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Introduction

The present work is devoted to the study of Cauchy problems for nonlinear
evolution equations with initial data in Sobolev spaces of low regularity which
describe the propagation of nonlinear dispersive waves.

We are interested in a well-posedness theory for these problems, i.e. for
given initial data we try to find

(i) unique

(ii) solutions

(iii) whose initial regularity persists

(iv) and which depend continuously on the initial data.

We are challenged to prove results with regularity assumptions on the initial
data which are as weak as possible1. It is part of the problem to find an
adequate way to express all these four aims precisely and consistently in a
low regularity context.

The examples discussed here arise as one-dimensional model equations
for nonlinear wave propagation in water wave theory (Benjamin-Ono type
equations) or plasma physics (derivative nonlinear Schrödinger equation).

In order to introduce the principle of dispersion2 let us consider the linear
equation

∂tu+ ∂3
xu = 0 (Airy)

We may calculate explicit solutions u : [−T, T ] × R → R with the help
of Fourier analysis: Let the periodic initial datum be given by u0(x) =∑
cke

ikx, then the periodic solution is

u(t, x) =
∑

cke
i(kx+tk3)

1On the Sobolev scale Hs this means that we try to choose s ∈ R as small as possible.
2In the present work we focus on the analytical effects of special dispersion relations

and do not give a formal definition of dispersive waves in general cp. [Whi74], pp.363–369.
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which shows that the k-th Fourier mode of the initial datum propagates
with group velocity 3k2. The different speed of Fourier modes has certain
regularizing effects such as higher integrability and in the nonperiodic case
the gain of fractional derivatives in L2

loc. On the other hand, for each t > 0
we observe ‖u(t)‖Hs = ‖u0‖Hs and the solution operator is unitary in the
Sobolev spaces Hs such that the solution has exactly the same regularity as
the initial datum in the Hs sense.

Let us consider a nonlinear version of this equation, the Korteweg-de
Vries equation

∂tu+ ∂3
xu = ∂xu

2 (KdV)

One idea to establish well-posedness for nonlinear equations is to apply the
Picard iteration scheme to a related integral equation as in the case of or-
dinary differential equations. The nonlinearity has to be small in a suitable
sense such that the Duhamel term is a strict contraction and its influence
on the linear solution is not too strong. To control all possible nonlinear
interactions in the quadratic term and to gain the derivative one may ex-
ploit the above mentioned dispersive properties of the linear equation. This
strategy was used by C.E. Kenig - G. Ponce - L. Vega [KPV93c] to prove well-
posedness results for (generalized) KdV equations in the non-periodic case.
In [Bou93] J. Bourgain developed a general approach to the well-posedness
of nonlinear dispersive equations which reduces the problem to multi-linear
estimates in spaces which are defined according to the symbol of the linear
equation and inherit the dispersive properties of the solutions.

These harmonic analysis techniques in combination with the Picard it-
eration found applications in many different situations and lead to strong
well-posedness results in spaces of low regularity. All of them share the
property that the flow map (data upon solution) is necessarily analytic3.

Later, it was observed that there are many interesting equations where a
smooth dependence on the data or at least multi-linear estimates fail to hold
[MST01, KT05b] even for regular data, although there are well-posedness
results which include the continuous dependence on the data and which are
based on energy type arguments.

Another approach to many nonlinear dispersive equations, such as the
Korteweg-de Vries, the Benjamin-Ono or the derivative nonlinear Schrödinger
equation is provided by the inverse scattering theory, cp. [AC91]. However,
the results in the present work do not rely on inverse scattering techniques.

Here, we are particularly interested in situations where standard multi-
linear estimates for the nonlinear term cannot be true and a direct approach

3This holds true if the nonlinear terms are analytic.



Introduction vii

via the Picard iteration is not applicable. Our aim is to overcome these dif-
ficulties by identifying the strongest interactions and modifying the method
accordingly.

In Chapter 1 the basic notation and a notion of well-posedness is in-
troduced. In Chapter 2 the dispersive properties of solutions to the linear
equations

(∂t − |D|α∂x)u = 0

in the non-periodic and
(∂t − i∂2

x)u = 0

in the periodic setting as well as related function spaces are discussed.
In Chapter 3 derivative nonlinear Schrödinger equations in the periodic

setting are considered, in particular

∂tu(t)− i∂2
xu(t) = ∂x(|u|2u)(t) for t ∈ (−T, T )
u(0) = u0

A local well-posedness result for initial data in Hs(T) for all s ≥ 1
2 is proved

which extends to global well-posedness for s ≥ 1 and data which satisfies
a L2 smallness condition, cp. [Her05a]. A detailed uniqueness statement is
given and it is shown that the flow map is not uniformly continuous on balls
in Hs(T) for s ≥ 1

2 , but locally Lipschitz on subsets of data with fixed L2

norm. Similarly, for a version of this equation with a regularized nonlinear
term well-posedness follows with real analytic dependence on the intial data.
The results are shown to be sharp in certain directions.

In Chapter 4 equations of Benjamin-Ono type4

∂tu(t)− |D|α∂xu(t) +
1
2
∂xu

2(t) = 0 for t ∈ (−T, T )

u(0) = u0

are studied. Section 4.2 deals with the cases 1 < α < 2 in the non-periodic
setting. Local well-posedness for initial data in spaces H(s,ω)(R) for s >
− 3

4 (α−1) and ω = 1
α−

1
2 and global well-posedness for real valued data in the

range s ≥ 0 and ω = 1
α −

1
2 is shown, cp. [Her05b]. These spaces correspond

to the usual Sobolev spacesHs(R) with an additional low frequency condition
Ḣ−ω(R). The result includes the analyticity of the flow map, which fails
under a weaker low frequency assumption. A smoothing property is used to
prove that the nonlinear equation is satisfied in the sense of distributions.

4For α = 1 this is the Benjamin-Ono equation and for α = 2 this is the Korteweg-
de Vries equation. In the literature, these equations are known as dispersion generalized
Benjamin-Ono equations.
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In Section 4.3 counterexamples are constructed which prove the failure of
bilinear estimates related to the Benjamin-Ono equation (α = 1) in the peri-
odic case for real valued functions with zero mean value. This complements
a recent well-posedness result of L. Molinet [Mol06].

In Section 4.4 it is remarked that in the case 0 < α < 1 a slight modi-
fication of the arguments of H. Koch - N. Tzvetkov [KT03b] for α = 1 also
leads to well-posedness in this range.

The author is grateful to Professor Dr. Herbert Koch for the constant
support, encouragement and numerous helpful discussions. Moreover, the
author would like to thank Martin Hadac for useful remarks.



Chapter 1

Cauchy problems and
well-posedness

1.1 Basic function spaces

In this section we introduce some well-known function spaces and the Fourier
transformation in order to fix notation.

We will both study problems involving functions (or distributions) on
the real line being either spatially periodic or non-periodic. Let C∞(Rn)
be the linear space of infinitely differentiable functions f : Rn → C and for
u ∈ C∞(Rn) we define the semi-norms

[u]α,β := sup
x∈Rn

|xα∂β
xu(x)|

for all (multi-)indices α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn
0 .

We start with defining Schwartz functions.

Definition 1.1.1. We define the Fréchet space of smooth, rapidly decreasing
functions

S(Rn) := {u ∈ C∞(Rn) | [u]k,Rn := max
|α|,|β|≤k

[u]α,β <∞, k ∈ N0}

Definition 1.1.2. The linear space S ′(Rn) is defined as the topological dual
of S(Rn). We write u(φ) = 〈u, φ〉 for u ∈ S ′(Rn), φ ∈ S(Rn).

We identify f ∈ L2(Rn) and f̃ ∈ S ′(Rn), 〈f̃ , φ〉 =
∫
fφ dx.
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1.1.1 The Fourier transformation and Sobolev spaces

Before we turn to the the definition of the L2 based Sobolev spaces, let us
quickly review the definition and basic properties of the Fourier transforma-
tion.

Proposition 1.1.3. For u ∈ S(Rn) we define

û(ξ) = (2π)−
n
2

∫
e−ixξu(x)dx, ξ ∈ Rn (1.1)

Then, ·̂ : S(Rn)→ S(Rn) is an isomorphism with inverse

ǔ(x) = (2π)−
n
2

∫
eixξu(ξ)dξ, x ∈ Rn (1.2)

and ∫
ûφdx =

∫
uφ̂dx

holds true. We define the Fourier transformation

F : S ′(Rn)→ S ′(Rn), 〈Fu, φ〉 = 〈u, φ̂〉

which is an isomorphism such that F |L1(Rn) and F−1 |L1(Rn) are given by
the formulas (1.1) and (1.2), respectively.

Proposition 1.1.4. F(L2(Rn)) = L2(Rn). Moreover, F |L2(Rn): L2(Rn)→
L2(Rn) is a unitary operator and in particular ‖Fu‖L2(Rn) = ‖u‖L2(Rn).

We write 〈x〉 := (1 + |x|2)1/2 and define the Bessel potential operator

Js : S ′(Rn)→ S ′(Rn), 〈FJsu, φ〉 = 〈Fu, 〈ξ〉sφ〉

Definition 1.1.5. Let s ∈ R. We define the Sobolev spaces Hs(Rn) as the
space of all u ∈ S ′(Rn), such that Jsu ∈ L2(Rn), endowed with the norm

‖u‖Hs(Rn) := ‖Jsu‖L2(Rn) =
(∫
〈ξ〉2s|Fu(ξ)|2dξ

) 1
2

We remark that Hs(Rn) is a Hilbert space with scalar product

(u, v)Hs(Rn) :=
∫
〈ξ〉2sFu(ξ)Fv(ξ)dξ

Moreover, S(Rn) ⊂ Hs(Rn) is dense and Hs(Rn) ⊂ L2(Rn) for all s ≥ 0. We
may identify H−s(Rn) with the dual of Hs(Rn) by the Riesz representation
theorem.



1.1. Basic function spaces 3

1.1.2 The periodic case

We say that u ∈ S ′(Rn) is periodic, if

〈u, φ〉 = 〈u, φ(·+ 2πk)〉 , k ∈ Zn

Now, the Fourier transformation of a periodic u ∈ S ′(Rn) has the follow-
ing form

〈Fu, ψ〉 =
∑
ξ∈Zn

aξψ(ξ)

for a unique family (aξ)ξ∈Zn which grows at most polynomially. Hence, it is
a sum of point measures and we identify aξ and Fu(ξ), see [Hör83], p. 178
or [ST87], Section 3.2.

Let L2(Tn) denote the Hilbert space of all f : Rn → C such that f =
f(·+ 2πk), k ∈ Zn and f |[0,2π]n ∈ L2([0, 2π]n) with scalar product

(f, g)L2(Tn) =
∫

[0,2π]n
f(x)g(x)dx

We identify f ∈ L2(Tn) and the periodic f̃ ∈ S ′(Rn), 〈f̃ , φ〉 =
∫
fφ dx.

Proposition 1.1.6. F(L2(Tn)) = l2(Zn). Moreover, F |L2(Tn): L2(Tn) →
l2(Zn) is unitary and in particular ‖Fu‖l2(Zn) = ‖u‖L2(Tn). For u ∈ L2(Tn)
we have

Fu(ξ) = (2π)−
n
2

∫
[0,2π]n

u(x)e−ixξdx , ξ ∈ Zn

and
u(x) = (2π)−

n
2

∑
ξ∈Zn

Fu(ξ)eixξ in L2(Tn)

Definition 1.1.7. Let s ∈ R. We define the Sobolev spaces Hs(Tn) as the
space of all periodic u ∈ S ′(Rn), such that Jsu ∈ L2(Tn), endowed with the
norm

‖u‖Hs(Tn) := ‖Jsu‖L2(Tn) =

 ∑
ξ∈Zn

〈ξ〉2s|Fu(ξ)|2
 1

2

Notice that Hs(Tn) is a Hilbert space with scalar product

(u, v)Hs(Tn) :=
∑
ξ∈Zn

〈ξ〉2sFu(ξ)Fv(ξ)
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Definition 1.1.8. We define the Fréchet space of smooth periodic functions

S(Tn) := {u ∈ C∞(Rn) | u = u(·+ 2πz), z ∈ Zn, [u]k,Tn := [u]0,k <∞}

and of smooth functions which are spatially periodic

S(R× Tn) := {u ∈ C∞(Rn+1) |u(t, x) = u(t, x+ 2πz), z ∈ Zn,

[u]k,R×Tn = max
k1,|β|≤k

[u](k1,0...,0),β <∞, k ∈ N0}

We observe that S(Tn) ⊂ Hs(Tn) is dense. Moreover, Hs(Tn) ⊂ L2(Tn)
for all s ≥ 0. Furthermore, we may identifyH−s(Tn) with the dual ofHs(Tn)
by the Riesz representation theorem.

Definition 1.1.9. The linear spaces S ′(Tn) and S ′(R × Tn) are defined
as the topological duals of S(Tn) and S(R × Tn), respectively. We write
u(φ) = 〈u, φ〉.

The periodic elements of S ′(Rn) may be identified with S ′(Tn) via their
Fourier representation, see [ST87], Section 3.2.3.

Definition 1.1.10. For T > 0 we define the linear spaces

ST (Rn) = {u|[−T,T ]×Rn | u ∈ S(R× Rn)}

and
ST (Tn) = {u|[−T,T ]×Rn | u ∈ S(R× Tn)}

1.1.3 Conventions

In the sequel we will deal with both the spatially periodic and the non-
periodic setting. At the beginning of each logical subunit we will explicitly
declare the setting to avoid confusion.

There are parts where we want to treat both cases simultaniously. In this
case, in order to keep the exposition short we omit the letters R and T from
the above definition of the spaces. E.g. we write S for S(Rn) and S(Tn),
ST for ST (Rn) and ST (Tn), Hs for Hs(Rn) and Hs(Tn), Lp for Lp(Rn)
and Lp(Tn), respectively. Moreover, dx denotes integration with respect
to the Lebesgue measure on Rn and its restriction to [0, 2π]n, respectively.
Similarly, dξ denotes integration with respect to the Lebesgue measure on
Rn and the counting measure on Zn, respectively.

As an example, the well-known Sobolev embedding and multiplication
theorems in both cases read as follows:
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Proposition 1.1.11. We have

(i) Hs ⊂ Ck for s > k + n
2 , k ∈ N0

(ii) Hs ⊂ Lp for s ≥ n
2 −

n
p , 2 ≤ p <∞

(iii) Lp ⊂ Hs for s ≤ n
2 −

n
p , 1 < p ≤ 2

(iv) L1 ⊂ Hs for s < −n
2

with continuous embeddings.

We omit the proof (for the non-periodic case see [Tri83], Section 2.7.1,
for the periodic case see [ST87], Section 3.5.5.).

Corollary 1.1.12. Let s ≥ 0 and assume that

s
[≤]
< s1, s2, s

[<]

≤ s1 + s2 −
n

2

Then, there exists c > 0 such that

‖u1u2‖Hs ≤ c‖u1‖Hs1‖u2‖Hs2 , u1 ∈ Hs1 , u2 ∈ Hs2 (1.3)

In particular, Hs is a Banach algebra for s > n
2 .

Proof. Define vi = F−1|Fui|. The point-wise estimate on the Fourier side
〈ξ〉s ≤ c〈ξ1〉s + c〈ξ − ξ1〉s shows

‖u1u2‖Hs ≤
∥∥〈ξ〉s ∫

Fu1(ξ − ξ1)Fu2(ξ1)dξ1
∥∥

L2
ξ

≤c‖Jsv1v2‖L2 + c‖v1Jsv2‖L2

≤c‖Jsv1‖Lp1‖v2‖Lp2 + c‖v1‖Lq1‖Jsv2‖Lq2

for 1
p1

+ 1
p2

= 1
q1

+ 1
q2

= 1
2 . We start with the case s = s1 + s2 − n

2 . Then,
necessarily 0 < si <

n
2 and we choose p1 = n

s2
and q2 = n

s1
and the claim

follows from Proposition 1.1.11 and the fact that ‖vi‖Hsi = ‖ui‖Hsi .
In the case s < s1 + s2 − n

2 we use the estimate

〈ξ〉s ≤ c〈ξ1〉s−s2〈ξ − ξ1〉s2 + c〈ξ1〉s1〈ξ − ξ1〉s−s1

and arrive at

‖u1u2‖Hs ≤c‖Js−s2v1J
s2v2‖L2 + c‖Js1v1J

s−s1v2‖L2

≤c‖Js−s2v1‖L∞‖Js2v2‖L2 + c‖Js1v1‖L2‖Js−s1v2‖L∞

Because Hs1+s2−s ⊂ L∞ by Proposition 1.1.11 the claim follows.
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1.2 Linear equations

Let s ∈ R and φ : Rn → R be a continuous function of polynomial growth.
We define φ(D) to be the Fourier multiplier operator

φ(D) : Hs ⊃ Dφ,s → Hs

φ(D)f = F−1
x φFxf

which has dense domain Dφ,s := {f ∈ Hs | 〈ξ〉sφFxf ∈ L2}.

1.2.1 Linear homogeneous equations

Let s ∈ R, u0 ∈ Hs and define W (t)u0 by

FxW (t)u0(ξ) := eitφ(ξ)Fxu0(ξ)

Then, ‖W (t)u0‖Hs = ‖u0‖Hs and

W (t) : Hs → Hs

is a well-defined, linear and isometric operator. For u0 ∈ Dφ,s the function
u(t) := W (t)u0 satisfies u ∈ C1(R,Hs) and solves the Cauchy problem

∂tu(t)− iφ(D)u(t) = 0 for t ∈ (−T, T )
u(0) = u0

(1.4)

The following proposition summarizes important properties of W (t) (cp.
[CH98] Theorem 3.2.3).

Proposition 1.2.1. Let s ∈ R. The one-parameter family (W (t))t∈R ⊂
L(Hs) is a group of unitary operators. Moreover,

(i) ‖W (t)u0‖Hs = ‖u0‖Hs , u0 ∈ Hs

(ii) t 7→W (t)u0 ∈ C(R,Hs), u0 ∈ Hs

(iii) t 7→W (t)u0 ∈ C(R,Dφ,s) ∩ C1(R,Hs), u0 ∈ Dφ,s

(iv) W (0) = Id, W (t+ t′) = W (t)W (t′), W (t)∗ = W (−t)

and for u0 ∈ Dφ,s the function u(t) = W (t)u0 satisfies (1.4).

Because of its importance let us rewrite this solution for u0 ∈ S in an
explicit form

u(t, x) = W (t)u0(x) = (2π)−n

∫ ∫
ei(x−y)ξ+itφ(ξ)u0(y) dydξ (1.5)
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Examples 1.2.2. (i) φ(ξ) = −|ξ|2: the equation

∂tu(t)− i∆u(t) = 0

is called the (linear) Schrödinger equation.

(ii) n = 1 and φ(ξ) = ξ3: The equation

∂tu(t) + ∂3
xu(t) = 0

is called the Airy equation.

1.2.2 Linear inhomogeneous equations

Next, we recall Duhamel’s principle for the linear inhomogeneous problem
(see [CH98], Section 4.1). Compare also Proposition 1.3.3.

Proposition 1.2.3. Let T > 0 and s ∈ R. Assume that u0 ∈ Dφ,s and
f ∈ C([−T, T ],Hs) ∩ L1([−T, T ],Dφ,s) as well as u ∈ C([−T, T ],Dφ,s) ∩
C1((−T, T ),Hs). Then, the following statements are equivalent:

(i) u solves

∂tu(t)− iφ(D)u(t) = f(t) , t ∈ (−T, T )
u(0) = u0

(1.6)

in Hs.

(ii) u satisfies

u(t) = W (t)u0 +
∫ t

0

W (t− t′)f(t′) dt′ , t ∈ (−T, T ) (1.7)

in Hs.

Remark 1.2.4. More generally, for initial data in Hs and f ∈ L1([−T, T ],Hs)
the integral equation above defines a function u ∈ C([−T, T ],Hs).

1.3 The nonlinear Cauchy problem and well-
posedness

We are interested in nonlinear Cauchy problems of the type

∂tu(t)− iφ(D)u(t) = F (u(t)) for t ∈ (−T, T )
u(0) = u0

(1.8)



8 Chapter 1. Cauchy problems and well-posedness

Let us recall the four aims formulated in the introduction: For given initial
data in L2 based Sobolev spaces we try to find

(i) unique

(ii) solutions

(iii) whose initial regularity persists

(iv) and which depend continuously on the initial data.

In this section we will give a precise mathematical meaning to the nonlinear
Cauchy problem (1.8) and well-posedness. Since (1.8) is nonlinear and we
want to study these equations in a low regularity framework, there is no
unified notion of solutions like the theory of distributions provides for linear
equations. To give an example, consider the Korteweg-de Vries equation

∂tu(t) + ∂3
xu(t) = ∂xu

2(t)

for periodic initial data u0 ∈ Hs(T) for s < 0, where it is not clear how
to define the product u · u. Nevertheless, C.E. Kenig - G. Ponce - L. Vega
[KPV96] and T. Kappeler - P. Topalov [KT03a] and others derived well-
posedness results in some range where the generalized solutions are defined
by an extension procedure.1

In this section we will define a rather weak general notion of well-posedness,
related to [KT03a]. In each particular application considered here, we will
be able to strengthen this in certain directions by using the specific structure
of the problem. One main point here is the regularity of the flow map.

Examples 1.3.1. (i) In Chapter 3 we consider a Schrödinger equation in
one space dimension with the derivative nonlinearity

∂tu(t)− i∂2
xu(t) = ∂x(|u|2u)(t)

(ii) The nonlinear equations in one space dimension

∂tu(t) + ∂3
xu(t) =

±1
k + 1

∂xu
k+1(t)

are called Korteweg - de Vries equation (KdV) if k = 1, modified
Korteweg - de Vries equation (mKdV) if k = 2 or generalized Korteweg
- de Vries equation of order k for k ≥ 3.

1Concerning uniqueness, cp. Remarks in [Chr05].
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(iii) n = 1 and φ(ξ) = ξ|ξ|: The equations

∂tu(t)− |D|∂xu(t) =
±1
k + 1

∂xu
k+1(t)

are called Benjamin - Ono equation (BO) if k = 1, modified Benjamin -
Ono equation (mBO) if k = 2 or generalized Benjamin - Ono equation
of order k for k ≥ 3.

(iv) n = 1 and φ(ξ) = ξ|ξ|α, 1 < α < 2: We call

∂tu(t)− |D|α∂xu(t) = ∂xu
2(t)

equation of Benjamin - Ono type, see Chapter 4.

Assumption. Let us assume throughout this work that there exists a num-
ber k ≥ 0 such that Hk ⊂ Dφ,0 and F : Hs → Hs−k is locally Lipschitz
continuous for all s ≥ k.

Obviously, for functions u ∈ C([−T, T ],Hk) ∩ C1((−T, T ), L2) the ex-
pressions

∂tu(t) , φ(D)u(t) , F (u(t)) ∈ L2

are well-defined for all t ∈ (−T, T ).

Definition 1.3.2. A function u ∈ C([−T, T ],Hk) is called a regular solution
of (1.8), iff u ∈ C1((−T, T ), L2) and

∂tu(t)− iφ(D)u(t) = F (u(t))

is fulfilled in L2 for every t ∈ (−T, T ).

Let us review Duhamel’s principle.

Proposition 1.3.3. The following statements are equivalent:

(i) u ∈ C([−T, T ],Hk) ∩ C1((−T, T ), L2) is a regular solution

(ii) u ∈ C([−T, T ],Hk) solves

u(t) = W (t)u(0) +
∫ t

0

W (t− t′)F (u(t′))dt′, t ∈ (−T, T )

Proof. Assume (i). Then, for v(t) = W (−t)u(t) ∈ C1((−T, T ), L2) we have

∂tv(t) = −iφ(D)W (−t)u(t) +W (−t)∂tu(t)
= W (−t)F (u(t)), t ∈ (−T, T )
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which implies

v(t) = v(0) +
∫ t

0

W (−t′)F (u(t′))dt′

and the claim (ii) follows. Now, assume (ii). Then, by assumption∫ t

0

W (−t′)F (u(t′))dt′ ∈ C1((−T, T ), L2)

and v(t) = W (−t)u(t) ∈ C1((−T, T ), L2) solves

∂tv(t) = W (−t)F (u(t)), t ∈ (−T, T )

which gives (i).

In most of the cases which are interesting to us, the existence and unique-
ness of smooth solutions will be well-known (or at least straightforward to
show) by classical means like a regularization procedure and energy esti-
mates. However, we will not have to rely on any results about regular solu-
tions2.

Definition 1.3.4. Let s ∈ R and H ↪→ Hs such that S ⊂ H is dense and
let BR = {u0 ∈ H | ‖u0‖H < R}. We say that the Cauchy problem (1.8)
is locally [globally] well-posed in H (in the minimal sense) iff there exists a
non-increasing function T ∗ : (0,∞) → (0,∞) such that for all R > 0 and
0 < T ≤ T ∗(R) [for all R > 0 and all T > 0] the following conditions are
satisfied:

(i) There exists a continuous map

SR,T : BR → C([−T, T ],H)

(ii) If s′ ≥ s, then SR,T (BR ∩Hs′) ⊂ C([−T, T ],Hs′ ∩H) and

SR,T |BR∩Hs′ : BR ∩Hs′ → C([−T, T ],Hs′ ∩H)

is continuous.

(iii) There exists s1 ≥ k such that for u0 ∈ BR ∩Hs1 the function SR,T (u0)
is the unique regular solution in C([−T, T ],H ∩Hs1) of (1.8).

The map SR,T is called the flow map or solution map.
Let M ⊂ H be an open subset. We say that the Cauchy problem is locally

[globally] well-posed in H for data in M (in the minimal sense), iff (i)-(iii)
hold true with BR replaced by BR ∩M .

2Except for Section 4.4.



1.3. The nonlinear Cauchy problem and well-posedness 11

Roughly speaking, we may summarize this definition of well-posedness
as follows: The map data 7→ solution is well-defined for smooth data and
extends to a continuous map from H ∩ Hs′ to C([−T, T ],H ∩ Hs′) for all
s′ ≥ s.

We are mainly interested in the cases where H = Hs for some s ∈ R.
But sometimes, it is also interesting to consider subsets of Hs endowed with
slightly stronger norms, see Chapter 4.

Proposition 1.3.5. Assume that the Cauchy problem (1.8) is locally well-
posed in a space H ↪→ Hs for some s ∈ R.

(i) Let R > 0, 0 < T ≤ T ∗(R) and u0 ∈ BR. If vn → v in C([−T, T ],H)
for a sequence vn ∈ C([−T, T ],H ∩Hs1) of unique regular solutions of
(1.8) with vn(0)→ u0 in H, it follows v = SR,T (u0).

(ii) Assume u0 ∈ BR1 and R2 ≥ R1 and let T1 = T ∗(R1). Then, for all
0 < T2 ≤ T ∗(R2) we have

SR1,T1(u0)|[−T2,T2] = SR2,T2(u0)

Proof. The first claim directly follows from parts (ii) and (iii) of Definition
1.3.4

v = lim
n→∞

vn = lim
n→∞

SR,T (vn(0)) = SR,T ( lim
n→∞

vn(0)) = SR,T (u0)

where the limits are taken in C([−T, T ],H) and H, respectively.
For the proof of the second claim it suffices to consider smooth data

u0 ∈ H ∩ Hs1 by continuous dependence and density. But then the claim
immediately follows from part (iii) of Definition 1.3.4.

Remark 1.3.6. We conclude that well-posedness in the minimal sense implies
that there exist unique limits of smooth, regular solutions whose initial reg-
ularity persists and which depend continuously on the initial data. Hence,
the two aims existence and uniqueness are fulfilled in a very weak limiting
sense which is inherited from existence and uniqueness for smooth, regular
solutions. This is natural under the assumption we made on F which is only
defined for quite smooth functions.

Remark 1.3.7. In the applications we will always try to strengthen the well-
posedness results in several directions, in particular we want to verify that
SR,T (u0) fulfills the equation at least in a distributional sense and to specify
a uniqueness class. Moreover, we are interested in the regularity properties of
the flow map. All this depends mainly on suitable estimates for the nonlinear
expression.
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Remark 1.3.8. We defined the time of existence only with respect to balls
around the origin, such that the flow map is then defined on these balls with
a common time of existence. Alternatively, one could define T ∗ : H → (0,∞]
to be a lower semi-continuous function and require that the flow maps exist
locally with a common time of existence, which will not be considered here.

1.4 Analytic maps between Banach spaces

In this section we will introduce differentiability and analyticity in the infinite
dimensional setting. This will be relevant when studying the regularity of
the flow maps in the later applications. The aim here is to provide some
well-known facts for future reference.

Let X,Y be Banach spaces over R [over C], U ⊂ X open. We define
C1(U, Y ) as the set of all [complex] differentiable maps F : U → Y , such
that F ′ : U → L(X,Y ) is continuous and inductively we define Ck(U, Y ) for
k = 2, . . . ,∞. Let us recall

Proposition 1.4.1. Let F : U → Y be differentiable. Assume that for
u ∈ U there exists ε > 0 such that F ′ : Bε(u)→ L(X,Y ) is bounded. Then,
F |Bε(u) is Lipschitz continuous. In particular, if F ∈ C1(U, Y ), then F is
locally Lipschitz continuous.

The following definition is the straightforward generalization of analytic-
ity to Banach spaces.

Definition 1.4.2. Let X,Y be Banach spaces over C [over R], U ⊂ X open
and F : U → Y . Then, we say that F is analytic [real analytic], iff for
every u ∈ U there exists r > 0 with Br(u) ⊂ U such that for every k ∈ N0

there exists a continuous k-linear map Lk : X × . . . × X → Y and with
L(k)(x) = Lk(x, . . . , x)

F (x) =
∞∑

k=0

L(k)(x− u), x ∈ Br(u)

holds true with uniform convergence in Br(u).

Let us discuss two trivial examples, which will be used in the sequel.

Examples 1.4.3. Let X,Y be Banach spaces over C [over R].

(i) Let T : X × . . .×X → Y be k-linear and continuous. Then, the map
X → X,x 7→ T (x, . . . , x) is analytic [real analytic].
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(ii) Let X be a Banach algebra. The exponential map X → X,x 7→ ex is
analytic [real analytic] by definition.

In the next theorem we summarize some properties of analytic maps.

Theorem 1.4.4. Let X,Y be Banach spaces over C, U ⊂ X open and
F : U → Y . The following three statements are equivalent:

(i) F is analytic.

(ii) F is complex differentiable in U .

(iii) F is locally bounded and for all y′ ∈ Y ′ and all u ∈ U, v ∈ X the maps

{z ∈ C | u+ zv ∈ U} → C, z 7→ 〈y′, F (u+ zv)〉

are analytic.

Proposition 1.4.5. Let X,Y, Z be Banach spaces over C [over R], U ⊂
X,V ⊂ Y open and F : U → V ⊂ Y , G : V → Z analytic [real analytic].
Then, G ◦ F : U → Z is analytic [real analytic].

Finally, we state an implicit function theorem.

Theorem 1.4.6. Let k ∈ N, X,Y, Z be Banach spaces [over C; over R],
U ⊂ X and V ⊂ Y neighborhoods of x0 ∈ X and y0 ∈ Y , respectively,
and let F ∈ Ck(U × V,Z) [let F be analytic; let F be real analytic], such
that F (x0, y0) = 0 and DyF (x0, y0) is invertible. Then, there exist balls
Br(x0) ⊂ U,BR(y0) ⊂ V and exactly one map G ∈ Ck(Br(x0), Y ) [one
analytic map G : Br(x0) → Y ; one real analytic map G : Br(x0) → Y ]
with G(Br(x0)) ⊂ BR(y0) such that G(x0) = y0 and F (x,G(x)) = 0 for
x ∈ Br(x0).

1.5 Notes and References

The contents of this chapter is well-known and can be found in several text-
books, with the only exception of Section 1.3.

For rigorous definitions, identifications and further properties of the ob-
jects defined in Section 1.1 we refer to the textbooks of L. Hörmander [Hör83]
(Chapter VII), W. Kaballo [Kab99] (Kapitel VII) and J. Bergh - J. Löfström
[BL76] (Chapter 6), R.J. Iório - V. Iório [II01] as well as the detailed treat-
ments of H.-J. Schmeisser - H. Triebel [ST87] (Chapter 3) and H. Triebel
[Tri83] (Chapter 2). The books of T. Cazenave - A. Haraux [CH98] and A.
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Pazy [Paz83] serve as a general reference for Section 1.2 as they provide an
exhaustive introduction to linear evolution equations and semi group theory.

The aim of Section 1.3 is to formulate the minimal requirements which
have to be fulfilled when we want to discuss well-posed Cauchy problems
in the later applications. For different notions of well-posedness and ill-
posedness for dispersive equations we refer to the influential works of J.L.
Bona - R. Smith [BS75], T. Kato [Kat75, Kat83], J. Bourgain [Bou93], C.E.
Kenig - G. Ponce - L. Vega [KPV93c, KPV93a, KPV96, KPV01], L. Molinet
- J.-C. Saut - N. Tzvetkov [MST01], M. Christ - J. Colliander - T. Tao
[CCT03], H. Koch - N. Tzvetkov [KT05b], D. Tataru [Tat05], M. Christ
[Chr05], T. Kappeler - P. Topalov [KT05b] as well as A.D. Ionescu - C.E.
Kenig [IK05]. Moreover, an overview of results on local and global well-
posedness is provided by web pages maintained by J. Colliander - M. Keel -
G. Staffilani - H. Takaoka - T. Tao [CKS+].

For the contents of Section 1.4 we refer to the textbooks of J. Mujica
[Muj86], Chapters I-II, IV and K. Deimling [Dei85], §7.7 and §15. For the
definition of analyticity, see e.g. [Dei85], Def. 15.1 and [Muj86], Def. 5.1.
For the proof of the first part of Theorem 1.4.4 see [Muj86], Thm. 13.16
and Def. 13.1. The second part of Theorem 1.4.4 follows from combining
[Muj86], Thm. 8.12, Prop. 8.6 and Thm. 8.7. For Banach spaces over C
Proposition 1.4.5 follows from the chain rule, see [Muj86], Thm. 13.6 and
the equivalence of Theorem 1.4.4 (i) and (ii). For Banach spaces over R,
we first complexify the spaces, extend the analytic maps to open sets of the
complex spaces and apply the result for C, similar to the process in the proof
of [Dei85], Thm. 15.3 on pp.151-152. The proof of Theorem 1.4.6 is given in
[Dei85], Thm. 15.1, Cor. 15.1 and Thm. 15.3 (a).



Chapter 2

Dispersive estimates and
Bourgain spaces

2.1 Dispersive estimates

In this section we will discuss certain space-time estimates which display the
dispersive character of the equations in consideration. Although the linear
solution operator W (t) is an isometry in Hs, it has certain smoothing effects.

2.1.1 The periodic case: The Schrödinger equation

In this subsection we recall the beautiful L4(T2) estimate for the Schrödinger
equation in the periodic case in one spatial dimension, i.e. the phase function
now is φ : Z → R, φ(ξ) = −ξ2. The following result is due to A. Zygmund
[Zyg74] (formulated as a restriction theorem for the Fourier transform), see
also J. Bourgain [Bou93].

Theorem 2.1.1. Let u0 ∈ L2(T). Then,

∥∥∥∥∥∥ 1√
2π

∑
ξ∈Z

ei(ξx−tξ2)Fu0(ξ)

∥∥∥∥∥∥
L4(T2)

≤ 4
√

2‖u0‖L2(T) (2.1)
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Proof. Let f(t, x) = 1√
2π

∑
ξ∈Z

ei(ξx−tξ2)Fu0(ξ). Then,

‖ff‖L2(T2) =

∥∥∥∥∥∥ 1
2π

∑
(ξ1,ξ2)∈Z2

Fu0(ξ1)Fu0(ξ2)eit(ξ2
2−ξ2

1)+i(ξ1−ξ2)x

∥∥∥∥∥∥
L2(T2)

We rewrite this sum as a Fourier series in (t, x) variables

1
2π

∑
(τ,ξ)∈Z2

a(τ, ξ)eixξ+itτ

where
a(τ, ξ) =

∑
(ξ1,ξ2)∈P (τ,ξ)

Fu0(ξ1)Fu0(ξ2)

and P (τ, ξ) = {(ξ1, ξ2) | ξ22 − ξ21 = τ, ξ1 − ξ2 = ξ}. Now, for given pair of
frequency variables (τ, ξ) 6= (0, 0) of the form (τ, ξ) = (ξ22 − ξ21 , ξ1 − ξ2) there
is at most one solution (ξ1, ξ2). Moreover a(0, 0) =

∑
ξ∈Z |Fu0(ξ)|2, and by

Plancherel

‖ff‖L2(T2) =

 ∑
(τ,ξ)∈Z2

|a(τ, ξ)|2
1/2

≤
√

2
∑
ξ∈Z
|Fu0(ξ)|2

and the claim follows.

2.1.2 The non-periodic case: Generalized dispersion

In this subsection we consider the non-periodic case and the phase function
φ : R → R, φ(ξ) = ξ|ξ|α for α > 0. Let Wαu0(t, x) = Wα(t)u0(x) be the
linear group defined by

FWα(t)u0(ξ) = eitξ|ξ|αFu0(ξ)

Definition 2.1.2. Let p ∈ [4,∞], q ∈ [2,∞] and

2
p

+
1
q

=
1
2

Then (p, q) is called an admissible pair.

The following theorem is a special case of [KPV91a], Thm. 2.1.
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Theorem 2.1.3. Let α > 0 and (p, q) be an admissible pair. Then we have

‖|D|
α−1

p Wαf‖Lp
t Lq

x
≤ c‖f‖L2

x
(2.2)∥∥∥∥∫ t

0

|D|
α−1

p Wα(t− s)f(s) ds
∥∥∥∥

Lp
t Lq

x

≤ c‖f‖L1
t L2

x
(2.3)

Proof. The estimate

‖|D|
α−1

p Wαf‖Lp
t Lq

x
≤ c‖f‖L2

x

directly follows from [KPV91a], Thm. 2.1, formula (2.3). Then, using
Minkowski’s inequality,∥∥∥∥∫ t

0

|D|
α−1

p Wα(t− s)f(s) ds
∥∥∥∥

Lp
t Lq

x

≤
∥∥∥|D|α−1

p Wα(t− s)f(s)
∥∥∥

Lp
t Lq

xL1
s

≤ c
∥∥∥|D|α−1

p Wα(t)Wα(−s)f(s)
∥∥∥

L1
sLp

t Lq
x

≤ c ‖Wα(−s)f(s)‖L1
sL2

x
= c‖f‖L1

t L2
x

where we exploited (2.2) and the fact that Wα(−s) is an isometry in L2.

The next theorem, which is due to C.E. Kenig - G. Ponce - L. Vega (cp.
Lemma 2.1 in [KPV91b] or [KPV91a], Theorem 4.1) describes the sharp local
smoothing effect. The proof is nothing else but a change of variables and
Plancherel in t.

Theorem 2.1.4. Let α > 0. Then, for u ∈ S(R)∫
R
||D|α2 Wα(t)u0(x)|2dt =

1
1 + α

‖u0‖2L2 , x ∈ R (2.4)

which shows ‖|D|α2 Wαu0‖L∞x L2
t

=
√

1
1+α‖u0‖L2 .

We will now provide a useful and well-known formula for approximate
identities.

Lemma 2.1.5. Let g(x) = π−
1
2 e−x2

, gε(x) = ε−1g(ε−1x) and let f ∈ L1(R)
be continuous. Moreover, let ϕ : R → R be continuously differentiable. As-
sume that ϕ(x) = 0, x ∈ supp(f) iff x ∈ {x1, . . . , xn} and ϕ′(xi) 6= 0 and
supp(f) is compact or lim infx→±∞ |ϕ(x)| > 0. Then,

lim
ε→0

∫
gε(ϕ(x))f(x) dx =

n∑
i=1

f(xi)
|ϕ′(xi)|

(2.5)
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Proof. Within the support of f there are finitely many zeros of ϕ, these
are simple, and ϕ stays away from zero at infinity if f is not compactly
supported. Hence, there exists a δ > 0 such that with Ii := (xi − δ, xi + δ)

ϕ(x) = 0, x ∈ supp(f) ⇐⇒ x = xi, |ϕ′(x)| ≥ c > 0 , x ∈ Ii

and |ϕ(x)| ≥ c > 0 for x ∈ V := supp(f) \
n⋃

i=1

Ii

Then,∫
Ii

gε(ϕ(x))f(x) dx =
∫

ϕ(Ii)

gε(y)
f(ϕ|−1

Ii
(y))

|ϕ′(ϕ|−1
Ii

(y))|
dy → f(xi)

|ϕ′(xi)|
(ε→ 0)

because ϕ|−1
Ii

(0) = xi and (gε)ε>0 is an approximate identity. In V we have∣∣∣∣∫
V

gε(ϕ(x))f(x) dx
∣∣∣∣ ≤ sup

x∈V
gε(ϕ(x))

∫
V

|f(x)| dx

≤ε−1e−ε−2c2
‖f‖L1 → 0 (ε→ 0)

because |ϕ| ≥ c in V .

We will now apply this in the proof of a sharp bilinear smoothing esti-
mate. Roughly speaking, the bilinear operator defined below controls α/2
derivatives on the product of two solutions at different frequency. This is
particularly useful for the study of quadratic nonlinearities involving deriva-
tives and it is a generalization of previous estimates for Schrödinger and KdV
equations by A. Grünrock [Grü01, Grü05a], which in turn were related to
work by J. Bourgain [Bou98]. For δ > 0 let |x|δ := ζ(x/δ)|x| for an even
function ζ ∈ C∞ with ζ|[−1,1] ≡ 0 and ζ|R\[−2,2] ≡ 1 and 0 ≤ ζ ≤ 1.

Theorem 2.1.6. We define the bilinear operator Is
δ via

Fx I
s
δ (u1, u2)(ξ) =

∫
ξ=ξ1+ξ2

∣∣|ξ1|2s − |ξ2|2s
∣∣ 1
2

δ
û1(ξ1)û2(ξ2) dξ1.

for all u1, u2 ∈ S(R). Then, for all δ > 0

∥∥∥I α
2

δ (Wαu1,Wαu2)
∥∥∥

L2
xt

≤
√

2
1 + α

‖u1‖L2
x
‖u2‖L2

x
, (2.6)
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Proof. For fixed t ∈ R we use Plancherel in x and calculate∥∥∥I α
2

δ (Wα(t)u1,Wα(t)u2)
∥∥∥2

L2
x

=
1
2π

∫ ∣∣∣∣∫
ξ=ξ1+ξ2

||ξ1|α − |ξ2|α|
1
2
δ e

it(ξ1|ξ1|α+ξ2|ξ2|α)û1(ξ1)û2(ξ2) dξ1

∣∣∣∣2 dξ
=

1
2π

∫ ∫ ∫
eitP (ξ,ξ1,η1)f(ξ, ξ1, η1) dη1dξ1dξ (2.7)

with the phase function

P (ξ, ξ1, η1) = ξ1|ξ1|α + (ξ − ξ1)|ξ − ξ1|α − η1|η1|α − (ξ − η1)|ξ − η1|α

and

f(ξ, ξ1, η1)

= ||ξ1|α − |ξ − ξ1|α|
1
2
δ ||η1|

α − |ξ − η1|α|
1
2
δ û1(ξ1)û2(ξ − ξ1)û1(η1)û2(ξ − η1)

For fixed ξ, ξ1 the function P1(η1) = P (ξ, ξ1, η1) has only two simple roots
ξ1, ξ − ξ1 in the support of f . Moreover,

|P ′1(η1)| = (1 + α)||ξ − η1|α − |η1|α| ≥ (1 + α)δ in supp(f) (2.8)

and
|P ′1(ξ1)| = |P ′1(ξ − ξ1)| = (1 + α)||ξ − ξ1|α − |ξ1|α|.

For the approximate identity (gε) from Lemma 2.1.5 we observe Fgε ↑
(2π)−

1
2 . By Fubini’s theorem and the Fourier inversion formula

I(ε) := (2π)−
1
2

∫
Fgε(t)

∫ ∫ ∫
eitP (ξ,ξ1,η1)f(ξ, ξ1, η1) dη1dξ1dξdt

=
∫ ∫ ∫

gε(P (ξ, ξ1, η1))f(ξ, ξ1, η1) dη1dξ1dξ

Now, because of (2.8) we may use the dominated convergence theorem to
show

lim
ε→0

I(ε) =
∫ ∫

lim
ε→0

∫
gε(P (ξ, ξ1, η1))f(ξ, ξ1, η1) dη1dξ1dξ (2.9)

By Lemma 2.1.5 we conclude that this is equal to∫ ∫
f(ξ, ξ1, ξ1)
|P ′1(ξ1)|

+
f(ξ, ξ1, ξ − ξ1)
|P ′1(ξ − ξ1)|

dξ1dξ

≤ 1
1+α

∫ ∫
|û1(ξ1)|2|û2(ξ − ξ1)|2 + |û1(ξ1)û2(ξ1)||û1(ξ − ξ1)û2(ξ − ξ1)| dξ1dξ

≤ 2
1+α‖u1‖2L2

x
‖u2‖2L2

x
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On the other hand, by the monotone convergence theorem and (2.7) we see

lim
ε→0

I(ε) =
∥∥∥I α

2
δ (Wαu1,Wαu2)

∥∥∥2

L2
xt

which implies (2.6).

Remark 2.1.7. The proof shows that this estimate is sharp in the sense that
for u ∈ S(R)

lim
δ→0

∥∥∥I α
2

δ (Wαu,Wαu)
∥∥∥

L2
xt

=

√
2

1 + α
‖u‖2L2

2.2 Fourier restriction norm spaces

Now, we define function spaces which are built according to the symbol
of the linear equation and therefore comprise much information about the
dispersive properties of their solutions, cp. [Bou93].

We will introduce these spaces with the intention to apply the results
in Chapters 3 and 4 and we will treat both cases separately, mainly be-
cause of the non-standard low frequency condition used in the case of equa-
tions of Benjamin-Ono type. We start with the case of the one dimensional
Schrödinger equation on T.

2.2.1 The periodic case: The Schrödinger equation

In this subsection we consider the periodic case and the phase function φ :
Z→ R, φ(ξ) = −ξ2, associated to the Schrödinger equation

∂tu(t)− i∂2
xu(t) = 0

and W (t) denotes the corresponding group of unitary solution operators

FxW (t)u0(ξ) = e−itξ2
Fxu0(ξ)

Assume that u(t, x) = χ(t)W (t)u0(x) where χ ∈ C∞0 (−2, 2), χ ≡ 1 in [−1, 1],
so u is a solution on [−1, 1]. Then,

Fu(τ, ξ) = χ̂(τ + ξ2)Fxu0(ξ)

Now, because χ̂ is a Schwartz function, we notice that Fu is highly localized
near the discrete parabola τ = −ξ2 and decays in τ -direction faster than any
polynomial.
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ξ

τ

-

6r r r r r r
rrrrr Figure 2.1: The parabola {(ξ,−ξ2) | ξ ∈ Z} essen-

tially supports the Fourier transform of short time
solutions.

Definitions and basic properties of the spaces

The above observation motivates the following definition, which is essentially
due to Bourgain [Bou93], see also [Gin96, GTV97, CKS+04, Grü00].

Definition 2.2.1. Let s, b ∈ R. The Bourgain space Xs,b associated to
the Schrödinger operator ∂t − i∂2

x is defined as the completion of the space
S(R× T) with respect to the norm

‖f‖Xs,b
:=

∑
ξ∈Z

∫
R
〈ξ〉2s〈τ + ξ2〉2b|Ff(τ, ξ)|2 dτ

1/2

(2.10)

X−
s,b is defined similarly by replacing 〈τ + ξ2〉 with 〈τ − ξ2〉.

Moreover, Ys,b is defined as the completion of the space S(R × T) with
respect to

‖f‖Ys,b
:=

∑
ξ∈Z

(∫
R
〈τ + ξ2〉b〈ξ〉s|Ff(τ, ξ)| dτ

)2
1/2

(2.11)

and the space Zs := Xs, 1
2
∩ Ys,0 with norm

‖u‖Zs
:= ‖u‖X

s, 1
2

+ ‖u‖Ys,0 (2.12)

For T > 0 we define the restriction norm space

ZT
s := {u|[−T,T ] | u ∈ Zs}

with norm
‖u‖ZT

s
= inf{‖ũ‖Zs | u = ũ|[−T,T ], ũ ∈ Zs}

We observe that the spaces Xs,b and X−
s,b are isometrically isomorphic

via complex conjugation ‖u‖Xs,b
= ‖u‖X−

s,b
.
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Moreover, for a function u ∈ S(R× T) and v(t) = W (−t)u(t) we have

‖Jb
t J

s
xv‖2L2 =

∑
ξ∈Z

∫
〈τ〉2b〈ξ〉2s|Fv(τ, ξ)|2dτ

and
Fv(τ, ξ) = Fu(τ − ξ2, ξ)

which shows
‖Jb

t J
s
xv‖L2 = ‖u‖Xs,b

Therefore, Xs,b is isometrically isomorphic to L2 and (Xs,b)′ is isometrically
isomorphic to X−s,−b. Every element of Xs,b and Ys,b can be identified with
a distribution in S ′(R× T).

Lemma 2.2.2. Let s ∈ R, T > 0. ST (T) is a dense subset of ZT
s .

Proof. Let u ∈ ZT
s . There exists ũ ∈ Zs such that u = ũ|[−T,T ]. Because

S(R×T) ⊂ Zs is dense we find a sequence ũn ∈ S(R×T) such that ũn → ũ.
With un = ũn|[−T,T ] it follows

‖u− un‖ZT
s
≤ ‖ũ− ũn‖Zs

→ 0

because (ũ− ũn)|[−T,T ] = u− un.

Linear estimates

The following proposition contains the well-known and frequently used em-
bedding estimates of Sobolev type.

Proposition 2.2.3.

If 2 ≤ p <∞, b ≥ 1
2
− 1
p

: ‖u‖Lp
t Hs ≤c‖u‖Xs,b

(2.13)

If 2 ≤ p, q <∞, b ≥ 1
2
− 1
p
, s ≥ 1

2
− 1
q

: ‖u‖Lp
t Lq

x
≤c‖u‖Xs,b

(2.14)

If 1 < p ≤ 2 , b ≤ 1
2
− 1
p

: ‖u‖Xs,b
≤c‖u‖Lp

t Hs (2.15)

We may replace Xs,b by X−
s,b. Moreover,

‖u‖C(R,Hs(T)) ≤c‖u‖Zs , s ∈ R (2.16)

‖u‖Ys,b1
≤c‖u‖Xs,b2

, b2 > b1 +
1
2

(2.17)
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Proof. We consider v = W (−·)Js
xu for u ∈ S(R× T). Then, by Minkowski’s

and Sobolev’s inequality

‖u‖Lp
t Hs

x
= ‖v‖Lp

t L2
x
≤ ‖v‖L2

xLp
t
≤ c‖Jb

t v‖L2
xL2

t
= c‖u‖Xs,b

and the claim (2.13) follows. Combining this with another application of
Sobolev’s inequality in the space variable ‖v(t)‖Lq

x
≤ c‖Js

xv(t)‖L2
x

gives
(2.14). Estimate (2.15) follows by duality from (2.13). The estimates for
X−

s,b follow from the invariance of Lp
tH

s
x and Lp

tL
q
x under complex conjuga-

tion. To prove (2.16) it suffices to prove an estimate for the sup norm for
u ∈ S(R× T) by density. We write for t ∈ R

Fxu(t, ξ) = c

∫
R
eitτFu(τ, ξ) dτ

by the Fourier inversion formula. This yields

‖u(t)‖Hs = c

∥∥∥∥∫
R
eitτ 〈ξ〉sFu(τ, ξ) dτ

∥∥∥∥
L2

ξ

≤ c‖〈ξ〉sFu(τ, ξ)‖L2
ξL1

τ

Now we take the supremum with respect to t. The last estimate follows from
the Cauchy-Schwarz inequality in τ :

‖u‖2Ys,b1
=

∑
ξ∈Z

(∫
R
〈τ + ξ2〉b1〈ξ〉s|Ff(τ, ξ)| dτ

)2

≤
∑
ξ∈Z

∫
R
〈τ + ξ2〉2b1−2b2 dτ

∫
R
〈τ + ξ2〉2b2〈ξ〉2s|Ff(τ, ξ)|2 dτ

Since by assumption 2b1 − 2b2 < −1, there exists c > 0, such that for all ξ∫
R
〈τ + ξ2〉2b1−2b2 dτ ≤ c

which finishes the proof.

We review the L4 estimate from Theorem 2.1.1 as well as an L6 estimate
in the framework of Xs,b due to J. Bourgain [Bou93], but in versions of A.
Grünrock [Grü00] which are global in time.

Proposition 2.2.4. For −b′, b > 3
8 there exists c > 0, such that

‖u‖L4(R×T) ≤ c‖u‖X0,b
(2.18)



24 Chapter 2. Dispersive estimates and Bourgain spaces

and its dual version
‖u‖X0,b′ ≤ c‖u‖L 4

3 (R×T)
(2.19)

hold true. Moreover, for b > 1
2 and any ε > 0 there exists c > 0, such that

‖u‖L6(R×T) ≤ c‖u‖Xε,b
(2.20)

and its dual version hold true. Finally, for all ε > 0 and 2 ≤ p < 6 there
exists c > 0 such that

‖u‖Lp(R×T) ≤ c‖u‖Xε, 1
2

(2.21)

In all estimates we may replace Xs,b by X−
s,b.

Proof. The estimates (2.18), (2.19) and (2.20) can be found as Lemma 2.1
and Lemma 2.2 in [Grü00]. To prove (2.21) we fix ε > 0 and 2 ≤ p < 6 and
interpolate (see e.g. [Grü02] Lemma 1.4) between (2.20)

‖u‖L6(R×T) ≤ c‖u‖Xδ1, 1
2 +δ2

for small enough δ1, δ2 > 0 and the trivial statement

‖u‖L2(R×T) ≤ ‖u‖X0,0

and obtain (2.21). That the estimates hold both for Xs,b and X−
s,b results

from the invariance of Lp spaces under complex conjugation.

We summarize the behavior of the Xs,b, Ys,0 norms under multiplication
with cutoffs in time. Let χ ∈ C∞0 ((−2, 2)) denote a symmetric function with
χ ≡ 1 in [−1, 1] and χT (t) = χ(t/T ). For the following lemma see e.g. J.
Ginibre - Y. Tsutsumi - G. Velo [GTV97], Lemma 2.5.

Lemma 2.2.5. Let s ∈ R and 0 < T ≤ 1. There exists c > 0, such that

‖χTu‖Ys,0 ≤ c‖u‖Ys,0

Moreover, for 0 ≤ b1 < b2 <
1
2 or − 1

2 < b1 < b2 ≤ 0 there exists c > 0, such
that

‖χTu‖Xs,b1
≤ cT b2−b1‖u‖Xs,b2

and for any δ > 0 there exists c > 0, such that

‖χTu‖X
s, 1

2
≤ cT−δ‖u‖X

s, 1
2
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Proof. It suffices to consider smooth u. The first estimate follows from
Young’s inequality in τ : For fixed ξ we have

‖F(χTu)(·, ξ)‖L1 =c‖
∫

R
χ̂T (· − τ1)Fu(τ1, ξ) dτ1‖L1

≤c‖χ̂T ‖L1‖Fu(·, ξ)‖L1

Because ‖χ̂T ‖L1 = ‖χ̂‖L1 the estimate follows by taking the weighted L2

norms with respect to ξ on both sides. For the proof of the second estimate
it suffices to consider 0 ≤ b1 < b2 <

1
2 by duality. We define v = W (−·)u

and fix ξ. Then,

‖χTFxv(·, ξ)‖Hb1 ≤ c‖χT ‖Hb‖Fxv(·, ξ)‖Hb2

for admissible b according to Corollary 1.1.12. In the case 0 ≤ b1 < b2 <
1
2

we may choose b = 1
2 − (b2 − b1) and in the case of b1 = b2 = 1

2 we may
choose b = 1

2 + δ for δ > 0. Now, taking the weighted L2 norms with respect
to the ξ variable we arrive at

‖χT v‖Hs
xH

b1
t
≤ c‖χT ‖Hb‖v‖

Hs
xH

b2
t

Now, a short calculation shows that ‖χT ‖Hb ≤
√

2T
1
2 (1 + T−b)‖χ‖Hb and

the second and third estimate follow.

The next proposition contains estimates for the linear homogeneous and
inhomogeneous problem with a proof based on the strategy from J. Colliander
- M. Keel - G. Staffilani - H. Takaoka - T. Tao [CKS+04], Lemma 3.1.

Proposition 2.2.6. Let s ∈ R. There exists c > 0, such that for u0 ∈ Hs(T)

‖χW (t)u0‖Zs
≤ c‖u0‖Hs (2.22)

and for all f ∈ S(R× T)∥∥∥∥χ∫ t

0

W (t− t′)f(t′) dt′
∥∥∥∥

Zs

≤ c‖f‖Ys,−1 + c‖f‖X
s,− 1

2
(2.23)

Proof. It suffices to consider smooth u0. Let us write

F(χW (·)u0)(τ, ξ) = χ̂(τ + ξ2)Fxu0(ξ)

Then, because χ̂ is a Schwartz function the estimate (2.22) follows. Now we
turn to the estimate (2.23) for the linear inhomogeneous equation. We may
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assume that supp(f) ⊂ {(t, x) | |t| ≤ 2}, since the complementary part does
not contribute. Then, we have

χ(t)
∫ t

0

W (t− t′)f(t′) dt′ = F1(t) + F2(t)

with

F1(t) =
1
2
χ(t)W (t)

∫
R
ϕ(t′)W (−t′)f(t′) dt′

F2(t) =
1
2
χ(t)

∫
R
ϕ(t− t′)W (t− t′)f(t′) dt′

and ϕ(t′) = χ(t′/10) sign(t′). Moreover,

|Fϕ(τ)| ≤ c〈τ〉−1 (2.24)

Now, by estimate (2.22)

‖F1‖Zs
≤ c

∥∥∥∥∫
R
ϕ(t′)W (−t′)f(t′) dt′

∥∥∥∥
Hs(T)

and by Parseval’s equality

Fx

(∫
R
ϕ(t′)W (−t′)f(t′) dt′

)
(ξ) =

∫
R
Fϕ(τ + ξ2)Ff(τ, ξ) dτ

which implies ∥∥∥∥∫
R
ϕ(t′)W (−t′)f(t′) dt′

∥∥∥∥
Hs(T)

≤ c‖f‖Ys,−1

by (2.24). In order to show the estimate for F2 we first apply Lemma 2.2.5
with T = 1

‖F2‖Zs
≤ c

∥∥∥∥∫
R
ϕ(t− t′)W (t− t′)f(t′) dt′

∥∥∥∥
Zs

and observe

F
(∫

R
ϕ(t− t′)W (t− t′)f(t′) dt′

)
(τ, ξ) = Fϕ(τ + ξ2)Ff(τ, ξ)

Because of (2.24) the estimate

|Fϕ(τ + ξ2)Ff(τ, ξ)| ≤ c〈τ + ξ2〉−1|Ff(τ, ξ)|

holds true and the claim follows.
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2.2.2 The non-periodic case: Benjamin-Ono type equa-
tions

In this subsection we consider the non-periodic case and the phase function
φ : R → R, φ(ξ) = ξ|ξ|α for 1 ≤ α ≤ 2. The spaces defined here are related
to the linear equations

∂tu(t)− |D|α∂xu(t) = 0

which in the endpoints coincide with the linear Benjamin-Ono equation for
α = 1 and with the Airy equation for α = 2, respectively. This will be applied
in Chapter 4 to prove well-posedness of these equations with the quadratic
nonlinearities ∂xu

2.

Definitions and basic properties

We start with defining a space of initial data slightly smaller than Hs(R).

Definition 2.2.7. For s ∈ R and 0 ≤ ω < 1
2 we define the Sobolev space

H(s,ω) as the completion of S(R) with respect to the norm

‖u‖2H(s,ω) :=
∫

R
〈ξ〉2s+2ω|ξ|−2ω|Fu(ξ)|2 dξ (2.25)

Remark 2.2.8. Since this norm is stronger than the corresponding Hs(R)
norm1 from Definition 1.1.5, it is continuously embedded in Hs(R) and in
particular all elements define distributions in S ′(R). Moreover, H(s,ω) is a
Hilbert space.
Remark 2.2.9. Notice that since 0 ≤ ω < 1

2 we have the continuous embed-
ding

Lp(R) ∩Hs(R) ⊂ H(s,ω)

for 1 ≤ p ≤ 2 and ω < 1
p −

1
2 by the Hausdorff-Young inequality, see [Hör83],

Theorem 7.1.13.
Next, we introduce resolution spaces which are adaptions of the Bourgain

spaces [Bou93] to our setting. In particular they inherit the low frequency
condition from the space of initial data.

Definition 2.2.10. For 0 ≤ ω < 1
2 and s, b ∈ R we define the space Xs,ω,b

as the completion of S(R2) with respect to the norm ‖u‖Xs,ω,b
defined via

‖u‖2Xs,ω,b

=
∫

R2
|ξ|−2ω〈ξ〉2s−2αω〈|τ |+ |ξ|1+α〉2ω〈τ − ξ|ξ|α〉2b|Fu(τ, ξ)|2 dτdξ

(2.26)

1With the notion of homogeneous Sobolev spaces this space would be Hs(R)∩Ḣ−ω(R)
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Moreover, we define for T > 0 the restriction norm space

XT
s,ω,b := {u|[−T,T ] | u ∈ Xs,ω,b}

with norm

‖u‖XT
s,ω,b

= inf{‖ũ‖Xs,ω,b
| u = ũ|[−T,T ], ũ ∈ Xs,ω,b}.

Remark 2.2.11. Xs,ω,b is closed under complex conjugation due to the sym-
metry of the weights.

Similar to Lemma 2.2.2 we observe

Lemma 2.2.12. Let s, b ∈ R, 0 ≤ ω < 1
2 and T > 0. ST (R) is a dense

subset of XT
s,ω,b.

Linear and bilinear estimates

Proposition 2.2.13. Let b > 1
2 , 0 ≤ ω < 1

2 and s ∈ R. Then,

Xs,ω,b ⊂ C
(
R,H(s,ω)

)
and

‖u‖C(R,H(s,ω)) ≤ c‖u‖Xs,ω,b
(2.27)

Proof. Let u ∈ S(R2). Then, by the Fourier inversion formula we have

‖u(t)‖H(s,ω) ≤ c‖|ξ|−ω〈ξ〉s+ωFu‖L2
ξL1

τ

for t ∈ R, and by Cauchy-Schwarz

‖|ξ|−ω〈ξ〉s+ωFu‖L2
ξL1

τ
≤c‖|ξ|−ω〈ξ〉s+ω〈τ − ξ|ξ|α〉bFu‖L2

≤c‖|ξ|−ω〈ξ〉s−αω〈|τ |+ |ξ|α+1〉ω〈τ − ξ|ξ|α〉bFu‖L2

and the estimate (2.27) follows. The claim follows by density.

Let χ ∈ C∞0 ((−2, 2)) be symmetric, χ ≡ 1 in [−1, 1] and χT (t) = χ(t/T ).

Proposition 2.2.14. Let 0 ≤ ω < 1
2 , s, b ∈ R. Then,

‖χWαu0‖Xs,ω,b
≤ c‖u0‖H(s,ω) (2.28)

for all u0 ∈ H(s,ω).
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Proof. We may assume u0 ∈ S(R) ⊂ H(s,ω) by density and calculate

F(χWαu0)(τ, ξ) = Ftχ(τ − ξ|ξ|α)û0(ξ).

Let N ∈ N be a positive integer with b < N − 1. Since Ftχ is a Schwartz
function, we conclude for s = ω = 0

‖χWαu0‖2X0,0,b
= c

∫
R2
〈τ − ξ|ξ|α〉2b|Ftχ(τ − ξ|ξ|α)û0(ξ)|2 dτdξ

≤ c
∫

R

∫
R
〈τ − ξ|ξ|α〉2b〈τ − ξ|ξ|α〉−2N dτ |û0(ξ)|2 dξ

≤ c‖u0‖2L2

Now let ω ≥ 0, s, b ∈ R. By using the inequality

〈|τ |+ |ξ|1+α〉ω ≤ c(〈τ − ξ|ξ|α〉ω + 〈ξ〉(1+α)ω) (2.29)

we estimate

|ξ|−ω〈ξ〉s−αω〈|τ |+ |ξ|1+α〉ω|û0(ξ)| ≤ c〈τ − ξ|ξ|α〉ω|v̂0(ξ)|,

where v̂0(ξ) = |ξ|−ω〈ξ〉s+ωû0(ξ). With b′ = b+ ω this gives

‖χWαu0‖Xs,ω,b
≤ c‖χWαv0‖X0,0,b′ ≤ c‖v0‖L2 = c‖u0‖H(s,ω) .

which proves the proposition.

Now, we prove an estimate for the linear, inhomogeneous problem.

Proposition 2.2.15. Let 0 ≤ ω < 1
2 , s ∈ R and − 1

2 < b′ ≤ 0 ≤ b < b′ + 1
as well as b′ ≤ −ω. There exists ε > 0, such that for all 0 < T ≤ 1∥∥∥∥χT (t)

∫ t

0

Wα(t− t′)f(t′) dt′
∥∥∥∥

Xs,ω,b

≤ cT ε‖f‖Xs,ω,b′ (2.30)

for all f ∈ S(R2).

Proof. In the case ω = 0 this is a well known estimate, see e.g. [Gin96],
Lemme 3.2. We will reduce (2.30) to this case. Define

Fxg(t)(ξ) := |ξ|−ωFxf(t)(ξ).

and

I(f)(t) := χT (t)
∫ t

0

Wα(t− t′)f(t′) dt
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Using (2.29) we have

‖I(f)‖Xs,ω,b
≤ c‖I(g)‖Xs−αω,0,b+ω

+ c‖I(g)‖Xs+ω,0,b

where on the right hand side the usual Bourgain type norms appear. Thus,
by our restrictions on b, b′ and ω and using the standard estimate

‖I(g)‖Xs−αω,0,b+ω
≤ cT ε ‖g‖Xs−αω,0,b′+ω

‖I(g)‖Xs+ω,0,b
≤ cT ε ‖g‖Xs+ω,0,b′

Because of the inequalities

〈τ − ξ|ξ|α〉b
′+ω ≤〈τ − ξ|ξ|α〉b

′
〈|τ |+ |ξ|1+α〉ω

〈ξ〉s+ω ≤c〈ξ〉s−αω〈|τ |+ |ξ|1+α〉ω

we find the upper bound

‖I(f)‖Xs,ω,b
≤ cT ε ‖f‖Xs,ω,b′

as desired.

This proof shows that the space Xs,ω,b is an intersection of the usual
Bourgain spaces (in addition to the low frequency condition), see also Re-
mark 4.2.7. Next, we insert the endpoint Strichartz and the local smoothing
estimate into the X0,0,b setting.

Lemma 2.2.16. For b > 1
2 we have

‖J
α−1

4 u‖L4
t L∞x
≤ c‖u‖X0,0,b

(2.31)

‖J α
2 u‖L∞x L2

t
≤ c‖u‖X0,0,b

(2.32)

Proof. From Theorem 2.1.3 we know that

‖|D|
α−1

4 Wα(t)u0‖L4
t L∞x
≤ c‖u0‖L2 (2.33)

Now we use a general property of Bourgain spaces X0,0,b with b > 1
2 , see

e.g. [Gin96] Lemme 3.3. By the Fourier inversion formula we may write
u ∈ X0,0,b as

u(t) = c

∫
eitτWα(t)Ft(Wα(−·)u)(τ) dτ (2.34)
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and this implies

‖|D|
α−1

4 u‖L4
t L∞x
≤ c

∫
‖|D|

α−1
4 Wα(t)Ft(Wα(−·)u)(τ)‖L4

t L∞x
dτ

Using (2.33) and Cauchy-Schwarz we arrive at

‖|D|
α−1

4 u‖L4
t L∞x
≤c

(∫
〈τ〉−2bdτ

) 1
2

(∫
〈τ〉2b‖Ft(Wα(−·)u)(τ)‖2L2

x
dτ

) 1
2

≤c
(∫ ∫

〈τ − ξ|ξ|α〉2b|Fu(τ, ξ)|2 dτdξ
) 1

2

since b > 1
2 and therefore

‖|D|
α−1

4 u‖L4
t L∞x
≤ c‖u‖X0,0,b

(2.35)

By smooth cutoffs in frequency, we split u into a low frequency part ulow

Fulow(τ, ξ) = χ(ξ)Fu(τ, ξ)

and a high frequency part uhigh := u− ulow. Then,

‖J
α−1

4 u‖L4
t L∞x
≤ ‖J

α−1
4 ulow‖L4

t L∞x
+ ‖J

α−1
4 uhigh‖L4

t L∞x

By an application of the Sobolev inequality, the first part is bounded by

c‖J
α+1

4 +εulow‖L4
t L2

x
≤ c‖u‖L4

t L2
x
≤ c‖u‖X0,0,b

whereas the second term is bounded by

c‖|D|−
α−1

4 J
α−1

4 uhigh‖X0,0,b
≤ c‖u‖X0,0,b

due to (2.35), which gives the desired estimate (2.31). The second claim
follows in a similar way: As above we use (2.4) and arrive at

‖|D|α2 u‖L∞x L2
t
≤ c‖u‖X0,0,b

which proves the desired estimate for the high frequency part. For the low
frequency part we use

‖J α
2 ulow‖L∞x L2

t
≤ c‖J α

2 ulow‖L2
t L∞x
≤ c‖J

α+1+ε
2 ulow‖L2

t L2
x

which is obviously bounded by ‖u‖X0,0,b
.
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The next statement directly follows from our bilinear smoothing estimate
from Theorem 2.1.6.

Corollary 2.2.17. For u1, u2 ∈ S(R2) we define the bilinear operator Is
∗ via

F Is
∗(u1, u2)(τ, ξ) =

∫
ξ=ξ1+ξ2
τ=τ1+τ2

∣∣|ξ1|2s − |ξ2|2s
∣∣ 1
2 Fu1(τ1, ξ1)Fu2(τ2, ξ2) dτ1dξ1

For b > 1
2 there exists a unique, bilinear extension I

α
2
∗ with∥∥∥I α

2
∗ (u1, u2)

∥∥∥
L2

xt

≤ c‖u1‖X0,0,b
‖u2‖X0,0,b

, u1, u2 ∈ X0,0,b (2.36)

For u1, u2 ∈ S(R2) we define the operator K
α
2
∗

F K
α
2
∗ (u1, u2)(τ, ξ) =

∫
ξ=ξ1+ξ2
τ=τ1+τ2

||ξ|α − |ξ1|α|
1
2 Fu1(τ1, ξ1)Fu2(τ2, ξ2) dτ1dξ1

K
α
2
∗ is the formal adjoint of u2 7→ I

α
2
∗ (u1, u2) with respect to L2

xt and for
b > 1

2 there exists a unique, bilinear extension K
α
2
∗ with∥∥∥K α

2
∗ (u1, u2)

∥∥∥
X0,0,−b

≤ c‖u1‖X0,0,b
‖u2‖L2

xt
, u1 ∈ X0,0,b , u2 ∈ L2

xt (2.37)

Proof. We may assume that u1, u2, v ∈ S(R2), then

‖I
α
2
∗ (u1, u2)‖L2

xt
= lim

δ→0
‖I

α
2

δ (u1, u2)‖L2
xt

We write u1, u2 as in (2.34) and estimate

‖I
α
2

δ (u1, u2)‖L2
xt

≤
∫ ∫ ∥∥∥I α

2
δ (WαFt(Wα(−·)u1)(τ1),WαFt(Wα(−·)u2)(τ2))

∥∥∥
L2

xt

dτ1dτ2

≤c
∫ ∫

‖Ft(Wα(−·)u1)(τ1)‖L2
x
‖Ft(Wα(−·)u2)(τ2)‖L2

x
dτ1dτ2

where we used the estimate (2.6) for the last inequality. Next, we insert
〈τi〉−2b〈τi〉2b in each integral and use Cauchy-Schwarz to obtain∥∥∥I α

2
δ (u1, u2)

∥∥∥
L2

xt

≤ c‖u1‖X0,0,b
‖u2‖X0,0,b
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with a constant independent of δ > 0, which proves the first claim. Now we
calculate the adjoint of I

α
2
∗ (u1, ·) with respect to L2

xt for Schwartz functions.
By Plancherel(

I
α
2
∗ (u1, u2), v

)
L2

xt

=
∫ ∫

||ξ1|α − |ξ − ξ1|α|
1
2 û1(τ1, ξ1)û2(τ − τ1, ξ − ξ1) dτ1dξ1v̂(τ, ξ) dτdξ

=
∫
û2(τ − τ1, ξ − ξ1)||ξ1|α − |ξ − ξ1|α|

1
2 û1(−τ1,−ξ1)v̂(τ, ξ) dτ1dξ1dτdξ

The change of variables (τ1, ξ1, τ, ξ) 7→ (−τ1,−ξ1, τ − τ1, ξ − ξ1) yields(
I

α
2
∗ (u1, u2), v

)
L2

xt

=
∫
û2(τ, ξ)

∫
||ξ1|α − |ξ|α|

1
2 û1(τ1, ξ1)v̂(τ − τ1, ξ − ξ1) dτ1dξ1 dτdξ

=
(
u2,K

α
2
∗ (u1, v)

)
L2

xt

due to the Plancherel identity. Therefore, (2.37) is dual to (2.36).

2.3 Notes and References

The linear LpLq estimates are well-known and often referred to as Strichartz
estimates due to related work of R.S. Strichartz [Str77] on the wave equation.
There has been a lot of progress in generalizing these estimates and in this
direction we would like to refer in particular to the works of C.E. Kenig - G.
Ponce - L. Vega [KPV91a], M. Keel - T. Tao [KT98] and H. Koch - D. Tataru
[KT05a] and the references therein. The smoothing properties of dispersive
equations were discovered and developed by T. Kato [Kat83], S. N. Kruzhkov
- A.V. Faminskii [KF83], P. Constantin - J.-C. Saut [CS88], P. Sjölin [Sjö87],
L. Vega [Veg88], C.E. Kenig - G. Ponce - L. Vega [KPV91a] and others.
The main reference for this chapter is [KPV91a]. The bilinear smoothing
estimate from Theorem 2.1.6 generalizes the results from [Grü05a], Lemma
1, see also [Grü01], Def. 2.1 and Lemma 2.4.

The Fourier restriction norm spaces in connection with the KdV and
Schrödinger equations were introduced by J. Bourgain in [Bou93] (and in
connection with well-posedness for wave equations by S. Klainerman - M.
Machedon [KM93, KM95]) and found application in several situations. The
papers of J. Ginibre [Gin96], J. Ginibre - Y. Tsutsumi - G. Velo [GTV97],
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J. Colliander - M. Keel - G. Staffilani - H. Takaoka - T. Tao [CKS+04] and
the first chapter of A. Grünrock’s thesis [Grü02] are the main references for
this chapter concerning facts about the Fourier restriction norm method.



Chapter 3

Derivative nonlinear
Schrödinger equations

Throughout this chapter we consider the one dimensional periodic case and
the phase function φ : Z→ R, φ(ξ) = −ξ2.

3.1 Motivation and main results

In this chapter we discuss the Cauchy problem for the derivative nonlinear
Schrödinger (DNLS) equation with the periodic boundary condition

∂tu(t)− i∂2
xu(t) = ∂x(|u|2u)(t) , t ∈ (−T, T )
u(0) = u0 ∈ Hs(T)

(3.1)

The L2 norm is a conserved quantity and we also consider the modified
equation

∂tu(t)− i∂2
xu(t) = 2

(
|u|2 − 1

2π

∫ 2π

0

|u|2dx
)
∂xu(t) + u2∂xu(t)

u(0) = u0 ∈ Hs(T)
(3.2)

which we will refer to as (DNLS0).
Our aim is to prove local and global well-posedness in low regularity

Sobolev spaces and to analyze the regularity of the flow maps. We will show
that both problems are well-posed for s ≥ 1

2 . But there is one remarkable
difference: Heuristically, (DNLS0) should be viewed as a regularized equation
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since the term in front of ∂xu has zero mean value, hence the zero frequency
term, which leads to a strong transport effect, is not present. This will
be expressed more precisely by the regularity properties of the flows. Both
equations are linked via a translation, see Section 3.2. Moreover, for both
problems it is impossible to prove useful tri-linear estimates directly, see
Subsection 3.4.3. We resolve this with the help of a nonlinear transformation,
see Section 3.2.

Theorem 3.1.1. There exists a non-increasing function T ∗ : (0,∞) →
(0,∞), such that for all R > 0 and 0 < T ≤ T ∗(R) there exists a continuous
map

SR,T : BR = {u0 ∈ H
1
2 (T) | ‖u0‖

H
1
2
< R} → C

(
[−T, T ],H

1
2 (T)

)
with the properties:

(i) For all u0 ∈ BR the function u = SR,T (u0) is a solution of the integral
equation

u(t) = W (t)u0 +
∫ t

0

W (t− t′)∂x(|u|2u)(t′)dt′ , t ∈ (−T, T ) (3.3)

associated to the Cauchy problem (3.1).

(ii) For every s ≥ 1
2 we have SR,T (BR ∩Hs(T)) ⊂ C([−T, T ],Hs(T)) and

SR,T |BR∩Hs(T): BR ∩Hs(T)→ C
(
[−T, T ],Hs(T)

)
is continuous. For Cr(0) = {u0 ∈ Hs | ‖u0‖Hs ≤ r}, its restriction to
Cr(0) is not uniformly continuous.

(iii) For s > 7
6 the function u = SR,T (u0) is the unique solution of (3.3) in

{v ∈ C([−T, T ],H1(T)) | vx ∈ L1([−T, T ], L∞(T))}

with initial datum u0 ∈ Hs(T). Moreover, for u0 ∈ H
1
2 (T) the func-

tion SR,T (u0) is the unique limit of C([−T, T ],H
3
2+ε(T)) solutions with

initial data converging to u0 in H
1
2 (T).

(iv) Let BR,µ = {u0 ∈ H
1
2 (T) | ‖u0‖

H
1
2
≤ R, ‖u0‖L2 = µ} for fixed µ > 0.

Then, for all s ≥ 1
2

SR,T |BR,µ∩Hs(T): BR,µ ∩Hs(T)→ C
(
[−T, T ],Hs(T)

)
is locally Lipschitz continuous.
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Remark 3.1.2. The proof will show another (more technical) uniqueness
statement, see Subsection 3.4.2.

Corollary 3.1.3. (i) Cauchy problem (3.1) is locally well-posed in H
1
2 (T).

(ii) The Cauchy problem (3.1) is globally well-posed in H1(T) for data in
{u0 ∈ H1(T) | ‖u0‖2L2(T) < 2π}.

Remark 3.1.4. In the exposition we focus on the DNLS equation but we
remark that the same approach is also applicable to slightly more general
nonlinearities e.g.

λ1|u|2∂xu+ λ2u
2∂xu+ polynomial, λ1, λ2 ∈ R

with not necessarily gauge invariant polynomials, see also Proposition 3.3.5.
We also remark that the strategy of proof of the tri-linear estimate presented
here is also applicable in the non-periodic case, cp. [Tak99].

The general outline of the proof will be as in [Tak99], i.e. we will link
the DNLS with another Cauchy problem via the nonlinear transformation
defined in Section 3.2, cp. N. Hayashi - T. Ozawa [HO92, Hay93, HO94].
This problem enjoys better properties than the original problem in the sense
that it is possible to prove multi-linear estimates in Section 3.3. All this is
used to solve the corresponding integral equation via a fixed point argument
and transfer the results back to the DNLS.

Moreover, for the problem (3.2) it follows

Theorem 3.1.5. The Cauchy problem (3.2) is locally well-posed in H
1
2 (T).

The flow map is locally Lipschitz, moreover it is real analytic.
Under the assumption that the Cauchy problem (3.2) is locally well-posed

in Hs(T) for some s < 1
2 the corresponding flow map is not C3.

Hence, our result is sharp with respect to the smoothness of the flow map.

3.2 The gauge transformation

We start with the following observation.

Proposition 3.2.1. Let T > 0, s ≥ 0. The translations

τ : R× C([−T, T ],Hs(T))→ C([−T, T ],Hs(T)), τ(h, u)(t, x) = u(t, x+ ht)

are continuous.
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Proof. 1. We first show that

R×Hs(T)→ Hs(T), (h, f) 7→ f(·+ h)

is a continuous operator. For fn → f ∈ Hs and hn → h we write

‖fn(·+hn)−f(·+h)‖Hs ≤ ‖fn(·+hn)−f(·+hn)‖Hs +‖f(·+hn)−f(·+h)‖Hs

and the first term is equal to ‖fn − f‖Hs → 0 because a translation by a
fixed amount is an isometry in Hs and for the second term we observe

‖f(·+ hn)− f(·+ h)‖2Hs(T) =
∑
ξ∈Z
〈ξ〉2s

∣∣eiξhn − eiξh
∣∣2 |Fxf(ξ)|2

For every ξ ∈ Z we have eiξhn → eiξh, whence the first claim follows from
the dominated convergence theorem.

2. Fix u ∈ C([−T, T ],Hs(T)) and un → u, hn → h. Let ε > 0. Because u
is uniformly continuous, we find N ∈ N and points −T = t0 < . . . < tN = T
such that

sup
t∈[ti,ti+1]

‖u(t)− u(ti)‖Hs(T) < ε/2, i = 0, . . . , N − 1

and on every subinterval Ii = [ti, ti+1] we have

‖un(t, ·+ hnt)− u(t, ·+ ht)‖Hs

≤‖un(t, ·+ hnt)− u(t, ·+ hnt)‖Hs + ‖u(t, ·+ hnt)− u(ti, ·+ hnt)‖Hs

+‖u(ti, ·+ hnt)− u(ti, ·+ ht)‖Hs + ‖u(ti, ·+ ht)− u(t, ·+ ht)‖Hs

Now, the supremum in t ∈ Ii of the first term tends to zero as n → ∞ and
the supremum in t ∈ Ii of the second and fourth term is smaller than ε/2.
By part 1 of the proof the third term

‖u(ti, ·+ hnt)− u(ti, ·+ ht)‖Hs(T)

is continuous in t. Therefore, we find t∗n ∈ Ii such that

sup
t∈Ii

‖u(ti, ·+ hnt)− u(ti, ·+ ht)‖Hs

=‖u(ti, ·+ hnt
∗
n)− u(ti, ·+ ht∗n)‖Hs

=‖u(ti, ·+ (hn − h)t∗n)− u(ti)‖Hs

and this tends to zero as (hn−h)t∗n → 0, again by part 1 of the proof. Hence,

lim
n→∞

sup
t∈Ii

‖un(t, ·+ hnt)− u(t, ·+ ht)‖Hs(T) < ε

This is true for every subinterval Ii, i = 0, . . . , N − 1. Because ε > 0 may be
chosen arbitrarily small the continuity of τ follows.
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Proposition 3.2.2. For u ∈ C([−T, T ], L2(T)) define µ(u) = 1
2π‖u(0)‖2L2(T).

Then, for s ≥ 0

τ∓ : C([−T, T ],Hs(T))→ C([−T, T ],Hs(T)), u 7→ τ(∓2µ(u), u)

are homeomorphisms.
Moreover, u ∈ C([−T, T ],H2(T)) ∩ C1((−T, T ), L2(T)) is a solution of

(3.1) if and only if v = τ−(u) ∈ C([−T, T ],H2(T)) ∩ C1((−T, T ), L2(T)) is
a solution of (3.2). For t > 0 and every r > 0 the maps

{u ∈ Hs(T) | ‖u‖Hs ≤ r} → Hs(T), u 7→ u(· ∓ 2t‖u‖2L2)

are not uniformly continuous.

Proof. 1. Obviously, τ+ = (τ−)−1 and the continuity statements follow from
Proposition 3.2.1.

2. Taking into account that

∂tτ
−(u) = τ−(∂tu)− 2µ(u)τ−(∂xu)

the second claim follows from the L2 conservation law from Lemma A.5.1.
3. Fix r > 0. Consider for j = 1, 2, n ∈ N the functions

un,j(x) =
1√
2π

(rn−seinx + cn,j)

where cn,j = 1√
2n

for j = 1 and cn,j = 0 for j = 2. Then, for large n we have
‖un,j‖Hs(T) ≤ 2r and ‖un,j‖2L2(T) = r2n−2s + (cn,j)2 and

‖un,1(· − 2t(r2n−2s + (2n)−1))− un,2(· − 2tr2n−2s)‖Hs(T)

≥ 1√
2π

∥∥∥∥rn−seinxe−2intr2n−2s (
e−it − 1

)
+

1√
2n

∥∥∥∥
Hs(T)

≥r
2
| sin(t)| − 1√

2n
> 0, for t > 0, n large

in spite of ‖un,1 − un,2‖Hs(T) = (2n)−
1
2 → 0 which contradicts the uniform

continuity for every neighborhood of the origin. The same argument works
with the + sign.

We reduced the problem (3.1) to (3.2) up to a homeomorphism. In the
following, we will slightly adjust the gauge transformation, developed by N.
Hayashi - T. Ozawa [HO92, Hay93, HO94] in the non-periodic case, to the
periodic setting.
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Definition 3.2.3. For f ∈ L2(T) we define

G0(f)(x) = e−iI(f)f (x)

where

I(f)(x) :=
1
2π

∫ 2π

0

∫ x

θ

|f(y)|2 − 1
2π
‖f‖2L2(T) dydθ

For u ∈ C([−T, T ], L2(T)) we define

G0(u)(t, x) := G0(u(t))(x) (3.4)

Remark 3.2.4. The function G0(f) is 2π-periodic because

|f(y)|2 − 1
2π
‖f‖2L2(T)

has zero mean value and therefore∫ 2π

0

∫ x

θ

|f(y)|2 − 1
2π
‖f‖2L2(T) dydθ

is 2π-periodic.

Now, we summarize important properties of the nonlinear operator G0.

Proposition 3.2.5. For s ≥ 0 the map

G0 : C([−T, T ],Hs(T))→ C([−T, T ],Hs(T))

is locally Lipschitz. More precisely, for r > 0 there exists c > 0 such that for

u, v ∈ Br =
{
u ∈ C([−T, T ],Hs(T)) | sup

|t|≤T

‖u(t)‖Hs(T) ≤ r
}

the map G0 satisfies

‖G0(u)(t)− G0(v)(t)‖Hs(T) ≤ c‖u(t)− v(t)‖Hs(T) , t ∈ [−T, T ] (3.5)

The inverse map is given by

G−1
0 (v) = eiI(v)v

and G−1
0 also satisfies (3.5) on Br, hence G0 is bi-Lipschitz on bounded sub-

sets. The maps G0,G−1
0 are real analytic.



3.2. The gauge transformation 41

Proof. We fix s ≥ 0. There exists c > 0 such that for f, g, h ∈ Hs(T)∥∥∥(e±iI(f) − e±iI(g))h
∥∥∥

Hs
≤ cec‖f‖2Hs+c‖g‖2Hs (‖f‖Hs +‖g‖Hs)‖f−g‖Hs‖h‖Hs

This is proved in Appendix A.2. We apply this estimate to u, v ∈ Br and
obtain

‖G0(u)(t)− G0(v)(t)‖Hs(T)

≤
∥∥∥(e−iI(u(t)) − e−iI(v(t)))u(t)

∥∥∥
Hs

+
∥∥∥(e−iI(v(t)) − 1)(u− v)(t)

∥∥∥
Hs

+ ‖(u− v)(t)‖Hs

≤(2cre2cr2
+ crecr2

+ 1) ‖(u− v)(t)‖Hs

which shows the Lipschitz estimate (3.5) on Br.
If v = G0(u), then |v(t, x)| = |u(t, x)| and the inversion formula follows.

For G−1
0 the Lipschitz estimate on subsets Br follows as above by replacing

− by + in the exponential. Concerning the analyticity statement we remark
that ∫ 2π

0

∫ x

θ

u1(t, y)u2(t, y)−
1
2π

∫ 2π

0

u1(t, z)u2(t, z)dzdydθ

is bilinear in u1, u2 (over R). If s > 0 we can show that this is continuous as
a map

C([−T, T ],Hs(T))× C([−T, T ],Hs(T))→ C([−T, T ],Hs′(T))

for some s′ = max{s, 1
2 +ε}, similar to (A.4). In the case s = 0 we easily show

the continuity with range in C([−T, T ], L∞(T)). Moreover, by Corollary
1.1.12 the spaces C([−T, T ],Hs′(T) and also C([−T, T ], L∞(T)) are Banach
algebras, respectively. Because compositions of real analytic maps are real
analytic, see Proposition 1.4.5, the claim follows.

The relevance of this nonlinear transformation is explained by

Proposition 3.2.6. Let u, v ∈ C([−T, T ],H2(T))∩C1((−T, T ), L2(T)) and
v = G0(u). Then, u is a solution of (3.2) if and only if v is a solution of

∂tv(t)− i∂2
xv(t) = −v2∂xv(t) + i

2 |v|
4v(t)− iµ(v)|v|2v(t) + iψ(v)v(t)

v(0) = G0(u0)
(3.6)

where

ψ(v)(t) =
1
2π

∫ 2π

0

2 Im(vxv)(t, θ)−
1
2
|v|4(t, θ) dθ + µ(v)2 (3.7)



42 Chapter 3. Derivative nonlinear Schrödinger equations

Proof. Suppose that u is a smooth solution to (3.2) and let us derive an
equation for v

vt = exp(−iI(u))(−iI(u)tu+ ut)

vxx = exp(−iI(u))(−I(u)2xu− iI(u)xux − i(I(u)xu)x + uxx)

By the L2 conservation law we have ‖u(t)‖L2(T) = ‖u(0)‖L2(T), see Appendix
A.5. With

µ = µ(u) =
1
2π
‖u(0)‖2L2(T)

we have
µ(u) = µ(v) =

1
2π
‖v(0)‖2L2(T) =

1
2π
‖v(t)‖2L2(T)

and I(u)x = |u|2 − µ. Therefore,

vt − ivxx

= e−iI(u)
(
ut − iuxx − (I(u)xu)x + iI(u)2xu− I(u)xux − iI(u)tu

)
= e−iI(u)

(
−|u|2ux + i(|u|2 − µ)2u− iI(u)tu

)
(3.8)

Moreover,

d
dt

∫ x

θ

|u(t, y)|2 − µdy =
∫ x

θ

utu(t, y) + uut(t, y) dy

=
∫ x

θ

(
iuxxu− iuxxu+ u(|u|2u)x + u(|u|2u)x − 2µuux − 2µuux

)
(t, y) dy

Integration by parts yields∫ x

θ

iuxxu(t, y)− iuxxu(t, y) dy = 2 Im(uxu)(t, x)− 2 Im(uxu)(t, θ)

and ∫ x

θ

u(|u|2u)x(t, y) + u(|u|2u)x(t, y) dy =
3
2
|u|4(t, x)− 3

2
|u|4(t, θ)

and ∫ x

θ

uux(t, y) + uux(t, y) dy = |u|2(t, x)− |u|2(t, θ)

which shows

I(u)t =2 Im(uxu)(t, x) +
3
2
|u|4(t, x)− 2µ|u|2(t, x)

− 1
2π

∫ 2π

0

2 Im(uxu)(t, θ) +
3
2
|u|4(t, θ)− 2µ|u|2(t, θ) dθ
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Let us define

φ(u)(t) :=
1
2π

∫ 2π

0

2 Im(uxu)(t, θ) +
3
2
|u|4(t, θ) dθ − 2µ2

Plugging this into (3.8) we arrive at

vt − ivxx = e−iI(u)
(
− u2ux − i

2 |u|
4u+ iµ2u+ iφ(u)u

)
Using |u| = |v| as well as ux = eiI(u)vx + i(|u|2 − µ)u we get

vt − ivxx =− v2vx + i|v|2(|v|2 − µ)v − i
2 |v|

4v + iµ2v + iφ(u)v

=− v2vx + i
2 |v|

4v − iµ|v|2v + iµ2v + iφ(u)v

With

ψ(v)(t) =
1
2π

∫ 2π

0

2 Im(vxv)(t, θ)−
1
2
|v|4(t, θ) dθ + µ2(v)

we have
ψ(v) = φ(u) + µ2(v)

and therefore obtain

vt − ivxx = −v2vx + i
2 |v|

4v − iµ(v)|v|2v + iψ(v)v

which shows the first claim of the proposition. We may also perform the
calculation in reverse order.

Remark 3.2.7. We may rewrite the right hand side as

(
∫ 2π

0

i
π Im(vxv)(t, θ) dθ−vvx)v+

i

2
(|v|4− 1

2π‖v(t)‖
4
L4(T))v−iµ(v)(|v|2−µ(v))v

This is remarkable because in each of the three terms certain frequency in-
teractions cancel out. However, we will not exploit this cancellation in the
sequel and use the formula from Proposition 3.2.6.

Corollary 3.2.8. The nonlinear transformation

G = G0 ◦ τ− : C([−T, T ],Hs(T))→ C([−T, T ],Hs(T))

is a homeomorphism. Moreover, u ∈ C([−T, T ],H2(T))∩C1((−T, T ), L2(T))
is a solution of (3.1), if and only if v = G(u) ∈ C([−T, T ],H2(T)) ∩
C1((−T, T ), L2(T)) is a solution of (3.6).
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3.3 Multi-linear estimates

We start with an elementary bound for the (R)-tri-linear multiplier in the
spirit of [CKS+04]. We define λ0 = τ + ξ2, λj = τj + ξ2j for j = 1, 2 and
λ3 = τ3 − ξ23 as well as the subregions Aj of R3 × Z3 such that

〈λj〉 = max{〈λ0〉, 〈λ1〉, 〈λ2〉, 〈λ3〉} in Aj

for j = 0, 1, 2, 3. Let χAj
denote the characteristic function of the set Aj .

Proposition 3.3.1. Let τ1, τ2, τ3 ∈ R and ξ1, ξ2, ξ3 ∈ Z and define

M(τ1, τ2, τ3, ξ1, ξ2, ξ3) =
〈ξ〉 12 iξ3∏3

k=0〈λk〉
1
2

∏3
k=1〈ξk〉

1
2

where (τ, ξ) = (τ1, ξ1) + (τ2, ξ2) + (τ3, ξ3). Moreover, for j ∈ {0, 1, 2, 3} let

Mj(τ1, τ2, τ3, ξ1, ξ2, ξ3) =χAj 〈ξ1〉−
1
2 〈ξ2〉−

1
2

3∏
k=0,k 6=j

〈λk〉−
1
2

N(τ1, τ2, τ3, ξ1, ξ2, ξ3) =
3∏

k=0

〈λk〉−
1
2

Then, the estimate

|M | ≤ 16(
3∑

j=0

Mj +N) (3.9)

holds true.

Proof. The key for the proof will be the observation (cp. [Tak99], p.569)
that

τ + ξ2 −
(
τ1 + ξ21 + τ2 + ξ22 + τ3 − ξ23

)
= 2(ξ − ξ1)(ξ − ξ2) (3.10)

which implies the estimate

〈(ξ − ξ1)(ξ − ξ2)〉
1
2 ≤ 4

3∑
k=0

χAk
〈λk〉

1
2 (3.11)

It is useful to distinguish 4 cases:

(i) |ξ| > 2|ξ1| and |ξ| > 2|ξ2|: In this case 4〈(ξ − ξ1)(ξ − ξ2)〉 ≥ 〈ξ〉2 and
|ξ3| ≤ 2|ξ|, hence |M | ≤ 16

∑3
j=0Mj .
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(ii) |ξ| ≤ 2|ξ1| and |ξ| ≤ 2|ξ2|: In this case |ξ3| ≤ 4 max{|ξ1|, |ξ2|} and
|ξ| ≤ 2 min{|ξ1|, |ξ2|}, which shows |M | ≤ 4N .

(iii) |ξ| > 2|ξ1| and |ξ| ≤ 2|ξ2|: It is |ξ| ≤ 2|ξ − ξ1| and |ξ||ξ − ξ2| ≤
2〈(ξ − ξ1)(ξ − ξ2)〉. Because of |ξ3|

1
2 ≤ |ξ − ξ2|

1
2 + |ξ1|

1
2 it follows

〈ξ〉 12 |ξ3|
1
2 ≤ 2|ξ| 12 |ξ3|

1
2 ≤ 2|ξ| 12 |ξ − ξ2|

1
2 + 2|ξ| 12 |ξ1|

1
2

The first term is bounded by 4〈(ξ − ξ1)(ξ − ξ2)〉
1
2 which in turn is

controlled by (3.11). The second term is smaller than 4〈ξ2〉
1
2 〈ξ1〉

1
2

which proves |M | ≤ 16
∑3

j=0Mj + 4N .

(iv) |ξ| ≤ 2|ξ1| and |ξ| > 2|ξ2|: By the symmetry of M in ξ1, ξ2 the same
estimate as in case (iii) applies.

The proof of Proposition 3.3.1 is complete.

For the convolution f1 ∗ . . . ∗ fk(τ, ξ) we will write∫
∗

∑
∗

k∏
j=1

fj(τj , ξj) :=
∫

τ=τ1+...+τk

∑
ξ=ξ1+...+ξk

k∏
j=1

fj(τj , ξj)

:=
∫

Rk−1

∑
(ξ1,...,ξk−1)∈Zk−1

k−1∏
j=1

fj(τj , ξj)fk(τ −
k−1∑
j=1

τj , ξ −
k−1∑
j=1

ξj)dτ1 . . . dτk−1

Theorem 3.3.2. There exists c, ε > 0, such that for T ∈ (0, 1] and uj ∈
S(R× T) with supp(uj) ⊂ {(t, x) | |t| ≤ T}, j = 1, 2, 3, we have

‖u1u2∂xu3‖X 1
2 ,− 1

2

≤ cT ε‖u1‖X 1
2 , 1

2
‖u2‖X 1

2 , 1
2
‖u3‖X−

1
2 , 1

2

(3.12)

Proof. We define fj(τj , ξj) = 〈λj〉
1
2 〈ξj〉

1
2Fuj(τj , ξj) for j = 1, 2, 3. With the

Fourier multiplier M defined in Proposition 3.3.1 we rewrite the left hand
side as

‖u1u2∂xu3‖X 1
2 ,− 1

2

=

∥∥∥∥∥∥
∫
∗

∑
∗
M(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL2

τ

By an application of the triangle inequality we may assume fj ,Fuj ≥ 0 and
‖uj‖Xs,b

= ‖χTuj‖Xs,b
. By the point-wise bound (3.9) on |M | the left hand

side is bounded by the sum over the corresponding terms with M replaced
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by M0,M1,M2,M3 and N , respectively.
Estimate for M0:∥∥∥∥∥∥

∫
∗

∑
∗
M0(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL2

τ

= ‖u1u2J
1
2u3‖L2

t L2
x

=: m0

Using Hölder’s inequality we get

m0 ≤ ‖u1‖L8
t L8

x
‖u2‖L8

t L8
x
‖J 1

2u3‖L4
t L4

x
≤ c‖u1‖X 3

8 , 3
8
‖u2‖X 3

8 , 3
8
‖u3‖X−

1
2 , 1

2

where we used Sobolev’s inequality (2.14) on u1, u2 as well as the L4 Strichartz
inequality (2.18) on J

1
2u3. By the localization in time, see Lemma 2.2.5,

m0 ≤ cT ε‖u1‖X 1
2 , 1

2
‖u2‖X 1

2 , 1
2
‖u3‖X−

1
2 , 1

2

Estimate for M1:∥∥∥∥∥∥
∫
∗

∑
∗
M1(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL2

τ

=‖J− 1
2F−1f1u2J

1
2u3‖X0,− 1

2
≤ ‖J− 1

2F−1f1u2J
1
2u3‖X0,− 3

8
=: m1 (3.13)

Then, by the dual Sobolev estimate (2.15)

m1 ≤c‖J−
1
2F−1f1u2J

1
2u3‖L8/7

t L2
x

≤c‖J− 1
2F−1f1‖L2

t L8
x
‖u2J

1
2u3‖L8/3

t L
8/3
x

≤c‖J− 1
2F−1f1‖L2

t L8
x
‖u2‖L8

t L8
x
‖J 1

2u3‖L4
t L4

x

Now we use the Sobolev inequality (2.14) on the first two factors as well as
the L4 Strichartz inequality (2.18) on J

1
2u3 and obtain

m1 ≤ cT ε‖u1‖X 1
2 , 1

2
‖u2‖X 1

2 , 1
2
‖u3‖X−

1
2 , 1

2

(3.14)

Estimate for M2:∥∥∥∥∥∥
∫
∗

∑
∗
M2(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL2

τ

=‖u1J
− 1

2F−1f2J
1
2u3‖X0,− 1

2
≤ ‖u1J

− 1
2F−1f2J

1
2u3‖X0,− 3

8
=: m2 (3.15)



3.3. Multi-linear estimates 47

As for m1, by exchanging the roles of the first two factors we obtain

m2 ≤ cT ε‖u1‖X 1
2 , 1

2
‖u2‖X 1

2 , 1
2
‖u3‖X−

1
2 , 1

2

(3.16)

Estimate for M3:∥∥∥∥∥∥
∫
∗

∑
∗
M3(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL2

τ

=‖u1u2F−1f3‖X0,− 1
2
≤ ‖u1u2F−1f3‖X0,− 7

16
=: m3 (3.17)

We apply dual Strichartz (2.19), Hölder’s inequality and Sobolev (2.14) to
conclude

m3 ≤c‖u1u2F−1f3‖L4/3
t L

4/3
x

≤c‖u1‖L8
t L8

x
‖u2‖L8

t L8
x
‖f3‖L2

t L2
x

≤cT ε‖u1‖X 1
2 , 1

2
‖u2‖X 1

2 , 1
2
‖u3‖X−

1
2 , 1

2

(3.18)

Estimate for N :∥∥∥∥∥∥
∫
∗

∑
∗
N(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL2

τ

=‖J 1
2u1J

1
2u2J

1
2u3‖X0,− 1

2
≤ ‖J 1

2u1J
1
2u2J

1
2u3‖X0,− 7

16
=: n (3.19)

Strichartz inequalities (2.18) and (2.19) yield

n ≤c‖J 1
2u1J

1
2u2J

1
2u3‖L4/3

t L
4/3
x

≤c‖J 1
2u1‖L4

t L4
x
‖J 1

2u2‖L4
t L4

x
‖J 1

2u3‖L4
t L4

x

≤cT ε‖u1‖X 1
2 , 1

2
‖u2‖X 1

2 , 1
2
‖u3‖X−

1
2 , 1

2

(3.20)

and the proof is complete.

Proposition 3.3.3. Let δ ∈ (0, 1
6 ). With the notation from Proposition

3.3.1 we define

M̃(τ1, τ2, τ3, ξ1, ξ2, ξ3) := 〈λ0〉−
1
2M(τ1, τ2, τ3, ξ1, ξ2, ξ3)
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and

M̃0(τ1, τ2, τ3, ξ1, ξ2, ξ3) :=
χA0

〈ξ〉 12−3δ〈ξ1〉
1
2 〈ξ2〉

1
2 〈ξ3〉

1
2−3δ

∏3
k=1〈λk〉

1
2+δ

and

M̃j(τ1, τ2, τ3, ξ1, ξ2, ξ3) := 〈λ0〉−
1
2Mj(τ1, τ2, τ3, ξ1, ξ2, ξ3) , j ∈ {1, 2, 3}

Ñ(τ1, τ2, τ3, ξ1, ξ2, ξ3) := 〈λ0〉−
1
2N(τ1, τ2, τ3, ξ1, ξ2, ξ3)

Then, the estimate

|M̃ | ≤ 128(
3∑

j=0

M̃j + Ñ) (3.21)

holds true.

Proof. By Proposition 3.3.1 it suffices to consider the region A0 and to show
that

〈τ + ξ2〉− 1
2M0 ≤ 8M̃0 + 4Ñ

(i) |ξ| > 2|ξ1| and |ξ| > 2|ξ2|: In this case |ξ3| ≤ 2|ξ|. In A0 we have
16〈τ + ξ2〉 ≥ 〈ξ〉2, since 〈τ + ξ2〉 ≥ 〈τ1 + ξ21〉, 〈τ2 + ξ22〉, 〈τ3 − ξ23〉 which
implies

8〈τ + ξ2〉 12 ≥ 〈τ1 + ξ21〉δ〈τ2 + ξ22〉δ〈τ3 − ξ23〉δ〈ξ〉
1
2−3δ〈ξ3〉

1
2−3δ

(ii) |ξ| ≤ 2|ξ1| and |ξ| ≤ 2|ξ2|: In this case we have |ξ3| ≤ 4 max{|ξ1|, |ξ2|}
and |ξ| ≤ 2 min{|ξ1|, |ξ2|}, which shows |M̃ | ≤ 4Ñ .

(iii) |ξ| > 2|ξ1| and |ξ| ≤ 2|ξ2|: Here ξ 6= 0 and without loss we may assume
ξ3 6= 0, since otherwise M̃ = 0. We have

|ξ| ≤ 2|ξ − ξ1| and |ξ||ξ − ξ2| ≤ 2〈(ξ − ξ1)(ξ − ξ2)〉

In the subregion where |ξ1| ≤ |ξ − ξ2| we have

|ξ3| ≤ |ξ − ξ2|+ |ξ1| ≤ 2|ξ − ξ2|

and therefore

〈ξ〉〈ξ3〉 ≤ 2|ξ||ξ3| ≤ 4|ξ||ξ − ξ2| ≤ 8〈(ξ − ξ1)(ξ − ξ2)〉

which is bounded by 32〈τ + ξ2〉, since we are in region A0. Then,

8〈τ + ξ2〉 12 ≥ 〈ξ〉 12−3δ〈ξ3〉
1
2−3δ〈τ1 + ξ21〉δ〈τ2 + ξ22〉δ〈τ3 − ξ23〉δ

which proves 〈τ + ξ2〉− 1
2M0 ≤ 8M̃0. In the subregion where |ξ1| >

|ξ − ξ2| we have |ξ3| ≤ 2|ξ1| and we arrive at M̃ ≤ 4Ñ .
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(iv) |ξ| ≤ 2|ξ1| and |ξ| > 2|ξ2|: By the symmetry of M̃ in ξ1, ξ2 we find the
same estimate as in case (iii).

The proof of Proposition 3.3.3 is complete.

Theorem 3.3.4. There exists c, ε > 0, such that for T ∈ (0, 1] and uj ∈
S(R× T) with supp(uj) ⊂ {(t, x) | |t| ≤ T}, j = 1, 2, 3, we have

‖u1u2∂xu3‖Y 1
2 ,−1
≤ cT ε‖u1‖X 1

2 , 1
2
‖u2‖X 1

2 , 1
2
‖u3‖X−

1
2 , 1

2

(3.22)

Proof. We use the notation from the proof of Theorem 3.3.2. With the
Fourier multiplier M̃ defined in Proposition 3.3.1 we rewrite the left hand
side as

‖u1u2∂xu3‖Y 1
2 ,−1

=

∥∥∥∥∥∥
∫
∗

∑
∗
M̃(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL1

τ

By the estimate (3.21) we successively replace M̃ by M̃0, M̃1, M̃2, M̃3 and
Ñ .
Estimate for M̃0: We observe that by the Cauchy-Schwarz inequality we
have for fixed ξ

∥∥∥〈τ + ξ2〉− 1
2−δ′φ(τ, ξ)

∥∥∥
L1

τ

≤
(∫
〈τ〉−1−2δ′ dτ

) 1
2

‖φ(·, ξ)‖L2
τ

(3.23)

for δ′ > 0. Now, for fixed ξ1, ξ2, ξ3 and ξ = ξ1 + ξ2 + ξ3∥∥∥∥∥∥
∫
∗
M̃0(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
L1

τ

=〈ξ〉− 1
2+3δ

∥∥∥∥∥∥
∫

τ=τ1+τ2+τ3

2∏
j=1

fj(τj , ξj)
〈ξj〉

1
2 〈λj〉

1
2+δ

f3(τ3, ξ3)
〈ξ3〉

1
2−3δ〈λ3〉

1
2+δ

∥∥∥∥∥∥
L1

τ

≤c〈ξ〉− 1
2+3δ

2∏
j=1

∥∥∥∥∥ fj(τj , ξj)
〈ξj〉

1
2 〈λj〉δ/2

∥∥∥∥∥
L2

τ

∥∥∥∥ f3(τ3, ξ3)
〈ξ3〉

1
2−3δ〈λ3〉δ/2

∥∥∥∥
L2

τ

by Young’s inequality and (3.23) with δ′ = δ/2. With gj = 〈λj〉−δ/2fj we
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have ∥∥∥∥∥∥
∫
∗

∑
∗
M̃0(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL1

τ

≤c

∥∥∥∥∥∥〈ξ〉− 1
2+3δ

∑
ξ=ξ1+ξ2+ξ3

〈ξ1〉−
1
2 〈ξ2〉−

1
2 〈ξ3〉−

1
2+3δ

3∏
j=1

‖gj(·, ξj)‖L2
τ

∥∥∥∥∥∥
l2ξ

An application of Hölder’s and Young’s inequalities, choosing δ = 1/24, gives
the upper bound

c

∥∥∥∥∥∥
∑

ξ=ξ1+ξ2+ξ3

〈ξ1〉−
1
2 〈ξ2〉−

1
2 〈ξ3〉−

3
8

3∏
j=1

‖gj(·, ξj)‖L2
τ

∥∥∥∥∥∥
l4ξ

≤c
3∏

j=1

∥∥∥〈ξj〉− 3
8 ‖gj(·, ξj)‖L2

τ

∥∥∥
l
4/3
ξ

≤ c
3∏

j=1

‖gj‖L2
τ l2ξ

≤c‖u1‖X 1
2 , 23

48
‖u2‖X 1

2 , 23
48
‖u3‖X−

1
2 , 23

48

which finally proves that∥∥∥∥∥∥
∫
∗

∑
∗
M̃0(τ1, . . . , ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL1

τ

≤ cT ε‖u1‖X 1
2 , 1

2
‖u2‖X 1

2 , 1
2
‖u3‖X−

1
2 , 1

2

Estimate for M̃1, M̃2, M̃3 and Ñ : We show that the estimates from the proof
of Theorem 3.3.2 are strong enough to treat these terms, too. Indeed, an
application of (3.23) implies∥∥∥∥∥∥

∫
∗

∑
∗
M̃1(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL1

τ

≤c

∥∥∥∥∥∥〈τ + ξ2〉 18
∫
∗

∑
∗
M1(τ1, τ2, τ3, ξ1, ξ2, ξ3)

3∏
j=1

fj(τj , ξj)

∥∥∥∥∥∥
l2ξL2

τ

=cm1

where m1 is defined in (3.13) and is bounded according to (3.14). The same
reasoning applies to M̃2, M̃3 and Ñ , where we use the bounds established in
(3.16), (3.18) and (3.20).
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The next proposition contains estimates for the polynomial terms in the
nonlinearity. Concerning Xs,b estimates for lower values of s we refer to
[Bou93]. This along with the estimate from Section A.2 also shows that one
could deal with additional nonlinear terms of polynomial type (not necessar-
ily gauge invariant), cp. Remark 3.1.4.

Proposition 3.3.5. Let k, k1 ∈ N, k ≥ 2 and 0 ≤ k1 ≤ k. There exists
c, ε > 0, such that for T ∈ (0, 1] and uj ∈ S(R×T) with supp(uj) ⊂ {(t, x) |
|t| ≤ T}, j = 1, . . . , k, we have1

∥∥∥ k∏
j=1

uj

∥∥∥
L2

t H
1
2
≤ cT ε

k1∏
j=1

‖uj‖X−
1
2 , 1

2

k∏
j=k1+1

‖uj‖X 1
2 , 1

2
(3.24)

Proof. As in the previous proofs it suffices to consider Fuj ≥ 0. For ξ =∑k
l=1 ξl we have 〈ξ〉 12 ≤

∑k
l=1〈ξl〉

1
2 which implies∥∥∥ k∏

j=1

uj

∥∥∥
L2

t H
1
2
≤

k∑
l=1

∥∥∥J 1
2ul

k∏
j=1,j 6=l

uj

∥∥∥
L2

t L2
x

Each of the k terms can be estimated, using the Strichartz estimate (2.18)
as follows∥∥∥J 1

2ul

k∏
j=1,j 6=l

uj

∥∥∥
L2

t L2
x

≤ ‖J 1
2ul‖L4

t L4
x

k∏
j=1,j 6=l

‖uj‖L4k−4
t L4k−4

x

≤ cT ε
k1∏

j=1

‖uj‖X−
1
2 , 1

2

k∏
j=k1+1

‖uj‖X 1
2 , 1

2

where in the last step we used the Sobolev estimate (2.14).

We summarize the required estimates in a slightly more general form.

Corollary 3.3.6. Let s ≥ 1
2 . There exists c, ε > 0, such that for T ∈ (0, 1]

and uj ∈ S(R× T) with supp(uj) ⊂ {(t, x) | |t| ≤ T}, j = 1, . . . , 5

‖u1u2∂xu3‖Ys,−1∩X
s,− 1

2

≤ cT ε
3∑

k=1

‖uk‖X
s, 1

2

3∏
j=1
j 6=k

‖uj‖X 1
2 , 1

2
(3.25)

∥∥∥u1u2

5∏
j=3

uj

∥∥∥
Xs,0

≤ cT ε
5∑

k=1

‖uk‖X
s, 1

2

5∏
j=1
j 6=k

‖uj‖X 1
2 , 1

2
(3.26)

1We use the convention
Qj2

j=j1
· · · = 1 if j2 < j1.
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|µ(u1)− µ(u2)|
∥∥∥u3u4u5

∥∥∥
Xs,0

≤cT ε‖u1 − u2‖Z0(‖u1‖Z0 + ‖u2‖Z0)
5∑

k=3

‖uk‖X
s, 1

2

5∏
j=3
j 6=k

‖uj‖X 1
2 , 1

2

(3.27)

and ∥∥∥(ψ(u1)− ψ(u2))u3

∥∥∥
Xs,0

≤cT ε(1 + ‖u1‖X 1
2 , 1

2
∩Z0 + ‖u2‖X 1

2 , 1
2
∩Z0)

3‖u1 − u2‖X 1
2 , 1

2
∩Z0‖u3‖X

s, 1
2

(3.28)

Proof. We observe that ‖u‖Xs,b
= ‖u‖X−

s,b
and

〈ξ〉s ≤ c
l∑

k=1

〈ξk〉s , for ξ =
l∑

k=1

ξk and s ≥ 0

Furthermore, µ(ui) = 1
2π‖ui(0)‖2L2 and the embedding Z0 ↪→ C(R, L2(T))

gives
|µ(u1)− µ(u2)| ≤ c‖u1 − u2‖Z0(‖u1‖Z0 + ‖u2‖Z0)

and by (A.5)

‖ψ(u)− ψ(v)‖L4
T

≤cT ε(1 + ‖u1‖X 1
2 , 1

2
∩Z0 + ‖u2‖X 1

2 , 1
2
∩Z0)

3‖u1 − u2‖X 1
2 , 1

2
∩Z0

Using this, the corollary follows from (3.12), (3.22), (3.24).

3.4 Proof of the well-posedness results

The following diagram describes the structure of the proof of our main results.

u0
G0−−−−→ G0(u0)

G0←−−−− u0

SR,T

y S̃R,T

y S0
R,T

y
(DNLS) G−1

←−−−− (DNLS)
G−1

0−−−−→ (DNLS0)

We start with the gauge equivalent Cauchy problem, here denoted with
(DNLS), and derive the results for (DNLS) and (DNLS0) by conjugating
this flow map S̃R,T with the corresponding gauge transform.
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3.4.1 The gauge equivalent Cauchy problem

We define for v ∈ S(R× T)

N(v) = −v2∂xv + i
2 |v|

4v − iµ(v)|v|2v + iψ(v)v

where µ(v)(t) = 1
2π‖v(t)‖

2
L2 and

ψ(v)(t) =
1
2π

∫ 2π

0

2 Im(vxv)(t, θ)−
1
2
|v|4(t, θ) dθ +

1
4π2
‖v(t)‖4L2

and NT (v) = N(χT v) as well as

ΦT (v)(t) = χ(t)
∫ t

0

W (t− t′)NT (v)(t′) dt′ (3.29)

We recall the definition of the space

Zs = Xs, 1
2
∩ Ys,0

see (2.10), (2.11) and (2.12). By Corollary 3.3.6, the embedding (2.17) and
the linear estimate (2.23) we may extend ΦT uniquely to a continuous oper-
ator

ΦT : Zs → Zs

for all s ≥ 1
2 . Moreover,

ΦT

∣∣
[−T,T ]

: ZT
s → ZT

s

is a continuous operator since it only depends on v
∣∣
[−T,T ]

. Our aim is to find
a solution v ∈ ZT

s of

v(t) = W (t)v0 + ΦT (v)(t) , t ∈ [−T, T ] (3.30)

Theorem 3.4.1. There exists a non-increasing function T ∗ : (0,∞) →
(0,∞), such that for all R > 0 and 0 < T ≤ T ∗(R) there exists a Lips-
chitz continuous map

S̃R,T : BR = {v0 ∈ H
1
2 (T) | ‖v0‖

H
1
2 (T)

< R} → C([−T, T ],H
1
2 (T))

with the following properties:

(i) For all v0 ∈ BR we have v = S̃R,T (v0) ∈ ZT
1
2

and v is the unique

solution of the equation (3.30) in ZT
1
2
.
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(ii) For all s ≥ 1
2 we have S̃R,T (BR ∩Hs(T)) ⊂ C([−T, T ],Hs(T)) and

S̃R,T : BR ∩Hs(T)→ C([−T, T ],Hs(T))

is locally Lipschitz. Moreover, it is real analytic.

Remark 3.4.2. We remark that Theorem 3.4.1 extends to nonlinear terms
of the type uk∂xu by Grünrock’s result [Grü00]. On the other hand, Christ
[Chr03] proved a strong ill-posedness result for the nonlinearities uk∂xu, for
every k ∈ N.

The proof of local well-posedness of the gauge equivalent problem will
be a straightforward application of the contraction mapping principle, cp.
[Bou93] and e.g. [Grü02] for a summary of the method.

Local existence and analytic dependence. For v0 ∈ Hs(T) we use again the
estimates from Corollary 3.3.6 and (2.17), (2.22) and (2.23) as well as Lemma
2.2.5 to show that there exists c, ε > 0, such that

‖χW (·)v0 + ΦT (v)‖Zs ≤ c‖v0‖Hs + cT ε(1 + ‖v‖Zs)
3‖v‖2Zs

and

‖ΦT (v1)−ΦT (v2)‖Zs
≤ cT ε(1+‖v1‖Zs

+‖v2‖Zs
)3(‖v1‖Zs

+‖v2‖Zs
)‖v1−v2‖Zs

Then, for all v0 ∈ Hs with ‖v0‖Hs ≤ r and R = 2cr and T > 0 so small that
T ≤ (4c2r(1 + 4cr)3)−

1
ε we see that

v 7→ χW (·)v0 + ΦT (v)

maps the closed ball BR ⊂ Zs to itself and is a strict contraction. This
shows the existence of a solution v ∈ BR ⊂ Zs. By restriction to the interval
[−T, T ] we found a solution v ∈ ZT

s ⊂ C([−T, T ],Hs(T)) of

v(t) = W (t)v0 + ΦT (v)(t) , t ∈ [−T, T ]

Moreover, (v0, v) 7→ χW (·)v0+ΦT (v) is real analytic since it is a composition
of k-linear maps (over R). Hence, by Theorem 1.4.6, the map

S̃R,T : Hs(T) ⊃ BR → C([−T, T ],Hs(T)), v0 → v

is real analytic.
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Uniqueness in whole space. Assume that v1, v2 ∈ ZT
1
2

are two solutions of
(3.30), such that

T ′ := sup{t ∈ [0, T ] | v1(t) = v2(t)} < T

and we define wj(t) = ṽj(T ′ + t), j = 1, 2 for extensions ṽj of vj . By
approximation we see

w1(t)− w2(t) = ΦT (w1)(t)− ΦT (w2)(t) − T ′ ≤ t ≤ T − T ′

Choosing δ > 0 small enough, we arrive at

‖χδ(w1 − w2)‖Z 1
2
≤ cδε(1 + ‖w1‖Z 1

2
+ ‖w2‖Z 1

2
)4‖χδ(w1 − w2)‖Z 1

2

which forces w1(t) = w2(t) for |t| ≤ δ and therefore contradicts the definition
of T ′. The same argument applies in the interval [−T, 0].

Time of existence. Finally, the standard iteration argument, using the esti-
mates from Corollary 3.3.6, shows that the maximal time of existence T > 0
depends only on ‖v0‖

H
1
2
: We fix s ≥ 1

2 and

Br,rs
= {v0 ∈ Hs(T) | ‖v0‖

H
1
2
≤ r and ‖v0‖Hs ≤ rs}

and define Ts as the supremum of all T ∈ [0, 1] such that the following
statement is true: There exists a real analytic map S̃ : Br,rs

→ Zs such that
v = S̃(v0) solves

v = χW (·)v0 + ΦT (v)

and if u ∈ ZT
1
2

is a solution of (3.30), then

u = S̃(v0)
∣∣
[−T,T ]

Part 1 and 2 of the proof show that Ts > 0. Let v = S̃(v0) ∈ Zs. If
T ε

s ≤ (4c2r(1 + 4cr)3)−1 we see from the proof of part 1 that ‖v‖Z 1
2
≤ 2cr.

By Corollary 3.3.6 and (2.17) and the estimates (2.22), (2.23) and Lemma
2.2.5 we infer that

‖v‖Zs
≤csrs + csT

ε
s (1 + ‖v‖Z 1

2
)3‖v‖Z 1

2
‖v‖Zs

≤csrs + csT
ε
s (1 + 2cr)32cr‖v‖Zs

Therefore, if additionally T ε
s ≤ (2cs(1 + 2cr)32cr)−1, we obtain

sup
|t|≤Ts

‖v(t)‖Hs ≤ c‖v‖Zs
< 2csrs (3.31)
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If these assumptions about Ts were true, we could apply part 1 and 2 of the
proof. We find a δ > 0 and a real analytic map G : Hs ⊃ B2csrs → Zs such
that w = G(w0) satisfies

w = χW (·)w0 + Φ2δ(w)

and if u ∈ Z2δ
1
2

is a solution of

u(t) = W (t)w0 + ΦT (u)(t) , t ∈ [−T, T ]

then
u
∣∣
[−2δ,2δ]

= G(w0)
∣∣
[−2δ,2δ]

Define

H : v0 7→ ηδS̃(v0) + η+
δ G(S̃(v0)(Ts))(· − Ts) + η−δ G(S̃(v0)(−Ts))(·+ Ts)

as a map from Br,rs
to Zs with smooth cutoff functions ηδ, η

+
δ , η

−
δ , such that

ηδ + η+
δ + η−δ = 1 on [−Ts − δ, Ts + δ] with

supp(ηδ) ⊂ [−Ts + δ, Ts − δ] , supp(η±δ ) ⊂ [±Ts − 2δ,±Ts + 2δ]

Then, H is real analytic by Proposition 1.4.5 and

H(v0) = χW (·)v0 + ΦTs+δ(H(v0))

and if u ∈ ZTs+δ
1
2

is a solution of

u(t) = W (t)v0 + ΦTs+δ(u)(t) , t ∈ [−Ts − δ, Ts + δ]

then part 2 of the proof also gives

u
∣∣
[−Ts−δ,Ts+δ]

= H(v0)
∣∣
[−Ts−δ,Ts+δ]

which contradicts the definition of Ts and we conclude that

T ε
s ≥ min{(4c2r(1 + 4cr)3)−1, (2cs(1 + 2cr)32cr)−1}

and if Ts < 1 then
lim
t↑Ts

‖u(t)‖
H

1
2

=∞ (3.32)

for a solution u because otherwise we could iterate the argument above.
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3.4.2 Proof of the main results

Results for (DNLS). Part I

We start with the proof of Theorem 3.1.1.

Existence. We fix s ≥ 1
2 and let u0 ∈ Hs(T) with µ := 1

2π‖u0‖2L2 . Then, we
define v0 := G(u0) ∈ Hs(T), see Proposition 3.2.5. According to Theorem
3.4.1, there exists a unique solution v ∈ ZT

s ⊂ C([−T, T ],Hs(T)) of (3.30).
Now, we claim that u := G−1(v) ∈ C([−T, T ],Hs(T)) solves

u(t) = W (t)u0 +
∫ t

0

W (t− t′)∂x(|u|2u)(t′) dt′, t ∈ (−T, T ) (3.33)

For smooth functions this follows from Proposition 3.2.6. Let u0,n ∈ C∞(T)
with u0,n → u0 in Hs and ‖u0,n‖L2 = ‖u0‖L2 . Moreover, let vn ∈ ZT

s be the
solutions of (3.30) with initial data G(u0,n) and un := G−1(vn). Then,

sup
t∈(−T,T )

∥∥∥∥∫ t

0

W (t− t′)∂x(|u|2u− |un|2un)(t′) dt′
∥∥∥∥

H−1

≤c(‖u‖2
L∞T H

1
2

+ ‖un‖2
L∞T H

1
2
)‖u− un‖L1

T L2
x

Because G is continuous in Hs, G(u0,n) → v0 and due to the continuity of
the flow map of (3.30) we have vn → v in C([−T, T ],Hs(T)). Since also G−1

is continuous, the above term tends to zero. This shows that u solves (3.33)
because obviously also the linear part converges in C([−T, T ],Hs(T)).

Uniqueness. Let u1, u2 ∈ C([−T, T ],H
1
2 (T)) be two solutions of (3.33) with

u1(0) = u2(0), such that G(u1),G(u2) ∈ ZT
1
2

solve (3.30) with the same initial
datum. By the uniqueness of the solutions to (3.30) we have G(u1) = G(u2)
and therefore u1 = u2.

Since the hypothesis here is somehow technical, we will now derive an
alternative uniqueness statement: Assume that u0 ∈ Hs(T) and s > 7

6 . Let

u = ST,R(u0) ∈ C([−T, T ],Hs(T))

be the solution constructed above. Then, vx ∈ ZT
s−1, where v = G(u). This

implies Js−1−εvx ∈ Lp([−T, T ]× T) due to (2.21), where we choose 0 < ε <
s− 7

6 and 2 ≤ p < 6 with s−1− ε > 1
p . The Sobolev embedding theorem for

Bessel potential spaces, see e.g. [ST87] Section 3.5.5, applied in the x variable
implies that vx ∈ Lp([−T, T ], L∞(T)). Now, with µ = (2π)−1

∫ 2π

0
|u|2dx we

have
vx(t, x) = e−iI(u)

(
−i(|u|2 − µ)u+ ux

)
(t, x− 2µt)
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and it follows
ux ∈ L1([−T, T ], L∞(T))

i.e. our solution lies in the uniqueness class given by the energy estimate from
Proposition A.4.1. In particular, solutions in C([−T, T ],H

3
2+ε) are unique

and, due to Proposition 1.3.5, the solutions constructed above are unique
limits of smooth solutions.

Continuity properties of the flow for (DNLS). Part I. Since the flow map to
(3.33) SR,T : Hs(T)∩BR → C([−T, T ],Hs(T)) results from conjugating the
flow map to (3.30) S̃R,T : Hs(T) ∩ BR → C([−T, T ],Hs(T)) with the gauge
transformation G, i.e. SR,T = G−1 ◦ S̃R,T ◦G, its continuity properties follow
from the real analyticity of S̃R,T and Proposition 3.2.5.

Global existence. It suffices to prove an a priori bound for smooth solutions.
By Lemma A.5.2 and the Sobolev embedding we have

‖∂xu(t)‖2L2(T) +
3
2

Im
∫ 2π

0

|u|2u∂xu(t) dx+
1
2
‖u(t)‖6L6(T)

≤c(1 + ‖u0‖H1(T))6

We observe

Im
∫ 2π

0

|u|2u∂xu(t) dx ≥ −‖u(t)‖3L6‖∂xu(t)‖L2

which shows that(
‖∂xu(t)‖L2(T) −

3
4
‖u(t)‖3L6

)2

− 1
16
‖u(t)‖6L6(T) ≤ c(1 + ‖u0‖H1(T))6

and it follows

‖∂xu(t)‖L2(T) ≤
3
4
‖u(t)‖3L6 +

(
1
16
‖u(t)‖6L6(T) + c(1 + ‖u0‖H1(T))6

) 1
2

≤‖u(t)‖3L6 +
√
c(1 + ‖u0‖H1(T))3 (3.34)

Now, we use the Gagliardo-Nirenberg inequality from Appendix A.1 and find
for any ε > 0 a cε > 0 such that

‖u(t)‖3L6 ≤
1
2π
‖u(t)‖2L2

(
‖∂xu(t)‖

1
3
L2 + ‖u(t)‖

1
3
L2

)3

≤1 + ε

2π
‖u(t)‖2L2‖∂xu(t)‖L2 + cε‖u(t)‖3L2
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We fix δ <
√

2π and choose ε = (2π − δ2)/(2δ2) such that (1 + ε)δ2 < 2π.
Using this in (3.34) and the L2 conservation law we have for ‖u(t)‖L2 ≤ δ

(1− 1 + ε

2π
δ2)‖∂xu(t)‖L2 ≤ Cδ(1 + ‖u0‖H1(T))3

which shows that

‖∂xu(t)‖L2 ≤ C̃δ(1 + ‖u0‖H1(T))3

This estimate together with the L2 conservation law from Lemma A.5.1
shows that for ‖u0‖2L2 ≤ δ2 < 2π there exists C(δ) > 0 such that

‖u(t)‖H1(T) ≤ C(δ)(1 + ‖u0‖H1(T))3

as desired2.

Results for (DNLS0)

The proof of Theorem 3.1.5 works exactly in the same way by replacing G
with G0 and using the real analyticity of G0. We additionally show the sharp-
ness in terms of the regularity of the flow map, which is (essentially) based
on the counterexamples from [Tak99] and the general idea from [MST01].

Proof of sharpness result for (DNLS0). Let n ∈ N and u
(n)
0 := 〈n〉−seinx.

Then, ‖u(n)
0 ‖Hs = 1. Let un be the solution of (DNLS0) with initial datum

u
(n)
0 , then the third derivative of λ 7→ S0

R,T (λu(n)
0 ), evaluated at λ = 0, is

given by the sum of

12
∫ t

0

W (t− t′)
(
|W (t′)u(n)

0 |2 −
1
2π

∫ 2π

0

|W (t′)u(n)
0 |2dx

)
∂xW (t′)u(n)

0 dt′

and

6
∫ t

0

W (t− t′)
(
(W (t′)u(n)

0 )2∂xW (t′)u(n)
0

)
dt′

The first term vanishes because |W (t′)u(n)
0 |2 ≡ 〈n〉−2s, and for the second

term

〈n〉s
∣∣∣∣Fx

(∫ t

0

W (t− t′)
(
(W (t′)u(n)

0 )2∂xW (t′)u(n)
0

)
dt′

)
(n)

∣∣∣∣
≥〈n〉−2s

∣∣∣∣∫ t

0

eit′n2
e−2it′n2

(−i)neit′n2
dt′

∣∣∣∣
≥c|t|〈n〉1−2s

2Observe that in this proof does not use the gauge transformation, cp. [HO94], pp.
1499-1500.
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which shows that for fixed T > 0∥∥∥∥ d3

dλ3
(λ 7→ S0

R,T (λu(n)
0 ))

∥∥∥∥
C([−T,T ],Hs(T))

≥ cn1−2s

If the flow were C3 this would be bounded uniformly in n ∈ N which is a
contradiction for s < 1

2 .

Results for (DNLS). Part II

Here we additionally show that the flow map SR,T for the (DNLS) is not
uniformly continuous on bounded subsets for all s ≥ 1

2 , if the L2 norm of the
initial data is permitted to vary.

Lack of uniform continuity of the flow on balls. Assume that

SR,T : Hs(T) ⊃ {u0 | ‖u0‖
H

1
2 (T)

< R} → C([−T, T ],Hs(T))

for some R > 0 and 0 < T < T ∗(R) is uniformly continuous a small ball
around the origin. Then, for all |t| ≤ T also

SR,T (t) : Hs(T) ⊃ {u0 | ‖u0‖
H

1
2 (T)

< R} → Hs(T)

is uniformly continuous on this ball. Let 0 < t, s ≤ T and define for u0 ∈
H2(T), with ‖u0‖

H
1
2 (T)

small, the function u(t)(s) = SR,T (s)S0
R,T (−t)u0.

This solves

∂su
(t)(s)− i∂2

xu
(t)(s) = ∂x(|u(t)|2u(t))(s)

u(t)(0) = S0
R,T (−t)u0

Now, we consider v(t)(s, x) := u(t)(s, x − 2s‖S0
R,T (−t)u0‖2L2), which solves

(DNLS0), see Proposition 3.2.2. By the L2 conservation law from Lemma
A.5.1 it follows ‖S0

R,T (−t)u0‖2L2 = ‖u0‖2L2 . Due to the uniqueness of solu-
tions S0

R,T (s)S0
R,T (−t)u0 = v(t)(s). By a similar argument, considering the

function S0
R,T (s−t)u0, we also show that S0

R,T (s−t)u0 = S0
R,T (s)S0

R,T (−t)u0.
Therefore, with t = s we have

u0(·+ 2t‖u0‖2L2) = SR,T (t)S0
R,T (−t)u0

By continuity this also holds for general u0 ∈ Hs(T), s ≥ 1
2 with smallH

1
2 (T)

norm, which shows that

u0 7→ u0(·+ 2t‖u0‖2L2)
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as a map from a small ball in Hs(T) to Hs(T) is uniformly continuous, be-
cause by assumption this is true for SR,T (t)S0

R,T (−t). This is a contradiction
to Proposition 3.2.2.

3.4.3 A Counterexample to tri-linear estimates

The aim of this subsection is to provide a reason for the use of the gauge
transformation. We show that it is not possible to prove estimates in the
Fourier restriction norm spaces from Subsection 2.2.1 for the (DNLS0) di-
rectly. We already know that estimates which enable us to perfom the Picard
iteration argument for the (DNLS) cannot be true because the flow is not
uniformly continuous on balls. Let

N(u) = 2
(
|u|2 − 1

2π

∫ 2π

0

|u|2dx
)
∂xu+ u2∂xu

and

N1(u) =
(
|u|2 − 1

2π

∫ 2π

0

|u|2dx
)
∂xu , N2(u) = u2∂xu

Theorem 3.4.3. Let s, b ∈ R. For any n ∈ N we find un ∈ Xs,b and cn > 0
which satisfy

‖N(un)‖Xs,b−1 ≥ cn‖un‖Xs,b
, cn →∞

Remark 3.4.4. The proof will show that we may replace Xs,b by Xs,b∩Ys,b− 1
2

on the right hand side.

Proof. 1. Case: s ∈ R, b < 1/3. Let us define the sequence of functions

un(t, x) = (n−se−it(n+2)2+inx + e−it+ix + e−it−ix)χ(t)

where χ ∈ S(R) defined by χ = F−1
t η for η ∈ C∞0 (−10, 10) nonnegative

and even with η ≡ 1 on [−5, 5]. Observe that un consists of three different
frequency modes to n, 1,−1. Our aim is to calculate the n + 2 frequency
mode of N(u). We first observe that the only contribution of the second
term N2(un) to the frequency n+ 2 is

fn(t) :=χ3(t)2n−se−it(n+2)2+inxe−it+ix∂xe
it+ix

=χ3(t)2in−se−it(n+2)2+i(n+2)x
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Next, we calculate the contributions from the first term 2N1(un) to the
frequency n+ 2.

|un|2 −
1
2π

∫ 2π

0

|un|2dx

=χ2(t)(n−se−it(n+2)2+it+i(n−1)x + n−se−it(n+2)2+it+i(n+1)x

+ n−seit(n+2)2−it−i(n−1)x + n−seit(n+2)2−it−i(n+1)x + e2ix + e−2ix)

with frequencies n−1, n+1,−n+1,−n−1, 2,−2. Hence, the only contribution
to the n+ 2 frequency of 2N1(un) is

gn(t) :=2χ3(t)(n−se−it(n+2)2+it+i(n+1)x∂xe
−it+ix + e2ix∂xn

−se−it(n+2)2+inx)

=χ3(t)2in−s(1 + n)e−it(n+2)2+i(n+2)x

Now,

Fun(τ, ξ) = c


η(τ + (n+ 2)2)n−s , ξ = n

η(τ + 1) , ξ = ±1
0 , otherwise

which shows that

‖un‖2Xs,b
=cn−2s

∫
〈τ + n2〉2b〈n〉2s|η(τ + (n+ 2)2)|2dτ + c

≤c
∫
〈ν − 4n− 4〉2b|η(ν)|2dν + c ≤ cn2b

because η has compact support. On the other hand,

‖N(un)‖2Xs,b−1
≥ c

∫
〈τ + (n+ 2)2〉2b−2〈n+ 2〉2s|F(fn + gn)(τ)|2dτ

Because |η ∗ η ∗ η(τ)| ≥ 1 for |τ | ≤ 1 it is∫
〈τ + (n+ 2)2〉2b−2〈n+ 2〉2s|F(fn + gn)(τ)|2dτ

≥cn2

∫
〈τ + (n+ 2)2〉2b−2|η ∗ η ∗ η(τ + (n+ 2)2)|2dτ

≥cn2

∫
〈τ〉2b−2|η ∗ η ∗ η(τ)|2dτ ≥ cn2

which proves the claim in the case b < 1/3 because n2−6b is unbounded.
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2. Case: s ∈ R, b > 0. Let us define

vn(t, x) = (n−se−itn2+inx + e−it+ix + e−it−ix)χ(t)

which consists of three modes to the frequencies n, 1,−1. Our aim is to
calculate the n+ 2 frequency mode of N(u). As above the only contribution
of the term N2(un) is

kn(t) :=χ3(t)2n−se−itn2+inxe−it+ix∂xe
it+ix

=χ3(t)2in−se−itn2+i(n+2)x

Next, we calculate the contributions from the first term 2N1(un) to the
frequency n+ 2. As above

|vn|2 −
1
2π

∫ 2π

0

|vn|2dx

=χ2(t)(n−se−itn2+it+i(n−1)x + n−se−itn2+it+i(n+1)x

+ n−seitn2−it−i(n−1)x + n−seitn2−it−i(n+1)x + e2ix + e−2ix)

with frequency modes n − 1, n + 1,−n + 1,−n − 1, 2,−2. Hence, the only
contribution to the n+ 2 frequency of 2N1(un) is

ln(t) :=2χ3(t)(n−se−itn2+it+i(n+1)x∂xe
−it+ix + e2ix∂xn

−se−itn2+inx)

=χ3(t)2in−s(1 + n)e−itn2+i(n+2)x

A similar calculation as above shows

Fvn(τ, ξ) = c


η(τ + n2)n−s , ξ = n

η(τ + 1) , ξ = ±1
0 , otherwise

which shows that

‖vn‖2Xs,b
= cn−2s

∫
〈τ + n2〉2b〈n〉2s|η(τ + n2)|2dτ + c ≤ c

On the other hand∫
〈τ + (n+ 2)2〉2b−2〈n+ 2〉2s|F(kn + ln)(τ)|2dτ

≥cn2

∫
〈τ + (n+ 2)2〉2b−2|η ∗ η ∗ η(τ + n2)|2dτ

≥cn2

∫
〈ν + 4n+ 4〉2b−2|η ∗ η ∗ η(ν)|2dν ≥ cn2n2b−2

because |η ∗ η ∗ η(τ)| ≥ 1 for |τ | ≤ 1. Now, n2b is unbounded.
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3.5 Notes and References

In the case of the real line local well-posedness of the Cauchy problem for
the (DNLS) in Hs(R) for s ≥ 1

2 was obtained by H. Takaoka [Tak99] (for
slightly more general nonlinearities). This result is sharp in the sense that
for s < 1

2 the uniform continuity of the flow map (on balls) fails to hold
due to counterexamples constructed by H.A. Biagoni - F. Linares [BL01].
Remarkably, the critical regularity for the scaling argument is L2, which
means the following: Assume u is a solution of (3.1), then also uµ(t, x) =
µ

1
2u(µ2t, µx) is a solution and ‖uµ(t)‖L2 = ‖u(t)‖L2 for all µ > 0.

J. Colliander - M. Keel - G. Staffiliani - H. Takaoka - T. Tao [CKS+02]
proved global well-posedness for initial data in Hs(R) for s > 1

2 which satis-
fies the L2(R) smallness condition ‖u0‖2L2(R) < 2π and improved the global
result in H1(R) of N. Hayashi - T. Ozawa [HO94] for the (DNLS). Recently,
A. Grünrock [Grü05b] obtained a local result for initial data in spaces Ĥr

s

defined by the norms ‖〈ξ〉sFu0‖Lr′ for s ≥ 1
2 , 1 < r ≤ 2 and 1

r + 1
r′ = 1.

The (DNLS) equation found application as a model in plasma physics and it
satisfies infinitely many conservation laws [KN78].

The local well-posedness result of H. Takaoka [Tak99] was proved by using
the gauge transform developed by N. Hayashi - T. Ozawa [HO92, Hay93,
HO94] to derive a gauge equivalent equation and H. Takaoka showed that
this can be treated by the Fourier restriction norm method of J. Bourgain
[Bou93] as long as s ≥ 1

2 . The proof of the main tri-linear estimate uses local
smoothing and Strichartz estimates.

In the periodic case M. Tsutsumi - I. Fukuda [TF80, TF81] obtained
well-posedness results for s > 3

2 (also valid in the non-periodic case) as
well as global weak solutions in H1 with an additional smallness condition.
It is also known that there exist global (weak) solutions in Sobolev spaces
corresponding to H1(T) subject to Dirichlet and generalized periodic bound-
ary conditions due to the results from Y. Chen [Che86] and T. Meškauskas
[Meš98] (for initial data fulfilling a smallness condition). Moreover, these
solutions are unique in some range. The results from this Chapter are signif-
icant improvements to these results and are based on the dispersive structure
of the equation.

The major difference to the non-periodic case is characterized by the
dispersive properties of solutions. These are weaker in the sense that there
are no local smoothing estimates available which could be used to control
derivatives in nonlinear terms. Moreover, above L4 the Strichartz estimates
are only known to hold with a loss of ε > 0 derivatives. In the nonperiodic
case we expect that one can derive a local well-posedness result for small data
and for s > 1

2 by applying multilinear estimates directly without using the
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gauge transformation. In principle this should follow in the same way as for
the modified Benjamin - Ono equation as in [MR04] using spaces based on
the local smoothing and maximal function estimates, cp. also [KPV93b] for
larger values of s. This is different in the periodic setting, cp. also Subsection
3.4.3 for the (DNLS0) in Fourier restriction norm spaces. Nevertheless, our
results in this chapter show that the general method of proof used in [Tak99]
carries over to the periodic case despite of the aforementioned obstructions.





Chapter 4

Benjamin-Ono type
equations

In this chapter we consider the non-periodic case and the phase function
φ : R → R, φ(ξ) = |ξ|αξ, α > 0, except for Section 4.3 where we also study
the periodic case.

4.1 Motivation

We consider the Cauchy problem

∂tu(t)− |D|α∂xu(t) +
1
2
∂xu

2(t) = 0 in (−T, T )

u(0) = u0

(4.1)

for 0 < α ≤ 2 and initial data belonging to some L2-based Sobolev space.
In all cases discussed here there are at least three formally conserved

quantities for real valued solutions, namely∫
R
u dx∫

R
u2 dx (L2 norm)

1
2

∫
R

∣∣|D|α2 u∣∣2 dx− 1
6

∫
R
u3 dx (Hamiltonian)

The Korteweg-de Vries equation (α = 2) was introduced by D.J. Korteweg
- G. de Vries in [KDV95] and the Benjamin-Ono equation (α = 1) was
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developed by T.B. Benjamin [Ben67] and H. Ono [Ono75]. Both are one-
dimensional model equations for nonlinear dispersive waves arising in water
wave theory1 and they possess an infinite number of conservation laws. For
all 0 < α ≤ 2 there is a well-posedness theory [Sau79] for regular data and
for 1 ≤ α ≤ 2 these equations admit solitary wave solutions [Wei87].

4.2 Equations of Benjamin-Ono type

In this section we focus on the Cauchy problem (4.1) in the cases 1 < α < 2
and we aim to prove well-posedness in low regularity spaces by a fixed point
argument.

It was observed by L. Molinet - J.-C. Saut - N. Tzvetkov [MST01] that
there is a major obstruction in the range α < 2 for the iterative methods
successfully used in the study of the KdV equation. They show that interac-
tions of linear waves of very low frequency with linear waves of high frequency
cannot be controlled by bilinear estimates based on Hs(R) information only
and that the flow map for Hs(R) data is not C2.

In the following, we prove a local well-posedness result in the range 1 <
α < 2 for data in the spaces H(s,ω) defined in Subsection 2.2.2 which almost
closes the gap to the local well-posedness theory for KdV known so far.
Moreover, we derive a global result for real valued data based on the L2

conservation law. The low frequency condition in these results is shown to
be sharp with respect to the C2 continuity of the flow map. This will be
made precise below. The well-posedness results will include the existence
and uniqueness of solutions in the sense of distributions in a certain space,
the persistence of initial regularity and the analyticity of the flow map.

Theorem 4.2.1. Let 1 < α < 2 and ω = 1
α −

1
2 . Then, for s ≥ s0 > − 3

4 (α−
1) there exists b > 1

2 and a non-increasing function T ∗ : (0,∞) → (0,∞),
such that for R > 0 and T ≤ T ∗(R) there exists a continuous map

SR,T : BR = {u0 ∈ H(s0,ω) | ‖u0‖H(s0,ω) ≤ R} → C
(
[−T, T ],H(s0,ω)

)
with the properties:

(i) For all u0 ∈ BR we have SR,T (u0) ∈ XT
s0,ω,b ⊂ L∞x (R, L2

t ([−T, T ])) and
u = SR,T (u0) is the unique solution in XT

s0,ω,b of the Cauchy problem
(4.1) in the sense that∫

R

∫ T

−T

u∂tϕ− u|D|α∂xϕ+
1
2
u2∂xϕdtdx = 0

1For 1 < α < 2 cp. remarks in the introductions of [KPV90, CKS03b, MR06, Sau79]
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holds true for all ϕ ∈ C∞0 ((−T, T )× R).

(ii) For every s ≥ s0 we have SR,T (BR ∩H(s,ω)) ⊂ C([−T, T ],H(s,ω)) and

SR,T |BR∩H(s,ω) : BR ∩H(s,ω) → C
(
[−T, T ],H(s,ω)

)
is analytic.

Remark 4.2.2. If α→ 1+ the lower bound for s tends to 0 and for α→ 2− the
bound converges to −3/4. For all admissible values of α our result includes
the L2 case where a conserved quantity is available.

Corollary 4.2.3. Let 1 < α < 2 and ω = 1
α −

1
2 .

(i) For all s > − 3
4 (α − 1) the Cauchy problem (4.1) is locally well-posed

in H(s,ω).

(ii) For all s ≥ 0 the Cauchy problem (4.1) is globally well-posed for real
valued initial data in H(s,ω).

The next theorem shows that our low frequency condition is optimal with
respect to the analyticity of the flow map.

Theorem 4.2.4. Let 1 ≤ α < 2 and assume that the Cauchy problem (4.1)
is well-posed in H(s,ω) for 0 ≤ ω < 1

α −
1
2 and s ∈ R. Then, the flow map

H(s,ω) ⊃ BR 3 u0 7→ u ∈ C([−T, T ],Hs(R))

is not C2 at the origin. In particular, the bilinear estimate corresponding to
(4.2) fails.

4.2.1 A bilinear estimate

This section is devoted to

Theorem 4.2.5. Let 1 < α < 2, s ≥ s0 > − 3
4 (α− 1) and ω = 1

α −
1
2 . There

exists b′ > − 1
2 and b ∈ ( 1

2 , b
′ + 1) such that

‖∂x(u1u2)‖Xs,ω,b′ ≤ c‖u1‖Xs,ω,b
‖u2‖Xs0,ω,b

+ ‖u1‖Xs0,ω,b
‖u2‖Xs,ω,b

(4.2)

holds true for all u1, u2 ∈ S(R2).

Before we start with the proof, we note an algebraic fact concerning our
phase function, which we will call resonance relation.
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Lemma 4.2.6. Let 1 < α < 2. Define

h(ξ1, ξ2, ξ) = ξ|ξ|α − ξ1|ξ1|α − ξ2|ξ2|α (4.3)

Then, for ξ = ξ1 + ξ2 we have

|h(ξ1, ξ2, ξ)| ≥ c|ξmin||ξmax|α (4.4)

where |ξmin| := min{|ξ1|, |ξ2|, |ξ|} and |ξmax| := max{|ξ1|, |ξ2|, |ξ|}.

Proof. For β ≥ 0 we define f(β) := (1 + β)1+α − β1+α − 1. This function
satisfies f(0) = 0 and f ′(β) = (1 +α)((1 + β)α − βα) > 0 as well as f ′′(β) =
(1 + α)α((1 + β)α−1 − βα−1) > 0 for β > 0. This implies that

f(β) ≥ f ′(0)β = (1 + α)β for β ∈ [0, 1]

We observe that f(β) = β1+αf(1/β) for all β > 0, which implies

f(β) = β1+αf(1/β) ≥ (1 + α)βα for β ≥ 1.

Now we start we the proof of (4.4). We suppose the constraint ξ = ξ1 + ξ2
to hold and consider two cases:

Case 1: ξ1ξ2 > 0. Since h is symmetric with respect to ξ1 and ξ2, it
suffices to consider ξ1 = βξ2 with β ≥ 1. Then,

|h(ξ1, ξ2, ξ)| = f(β)|ξ2|1+α ≥ cβα|ξ2|1+α = c|ξ1|α|ξ2|.

Since |ξ| ≤ |ξ1|+ |ξ2| ≤ 2|ξ1| we have |ξ1| ≥ 1/2|ξmax| and this implies (4.4).
Case 2: ξ1ξ2 < 0. By symmetry we may assume ξ2ξ < 0 and ξ1ξ > 0.

Then ξ1 = βξ for some β > 1. We calculate

|h(ξ1, ξ2, ξ)| = |1− β|β|α − (1− β)|1− β|α||ξ|1+α

= f(β − 1)|ξ|1+α

≥ c

{
|β − 1||ξ|1+α , 1 < β ≤ 2
|β − 1|α|ξ|1+α , β > 2

= c

{
|ξ2||ξ|α , 1 < β ≤ 2
|ξ2|α|ξ| , β > 2

It is |ξ1| = |ξmax|. If 1 < β ≤ 2 we have 2|ξ| ≥ |ξ1|, which implies (4.4). In
the case β > 2 we use |ξ2| = (1− 1/β)|ξ1| ≥ 1/2|ξ1| to conclude (4.4).
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Proof of Theorem 4.2.5. Let us fix notation. We define σ = |τ |+ |ξ|1+α and
σi = |τi| + |ξi|1+α as well as λ = τ − ξ|ξ|α and λi = τi − ξi|ξi|α. Moreover,
we set

fi(τi, ξi) = |ξi|−ω〈ξi〉s−αω〈λi〉b〈σi〉ωFui(τi, ξi)

and
Fvi(τi, ξi) := fi(τi, ξi)〈λi〉−b.

For brevity we write∫
∗
g(τ1, ξ1)h(τ2, ξ2) :=

∫
ξ=ξ1+ξ2
τ=τ1+τ2

g(τ1, ξ1)h(τ2, ξ2) dτ1dξ1

which is nothing else but the convolution (g ∗ h)(τ, ξ). We first consider the
case s = s0 = − 3

4 (α− 1) + ε for small ε > 0. Our goal is to bound

‖∂x(u1u2)‖Xs,ω,b′ =

∥∥∥∥∥|ξ|1−ω〈ξ〉s−αω〈λ〉b
′
〈σ〉ω

∫
∗

2∏
i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

∥∥∥∥∥
L2

τ,ξ

by the product of the L2 norms of the fi, where we may assume that 0 ≤
fi ∈ S(R2).

Due to the symmetry in ξ1, ξ2 it suffices to consider the subregion of
the domain of integration where |ξ1| ≤ |ξ2|. By the convolution constraint
ξ = ξ1 + ξ2 we then have |ξ| ≤ 2|ξ2|. This region is split up into

(i) Region D1: 4|ξ1| ≤ |ξ2|. There, |ξ1| ≤ 1
4 |ξ2| ≤

1
3 |ξ| ≤

2
3 |ξ2|.

(ii) Region D2: |ξ1| ≤ |ξ2| ≤ 4|ξ1|. There, |ξ| ≤ 2|ξ2|, |ξ| ≤ 5|ξ1|.

Let A,A1, A2 be subregions of the domain of integration, such that in A
we have 〈λ〉 ≥ 〈λ1〉, 〈λ2〉, in A1 we have 〈λ1〉 ≥ 〈λ〉, 〈λ2〉 and in A2 the
inequalities 〈λ2〉 ≥ 〈λ〉, 〈λ1〉 hold.

We first consider the region D1 and subdivide it into two parts D1 =
D11 ∪D12, where in D11 we have |ξ1| ≤ 2 and in D12 we have |ξ1| ≥ 2. In
D1 we see by Lemma 4.2.6

|λ− λ1 − λ2| = |h(ξ1, ξ2, ξ)| ≥ c|ξ1||ξ|α

because |ξ1| ≤ |ξ|, |ξ2|.
Now we start the analysis in the subregion D11. We exploit

|ξ|1−α
2 = |ξ|αω ≤ c|ξ1|−ω(χA〈λ〉ω + χA1〈λ1〉ω + χA2〈λ2〉ω).
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Therefore in D11 the bilinear estimate follows from

2∑
k=0

‖J11,k‖L2 ≤ c
2∏

i=1

‖fi‖L2 (4.5)

where

J11,0 =
∫
∗
χD11∩A|ξ|

α
2−ω〈ξ〉s−αω〈λ〉b

′+ω〈σ〉ω|ξ2|ω
2∏

i=1

fi(τi, ξi)〈ξi〉αω−s

〈λi〉b〈σi〉ω

and for k = 1, 2

J11,k =
∫
∗
χD11∩Ak

|ξ|α2−ω〈ξ〉s−αω〈λ〉b
′
〈σ〉ω|ξ2|ω〈λk〉ω

2∏
i=1

fi(τi, ξi)〈ξi〉αω−s

〈λi〉b〈σi〉ω

We observe that in D11

〈ξ2〉αω−s〈ξ〉s−αω ≤ c and 〈ξ1〉αω−s ≤ c (4.6)

In addition, we use b′ + ω ≤ 0 and |ξ2|ω ≤ c|ξ|ω to show that

‖J11,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
χD11∩A|ξ|

α
2 〈σ〉ω

2∏
i=1

fi(τi, ξi)
〈λi〉b〈σi〉ω

∥∥∥∥∥
L2

Because of the convolution constraint (τ, ξ) = (τ1, ξ1) + (τ2, ξ2) we also have

〈σ〉
〈σ1〉〈σ2〉

≤ c 1
mini=1,2〈σi〉

≤ c (4.7)

which implies

‖J11,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
χD11∩A|ξ|

α
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

In region D11

|ξ|α2 ≤ c||ξ2|α − |ξ1|α|
1
2

such that with (2.36)

‖J11,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
||ξ2|α − |ξ1|α|

1
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c
∥∥∥I α

2
∗ (v1, v2)

∥∥∥
L2
≤ c

2∏
i=1

‖vi‖X0,0,b
= c

2∏
i=1

‖fi‖L2
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since b > 1/2. For J11,1 we use (4.6) and (4.7) again and get

‖J11,1‖L2 ≤ c
∥∥∥∥∫

∗

χD11∩A1 |ξ|
α
2

mini=1,2〈σi〉ω
〈λ〉b

′
f1(τ1, ξ1)〈λ1〉ω−bf2(τ2, ξ2)〈λ2〉−b

∥∥∥∥
L2

We may assume that |λ1| ≥ 2|λ| because otherwise the same argument as for
J11,0 applies. If 〈σ1〉 ≤ 〈σ2〉 we have 〈λ1〉ω ≤ mini=1,2〈σi〉ω. If we suppose
that 〈σ2〉 ≤ 〈σ1〉 we see

|λ1| = |τ1 − ξ1|ξ1|α| = |τ − τ2 − ξ|ξ|α + ξ|ξ|α − ξ1|ξ1|α| ≤ |λ|+ 16|σ2|

since we are in region D11. This implies 〈λ1〉 ≤ c〈σ2〉 and we also have

〈λ1〉ω ≤ c min
i=1,2
〈σi〉ω.

Therefore,

‖J11,1‖L2 ≤ c
∥∥∥∥∫

∗
χD11∩A1 |ξ|

α
2 〈λ〉b

′
f1(τ1, ξ1)〈λ1〉−bf2(τ2, ξ2)〈λ2〉−b

∥∥∥∥
L2

In D11 we have |ξ|α2 ≤ c||ξ2|α − |ξ1|α|
1
2 and by assumption b′ ≤ 0 such that

we may proceed as above with J11,0 and use the estimate (2.36) to conclude

‖J11,1‖L2 ≤ c

∥∥∥∥∥
∫
∗
||ξ2|α − |ξ1|α|

1
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c
2∏

i=1

‖fi‖L2

For J11,2 we have by (4.6) and (4.7)

‖J11,2‖L2 ≤ c
∥∥∥∥∫

∗
χD11∩A2 |ξ|

α
2 〈λ〉b

′
f1(τ1, ξ1)〈λ1〉−bf2(τ2, ξ2)〈λ2〉ω−b

∥∥∥∥
L2

In D11 ∩A2 we have

|ξ|α2 ≤ c||ξ|α − |ξ1|α|
1
2 and 〈λ2〉ω−b ≤ 〈λ〉ω−b

such that, because of b′ + ω ≤ 0,

‖J11,2‖L2 ≤ c
∥∥∥K α

2
∗ (v1,F−1f2)

∥∥∥
X0,0,−b

≤ c‖v1‖X0,0,b
‖F−1f2‖L2 = c

2∏
i=1

‖fi‖L2

for b > 1/2 by the estimate (2.37).
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Let us now consider the region D12. We define the contributions

J12,0 =
∫
∗
χD12∩A|ξ|1−ω〈ξ〉s−αω〈λ〉b

′
〈σ〉ω

2∏
i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

and, for k = 1, 2,

J12,k =
∫
∗
χD12∩Ak

|ξ|1−ω〈ξ〉s−αω〈λ〉b
′
〈σ〉ω

2∏
i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

In the subregion D12 ∩A we use

|ξ|−αb′〈ξ1〉−b′ ≤ c〈λ〉−b′

and ‖J12,0‖L2 is bounded by∥∥∥∥∥
∫
∗
χD12∩A|ξ|1−ω+αb′〈ξ〉s−αω〈σ〉ω〈ξ1〉b

′+αω−s〈ξ2〉αω−s
2∏

i=1

fi(τi, ξi)|ξi|ω

〈λi〉b〈σi〉ω

∥∥∥∥∥
L2

Using 〈ξ2〉αω−s〈ξ〉s−αω ≤ c and (4.7) this is bounded by∥∥∥∥∥
∫
∗
χD12∩A|ξ|1+αb′ 〈ξ1〉b

′+αω−s+ω

mini=1,2〈σi〉ω
2∏

i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

Now, for b′ + ω ≤ 0 we estimate

|ξ|1+αb′ ≤ c|ξ|α2 〈ξ1〉1−
α
2 +αb′

since 1− α
2 + αb′ ≤ 0. Moreover,

1− α

2
+ αb′ + b′ + αω − s+ ω − (1 + α)ω = 1− α

2
+ αb′ + b′ − s

which is negative for

s ≥ α(−1
2

+ b′) + 1 + b′

Therefore, choosing b′ ≤ min{−ω,− 1
4} we continue for s ≥ −3

4 (α− 1) with∥∥∥∥∥
∫
∗
χD12∩A|ξ|

α
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c
∥∥∥I α

2
∗ (v1, v2)

∥∥∥
L2
≤ c

2∏
i=1

‖fi‖L2
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Next, we study the contribution of J12,1. We may assume that 〈λ1〉 ≥ 2〈λ〉
because otherwise we use the same argument as in D12 ∩A. In D12 ∩A1 we
exploit

|ξ|〈ξ1〉
1
α ≤ c〈λ1〉

1
α

We observe that

|λ1| = |τ1 − ξ1|ξ1|α| ≤ |λ|+ c〈σ2〉 ⇒ 〈λ1〉 ≤ c〈σ2〉

and therefore
〈λ1〉ω ≤ c min

i=1,2
〈σi〉ω

This shows

‖J12,1‖L2 ≤ c

∥∥∥∥∥
∫
∗
χD12∩A1〈λ〉b

′
〈ξ1〉−

1
α +ω+αω−s〈λ1〉

1
2−b〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

We choose b > 1
2 and in D12 we have |ξ1| ≤ |ξ2|. Since we only consider

s ≤ 1
2 −

α
2 (which means ε ≤ α−1

4 ) we have

‖J12,1‖L2 ≤ c

∥∥∥∥∥
∫
∗
〈λ〉b

′
〈ξ2〉

1
2−

α
2−s〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

With b′ ≤ − 1
4 and Sobolev in time we see

‖J12,1‖L2 ≤ c
∥∥∥F−1f1J

1
2−

α
2−sv2

∥∥∥
L

4/3
t L2

x

≤ c‖f1‖L2
t L2

x
‖J 1

2−
α
2−sv2‖L4

t L∞x

Finally, by (2.31)

‖J 1
2−

α
2−sv2‖L4

t L∞x
≤ c‖v2‖X0,0,b

= ‖f2‖L2

because 1
2 −

α
2 − s ≤

α−1
4 , which is equivalent to s ≥ − 3

4 (α − 1). Now, we
turn to the contribution of D12 ∩A2 where we use

|ξ|−αb′〈ξ1〉−b′ ≤ c〈λ2〉−b′

and it follows that ‖J12,2‖L2 is bounded by∥∥∥∥∥
∫
∗
χD12∩A2 |ξ|1+αb′ 〈ξ1〉b

′+ω+αω−s

mini=1,2〈σi〉ω
〈λ〉b

′
〈λ2〉−b′−b〈λ1〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2
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We have
〈λ〉b

′
〈λ2〉−b′−b ≤ 〈λ〉−b

and
min
i=1,2
〈σi〉ω ≥ 〈ξ1〉(1+α)ω

and if b′ ≤ −ω we have 1 + αb′ − α
2 ≤ 0 and therefore

|ξ|1+αb′ ≤ c|ξ|α2 〈ξ1〉1+αb′−α
2

If b′ ≤ − 1
4 and s ≥ −3

4 (α− 1) we estimate b′ − s+ 1 + αb′ − α
2 ≤ 0 and

|ξ|α2 ≤ c||ξ|α − |ξ1|α|
1
2

and by the dual bilinear smoothing estimate (2.37)

‖J12,2‖L2 ≤ c

∥∥∥∥∥
∫
∗
||ξ|α − |ξ1|α|

1
2 〈λ〉−b〈λ1〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

≤ c
2∏

i=1

‖fi‖L2

This completes the discussion of the subregion D1.
Let us now consider the domain D2, where |ξ1| ≤ |ξ2| ≤ 4|ξ1|, |ξ| ≤ 2|ξ2|

and |ξ| ≤ 5|ξ1|. We subdivide D2 = D21 ∪D22, where in

D21 : ξ1ξ2 > 0 or |ξ| ≥ 1
2
|ξ1| or |ξ2| ≤ 1

and in

D22 : ξ1ξ2 < 0 and |ξ| ≤ 1
2
|ξ1| and |ξ2| ≥ 1

additionally hold. As above, we define for j = 1, 2

J2j,0 =
∫
∗
χD2j∩A|ξ|1−ω〈ξ〉s−αω〈λ〉b

′
〈σ〉ω

2∏
i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

and for k = 1, 2

J2j,k =
∫
∗
χD2j∩Ak

|ξ|1−ω〈ξ〉s−αω〈λ〉b
′
〈σ〉ω

2∏
i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω
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We start with the discussion of D21, where all frequencies are of comparable
size or smaller then a constant, which shows that

|ξ|1−ω〈ξ〉s−αω|ξ1|ω|ξ2|ω〈σ〉ω

〈ξ1〉s−αω〈ξ2〉s−αω〈σ1〉ω〈σ2〉ω
≤ c〈ξ〉1−s

Therefore,

‖J21,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
χD21∩A〈ξ〉1−s〈λ〉b

′
2∏

i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

In A we have
〈ξ〉−b′(1+α) ≤ c〈λ〉−b′

and we use the Strichartz estimate (2.31) to conclude

‖J21,0‖L2 ≤ c
∥∥∥∥∫

∗
〈ξ〉1−s+b′(1+α)−α−1

4 〈ξ1〉
α−1

4 Fv1(τ1, ξ1)Fv2(τ2, ξ2)
∥∥∥∥

L2

≤ c‖J
α−1

4 v1‖L4
t L∞x
‖v2‖L4

t L2
x
≤ c

2∏
i=1

‖fi‖L2

since 1− s+ b′(1 +α)− α−1
4 ≤ 0 which is equivalent to 5

4 + b′− α
4 +αb′ ≤ s.

This is fulfilled for b′ ≤ −1
2 + ε

3 . In A1 we have

〈ξ〉b(1+α) ≤ c〈λ1〉b

and we use Sobolev in time and the Strichartz estimate (2.31) to conclude
for b′ ≤ −1

4

‖J21,1‖L2 ≤ c
∥∥∥∥∫

∗
〈ξ〉1−s−b(1+α)−α−1

4 〈λ〉b
′
f1(τ1, ξ1)〈ξ2〉

α−1
4 Fv2(τ2, ξ2)

∥∥∥∥
L2

≤ c‖F−1f1J
α−1

4 v2‖L4/3
t L2

x
≤ c‖f1‖L2

tx
‖J

α−1
4 v2‖L4

t L∞x

≤ c
2∏

i=1

‖fi‖L2

The same argument applies to J21,2 by exchanging the roles of f1, f2.
Finally, we turn to the contributions from the region D22. Here, we have

ξ1ξ2 < 0. Therefore, we may write ξ1 = βξ2 for β ∈ [−1,− 1
4 ]. By the mean

value theorem this shows

||ξ1|α − |ξ2|α|
1
2 = ||β|α − 1|

1
2 |ξ2|

α
2 ≥ 1

2
||β| − 1| 12 |ξ2|

α
2 =

1
2
|ξ| 12 |ξ2|

α−1
2 (4.8)
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Let us start with the subregion A. We have

〈σ〉ω ≤ c〈λ〉ω + cχ|ξ|≥1〈ξ〉ω+αω

which shows
‖J22,0‖L2 ≤ c‖K22,0‖L2 + c‖L22,0‖L2

where

K22,0 =
∫
∗
χD22∩A|ξ|1−ω〈ξ〉s−αω〈λ〉b

′+ω
2∏

i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

and

L22,0 =
∫
∗
χD22∩Aχ|ξ|≥1〈ξ〉1+s〈λ〉b

′
2∏

i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

Using

|ξ|−b′−ω〈ξ2〉−αb′−αω ≤ c〈λ〉−b′−ω

and (4.8) we see that ‖K22,0‖L2 is bounded by∥∥∥∥∥
∫
∗
χD22∩A|ξ|1+b′〈ξ〉s−αω〈ξ2〉−2s+αb′+αω

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤c

∥∥∥∥∥
∫
∗
〈ξ〉 12+b′+s−αω〈ξ2〉−2s+αb′+αω−α−1

2 ||ξ1|α − |ξ2|α|
1
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

If b′ ≤ − 1
4 and ε ≤ 1

4 , then 1
2 + b′+s−αω ≤ 0. Moreover, for b′ ≤ −1

2 +ε we
have −2s+ αb′ + αω − α−1

2 ≤ 0. By the bilinear smoothing estimate (2.36)

‖K22,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
||ξ1|α − |ξ2|α|

1
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c
2∏

i=1

‖fi‖L2

For the second term ‖L22,0‖L2 we use

|ξ|−b′〈ξ2〉−αb′ ≤ c〈λ〉−b′

and find with (4.8)

‖L22,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
χD22∩Aχ|ξ|≥1〈ξ〉s+1+b′〈ξ2〉αb′−2s

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c

∥∥∥∥∥
∫
∗
〈ξ〉 12+s+b′〈ξ2〉αb′−2s−α−1

2 ||ξ1|α − |ξ2|α|
1
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2
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We only consider ε < 3
4 (α− 1). Then, for b′ ≤ −1

2 + 3
4 (α− 1)− ε we observe

that 1
2 + s+ b′ ≤ 0. Moreover αb′− 2s− α−1

2 ≤ 0 for b′ ≤ − 1
2 + ε. Using the

bilinear smoothing estimate (2.36) we arrive at

‖J22,0‖L2 ≤ c
2∏

i=1

‖fi‖L2

Next, we consider the subregion A1. We have

〈σ〉ω ≤ c〈λ1〉ω + cχ|ξ|≥1〈ξ〉ω+αω

which shows that

‖J22,1‖L2 ≤ c‖K22,1‖L2 + c‖L22,1‖L2

where

K22,1 =
∫
∗
χD22∩A1 |ξ|1−ω〈ξ〉s−αω〈ξ2〉−2s〈λ〉b

′
〈λ1〉−b+ω〈λ2〉−b

2∏
i=1

fi(τi, ξi)

L22,1 =
∫
∗
χD22∩A1χ|ξ|≥1〈ξ〉1+s〈λ〉b

′
〈λ1〉−b〈λ2〉−b〈ξ2〉−2s

2∏
i=1

fi(τi, ξi)

As above, by

|ξ|−b′−ω〈ξ2〉−αb′−αω ≤ c〈λ1〉−b′−ω

we see that the first term ‖K22,1‖L2 is bounded by∥∥∥∥∥
∫
∗
χD22∩A|ξ|1+b′〈ξ〉s−αω〈ξ2〉−2s+αb′+αω〈λ〉−b〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

which in turn is controlled by∥∥∥∥∥
∫
∗
〈ξ〉1+b′+s−αω〈ξ2〉−2s+αb′+αω−α

2 ||ξ|α − |ξ2|α|
1
2 〈λ〉−b〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

Here, we used that because of |ξ| ≤ 3
4 |ξ2| and |ξ2| ≥ 1 we have

||ξ|α − |ξ2|α|
1
2 ≥ c〈ξ2〉

α
2
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By estimating 〈ξ〉 12 ≤ 〈ξ2〉
1
2 and with the same restrictions on s, b′ as above

we may apply the dual bilinear smoothing estimate (2.37) and get

‖K22,1‖L2 ≤ c

∥∥∥∥∥
∫
∗
||ξ|α − |ξ2|α|

1
2 〈λ〉−b〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

≤ c
2∏

i=1

‖fi‖L2

For the second term ‖L22,1‖L2 we use

|ξ|−b′〈ξ2〉−αb′ ≤ c〈λ1〉−b′

and find that ‖L22,1‖L2 is bounded by

c

∥∥∥∥∥
∫
∗
〈ξ〉1+s+b′〈ξ2〉αb′−2s−α

2 ||ξ|α − |ξ2|α|
1
2 〈λ〉−b〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

≤ c
2∏

i=1

‖fi‖L2

by the dual bilinear smoothing estimate (2.37) with the same restrictions on
s, b′, b as in the region A since 〈ξ〉 12 ≤ 〈ξ2〉

1
2 .

Finally, we turn to the region A2. In D22 the frequencies ξ1 and ξ2 are
of comparable size and due to |ξ| ≤ 1

2 |ξ1| and |ξ1| ≥ 1
4 |ξ2| ≥

1
4 we have

||ξ|α − |ξ1|α|
1
2 ≥ c〈ξ1〉

α
2

Now we use the same argument as in A1 with the roles of f1, f2 exchanged.
This finishes the proof of the bilinear estimate for s = s0 = − 3

4 (α−1)+ε
and ε ≤ α−1

4 . The restrictions on b′ can be summarized to

b′ ≤ min{−1
4
,−ω,−1

2
+
ε

3
,−1

2
+

3
4
(α− 1)− ε}

For b we assumed 1
2 < b < b′ + 1. Now we turn to the case s > s0 =

− 3
4 (α− 1) + ε. Let ρ = s− s0. Because of

〈ξ〉ρ ≤ c〈ξ1〉ρ + c〈ξ2〉ρ (4.9)

we see

‖∂x(u1u2)‖Xs,ω,b′ ≤ c‖∂x(Jρu1u2)‖Xs0,ω,b′ + ‖∂x(u1J
ρu2)‖Xs0,ω,b′

≤ c‖u1‖Xs,ω,b
‖u2‖Xs0,ω,b

+ ‖u1‖Xs0,ω,b
‖u2‖Xs,ω,b

This proves that for all s ≥ s0 > − 3
4 (α− 1) we find suitable b′ ∈ (− 1

2 , 0) and
b ∈ ( 1

2 , b
′ + 1) such that the bilinear estimate holds true.
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Remark 4.2.7. The additional elliptic weight 〈|τ |+|ξ|1+α〉 was used to control
interactions of low frequency waves with Fourier transform which is localized
far away from the characteristic set

Pα := {(τ, ξ) | τ = ξ|ξ|α}

with essentially linear waves of high frequency which result in an essentially
linear wave of high frequency. Notice that, informally speaking, for |ξ| ≥ 1
and close to Pα the space Xs,ω,b corresponds to the Xs,b space of Bourgain,
whereas far away from Pα the space Xs,ω,b corresponds to Xs−(α+1)ω,b+ω.

We used only a minimal portion of such a weight because we focus on a
low regularity threshold, but instead of (4.9) one could also perform a similar
argument with the elliptic weight in order to increase regularity in t and x
simultaneously.

A similar weight was used by I. Bejenaru [Bej04] in the context of certain
nonlinear Schrödinger equations involving derivatives.

4.2.2 Proof of well-posedness

This section contains the proof of Theorem 4.2.1 and Corollary 4.2.3. It
will be a standard application of the methods which are well known from
the literature and repeats some of the arguments applied to the Schrödinger
equation in Subsection 3.4.1. Throughout this section let 1 < α < 2, s ≥ s0 >
− 3

4 (α− 1) and ω = 1/α− 1/2. Moreover, we fix b′, b according to Theorem
4.2.5. We may restrict ourself to 0 < T ≤ 1, since the same arguments apply
on any compact time interval. For u ∈ S(R2) we define

ΦT (u)(t) := −1
2
χT (t)

∫ t

0

Wα(t− t′)∂x(u2)(t′) dt′

An application of Proposition 2.2.15 and the bilinear estimate (4.2) allows
us to extend ΦT uniquely to

ΦT : Xs,ω,b → Xs,ω,b

such that

‖ΦT (u)− ΦT (v)‖Xs,ω,b
≤ cT ε(‖u‖Xs,ω,b

+ ‖v‖Xs,ω,b
)‖u− v‖Xs,ω,b

(4.10)

holds true. We can also define

ΦT |[−T,T ]: XT
s,ω,b → XT

s,ω,b

since ΦT (u) |[−T,T ] only depends on u |[−T,T ].
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For the following proof we first consider solutions to an operator equation
and finally show that these coincide with solutions of the Cauchy problem in
the sense of distributions, see Proposition 4.2.10.

Definition 4.2.8. We say u ∈ XT
s,ω,b ⊂ C([−T, T ],H(s,ω)) is a solution of

the operator equation associated to (4.1) on [−T, T ], if

u(t) = Wα(t)u0 + ΦT (u)(t), for t ∈ [−T, T ]. (4.11)

We subdivide the proof into several parts.

Proof of Theorem 4.2.1: local existence and analytic dependence. We define
for 0 < T ≤ 1

ΛT : H(s,ω) ×Xs,ω,b → Xs,ω,b

ΛT (u0, u) := χWαu0 + ΦT (u)

Obviously, ΛT is an analytic map, since it is a composition of bounded linear
and bilinear maps. Let u0 ∈ H(s,ω) with ‖u0‖H(s,ω) ≤ r and u ∈ Xs,ω,b with
‖u‖Xs,ω,b

≤ R. Then, by (2.28), and the estimate (4.10)

‖ΛT (u0, u)‖Xs,ω,b
≤ cr +RcT ε‖u‖Xs,ω,b

< R

for R = 2cr and T ε = (8c2r)−1. With these choices for R and T we restrict
ΛT to closed balls Br×BR ⊂ H(s,ω)×Xs,ω,b and the bilinear estimate (4.10)
shows that

ΛT (u0, ·) : BR → BR

is a strict contraction, uniformly in u0 ∈ Br. Therefore we find

Sr : H(s,w) ⊃ Br → BR ⊂ Xs,ω,b

with
ΛT (u0, u) = u ∈ BR ⇐⇒ u = Sr(u0)

for all u0 ∈ Br and an application of the Implicit Function Theorem 1.4.6 to
Id−ΛT yields the analyticity of Sr and also of Sr,T := Sr

∣∣
[−T,T ]

: H(s,w) →
XT

s,ω,b. Moreover, the functions Sr,T (u0) ∈ XT
s,ω,b are solutions of (4.11).

Proof of Theorem 4.2.1: persistence and uniqueness. The persistence prop-
erty follows from the embedding Xs,ω,b ⊂ C(R,H(s,ω)). Assume that u, v ∈
XT

s0,ω,b are two solutions of (4.11) with extensions ũ, ṽ ∈ Xs0,ω,b, such that

T ′ := sup{t ∈ [0, T ] | u(t) = v(t)} < T.
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Define u∗(t) := ũ(t+ T ′), v∗(t) := ṽ(t+ T ′) for −T ′ ≤ t ≤ T − T ′. Because
both u and v are solutions of (4.11), we see by approximation with smooth
functions

u∗(t)− v∗(t) =ΦT (u∗)(t)− ΦT (v∗)(t) (4.12)

for −T ′ ≤ t ≤ T − T ′. Therefore, for small δ > 0

‖χδ(u∗ − v∗)‖Xs0,ω,b
≤ cδε ‖χδ(u∗ − v∗)‖Xs0,ω,b

(‖u∗‖Xs0,ω,b
+ ‖v∗‖Xs0,ω,b

)

By choosing δ small enough we conclude u∗(t) = v∗(t) for |t| ≤ δ which
implies u(t+T ′) = v(t+T ′) for |t| ≤ δ. This contradicts the definition of T ′.
If u, v did not coincide on [−T, 0], we would find a similar contradiction.

Lemma 4.2.9. Let s ≥ 0. There exists C > 0, such that for all smooth, real
valued solutions u of (4.1), we have

sup
t∈[−T,T ]

‖u(t)‖H(0,ω) ≤ C‖u(0)‖H(0,ω) + CT‖u(0)‖2H(0,ω) (4.13)

Proof. We easily verify the conservation law

‖u(t)‖2L2 = ‖u(0)‖2L2 , t ∈ (−T, T )

Therefore it suffices to prove an a priori estimate for the low frequency part
in Ḣ−ω. We define

Fxv(t)(ξ) = χ(ξ)|ξ|−ωFxu(t)(ξ)

The function v solves the equation

vt − |D|αvx = f in (−T, T )× R
v(0) = v0

where v0, f are defined via

Fxv0(ξ) = χ(ξ)|ξ|−ωFxu(0)(ξ)

and
Fxf(t)(ξ) = − i

2
χ(ξ)ξ|ξ|−ωFxu

2(t)(ξ)

respectively. For fixed t we estimate

‖f(t)‖L2
x
≤c‖χ(ξ)Fxu

2(t)(ξ)‖L2
ξ
≤ c‖Fxu

2(t)‖L∞ξ
≤c‖u2(t)‖L1

x
≤ c‖u(t)‖2L2

x
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This shows

‖v‖L∞T L2
x
≤ c‖v0‖L2

x
+ c‖f‖L1

T L2
x
≤ c‖u(0)‖H(0,ω) + cT‖u‖2L∞T L2

x

≤ c‖u(0)‖H(0,ω) + cT‖u(0)‖2H(0,ω)

as desired.

Proof of Theorem 4.2.1: Time of existence. We fix s ≥ s0 and a ball

Br,rs = {v0 ∈ H(s,ω) | ‖v0‖H(s0,ω) ≤ r and ‖v0‖H(s,ω) ≤ rs}

and define Ts as the supremum of all T ∈ [0, 1] such that the following
statement is true: There exists an analytic map F : Br,rs

→ Xs,ω,b such that

ΛT (v0, F (v0)) = F (v0)

and if u ∈ XT
s0,ω,b is a solution of (4.11), then

u
∣∣
[−T,T ]

= F (v0)
∣∣
[−T,T ]

Part 1 and 2 of the proof show that Ts > 0 and let v = F (v0) ∈ Xs,ω,b. If
T ε

s ≤ (8c2s0
r)−1 < 1 we see from the proof of part 1 that ‖v‖Xs0,ω,b

≤ 2cs0r.
An application of our bilinear estimate (4.2) together with (2.28), (2.30) gives

‖v‖Xs,ω,b
≤ csrs + csT

ε
s ‖v‖Xs0,ω,b

‖v‖Xs,ω,b

Therefore,
‖v‖Xs,ω,b

≤ csrs + 2cscs0rT
ε
s ‖v‖Xs,ω,b

and, if additionally T ε
s ≤ (4cs0csr)

−1, we conclude

sup
|t|≤Ts

‖v(t)‖H(s,ω) ≤ c‖v‖Xs,ω,b
< Csrs (4.14)

If these assumptions about Ts were true, we could apply part 1 and 2 of the
proof. We find a δ > 0 and an analytic map G : H(s,ω) ⊃ BCsrs

→ Xs,ω,b

such that
Λ2δ(w0, G(w0)) = G(w0)

and if u ∈ X2δ
s0,ω,b is a solution of (4.11) with initial datum w0 ∈ BCsrs

, then

u
∣∣
[−2δ,2δ]

= G(w0)
∣∣
[−2δ,2δ]

Define

H : v0 7→ ηδF (v0) + η+
δ G(F (v0)(Ts))(· − Ts) + η−δ G(F (v0)(−Ts))(·+ Ts)
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as a map from Br,rs to Xs,ω,b with smooth cutoff functions ηδ, η
+
δ , η

−
δ , such

that ηδ + η+
δ + η−δ = 1 on [−Ts − δ, Ts + δ] with

supp(ηδ) ⊂ [−Ts + δ, Ts − δ] , supp(η±δ ) ⊂ [±Ts − 2δ,±Ts + 2δ]

It is not hard to verify that H is analytic, since it is a composition of analytic
maps, and

ΛTs+δ(v0,H(v0)) = H(v0)

and if u ∈ XTs+δ
s0,ω,b is a solution of (4.11), then part 2 of the proof also gives

u
∣∣
[−Ts−δ,Ts+δ]

= H(v0)
∣∣
[−Ts−δ,Ts+δ]

which contradicts the definition of Ts and we conclude that

T ε
s ≥ min{(4cs0csr)

−1, (8c2s0
r)−1}.

This lower bound shows that if Ts < 1 we have

lim
t↑Ts

‖u(t)‖H(s0,ω) =∞ (4.15)

because otherwise we could iterate the argument above.

Proof of Theorem 4.2.1: Global existence. The same proof as above applies
in the closed subspaces of real valued functions in H(s,ω), Xs,ω,b and XT

s,ω,b.
We regard these as Hilbert spaces over the real numbers and the analytic
flow maps as real analytic. Using (4.15) and the a priori bound (4.13) this
proves Ts = 1 for all s ≥ 0. As already mentioned, the same arguments may
be applied to any compact time interval.

Now, we show that the notion of solutions considered above coincides
with the formulation of Theorem 4.2.1

Proposition 4.2.10. Let T > 0, s > − 3
4 (α − 1) and u ∈ XT

s,ω,b for some
b > 1

2 and ω = 1
α −

1
2 . Then, u solves (4.11) if and only if u solves∫

R

∫ T

−T

u∂tϕ− u|D|α∂xϕ+
1
2
u2∂xϕdtdx = 0 (4.16)

for all ϕ ∈ C∞0 ((−T, T )× R).
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Proof. Let us first assume that u ∈ XT
s,ω,b is a solution of (4.11). Then, there

exists a sequence un ∈ ST (R) such that un → u in XT
s,ω,b. Due to (2.32) and

3
4 (α− 1) ≤ α

2 we also have un → u in L∞x (R, L2
t (−T, T )) and for t ∈ [−T, T ]

un(t) = Wα(t)un(0)− 1
2

∫ t

0

Wα(t− t′)∂x(un(t′))2dt′ +R(u, un)(t)

with error term

R(u, un) = un − u+Wα(·)(u(0)− un(0)) + ΦT (u)− ΦT (un)

such that ‖R(u, un)‖L∞x (R,L2
t (−T,T )) → 0 for n→∞ because of (4.10), (2.28)

and (2.32). Now, we integrate against ∂tϕ for a ϕ ∈ C∞0 ((−T, T ) × R) and
get∫

R

∫ T

−T

un∂tϕ−Wα(t)un(0)∂tϕ+
1
2

∫ t

0

Wα(t− t′)∂x(un(t′))2dt′∂tϕdtdx

=
∫

R

∫ T

−T

R(u, un)∂tϕdtdx

The right hand side tends to zero. Integration by parts and the symmetry
of |D|α shows that the left hand side equals∫

R

∫ T

−T

un∂tϕ+
1
2
(un)2∂xϕ

−|D|α∂xϕ

(
Wα(t)un(0)− 1

2

∫ t

0

Wα(t− t′)∂x(un(t′))2dt′
)
dtdx

This expression is equal to∫
R

∫ T

−T

un∂tϕ+
1
2
(un)2∂xϕ− |D|α∂xϕ (un −R(u, un)) dtdx

Now, we notice that |D|α∂xϕ ∈ L1
x(R, L2

t [−T, T ]) because 〈x〉|D|α∂xϕ ∈
L2(R2) which follows from ∂ξFx|D|α∂xϕ ∈ L2(R2). We also have un → u in
L∞x (R, L2

t (−T, T )) as well as (un)2 → u2 with respect to L∞x (R, L1
t (−T, T ))

and R(u, un)→ 0 in L∞x (R, L2
t (−T, T )), such that the above expression tends

to ∫
R

∫ T

−T

u∂tϕ− u|D|α∂xϕ+
1
2
∂xϕu

2 dtdx

Now, we start with a solution u ∈ XT
s,ω,b in the sense of distributions.

By a truncation argument we can show that ϕ(t, x) = ηT (t)Wα(t)ϕ0(x) for
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ηT ∈ C∞0 ((−T, T )), ϕ0 ∈ C∞0 (R) is admissible in (4.16). To verify the
operator equation, we choose a sequence ST (R) 3 un → u in XT

s,ω,b as in the
first part and also define v(t) = Wα(−t)u(t) and vn(t) = Wα(−t)un(t). It is∫

R

∫ T

−T

u∂tϕ− u|D|α∂xϕdtdx

= lim
n→∞

∫
R

∫ T

−T

Wα(t)vn∂tϕ−Wα(t)vn|D|α∂xϕdtdx

Multiple integration by parts shows that this equals

lim
n→∞

∫
R

∫ T

−T

−|D|α∂xWα(t)vnϕ−Wα(t)∂tvnϕ−Wα(t)vn|D|α∂xϕdtdx

= lim
n→∞

∫
R

∫ T

−T

vn∂t(Wα(−t)ϕ) dtdx

=
∫ T

−T

〈v(t), ∂t(Wα(−t)ϕ(t))〉Hsdt

where 〈·, ·〉Hs is the pairing of Hs and H−s. Integration by parts shows∫
R

∫ T

−T

−1
2
u2∂xϕdtdx

= lim
n→∞

∫
R

∫ T

−T

1
2
∂x(un)2ϕdtdx

=− lim
n→∞

∫
R

∫ T

−T

∫ t

0

Wα(−t′)1
2
∂x(un)2dt′∂t(Wα(−t)ϕ) dtdx

and therefore ∫
R

∫ T

−T

−1
2
u2∂xϕdtdx

=
∫ T

−T

〈Wα(−t)ΦT (u)(t), ∂t(Wα(−t)ϕ(t))〉Hsdt

Because u is a solution in the sense of distributions∫ T

−T

〈v(t)−Wα(−t)ΦT (u)(t), ∂t(Wα(−t)ϕ(t))〉Hsdt = 0
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and by the definition of ϕ we conclude that∫ T

−T

η′T (t)〈v(t)−Wα(−t)ΦT (u)(t), ϕ0)〉Hsdt = 0

for all ηT ∈ C∞0 (−T, T ), ϕ0 ∈ C∞0 (R), which shows that

v(t)−Wα(−t)ΦT (u)(t) = v(0)

in Hs due to [Hör83], Theorem 3.1.4 because ΦT (u)(0) = 0 and it follows

u(t) = Wα(t) + ΦT (u)(t), t ∈ [−T, T ]

as desired.

4.2.3 Sharpness of the low frequency condition

In this section we modify the counterexamples of L. Molinet - J.-C. Saut -
N. Tzvetkov [MST01] which imply that the flow map is not C2 without any
low frequency condition in order to prove the sharpness of our choice of ω.
Here, we also include the Benjamin-Ono case (α = 1).

Proof of Theorem 4.2.4. We just give the modifications of Molinet, Saut and
Tzvetkov’s argument. For a more detailed calculation in the case ω = 0 we
refer to the original work2 [MST01]. Define a sequence of initial data via

φ̂N := N (α+ε)( 1
2−ω)χ1 +N

α+ε
2 −sχ2

where
χ1(ξ) = χ 1

2 N−α−ε≤ξ≤N−α−ε , χ2(ξ) = χN≤ξ≤N+N−α−ε

Notice that ‖φN‖H(s,ω) ≤ 2. As shown in [MST01] we have∥∥∥∥∫ t

0

Wα(t− t′)∂x(Wα(t′)φN )2 dt′
∥∥∥∥

Hs

≥ c‖F (t)‖Hs

where F̂ (t)(ξ) is given by

Nα+εξeitξ|ξ|α

Ns+(α+ε)ω

∫
(χ1(ξ1)χ2(ξ − ξ1) + χ2(ξ1)χ1(ξ − ξ1))

eitr(ξ1,ξ) − 1
r(ξ1, ξ)

dξ1

with
r(ξ1, ξ) = ξ1|ξ1|α + (ξ − ξ1)|ξ − ξ1|α − ξ|ξ|α

2notice that our notation slightly differs from [MST01]
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which is −h(ξ1, ξ− ξ1, ξ) for the resonance function h from Lemma 4.2.6. In
the domain of integration we have |r(ξ1, ξ)| ≤ cN−α−εNα = cN−ε. A Taylor
expansion shows that ∣∣∣∣eitr(ξ1,ξ) − 1

r(ξ1, ξ)

∣∣∣∣ ≥ |t| − ct2N−ε

which implies for t > 0

‖F (t)‖Hs ≥ cNNsN−α−εN−α+ε
2 Nα+εN−s−(α+ε)ω

which tends to infinity if 1− α+ε
2 − (α+ ε)ω > 0, which is equivalent to

ω <
1

α+ ε
− 1

2
→ 1

α
− 1

2
(ε→ 0).

This calculation implies that the bilinear expression, which corresponds to
a second derivative at the origin in direction φN , is unbounded as N → ∞,
but on the other hand ‖φN‖H(s,ω) ≤ 2. This contradicts the C2 regularity of
the flow and the bilinear estimate.

4.3 The Benjamin-Ono equation in the peri-
odic case

In this section we consider the periodic case and the phase function φ : Z→
R, φ(ξ) = ξ|ξ|. Here,

W (t) : Hs
0(T)→ Hs

0(T),FW (t)φ(ξ) = eitξ|ξ|Fφ(ξ)

We are interested in the Cauchy problem for the Benjamin-Ono equation

∂tu(t)− |D|∂xu(t) +
1
2
∂xu

2(t) = 0 , t ∈ (−T, T )

u(0) = u0 ∈ Hs
0(T)

(4.17)

where Hs
0(T) := {u : R→ R |u ∈ Hs(T) ,Fu(0) = 0}.

We restrict ourself to initial data with zero mean and remark that the
mean value is a conserved quantity for real valued solutions of (4.17): Assume
that u is a sufficiently smooth solution of (4.17) with u(0) = u0 and Fu0(0) =
0, then

∂tFu(ξ)− iξ|ξ|Fu(ξ) +
i

2
ξFu2(ξ) = 0
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hence, ∂tFu(0) = 0.
Recently, L. Molinet [Mol06] proved a global well-posedness result for

the Benjamin-Ono equation in L2(T). His result includes the analyticity of
the flow map u0 7→ u on balls containing initial data with prescribed mean
value and his approach is based on a gauge transformation (cp. [Tao04]) and
subsequent multi-linear estimates for the transformed problem. In [Mol06] it
is also shown that the low regularity threshold s = 0 is optimal in the sense
that for s < 0 the flow is not C1+α, α > 0 on Hs

0(T).
Moreover, we know that the flow map is not uniformly continuous on

BR(0) ⊂ Hs(T) for s > 0, R > 0, if we permit the initial data to have
arbitrary mean value, see [Mol05]. This is related to the observations from
H. Koch - N. Tzvetkov [KT05b] and L. Molinet - J.-C. Saut - N. Tzvetkov
[MST01] on the real line. However, in contrast to our choice of initial data,
in [MST01] the interaction of two linear waves, one with frequencies near
N and one with frequencies near 1/N serve as a counterexample to the
corresponding bilinear estimates.

Here, we show that it is in fact impossible to prove reasonable (in the
sense of Theorem 4.3.1) bilinear estimates directly, even if one restricts the
spaces to functions with mean zero and in spite of the analyticity of the flow
map shown in [Mol06]. Let ST

0 (T) be the set of all ST (T) functions with zero
mean value.

Theorem 4.3.1. Let s ∈ R, T > 0. There does not exist a normed space
XT with ST

0 (T) ⊂ XT and XT ↪→ C([0, T ],Hs
0(T)), such that

‖W (t)u0‖XT ≤ c‖u0‖Hs(T), u0 ∈ Hs
0(T), (4.18)∥∥∥∥∫ t

0

W (t− t′)∂x(u(t′))2 dt′
∥∥∥∥

XT

≤ c‖u‖2XT , u ∈ ST
0 (T), (4.19)

are valid3.

This result is a statement about the failure of techniques and not a state-
ment about the regularity of the flow. It is in some sense antithetic to the
case of the real line, where A. Ionescu - C.E. Kenig [IK05] proved a bilin-
ear estimate for initial data fulfilling an additional low frequency condition,
compare also Subsection 4.2.1 for the dispersion generalized case.

Remark 4.3.2. We remark without proof that this theorem also holds in the
dispersion generalized case for 1 ≤ α < 2 with a similar proof by using the
Taylor expansion of the phase function φ(ξ) = ξ|ξ|α.

3It is part of the assumptions that the solution to the linear equation and the Duhamel
term are elements of XT
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4.3.1 A Counterexample to bilinear estimates

The result is based on the lemma of this subsection. We construct real
valued initial data with zero mean, such that a four-linear low-low-low-high
interaction of the corresponding linear waves provides a suitable estimate for
the Duhamel term in Hs(T) from below. We will use the following notations.
Let

B(u, v)(t) =
∫ t

0

W (t− t′)∂x(u(t′)v(t′)) dt′

and for initial data ψ we define

I1 = I1(ψ) = W (·)ψ , I2 = I2(ψ) = B(I1(ψ), I1(ψ))
I2,2 = I2,2(ψ) = B(I2(ψ), I2(ψ))

Lemma 4.3.3. For s ∈ R, N ∈ N define

ψN (x) :=

√
2
π

(N−s cos(Nx)− cos(2x) + cos(x))

Then, there exists c > 0 such that for all N ≥ 10 and t > 0 we have

‖I2,2(ψN )(t)‖Hs(T) ≥ N sin2(t)− c. (4.20)

Proof of Lemma 4.3.3. The Fourier transform of ψN is

ψ̂N (k) =


1 , |k| = 1
−1 , |k| = 2
N−s , |k| = N

Since W (−t) is unitary

‖I2,2(t)‖Hs(T) = ‖W (−t)I2,2(t)‖Hs(T) ≥ Ns| ̂W (−t)I2,2(t)(N)|, (4.21)

and we just take into account all interactions which contribute to frequency
N . Since Î2(t)(0) = 0 we have to calculate Î2(t)(k) for |k| = 1, |k| = 2,
|k −N | = 1, |k −N | = 2.

Î2(t)(±1) = ±i2
∫ t

0

e±i(t−t′)(−e±4it′)e∓it′dt′

= ∓i2e±it

∫ t

0

e±2it′dt′

= −e±it(e±2it − 1), (4.22)
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and

Î2(t)(±2) = ±2i
∫ t

0

e±4i(t−t′)e±it′e±it′dt′

= ±2ie±4it

∫ t

0

e∓2it′dt′

= −e±4it(e∓2it − 1). (4.23)

Similarly we get

Î2(t)(N + 1) = 2i(N + 1)
∫ t

0

ei(t−t′)(N+1)2N−seit′N2
eit′dt′

= 2i(N + 1)N−seit(N+1)2
∫ t

0

eit′(N2+1−(N+1)2)dt′

= − (N + 1)
N

N−seit(N+1)2(e−2Nit − 1), (4.24)

and

Î2(t)(N + 2) = 2i(N + 2)
∫ t

0

ei(t−t′)(N+2)2N−seit′N2
(−1)e4it′dt′

=
(N + 2)

2N
N−seit(N+2)2(e−4Nit − 1), (4.25)

as well as

Î2(t)(N − 1) = 2i(N − 1)
∫ t

0

ei(t−t′)(N−1)2N−seit′N2
e−it′dt′

= 2i(N − 1)N−seit(N−1)2
∫ t

0

eit′(N2−1−(N−1)2)dt′

= N−seit(N−1)2(e(2N−2)it − 1), (4.26)

and

Î2(t)(N − 2) = 2i(N − 2)
∫ t

0

ei(t−t′)(N−2)2N−seit′N2
(−1)e−4it′dt′

= −1
2
N−seit(N−2)2(e(4N−8)it − 1). (4.27)

Next, we calculate the contribution to Ns ̂W (−t)I2,2(t)(N) from Î2(t′)(N−1)
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and Î2(t′)(1), where we use the relation −N2 + 1 + (N − 1)2 + 2N − 2 = 0.

J1 := 2
∫ t

0

e−it′N2
iN(−1)eit′(e2it′ − 1)eit′(N−1)2(e(2N−2)it′ − 1)dt′

= −2iN
( ∫ t

0

e2it′ − 1dt′ −
∫ t

0

eit′(2−2N)(e2it′ − 1)dt′
)

= −2iN
(e2it − 1

2i
− t

)
+R1, (4.28)

with the bounded remainder term

R1 := −N
(eit(4−2N) − 1

N − 2
− eit(2−2N) − 1

N − 1

)
.

Similarly, because of −N2 − 1 + (N + 1)2 − 2N = 0 the contribution to
Ns ̂W (−t)I2,2(t)(N) coming from Î2(t′)(N + 1) and Î2(t′)(−1) is

J2 := 2i(N + 1)
∫ t

0

e−it′N2
e−it′(e−2it′ − 1)eit′(N+1)2(e−2Nit′ − 1)dt′

= 2i(N + 1)
(∫ t

0

e−2it′ − 1dt′ −
∫ t

0

e2Nit′(e−2it′ − 1)dt′
)

= 2i(N + 1)
(
e−2it − 1
−2i

− t
)

+R2, (4.29)

with the bounded remainder term

R2 := −(N + 1)
(
e(2N−2)it − 1

N − 1
− e2Nit − 1

N

)
.

Due to−N2+4+(N−2)2+4N−8 = 0 the contribution toNs ̂W (−t)I2,2(t)(N)
coming from Î2(t′)(N − 2) and Î2(t′)(2) amounts to

J3 := iN

∫ t

0

e−it′N2
e4it′(e−2it′ − 1)eit′(N−2)2(e(4N−8)it′ − 1)dt′

= iN

(∫ t

0

e−2it′ − 1dt′ −
∫ t

0

e(−4N+8)Nit′(e−2it′ − 1)dt′
)

= iN

(
e−2it − 1
−2i

− t
)

+R3, (4.30)

with the bounded remainder term

R3 := N

(
e(−4N+6)it − 1

4N − 6
− e(−4N+8)it − 1

4N − 8

)
.
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The last contribution to Ns ̂W (−t)I2,2(t)(N) comes from Î2(t′)(N + 2)
and Î2(t′)(−2). As above, using −N2 − 4 + (N + 2)2 − 4N = 0, we calculate

J4 := −i(N + 2)
∫ t

0

e−it′N2
e−4it′(e2it′ − 1)eit′(N+2)2(e−4Nit′ − 1)dt′

= −i(N + 2)
(∫ t

0

e2it′ − 1dt′ −
∫ t

0

e4Nit′(e2it′ − 1)dt′
)

= −i(N + 2)
(
e2it − 1

2i
− t

)
+R4, (4.31)

with the bounded remainder term

R4 := (N + 2)
(
e(4N+2)it − 1

4N + 2
− e4Nit − 1

4N

)
.

Therefore, summing up all contributions to Ns ̂W (−t)I2,2(t)(N), we arrive
at

‖I2,2(t)‖Hs(T) ≥ |J1 + J2 + J3 + J4| − c (4.32)

With the complex number

z(t) := −i
(
e2it − 1

2i
− t

)
we rewrite

J1 + J2 + J3 + J4 = (6N + 4) Re z(t)

and we observe Re z(t) = sin2(t).

Proof of Theorem 4.3.1. Assume that there exists a normed space XT ↪→
C([0, T ],Hs

0(T)) with the properties (4.18), (4.19) and define uN = I2(ψN ).
Then, an application of the estimate (4.19) shows∥∥∥∥∫ t

0

W (t− t′)∂x(u2
N (t′)) dt′

∥∥∥∥
XT

≤ c‖uN‖2XT

which is bounded by

c‖W (·)ψN‖4XT
≤ c‖ψN‖4Hs(T) ≤ c

due to (4.18). On the other hand, because of the continuous embedding, this
is bounded from below by

c

∥∥∥∥∫ t

0

W (t− t′)∂x(u2
N (t′)) dt′

∥∥∥∥
Hs(T)

= c‖I2,2(t)‖Hs(T) ≥ cN sin2(t)− c

for any N ≥ 10, t ∈ [0, T ], which is a contradiction.
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4.4 Equations with weak dispersion

In this section we consider the non-periodic case and the phase function
φ : R→ R, φ(ξ) = ξ|ξ|α for 0 < α ≤ 1. We study the Cauchy problem

∂tu(t)− |D|α∂xu(t) +
1
2
∂xu

2(t) = 0 , t ∈ (−T, T )

u(0) = u0

(4.33)

for any 0 < α ≤ 1 and our aim is to show a local well-posedness result for
real valued initial data u0 ∈ Hs(R) for certain s below 3

2 by a modification
of the argument from H. Koch - N. Tzvetkov [KT03b].

These equations arise as models for vorticity waves in the coastal zone
[MST01, SV96]. Since the equations are even less dispersive than Benjamin-
Ono or Schrödinger, we expect that iterative methods cannot work because
of the arguments in [MST01, KT05b]. Moreover, there is a loss of deriva-
tives in the Strichartz estimates [KPV91a]. Nevertheless, we show that the
method used in [KT03b] is robust enough to extend to this situation. In the
following, we will only highlight the necessary modifications to the arguments
in [KT03b].

Notice that above s = 3
2 one does not need to exploit the dispersive

structure of these equations; in this range local well-posedness results can be
deduced even for the Burger’s type equations (α = 0) for real valued data,
cp. e.g. the remarks in the introduction of [KPV90].

We expect that the improved technique of C.E. Kenig - K.D. Koenig
[KK03], using additional local smoothing and maximal function estimates
may give better results, since it does so in the case α ≥ 1.

Assumption. For brevity, we denote with Hs(R) the space of real valued
functions in Hs(R) throughout this section.

Theorem 4.4.1. Let 0 < α ≤ 1 and s ≥ s0 > 3
2 −

α
4 . There exists a

non-increasing function T ∗ : (0,∞) → (0,∞), such that for R > 0 and
0 < T ≤ T ∗(R) there exists a continuous map

SR,T : BR = {u0 ∈ Hs0(R) | ‖u0‖Hs0 ≤ R} → C([−T, T ],Hs0(R))

with the properties:

(i) For all u0 ∈ BR we have

SR,T (u0) ∈ V T
s0

:= {u ∈ C([−T, T ],Hs0) | ux ∈ L1([−T, T ], L∞(R)}
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and u = SR,T (u0) is the unique solution in V T
s0

of the Cauchy problem
(4.33) in the sense that

u(t) = Wα(t)u0 −
1
2

∫ t

0

Wα(t− t′)∂xu
2(t′)dt′, t ∈ (−T, T ) (4.34)

(ii) For every s ≥ s0 we have SR,T (BR ∩Hs(R)) ⊂ C([−T, T ],Hs(R)) and

SR,T |BR∩Hs(R): BR ∩Hs(R)→ C
(
[−T, T ],Hs(R)

)
is continuous.

Remark 4.4.2. The theorem extends to corresponding equations with a more
general phase function φ : R→ R, φ(−ξ) = −φ(ξ), which is smooth enough,
grows at most polynomially and yields the same Strichartz estimates (cf.
[KPV91a]) as in Theorem 2.1.3. As the proof shows, this is the only point
where the exact structure of φ comes in.

4.4.1 Review of a refined energy method

The next proposition follows by a parabolic approximation argument, see
e.g. [Sau79], or by the abstract method of T. Kato [Kat75].

Proposition 4.4.3. Let s ≥ 3. To every u0 ∈ Hs(R), there exists T > 0
(such that T is a non-increasing function of ‖u0‖Hs) and a unique u ∈
C([−T, T ],Hs(R)) ∩ C1((−T, T ),H1(R)) which solves (4.33).

The energy estimate together with the commutator estimates [KP88] give

Proposition 4.4.4. Let u ∈ C([−T, T ],H3(R) ∩Hs ∩C1((−T, T ),H1(R)))
be a solution to (4.33). Then, for s ≥ 0

‖u‖L∞T Hs ≤ ‖u0‖Hse
c‖ux‖L1

T
L∞x (4.35)

Moreover, for u, v ∈ V T
1 which solve the integral equation (4.34) we have the

bound

‖u− v‖L∞T L2
x
≤ c‖u(0)− v(0)‖L2e

c‖ux‖L1
T

L∞x
+c‖vx‖L1

T
L∞x (4.36)

The proof for smooth solutions may be found in [KPV91b] and [KT03b],
and under the more general hypothesis the estimate (4.35) may be shown in
the same way. For (4.36) we use the argument as in the proof of (A.6).

Now, we prove that an a priori bound for ‖ux‖L1
T L∞x

for solutions u de-
termines a lower bound for the time of existence. This allows us to find a
common time interval for an approximating sequence of solutions, which we
need to establish the existence part of Theorem 4.4.1.
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Corollary 4.4.5. Let s ≥ 3. Suppose there exist C > 0 and T ∗ > 0, such
that for every solution u ∈ C([−T, T ],Hs(R)) ∩ C1((−T, T ),H1(R)) with
T ≤ T ∗,

‖ux‖L1
T L∞x

≤ C. (4.37)

Then, to every u0 ∈ Hs the maximal solution exists at least up to time T ∗.

Proof. Let u0 ∈ Hs. Define

T ′ = sup{T > 0 | ∃ solution u ∈ C([−T, T ],Hs(R))}.

From Proposition 4.4.3 we have T ′ > 0. Suppose T ′ < T ∗. By (4.35) and
(4.37) there exists C > 0, such that for all |t| ≤ T ′ we have ‖u(t)‖Hs ≤
C. Let T be the non-increasing function from Proposition 4.4.3, and set
ε = 1

2 min{T (C), T ′} > 0. Thus we can re-apply Proposition 4.4.3 with
ũ0 = u(±T ′ ∓ ε), which contradicts the definition of T ′.

Now we use the argument from H. Koch - N. Tzvetkov [KT03b] to prove
Theorem 4.4.1 and we focus on the a priori estimate. The next proposition
generalizes the nonlinear estimate from [KT03b], Theorem 3.1.

Proposition 4.4.6. Let 0 < T ≤ 1, σ > 1 and 0 < α ≤ 1. Let (p, q) 6=
(4,∞) be an admissible pair. Then, for every solution u ∈ C([−T, T ],H3(R))∩
C1((−T, T ),H1(R)) of (4.33) we have

‖Jσu‖Lp
T Lq

x
≤ c

(
1 + ‖Jσu‖L∞T L2

x

) (
1 + ‖ux‖2L1

T L∞x

)
‖Jσ+ 2−α

p u‖L∞T L2
x

(4.38)

To prove this estimate we first apply the general Strichartz estimates
(2.2), (2.3) from Theorem 2.1.3 (cp. [KPV91b]) to solutions to the linearized
equation

wt − |D|αwx + V wx = F

with supp ŵ ⊂ [−λ, λ] to obtain

‖J
α−1

p w‖Lp
T Lq

x
≤ cλ

1
p

(
‖w‖L∞T L2

x
+ ‖JσV ‖L∞T L2

x
‖w‖L∞T L2

x
+ ‖F‖L1

T L2
x

)
(4.39)

which replaces [KT03b], Lemma 2.1 and then we proceed as in the proof of
[KT03b], Theorem 3.1.

Next, we establish the a priori bound for smooth solutions.

Proposition 4.4.7. Let s > 6−α
4 and 0 < α ≤ 1 and 0 < T ≤ 1. There

exists C > 0, ε > 0, such that

‖ux‖L1
T L∞x

≤ C (4.40)

‖u‖L∞T Hs ≤ c‖u0‖Hs (4.41)
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for solutions u ∈ C([−T, T ],H3(R))∩C1((−T, T ),H1(R)) with ‖u0‖Hs ≤ ε.

Proof. Let s > 6−α
4 and σ := s− 2−α

4 > 1. Using the Sobolev embedding in
x and Hölder in t, we find an admissible pair (p, q), such that

‖ux‖L1
T L∞x

≤ c‖Jσu‖Lp
T Lq

x
.

Now we use (4.38) and obtain

‖ux‖L1
T L∞x

≤ c
(
1 + ‖Jσu‖L∞T L2

x

) (
1 + ‖ux‖2L1

T L∞x

)
‖Jσ+ 2−α

p u‖L∞T L2
x

and, because p > 4, the energy estimate (4.35) yields

‖ux‖L1
T L∞x

≤ c
(
1 + ‖Jσu‖L∞T L2

x

) (
1 + ‖ux‖2L1

T L∞x

)
‖u0‖Hse

c‖ux‖L1
T

L∞x .

We set N(T ) := ‖ux‖L1
T L∞x

+‖Jσu‖L∞T L2
x
, T ∈ [0, 1]. We proved, if ‖u0‖Hs ≤

ε, that
N(T ) ≤ εc(1 +N(T ))3ecN(T ), (4.42)

with an appropriate c > 0. Consider the continuous function

F : R→ R, F (x) = εc(1 + x)3ecx − x.

We observe that F (x) > 0 for x ∈ [0, ε], F (1) < 0 if ε is small enough and
N(0) ≤ ε.
Assume N(T ) ≥ 1. The continuity of F and N imply the existence of
a 0 < T ′ ≤ T with F (N(T ′)) < 0, which contradicts (4.42). Therefore
N(T ) ≤ 1 must hold, and in particular (4.40) is proved. Inserting this
into the energy estimate (4.35) also yields the second claim (4.41) under the
hypothesis ‖u0‖Hs ≤ ε.

We now sketch the proof of Theorem 4.4.1. The existence of solutions in
L∞([−T, T ],Hs(R)) to small initial data follows from Propositions 4.4.7 and
4.4.3 by a compactness argument. Then, we remove the smallness assump-
tion, using the following scaling consideration: Let u be a solution to problem
(4.33) with initial datum u0. Then, for each λ > 0, ũ(t, x) = λαu(λ1+αt, λx)
is a solution with initial datum ũ0(x) = λαu0(λx). Due to (4.36), solutions
with ux ∈ L1

TL
∞
x are unique in this class. The persistence property and con-

tinuous dependence on the initial data follow from a version of the energy
inequality ([KT03b], Lemma 3.6) in exactly the same way as in [KT03b].
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4.5 Notes and References

There are many contributions to the well-posedness theory for case α = 2,
the Korteweg de Vries equation. The works of J. Bourgain [Bou93] and
C.E. Kenig - G. Ponce - L. Vega [KPV93c, KPV96] as well as J. Colliander
- M. Keel - G. Staffilani - H. Takaoka - T. Tao [CKS+03a] showed that
this problem is locally [globally] well-posed with locally Lipschitz continuous
(even analytic) dependence on the [real valued] initial data u0 ∈ Hs(R)
for s > −3/4. The local result is established by the contraction mapping
principle. Moreover, M. Christ - J. Colliander - T. Tao [CCT03] proved the
failure of uniformly continuous dependence (on balls) below −3/4 and proved
local well-posedness for s = −3/4.

In the case α = 1 of the Benjamin-Ono equation the Cauchy problem
is differently behaved with respect to the smoothness properties of the flow
map. In [KT05b] H. Koch - N. Tzvetkov prove that the flow map is not uni-
formly continuous on balls in Hs(R) for s > 0 (this is related to [MST01]).
On the other hand, the problem is globally well-posed with continuous de-
pendence on the real valued data in Hs(R) for any s ≥ 0 due to a recent
result of A.D. Ionescu - C.E. Kenig [IK05]. This is established by combin-
ing the gauge transformation introduced in the work of T. Tao [Tao04] with
a new bilinear estimate. For some previous results we refer the reader to
[KT03b, KK03, Tao04, BP05].

The Cauchy problems in the cases 1 < α < 2 share a property with
the Benjamin-Ono case, namely that it is not possible to prove reasonable
bilinear estimates in order to perform the Picard iteration in Hs(R) due to
counterexamples found by L. Molinet - J.-C. Saut - N. Tzvetkov [MST01].
Therefore, we call these equations to be of Benjamin-Ono type. Nevertheless,
there are well-posedness results in Hs(R) for real valued initial data due to
C.E. Kenig - G. Ponce - L. Vega [KPV91b] (s ≥ (9 − 3α)/4), improved by
C.E. Kenig - K. Koenig [KK03] (s > 3/2 − 3α/8). The proofs are based
on local smoothing, maximal function, Strichartz and energy type estimates.
In [CKS03b] J. Colliander - C.E. Kenig - G. Staffilani proved a local well-
posedness result for s ≥ α/2 by a contraction argument for initial data in a
weighted Sobolev space in the range 1 < α < 2.

That a low frequency condition might be useful was strongly motivated
by the examples found by L. Molinet - J.-C. Saut - N. Tzvetkov [MST01] and
by H. Koch - N. Tzvetkov [KT05b]. K. Kato [Kat04] indicated that in the
BO case a homogeneous low frequency weight might lead to well-posedness
and in the range 1 < α < 2 L. Molinet - F. Ribaud [MR06] showed well-
posedness for s > 1+α

4 (local) and s ≥ α/2 (global) with ω ≥ 1+3α
8α in

spaces similar to Xs,ω,b. A low frequency condition of a similar type was also
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used by A.D. Ionescu - C.E. Kenig [IK05] in their main bilinear estimate
for the BO case α = 1, which they combined successfully with a gauge
transformation. We also remark that Mizohata’s decay condition for certain
Schrödinger equations is related, see e.g. Chapter VII of [Miz85].

The results remarked in Section 4.4 are improvements to previous results
of J.-C. Saut [Sau79]. The arguments are a combination of two main ingredi-
ents, namely the general Strichartz estimates from [KPV91b] and the refined
energy method of H. Koch - N. Tzvetkov [KT03b].

The borderline case α = 0, which is not discussed here, corresponds to
Burger’s equation, which is a non dispersive model for shock waves, see e.g.
L.C. Evans [Eva98], Section 3.4.

Moreover, in some range of α it is possible to construct weak solutions in
L2(R) and H

α
2 (R) by compactness arguments, see e.g. J. Ginibre - G. Velo

[GV91] for the precise results and further references.
For properties of solitary waves for the cases 1 ≤ α ≤ 2 see [Wei87, BL97].



Appendix A

Auxiliary estimates

A.1 A Gagliardo-Nirenberg estimate in the pe-
riodic case

Lemma A.1.1. Let f ∈ H1(T). Then,

‖f‖L6(T) ≤
1

3
√

2π

(
‖f‖

2
3
L2(T)‖f

′‖
1
3
L2(T) +

1√
2π

∫ 2π

0

|f | dx
)

(A.1)

Proof. Let f : R → C be 2π-periodic. By approximation it suffices to con-
sider f which are continuously differentiable.

1. Assume that there exists ξ ∈ [0, 2π] such that f(ξ) = 0. By a transla-
tion x 7→ x+ ξ we may assume that ξ = 0. Define

g(x) =

{
f(x) , x ∈ [0, 2π]
0 , x ∈ R \ [0, 2π]

Then,

g′(x) =

{
f ′(x) , x ∈ [0, 2π]
0 , x ∈ R \ [0, 2π]

is the weak derivative and we apply the Gagliardo-Nirenberg inequality on
R with the optimal constant, see [SN41, Wei83]:

‖g‖L6(R) ≤
1

3
√

2π
‖g‖

2
3
L2(R)‖g

′‖
1
3
L2(R)

and it follows
‖f‖L6(T) ≤

1
3
√

2π
‖f‖

2
3
L2(T)‖f

′‖
1
3
L2(T) (A.2)
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which of course also implies (A.1).
2. Assume that f(x) 6= 0 for all x ∈ [0, 2π] and define

f̃(x) = |f(x)| − 1
2π

∫ 2π

0

|f(y)|dy

Now, f̃ is continuously differentiable with

f̃ ′ =
Re(f) Re(f ′) + Im(f) Im(f ′)

|f |

such that |f̃ ′| ≤ |f ′| and there exists ξ ∈ [0, 2π] such that f̃(ξ) = 0. By (A.2)
it follows

‖|f | − 1
2π

∫ 2π

0

|f(y)|dy‖L6(T)

≤ 1
3
√

2π
‖|f | − 1

2π

∫ 2π

0

|f(y)|dy‖
2
3
L2(T)‖f̃

′‖
1
3
L2(T)

≤ 1
3
√

2π
‖f‖

2
3
L2(T)‖f

′‖
1
3
L2(T)

which implies (A.1).

A.2 An estimate involving exponentials

We prove that for all s ≥ 0 there exists c > 0, such that for f, g, h ∈ Hs(T)
we have∥∥∥(e±iI(f) − e±iI(g))h

∥∥∥
Hs
≤ cec‖f‖2Hs+c‖g‖2Hs (‖f‖Hs +‖g‖Hs)‖f−g‖Hs‖h‖Hs

To simplify the notation we only consider the plus sign since the same ar-
gument works with the minus sign. Moreover, it suffices to consider smooth
f, g, h and we start with the case s > 0. We write

(eiI(f) − eiI(g))h = ih(I(f)− I(g))
∞∑

k=1

1
k!

k−1∑
j=0

(iI(f))j(iI(g))k−1−j (A.3)

Let s′ = max{s, 1
2 + ε} for some 0 < ε < 1

2 to be chosen later. Then, the Hs

norm of the expression (A.3) is bounded by

‖h‖Hs‖I(f)− I(g)‖Hs′

∞∑
k=1

1
k!

k−1∑
j=0

(c‖I(f)‖Hs′ )j(c‖I(g)‖Hs′ )k−1−j
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where we used the Sobolev multiplication law from Corollary 1.1.12. Now,
we observe that

∞∑
k=1

1
k!

k−1∑
j=0

(c‖I(f)‖Hs′ )j(c‖I(g)‖Hs′ )k−1−j ≤ ec‖I(f)‖
Hs′+c‖I(g)‖

Hs′

Moreover,
‖I(f)‖Hs′ ≤ ‖|f |2‖Hs′−1 + ‖f‖2L2

In the case where s ≥ 1
2 + ε it follows ‖|f |2‖Hs′−1 ≤ ‖|f |2‖Hs ≤ c‖f‖2Hs and

otherwise, with p = 1
1−ε

‖|f |2‖
H− 1

2 +ε ≤ c‖|f |2‖Lp ≤ c‖f‖2L2p ≤ c‖f‖2
H

ε
2

by Sobolev embeddings from Proposition 1.1.11. Now, choosing ε ≤ 2s we
have

‖I(f)‖Hs′ ≤ c‖f‖2Hs

Similarly, we get

‖I(f)− I(g)‖Hs′ ≤ c(‖f‖Hs + ‖g‖Hs)‖f − g‖Hs (A.4)

and the claim follows for s > 0. Finally, for s = 0∥∥∥(eiI(f) − eiI(g))h
∥∥∥

L2
≤

∥∥∥eiI(f) − eiI(g)
∥∥∥

L∞
‖h‖L2

≤ ‖I(f)− I(g)‖L∞ ‖h‖L2

≤ 2(‖f‖L2 + ‖g‖L2)‖f − g‖L2‖h‖L2

A.3 An estimate for ψ

Lemma A.3.1. Let ψ be defined by (3.7). Then,

|ψ(u)(t)− ψ(v)(t)| ≤c
(
1 + ‖u(t)‖

H
1
2

+ ‖v(t)‖
H

1
2

)3‖(u− v)(t)‖
H

1
2

+2(‖u(0)‖3L2 + ‖v(0)‖3L2)‖u(0)− v(0)‖L2

(A.5)

Proof. We suppress the t dependence and just write u = u(t), v = v(t).∣∣∣∣∫ 2π

0

(Im(uxu)− Im(vxv))(x) dx
∣∣∣∣ ≤ |(u− v, ux)L2 |+ |(v, ux − vx)L2 |
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Since J
1
2
x is formally self-adjoint with respect to (·, ·)L2 we get

|(u− v, ux)L2 |+ |(v, ux − vx)L2 |

=
∣∣∣(J 1

2
x (u− v), J−

1
2

x ∂xu
)

L2

∣∣∣ +
∣∣∣(J 1

2
x v, J

− 1
2

x ∂x(u− v)
)

L2

∣∣∣
≤c(‖u‖

H
1
2

+ ‖v‖
H

1
2
)‖u− v‖

H
1
2

Moreover,
∣∣∣∫ 2π

0
(|u|4 − |v|4)(x) dx

∣∣∣ is bounded by

∫ 2π

0

||u| − |v|| (|u|3 + |u|2|v|+ |u||v|2 + |v|3)(x) dx

≤2(‖u‖3L6 + ‖v‖3L6)‖u− v‖L2

Finally,∣∣‖u(0)‖4L2 − ‖v(0)‖4L2

∣∣ ≤ 2(‖u(0)‖3L2 + ‖v(0)‖3L2)‖u(0)− v(0)‖L2

These three estimates together with the Sobolev embedding H
1
3 ↪→ L6 prove

(A.5).

A.4 Energy estimate for the DNLS

Proposition A.4.1. For all

u, v ∈ C([−T, T ],H1(T)) such that ux, vx ∈ L1([−T, T ], L∞(T))

which solve the DNLS in integral form (3.3) it holds

‖u(t)− v(t)‖L2(T) ≤ el(u,v)‖u(0)− v(0)‖L2(T) (A.6)

where

l(u, v) = c(‖ux‖L1
T L∞ + ‖vx‖L1

T L∞)(‖u‖L∞T L∞ + ‖v‖L∞T L∞)

In particular, solutions are unique in this class.

Proof. We observe for ũ(t) = W (−t)u(t), ṽ(t) = W (−t)v(t) that ũ, ṽ ∈
C1((−T, T ), L2) and

∂t(ũ(t)− ṽ(t)) = W (−t)∂x(|u|2u)(t)−W (−t)∂x(|v|2v)(t)
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such that

d
dt
‖u(t)− v(t)‖2L2(T) =

d
dt
‖ũ(t)− ṽ(t)‖2L2(T)

= 2Re
∫ 2π

0

W (−t)∂x

(
|u|2u− |v|2v

)
W (−t)(u− v)dx

= 2Re
∫ 2π

0

∂x

(
|u|2u− |v|2v

)
(u− v)dx

Now, we use

|u|2u− |v|2v = (|u|2 + |v|2)(u− v) + uv(u− v)

and obtain

d
dt
‖u(t)− v(t)‖2L2(T) =2Re

∫ 2π

0

∂x

(
(|u|2 + |v|2)(u− v)

)
(u− v)dx

+ 2 Re
∫ 2π

0

∂x (uv(u− v)) (u− v)dx

=
∫ 2π

0

∂x(|u|2 + |v|2)|u− v|2dx

+ Re
∫ 2π

0

∂x(uv)(u− v)2dx

using integration by parts. Then,

d
dt
‖u(t)− v(t)‖2L2

≤2(‖ux(t)‖L∞ + ‖vx(t)‖L∞)(‖u(t)‖L∞ + ‖v(t)‖L∞)‖u(t)− v(t)‖2L2

and Gronwall’s inequality proves

‖u(t)−v(t)‖2L2 ≤ e
2(‖ux‖L1

T
L∞+‖vx‖L1

T
L∞ )(‖u‖L∞

T
L∞+‖v‖L∞

T
L∞ )‖u(0)−v(0)‖2L2

A.5 Conservation laws for the DNLS

The results for the (DNLS) in this section are well-known in the case of the
real line (cp. [CH98], Proposition 6.1.1, appendix of [HO94], or [KN78]) and
formally everything transfers to the periodic setting. The results also follow
from [TF81]. Nevertheless, we provide them here for completeness.
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Lemma A.5.1. If

u ∈ C([−T, T ],H2(T)) ∩ C1([−T, T ], L2(T))

is a solution of (3.1), (3.6) or (3.2), we have for t ∈ (−T, T )

d
dt
‖u(t)‖L2(T) = 0

Proof. One easily shows that

d
dt
‖u(t)‖2L2(T) = 2Re

∫ 2π

0

uN(u)(t) dx

for N(u) = ∂x(|u|2u) or N(u) = −u2∂xu+ i
2 |u|

4u− iµ(u)|u|2u+ iψ(u)u, or
N(u) = 2(|u|2 − 1

2π

∫ 2π

0
|u|2dx)∂xu+ u2∂xu, respectively. Partial integration

yields

Re
∫ 2π

0

u∂x(|u|2u) dx = 0

and

Re
∫ 2π

0

uu2∂xu dx = 0

Obviously, the other terms also vanish.

Lemma A.5.2. If

u ∈ C([−T, T ],H3(T)) ∩ C1([−T, T ],H1(T))

is a solution of (3.1), we have for t ∈ (−T, T )

d
dt

(
‖ux(t)‖2L2(T) +

3
2

Im
∫ 2π

0

|u|2uux(t) dx+
1
2
‖u(t)‖6L6(T)

)
= 0

Proof. Firstly, using (3.1) we verify

d
dt
‖ux‖2L2 = 2Re

∫ 2π

0

(|u|2u)xxux dx (A.7)

Secondly, we again exploit (3.1) and carry out all the differentiations

d
dt

Im
∫ 2π

0

|u|2uux dx = Im
∫ 2π

0

(|u|2u)tux dx+ Im
∫ 2π

0

|u|2uutx dx

= 4Re
∫ 2π

0

|u|2uxuxx dx+ 4 Im
∫ 2π

0

u2
xu

2|u|2 dx (A.8)
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Thirdly,

d
dt
‖u‖6L6 = −6 Im

∫ 2π

0

|u|4uuxx dx+ 6 Re
∫ 2π

0

|u|4u(|u|2u)x dx

and

Re
∫ 2π

0

|u|4u(|u|2u)x dx =
3
8

∫ 2π

0

(|u|8)x dx = 0

Moreover, we integrate by parts and obtain

d
dt
‖u‖6L6 = −12 Im

∫ 2π

0

|u|2u2u2
x dx (A.9)

Now, combining (A.7), (A.8) and (A.9) and integrating by parts we get

d
dt

(
‖u‖2L2 +

3
2

Im
∫ 2π

0

|u|2uux(t) dx+
1
2
‖u(t)‖6L6(T)

)
=6Re

∫ 2π

0

|u|2uxuxx dx− 2 Re
∫ 2π

0

(|u|2u)xuxx dx

=2Re
∫ 2π

0

|u|2uxuxx dx− 2 Re
∫ 2π

0

u2uxuxx dx = 0

and the conservation law is proved.
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Linéaire, 10(3):255–288, 1993.

[KPV93c] C.E. Kenig, G. Ponce, and L. Vega. Well-posedness and scatter-
ing results for the generalized Korteweg-de Vries equation via the
contraction principle. Comm. Pure Appl. Math., 46(4):527–620,
1993.

[KPV96] C.E. Kenig, G. Ponce, and L. Vega. A bilinear estimate with ap-
plications to the KdV equation. J. Amer. Math. Soc., 9(2):573–
603, 1996.

[KPV01] C.E. Kenig, G. Ponce, and L. Vega. On the ill-posedness of some
canonical dispersive equations. Duke Math. J., 106(3):617–633,
2001.

[KT98] M. Keel and T. Tao. Endpoint strichartz estimates. Am. J.
Math., 120(5):955–980, 1998.

[KT03a] T. Kappeler and P. Topalov. Global Well-Posedness of KdV
in H−1(T,R). Preprint Series No. 12-2003, Institut für Mathe-
matik, Universität Zürich, 2003.
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