher UGE figure

of merit AUROC1 scores than DGE figure of merit AUROC1 scores on pure observa-

tional data. But intuitionally it is not clear why quite the contrary happens for the

interventional data. Theoretically, a possible explanation is that for the interventional

data almost all extracted edges obtain a concrete edge direction whereby especially the

true edges are extracted with their correct edge directions. In this case DGE and UGE

reach approximately the same number of true positive (TP) counts for the same number

of false positive (FP) counts. Because each true directed edge finding increments the

number of TP counts for UGE as well as for DGE by 1, while each FP edge finding

increments the number of false positives correspondingly. The same number of true pos-

itive (TP) counts yields the same sensitivity for UGE and DGE, as for both figures of

merit there is the same number of true edges in the true network, either considered as

directed or as undirected ones. But there is a difference in specificity, because the same

number of false positive (FP) counts does not correspond to the same (inverse) speci-

ficity for UGE and DGE. Since the number of false directed and false undirected edges

differs between UGE and DGE, the same number of false positive counts usually leads

to a higher specificity for DGE than for UGE. For example, in the original cytometric

network there are 20 true undirected and 35 false undirected edges. So, 10 true positive

(TP) edge findings and 10 false positive (FP) edge findings yield a sensitivity of size 0.5
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and a specificity of 0.71 in terms of UGE. In terms of DGE these counts (TP:10 and

FP:10) yield the same sensitivity (0.5), but the corresponding DGE specificity is about

0.89, as there are 90 false directed edges. Consequently, whenever there is the trend that

true edge connections are outputed with their correct edge directions (or otherwise not

outputed at all), it follows that the DGE figure of merit reaches higher AUROC scores

than UGE.

To find out whether this is the real reason for much higher DGE AUROC scores than

UGE AUROC scores for the interventional Netbuilder data with low noise level, it is

useful to additionally look at curves in which the sensitivities are plotted against the total

numbers of true positive (TP) counts instead of only looking at the usual ROC curves

in which the sensitivities are plotted against the inverse specificities. As an example the

ROC curve as well as the alternative curve for the first interventional Netbuilder data

set with low noise level (σ=0.01) are shown in Figure 5.13.

From panel (a) can be seen that the DGE and the UGE figure of merit ROC curves

and so the AUROC1 scores differ a lot. But from the alternative curve in panel (b) can

be clearly seen that Bayesian networks reach for both figures of merit (UGE and DGE)

approximately the same sensitivities (TP rates) for the same number of false positive

(FP) counts. For all other interventional Netbuilder data sets the same progressions of

these two curves could be observed too. So, the better DGE learning performance in

terms of AUROC scores is indeed (mainly) due to the differences in the corresponding

(inverse) specificities.

Another question which has not been answered yet, is why for the low noise level σ=0.01

Bayesian networks reach higher UGE AUROC score on pure observational Netbuilder

data than on interventional Netbuilder data, while the opposite trend is given for the

DGE figure of merit (see panels (a) and (d) in Figure 5.11). Although the reasons for

a better DGE than UGE AUROC performance on interventional data could already be

found, it is not apparent why interventions are for the disadvantage of Bayesian networks

in terms of UGE figure of merit AUROC scores.
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Figure 5.13.: ROC curve and curve of sensitivity against total number of false positive (FP) edges for

the first interventional Netbuilder data set from DAGO using the low noise level σ=0.01.

The solid line corresponds to the UGE figure of merit and the dotted line corresponds to

the DGE figure of merit. The DGE learning performance is better than the UGE learning

performance in terms of the usual ROC curves (panel (a)), although the alternative curve

reveals that the same sensitivities can be reached for the same numbers of false positive

edges.
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As it may be that this trend occured by chance only, it is useful to test in a first step

whether this trend can be observed for further Netbuilder data sets too. To this end for

each of six different noise levels σ ∈ {0, 0.02, 0.04, ..., 0.1} further five observational as well

as five interventional Netbuilder data sets with OR ports from the modified cytometric

network topology were generated and analysed with Bayesian network Order-MCMC

approaches. Scatter plots of the mean AUROC1 scores can be found in Figure 5.14. The

curves in the trace plot show the same trend already observed before. For small noise

levels σ the Bayesian network approach yields better results in terms of the UGE figure

of merit for pure observational than for interventional data. Only when a higher noise

levels is given (σ > 0.6) the performance on the interventional data set becomes superior.

On the other hand, in terms of the DGE figure of merit, interventions are always for the

benefit of Bayesian networks.

To find possible explanations for that it is useful to compare the mean posterior

probabilities of the 55 undirected edges, e.g. visually by scatter plots. In Figure 5.15

such a scatter plot is shown for the originally generated data sets from the modified

cytometric network topology with low noise level. The mean posterior probabilities of

the 55 possible undirected edges over the five observational data sets are plotted against

the corresponding means over the five interventional data sets. It can be seen that some

posterior probabilities differ a lot. Especially, when looking at the edges whose posterior

probabilties are about 1 for the observational data, it can be seen that one true positive

edge obtains a lower posterior probability (about 0.8) for the interventional data sets.

This undirected edge represents the connection PIP3 → PIP2. On the other hand,

there are two false positive undirected edges whose posterior probabilities are about

1 for the interventional data and much lower for the observational data. These two

undirected edges represent connections: PIP2—PLCg and AKT—PLCg not given in

the true network topology. As both network variables PIP2 and AKT were inhibited,

it seems that this curious finding is a consequence of inhibitions in a domain with weak

noises. But diagnostics on smaller networks using low noise levels in combination with

inhibitions did not lead to comparable trends, so that a concrete explanation could not
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Figure 5.14.: Trace plots of the AUROC1 means obtained for interventional and observational Net-

builder data with OR ports and different noise levels. For each of six different noise

levels σ five observational as well as five interventional data sets were generated from

the modified cytometric network topology. Afterwards the AUROC1 means for both

figures of merit (UGE and DGE) were computed and plotted. The trace plots for the

UGE figure of merit are represented by solid lines, while the DGE trace plots are rep-

resented by dotted lines. The colours indicate the data set type: observational (black)

and interventional (red).
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be found.

Another theoretical explanation is that the parameter priors for Bayesian network models

with the Gaussian BGe scoring metric for interventional data can not be specified as

adequately as for pure observational data. For example, for pure observational it does

not depend on whether a variable is seen as a child or parent node: in both cases

especially its empirical parameters (mean, variance) are the same. But for interventional

data the local score of each node has to be computed from the observations where this

node was not intervened. That is, when an intervened node is scored some realisations

of the network have to be excluded, so that the empirical mean vector and the empirical

covariance matrix differ with respect to the node whose local score is computed. For

each network variable this means that its empirical mean as well as its empirical variance

differs with respect to the node whose local score is computed.

For this comparative evaluation study all test data sets were normalised and the para-

meter priors for the BGe scoring metric were selected, so that they can be interpreted

as a Bayesian prior network in which all domain variables are independently standard

Gaussian distributed. For normalised observational data sets this means that for each

network variable the empirical mean (variance) and the prior mean (variance) are equal.

So, there is a little information in the prior. A critical discussion about this combination

of parameter prior and data normalisation can be found in Subsection 3.5.2.2. From this

point of view, in the context of normalised interventional data the mean and variance

prior parameters contain more information, when all network realisations are used for

computing a local score, that is when the local score of a non-intervened node is com-

puted. In this case the empirical means and variances are equal to the prior parameters.

But on the other hand, when some network realisations have to be excluded, that is

when the local score of an intervened node is computed, the empirical characteristics of

all network variables change slightly, so that there is a little discrepancy between the

two prior parameters and their corresponding empirical characteristics.

Usually, when setting the equivalent sample sizes to their minimums (see Subsec-
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Figure 5.15.: Sactter plot of the mean posterior probabilities (undirected edges - UGE) for the Net-

builder data with low noise level from the modified cytometric network topology. The

posterior probability means of all 55 possible undirected edges over the five observational

data sets (x-axis) are plotted against the corresponsing 55 means over the five interven-

tional data sets (y-axis). Points corresponding to one of the 16 true edges are plotted in

red colour.
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tion 3.5.2.2) the prior has only little effect on the local scores. But for a domain with lots

of indirect associations, being approximately equally strong as the true direct associa-

tions, e.g. Netbuilder data with low noise levels, probably already such a litte effect can

have some appreciable influence. Consequently, it may be that the better Bayesian net-

work performance on pure observational Netbuilder data with low noise levels in terms

of the UGE figure of merit is due to the more adequat prior parameter settings. To check

this, it was decided to analyse further observational and interventional Netbuilder data

sets. To this end five observational as well as five interventional data sets were generated

from the modified cytometric network topology for each of sixteen different noise levels

between 0 and 0.3. These 160 new Netbuilder test data sets were then analysed without

normalising them as well as after having normalised them as usual. Thereby in both

cases exactly the same prior Bayesian network, that is a network whose nodes are inde-

pendently standard Gaussian distributed, was used. Figure 5.16 shows the results of this

extensive analysis in terms of mean AUROC1 trace plots. It can be clearly seen from

panel (a) that the data normalisation has not effect on the learning performance for pure

observational data. That is the true network topology can be learnt equally well with

the continuous Gaussian scoring metric BGe. So, it does not depend on whether the

raw data or the normalised data are used, although the assumption of a prior network

of independently standard Gaussian distributed domain variables is more informative

for the normalised data than for the raw data. Furthermore it can be seen that both

figures of merit output approximately the same AUROC1 scores. This is not surprising,

because the modified cytometric graph topology DAGV was used, in whose CPDAG

most of the edges are directed, so that their directions can be learnt by Bayesian net-

works. For the interventional Netbuilder data (see panel (b)) the DGE figure of merit

AUROCs are higher than the UGE figure of merit, and especially it can be seen that

analysing the raw interventional data leads to higher AUROC1 means for both figures

of merit when the noise level is low (σ < 0.06). Only for higher noise levels σ the data

normalisation has not effect on the learning performance. So, it can be concluded that

the data normalisation weakens the learning performance for interventional data when
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the noise level is low, what in turn means that the prior network can have a strong effect

on the learning performance when the noise level is low. From a theoretical point of

view the prior network of independently standard Gaussian distributed variables is more

informative for the normalised data than for the raw data. But practically it seems that

the small discrepancy between the prior information for scoring non-intervend and inter-

vened nodes when analysing the normalised data strengthens the indirect associations

which are given for Netbuilder data with small noise levels. And since the indirect as-

sociations are approximately equally strong as the direct associations (edges) this yields

misleading results. On the other hand, when analysing the raw data, so that there is

nearly no information in the prior network, the effect of the prior network seems to be

negligible. Especially when comparing the corresponding curves in panel (a) and panel

(b), it can be seen that (in contrast to the trend observed for normalised Netbuilder

data) the performance in terms of the UGE figure of merit is not better for the pure ob-

servational data than for the interventional data when analysing the raw data. So, it can

be concluded that the bad learning performance of Bayesian networks on interventional

Netbuilder data with low noise level σ is most likely due to an interplay between the

little influence of the prior network and the indirect associations being approximately

equally strong as the true associations in the Netbuilder data with low noise level.

On the one hand, this finding points out that the prior network of the BGe scoring met-

ric can have a strong effect on the learning performance when there are lots of indirect

associations between the variables, so that it must be always set with extreme caution.

On the other hand, as such weak noises will be rarely given for real expression data, the

bad learning performance can be considered as an artificial phenomenon in the context

of this cross-comparative evaluation study.

Bearing in mind all those findings, it seems to be useful to have a second look at the

performances of all three learning methods on all different kinds of data sets generated

from the original (DAGO) and the modified (DAGV ) cytometric graph topology. But

instead of looking at the AUROC1 scores, which summarise the learning performance

over all reachable combinations of sensitivity and (inverse) specificity by integrating ROC
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Figure 5.16.: Trace plots of mean AUROC1 scores. For sixteen different noise levels σ five observational

as well as five interventional data sets were generated with the Netbuilder tool using OR

regulation ports. All 160 data sets were then analysed without normalising them (raw

data), and after having normalised them as usual (normalised data). The left panel (a)

shows AUROC trace plots for the observational data, and in panel (b) the mean AUROC

scores for the interventional data are plotted. The solid lines corresponds to the UGE

figure of merit AUROC trace plots, and the dotted lines represent the DGE figure of

merit mean AUROCs. The raw data analysis AUROC trace plots are represented in red,

and the normlised data analyis AUROC trace plots are represented in black.
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Graph topology

DAGO DAGV

UGE 0.86 0.87

DGE 0.94 0.90

Table 5.8.: Specificities corresponding to five false positive edges

curves, alternatively the number of true positive (TP) extracted edges, obtained when

accepting 5 false positive (FP) edges, can be compared. This criterion is based on the

selection of a threshold on the association scores of all edges, so that a specific network

prediction is obtained. Each edge exceeding the threshold is outputed as a predicted

edge of the network, and can be either a true edge of the real network (true positive

(TP) edge finding) or a non-present edge of the real network (false positive (FP) edge

finding). Correspondingly, if a certain edge is not extracted, this can be either a true

negative (TN) edge finding, if this edge is not present in the true network, or a false

negative (FN) edge finding, if the edge is present in the true network.

With regard to a cross-method comparison, the same threshold on the association scores

can not be used for all three methods, because such an approach not only leads to

different true positive (TP) counts but also to different false positive (FP) counts for the

three methods, so that neither the TP counts (sensitivities) nor the FP counts (inverse

specificities) can be adequately cross-compared. But choosing three different thresholds

tBN , tGGM , and tRN , so that each method outputs exactly 5 false positive edges, it

can be guaranteed to compare the number of extracted true positive (TP) edges at the

same specificity (i.e. the same number of false positive (FP) edges). The value 5 for

the number of false positive edges is arbitrarily selected, but corresponds to practically

relevant specificities, because in practical (biological) applications one is particularly

interested in the performance of reverse engineering methods for low numbers (rates) of

false positive (FP) counts.

Table 5.6 gives an overview to which specificities five false positive (FP) edge findings

correspond for all four combinations of figure of merit (UGE and DGE) and graph

topology (DAGO and DAGV ).
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The specificities differ since there are 20 edges in DAGO and 16 edges in DAGV , what

in turn means that there are 35 undirected (90 directed) true negative edges in DAGO

and 39 undirected (94 directed) true negative edges in DAGV . If different numbers of

true positive (TP) counts can be reached for the same number of false positive (FP)

counts 5, it was decided to average over the lowest and the highest compatible TP

count. Fortunately, it never happend that the predefined false positive (FP) rate of size

5 was skipped due to false and true positive edge findings with identical association

scores (ties), so that no interpolations were necessary.

Scatter plots of these TP counts can be found in Figure 5.17. But when consid-

ering these plots, it is important to bear in mind that each combination of figure of

merit (UGE and DGE) and network topology (DAGO and DAGV ) corresponds to a

different specificity (see Table 5.6). Therefore neither the TP-scores for UGE and DGE

in each panel nor the TP-scores for the two different graph topologies can be directly

compared. I.e. each panel has to be considered on its own, and it is not valid to

cross-compare the locations of the two different symbols (circles and triangles). P-values

of one sample t-tests can be found in K. Appendix XI.

For most of the test data set types these new scatter plot diagnostic results are similar

(or at least comparable) to the corresponding AUROC1 scatter plots. That is as before,

Bayesian networks (BNs) are superior to both other methods when there are interven-

tional data, and otherwise there is not much difference between GGMs and BNs. Only if

the topology DAGV which has lots of v-structures is used BNs even perform better than

GGMs for pure observational data in terms of the DGE figure of merit. That is Bayesian

networks can learn some edge directions then. On the other hand, the Relevance network

(RN) approach is outperformed by both other methods (BNs and GGMs) except for the

real expression data and the Netbuilder data with high noise level (σ = 0.03). Some

possible explanations for that were already discussed above. But there is a clear differ-

ence for the Netbuilder data with low noise level (see panels (a) and (d) in Figure 5.17).

When looking at the filled circles (red and blue), which correspond to scores obtained for
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(a) Netbuilder (DAGO,σ = 0.01)
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(b) Netbuilder (DAGO,σ = 0.1)
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(c) Netbuilder (DAGO,σ = 0.3)
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(d) Netbuilder (DAGV ,σ = 0.01)
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(e) Netbuilder (DAGV ,σ = 0.1)
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(f) Netbuilder (DAGV ,σ = 0.3)
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(g) Gaussian (DAGO)
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(h) Gaussian (DAGV )
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Figure 5.17.: Scatter plot of the true positive (TP) counts obtained when accepting five false positive

counts (FP=5). RN versus GGM (in blue) and RN versus BN (in red). Empty symbols

represent observational data and filled symbols represent interventional data. The UGE

(DGE) figures of merit are represented by circles (triangles). In each plot, to visualise

overlaid points uniformly distributed random numbers between -0.5 and 0.5 were added

to the coordinates of all points.

140



5. Comparative evaluation

interventional data using the UGE figure of merit, it can be seen that the performance

of GGMs (panel (a)) and BNs (panels (a) and (b)) has improved in terms of this new

TP-score. (In contrast: in terms of the AUROC1 scores especially Bayesian networks

performed surprisingly bad on interventional data (UGE).) To find an explanation for

this discrepancy it is useful to have a look at the corresponding ROC curves.

Figure 5.18 provides the UGE figure of merit ROC curves for each of the 5 interventional

Netbuilder data sets with low noise level. It can be seen that the progression of the three

different ROC curves is almost the same for all 5 data sets. Although Relevance networks

yield the highest AUROC1 scores, that is the biggest areas under the ROC curves,

especially for low inverse specificities (i.e. high specificities) there is a directly opposed

trend. From each panel can be seen that for very low inverse specificities GGMs perform

better than BNs, which in turn perform better than RNs. And then there is always a

region (slightly increased inverse specificities) where holds that BNs perform better than

GGMs, which in turn perform better than RNs. The interpretation is straightforward:

Obviously holds that RNs always learn some false positive edges first, but accepting

higher inverse specificities RNs learn all true positive edges somewhen. GGMs learn

some true positive edges first, but then extract more false positive edges for higher inverse

specificities, that is GGMs have more difficulties in finding the remaining true positive

edges. On the other hand, Bayesian networks extract many edges simultaneously at the

beginning, and this mixtures of true positive and false positive edges leads to sensitivities

which are higher than the sensitivities of the other two methods reached for the same

(inverse) specificity. But it seems that some of the true positive edges are never found by

Bayesian networks, so that BNs especially for high inverse specificities show a very bad

learning performance, what in the end is the reason for the low AUROC1 scores. This

finding especially demonstrates that it is difficult to specify an adequate (fair) threshold

ǫ on the inverse specificities in ROC curves for computing AUROCǫ values instead of

AUROC1 values (see Section 3.6). As it can be seen from the panels in Figure 5.18

different thresholds would have led to completely different AUROCǫ relations between

the three methods.
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(b) data set no. 2
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Figure 5.18.: ROC curves (using UGE figure of merit) for all 5 interventional (OR port) Netbuilder

data sets generated from the original cytometric graph topology DAGO with low noise

level σ = 0.01. The vertical black line in each plot corresponds to an inverse specificity

of 30
35

≈ 0.14, what in this case (UGE and DAGO) corresponds to 5 false positive (FP)

counts. The BN curves are red, the GGM curves are blue, and the RN curves are black.

The diagonal dashed lines correspond to random predictors. Although RNs reach the

best performance in terms of AUROC1 scores, it can be clearly seen that the more

sophisticated methods (GGMs and BNs) perform clearly better for high specificities

(=low inverse specificities). Moreover, form the progressions of the ROC curves can be

seen that BNs extract many edges simultaneously at the beginning (both true and false

positives), while RNs each time extract some false edges first.
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A concise summary of all the results of this first detailed cross-metod comparison can

be found in Section 5.8.
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5.7. Detailed comparison between BGe-order and BDe-order

In this section the performance of the two different stochastic models for Bayesian net-

works (BNs) are cross-compared on different test data sets. As described in detail in

Section 3.5.2 there are two different stochastic models, also called scoring metrics, for

Bayesian networks: the continuous Gaussian model (BGe) and the discrete multinomial

model (BDe). The continuous Gaussian scoring metric (BGe) models the (continuous)

data as realisations of multivariate Gaussian distributions, and thereby the BGe model

uses a normal-Wishart distribution as parameter prior (see Subsection 3.5.2.2 for fur-

ther details). The disadvantage is that only linear relationships in the data can be

modelled. On the other hand, the BDe scoring metric models the data as realisations

of multinomial distributions, whereby a Dirichlet distribution is used as parameter prior

(see Subsection 3.5.2.1 for further details). Consequently, as multinomial distributions

can deal with discrete observations only, it is necessary to discretise the data. But then

the BDe score is a very flexible modelling tool, which even allows to model non-linear

relationships between the variables. So, there is a certain trade off between the informa-

tion loss incurred through data discretisation and the modelling flexibility.

If a user wants to use the Bayesian network (BN) methodology for learning regulatory

networks he has to decide for one of these two Bayesian network models, before he can

start learning the network from the data. From the literature it can be seen that re-

searchers usually decide more or less arbitrarily for one of these two BN models. Usually,

either the researchers hold the view that there may be non-linear regulation in the data,

so that they decide for the BDe scoring metric, or they want to avoid the information

loss incurred through data discretisation, so that they use the BGe scoring metric.

In [41] for example the BDe scoring metric was used to learn the cytometric network from

an extensive interventional data set, but there is no comment on why the BDe scoring

metric was used. However, the analysis of pure observational and interventional sub data

sets sets of size N=100 and size N=10 of this freely available extensive real cytometric

expression data set with both scoring metrics (BDe and BGe), using Order-MCMC for
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(c) AUROC0.1 and N=100
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(d) AUROC0.1 and N=10

Figure 5.19.: Scatter plots of Bayesian network AUROCǫ values: BGe (x-axis) versus BDe (y-axis).

All test data sets were sampled from the available real cytometric expression data. Two

different sample sizes (N=10 and N=100) and two different ǫ values (0.1 and 1) were

used. Empty symbols represent the AUROC scores for pure observational data and filled

symbols represent the AUROC score for interventional data. As usual, the DGE figures of

merit that take the edge directions into consideration are represented by triangles, while

the UGE figures of merit that completely discard the edge directions are represented by

circles
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learning, reveals that none of this two scoring metrics performs significantly better than

the other one. In Figure 5.19 scatter plots of AUROC1 and AUROC0.1 scores obtained

with the UGE and DGE figure of merit can be found. For each combination of data

set type (pure observational and interventional) and sample size (N=100 and N=10)

five data subsets were sampled, and the AUROC1 and AUROC0.1 scores were plotted

against each other. For the gold standard cytometric network topology see Figure 5.1 in

Section 5.2.

From all four panels can be seen that the symbols are located around the diagonal, so

that there is no clear trend for one of these two different scoring metrics. Unfortunately,

the true regulatory mechanisms of the cytometric network are not known, so that the

strength of non-linear regulation can not be appraised. Consequently, it can be concluded

only that there is no trend in favour of one scoring metric for these real expression data.

In L. Appendix XII there is a table with p-values which confirm these findings numerically

(see Table L.1).

To obtain more meaningful cross-comparion results, it is necessary to generate test data

sets with synthetic network generators, so that the degree of non-linearity is known. For

example, Figure 5.20 shows AUROC1 scatter plots for synthetic observational data gen-

erated from the original cytometric network topology using the Gaussian data generator

(see Section 3.7.1). The degree of non-linearity was set to zero and three different sample

sizes N=10, N=100, and N=1000 were used. From the three panels (a)-(c) can be seen

that independently of the sample size there is a clear trend in favour of the continuous

BGe model. For p-values see Table L.2 in L. Appendix XII.

As the modelling flexibility of the BDe model is not needed for learning the true graph

in this case of Gaussian distributed data, the results of this analysis demonstrate the

information loss incurred through data discretisation. Although, theoretically the BDe

model can also model the true relationships, and so can learn the true graph topology,

the AUROC values obtained with the BDe metric are substantially lower than the BGe

model AUROCs. Especially, it is surprising that even for the high sample size N = 1000

the BDe model is not capable of learning the true network topology as well as the BGe
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Figure 5.20.: Scatter plots of Bayesian network AUROC1 values: BGe (x-axis) versus BDe (y-axis).

All observational test data sets were generated with the Gaussian data generator without

including any non-linearity (p=0). But three different sample sizes N=10, N=100, and

N=1000 were used. Empty circles represent the AUROC1 scores for the UGE figure of

merit, and the DGE figure of merit AUROC1 scores are represented by filled triangles.

model. In the end, it can be concluded that the BGe scoring metric is inferior to the

BDe scoring metric for Gaussian distributed data sets. But as Gaussian distributions

of expression data are not biologically realistic, it is important to look at more realistic

data generated with the Netbuilder data generator. The Netbuilder test data sets already

used in the previous Section 5.6 were generated using OR-ports. So, there is only a slight

degree of non-linearity in the Netbuilder data sets, as the effects of parent nodes on their

child nodes are nearly additive. Figure 5.21 shows AUROC1 scatter plots for all these

Netbuilder data sets. As expected, in analogy to the AUROC scores observed for the

Gaussian test data sets there is also a trend in favour of the BGe scoring metric. But an

interesting deviation from this trend is given for the interventional data sets and the low

noise level σ = 0.01 (see panels (a) and (d)). For interventional Netbuilder data with

low noise level σ, it seems that the multinomial BDe scoring metric performs better than

the Gaussian BGe scoring metric. The bad performance of the Gaussian BGe scoring

metric on interventional Netbuilder data with low noise level σ was already investigated

in more detail in Section 5.6.
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(d) DAGV and σ = 0.01
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(f) DAGV and σ = 0.3

Figure 5.21.: Scatter plots of Bayesian network AUROCǫ values: BGe (x-axis) versus BDe (y-axis).

All test data sets of size 100 were generated with the Netbuilder software tool using OR

regulation ports. Thereby two different graph topologies, that is the original (DAGO) and

the modified (DAGV ) cytometric graph topology, as well as three different noise levels σ

were used. Empty symbols represent the AUROC1 scores for pure observational data, and

filled symbols represent the AUROC1 scores for interventional data. Furthermore, the

DGE figure of merit AUROCs are represented by triangles, while the UGE figure of merit

AUROC values are represented by circles. Table L.3 and Table L.4 in L. Appendix XII

provide the corresponding t-test p-values
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Conjecturally the bad BGe performance is a consequence of an adversarial interplay

between lots of strong indirect associations between the domain variables and the spec-

ified prior network. The prior network of independently standard Gaussian distributed

domain variables in combination with a data normalisation seems to strengthen these

indirect associations, and so weakens the learning performance of the BGe scoring met-

ric drastically. Since this phenomenon can be considered as an artificial one, it is not

reasonable to conclude that the multinomial BDe scoring metric for which the data nor-

malisation has no effect is a better scoring metric for interventional Netbuilder data with

low noise level. Especially, it can be seen from panel (a) and panel (d) that the BDe

scoring metric is inferior to the BGe scoring metric on the corresponding observational

Netbuilder data sets with low noise level σ.

Although there is a little non-linearity in the Netbuilder data generated with OR reg-

ulation ports, except for the interventional data with low noise level, the BDe scoring

metric performs sytematically worse than the BGe scoring metric. And as mentioned

above the exception is presumably due to an artificial phenomenon. Consequently, it

seems that there is need for a higher degree of non-linearity in the data to obtain better

results with the BDe model than with the BGe model. For the Netbuilder with OR

ports (see Figure 5.21) there are also tables with p-values available in L. Appendix XII.

A first possibility to check this, is to generate for each of 11 different non-linearity para-

meters p five observational data sets with N=100 observations each with the Gaussian

data generator. Looking at the corresponding model equations in Section 3.7.1, it can be

seen that the degree of non-linearity increases with p ∈ [0, 1]. Especially, for p=0 there is

no non-linear regulation, and for p = 1 there is exclusively non-linear regulation. Trace

plots of the mean AUROC1 and AUROC0.1 scores obtained with the two scoring metrics

BDe and BGE for different degrees of non-linearity (p) using both figures of merit are

shown in Figure 5.22. From these trace plots can be seen that the BDe model perfor-

mance does not depend on the degree of non-linearity. The UGE mean AUROC1 values

fluctuate around 0.75, and the UGE mean AUROC0.1 values fluctuate around 0.025.

So, the mean AUROC scores do not depend on the parameter of non-linearity p. But
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from the trace plots of the BGe scoring metric can be seen that the performance of this

BN model strongly depends on the degree of non-linearity p. While the true cytomet-

ric graph topology can be learnt almost perfectly if there is little non-linear regulation

(p<0.2), the mean AUROC scores are decreasing in p. And especially, for non-linearity

parameters p higher than 0.5 the performance of the BGe scoring metric becomes worse

than the performance of the BDe scoring metric. For p≥0.8 nearly nothing can be learnt

(UGE and DGE mean AUROC1 around 0.5). Nearly the same progressions of the mean

AUROC curves can be observed for interventional data generated with the Gaussian

data generator (not shown in this thesis).

As a little additional analysis these data sets were used to visualise to which degree

Bayesian networks can benefit from the intervention information (see M. Appendix XIII).

Another alternative possibility to check the effect of non-linear regulation is to generate

Netbuilder data with the alternative regulation ports AND and XOR. Thereby especially

the XOR regulation port yields a high degree of non-linear regulation. But since the

data transformations x → x
x+1 usually applied in Netbuilder weaken the effect of non-

linearity, it was decided to omit these transformations when generating new Netbuilder

data sets with different regulation ports. Omitting those transformations the ports

are simply designed as follows: AND(x,y)=x · y, OR(x,y)=x + y · (1 − x), XOR(x,y) =

(1−x+x·y)·(1−y+x·y). In the modified cytometric network topology there are six nodes

having exactly two parents. These six ports were set to OR, AND, and XOR regulation,

while for the node having three parent nodes the OR port was left unchanged. For

each of these three Netbuilder networks having the same topology DAGV but different

regulatory mechanisms, i.e. regulation ports, some test data sets were generated. More

precisely for each of these networks for three different noise levels σ = 0.01, σ = 0.1

and σ = 0.3 as usual five observational as well as five interventional test data sets were

generated and afterwards analysed with both Bayesian network scoring metrics using

the usual Order-MCMC approaches. Scatter plots of the AUROC1 scores can be found

in Figure 5.23. Table L.5, Table L.6, and Table L.7 in L. Appendix XII provide the

corresponding t-test p-values.
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Figure 5.22.: AUROC trace plots illustrating the effect of non-linear regulation in the data. For

each of 11 different non-linearity parameters (p=0,0.1,...,1.0) five observational data sets

with N=100 observations were generated with the Gaussian data generator. The solid

lines correspond to the mean AUROC scores obtained by a Bayesian network Order-

MCMC approach using the continuous Gaussian scoring metric (BGe). The dotted lines

correspond to the mean AUROC scores obtained by a Bayesian network Order-MCMC

approach using the discrete multinomial scoring metric (BDe).
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From panels (a)-(c) in Figure 5.23 can be seen that omitting the transformations does

not yield a change in the trends for the OR-regulation port Netbuilder data sets. And

even replacing six OR regulation ports by AND ports does not lead to different trends

(see panels (d)-(f)). Except for the presumably artificial phenomenon which is observable

for the interventional Netbuilder data with the low noise level, the BGe scoring metric

performs better than the BDe scoring metric. Only when replacing the six OR ports

for XOR regulation ports, the trend in favour of the BGe scoring metric disappears. It

even seems (see panels (g)-(i)) that the BDe scoring metric is often slightly superior to

the BGe scoring metric when XOR regulation ports are given. So for example, the BDe

metric performs slightly better on the pure observational Netbuilder data with XOR

ports for all three noise levels σ. Nevertheless although the presence of XOR regulation

ports yields a high degree of non-linear regulation, the BGe scoring metric is only slightly

inferior to the more flexible BDe scoring metric which is therotically capable of learning

such non-linear XOR regulation ports.

All these findings which will be summarised and discussed concisely in Section 5.8 reveal

that the information loss incurred through data discretisation is profoundly, so that

the modelling flexibility of the discrete multinomial BDe scoring metric for Bayesian

networks yields better results than the BGe scoring metric only if there is a very high

degree of non-linearity in the data. Especially, it seems that the continuous Gaussian

BGe scoring metric is capable of learning network topologies even if there is a slight

degree of non-linear regulation.
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Figure 5.23.: Scatter plots of AUROC1 scores: BGe scoring metric (x-axis) versus BDe scoring metric

(y-axis) for each of nine different combinations of regulatory mechanisms (OR, AND,

XOR) and noise level σ using the modified cytometric network topology. For the inter-

pretation of the symbols see Figure 5.21.
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5.8. Summary of the results

In this section the results of the comparative evaluation study are summarised. During

the screening experiments the performance of ten different combinations of stochastic

models and learning algorithms were compared on real expression from the cytometric

networks as well as on synthetic data sampled from the same network topology. From

the results in terms of AUROC scores it could be seen that neither the different learning

algorithms for Gaussian graphical models (bagging and shrinkage) nor the two sampling

schemes Structure-MCMC and Order-MCMC lead to substantial different results, so

that it could be concluded that it is not necessary to distinguish between these algo-

rithms (sampling schemes) in the following more detailed comparisons. In the context of

Bayesian networks it was decided to focus on the Order-MCMC sampling scheme, while

the shrinkage based estimator for the covariance matrix was selected for the Gaussian

graphical models. Furthermore, as only Relevance networks based on pairwise mutual

information scores and Bayesian networks with the discrete multinomial scoring metric

(BDe) can model non-linear relationships, so that it presumably only depends on the

degree of non-linearity in the data, whether these two models perform better than the

others or not, it was decided to restrict on Bayesian networks with the Gaussian scoring

metric (BGe), Gaussian graphical models, and Relevance networks based on correlation

coefficients for a first more detailed comparison. These three reverse engineering models

can learn exclusively linear relationships between domain variables, so that it makes

sense to cross-compare their performances predominantely on data sets from domains

where the relationships between the variables are not deviating too much from linearity.

Afterwards a second more detailed comparison was accomplished in which the perfor-

mance of the two different Bayesian network models BGe and BDe were cross-compared

on data sets generated from networks with different degrees of non-linear regulation.

The first cross-comparative evaluation study, in which the three model classes: Bayesian

networks, Gaussian graphical models, and Relevance networks were cross-compared,

revealed that it does not necessarily depend on the sophistication of a reverse engineering
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model, whether it performs well or not. The supposition that with respect to the amount

of the statistical theory, the Bayesian networks must be superior to Gaussian graphical

models which in turn must be superior to the simple Relevance networks could not be

confirmed in general in the practical applications.

Rather it seems that the matematical and computational expenses associated with

Bayesian network approaches lead to a benefit under certain conditions only. Firstly, it

could be clearly seen that Bayesian networks clearly outperformed the other two model

classes on interventional data sets except for some special cases. The exceptions were

observed for Netbuilder data with very low noise levels. But using diagnostics of small

networks and an extensive analysis of further Netbuilder data sets it could be revealed

that this is presumably an effect of an adversarial interplay between the strong indirect

associations in such Netbuilder networks with low noise level and an inadequately spec-

ified network prior for the BGe scoring metric. Although the superiority of Bayesian

networks in learning network topologies from interventional data is not surprising, be-

cause from the three models under comparison only Bayesian networks can deal with

and so benefit from interventions, it could at least be confirmed that Bayesian networks

indeed clearly become superior then.

Secondly, it seems that Bayesian networks can learn edge directions and so causal re-

lationships between the domain variables when there is a true network topology with

special characteristics, that is lots of v-structures. This trend was especially observed

for the Gaussian distributed test data sets, but could also be seen for the Netbuilder

data with OR ports, except for the low noise level case already mentioned above. On

the one hand, these findings can be used to justify the higher expenses of an inference

with Bayesian networks even for pure observational data sets, but on the other hand the

performance of Gaussian graphical models was often approximately equally well, so that

especially with regard to domains with very high numbers of network variables it may

make sense to avoid the superexponentially increasing computational costs associated

with Bayesian network inference. For example the analysis of the real kidney cell gene

expression data set with 200 variables (genes) presented in Chapter 4 took some weeks
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of computation time. Alternatively, the data set could have been analysed within some

minutes using Gaussian graphical models or Relevance networks.

In addition to these considerations, it must be kept in mind that real biological networks

are not rarely based on feed back loops (cycles of directed edges), so that learning edge

orientations (causalities) does not make sense at all. From data of such graph topologies

with many cycles only the associations, that is undirected edges between variables, can

be learnt, so that a computational expensive Bayesian network approach which is based

on directed edges may be even extremely misleading.

Comparing the performances of Gaussian graphical models and Relevance networks, it

can be seen that Gaussian graphical models are only sometimes superior to Relevance

networks in terms of AUROC1 scores, and it can be concluded that computing partial

correlations instead of normal correlations, and so to distinguish between direct and in-

direct associations, does not always yield advantages. Only for the Gaussian distributed

data the Gaussian graphical models perform clearly better than the Relevance networks.

An exception is given for the sparse Gaussian data sets with 10 observations only. But

this exception is obviously due to the fact that the partial correlations between eleven

domain variables can not be learnt from ten observations only. For the Netbuilder data

only the following systematic trend can be seen. Gaussian graphical models perform

better than Relevance networks for the modified cytometric network topology with lots

of v-structures when there is a low or medium noise level; while for the high noise level

this superiority is given for the interventional data sets only. On the other hand, for the

Netbuilder data from the original cytometric network topology there is less difference be-

tween Relevance networks and Gaussian graphical models, and it seems that it depends

on whether there are interventional or observational data whether Gaussian graphical

models or Relevance networks perform slightly better.

But especially when comparing the number of true positive edge findings which can be

obtained when accepting five false positive edge findings, that is a practically more inter-

esting figure of merit, a superiority of Gaussian graphical models to Relevance networks

can be seen. While in some cases Gaussian graphical models are clearly superior to
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Gaussian graphical models, in the other cases either both methods yield equally good

results, or Gaussian graphical models are only slightly inferior. From this point of view

the comparative evaluation study in which Bayesian networks with the BGe scoring

metric, Gaussian graphical models and Relevance networks were cross-compared has

revealed that a computational expensive Bayesian network inference is advisable espe-

cially if there are interventional data. For pure observational data it depends on the

network topology whether a computational expensive Bayesian network is worthwile.

So, especially, for domains with lots of variables where Bayesian network learning is

hardly or not an option due to the immense computational costs, it is not unfavourable

to use a Gaussian graphical model learning approach instead. Furthermore the results

of the study show that Gaussian graphical models are preferable to Relevance network

approaches.

In the second more detailed cross-model comparison (see Section 5.7) the two scoring

metrics, that is the two different stochastic models, for Bayesian networks were cross-

compared on data sets with different degrees of non-linear regulation. The results of this

analysis have revealed that it is advisable to discretise continuous expression data only

if actually a very high degree of non-linear regulation is given. If there is only a slight

degree of non-linear regulation the modelling flexibility of the discrete multinomial BDe

Bayesian network model does not compensate the information loss incurred through the

necessary data discretisation. Especially, it could be seen that the continuous Gaussian

BGe model is capable of learning network topologies even if the dependencies between

the variables are deviating a little bit from linear relationships. So, it can be concluded

that the application of the BDe scoring metric should be used for domains for which the

data (the realisations of the variables) are measured at a discrete level a priori, while

for continuous data a discretisation, and so the use of the BDe scoring metric should

be avoided except for domains for which a high degree of non-linear regulation can be

expected.
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In this doctoral thesis different reverse engineering machine learning methods which

have been proposed in the literature to infer the architecture of biochemical pathways

and regulatory networks from high-throughput postgenomic data were cross-compared

to understand their relative merits and shortcomings. Such cross-method evaluation

studies are important, because all these learning methods are used in the field of systems

biology to analyse expression data. But although it is known that all these methods are

based on different criteria for quantifying the associations between the domain variables,

and so lead to different network topology predictions for the same domain, that is

extract different relationships from the same expression data set, researchers have to

decide for one of these methods without being able to include the results of empirical

studies in their decisions. Consequently, in most of the publications to date either no

reasons for the decision in favour of the applied reverse enginneering method are given,

or rather questionable justifications based on uncomfirmed theoretical suppositions are

given. So for example, users of Relevance networks often argue that more sophisticated

methods tend to overfit the data while Relevance networks approaches are based on

simple and well-known association scores like Pearson correlation coefficients which are

easy to interpret and ‘catch’ the most important information in the data. In contrast,

users which infer expression data with Gaussian graphical models usually argue that

is is useful to distinguish between indirect and direct associations, so that the usage of

partial correlation coefficients renders Gaussian graphical model approaches superior

to Relevance network approaches. While on the other hand they argue that it is not

useful to model expression data with Bayesian networks, because it may be misleading
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to extract causal relationships, although it is well known in systems biology that the

real regulatory mechanisms lead to some time delays between causes and responses

as well as not rarely include feed back loops, so that causal relationships can not be

extracted from gene expression data when the network variables are not measured over

time. Users of Bayesian networks usually do not agree in this point, but pronounce

that it is possible to learn causal relationships with Bayesian networks. Especially, the

experience of the author of this thesis is that biologists usually would like to have some

causal relationships extracted from their data, so that if they are not familiar with

the properties of the different reverse engineering methods difficulties, and so do not

know about the difficulty of extracting directed edges from non-time dependent data,

often tend to prefer a Bayesian network analysis of their data. But as soon as they

are informed about these problems, they become as perplexed as the experts for these

learning methods, so that it is difficult to reach a decision. And then, even if it is decided

in favour of a Bayesian network inference of the data, the next problem arises: Which

stochastic model (scoring metric) should be used? From a theoretical point of view it

is difficult to say whether it is better to use the continuous Gaussian Bayesian network

model (BGe) which can model linear relationships only, but avoids the information loss

implied through data discretisation, or whether it is better to analyse discretised data

with the much more flexible dicrete multinomial Bayesian network model (BDe).

Consequently, theoretical considerations can be used to discuss the relative merits and

shortcomings of the different learning methods only, but do not help to make a decision

as long as there are no empirical studies available which quantify these advantages

and disadvantages. Only if the results of such cross-method comparisons can be taken

into consideration, it is possible to objectively reach a decision in favour of a machine

learning method. The theoretical suppositions can be replaced by well-grounded

empirically confirmed arguments then.

It is clear that a single study, like the one presented in this thesis, can shed only some

light onto that problem. So the presented research is certainly not exhaustive, and
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must be seen as a first important step towards uncovering the relative advantages and

disadvantages of the different machine learning models empirically.

The biggest problem is to find adequate test data sets for such cross-method comparions.

Apriori neither true network topologies nor true regulatory mechanisms are known,

and using a synthetic data set generated from a random network topology with some

arbitrarily specified relationships between the domain variables is absolutely worthless,

because the merits and shortcomings of the methods, that is their performances

in learning, strongly depend on the network topology as well as on the regulatory

mechanisms that generated the data. In other words it does not matter how well a

machine learning method performs in learning when the true network domain is not

biologically realistic.

On the one hand, there are lots of regulatory networks described in the biological litera-

ture whose topolgies have been extracted from lots of independent traditional molecular

biological experiments. But although in these cases composing all information yields

the true network topolgies, neither are there data (freely) available then, nor is any-

thing known about the true regulatory mechanisms. On the other hand, real expression

data sets are often collected for discovering the unknown network topology behind its

variables, so that, altough the regulatory mechanisms which produced the data are real,

they can not be used as test data sets, because the true network topology is not known.

Consquently, it is impossible to extract the true regulatory mechanisms (since the true

network topology is not known) either.

Therefore, it is nearly impossible to find test data sets for which the true network

topology is known and the regulatory mechanisms are realistic. An invaluable exception

is the freely available cytometric data set which was collected to confirm the network

topology of the cytometric signalling pathway which had been composed from the

results of lots of independent traditional molecular biological experiments before. So,

the true gold standard cytometric network is known and in addition there are realistic
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proteomic expression data available. Accordingly, it was decided to use the cytometric

network topology to establish the basis for a cross-method comparsion. But as it is

never sure to which degree such a true gold standard network topolgy derived from lots

of different publications by biologists is reliable, additionaly synthetic data sets were

generated and used for the comparative study. And in fact, in a recent publication (see

[11]) it was pointed out that there may be a feedback-loop in the cytometric network

topology which was not included in the assumed gold standard network topology of

[41] (see Figure 5.1). More precisely, [11] report evidence for a feedback loop from

ERK back to RAF : ERK ⇋ RAF . If [11] are right, and such a feedback loop really

exists in the cytometric network, it may have led to some bias of the results obtained

for the real expression data in term of the directed edge evaluation (DGE), as there

is a little discrepancy between the true gold-standard network which was assumed in

this thesis and the real cytometric network topology. As already mentioned above,

especially Bayesian networks are intrinsically restricted to the modelling of directed

acyclic graph topologies (without any loops). Consequently, if there is an ambiguity

about the direction of the edge between ERK and RAF, this may have worsen the

Bayesian network performance on the real cytometric expression data in terms of the

DGE evaluation a little bit.

However, in the end such non-consistent publications show that the true gold standard

cytometric network topology which was assumed in this thesis may be wrong, and

so illustrates the importance of a combined evaluation based on real and synthetic

expression data. In any evaluation study based solely on real biological expression data,

there may be a discrepancy between the assumed gold standard and the true molecular

biological network topology, so that a bias of the results can never be precluded.

Observational as well as interventional synthetic test data sets were generated with a

self-implemented Gaussian data generator which produces Gaussian distributed data

from a given network topology as well as from the Netbuilder software tool. While from

a molecular biological point of view Gaussian distributed data are surely not realistic,
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data produced by the Netbuilder tool are seen as much more realistic by biologists.

In the end lots of hypotheses about the merits and shortcomings of the different reverse

engineering methods were generated, and not only scatter and trace plots were used to

visualise the performances of the different machine learning methods in a concise way,

but also t-test p-values were computed as descriptive characteristics for quantifying their

differences in the learning performances.

Theoretically, it would have been possible to generate new test data sets with the two

data generators using the same parameter settings, and to use the new data to verify

(or falsify) the generated hypotheses by confirmative statistical tests. But this was not

in the scope of the research presented in this tesis, because the validity of a confirmative

statistical test result pointing out that a particular learning method is significantly su-

perior to the other methods would be restricted to the particular kind of test data set,

and so can not be generalised.

What does it mean that a method performs best on a data set generated with the

Netbuilder software given a particular network topology and parameter setting? It is

already questionable whether such a claim can be confirmed when just varying the noise

level or the number of observations in the data sets. For that reason the author of this

thesis holds the view that it is more important to report some trends for as many as

possible different kinds of data sets instead of concentrating on some particular cases

without any general validity.

As a next step of research it would be useful not only to vary the parameters, such as

the number of observations and the noise level, but also to compare the performances of

the machine learning methods on data generated from alternative network topologies,

e.g. topologies having much more domain variables. Even if no real expression data

are available for these network topologies, it will be interesting to see, whether the

same trends observed for the cytometric topology can be seen for more extensive

network topologies too. Especially, the computational costs will become an important

issue when a network topology with much more domain nodes is considered. While
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the computational costs of Relevance networks and Gaussian graphical models stay

low, the costs of Bayesian networks increase exponentially with the number of domain

variables, so that it will be necessary to apply some heuristic approximations to save

some computational time. Furthermore, the modelling of time dependencies, such as

time delays between causes and responses as well as the inclusion of feedback loops,

that is cycles of directed edges between the domain variables, or selfloops, that is nodes

activating or inhibiting themselves, would be further interesing issues.

Theoretically, it can not be expected that the reverse engineering methods which were

cross-compared in this doctoral thesis can learn networks from time dependent data,

since they have been originally developed and proposed to learn networks from non-time

dependent expression data, and so can neither model nor deal with time delays and

so on. However, this shortcoming has not been a drawback yet, as molecular biological

experiments used to produce exclusively non-time-dependent high-throughput data. But

the development and availability of modern biotechnologies has just enabled biologists

to gather time dependent expression data. Due to the experimental costs and efforts

this has not become common practise yet, so that even nowadays non time-dependent

data are much more often collected than time dependent expression data. But it can

be expected that such time-dependent expression data will be more often available in

the next years. Time-dependent expression data can be either a single long time series

which reports the realisations (expressions) of all domain variables at lots of points in

time, or a set of short time series reporting the realisations of a domain measured in

some different individual experimental units (cells) at some points in time. For example

when a single long time series of length T is given then the realisations of the domain

variables at different (usually equidistant) points of time t are known, and it is possible

to model time-dependent interactions, that is the realisation of the variables at point

t can be modelled using the realisations at the previous point of time t-1. The two

model classes Bayesian networks and Relevance networks, can be easily transferred thus

to graphical models for equidistant spaced time-dependent data. Instead of Gaussian
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graphical models a novel approach has been proposed which can be used to extract

undirected edges from a set of (not necessarily equidistant) short time series using partial

dynamical correlations.

Bayesian networks for time-dependent data are referred to as dynamic Bayesian

networks. In dynamic Bayesian networks each (directed) edge has a non-ambiguous

meaning, as the same dependence relation can not be described by other edges

(especially not by the oppositely orientated edge). Moreover, there is no more acyclicity

constraint. Consequently, as the immense computational costs, which occur when

Bayesian networks are used to model network domains with many nodes, are implied

through the acyclicity constraints, dynamic Bayesian networks overcome the major

bottleneck of Bayesian network inference; that is they are computationally much more

efficient than Bayesian networks for non-time dependent data. More precisely, in the

context of dynamic Bayesian networks an edge pointing from node X to node Y means

that the realisation yt of Y at time point t depends on the realisation xt−1 of node X

at the previous point of time t-1. That is the local score of Y given its parent node X

has to be computed from the realisations: (xt−1,yt) for t=2,....,T, while the oppositely

orientated edge pointing from Y to X describes the opposite relationship, namely Yt

depends on Xt−1, and accordingly has to be scored with the realisations (yt−1,xt).

Consequently, there is no more need for a CPDAG representation in dynamic Bayesian

networks, as all edges are automatically compelled (non-reversible), and there are no

equivalent graphs describing the same set of independence relations. Especially even

cyclic graphs are allowed and can be modelled with dynamic Bayesian networks, e.g.

self loops, that is edges pointing from a node X to itself. The local score of a self-loop

from X to X can be computed from the realisations (xt−1,xt) for t=2,....,T. For further

details on dynamic Bayesian networks see [16].

Correspondingly, in the context of Relevance networks the association score between two

domain variables X and Y can be computed from the realisations (xt−1,yt) or (yt−1,xt) for

t=2,...,T, whereby the association between the former realisations corresponds to an edge
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pointing from X to Y, and the association between the latter realisations corresponds to

an edge pointing from Y and X. Furthermore for each domain variable X the strength

of a self loop can be computed from the realisations (xt−1,xt) for t=2,...,T. So, when

the Pearson correlation coefficient is used for measuring the strength of association, the

scores of such feedback loops are given by auto-correlations of order one. For further

considerations and some efficient algorithms see [46].

Gaussian graphical models approaches can not be adapted straightforwardly, but a com-

pletely novel approach has been proposed recently in the literature which treats the

realisations of a domain over time as a vector autoregressive (VAR) process, and so al-

lows to transfer the Gaussian grahical model framework from non time-dependent data

to analyse time-dependent data. More precisely, the approach is based on the notion of

dynamical correlations between curves (trajectories), and computes the partial dynam-

ical correlations between trajectories as association score. Consequently, since (partial)

dynamical correlations measure the similarity between trajectories the idea behind this

new approach is different from the Bayesian network and Relevance network approaches

presented above. That is, instead of explaining the realisations at time point t by the

realisations given for the previous time point t-1, loosely speaking, the idea of this novel

approach is to specify which pairs of trajectories conditional on all other trajectories are

either mostly on the same side of their time average function (positive partial dynami-

cal correlation) or mostly on the other side of their time average function. Thereby as

usal, the partial dynamical correlation between two curves is their dynamical correlation

conditional on all other curves, and can be computed from the dynamical correlation ma-

trix. Although a set of short time series is needed for this novel approach, and undirected

edges can be extracted only, the advantage is that it is also applicable to irregularily

spaced (non-equidistant) points of time t. See [36] for further details.

Since dynamic Bayesian networks as well as Relevance networks for time-dependent data

are based on the same scores (scoring metrics and association measures) the compara-

tive evaluation study presented in this doctoral thesis indirectly offers some first valuable

clues to a cross-method comparion of these learning methods on time-dependent expres-
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sion data. Especially in Section 5.7 the two scoring metrics BDe and BGe for Bayesian

networks have been cross-compared, and these two competing scoring metrics are also

available for dynamic Bayesian networks. It can be expected that in analogy to the

results obtained for the non time-dependent data the multinomial BDe scoring metric

is inferior to the Gaussian BGe scoring metric if the relationships between the variables

depend linearily on the realisations at previous time points, while the BDe scoring metric

is superior if and only if the true relationships between the domain variables strongly

deviate from linearity.
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This first appendix describes how to extract sub-networks, i.e. sub-structures of in-

teracting genes, from the confidences of Markov-relation-features in Bayesian network

methodology. A sub-network is a graph on a small subset of the variables (nodes) in the

domain whose edges encode pairwise Markov-relation-features between these variables.

The aim is to identify sub-networks of high statistical confidence, that is sub-networks

containing many pairwise Markov-relation-features with high confidence. The approach

presented in this appendix was developed by [14].

Within this appendix it is assumed that there are n variables in a domain, and C(Xi, Xj)

is the estimated confidence of the Markov-relation-feature between variable Xi and vari-

able Xj , whereby i, j ∈ {1, ..., n} and i 6= j. The key assumption of the approach is

that the confidences of the pairwise Markov-relation-features are stochastically indepen-

dent and identical distributed. This means that for all pairs of nodes (Xi, Xj) holds:

P (C(Xi, Xj) ≥ c) = g(c). Considering a subset U of the domain variables with cardi-

nality k, whereby without loss of generality within this appendix it is assumed that the

set U is equal to the set {X1, ..., Xk}, there are K = k·(k−1)
2 Markov-relation-features

between the variables in U . G(U) is the sub-graph over the sub-domain U contain-

ing all the undirected edges with a Markov-relation-feature confidence not less than a

specified threshold value tM . Thereby, due to the fact that Markov-realtion-features are

symmetric, i.e. C(Xi, Xj) = C(Xj , Xi), undirected edges can be considered only. The

probability P (G(U); c1, ..., cq) that the undirected sub-graph G(U) contains at least q

undirected edges with confidences e1, ..., eq higher than c1, ..., cq > tM is then bounded

by:
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P (G(U); c1, ..., cq) = P (ei1 ≥ c1, ..., eiq ≥ cq| {i1, ..., iq} ⊂ {1, ..., k}) ≤
(

K

q

)
·

q∏

i=1

g(ci)

where K = k·(k−1)
2 is the number of possible undirected edges in sub-graph G(U), from

which q can be selected randomly. The product
∏q

i=1 g(ci) provides the probability that

for a fixed set of edges e1, ..., eq holds {e1 ≥ c1, ..., eq ≥ cq}.
Thus the expected number of such sub-graphs of size k can be bounded by:

B(k; c1, ..., cq) =

(
n

k

)
·
(

K

q

)
·

q∏

i=1

g(ci)

This bound can be used to ‘score’ sub-graphs, because it measures the frequency (prob-

ability) that a variable subset of size k contains at least q Markov-realtion-features with

confidences higher than c1, ..., cq. It remains the question how to compute the distribu-

tion of the confidences: g(.). Simple estimators for the probabilities g(ci) are given by

the following fractions:

ĝ(ci) =
|M [mi] |

n · (n − 1)/2

where |M [mi] | is the number of estimated Markov-relation-features with confidences

higher than ci. Consequently, for a sub-graph G(U0) of size k containing exactly q0

undirected edges with Markov-relation-features of confidences m1, ..., mq0 ≥ tM holds:

B(k; c1, ..., cq) =

(
n

k

)
·
(

K

q0

)
·

q0∏

i=1

|M [mi] |
n · (n − 1)/2

Thereby small scores mean that the corresponding sub-graph G(U0) contains many

Markov-realtion-features of high confidence, that is, edge-feature-constellations that are

rare for sub-graphs of size k. In other words, small scores indicate that there is a re-

markable high concentration of Markov-realtion-featutres of high confidences in G(U0),

because the probability for such an event is low.
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To avoid impractical computations, [14] recommend to use the following procedure for

finding such high-scoring sub-graphs:

• Initialisation:

The search starts with a triple-set of nodes U = {Xi, Xj , Xk} with pairwise

Markov-relation-features of high confidences: C1 = C(Xi, Xj) ≥ tM , C2 =

C(Xi, Xk) ≥ tM , and C3 = C(Xj , Xk) ≥ tM , where tM ∈ [0, 1] is a specified

threshold.

The corresponding score B(G(U); C1, C2, C3) is then given by:

(
n

3

)
·
(

3

3

)
·

3∏

i=1

|M [Ci] |
n · (n − 1)/2

• Iteration step:

At each iteration step either a node is added or removed from the current set U ,

attempting to improve the score as much as possible. More precisely, the following

new sets are build:

Uadd,l = U ∪ {Xl} for every node Xl /∈ U and

Urem,l = U \ {Xl} for every node Xl ∈ U .

For these n sets the corresponding sub-graphs G1, ..., Gn, containing exclusively

(undirected) edges with Markov-realtion-features of confidences higher than a sec-

ond specified threshodl tF ∈ [0, 1] can be formed and scored. If the score of the

set Ui with the lowest score is lower than the score of the current set U , U is

substituted by Ui. Otherwise, the iteration-process stops.

It is recommended to run the search-agorithm several times taking different subsets U of

size k as initialisations to obtain more than one sub-graph. Subsequently, it is possible

to extract (partially) directed sub-graphs form the undirected edges in U by directing

edges with high confidence in their orientation. For instance, if there are two nodes X

and Y in the outputed sub-graph U with an Order-relation-feature from X to Y with
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a confidence that is much higher than the confidence of the oppositely directed Order-

relation-feature (from Y to X), it can be assumed that X causes Y in the domain.

Although [14] recommend proceeding in this way, no strict decision rules can be given.

The authors in [14] remark that in addition it is useful to take biological knowledge into

consideration.
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Within this second appendix a very brief summary of some important concepts of chem-

ical kinetics is given. It is important to understand these biophysical concepts when

trying to model the dynamic process of protein production within cells. The reaction

between a substrate S and an enzyme E to form a product P via an activated complex

ES can be mathematically described as follows:

S + E
k1
⇋

k−1

ES
k2→ E + P

where k1 and k−1 are the association and dissociation rates for the enzyme-substrate

compley ES, and k2 is the association rate for the product P . Denote by [.] the con-

centration of a chemical compound. From the theory of chemical kinetics the following

relationship is known:

d[ES]

dt
= k1[E][S] − k−1[ES] − k2[ES]

where t denotes the time (see [2] for further details). In equilibrium, the concentration

of the active complex ES is constant, and hence the time derivative must be zero, that

is:

d[ES]

dt
= 0.

Applying the law of conservation of mass:
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[E]0 = [ES] + [E],

where the subscript 0 denotes the initial mass concentration at time t = 0, yields:

[ES] =
k1[E0][S]

k−1 + k2 + k1[S]
= 0.

This leads to the following expression for the reaction rate u = k2[ES], which was first

derived by [33] and [3]:

u = k2[ES] =
k2k1[E0][S]

k−1 + k2 + k1[S]
=

k2[E0][S]
k−1+k2

k1
+ [S]

=
V [S]

KM + [S]
(B.1)

Here, KM = k−1+k2

k1
is called the Michaelis-Menten constant, and V is the limiting rate

constant.

These equations of substrate-enzyme reaction kinetics can be used to model the binding

of transcription factors to cis-regulatory elements in the promoter region upstream of

a gene. In this approach, the substrate S corresponds to a gene, the enzyme E to a

transcription factor, the activated complex ES to a gene with a transcription factor

bound to its promoter, and the product P to mRNA transcribed. Interpreted this way,

(B.1) describes the transcription of a gene induced by the binding of a single transcription

factor to its promoter. More complex scenarios, where several transcription factors

cooperate or inhibit each other, can be modelled with the same approach, albeit leading

to more complex equations. In particular, the following equation originally proposed by

[25] is a generalisation of (B.1) to allow cooperativity between the transcription factors:

u =
V [S]h

Kh
0.5 + [S]h

Thereby the constant h is called the Hill coefficient, which describes how the binding of

one transcription factor to a cis-regulatory region affects the co-binding of other tran-

scription factors.
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In this third appendix some details about the properties of a self-written software

library that deals with Bayesian network learning via Markov Chain Monte Carlo

(MCMC) simulations (see Section 3.5) are described. While the computations for the

Relevance networks (see Section 3.3) and Gaussian Graphical models (see Section 3.4)

can be carried out with softwares provided by [6], [42], and [43], there are only few

softwares freely available which are capable of learning Bayesian networks from data.

Especially not any of the Bayesian networks softwares for free satisfies the required

needs. Either there is no possibility of learning Bayesian networks with MCMC

simulations, or the software includes MCMC learning but is too inefficient for dealing

with domains containing lots of variables; a necessary attribute when the goal is

to analyse gene expression data and to search for interacting genes. Consequently,

for the Bayesian networks all approaches had to be implemented. Using the soft-

ware package Matlab by the Mathworks company which provides a tool for coding

mathematical programs in an interpreter computer language, the approaches were im-

plemented in about 200 Matlab-subroutines. This section briefly describes some details

about this self-implemented software library. Thereby it focuses on the implemen-

tation of Structure-MCMC as this MCMC sampling scheme is the more complicated one.

First of all, the user has to decide which stochastic model (BDe- or BGe-metric) and

which learning scheme (Structure-MCMC or Order-MCMC) he wants to use. For each

of the four combinations different functions are available. They all take a collection

of observed data (i.e. gene expression data) as input and perfom the desired MCMC
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simulations using the desired stochastic model. The user has to specify some optional

arguments only, before running the simulations. Especially, a fan-in restriction has

to be inputed and the prior over graphs as well as the prior precision parameters

have to be specfied. Furthermore the user has to decide with which directed acyclic

graph (DAG) or node ordering the MCMC simulation is initialised. For instance for

Structure-MCMC, a random DAG, an empty DAG, and a DAG outputed from a simple

Greedy-Search-procedure can be selected. At this stage it is not necessary to determine

the length of the burn-in-time and/or the length of the sampling time, because the

implementation has the following feature: after a certain number of MCMC iterations

(also an optional argument) the program automatically stores all important data results

and informs the user about the number of iterations so far accomplished, i.e. the current

size of the sample. Especially, due to the fact that the current DAG or node ordering

as well as the inputed parameters are stored then, it is possible to resume the MCMC

simulation at a latter point of time, for example if the operating system hangs up during

the computations, or if it is necessary to accomplish the simulation in serval steps, for

example over nights, where the operating computer is not needed. Additionaly, the

user can have a look at the current results and decide whether the simulation shall be

continued or not. Furthermore, as it is often not useful to store every realisation of

the Markov Chain, the user can decide which realisations will be stored. Usually it

is sufficient to store every 1,000-th or 10,000-th realisation only, so that unnecessary

processing time for storing can be avoided.

For the representation of DAGs within the software so called adjacency-matrices are

used. The adjacency-matrix IG of a DAG G over a domain with n nodes X1, ..., Xn is a

n×n-matrix, in which the entry (i, j) is either set to one if the DAG contains an directed

edge pointing from node Xi to node Xj , or is set to zero otherwise. For example, if we

set X1 = A, X2 = B, X3 = C, X4 = D, and X5 = E is set, the adjacency-matrix of the

DAG presented in Figure 3.1 in Section 3.5 is given by:
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Figure C.1.: Example of a Bayesian network (DAG) with 5 nodes used in Section 3.5

IG =




0 1 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0




Furthermore the so called ancestor-matrix AG of each DAG is computed. The i×j entry

of the ancestor-matrix is either set to one if the DAG G contains a path of directed edges

leading from node Xj to node Xi, or is set to zero otherwise. The computation of the

ancestor matrix is useful as this matrix can be used to determine the neighbourhood of

a DAG as shown below if Structure-MCMC is used. The matrices IG and AG are in the

following relationship: The i × j entry of AG is one if the i × j entry of A⋄
G is positive,

and it is zero if the corresponding entry of A⋄
G is zero, whereby the matrix A⋄

G is defined

as follows:

A⋄
G =

(
IG + I2

G + ... + In−1
G

)T
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So, the ancestor-matrix of the DAG presented in Figure 3.1 in Section 3.5 is given by:

AG =




0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 1 1 0 1

1 1 1 1 0




Using the adjacency-matrix IG and the ancestor matrix AG it is relatively simple to

determine all neighbour DAGs of the given DAG G, that is the collection of all DAGs that

can be reached from G by a single edge deletion, addition, or reversal without introducing

any directed cycles. For instance, in Figure 3.1 it is not allowed to add the edge ‘D → A’

because this would lead to the following two directed cycles: ‘A → B → D → A’ and

‘A → C → D → A’. In general, the following rules can be used (see [20]):

Consider a DAG G over the domain {X1, ..., Xn} with adjacency matrix IG and ancestor-

matrix AG. Then the following rules can be used to decide which single-edge operations

lead to a neigbour graph, and which are invalid due to the acyclicity-constraint.

• Edge-Deletions: All possible edge deletions are always valid, because the removal

of a directed edge can not introduce any directed cycle. Consequently, an edge

‘Xi → Xj ’ is removable if and only if this edge is present in G, that is if IG(i, j) = 1

holds. to this end, the implemented software searches for all adjacency-matrix

entries being equal to 1.

• Edge-Additions: Edge additions are not always valid, and there are two problems

that my occur. Firstly, the edge may be already present, so that it can not be

added. And secondly, the addition of an edge may lead to one or more directed

cycles. Consequently, the following condition for valid addition operations can be

used: The addition of the directed edge ‘Xi → Xj ’ is valid if and only if IG(i, j) = 0

and AG(i, j) = 0. In the implementation the following matrix MG is computed

MG = 1n,n − IG − En − AG
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where 1n,n and En represent n × n matrices with the following properties:

1n,n(i, j) = 1 for all pairs (i, j) and En = 1 if i 6= j, and 0 otherwise.

Subsequenty, all non-zero entries of the matrix MG are determined, as it is valid

(with respect to the acyclicity-constraint) to add these edges not present in G.

More precisely, it is valid to add the edge ‘Xi → Xj ’ if and only if MG(i, j) > 0.

• Edge-Reversals: The reversal of a directed edge ‘Xi → Xj ’ is a two step move.

Firstly, the edge is removed from G, and then the oppositely directed edge

‘Xi ← Xj ’ is added to G. Thereby the first step poses no problem as edge re-

movals are always valid. But the second step can introduce direcetd cycles since

it is an edge addition. Compared with edge addition operations the problem is

that the j-th row of the ancestor-matrix AG may indicate ancestors of Xj , which

are exclusively inherited by the edge from node Xi to Xj which is removed within

the first removal step. Therefore, it is necessary to determine all ancestors of node

Xi through every parent-node Xk of Xj excluding Xi itself as a parent of Xj .

This leads to the rule, that the reversal of the edge ‘Xi → Xj ’ is valid if and

only if the following two conditions hold: IG(i, j) = 1 and AG(k, j) = 0 for all

k ∈ {1, ..., n} \ {i} with IG(k, i) = 1.

In the implementation, more generally, the matrix RG = IG − (IT
G · AG)T is com-

puted. All positive entries RG(i, j) > 0 correspond to valid edge reversal operations

from ‘Xi → Xj ’ to ‘Xi ← Xj ’.

If a fan-in restriction f is specified, a further condition must be satisfied for edge additions

and edge reversals. Adding a directed edge ‘Xi → Xj ’ increments the cardinality of

the parent-set of node Xj . Therefore, it is valid only if: IG(1, j) + ... + IG(n, i) < f.

Consequently, edge-additions and edge-reversals not satisfying this additional condition

must be excluded too, as they are invalid with respect to the fan-in restriction.

The exclusion of non-compelled edge reversals from the valid edge reveral operations is

more difficult to implement. If the user decides for the exclusion of non-compelled edge-

reversals, the software checks for all valid edge-reversals from ‘Xi → Xj ’ to ‘Xi ← Xj ’,
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whether these edges between Xi and Xj are compelled or not. The edge ‘Xi → Xj ’ is

non-compelled if and only if the following condition holds:

pa(Xj) = pa(Xi) ∪ {Xi}

That is, the edge ‘Xi → Xj ’ is non-compelled in G if and only if the nodes Xi and Xj

have the same parent-set after the removal of the edge from Xi to Xj . Thereby in turn

the following equivalence relation holds:

pa(Xj) = pa(Xi) ∪ {Xi} ⇔ IG(k, j) = IG(j, k) for all k ∈ {1, ..., n} \ {i}

So, if the user decides to exclude the reversal of non-compelled edges in Structure-

MCMC, for each edge ‘Xi → Xj ’ with RG(i, j) > 0 is checked, whether the latter

condition is satisfied. If it is not, the reversal of the edge ‘Xi → Xj ’ is considered as an

invalid one.

Adding, removing, or reversing an edge ‘Xi → Xj ’ in G yields a new DAG G⋆. While

the adjacency-matrix IG⋆ of this new DAG can be simply obtained from IG by setting

IG(i, j) = 0 if the edge is removed, IG(i, j) = 1 if the edge is added, and IG(i, j) =

0 as well as IG(j, i) = 1 if the edge is reversed, it is more difficult to compute the

ancestor-matrix AG⋆ of the new graph. As the straightforward way, that is computing the

matrix A⋄
G⋆ =

(
IG⋆ + I2

G⋆ + ... + In−1
G⋆

)T
, is computational expensive, [20] recommend to

use update-rules for obtaining the new ancestor matrix. For each of the three edge

operations they present an update rule that can be used to derive the ancestor-matrix

of the neighbour DAG G⋆ from IG and AG. These update-rules are implemented in our

software, and lead to a remarkable reduction of the computational costs of Structure-

MCMC simulations.
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In this fourth appendix some results are presented that confirm that the shrinkage based

Gaussian graphical model estimator (GGM-4) is superior to the other three bagging-

based estimators for GGMs. In addition to the test data sets used in Section 5.5,

some further test data sets were generated with the Netbuilder data generator (see

Section 3.7.2). Thereby it was distinguished not only between the two sample sizes

N = 10 and N = 100 and the two AUROC criteria AUROC1 and AUROC0.1, but

also between two different ‘experimental’ noise levels in terms of two different signal-to-

noise ratios. More precisely, to each variable Xi of the cytometric domain an additional

noise variable Ei was added after having generated the data sets with the Netbuilder

software. The realisations ei of these noise variables Ei were sampled from a standard

Gaussian distribution N(0, 1) and mutiplied by the factor 1
τ
× Sxi

, whereby Sxi
is the

empirical standard deviation of the realisations xi of domain variable Xi outputed from

Netbuilder. Consequently, the factor τ can be interpreted as the empirical signal-to-noise

ratio (SNR): τ =
Sxi

Sei
. The signal-to-noise ratio was set to 1 and to 10, so that very noisy

data (τ = 1)as well as non-noisy (τ = 10) data sets were included. As the noise was

added after having generated the data, it is denoted ‘observational’ noise. The dynamic

noise included during generating the Netbuilder was set to the low noise level σ = 0.01.

For all four combinations of sample size N and signal-to-noise ratio τ five observational

data sets were generated, and the mean AUROC scores for all four GGM estimators

using both AUROC criteria can be found in Table D.1.

Only in three of eight cases there is another GGM estimator leading to a slightly higher

mean AUROC value than the shrinkage based estimator (GGM-4). Consequently, these
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SNR N AUROCǫ GGM-1 GGM-2 GGM-3 GGM-4

1 100 1 0.5663 0.5691 0.5660 0.5726

1 100 0.1 0.0084 0.0084 0.0086 0.0081

1 10 1 0.4906 0.4526 0.4760 0.4917

1 10 0.1 0.0083 0.0054 0.0037 0.0064

10 100 1 0.6889 0.6917 0.6857 0.7711

10 100 0.1 0.0274 0.0274 0.0274 0.0270

10 10 1 0.5037 0.5657 0.4674 0.7300

10 10 0.1 0.0084 0.0107 0.0056 0.0210

Table D.1.: Results for the observational Netbuilder data

results strengthen the superior position of the shrinkage-based estimator among all four

different estimators of the partial correlation coefficients.
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This fiftth appendix provides tables which summarise the AUROC1 results that were

obtained for data sets generated from three different sources: real gene expression mea-

surments, the Netbuilder generator tool, and the Gaussian data generator.

For all three kinds of test data sets a table with the means µ[AUROC1], standard devi-

ations σ(AUROC1), and some p-values p(.) of two-sided one-sample Student t-tests are

given.

The t-tests were used to test, whether the AUROC1 means are different or not. More

precisely, for each pair of methods Mi and Mj the null hypothesis H0: µ[AUROC1(Mi)] =

µ[AUROC1(Mj)] was tested against the corresponding alternative H1: µ[AUROC1(Mi)]

6= µ[AUROC1(Mj)]. Thereby no correction for multiple statistical testing was applied,

so that these p-values must be considered with caution. Although they can be seen as

meaningful descriptive statistics indicating, whether there may be a difference, they can

not be used to confirm H1 statistically.

All tables have the same structure. After a row indicating the figure of merit (UGE

and DGE) and the data set type (pure observational and interventional), there is one

row for each of the three methods under comparison (Bayesian networks (BN), Gaussian

graphical models (GGM), and Relevance networks (RN)) which contains the statistics

mentioned above. The last three columns p(BN), p(GGM), and p(RN) provide the t-test

p-values, whereby the abbreviations in brackets indicate against which other method was

tested.
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.8848 0.0543 - 0.8815 0.0079

GGM 0.8814 0.0373 0.8815 - 0.0015

RN 0.6809 0.0816 0.0079 0.0015 -

DGE - Observational

BN 0.7817 0.0711 - 0.6704 0.0239

GGM 0.7967 0.0286 0.6704 - 0.0015

RN 0.6407 0.0635 0.0239 0.0015 -

UGE - Interventional

BN 0.9661 0.0391 - 0.0024 0.0018

GGM 0.8203 0.0532 0.0024 - 0.0082

RN 0.7097 0.0541 0.0018 0.0082 -

DGE - Interventional

BN 0.9796 0.0187 - 0.0002 0.0002

GGM 0.7488 0.0409 0.0002 - 0.0081

RN 0.6631 0.0421 0.0002 0.0081 -

Table E.1.: AUROC1 COMPARISON - Gaussian data
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.9564 0.0273 - 0.0247 0.0469

GGM 0.8803 0.0656 0.0247 - 0.0909

RN 0.9323 0.0188 0.0469 0.0909 -

DGE - Observational

BN 0.8572 0.0100 - 0.0288 0.0116

GGM 0.7957 0.0508 0.0288 - 0.0891

RN 0.8362 0.0146 0.0116 0.0891 -

UGE - Interventional

BN 0.9346 0.0254 - 0.0188 0.0006

GGM 0.8300 0.0438 0.0188 - 0.1466

RN 0.8003 0.0082 0.0006 0.1466 -

DGE - Interventional

BN 0.9678 0.0114 - 0.0004 0.0000

GGM 0.7574 0.0339 0.0004 - 0.1359

RN 0.7336 0.0064 0.0000 0.1359 -

Table E.2.: AUROC1 COMPARISON - Netbuilder data with σ = 0.1
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.6904 0.0376 - 0.8754 0.2957

GGM 0.6854 0.0542 0.8754 - 0.6175

RN 0.6680 0.0546 0.2957 0.6175 -

DGE - Observational

BN 0.6231 0.0564 - 0.5316 0.7276

GGM 0.6443 0.0419 0.5316 - 0.6139

RN 0.6307 0.0425 0.7276 0.6139 -

UGE - Interventional

BN 0.7912 0.0335 - 0.0552 0.0003

GGM 0.7129 0.0559 0.0552 - 0.0010

RN 0.5686 0.0286 0.0003 0.0010 -

DGE - Interventional

BN 0.6969 0.0676 - 0.4802 0.0076

GGM 0.6656 0.0437 0.4802 - 0.0010

RN 0.5533 0.0222 0.0076 0.0010 -

Table E.3.: AUROC1 COMPARISON - Real cytometric expression data
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This sixth appendix provides tables which summarise the AUROC1 results that were

obtained for the observational data sets generated with the Gaussian data generator.

For three different sample sizes (N=10, N=100, and N=1000) the means µ[AUROC1],

standard deviations σ(AUROC1), and some p-values p(.) of two-sided one-sample Stu-

dent t-tests are given.

The t-tests were used to test, whether the AUROC1 means are different or not. More

precisely, for each pair of methods Mi and Mj the null hypothesis H0: µ[AUROC1(Mi)] =

µ[AUROC1(Mj)] was tested against the corresponding alternative H1: µ[AUROC1(Mi)]

6= µ[AUROC1(Mj)]. Thereby no correction for multiple statistical testing was applied,

so that these p-values must be considered with caution. Although they can be seen as

meaningful descriptive statistics indicating, whether there may be a difference or not,

they can not be used to confirm H1 statistically.

In the tables there are rows indicating the figure of merit (UGE and DGE) as well as

the current sample size N, and then there is one row for each of the three methods under

comparison (Bayesian networks (BN), Gaussian graphical models (GGM), and Relevance

networks (RN)) which contains the statistics mentioned above. The last three columns

p(BN), p(GGM), and p(RN) provide the t-test p-values, whereby the abbreviations in

brackets indicate against which other method was tested.
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE and N = 10

BN 0.7909 0.0488 - 0.0238 0.0164

GGM 0.7657 0.0627 0.0238 - 0.0560

RN 0.7123 0.0646 0.0164 0.0560 -

DGE and N = 10

BN 0.7051 0.0262 - 0.9407 0.0459

GGM 0.7066 0.0486 0.9407 - 0.0557

RN 0.6651 0.0503 0.0459 0.0557 -

UGE and N = 100

BN 0.8848 0.0543 - 0.8815 0.0079

GGM 0.8814 0.0373 0.8815 - 0.0015

RN 0.6809 0.0816 0.0079 0.0015 -

DGE and N = 100

BN 0.7817 0.0711 - 0.6704 0.0239

GGM 0.7967 0.0286 0.6704 - 0.0015

RN 0.6407 0.0635 0.0239 0.0015 -

UGE and N = 1000

BN 0.9756 0.0389 - 0.1638 0.0015

GGM 0.9551 0.0275 0.1638 - 0.0027

RN 0.6911 0.0833 0.0015 0.0027 -

DGE and N = 1000

BN 0.9025 0.0357 - 0.0613 0.0019

GGM 0.8541 0.0214 0.0613 - 0.0027

RN 0.6487 0.0648 0.0019 0.0027 -

Table F.1.: AUROC1 COMPARISON - observational Gaussian data with different N.
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In this seventh appendix scatter plots of AUROC0.1 for the Gaussian distributed obser-

vational data with sample size N=10, N=100, and N=1000 can be found. The corre-

sponding statistics, that is means, standard deviations, and t-test p-values can be found

in Table G.1. Especially from panel (a) in Figure G.1 as well as from the corresponding

p-values in the table can be seen that except for the small sample size (N=10) the results

are comparable to the results obtained with the AUROC1 score.

In the table there are rows indicating the figure of merit (UGE and DGE) as well as

the current sample size N, and then there is one row for each of the three methods

under comparison (Bayesian networks (BN), Gaussian graphical models (GGM), and

Relevance networks (RN)) which contains the empirical statistics mentioned above. The

last three columns p(BN), p(GGM), and p(RN) provide the t-test p-values, whereby the

abbreviations in brackets indicate against which other method was tested.
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Method µ[AUROC0.1] σ(AUROC0.1) p(BN) p(GGM) p(RN)

UGE and N = 10

BN 0.0364 0.0092 - 0.0896 0.1061

GGM 0.0296 0.0095 0.0896 - 0.6655

RN 0.0267 0.0114 0.1061 0.6655 -

DGE and N = 10

BN 0.0185 0.0075 - 0.4278 0.2608

GGM 0.0154 0.0036 0.4278 - 0.7555

RN 0.0147 0.0044 0.2608 0.7555 -

UGE and N = 100

BN 0.0612 0.0157 - 0.1108 0.0029

GGM 0.0504 0.0153 0.1108 - 0.0020

RN 0.0286 0.0123 0.0029 0.0020 -

DGE and N = 100

BN 0.0239 0.0079 - 0.1691 0.0178

GGM 0.0195 0.0029 0.1691 - 0.0096

RN 0.0159 0.0045 0.0178 0.0096 -

UGE and N = 1000

BN 0.0872 0.0182 - 0.0309 0.0014

GGM 0.0771 0.0131 0.0309 - 0.0014

RN 0.0291 0.0118 0.0014 0.0014 -

DGE and N = 1000

BN 0.0454 0.0062 - 0.0004 0.0004

GGM 0.0212 0.0025 0.0004 - 0.0295

RN 0.0160 0.0043 0.0004 0.0295 -

Table G.1.: AUROC0.1 COMPARISON - Gaussian data with different N
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Figure G.1.: Scatter plots of AUROC0.1 values: RN versus GGM (empty symbols) and RN versus BN

(filled symbols). Exclusively observational data sets were generated with the Gaussian

data generator. Thereby three different sample sizes N were used. See text for further

information. The DGE figures of merit that take the edge directions into consideration are

represented by triangles, while the UGE figures of merit that discard the edge directions

are represented by circles
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As former appendices this eighth appendix provides tables which summarise some AU-

ROC scores. This appendix provides tables for test data sets generated with the Gaussian

data generator using sample size N=100 for the two different graph topologies DAGO and

DAGV . As before, tables with the means µ[AUROC1], standard deviations σ(AUROC1),

and some p-values p(.) of two-sided one-sample Student t-tests are given.

As usual, the t-tests were used to test, whether the AUROC1 means are different or

not, that is for each pair of methods Mi and Mj the hypothesis H0: µ[AUROC1(Mi)] =

µ[AUROC1(Mj)] was tested against its alternative. But because no correction for mul-

tiple statistical testing was applied, the p-values can be seen as meaningful descriptive

statistics only which simply indicate, whether there may be a difference. The tables are

arranged as all tables of this kind, e.g. see Appendix 5.
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Method µ[AUROC1]) σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.8848 0.0543 - 0.8815 0.0079

GGM 0.8814 0.0373 0.8815 - 0.0015

RN 0.6809 0.0816 0.0079 0.0015 -

DGE - Observational

BN 0.7817 0.0711 - 0.6704 0.0239

GGM 0.7967 0.0286 0.6704 - 0.0015

RN 0.6407 0.0635 0.0239 0.0015 -

UGE - Interventional

BN 0.9661 0.0391 - 0.0024 0.0018

GGM 0.8203 0.0532 0.0024 - 0.0082

RN 0.7097 0.0541 0.0018 0.0082 -

DGE - Interventional

BN 0.9796 0.0187 - 0.0002 0.0002

GGM 0.7488 0.0409 0.0002 - 0.0081

RN 0.6631 0.0421 0.0002 0.0081 -

Table H.1.: AUROC1 COMPARISON - Gaussian data from graph topology DAGO with N=100
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.9775 0.0345 - 0.0087 0.0013

GGM 0.8933 0.0583 0.0087 - 0.0043

RN 0.6987 0.0981 0.0013 0.0043 -

DGE - Observational

BN 0.9487 0.0440 - 0.0012 0.0004

GGM 0.8257 0.0487 0.0012 - 0.0043

RN 0.6649 0.0814 0.0004 0.0043 -

UGE - Interventional

BN 1.000 0.0000 - 0.0010 0.0014

GGM 0.8878 0.0293 0.0010 - 0.0199

RN 0.7436 0.0730 0.0014 0.0199 -

DGE - Interventional

BN 0.9976 0.0038 - 0.0001 0.0004

GGM 0.8220 0.0001 0.0001 - 0.0196

RN 0.7021 0.0004 0.0004 0.0196 -

Table H.2.: AUROC1 COMPARISON - Gaussian data from graph topology DAGV with N=100
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This ninth appendix provides tables which summarise the AUROC1 results that were

obtained for data sets generated with the Nebuilder software tool. For all six combina-

tions of network topology (DAGO and DAGV ) and noise level σ a table with the means

µ[AUROC1], standard deviations σ(AUROC1), and some p-values p(.) of two-sided one-

sample Student t-tests are given. The t-tests were used to test, whether the AUROC1

means are different or not. More precisely, for each pair of methods Mi and Mj the null

hypothesis

H0: µ[AUROC1(Mi)] = µ[AUROC1(Mj)]

was tested against the corresponding alternative

H1: µ[AUROC1(Mi)] 6= µ[AUROC1(Mj)].

Thereby no correction for multiple statistical testing was applied, so that these p-values

must be considered with caution. Although they can be seen as meaningful descriptive

statistics indicating, whether there may be a difference, they can not be used to confirm

H1 statistically.

All six tables have the same structure. After a row indicating the figure of merit (UGE

and DGE) and the data set type (pure observational and interventional), there is one

row for each of the three methods under comparison (Bayesian networks (BN), Gaussian

graphical models (GGM), and Relevance networks (RN)) which contains the statistics

mentioned above. The last three columns p(BN), p(GGM), and p(RN) provide the t-test
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.7901 0.0336 - 0.0764 0.0444

GGM 0.8143 0.0191 0.0764 - 0.0009

RN 0.7434 0.0081 0.0444 0.0009 -

DGE - Observational

BN 0.6808 0.0703 - 0.0669 0.7977

GGM 0.7446 0.0150 0.0669 - 0.0010

RN 0.6893 0.0063 0.7977 0.0010 -

UGE - Interventional

BN 0.7047 0.0221 - 0.0675 0.0076

GGM 0.7297 0.0183 0.0675 - 0.0410

RN 0.7537 0.0063 0.0076 0.0410 -

DGE - Interventional

BN 0.8280 0.0097 - 0.0001 0.0000

GGM 0.6793 0.0144 0.0001 - 0.0468

RN 0.6973 0.0049 0.0000 0.0468 -

Table I.1.: AUROC1 COMPARISON - Netbuilder data from topology DAGO with σ = 0.01

p-values, whereby the abbreviations in brackets indicate against which other method was

tested.
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.9564 0.0273 - 0.0247 0.0469

GGM 0.8803 0.0656 0.0247 - 0.0909

RN 0.9323 0.0188 0.0469 0.0909 -

DGE - Observational

BN 0.8572 0.0100 - 0.0288 0.0116

GGM 0.7957 0.0508 0.0288 - 0.0891

RN 0.8362 0.0146 0.0116 0.0891 -

UGE - Interventional

BN 0.9346 0.0254 - 0.0188 0.0006

GGM 0.8300 0.0438 0.0188 - 0.1466

RN 0.8003 0.0082 0.0006 0.1466 -

DGE - Interventional

BN 0.9678 0.0114 - 0.0004 0.0000

GGM 0.7574 0.0339 0.0004 - 0.1359

RN 0.7336 0.0064 0.0000 0.1359 -

Table I.2.: AUROC1 COMPARISON - Netbuilder data from topology DAGO with σ = 0.1
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.9049 0.0150 - 0.2776 0.1310

GGM 0.8829 0.0486 0.2776 - 0.0750

RN 0.9163 0.0179 0.1310 0.0750 -

DGE - Observational

BN 0.8208 0.0223 - 0.3024 0.8234

GGM 0.7979 0.0381 0.3024 - 0.0782

RN 0.8238 0.0139 0.8234 0.0782 -

UGE - Interventional

BN 0.9053 0.0367 - 0.0168 0.0329

GGM 0.8571 0.0251 0.0168 - 0.7139

RN 0.8631 0.0273 0.0329 0.7139 -

DGE - Interventional

BN 0.9219 0.0408 - 0.0013 0.0007

GGM 0.7776 0.0230 0.0013 - 0.7051

RN 0.7824 0.0212 0.0007 0.7051 -

Table I.3.: AUROC1 COMPARISON - Netbuilder data from topology DAGO with σ = 0.3
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.7845 0.0184 - 0.0055 0.0018

GGM 0.8529 0.0139 0.0055 - 0.0000

RN 0.7170 0.0094 0.0018 0.0000 -

DGE - Observational

BN 0.7354 0.0467 - 0.0748 0.0558

GGM 0.7927 0.0117 0.0748 - 0.0000

RN 0.6801 0.0078 0.0558 0.0000 -

UGE - Interventional

BN 0.7102 0.0156 - 0.0008 0.3208

GGM 0.7900 0.0180 0.0008 - 0.0110

RN 0.7280 0.0279 0.3208 0.0110 -

DGE - Interventional

BN 0.8413 0.0052 - 0.0000 0.0001

GGM 0.7258 0.0143 0.0000 - 0.0115

RN 0.6773 0.0217 0.0001 0.0115 -

Table I.4.: AUROC1 COMPARISON - Netbuilder data from topology DAGV with σ = 0.01
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.9887 0.0114 - 0.0259 0.0002

GGM 0.9567 0.0294 0.0259 - 0.0024

RN 0.8513 0.0188 0.0002 0.0024 -

DGE - Observational

BN 0.9674 0.0124 - 0.0002 0.0000

GGM 0.8788 0.0244 0.0002 - 0.0025

RN 0.7915 0.0156 0.0000 0.0025 -

UGE - Interventional

BN 0.9927 0.0085 - 0.0019 0.0000

GGM 0.8277 0.0565 0.0019 - 0.0395

RN 0.7483 0.0257 0.0000 0.0395 -

DGE - Interventional

BN 0.9944 0.0040 - 0.0002 0.0000

GGM 0.7547 0.0436 0.0002 - 0.0390

RN 0.6931 0.0200 0.0000 0.0390 -

Table I.5.: AUROC1 COMPARISON - Netbuilder data from topology DAGV with σ = 0.1
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Method µ[AUROC1] σ(AUROC1) p(BN) p(GGM) p(RN)

UGE - Observational

BN 0.9332 0.0454 - 0.0437 0.0020

GGM 0.9038 0.0562 0.0437 - 0.2289

RN 0.9154 0.0460 0.0020 0.2289 -

DGE - Observational

BN 0.8745 0.0452 - 0.0888 0.0931

GGM 0.8350 0.0466 0.0888 - 0.2135

RN 0.8447 0.0381 0.0931 0.2135 -

UGE - Interventional

BN 0.9788 0.0090 - 0.0163 0.0018

GGM 0.8677 0.0630 0.0163 - 0.2972

RN 0.8214 0.0474 0.0018 0.2972 -

DGE - Interventional

BN 0.9393 0.0406 - 0.0047 0.0013

GGM 0.7861 0.0489 0.0047 - 0.2943

RN 0.7500 0.0368 0.0013 0.2943 -

Table I.6.: AUROC1 COMPARISON - Netbuilder data from topology DAGV with σ = 0.3
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This tenth appendix continues with the little network diagnostic of Section 5.5. For both

graph topologies G(Pi, C) and GC,Pi
the originally defined linear functional relationships,

were transformed using the hyperbolic tangent function.

From Figure J.1 can be seen that the hyperbolic tangent transformation of the functional

relationships in topology G(Pi, C) in which the three parent nodes are stochastically in-

dependent does not cause any problems. Both trace plots on the left have the same shape

like the corresponding plots obtained for G(Pi, C) with linear functional relationships.

But for the second network topology GC,Pi
the transformation makes learning much

more difficult for all three methods under comparison. For low noise levels σ < 0.1 the

mean AUROC1 scores are lower than 0.5 indicating that false relationships (between the

three child nodes Ci) are extracted from the data. This is due to the fact that the hy-

perbolic tangent transformation weakens the linear association between P and its three

child nodes Ci, while the strength of the linear association between the three children

C1, C2, and C3 more or less stays the same.

For all different noise levels σ all three methods reach approximately the same AUROC

means, that is there is no difference in performance between the three machine learning

methods. For all three methods the highest AUROC means are obtained for medium

noises, while for high as well as low noise levels the true edges can not be learnt. Either

there are indirect associations between the child nodes which are stronger than the true

direct associations (for small noise levels) or no association at all can be found in the

data (for too high noise levels).
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Figure J.1.: Continuation of little network diagnostic. Trace plots of the AUROC1 means with error

bars representing the AUROC1 standard deviations for the three methods under compari-

son: Bayesian networks (black line), Gaussian graphical models (blue line), and Relevance

networks (red line). For each of 14 different noise levels (σ) 25 test data sets were gener-

ated using two simple graph topologies with 4 nodes each. In contrast to the relationships

considered before here the deterministic linear part was transformed by T(x) = tanh(3x),

whereby tanh(.) is the hyperbolic tangent function. In the first topology G(Pi, C) (left

panels) where three parent nodes Pi have a common child node C this leads to the rela-

tionship: C = tanh (P1 + P2 + P3) + N(0, σ2), and in the second topology GC,Pi
(right

panels) where one parent node P has three child nodes Ci this transformation yields:

Ci = tanh (P ) + N(0, σ2). For both networks and all three methods the UGE (top) as

well as the DGE (bottom) figures of merit were computed.
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This eleventh appendix provides nine tables which summarise and cross-compare the

performances of the three machine learning methods under comparion in terms of the

true positive (TP) counts obtained when accepting 5 false positive (FP) counts. As

before in each table mutiple rows indicate the four combinations of figure of merit (UGE

and DGE) and data set type (observational and interventional). For each of these four

combinations and for each of the three methods (Bayesian networks (BN), Gaussian

graphical models (GGM), and Relevance Networks (RN)) the mean µ[TP] and the the

standard deviations σ(TP) of the five true positive (TP) counts obtained for 5 false

positive (FP) counts can be found in the first columns. The last three columns provide

one-sample t-test p-values p(.) for the hypthesis: H0: µ[TP(Mi)] = µ[TP(Mj)] against

its two-sided alternative: H1: µ[TP(Mi)] 6= µ[TP(Mj)] given the combination indicated

in the multiple row above. Mi and Mj represent the methods mentioned in the row

and column. Low p-values p(.) indicate that there may be a significant difference in

the number of true positive (TP) counts between these two methods for the particular

combination of figure of merit and data set type. In these cases it can be seen from

the entries in the mean score column µ[TP] which of the two methods performed better

than the other one. In contrast to the AUROC1 score cross-method comparison, this

comparison focuses on a fixed inverse specificty point of the ROC curves. Since no

correction for multiple testing was applied either, the p-values can be interpreted as

descriptive measures only, and can not be used to confirm H1 statistically.
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)

UGE - Observational

BN 15.8 2.1 - 0.1662 0.0010

GGM 14.8 2.7 0.1662 - 0.0012

RN 8.1 2.5 0.0010 0.0012 -

DGE - Observational

BN 4.9 1.5 - 0.6885 0.0042

GGM 4.7 1.1 0.6885 - 0.0705

RN 3.8 1.3 0.0042 0.0705 -

UGE - Interventional

BN 18.5 2.4 - 0.0074 0.0028

GGM 13.2 2.0 0.0074 - 0.0011

RN 6.5 2.7 0.0028 0.0011 -

DGE - Interventional

BN 18.4 2.6 - 0.0005 0.0005

GGM 5.2 0.7 0.0005 - 0.0036

RN 1.8 1.3 0.0005 0.0036 -

Table K.1.: TP COUNTS COMPARISON FOR THE GAUSSIAN DATA SETS USING DAGO
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)

UGE - Observational

BN 15.6 0.5 - 0.0270 0.0000

GGM 11.8 2.7 0.0270 - 0.0024

RN 5.8 1.4 0.0000 0.0024 -

DGE - Observational

BN 11.3 1.2 - 0.0000 0.0001

GGM 3.8 1.0 0.0000 - 0.1951

RN 3.0 0.6 0.0001 0.1951 -

UGE - Interventional

BN 16.0 0.0 - 0.0025 0.0001

GGM 12.9 1.0 0.0025 - 0.0054

RN 7.1 1.3 0.0001 0.0054 -

DGE - Interventional

BN 15.8 0.4 - 0.0000 0.0000

GGM 5.5 0.0 0.0000 - 0.0008

RN 3.7 0.4 0.0000 0.0008 -

Table K.2.: TP COUNTS COMPARISON FOR THE GAUSSIAN DATA SETS USING DAGV
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)

UGE - Observational

BN 9.5 2.0 - 0.7489 0.7174

GGM 9.6 1.6 0.7489 - 0.3046

RN 9.3 1.6 0.7174 0.3046 -

DGE - Observational

BN 3.3 2.3 - 0.1369 0.1369

GGM 5.1 0.9 0.1369 - NaN

RN 5.1 0.9 0.1369 NaN -

UGE - Interventional

BN 11.1 1.3 - 0.0951 0.0099

GGM 9.6 1.1 0.0951 - 0.0204

RN 7.1 1.1 0.0099 0.0204 -

DGE - Interventional

BN 6.9 1.1 - 0.0065 0.0009

GGM 4.1 1.1 0.0065 - 0.0093

RN 1.7 0.4 0.0009 0.0093 -

Table K.3.: TP COUNTS COMPARISON FOR THE REAL CYTOMETRIC EXPRESSION

DATA
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)

UGE - Observational

BN 11.0 2.0 - 0.2577 0.0366

GGM 12.0 1.2 0.2577 - 0.0040

RN 6.9 1.4 0.0366 0.0040 -

DGE - Observational

BN 2.8 1.3 - 0.0077 0.0890

GGM 5.1 0.7 0.0077 - 0.0016

RN 0.8 0.8 0.0890 0.0016 -

UGE - Interventional

BN 7.9 0.7 - 0.0008 0.0000

GGM 5.2 0.3 0.0008 - 0.0000

RN 2.0 0.0 0.0000 0.0000 -

DGE - Interventional

BN 8.4 1.2 - 0.0019 0.0001

GGM 3.7 0.4 0.0019 - 0.0001

RN 0.0 0.0 0.0001 0.0001 -

Table K.4.: TP COUNTS COMPARISON FOR THE NETBUILDER DATA SETS USING

DAGO AND THE LOW NOISE LEVEL (σ = 0.01)
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)

UGE - Observational

BN 18.1 1.1 - 0.0161 0.1216

GGM 16.5 1.1 0.0161 - 0.5291

RN 16.8 1.6 0.1216 0.5291 -

DGE - Observational

BN 7.2 1.5 - 0.0673 0.0673

GGM 5.5 0.0 0.0673 - NaN

RN 5.5 0.0 0.0673 NaN -

UGE - Interventional

BN 17.7 0.7 - 0.0046 0.0003

GGM 13.6 1.5 0.0046 - 0.0002

RN 8.0 1.7 0.0003 0.0002 -

DGE - Interventional

BN 17.3 0.7 - 0.0000 0.0000

GGM 5.4 0.2 0.0000 - 0.0000

RN 1.2 0.7 0.0000 0.0000 -

Table K.5.: TP COUNTS COMPARISON FOR THE NETBUILDER DATA SETS USING

DAGO AND THE MEDIUM NOISE LEVEL (σ = 0.1)
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)

UGE - Observational

BN 15.5 1.7 - 0.4468 0.2756

GGM 14.8 2.9 0.4468 - 0.0213

RN 16.6 2.3 0.2756 0.0213 -

DGE - Observational

BN 4.1 2.0 - 0.5158 0.3844

GGM 4.7 1.1 0.5158 - 0.3739

RN 5.1 0.9 0.3844 0.3739 -

UGE - Interventional

BN 16.0 1.6 - 0.0890 0.0143

GGM 14.5 1.5 0.0890 - 0.3672

RN 13.6 1.5 0.0143 0.3672 -

DGE - Interventional

BN 14.1 4.5 - 0.0052 0.0073

GGM 5.5 0.0 0.0052 - 0.3739

RN 5.0 1.1 0.0073 0.3739 -

Table K.6.: TP COUNTS CROSS-METHOD COMPARISON FOR THE NETBUILDER

DATA SETS USING DAGO AND THE HIGH NOISE LEVEL (σ = 0.3)
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)

UGE - Observational

BN 9.8 0.8 - 1.0000 0.0007

GGM 9.8 0.8 1.0000 - 0.0001

RN 5.2 0.3 0.0007 0.0001 -

DGE - Observational

BN 3.9 0.7 - 0.3419 0.0019

GGM 4.5 0.9 0.3419 - 0.0020

RN 1.5 0.0 0.0019 0.0020 -

UGE - Interventional

BN 7.2 0.4 - 0.4263 0.0102

GGM 7.5 0.4 0.4263 - 0.0078

RN 5.1 0.9 0.0102 0.0078 -

DGE - Interventional

BN 6.6 0.4 - 0.0001 0.0000

GGM 3.4 0.2 0.0001 - 0.0002

RN 2.0 0.0 0.0000 0.0002 -

Table K.7.: TP COUNTS COMPARISON FOR THE NETBUILDER DATA SETS USING

DAGV AND THE LOW NOISE LEVEL (σ = 0.01)
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)

UGE - Observational

BN 15.6 0.4 - 0.0876 0.0000

GGM 14.7 1.0 0.0876 - 0.0001

RN 9.3 0.4 0.0000 0.0001 -

DGE - Observational

BN 12.0 1.5 - 0.0006 0.0007

GGM 5.5 0.0 0.0006 - 0.1079

RN 4.8 0.8 0.0007 0.1079 -

UGE - Interventional

BN 15.7 0.4 - 0.0002 0.0005

GGM 12.5 0.5 0.0002 - 0.0021

RN 8.9 1.0 0.0005 0.0021 -

DGE - Interventional

BN 15.4 0.7 - 0.0000 0.0000

GGM 4.9 0.8 0.0000 - 0.1302

RN 3.8 1.0 0.0000 0.1302 -

Table K.8.: TP COUNTS COMPARISON FOR THE NETBUILDER DATA SETS USING

DAGV AND THE MEDIUM NOISE LEVEL (σ = 0.1)
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)

UGE - Observational

BN 14.2 1.1 - 0.0474 0.1087

GGM 13.2 1.0 0.0474 - 0.3375

RN 13.6 0.8 0.1087 0.3375 -

DGE - Observational

BN 7.7 2.0 - 0.0714 0.0440

GGM 5.5 0.0 0.0714 - 0.2663

RN 5.0 0.9 0.0440 0.2663 -

UGE - Interventional

BN 14.9 0.2 - 0.0093 0.0277

GGM 12.5 1.1 0.0093 - 0.5913

RN 12.8 1.4 0.0277 0.5913 -

DGE - Interventional

BN 12.3 1.7 - 0.0009 0.0009

GGM 5.5 0 0.0009 - NA

RN 5.5 0 0.0009 NA -

Table K.9.: TP COUNTS COMPARISON FOR THE NETBUILDER DATA SETS USING

DAGV AND THE HIGH NOISE LEVEL (σ = 0.01)
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This twelfth appendix provides tables which summarise all AUROC scores that were

presented in scatter plots in Section 5.7. For all different kinds of test data sets a table

with the means µ[.] and standard deviations σ(.) for both stochastic Bayesian network

models BGe and BDe as well as some p-values p(.) of two-sided one-sample Student

t-tests are given. One sample t-tests were used to test, whether the AUROC means are

different or not. More precisely, the null hypothesis

H0: µ[BGe] = µ[BDe]

was tested against the corresponding alternative hypothesis

H1: µ[BGe] 6= µ[BDe].

Thereby no correction for multiple statistical testing was applied, so that these p-values

must be considered with caution. Although they can be seen as meaningful descriptive

statistics indicating, whether there may be a difference, they can not be used to confirm

H1 statistically.

All tables have the same structure. After multiple rows specifying parameters, such

as the figure of merit (UGE and DGE), the sample size N, the noise level σ, or the

network topology, there are rows which contain the means and standard deviations for

both models: BGe (µ[BGe] and σ(BGe)) and BDe: (µ[BDe] and σ(BDe)). Finally, the

last columns provide the p-values for the t-tests mentioned above.
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design N µ[BGe] σ(BGe) µ[BDe] σ(BDe) p

UGE and AUROC1

observational N=100 0.6904 0.0376 0.6620 0.0410 0.4125

interventional N=100 0.7912 0.0335 0.7765 0.0364 0.4821

observational N=10 0.5636 0.0373 0.5452 0.0611 0.6324

interventional N=10 0.5943 0.0747 0.5081 0.0653 0.0857

DGE and AUROC1

observational N=100 0.6231 0.0564 0.6251 0.0319 0.9564

interventional N=100 0.6969 0.0676 0.6963 0.0454 0.9889

observational N=10 0.5636 0.0373 0.5452 0.0611 0.6324

interventional N=10 0.5943 0.0747 0.5081 0.0653 0.0857

UGE and AUROC0.1

observational N=100 0.0379 0.0108 0.0348 0.0052 0.6007

interventional N=100 0.0392 0.0037 0.0326 0.0107 0.1720

observational N=10 0.0176 0.0062 0.0074 0.0024 0.0205

interventional N=10 0.0120 0.0033 0.0089 0.0096 0.5857

DGE and AUROC0.1

observational N=100 0.0143 0.0051 0.0193 0.0015 0.1375

interventional N=100 0.0313 0.0041 0.0241 0.0097 0.2607

observational N=10 0.0081 0.0052 0.0068 0.0021 0.7036

interventional N=10 0.0099 0.0048 0.0055 0.0055 0.1977

Table L.1.: AUROCǫ COMPARISON between BGe and BDe - Real cytometric data
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design µ[BGe] σ(BGe) µ[BDe] σ(BDe) p

N=10 and σ = 0.1

observational UGE 0.7909 0.0488 0.6274 0.0994 0.0108

observational DGE 0.7051 0.0262 0.6048 0.0826 0.0322

N=100 and σ = 0.1

observational UGE 0.8848 0.0543 0.7060 0.0694 0.0019

observational DGE 0.7817 0.0711 0.6595 0.0608 0.0193

N=1000 and σ = 0.1

observational UGE 0.9756 0.0389 0.7081 0.0672 0.0001

observational DGE 0.9025 0.0357 0.6303 0.0648 0.0000

Table L.2.: AUROC1 COMPARISON between BGe and BDe - observational Gaussian data - DAGO

design µ[BGe] σ(BGe) µ[BDe] σ(BDe) p

DAGO and σ = 0.01

observational UGE 0.7901 0.0336 0.6089 0.1174 0.0106

observational DGE 0.6808 0.0703 0.5529 0.0698 0.0203

interventional UGE 0.7047 0.0221 0.7717 0.0883 0.1383

interventional DGE 0.8280 0.0097 0.8542 0.0636 0.3887

DAGO and σ = 0.1

observational UGE 0.9464 0.0273 0.8777 0.0431 0.0168

observational DGE 0.8572 0.0100 0.7840 0.0519 0.0148

interventional UGE 0.9346 0.0254 0.8595 0.0391 0.0070

interventional DGE 0.9678 0.0114 0.8753 0.0313 0.0003

DAGO and σ = 0.3

observational UGE 0.9049 0.0150 0.7626 0.0962 0.0114

observational DGE 0.8208 0.0223 0.7036 0.0751 0.0101

interventional UGE 0.9053 0.0367 0.8264 0.0733 0.0635

interventional DGE 0.9219 0.0408 0.8095 0.0577 0.0074

Table L.3.: AUROC1 COMPARISON between BGe and BDe - Netbuilder data - DAGO
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design µ[BGe] σ(BGe) µ[BDe] σ(BDe) p

DAGV and σ = 0.01

observational UGE 0.7845 0.0184 0.6446 0.0306 0.0000

observational DGE 0.7354 0.0467 0.6499 0.0704 0.0536

interventional UGE 0.7102 0.0156 0.8137 0.0560 0.0041

interventional DGE 0.8413 0.0052 0.8759 0.0406 0.0961

DAGV and σ = 0.1

observational UGE 0.9887 0.0114 0.7719 0.0620 0.0001

observational DGE 0.9674 0.0124 0.7238 0.0418 0.0000

interventional UGE 0.9927 0.0085 0.8595 0.0266 0.0000

interventional DGE 0.9944 0.0040 0.8711 0.0263 0.0000

DAGV and σ = 0.3

observational UGE 0.9332 0.0454 0.7150 0.0806 0.0007

observational DGE 0.8745 0.0452 0.6795 0.0668 0.0006

interventional UGE 0.9788 0.0090 0.7267 0.0662 0.0000

interventional DGE 0.9393 0.0406 0.7263 0.0534 0.0001

Table L.4.: AUROC1 COMPARISON between BGe and BDe - Netbuilder data - DAGV
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design µ[BGe] σ(BGe) µ[BDe] σ(BDe) p

DAGV with OR ports and σ = 0.01

observational UGE 0.7849 0.0178 0.6474 0.0516 0.0005

observational DGE 0.8271 0.0265 0.6858 0.0534 0.0007

interventional UGE 0.7228 0.0332 0.7966 0.0356 0.0094

interventional DGE 0.8519 0.0185 0.8502 0.0432 0.9365

DAGV with OR ports and σ = 0.1

observational UGE 0.8048 0.0307 0.7364 0.0374 0.0134

observational DGE 0.8344 0.0333 0.7024 0.0315 0.0002

interventional UGE 0.8537 0.0352 0.8393 0.0530 0.6256

interventional DGE 0.9305 0.0191 0.8735 0.0299 0.0071

DAGV with OR ports and σ = 0.3

observational UGE 0.9205 0.0144 0.7564 0.0455 0.0001

observational DGE 0.8928 0.0245 0.7127 0.0377 0.0000

interventional UGE 0.9138 0.0227 0.8224 0.0218 0.0002

interventional DGE 0.9477 0.0236 0.7884 0.0393 0.0001

Table L.5.: AUROC1 COMPARISON between BGe and BDe - Netbuilder data with OR ports, whereby

the transformations x → x
x+1

were omitted
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design µ[BGe] σ(BGe) µ[BDe] σ(BDe) p

DAGV with AND ports and σ = 0.01

observational UGE 0.7849 0.0178 0.6474 0.0516 0.0005

observational DGE 0.8271 0.0265 0.6858 0.0534 0.0007

interventional UGE 0.7228 0.0332 0.7966 0.0356 0.0094

interventional DGE 0.8519 0.0185 0.8502 0.0432 0.9365

DAGV with AND ports and σ = 0.1

observational UGE 0.8048 0.0307 0.7364 0.0374 0.0134

observational DGE 0.8344 0.0333 0.7024 0.0315 0.0002

interventional UGE 0.8537 0.0352 0.8393 0.0530 0.6256

interventional DGE 0.9305 0.0191 0.8735 0.0299 0.0071

DAGV with AND ports and σ = 0.3

observational UGE 0.9205 0.0144 0.7564 0.0455 0.0001

observational DGE 0.8928 0.0245 0.7127 0.0377 0.0000

interventional UGE 0.9138 0.0227 0.8224 0.0218 0.0002

interventional DGE 0.9477 0.0236 0.7884 0.0393 0.0001

Table L.6.: AUROC1 COMPARISON between BGe and BDe - Netbuilder data with AND ports,

whereby the transformations x → x
x+1

were omitted

217



L. Appendix XII

design µ[BGe] σ(BGe) µ[BDe] σ(BDe) p

DAGV with XOR ports and σ = 0.01

observational UGE 0.6327 0.0932 0.7393 0.0697 0.0749

observational DGE 0.6831 0.0627 0.7514 0.0633 0.1250

interventional UGE 0.7564 0.0077 0.8159 0.0185 0.0002

interventional DGE 0.8191 0.0302 0.8706 0.0143 0.0087

DAGV with XOR ports and σ = 0.1

observational UGE 0.6918 0.0633 0.8144 0.0813 0.0288

observational DGE 0.7342 0.0470 0.7673 0.0738 0.4230

interventional UGE 0.7388 0.0558 0.7816 0.0485 0.2317

interventional DGE 0.8195 0.0457 0.7991 0.0794 0.6317

DAGV with XOR ports and σ = 0.3

observational UGE 0.6242 0.0642 0.6575 0.0433 0.3641

observational DGE 0.6106 0.0620 0.6334 0.0382 0.5024

interventional UGE 0.6992 0.0244 0.6510 0.0576 0.1230

interventional DGE 0.6712 0.0550 0.6364 0.0603 0.3680

Table L.7.: AUROC1 COMPARISON between BGe and BDe - Netbuilder data with XOR ports,

whereby the transformations x → x
x+1

were omitted
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In this appendix the interventional data generated with the Gaussian data generator

using the original cytometric network topology and different parameters of non-linearity

are utilised to demonstrate that Bayesian networks especially benefit from the interven-

tion information which corresponds to the interventional data. To this end, the mean

AUROC scores of the standard interventional BGe scoring metric, which uses the inter-

vention information as usual, were compared with an observational Bayesian network

BGe scoring approach in which the intervention information was completely ignored.

That is although the data sets are interventional the latter Bayesian network approach

treats the interventional data as if they were pure observational data. From the trace

plots of the AUROC1 means in Figure M.1 can be seen that Bayesian networks ben-

efit from the information for both figures of merit UGE and DGE. But it seems that

especially the mean DGE figure of merit AUROCs decrease when the intervention infor-

mation is discarded.
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Figure M.1.: AUROC trace plots illustrating how much Bayesian networks can benefit from interven-

tional data, that is the intervention information. For each of 11 different non-linearity

parameters (p=0,0.1,...,1.0) five interventional data sets with N=100 observations were

generated with the Gaussian data generator. These data sets were analysed using the

BGe scoring metric. The solid lines correspond to the mean AUROC scores obtained by

a Bayesian network Order-MCMC approach which used the intervention information as

usual. The dotted lines correspond to the mean AUROC scores obtained by a Bayesian

network Order-MCMC approach which treated the interventional data sets as if they

were pure observational data.
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