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Chapter 1

Introduction

More and more data is collected everywhere and sizes of data sets available
for knowledge discovery increase steadily. Currently, standard data sets con-
tain several thousands of examples [Murphy and Aha, 1994], while data mining
problems with sizes of 80 million examples have been described in the literature
[Neiling and Lenz, 2004]. Furthermore, the world’s largest data warehouse in
2005 has been reported to have a size of 100 TB [Winter Corporation, 2005]
and technologies like the Grid [Foster and Kesselman, 2004] propose a massive
increase of data sizes in the near future.

From the data mining perspective, on the one hand this development is good,
because learning with high-dimensional data and complex dependencies needs a
large number of examples to obtain accurate results. On the other hand, there
are several learning problems which cannot be thoroughly solved by simply
applying an off-the-shelf standard solution. A main problem is the fact that
there are several other performance criteria for a knowledge discovery system
than predictive accuracy [Giraud-Carrier, 1998], which is usually the main point
of concern when evaluating a machine learning algorithm. A large part of the
problem is due to the fact, that currently databases and knowledge discovery
systems are meant to operate with less and less costly human interaction.

The handling of data in modern databases is being more and more auto-
mated, starting from data input over data analysis up to automatically reacting
to new data. For data input, it is seldom the case that a well-trained human
operator enters the data into the system. Usually data is entered automatically,
for example by scanning incoming and outgoing deliveries in a goods manage-
ment system, monitoring a patient in an intensive care unit, handling incoming
emails or web server requests or taking orders in an online shop. While this
reduces the risk of human errors such as typos (6.000 instead of 6, 000) or errors
when copying the data, it increases the risk of systematic errors that possibly
go undiscovered over a long period of time, because there is too much data for
a proper validation or because the system is used in a situation that was not
thought of at the time it was designed. For example, the intensive care patient
might move around, causing a shift in the ECG readings or some sensor may
give incorrect readings under special circumstances. When one is not looking
for such problematic data instances, because one does not know that these thing
can happen in the first place, it is problematic to discover, explain and correct
these errors later.

11



12 CHAPTER 1. INTRODUCTION

Data analysis and reacting to incoming data is usually a domain of human
experts. However, in several applications this is being automatised as well. For
example, in an intensive care unit doctors and nurses cannot monitor a patient
all the time, because there are simply too many patients. Instead, they rely on
monitoring systems to analyze the state of the patient and give an alarm if a
critical condition arises. Similarly, in credit card systems, warehouses, industrial
processes management or online stores there are simply too much decisions to
be made, decisions are too time critical or involve too much pieces of data to rely
on a human. Nevertheless, one is still interested in checking the decisions made
and being able to give guarantees about the systems performance. For example,
a system used in medical applications should be guaranteed to correctly identify
and react to well-known life threatening situations.

Psychology has long since mapped out the limits of the human capabil-
ity to work with large masses of complex data and several of the discovered
human limits are surprisingly small. Using a meta-analysis of several psycho-
logical experiments designed to investigate the human capability of information
processing, Miller [Miller, 1956] has established the fact that humans can simul-
taneously deal with only about seven (plus or minus two) cognitive entities. The
cognitive entities can of course be highly aggregated and complex and should
not be confused with simple observations or attributes used to represent data in
typical machine learning applications. For example, a medical practitioner may
subsume a whole set of symptoms, measures of vital signs, visual information
and theoretical knowledge under the name of one illness and only reason with
this description. However, once cognitive entities cannot be combined into a
more abstract concept, the bound of seven plus or minus two still holds. It
has also been found that humans are seriously limited in estimating the degree
of relatedness of more than two variables [Jennings et al., 1982]. An optimal
solution of a high-dimensional, large-scale learning task, however, may lead to a
very large level of complexity in the optimal solution and in this case, humans
can only reason in terms of abstraction, approximation or splitting up problems
into independent parts in order to reduce complexity.

This thesis deals with the problem of interpretability of classification mod-
els. Interpretability is an important, yet often ignored criterion when applying
machine learning algorithms to real-world tasks. In particular, it deals not only
with the question how a learning task can be solved in an interpretable way –
which is a very subjective question – but also in how far the often conflicting
goals of accuracy and interpretability can be integrated into a single framework.
In order to lay the ground for the approach taken here, we first have to discuss
the concept of interpretability.

1.1 Interpretability

“To understand”, in the sense it is used here, is defined as “to grasp the mean-
ing of” something or “to grasp the reasonableness of” someone or something
[Merriam Webster, 2004]. In the formal logic sense, an interpretation is a map-
ping of a formal construct to the entities and their relations it represents. In
this sense, someone can be said to understand a formal construct, if he can
relate it to the corresponding real-world entities and propositions and reason
about the implications. It is important to distinguish the understandability of
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a model from the understandability of why the model is true or how the model
was induced from data, which would by the question of the validity of the model
and the understandability of the learning algorithm. For example, the sentence
“rhinoceroses can fly” is very easy to understand, as it is easy to relate its words
to the properties of certain wild animals (Figure 1.1) and one can easily reason
about its implications to, say, aircraft safety, while hardly somebody will hold
the sentence for true and it is hard to see how somebody could come up with
such a proposition.

Figure 1.1: Flying Rhinoceros

Interpretability is hard to formalize, as it is a very subjective concept. While
one person likes to see his data as plotted in various shapes and colors, another
one may better understand a concise textual description of the important prop-
erties of the data. One person may like a formal model of the data while the
other better understands with single, representative examples. Some person
may be more patient when looking at various different plots and properties of
the data, carrying on the inspection of the data where others already have given
up. Finally, different users have different levels of education and exposure to
concepts such as box plots, vector spaces, probability distributions and formal
logic, making such formulations more accessible to them.

This explains why the problem of interpretability, important as it is, has
received only little attention in the field of machine learning. Most work in this
direction either states that one hypothesis language is “naturally” more under-
standable than another (e.g. because it can easily be translated into natural
language sentences), or give empirical evidence by letting domain experts judge
the understandability of hypotheses. But as the access to experts is usually
very limited and their time expensive, the empirical evidence is mostly not too
convincing. Often, a statement about interpretability is only available from a
single expert, who has been involved in the project from the start, which can
hardly be seen as convincing evidence.

1.1.1 Interpretability as Part of the Data Mining Process

The important point about interpretability is to view data mining as a process
and not only as the application of a learning algorithm. Data mining is an iter-
ative, interactive process that contains steps such as understanding the domain
the data comes from, understanding the data itself and preparing the data be-
fore a learning algorithm can be applied. After the model has been found, it has
to be evaluated, the results have to be reported and possibly the data mining
chain has to be deployed for practical use. These steps have been formalized in
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the CRISP data mining process model [Chapman et al., 1999], see Figure 1.2.
The single data mining steps are interconnected with each other and one usually
has to return to previous steps from time to time, for example when analyzing
the model shows that some important information from the application domain
is missing in the data.

Figure 1.2: The CRISP Data Mining Process Model

Obviously, a successful data mining process needs the cooperation of both
data miners and domain experts. This practical insight has been theoreti-
cally backed up by the No Free Lunch Theorems [Wolpert and Macready, 1995,
Wolpert and Macready, 1997], which state that on the average over all problem
instances over a given examples space, all learning algorithms perform equally
well. It follows the only chance to get better than random performance in learn-
ing lies in finding an adequate representation, such that the important structure
behind the data can be found by the learner at hand. To define which structure
found in the data is or is not meaningful, one needs the domain expert and to
reason about the meaning of structures found by a learning algorithm, these
structures have to be presented in an interpretable way.

1.1.2 Interpretability Heuristics

Despite all the problems defining interpretability, there are some heuristics
which seem to work in practice and can be used as a guideline to interpretability.

The first heuristic is to use a small number of features and parameters.
Following the afore mentioned results from psychology, the number of features
and parameters used in a model is a heuristic measure of complexity, if one
assumes that every parameter and feature corresponds to one cognitive entity
to be reasoned with when thinking about the model. While this assumption is
not strictly true, as the user may understand even a high number of features if he
can relate the feature values to existing mental concepts and prior knowledge
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(e. g., a doctor explaining a large number of symptoms by one disease), this
heuristic has often been used in practice. For example, in learning in logic, the
number of variables and constants in a formula or set of formulas, the depth of
the formula, its structure and the number of formulas can be used to define a
measure of model complexity [Sommer, 1996]. For decision trees, the number
of nodes is the number of tests that form up the decision boundaries while the
depth of the tree is the maximum number of tests that have to be made for a
single example to be classified. While it is not clear how big a tree may become
to be still called understandable, it is obvious that the smaller a tree is, the more
understandable it will be. On the other hand, it has also been reported that in
the presence of prior knowledge experts said that shorter trees are “unnatural”
and do not “tell enough”, despite the fact that the measured accuracy of the
trees was significantly higher than the experts accuracy [Bratko, 1996].

The second heuristic is that splitting up a problem into several independent
sub-problems reduces the complexity and may still give reasonable results, even
if the sub-problems are actually not completely independent. In machine learn-
ing, the Naive Bayes algorithm, which treats all features as independent, has
been reported to give good results in cases like text categorization, where the
features – occurrences of single words – are actually not independent.

While the first two heuristics are more directed at describing the complexity
of the model independent of the user, the following two approaches take the prior
knowledge of the user into account. One of these approaches is to use examples
and basic features instead of formal models and constructed features to explain
the learning result to the user. The user can often explain single examples
very well, because there is usually more information to a real-world case than
what is encoded in the representation of the examples, either because someone
forgot to include this data in the examples representation or because the data
is too unstructured to work with. For example, in information retrieval a text
is usually represented as a vector of word counts, because it is more convenient,
while of course reading the text gives much more information about its content.
Also, domain experts often have very detailed procedural knowledge, that is
they know how to interpret and react to certain situations, but this knowledge
is not explicit, they can hardly put this knowledge into words (as a practical
example, even an experienced driver can hardly set up a complete model for how
to drive a car. Instead, the driving instructor will correct the students’ actions
in specific situations, letting the student build up his own model). A formal
model that characterizes sets of examples, e.g. a linear decision rule, cannot
be checked using implicit, procedural knowledge and is thus less interpretable
than prototypical examples (examples, to which many examples are similar) and
discriminating examples (examples, which are very similar to examples from a
different class). Similarly, basic features have usually been chosen, because they
characterize a specific, important, and well-defined property in the application
domain. The domain expert can reason about this property, while mathematical
combination may not make sense in the application (e.g. constructed features
like 0.5∗blood pressure−1.2∗heart rate). Of course, other constructed features
(distance per time, length times width) may be perfectly sensible.

The final heuristic seems to be very trivial, but its importance is usually very
much underestimated. The heuristic says that people tend to find those things
understandable, that they already know. Hence, if a user has much experience
with a specific learning algorithm, it may be favorable to keep using this learner,
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regardless of its accuracy. Even if this learning algorithm is not optimal for the
problem at hand, the user may have much experience reasoning with the results
and working around the shortcomings of the method. For example, if the users
preferred method is susceptible to outliers in the data, the user may have de-
veloped a high skill in using his domain knowledge for detecting spurious data
points and odd algorithmic results. In this case, applying a theoretically more
convenient learning method will lead to worse results, if a non-intuitive hypoth-
esis language hinders the user from using his domain knowledge to improve the
results. Hence, the decision to switch to a different learning algorithm should
not only take the increase in algorithmic accuracy into account, but also the
possible loss of additional information the domain expert may offer to analyze
and improve the results. There are also cases, for example in medicine, where
a learning algorithm or statistic has become a standard in an application do-
main for historical reasons, such that one cannot expect the users to change to
another algorithm without serious effort even if the new algorithms results are
superior to the standard procedure.

But of course, successful as the heuristics are in certain situations, one has
to acknowledge that in the end there has yet not been discovered a general
way to define and optimize interpretability, other than by shifting the whole
responsibility to the user.

1.1.3 Measuring Interpretability

Given the importance of interpretability the obvious question is how the inter-
pretability of a model can be rated. Are there performance criteria that can
quantify this interpretability?

Due to the informal nature of the concept of interpretability, a survey over
human experts is the most promising measure. In particular in medicine, where
human control of the process of treating patients is particularly stressed, this is
a popular performance measure of hypotheses [Lavrac, 1998, Zelic et al., 1997,
Morik et al., 2002] However, the significance of these tests often suffer from a
small number of observations – expert time is precious and a large set of experts
is hard to find. Also, in many cases the expert that is judging the results is a
part of the data mining team and was involved in the whole mining process,
such that his opinion can be severely biased. The opinion of this expert may
say more about the quality of the whole process of having a staff of data miners
work with you than about the quality of the final model. There are also a
number of practical problems constructing a meaningful survey. For example, it
does not suffice to simply ask the question “do you understand this model”, but
one has to come up with a test to see whether the proband only claims to have
understood the model, got it wrong, or actually understood it. Further, it may
be hard to separate the aspect of interpretability from the aspect of the personal
belief about the validity of the model: a formal model may be more clear when
its meaning conforms with what a person already knows. In particular, there
can be cases where different schools of expert knowledge exist [Scholz, 2002]. In
conclusion, although they are most direct with the least number of assumptions
necessary, surveys are not practicable as a measure of interpretability.

A more practical way of measuring interpretability is the use of formal com-
plexity measures for hypotheses. A number of complexity measures have been
proposed, for example the number of nodes in a decision tree or its depth, the
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number of rules in a rule base, the depth of rule, the number of attributes used
in a hypothesis, the number of prototypes generated in instance-based learning,
the norm of the vector of parameters in a parametric model, measure of the
expressibility of the hypothesis space like the Vapnik-Chervonenkis-dimension
[Vapnik, 1998] and the Minimum Description Length criterion [Rissanen, 1983],
and different statistical information criteria like the Akaike Information Crite-
rion [Akaike, 1973] and the Bayesian Information Criterion [Schwartz, 1979].

The obvious question is how to prove that a formal measure of computational
complexity is a valid indicator of such an imprecise concept as interpretability.
An interesting study has been performed in [Morik and Muehlenbrock, 1999].
In developmental psychology, the problem of how children explain astronomical
phenomena (e.g. answer the question “where does the sun go at night”) and how
the transitions between different explanations (e.g. from “the sun moves down
on the ground” to “the sun revolves around the earth” or “the earth revolves
around the sun”) has been intensively studied [Baxter, 1989, Nussbaum, 1989,
Vosniadou and Brewer, 1992]. Morik and Mühlenbrock modeled these explana-
tions in an inductive logic programming framework and showed that the formal
complexity of an explanation rule and the difficulty of a transition from one
explanation to another as measured by the necessary formal revisions of the
knowledge base is related to the frequency of the children’s explanations. This
shows that formal complexity measures can be empirically justified in psycho-
logical investigations.

One drawback of formal complexity measures is that they are either only
applicable for a specific class of models, e.g. the depth of a decision tree, the
norm of a parameter vector or the number of prototypes, or provide only a very
coarse measure of complexity, like the number of attributes used. Hence, they
provide little help in choosing the right hypothesis space in the first place. People
sometimes argue that one hypothesis language is “obviously” more intuitive than
others, but this is of course highly subjective and hence useless.

On the downside, different definitions of formal measures of complexity have
revealed that the problem of minimizing complexity is hard. For example, inves-
tigations of the problem of minimizing the number of features used showed that
finding a subset of n features, such that no two examples have identical feature
values and different class value, is NP-hard [Davies and Russell, 1994]. Even in
the case of the seemingly more simple linear classifiers, minimizing the number
of features of a separating linear classifier is NP-hard [Amaldi and Kann, 1998].
For learning in logical hypothesis space it has been shown that covering a num-
ber of examples with a minimal set of rules is an instance of the set covering
problem and hence NP-hard [Breuer, 1970]. In the special case of decision trees
it has been shown that minimal decision trees are hard to approximate up to
any constant factor [Sieling, 2003].

1.2 Local Models

How can we solve the interpretability problem? Experience shows that one
can often find a simple model which provides not an optimal solution, but
a reasonably good approximation. The hard work usually lies in improving
an already good model. The idea is to separate the entire model into two
parts: a more understandable, but less accurate global model, which serves
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as an approximation to the entire model, plus additional local models which
improve the global model on certain, well defined regions of the spaces. The
regions are called local patterns and in order to justify the term “local” these
regions will have to be reasonably small. In short, the idea can be summarized
in the intuitive equation

Data = Global Model + Local Models+Noise

proposed by [Hand, 2002].
The main idea is that there are two ways to look at the combined model. In

order to get a high-quality prediction, one first finds out if the example falls into
a local pattern; in this case the corresponding local model is used, else the global
model is used. Seen in this way, learning with local models is a multi-classifier
system with the local pattern working on the top level to switch between the
single classifiers. On the other hand, if one is interested in interpretability, the
global model serves as an approximation to the combined model. Of course, an
approximation is only meaningful if guarantees about its quality can be given,
and in order to make the approximation quality most transparent to the user,
the local patterns are required to be understandable to the user as well. Hence,
the user can not only see a simplified version of the real model, but also a
description of where the approximative model coincides with the real model
and where it may differ. The left side of Figure 1.3 shows the interpretability
view on the local models, while the right side shows the accuracy view on the
local models.
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Figure 1.3: The local model idea

Formally, learning with local models can be defined as follows.

Definition 1.2.1 (Global-plus-Local Model). Given two hypothesis spaces HG,
HL of classification functions f : X → {−1, 1}, a hypothesis space HP of
clusters in C ⊂ X, a natural number k, a real number τ ∈ [0, 0.5[ and a
probability distribution P (X), a global-plus-local model (fG, fi,L, Ci,L) consists
of hypotheses fG ∈ HG, fi,L ∈ HL, i = 1 . . . k and Ci ∈ HP , i = 1 . . . k, such
that the probability of drawing a local example is constrained by τ :

P (

k⋃

i=1

Ci) < τ

fG is called the global model, the fi,L are the local models and Ci are called
the local patterns. The requirement P (C) < τ will be called the τ -constraint.
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The idea is that the user defines hypothesis spaces HG and HP (i.e. learning
algorithms) that he finds understandable and also gives the amount of slack τ
he is willing to accept in order to improve the results, while the hypothesis space
HL is selected to optimize accuracy.

There are two possible learning tasks for global-plus-local models, either to
optimize accuracy under the interpretability restriction implied by the hypoth-
esis spaces HG and HP or to explicitely minimize a complexity measure under
the restriction that the error is less than a given threshold ǫ. Formally:

Definition 1.2.2 (Prediction-optimal Global-plus-Local Model). Given exam-
ples (xi, yi)i=1,...,n ⊂ X × {−1, 1} drawn from a probability measure P (X,Y ),
hypothesis spaces HG,HL and HP , a natural number k and a real number
τ ∈ [0, 0.5[ as in the definition of the global-plus-local model, the problem of
finding a prediction-optimal global-plus-local model consists of finding a global-
plus-local model, such that the probability P (X) used in the definition of the
global-plus-local model is the marginal probability P (x) =

∑
y P (x, y) and the

prediction error on new examples drawn from P (X,Y ) is minimized.

Definition 1.2.3 (Interpretability-optimal Global-plus-Local Model). Given
examples (xi, yi)i=1,...,n ⊂ X×{−1, 1} drawn from a probability measure P (X,Y ),
hypothesis spaces HG,HL and HP , a complexity measure comp on HG, a real
number ǫ ∈]0, 1[, a natural number k and a real number τ ∈ [0, 0.5[ as in the defi-
nition of the global-plus-local model, the problem of finding an interpretability-
optimal global-plus-local model consists of finding a global-plus-local model,
such that the probability P (X) used in the definition of the global-plus-local
model is the marginal probability P (x) =

∑
y P (x, y), the prediction error on

new examples drawn from P (X,Y ) is less than ǫ and the complexity comp(fG)
is minimal over all such models.

These approaches reduce complexity in two ways. First, a less than optimal
hypothesis language can be used for the global model, because errors can still
be corrected by the local models. This leaves room for choosing a hypothesis
language that optimizes criteria other than the prediction error, namely the
interpretability of the global model. Second, for the aspect of discovering new
knowledge, it may happen that the global model finds only the obvious patterns
in the data that domain experts are already aware of. Patterns are more infor-
mative, if they contradict what is already known [Guyon et al., 1996]. Hence,
it may also be the case that the local models actually contain the interesting
cases.

Of course, it is very easily possible that the combined global-plus-local model
is much more complex than a single high-performance model. It is important to
keep in mind that only the global model and the local patterns are meant to be
interpreted, but not the local models. The goal of learning with local models is
not to improve interpretability of the whole model, but to structure the model
into understandable and high-performant parts.

1.3 Related Approaches

It is instructive to compare local models with related fields of machine learn-
ing. A major connection is with local pattern detection [Hand et al., 2002,
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Morik et al., 2005], which is defined as the unsupervised search for local accu-
mulations of data points with unexpected high density with respect to some
background model [Hand, 2002]. The local patterns in the global-plus-local
model are exactly patterns in this definition, when one defines the background
model as the data distribution defined by the local model. That is, a high ac-
cumulation of positive examples where there only should be negative examples
forms a local patterns. The definition of patterns in the global-plus-local model
specializes the definition of local patterns of Hand in the sense that it focuses
them on local patterns with respect to the conditional class probability P (y|x).

The discovery of frequent itemsets [Agrawal and Srikant, 1994] is an exam-
ples of an explicitely local data mining problem. The problem stems from
the analysis of market basket data with the goal of identifying products that
are usually bought together with each other, for example beer and chips or
bread and butter. In terms of local patterns, the problem of frequent item-
set analysis can be expressed as follows: given a set of transactions, where
each transaction is a set of items, find a set of items whose probability of oc-
currence is significantly higher than the default probability of each item ap-
pearing independently of the others. Association rule analysis goes one step
further and tries to find rules from frequent itemsets. Frequent itemset min-
ing has received much attention in research and in practice with numerous
algorithms developed to tackle the problem of efficiently mining large data
sets [Agrawal et al., 1996, Goethals and Zaki, 2003]. Although frequent itemset
mining is a very important subfield of local patterns, they will not be discussed
in this thesis. The first reason is that frequent itemset mining is very restricted
in the type of data it can handle, which is only bit-vectors (one bit for each
item indicating the presence of the item in the transaction). This restriction
is necessary to deal with the massive amounts of data in a typical frequent
itemset analysis (several millions of transactions), but hinders the use of these
algorithms for more general problems. The second reason for not using frequent
itemset mining is that in terms of interpretability frequent itemset methods
perform very poorly. Usually, several thousands of frequent itemsets and asso-
ciation rules are found on a single data set and these results cannot be inspected
with a severe amount of post-processing. Thus, while frequent itemsets are an
interesting and relevant research field for problems of local patterns and inter-
pretability, solving these problems is a very specific task and lies outside the
scope of this thesis.

Besides locality, the combination of different classifiers is a part of learning
with local models. The idea of building systems with multiple classifiers to re-
move some limitations and extend their capabilities of the base classifiers as such
is is not new. Among the proposed approaches for combining multiple classifiers
are Voting, combination by order statistics [Tumer and Ghosh, 1995], Meta-
Level Learning [Chan and Stolfo, 1993], Stacking [Wolpert, 1992], Cascade Gen-
eralization [Gama and Brazdil, 2000] and Boosting [Freund and Schapire, 1996].
All these approaches have in common that they employ a more or less compli-
cated rule to combine the predictions of the individual classifiers into a single
prediction. The idea is to minimize the bias and variance of the final classifier
by aggregating over a large set of models.

Multiple Classifier Systems are a most successful approach in terms of ac-
curacy, but the interpretability of its model is very limited. The problem is
that one has to understand each base model plus the combination strategy in
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order to understand the complete model. Further, one cannot interpret one of
the base models on its own to gain insight into the model, but always has to
keep in mind all interactions between the base model. If for example the i-th
model shows that a certain combination of attribute values is indicative of the
positive class, this does not mean that there is a correlation between these at-
tribute values and the positive class in the data, but only means that the rest
of the combined classifier for some reason estimates too much influence of these
attributes to the negative class. Also, most combinations methods are greedy,
i. e. previous models are not corrected once they have been learned, even if it
turns out that they are wrong in several parts. In combination, these problems
outweigh the advantages of having simple base models.

An understandable combination of classifiers needs some kind of orthogonal-
ity, such that the effect of one model is independent of the effect of the other
models, to ensure that the problem can be validly split up into smaller indepen-
dent parts. One way to ensure this orthogonality is to split up the input space
and find out which classifier works best in the different regions. Splitting up
the input space can be done either beforehand by clustering or inside the learn-
ing procedure. Examples of this approach are [Todorovski and Dzeroski, 2000]
and [Todorovski and Dzeroski, 1999]. Decision trees also iteratively split up the
input space, such that theoretically one could define the first levels of the tree
as a partition of the input space and the following levels as separate classifiers
for each partition (but this is probably stretching out the idea of local classi-
fiers too far). More advanced, in [Smyth et al., 1995] decision trees and kernel
density estimators have been combined to smoothen the posterior class proba-
bilities. However, in conclusion existing approaches are usually either not easily
interpretable or limited to a specific class of base learners.

Finally, it is important to notice that the local patterns also distinguish
the global plus local model approach from the seemingly more simple idea of
independently learning an understandable and a high-performance model. In
contrast to two independently learned models, the local patterns assure that
there is a strict, well-defined correspondence between the two models – they
can only disagree on the local pattern. The philosophy behind this approach is
that accuracy and interpretability are two aspects of the same problem and that
their solutions should be as independent as necessary, but as close as possible.

1.4 Goals

The goal of this thesis is to investigate several strategies to improving the in-
terpretability of classification models, in particular by using local models. As
a result of the introductory discussion, interpretability is pragmatically defined
as employing a user-given hypothesis space or minimizing a user-given complex-
ity criterion such as the number of features in order to not restrict the user
to any specific criterion and to use as few assumptions about the nature of
interpretability as possible.

In order to obtain results as general as possible, different types of learn-
ing algorithms and data sets should be investigated, such that in principle the
empirical results hold true for almost all kinds of learners. However, in order
to keep the amount of experiments manageable, a total of 18 data sets and 4
learners have been selected for investigation. The data sets will be described



22 CHAPTER 1. INTRODUCTION

in Chapter 8. The learners selected are the Support Vector Machine (SVM)
[Cortes and Vapnik, 1995, Vapnik, 1998, Schölkopf and Smola, 2002] with the
linear kernel as an example of a linear numeric classifier, the Support Vec-
tor Machine with a radial basis kernel as an example of a nonlinear classifier,
the C4.5 decision tree algorithm [Quinlan, 1993] as an example of a proposi-
tional logic learner and the RIPPER algorithm [Cohen, 1995] as an example of
a proposition logic learner that returns a rule set.

The following four questions will be tackled:

Black Box Optimization: How can one optimize the interpretability of a
classifier if one does not now how the classifier is working?

White Box Optimization: How can knowledge about the internals of the
learning algorithm help to increase understandability?

Local Patterns: What is the best way to describe on which examples not to
trust the classifier?

Local Models: Given an understandable classifier, how can one add extra ad-
ditional classification performance without hurting understandability?

This thesis is structured structured along the dimensions of black-box vs. white-
box setting, description of the classifiers decision vs. description of the classifiers
errors, and description vs. optimization. At the same time, it is structured by
the three connected, sometimes competing goals of understandability, accuracy
and efficiency (Figure 1.4). Accuracy is targeted at the connection between the
selected and the optimal hypothesis, it is important because it is always possible
to generate a trivial, easily understandable hypothesis without any connection
to the data. Hence, the interpretability of a model is only meaningful in relation
to the degree of its validity. At the same time, it is clear that interpretability
can only be one goal among several others. This raises the question how much
time the user is willing to invest in order to make the learner’s output more
understandable. The task of increasing interpretability targets at a higher in-
teraction between learning algorithm and user, and hence it is mandatory that
interpretability optimization techniques are efficient enough to allow the user to
flexibly inspect and optimize the model.

efficientaccurate

understandable

?

Figure 1.4: Three goals of interpretability
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In particular, the following topics are covered in this thesis: The next
chapter introduces the theoretical foundations of the thesis, in particular the
paradigms of Statistical Learning Theory [Vapnik, 1998] and the Minimum
Description Length principle [Rissanen, 1978]. Both formulations of learning
employ a concept of complexity of models and are hence well suited to in-
vestigate the problem of interpretability. The chapter will also introduce the
important statistical concept of robustness [Huber, 1981, Hampel et al., 1986,
Rousseeuw and Leroy, 1987, Barnett and Lewis, 1994] which deals with the ef-
fects of small sets of outlying observation in statistical analyses. In particular, in
Section 2.4 a novel method that improves probabilistic classifiers by integrating
robustness concepts will be presented.

Chapter 3 will deal with optimizing the interpretability of models in the
black-box scenario, that is without detailed knowledge of the underlying learn-
ing algorithm. In particular, Section 3.1.5 will present a method for large-scale
non-linear feature selection, Section 3.2 will present a new general approach to
instance selection that extracts information about the geometry of the hypoth-
esis space and Section 3.3 will present a method for generating understandable
approximations by decomposing complex non-linear classifiers. Finally, Section
3.4 will empirically investigate the feasibility of improving interpretability by
optimizing explicit measures of complexity that are classically used to optimize
accuracy.

The white-box setting is investigated in Chapter 4. For the important special
case of Support Vector Machines, which are a very popular, complex learning
algorithm, the chapter will present three novel approaches to improving in-
terpretability by making explicit use of the structure of the SVM hypothesis
space. The first approach, sparse models, consists of describing SVMs by a con-
cise formula and a small set of prototypes (Section 4.1), the second approach
investigates the possibility of explaining SVMs by possibly more understand-
able logical formulas (Section 4.2) and the final approach is a method for the
visualization of the structure of the SVM hypothesis space (Section 4.3).

Chapter 5 will deal with local patterns and their use for describing the ap-
proximation quality of global models. That is, the local patterns will describe
the errors the classifier makes instead of the classifier itself. The chapter will
discuss both the theoretic complexity of finding local patterns based on a re-
sult of Statistical Learning Theory [Vapnik, 1998] and present an expectation-
maximization [Dempster et al., 1977] approach for identifying local patterns.
Pattern detection will be formulated both as a supervised and as an unsuper-
vised problem and the different consequences for interpretability and effective-
ness will be investigated.

The combined description and optimization of a model using local models
will be the topic of Chapter 6. It will not only show how to solve local model
induction as an extension of local patterns, but also present an approach based
on basis pursuit [Chen et al., 1998] that finds local models without the explicit
construction of a local pattern while maintaining the interpretability of the
original local model idea. Conclusions will be drawn in Chapter 7.
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Chapter 2

Machine Learning and

Statistics

This chapter offers an introduction into the field of machine learning and the
algorithms used in this thesis. It serves both to lay a foundation for the fol-
lowing chapters and to introduce the notation used in this thesis. More de-
tailed introductions into the field of machine learning and the related areas of
statistics and data mining can be found in the excellent books [Mitchell, 1997,
Hand et al., 2001, Pyle, 1999] and [Hastie et al., 2001].

Machine learning started out as a field of artificial intelligence concerned
with the study and computer modeling of learning processes. Three objectives
of machine learning can be identified [Carbonell et al., 1983]: the development
of learning systems to improve performance in a predetermined task (engineer-
ing approach), the investigation and simulation of human thought (cognitive
approach) and the theoretical analysis of learning algorithms independent of
an application (learning theory). Today, the engineering approach has become
the major focus of machine learning, because of the practical need for meth-
ods to extract knowledge from the huge amounts of data collected in computer
systems everywhere. This has led to the new field of knowledge discovery in
databases and data mining at the intersection of machine learning, statistics
and database theory. Formerly, these three fields have been mostly disjoint.
Database theory deals with the storage and retrieval of data, not with infer-
ence. Machine learning and statistics share the same goal of making inferences
from data, but traditionally with different methods. As statistics originated in
a time where computers did not exist and every calculation had to be done by
hand, statisticians developed very sharp but labor-intensive tools to extract the
most information from as small as possible data sets. Machine learning, on the
other hand, originated in computer science with the general idea to automate
as much human work as possible, resulting in efficient algorithms to be applied
to very large data sets, which are sometimes ad-hoc solutions without a more
general theory in mind. These different origins can be seen in the different lan-
guages used by statisticians and computer scientist; for example what is usually
called an attribute in computer science is called a variable in statistics, or what
statisticians call a model will be called a hypothesis or hypothesis language by
machine learners, depending on the context. However, driven by the demand for
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efficient and effective solutions for real-world problems, these three fields have
begun to converge and overlap in large parts.

Two main types of machine learning tasks can be distinguished, supervised
and unsupervised learning. In unsupervised learning, the learner is given a set of
observations expressed in a formal language and its goal is to extract structure
from the data and discover new dependencies. The learner returns one or many
hypotheses, expressed in a formal language, that optimize a criterion of data fit
or interestingness. In supervised learning, the learner is given a label in addition
to each observation (observations together with labels are called examples) and
the task is to find a structure that describes the dependency of the label on the
observation. Supervised learning tasks are either descriptive, meaning that the
goal is to summarize the given data, or predictive, meaning that the label of
new observations should be predicted as good as possible.

The rest of this chapter is structured as follows: first, the task of supervised
learning will be defined, including the important learning paradigms of Statis-
tical Learning Theory and the Minimum Description Length Principle. This
thesis will be mainly concerned with supervised learning. Nevertheless, there
will be a short introduction to unsupervised learning in Section 2.2. Very rele-
vant to the idea of local models is also the statistical concept of robust statistics,
see Section 2.3. Finally, a more specific task, namely the probabilistic scaling of
classifiers will be discussed in Section 2.4. In particular, this section will present
a novel algorithm that introduces the concept of robustness into probabilistic
scaling.

2.1 Supervised Learning

One formulation of supervised learning is learning as the approximation of a
function.

Definition 2.1.1 (Machine Learning as Function Approximation). Given a
finite set of examples (xi, yi)i=1...n ⊂ X × Y , the task of finding a function
f : X → Y that predicts the labels y as closely as possible (in some sense that
needs to be made precise), is called machine learning as function approximation.

The idea behind this definition is that the observed data is assumed to
be generated by an unknown function t and learning consists of inducing an
approximation f of the true function t from the data. Alternatively, in order
to account for the fact that in practice some values of x occur more often than
others and errors in measuring observations x and labels y frequently occur, one
can assume that the data is generated according to a probability distribution
P (X,Y ) and try to find a function f that approximates the most probable label
ŷ = arg maxy P (x, y) for the observation x.

The learning problem as formulated here is ill-posed in two ways: first, it is
not clear what a “close as possible” prediction is, and second it is computation-
ally intractable as the learner would have to search over all possible functions
f : X → Y . The latter problem is handled by restricting the set of functions the
learner can choose from. It is usually assumed that the set of available functions
F is indexed by a parameter θ ∈ Λ from a given set Λ. For example, for X = ℜd

and Y = ℜ the set of linear functions F = {f |f(x) = θ1x
(i) + . . .+ θdx

(d) + θ0}
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is indexed by the parameter θ = (θ0, . . . , θd). In general, the parameter θ does
not need to be a real vector; more complex parameters like trees, which define
a piecewise constant function, are often used.

Notation: The set X is usually called the input space, the set X × Y is
called the example space or example language. The set F = {fθ|θ ∈ Λ} of
admissible functions is usually identified with the set of parameters Λ, both
are usually called the model space, hypothesis space or hypothesis language.
A single parameter θ or function fθ is called a hypothesis. In particular, the
hypothesis returned by a learner on a data set (xi, yi)i=1...n is called a model of
this data1.

In particular, the following learning tasks have been intensively studied:

Definition 2.1.2 (Learning Tasks). Depending on the set Y , the following
learning tasks are defined:

Binary classification: The task of predicting a label from a set of size 2 is
called binary classification.

Multiclass classification: The task of predicting a label from a finite set Y
of size greater than 2 is called multiclass classification.

Regression: The case of Y = ℜ is called regression.

The term “classification” is used in two different ways. It either refers to
the case binary and multiclass classification together, describing the case of
predicting a label from a finite set. However, as binary classification is by
far the most popular machine learning task, “classification” is often used as a
synonym for “binary classification”. We will adopt this formulation, as this
thesis is mainly concerned with the problem of binary classification.

In binary classification, for the sake of convenience it will be assumed that
the set Y = {−1, 1} is used. This will be convenient for numerical classifiers,
that is functions of the form g(x) = sign(f(x)) with f : X → ℜ, because then
g(x) = y holds iff yf(x) > 0. The function f is called the decision function of
the classifier.

2.1.1 Statistical Learning Theory

To make precise what a “good” prediction is, the framework of Statistical Learn-
ing Theory [Vapnik, 1998] makes use of a statistical formulation. First, a loss
function is defined to formalize the error incurred by predicting the label of an
observation x as f(x) instead of y.

Definition 2.1.3 (Loss Function). A loss function L is a nonnegative function
L : X × Y × Y → ℜ≥0. Given a loss function L, the loss of a hypothesis f at
an example (x, y) is L(x, f(x), y).

Often, loss functions are used that are independent of x, resulting in a loss
function L : Y × Y → ℜ≥0. Popular loss functions are:

1To make things more complex, in some areas the hypothesis space and not a single hy-
pothesis is called a model.
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Lp-loss: The Lp-loss is defined by Lp(f(x), y) = |f(x) − y|p for p > 0. The L2

loss is also called the squared loss, the L1 loss is called the absolute loss.

0-1-loss: This loss is defined by L01(y, y) = 0 and L01(f(x), y) = 1 iff f(x) 6= y.

Hinge loss: The hinge loss is defined by Lhinge(f(x), y) = max{0, 1 − yf(x)}.
This loss is only used for binary classification and numerical classifiers
with decision functions f , as in this case a hinge loss less than 1 will result
in correct prediction of the classifier signf(x) .

Exponential loss: This loss is defined by Lexp(f(x), y) = exp(−yf(x)). Like
the hinge loss, this loss is only used for binary classification and numerical
classifiers with decision functions f . This loss is derived from logistic
regression.

Cross-entropy loss: The cross-entropy loss is defined only for binary clas-
sification tasks and for functions f which try to estimate the probabil-
ity P (Y = 1|x). It is defined by Lcre(f(x), y) = y+1

2 log(1 − f(x)) +
1−y
2 log f(x). This loss is derived from Maximum Likelihood probabil-

ity estimation. Notice that if y = 1 the loss reduces to Lcre(f(x), 1) =
log(1 − f(x)) and hence in this case the probability estimate f(x) should
be maximized. Correspondingly, Lcre(f(x),−1) = log f(x), resulting in a
minimization of the probability estimate for negative examples.

Cost matrix: Let Y = {y1, . . . , yk} and C ∈ ℜk×k be a nonnegative matrix.
This matrix defines a loss function LC(yi, yj) = Cij for f(x) = yi.

The loss is defined for a specific examples (x, y). In order to describe the
quality of a function f , a measure of error over the whole example space X ×Y
is needed. To account for the probabilistic nature of the data, the examples are
assumed to be generated according to a probability distribution P (X,Y ).

Definition 2.1.4 (Risk). Given a loss function L, a hypothesis f and a prob-
ability distribution P (X,Y ), the risk of f is the expected value of the loss of f
under P :

R(f) =

∫
L(x, f(x), y)dP (x, y).

The risk is also called the expected risk to distinguish it from other forms
of risk defined later. Putting these definitions together, we can formally define
the statistical learning problem:

Definition 2.1.5 (Statistical Learning Problem [Vapnik, 1998]). Given exam-
ples (xi, yi)i=1...n, independently identically drawn from an unknown probability
distribution P (X,Y ), a set of functions F = {fθ|θ ∈ Λ} and a loss function L,
the statistical learning problem consists of finding a function fθ∗ , θ∗ ∈ Λ, which
minimizes the risk R:

θ∗ = arg min
θ∈Λ

R(fθ).
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This definition contains the assumption that every example (x, y) is drawn
independent from the other examples and all examples are drawn from the
same distribution P (X,Y ). In practice, this assumption may fail. Failure of
the assumption of independence is, for example, found in the field of time se-
ries analysis [Schlittgen and Streitberg, 2001, Chatfield, 1984], where each ob-
servation depends on the observations recorded earlier. In the extreme case
this means that instead of n observations of a function, only one observation
of a time series is available, which makes the induction of an appropriate hy-
pothesis much harder. However, in many cases such a problem can be re-
formulated in a way that removes or minimizes the dependencies [Morik, 2000,
Rüping and Morik, 2003, Rüping, 2001b] or it can be shown that the learner
tolerates a certain amount of dependency [Fender, 2003]. Failure of the as-
sumption of identically distributed examples can be found in the case of outlier-
contaminated data, where a certain amount of observations is assumed to come
from a different distribution, or concept drift, where the distribution is assumed
to change over time [Klinkenberg and Rüping, 2003]. In both cases, a careful
analysis of learning tasks is necessary – what is to be predicted and what not –
and the construction of algorithms which identify or tolerate different examples
is necessary.

Although the statistical learning problem is a formally well-defined problem,
in practice it cannot be solved directly. The problem is that the probability dis-
tribution P (X,Y ) that is used to define the risk is not known, but only the
examples distributed according to P are available. Several ways to solve this
problem have been proposed. If it is known that the probability distribution
comes from an appropriate parametric family Pν of distributions, for example
the Gaussian distributions N (µ,Σ), the examples may be used to estimate the
parameters of the distribution, and learning methods can be used that are prov-
ably optimal for this kind of distribution. This is the approach used in classical
statistic modeling. However, in general this problem is stochastically ill-posed
([Vapnik, 1998], Ch. 7.1). The problem is that the distribution P (X,Y ) con-
tains much more information than is needed to obtain an optimal classifier and
hence is much more difficult to estimate.

The practical alternative is to replace the risk R in the definition of the
learning problem with an approximation that is more easy to compute from
data. The easiest way is to estimate the risk on the training data alone:

Definition 2.1.6 (Empirical Risk Minimization). Given a set of examples
(xi, yi)i=1...n, i.i.d. from an unknown probability distribution P (X,Y ), a set
of functions F = {fθ|θ ∈ Λ} and a loss function L, the statistical learning prob-
lem consists of finding a function fθ∗ , θ∗ ∈ Λ, which minimizes the empirical
risk Remp defined by

Remp(f) =
1

n

n∑

i=1

L(xi, f(xi), yi).

The empirical risk of a classifier is also called the training error. Notice
that the empirical risk minimization principle is a special case of the risk min-
imization principle if one replaces the distribution P in the definition of the
statistical learning problem by the empirical probability distribution from the
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sample (xi, yi)i=1...n (the empirical distribution function of a set of n points
gives probability 1/n to each of this points and probability 0 to every other
point).

The drawback of empirical risk minimization is that it is possible that the
induced hypothesis adapts too much to random effects in the training data
and not enough to the overall structure defined from the underlying probability
distribution, such that it predicts new examples considerably less well. In the
extreme case, a learner which simply consists of a list of all training examples
and predicts all unknown examples randomly can achieve zero empirical error
without the hope of correctly predicting new examples at all. This effect is called
“overfitting the training data”. See Figure 2.1 for an example of an overfitted
model (red) and a possibly more sensible model (blue) of the data.

Figure 2.1: The Problem of Overfitting the Data

The possibility of overfitting can be reduced by not using the empirical loss,
but an estimation of the expected loss. This is done by splitting the data into a
training set and a test, inducing a hypothesis on the training set and choosing
the hypothesis with minimal error on the test set. This reduces the chance of
overfitting the data, but unfortunately can not prevent it completely.

Behind this problem lies the question of consistency. In principle, when
we replace the risk by an empirical approximation we would like to have the
property that given enough data we can approximate the actual minimal risk
and the function that minimizes it arbitrarily well. For a fixed hypothesis f , it
follows from the Law of Large Numbers that the empirical risk of this hypothesis
converges against its expected risk as the number of examples goes to infinity.
However, given an infinite set of functions it is generally not the case that the
sequence of functions fn which minimize the empirical risk on the examples
x1, . . . , xn converges against the function f with minimal expected risk (more
precisely, the sequence of risks R(fn) needs to converge against the minimal risk
R(f), as the optimal function need not be unique). As an example, consider
the trivial learner which keeps a list of all training examples and predicts all
unknown examples randomly. The training error of every fn is zero, but the
minimal risk certainly is not.

Definition 2.1.7 (Consistency). Let L be a learning method which maps a
training set to hypotheses fθ ∈ Θ. For a sequence of examples (x1, y1), (x2, y2), . . .
let fn = L((x1, y1), . . . , (xn, yn)) be the hypothesis induced from the first n ex-
amples. The learning method is called consistent, if for any sequence of exam-
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ples (x1, y1), (x2, y2), . . . both the sequence of empirical risk Remp(fi) and the
sequence of expected risk R(fi) converges to the actual minimal risk R(f).

Actually, this is a simplified definition of consistency. The more formal
definition of nontrivial consistency can be found in [Vapnik, 1998] and both
contains the more specific concept of convergence in probability and restricts
the set of admissible functions to prevent trivial cases of consistency. However,
these modifications are of a more technical nature and hence are omitted here.

In general, the empirical risk minimization principle is not consistent if the
set of functions is not restricted in some way. On the other hand, if the set of
functions is restricted, it is possible that the minimal obtainable risk over this
set of functions is significantly higher than the minimal risk over the set of all
functions f (this risk is called the Bayes risk and for usual loss functions it is
attained by the function f(x) = arg maxy P (y|x)).

More sophisticated frameworks for choosing a good hypothesis and an ad-
equate hypothesis space take the expressibility of the hypothesis space into
account, that is the power to fit different sets of examples. These frameworks
are Structural Risk Minimization (Section 2.1.2) and the Minimum Description
Length Principle (Section 2.1.4).

2.1.2 Structural Risk Minimization

This section gives a simplified overview over the core theorems and proofs
of Statistical Learning Theory, sacrificing mathematical rigorousity for clar-
ity of presentation of the core concepts. The tedious details can be found in
[Vapnik, 1998], Chapters 3-5.

The following three theorems by Vapnik and Chervonenkis [Vapnik, 1998,
Wapnik and Tscherwonenkis, 1979] are the heart of statistical learning theory,
on top of which the structural risk minimization principle is build.

Theorem 2.1.1 (Consistency of Empirical Risk Minimization). A necessary
and sufficient criterion for nontrivial consistency of empirical risk minimization
over a set of functions F is the one-sided uniform convergence in probability of
the empirical risk to the expected risk, i.e.:

lim
n→∞

P

(
sup
f∈F

(R(f) −R(n)
emp(f)) > ǫ

)
= 0

for all ǫ > 0, where R(n)
emp(f) is the empirical risk on a sample of n examples.

In order to connect the one-sided uniform convergence to the structure of
the space of functions F , several steps have to be taken. The first step is the
so-called Basic Lemma which states that the probability of the supremum of the
difference of the true and the empirical risk in Theorem 2.1.1 can be bounded
by a similar expression that depends on the supremum of the difference of the
empirical risks on two independent samples of size l (that is, in total one operates
on a new sample of size 2l).

The next step is to remove the supremum. In the case of the 0-1-loss function
one can note that although the supremum is taken over infinitely many functions
f , it is only possible to distinguish a fixed number of functions on a finite sample
of size 2n. This number corresponds to the number NΛ((x1, y1), . . . , (x2n, y2n))
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of distinct values the vector (L(f(x1), y1), . . . , L(f(x2n), y2n)) over all f = fθ, θ ∈
Λ. For real-valued loss functions a similar restriction to a finite set of functions
is possible if one allows an error of ǫ.

One can now define the random entropy

HΛ(Z2n) := lnNΛ(Z2n)

with Z2n := ((x1, y1), . . . , (x2n, y2n)), the entropy

HΛ(2n) := EHΛ(Z2n),

and the annealed entropy

HΛ
ann(2n) := lnENΛ(Z2n)

and show that the relation

HΛ(2n) ≤ HΛ
ann(2n)

holds. In total, this leads to the annealed entropy bound:

Theorem 2.1.2 (Annealed Entropy Bound). For a set of functions F the fol-
lowing bounds holds:

P

(
sup
f∈F

(R(f) −Remp(f)) > ǫ

)
≤ 4 exp

(
HΛ

ann(2n) − nǫ2

8

)

Hence, when the annealed entropy does grow sub-linearly in n, the right-
hand side of the inequality goes to zero and it is possible to achieve consistency.
Using this bound we can further make statements about the expected risk of a
hypothesis. By setting the right-hand side of the annealed entropy bound to δ
and solving for ǫ one obtains the risk bound.

Theorem 2.1.3 (Risk Bound). For a set of functions F , with probability 1− δ
the following bounds holds:

R(f) ≤ Remp(f) +

√
8

n

(
lnE(N(F , Z2n)) + ln

4

δ

)

In other words, the test error can be bounded by the training error plus a
confidence interval that depends on the set of functions used.

Finally, it is possible to show that for large enough n the annealed entropy
can be bounded by

HΛ
ann(n) ≤ h

(
ln
n

h
+ 1
)

where h is the Vapnik-Chervonenkis dimension of the set of functions F , if this
dimension is finite. The Vapnik-Chervonenkis dimension is a kind of worst-case
bound and is defined as follows.

Definition 2.1.8 (Vapnik-Chervonenkis Dimension
[Wapnik and Tscherwonenkis, 1979]). A finite set of points X is said to be shat-
tered by the set of functions F , if for every subset S of X, there exists a function
f ∈ F that classifies all points in S as positive and all points in X\S as negative.

The Vapnik-Chervonenkis dimension V Cdim(F) of F is the maximal size
of a set X that can be shattered by F . If no such set exists, the Vapnik-
Chervonenkis dimension is infinite.
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For example, the Vapnik-Chervonenkis-dimension of linear functions in R
d

is d+1. As a proof, one can see that every set of affine independent points in R
d

can be shattered as shown in case (a) of Figure 2.2, while every set X of d+ 1
points either contains two opposing edges of the convex hull of X (case (b)) or
one point in the interior of the convex hull of the other points that cannot be
separated from the rest (case (c)).

(a) (b) (c)

Figure 2.2: Vapnik-Chervonenkis dimension of the linear functions in R
d.

The risk bound of Theorem 2.1.3 and the Vapnik-Chervonenkis dimension
provide the ground for a new induction principle that guarantees consistency.
The idea is to minimize the risk bound instead of the empirical risk alone and
use sets of functions with finite Vapnik-Chervonenkis dimension to guarantee
that the confidence interval for the risk is finite.

Definition 2.1.9 (Structural Risk Minimization). Let F be a set of functions
and suppose there exists a structure on F given by sets of functions Fi such
that

1. F =
⋃

i Fi

2. F1 ⊆ F2 ⊆ . . .

3. V Cdim(F1) ≤ V Cdim(F2) ≤ . . . <∞

For a set of examples (xi, yi)i=1...n, the structural risk minimization principle
consists of choosing the set Fi that minimizes the risk bound of Theorem 2.1.3
and then choosing the function f ∈ Fi that minimizes the empirical risk.

Figure 2.3 visualizes the structural risk minimization principle. Notice that
although the VC dimension of every set Fi is finite, the VC dimension of F
can be infinite. A classifier that implements the structural risk minimization
principle, the Support Vector Machine, will be presented in Section 2.1.3.

2.1.3 Support Vector Machines

A classifier that estimates a numerical function f : X → R and makes predic-
tions of the form

y = sign(f(x))

is called a numerical classifier. Well-known examples of numerical classifiers
are Neural Nets [Bishop, 1995], statistical procedures like Linear Discriminant
Analysis [Fisher, 1936] and Support Vector Machines (SVMs, see [Vapnik, 1998,
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SSS
31 *

VC dim

Risk Bound

Figure 2.3: The structural risk minimization principle.

Cortes and Vapnik, 1995, Schölkopf and Smola, 2002]). Support Vector Ma-
chines are a popular learning method that is based on the structural risk min-
imization principle. Let us first introduce the linear version of Support Vector
Machines.

Let X = (xi, yi)i=1...n be a set of examples in R
d × {−1, 1}. X is said to

be linearly separable if there exists a linear hyperplane H = {x|w ∗ x + b = 0}
that separates the positive from the negative points. Equivalently, there exists
a linear function f(x) = w ∗ x+ b such that for all i the inequality yif(xi) > 0
holds. As we are only interested in the classification function sign(f(x)), any
function αf(x) with α > 0 will be equivalent and hence we can normalize f such
that yif(xi) ≥ 1 and there exists at least one xi such that yif(xi) = 1. Given
a linearly separable set of points there still will be more than one function that
separates the points, so which one should one use? Assuming the observations
xi are measured with some error, it seems favorable that points lying very close
to a training point xi should be predicted to lie in the same class as xi. This
is equivalent to require the separating hyperplane to be as far away from the
training points as possible.

Definition 2.1.10 (Optimal Separating Hyperplane). Given a set of points
(xi, yi)i=1...n, the optimal separating hyperplane is the hyperplane that sepa-
rates the points and maximizes mini d(xi,H).

Theorem 2.1.4 (Existence and Uniqueness of the Optimal Separating Hyper-
plane). Given a linearly separable set of examples (xi, yi)i=1...n, the optimal
separating hyperplane exists and is uniquely determined. It can be found by
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minimizing ||w||2 subject to yi(w ∗ xi + b) ≥ 1 for all i = 1 . . . n and setting

H = {x|w ∗ x+ b = 0} (2.1)

Its distance to a point x is then given by d(x,H) = |w ∗ x+ b|/||w||.
Proof. As the set of points is separable, the set of feasible points (w, b) for
the minimization problem is not empty. The target function ||w||2 is strictly
convex, from which follows that the solution of the optimization problem exists
and is uniquely determined. Hence it suffices to show that the solution of the
optimization problem is identical to the optimal separating hyperplane. A basic
fact from linear algebra states that the distance of a point x to a hyperplane
given by (w, b) is |w∗x+b|/||w||. As the term |w∗x+b| can be fixed to be greater
or equal to 1 without changing the hyperplane, the distance is maximized by
minimizing ||w||, which is equivalent to minimizing ||w||2.

The connection between optimal separating hyperplanes and structural risk
minimization is given by the following theorem:

Theorem 2.1.5 (VC Dimension of the Optimal Separating Hyperplane
[Vapnik, 1998]). Let X = (xi)i=1...n be a set of points in R

d and R be the
radius of the smallest ball containing all points. Consider the set of all function
f(x) = w ∗ x + b such that mini|f(xi)| = 1 and ||w|| ≤ D. The VC dimension
of this set of functions is bounded by

V Cdim ≤ min{R2D2, d} + 1

In practice, due to noise a given set of data might not be linearly separable,
even if the underlying probability distribution suggests a linear classifier. The
solution most coherent with the idea of the VC dimension would be to remove a
minimal set of points such that the data becomes separable. However, this would
lead to a combinatorial optimization problem which would not be efficiently
solvable. Instead, in [Cortes and Vapnik, 1995] the use of slack variables to
allow for errors is suggested.

Definition 2.1.11 (Soft Margin Hyperplane). Let X = (xi, yi)i=1...n be a set
of examples and C > 0 be a constant. The soft margin hyperplane is defined as
the unique solution to the following optimization problem: Minimize

||w||2 + C
n∑

i=1

ξi

subject to
yi(w ∗ xi + b) ≥ 1 − ξi for all i = 1, . . . , n

Notice that ξi is identical to the hinge loss of Lhinge(f(xi), yi). The soft
margin hyperplane classifier is also called the linear Support Vector Machine
classifier.

Definition 2.1.12 (Regularized Risk). The weighted sum of the empirical risk
Remp(f) and a complexity term comp(f) is called the regularized risk

Rreg(f) = Remp(f) + λcomp(f)
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The Soft Margin Hyperplane is equivalent to minimizing the regularized risk
for f(x) = w ∗ x + b with comp(f) = ||w||2, empirical error measured by the
hinge loss and λ = 1/C.

It turns out that the soft margin hyperplane / support vector machine prob-
lem can be better solved in its dual form.

Theorem 2.1.6 (Dual Form of the Support Vector Machine). The solution of
the soft margin hyperplane problem is given by

w =
n∑

i=1

αixi

where the αi are the solution of the optimization problem

W (α) =
n∑

i,j=1

αiαjyiyjxi ∗ xj −
n∑

i=1

αi → min

subject to

n∑

i=1

αiyi = 0

∀n
i=10 ≤ αi ≤ C

The threshold b can be computed as b = yi −w ∗ xi for every i with 0 < αi < C.

The proof can be found in [Vapnik, 1998, Schölkopf and Smola, 2002]. This
problem is a quadratic optimization problem and can be efficiently solved by
standard optimizers or specialized SVM algorithms [Joachims, 1999]. The points
xi with nonzero Lagrangian multiplier αi are called support vectors, as they sup-
port the hyperplane w. It can be shown that the same hyperplane is found when
all non-support vectors are removed from the training set.

With the complexity control by the optimal separating hyperplane and the
soft margin idea we have already defined two of the crucial ingredients of Support
Vector Machines. The final part is the kernel trick. Suppose we want to convert
the SVM into a nonlinear classifier. The easiest approach would be to use some
function Φ : X → X to map the training points x from the input space X into
a feature space X and run the SVM algorithm in the feature space. Looking at
the dual SVM problem it is obvious that the SVM depends on the observations
x only via the inner product x ∗ x′, in particular because the function term
w∗x+b can be written as

∑n
i=1 αixi ∗x+b. Hence, it suffices to know the value

of the inner product Φ(x) ∗ Φ(x′) in feature space to run the SVM algorithm.
The function K(x, x′) = Φ(x) ∗ Φ(x′) is called a kernel function and there are
cases where the kernel function can be evaluated much easier than by explicitly
mapping the data into the feature space and calculating the inner product there.
Kernels are more intensively discussed in the next section.

Definition 2.1.13 (Support Vector Machine [Cortes and Vapnik, 1995]). Given
examples (xi, yi)i=1,...,n, a parameter C > 0 and a kernel function K, the Sup-
port Vector Machine classifier is defined by

f(x) = sign

(
n∑

i=1

αiyiK(xi, x) + b

)
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where the αi are the solution of the optimization problem

W (α) =

n∑

i,j=1

αiαjyiyjK(xi, xj) −
n∑

i=1

αi → min

subject to
n∑

i=1

αiyi = 0

∀n
i=10 ≤ αi ≤ C

and the threshold b is defined as b = yi −
∑n

j=1 αjyjK(xj , xi) for any i with
0 < αi < C.

General Loss Functions for Support Vector Machines

By definition of the constraints yif(xi) ≥ 1 − ξi in the soft margin hyperplane,
the SVM implements the hinge loss with an additional factor of C. There exists
some generalizations

Asymmetric Loss: By using different constants C+ and C− for the positive
and negative examples, it is possible to use an asymmetric loss function
[Rüping, 1999, Morik et al., 1999].

Example-dependent Loss: It is also possible to introduce a different con-
stant Ci for each example (xi, yi). This is important when different ex-
amples have different importance, for example in incremental learning
[Rüping, 2001a] or when dealing with temporal dependencies in concept
drift [Klinkenberg and Rüping, 2003].

Squared Loss: Instead of the the standard target function ||w||2 +C
∑
ξi one

can also use the target function ||w||2 + C
∑
ξ2i , implementing a squared

loss function. In the dual form this translates to setting the upper bound
on α to infinity.

General loss functions: It is also possible to define the primal SVM problem
with an arbitrary loss function L. The problem is that in general the SVM
problem will then no longer be a quadratic programming problem, but a
general optimization problem. This problem will be much harder to solve
and the uniqueness of the solution is not clear.

One situation where the problem is still efficiently solvable with an unique
solution is the case of the exponential loss, which leads to Kernel Logistic
Regression [Wahba, 1999, Keerthi et al., 2002].

General complexity functions: It is also possible to define the primal SVM
problem with a general complexity function instead of ||w||2. However,
care must be taken here because the quadratic term ensures the connection
of the SVM to the VC-dimension (see Theorem 2.1.5). Of course, other
complexity functions may also make sense, but this remains to be shown
in each special case.

One example of a different complexity function is the L1 norm ||w||1 =∑ |wi|, which has the desirable statistical property that there is a higher
penalty on values of wi close to zero than with the quadratic norm. This
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generally results in sparser vectors w. Also, the implementation of a SVM
with the L1 norm reduces to a linear programming problem instead of the
more complex quadratic problem [Mangasarian, 2000].

Kernel Machines

In this section, we take a closer look on kernels and the kernel trick employed
in Support Vector Machines.

Definition 2.1.14 (Kernel Function). A kernel function K : X × X → ℜ
is a function such that for every finite set of vectors (xi)i=1,...,n the matrix
Kmat = (K(xi, xj))i,j=1,...,n is positive definite.

Here a matrixM is called positive if for every α ∈ R
d it holds that αTMmatα ≥

0. This condition is usually called positive semi-definiteness, with the term “pos-
itive definite” reserved for the case αTMmatα > 0 if α 6= 0. However, in kernel
theory only the case ≥ 0 is considered and hence the prefix “semi” is usually
dropped.

The Mercer Theorem shows that it is not necessary to explicitely construct
the feature map Φ in order to define a kernel function.

Theorem 2.1.7 (Mercer Theorem [Mercer, 1909]). Suppose K ∈ L∞(X2) is a
symmetric real-valued function such that for all f ∈ L2(X) the inequality

∫

X×X

K(x, x′)f(x)f(x′)dxdx′ ≥ 0

holds. Then K is a kernel function.

The most popular kernel functions are the

Linear Kernel: K(x, x′) = x ∗ x′

Polynomial Kernel: K(x′, x′) = (x ∗ x′)p for some integer p > 0

Radial Basis Function (RBF) Kernel: K(x, x′) = exp(−γ||x − x′||2) for
some γ > 0

Sigmoid Kernel: K(x, x′) = tanh(ax ∗ x′ + b). This function is only a kernel
for specific choices of a, b ∈ R.

In particular, for every map Φ : X → X into a linear space X with inner
product < ·, · >, the function K(x, x′) =< Φ(x),Φ(x′) > is a kernel function,
as the corresponding matrix is the Gram matrix of the feature space vectors.
This poses the question whether the converse also holds: can we find for every
kernel function a linear space X , an inner product in this space, and a map Φ
such that K(x, x′) =< Φ(x),Φ(x′) > holds? One can indeed construct such a
space, which turns out to be a Reproducing Kernel Hilbert Space.

Definition 2.1.15 (Hilbert Space). A Hilbert space H is a linear space with
an inner product < ·, · > such that H is complete with respect to the norm
||x|| =

√
< x, x >.
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Definition 2.1.16 (Reproducing Kernel Hilbert Space). A Reproducing Kernel
Hilbert Space is a Hilbert space H of functions X → ℜ such that there exists
a kernel K such that all basis function K(x, ·) (that is, x′ 7→ K(x, x′)) are
contained in H and the reproducing property

< f,K(x, ·) >= f(x)

holds for all f ∈ H and x ∈ X.

Theorem 2.1.8 (Existence of a RKHS [Aronszajin, 1950]). For every kernel
function K there exists a corresponding Reproducing Kernel Hilbert Space HK .

Proof. Given a kernel function K we define the space H0 to be the space of all
finite linear combinations

f(x) =
∑

i

αiK(xi, x)

of basis functions K(xi, ·). We also define the function Φ : X → H0 which maps
x to its basis function K(x, ·).

To define an inner product < ·, · > on H0, let

< K(a, ·),K(b, ·) > := K(a, b)

for any two basis functions. For every f, g which are finite linear combinations
of basis functions we define

< f, g > = <
∑

αiK(xi, ·),
∑

βjK(x′j , ·) >

:=
∑

i,j

αiβj < K(xi, ·),K(x′j , ·) >

=
∑

i,j

αiβjK(xi, x
′
j)

It is easy to see that this product is linear in both of its arguments and sym-
metric. Its positive definiteness was postulated in the definition of a kernel K.
It also follows that

< f, g > =
∑

i,j

αiβjK(xi, x
′
j)

=
∑

i

αi

∑

j

βjK(xi, x
′
j)

=
∑

i

αig(xi)

=
∑

j

βjf(xj)

which shows that with this definition the inner product does not depend on the
particular representation of f and g in terms of a linear combination of basis
function, which does not need to be unique. It is obvious that for every f ∈ H0

the reproducing property

< f,K(x, ·) > = f(x)
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holds. In particular,

< Φ(x′),Φ(x) > = < K(x′, ·),K(x, ·) >
= K(x′, x′)

which was the desired property of the space H0.
The inner product in H0 also defines a norm

||f ||H0
:=

√
< f, f >

Together with this norm, H0 forms a pre-Hilbert space, that is, it is a linear
space with an inner product, but it is not necessarily complete. We will now
construct a completion HK of H0. Assume that (fn)n∈N is a Cauchy sequence
in H0. One can show that for every x ∈ X

|fm(x) − fn(x)| = | < fm − fn,K(x, ·) > |
≤ ||fm − fn||H0

K(x, x)

where the inequality is a result of the positive definiteness of the 2 × 2 Gram
matrix of (fm − fn) and K(x, ·). It follows that for every x the sequence of real
numbers (fn(x)) is a Cauchy sequence and hence converges in R. Hence, the
sequence of functions (fn) has a pointwise limit. Adding these pointwise limits
to H0 and extending the inner product appropriately gives a complete space HK

which can be shown to be the Reproducing Kernel Hilbert Space corresponding
to K.

Similar to the construction of the nonlinear SVM, any algorithm that is
defined solely in terms of the inner product of the input vectors can be cast into
a nonlinear algorithm using kernel functions. This is the so-called kernel trick.
For example, there exist kernelized versions of principal component analysis
[Schölkopf et al., 1999] or logistic regression [Wahba, 1999].

2.1.4 Minimum Description Length

This section provides a short introduction to the Minimum Description Length
(MDL) Principle [Rissanen, 1978] and is largely based on [Grünwald, 2005].

The main idea of Minimum Description Length is to view learning as data
compression. If a learning algorithm has extracted some structure from exam-
ples z1, . . . , zn, this structure can be used to give a more concise description
of the data by encoding only the information of the data that is not specified
by the structure. For example, if we know that the examples z = (x, y) are
structured such that there exists a function f with y = f(x), we do not need
to explicitely encode the values y if we instead encode the function f . In MDL,
the data is assumed to come from a countable set, which can always be assured
in practice (e. g. by rounding).

Theoretically, the Minimum Description Length Principle could be imple-
mented by using the Kolmogorov complexity [Kolmogorov, 1965], which is de-
fined as the length of the shortest computer program that outputs the sequence
zn = (z1, . . . , zn). However, the Kolmogorov complexity is not computable and
is independent of the language used to encode the computer program only for
n → ∞ [Li and Vitanyi, 1997]. Hence, in practice one has to settle for an ap-
proximation. Most important, the set of admissible models, i. e. the hypothesis
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language, has to be restricted. Note that in MDL theory a model of a set of
data is always a probability distribution that describes this data.

The original version of Minimum Description Length employs a two-part
code. The first part of the code describes the model used and the second part
of the code describes the data given the model.

Definition 2.1.17 (Crude Minimum Description Length). Let L(H) be the
length of the encoded model H in bits and L(Z|H) be the length of the data Z
encoded using the model H. The MDL principle consists of choosing the model
H that minimizes

L(H) + L(Z|H).

One can immediately see the connection of MDL to regularized risk mini-
mization and Statistical Learning Theory: The term L(H) gives the complexity
of the hypothesis (the more complex, the longer its description) and the term
L(Z|H) gives the error of model on the data (the more the data adheres to the
model H, the less additional information has to be encoded).

The MDL principle does not specify which code to use. For encoding the
data this is relatively straight-forward because of a connection between code
lengths and probabilities known as Kraft’s inequality

Theorem 2.1.9 (Kraft’s Inequality). There exists an uniquely decodable code
of code length li if and only if

∑

i

2−li ≤ 1

The proof can for example be found in [Cover, 1991]. This allows to identify
code lengths li with probabilities pi = 2−li . For given probabilities pi, such
a code can be found using Huffman coding, which produces minimal codes
when the probabilities are powers of 2. As a consequence, in the following we
will replace the code length of the data by the term − logP (Z|H). Minimum
Description Length is usually interested in compressing the complete example z.
But for supervised learning we are only interested in predicting the label y, not
the complete example z = (x, y). This goal can be addressed by using only the
conditional probabilities P (Y |X,H) to describe the data, which is equivalent to
assuming that the observations x will be compressed by a default code.

The problem of MDL with two-part codes is the code length for the hypoth-
esis L(H). MDL does not specify which code to use and for hypotheses there
is no such obvious choice as for data. But different code length functions lead
to different MDL solutions, in particular for small data sets. For each fixed
hypothesis H one can always define a code which assigns to H code length 1.
This leads to the consequence that the MDL solution becomes arbitrary.

A way out of this dilemma lies in the observation that data and hypotheses
are not independent in MDL. The trick is that as soon as we know the MDL-
optimal hypothesis H, this also restricts the choices for Z: only those values of
Z are possible for which H provides a minimum description length encoding.
This lead to the development of refined MDL [Rissanen, 1984, Rissanen, 1996],
which uses a one-part code for both model and data, that only depends on the
class of models M instead on the single hypothesis H that describes the data.
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The formal idea is to employ a universal code, which is only slightly worse
than the best code for the data Z in terms of a minimax regret.

Definition 2.1.18 (Regret). Let Zn be the space of samples zn = (z1, . . . , zn)
from Z of size n. For a class M of probabilistic models on Zn and a probability
distribution P̄ on Zn, the regret of P̄ relative to M on zn ∈ Zn is

R(P̄ , zn) = − log P̄ (zn) − min
P∈M

{− log(P (zn)} .

The worst-case regret of P̄ relative to M is

Rmax(P̄ ) = max
zn∈Zn

R(P̄ , zn)

In other words, the regret is the additional number of bits needed to encode
the data zn with P̄ instead of the model from M that encodes zn best.

To construct a probability distribution with minimax regret, the following
definition is needed:

Definition 2.1.19 (MDL Model Complexity). For a class M of probabilistic
models P , let

M̂(zn) = arg min
P∈M

{− log(P (zn)} .

The complexity COMPn of the model class M is defined as

COMPn(M) = log
∑

zn∈Zn

P (zn|M̂(zn)).

That is, the more data sequences zn can be fit well by a model from M, the
higher the complexity of M.

Theorem 2.1.10 (Minimax Regret and the Normalized Maximum Likelihood
Distribution [Shtarkov, 1987]). Suppose that COMPn(M) is finite. Then the
minimax regret is uniquely achieved by the normalized maximum likelihood dis-
tribution Pnml given by

Pnml(z
n) =

P (zn|M̂(zn))
∑

z′

n∈Zn P (z′n|M̂(z′n))
.

Definition 2.1.20 (Refined Minimum Description Length). Given data zn and
a finite set of model classes (M(i))i=1...n, refined MDL consists of selecting the
model class M(i) that maximized the normalized maximum likelihood. This is
equivalent to minimizing

− logPnml(z
n) = − logP (zn|M̂(i)(zn)) + COMPn(M(i)).

The MDL model for the data zn is then M̂(i)(zn).
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Minimum Description Length can also be defined for infinite sets of models
and model classes with infinite COMPn. See [Grünwald, 2005] for details.

The refined MDL principle again tells us to select the model class by simul-
taneously minimizing the complexity of the model class and the error of the
optimal model in this class (in terms of a maximal likelihood). But different
from crude MDL, model complexity is no longer defined in terms of an arbitrary
code length function, but in terms of the model classes capacity to fit different
sets of data, similar to Statistical Learning Theory (see Section 2.1.1).

MDL and Interpretability

There is an obvious connection between the crude MDL principle and inter-
pretability: crude MDL states that the code length of the hypothesis should
be minimized as far as possible without accepting too much errors. A short
code length means that the hypothesis should be easy to communicate and as
the code for the hypotheses is not specified in MDL, we are free to use a code
whose code length function models the interpretability of the hypotheses from
the view of the user. However, we are stuck with the fundamental problem of
crude MDL: as there is no general way to define the degree of interpretability of
a model, code length functions are arbitrary and the final hypothesis depends
on the implicitly encoded assumptions. Hence, the description length in crude
MDL does not address the problems of interpretability, but only hides them in
the definition of the code length function.

In refined MDL, codes are given by the complexity of the model class and
and not in an explicit complexity measure that could be modified to represent
interpretability constraints.

Both MDL approaches do not specify which model classes to investigate in
the first place, only how to choose the best model and model class from the given
alternatives. However, as discussed in the introduction of this thesis, model
classes (i. e. hypothesis languages) play an important role for interpretability.
A main problem is the existence of human background knowledge. In principle,
the description length of the hypothesis would have to be modified to represent
the number of bits it needs to explain the hypothesis given the background
knowledge of the user (e.g. for one user a short statistical formula would suffice
while another may additionally need to be given an introductory statistics book).
Again, the background knowledge of a user cannot be formally measured and
additional assumptions would have to be taken.

In particular, Minimum Description Length in general does not support to
simplify hypotheses in the sense that if we order model classes M(i) by their
complexity, the optimal hypotheses hi = M̂(zn) for a fixed data set zn do not
need to exhibit a certain structure that allows to view hi+1 as a generalization
of hi. For example, it the model classes consist of decision trees with bounded
depth, the optimal tree of depth i does not need to be a subtree of the optimal
tree of depth i+ 1. This is an example of MDL not being directly applicable to
the setting of global and local models.

In conclusion, Minimum Description Length with its approach of explicitely
modeling complexity has strong connections to the problem of interpretability,
but it is not directly applicable to this problem.
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2.1.5 Learning in Logic

Learning can also be represented in a logic framework, based on the concept of
logical implication. Examples and hypotheses are represented as logical formulas
and not as tuples as in the numerical formulation learning. Unique to the logical
formulation of learning is the explicit definition of background knowledge, a set
of formulas that define what is already known about the data. In logical learning,
the problem of classification is also known as concept learning.

Definition 2.1.21 (Concept Learning in Inductive Logic Programming
[Muggleton, 1992a]). Let there be a set of examples E, background knowledge
B and a language of hypotheses LH , such that the background knowledge is
consistent with the examples (no contradiction can be derived from E and B).
the goal of concept learning in inductive logic programming is to find an hy-
pothesis H ∈ LH that is consistent with the examples and the background
knowledge, such each positive example and no negative example can be derived
by the hypothesis and the background knowledge.

Unique to logical hypotheses is that an example which is not classified as
positive is not automatically classified as negative, as it is possible that neither
an observation e nor its negation ¬e can be derived from H and B. As a result,
logical hypotheses often contain a default rule to predict every observation that
is not covered by another rule or make use of the closed-world-assumption that
every observation that can not be shown to be positive is negative.

Depending on the logical formalism used, propositional logic and first-order
logic learners are distinguished. In the following, we will discuss two propo-
sitional logic learners, namely decision trees and covering rule learners. As
discussed in the introduction, we do not include first-order logic learner in the
comparison, as their very rich hypothesis space is hard to map and compare to
the more restricted space of propositional logic and numerical learners. Accord-
ingly, in the rest of this thesis we only mean propositional logic learners when
we talk about learning in logic.

Decision Tree Induction

Decision tree learners like C4.5 [Quinlan, 1986] are divide-and-conquer algo-
rithms, they recursively partition the input space in order to minimize the het-
erogeneity of the labels in each partition. An inner node of the decision tree
corresponds to a decision of the form A rel v where A is an attribute, v is a
possible value of this attribute and rel ∈ {=, <,≤}. Each inner node thereby
partitions a set of examples into two subsets (see Figure 2.4). A leaf of a decision
tree is labeled with a class value.

To build a decision tree from a set of examples, the algorithm chooses the
decision that increases a measure of the information about the class value in
both subsets the most. If there is no decision left to choose from or should no
decision increase the information about the class, the decision tree consists of a
leaf labeled with the majority class in the examples. Otherwise, the decision tree
algorithm is recursively applied to each of the subsets of examples induced by
the selected decision. The decision tree then consists of the node corresponding
to the selected decision with the results of the recursion as subtrees. Measures
of the information of a split include the entropy, information gain or the gain
ratio.
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x2 < 1

x1 < 1

1

1

Figure 2.4: Decision Tree and Induced Partition

After the tree is induced, a pruning step is carried out. The tree is traversed
depth-first and for each subtree an estimate of the prediction error is calculated.
Should the error estimate of the subtree exceed the error estimate of a single leaf
corresponding to the same subset of data, the subtree is removed and replaced by
this leaf. This step is necessary to avoid overfitting and because the information
criterion used to build the tree is only a heuristic for assessing the information
content of a set of examples about its labels.

Covering Rule Learning Algorithms

Covering rule learning algorithms are a family of learning algorithms that was
first introduced in [Michalski, 1969]. An overview of covering rule learning al-
gorithms can be found in [Fürnkranz, 1999].

Given a set of examples, covering rule algorithms execute a loop in which
they first find a logical rule that maximizes a given rule quality criterion and
then remove all examples that are covered by this rule from the set of examples.
The algorithm stops when all examples are covered or no further rule can be
found. At termination, the ordered list of all rules found is returned. Specific
instances of covering rule learners differ in the rule quality criterion used and the
way candidate rules are generated. Figure 2.5 shows the pseudocode of a simple
covering rule learner, see [Fürnkranz, 1999]. Figure 2.6 shows a decision list
generated by a covering rule learner and the induced partition of the example
space.

One example of rule generation is general-to-specific construction of rules.
Construction starts with the most general rule that states that all examples
are positive. Iteratively, the rule is specialized by adding a new literal o the
rule body until no negative examples are covered by the rules. New literals
are selected either based on a full search or on a heuristic as in decision tree
induction.

The rule quality criterion has an important influence on the prediction qual-
ity of the final classifier. A simple quality criterion is the training accuracy of
the rule or the number of positive examples covered. More sophisticated criteria
are the precision gain, weighted relative accuracy, correlation and many more
[Fürnkranz, 1999]. Rule evaluation metrics can be analyzed via coverage spaces
[Fürnkranz and Flach, 2005] which depict which rules obtain identical quality
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Theory = {}

while Positive(Examples) != {}

BestRule = {true}

Rule = BestRule

while Negative(Cover) != {}

for Condition in Conditions

Refinement = Rule + Condition

if (Quality(Refinement,Examples)

> Quality(BestRule,Examples))

BestRule = Refinement

Rule = BestRule

Theory = Theory + Rule

Examples = Examples - Cover

return Theory

Figure 2.5: A simple covering rule learner

1

1

if x1 <= 1 then
else if x1 > 1 and x2 > 1 then
else

Figure 2.6: Decision List generated by a Covering Rule Learner

values. In this thesis, the covering rule learner Ripper [Cohen, 1995] is used,
which differs from the algorithm of Figure 2.5 in details on how to find the best
rules and how to post-process rules and theories.

Converting Logical Methods into Numerical Classifiers

In order to compare or combine numerical and propositional logical classifiers
these methods must be cast into a single framework. Fortunately, it is easy to
interpret logical methods as numerical functions.

In order to apply logical methods to numerical problems, numerical at-
tributes have to be converted into nominal attributes. This task is called dis-
cretization and is usually applied as a pre-processing step before running the
learning algorithm. Some logical classifiers also have discretization built into
the learning step, such that they can be directly applied to numerical tasks.

Given labels y ∈ {−1, 1}, a hypothesis returned by the logical classifier then
corresponds to the function that first casts the example into nominal values,
applies the classifier and returns the predicted y. Some classifiers also produce
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an estimate of P (Y = 1|x) that can be used as the output instead.

2.2 Unsupervised Learning

The task of unsupervised learning is to extract information about the structure
of data x1, . . . , xn. As there are possibly many structures that fit the data, the
task is not as well defined as supervised learning. Usually, the type of structure
to extract is implicitly given in terms of distance and similarity measures. In the
context of this thesis we are mainly interested in the tasks of statistical density
estimation and clustering.

2.2.1 Density Estimation

A statistical density is a non-negative function f : X → ℜ≥0 that integrates to
1. A density defines a probability measure by

P (x ∈ A) =

∫

A

f(x)dx

for every measurable A ⊆ X. The goal of density estimation is to find a density
P̂ that approximates the probability P that generated the data, assuming that
the xi are independently identically distributed by P . The typical performance
measure for density estimation is the likelihood:

Definition 2.2.1 (Maximum Likelihood Estimate). Given data x1, . . . , xn in X
and a set of probability distributions defined by densities (fθ)θ∈Λ , the maximum
likelihood estimate is the density fθ that maximizes the data likelihood

L(x1, . . . , xn; f) =

n∑

i=1

log f(xi)

Parametric density approximates the data with density functions with a
fixed functional form, dependent on a parameter θ, while non-parametric density
estimation allows more flexible functions where the form depends more on the
data (e. g. a parametric form where the number of parameters depends on
the size of the data). For example, Gaussian density estimation uses Gaussian
densities with parameter θ = (µ,Σ):

n(µ,Σ)(x) =
1√

(2π)d|Σ|
exp(−1

2
(x− µ)tΣ−1(x− µ)).

Gaussian density estimation is particularly easy to compute, because one can
show that the maximum likelihood estimate is given by the empirical mean
µ̂ and empirical covariance matrix Σ̂ of the data. A more flexible, but still
parametric approach is the Mixture of Gaussians, which assumes that the data
is generated by a fixed number k of Gaussian distributions with probabilities
π1, . . . , πk, i. e. with the density

m =
k∑

i=1

πin(µi,Σi).
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The parameters can be optimized using the Expectation Maximization (EM) al-
gorithm [Dempster et al., 1977], which iterates between probabilistically assign-
ing each data point to one of the mixture components (E-step) and re-computing
the parameters of each component (M-step). See e. g. [Hastie et al., 2001] for
details.

The Mixture of Gaussians becomes a non-parametric approach when setting
k = n. In this case, each data point is taken as a center of one component, the
prior probabilities are set to πi = 1/n and the covariance matrices are fixed to a
pre-specified value. The general case, in which basis functions other than Gaus-
sian densities are allowed, is known as kernel density estimation [Scott, 1992].

Figure 2.7: Gaussian density, mixture of Gaussians and kernel density

Density estimation will play an important role in robust statistics in Section
2.3, because the density value allows to quantify the degree of correspondence
between the general structure in the data and the single observation. In partic-
ular, examples with a low density value do not fit to the rest of the data very
well.

2.2.2 Clustering

The goal of clustering is to assign the observations to different groups (clusters)
such that the observations in each single cluster are similar to each other and
observations from different clusters are not similar to each other. Specific clus-
tering algorithms differ in the type of similarity measure they use. Sometimes
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it is more useful to define clustering in terms of distance measures, where two
observations are the more similar, the less distant they are.

Most clustering algorithms are either hierarchical or partitional. Hierarchi-
cal clusterers construct a hierarchy of clusters, ranging from the most specific
clusters (each observation is one cluster) to the most general cluster (all obser-
vations are in one cluster), where in each level of the hierarchy clusters consist
of the union of more specific clusters. In partitional clustering the number of
clusters k is defined by the user and the clusterer learns a function which maps
each example to its cluster number {1, . . . , k}. In the context of this thesis
we are mainly interested in partitional clustering algorithms, mainly because it
shares some important relations with density estimation.

A very popular clustering algorithm is k-means clustering, which can be
seen as a generalization of mixture-of-Gaussians density estimation. Clusters
are defined by their mean vectors µ and each observation is assigned to the
cluster with the closest mean. A variant of k-means is k-medoids clustering.
The medoid of a cluster C is the observation from the cluster with minimal
sum of distances to each other observation in C. In particular, k-means and k-
medoids have a canonical measure of similarity between a single observation and
a cluster via the similarity of the observation and the mean / median. Often,
these cluster membership values are equivalent to densities with respect to the
construction of confidence measures of classifiers or the identification of outlying
observations.

With respect to interpretability, k-medoids is preferable to k-means, because
a medoid is an observation and as such related to a concrete real-world entity,
while a mean vector is a mathematical construct that does not need to have a
correspondence to a real-word object. For example, in patient data a mean can
be 50% female and 50% male, while a medoid is a concrete patient and hence
either female or male.

2.3 Robust Statistics

The field of robust statistics deals with the problem that in real data, sev-
eral assumptions usually made in statistics can fail or hold only approximately.
In particular, many statistical methods are based on the assumption that the
observed data adheres to a previously known family of distributions (i.e.,a hy-
pothesis language). In practice however, errors in the data are more the rule
than the exception. It is not unusual that because of automatic data acquisi-
tion and the large number of data collected, even very gross errors go unnoticed.
Sources of these errors contain typos (9 instead of 3 or 1, 000 instead of 1.000),
errors in unit conversions (inches instead of meters), malfunctioning equipment
(readings of zero because a wire got loose, spikes in measurements when a device
is turned on) and recording observations that were not expected to happen (a
patient moving instead of lying still when recording an ECG, an observation
for which no suitable table in a database exists). And even if no such error is
present, it is quite possible that a statistical method makes gross errors mod-
eling the data because the actual distribution of the data does not fit to the
family of distributions used in the particular method. In general, serious prob-
lems can occur if there are more observations lying far away from the bulk of
the data than there should be (this problem is called large tails in statistics) or
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observations were assumed as independent when in fact there is a correlation.
Robust statistics deals with the question what can happen in situations

where the usual assumptions are met only partially. [Hampel et al., 1986] define
the main aims of robust statistics as

1. To describe the structure best fitting the bulk of the data.

2. To identify deviating data points (outliers) or deviating substructures for
further treatment, if desired.

3. To identify and give a warning about highly influential data points (lever-
age points).

4. To deal with unsuspected serial correlations, or more generally, with de-
viations from the assumed correlation structures.

The immediate connection to the problem of global and local models is obvi-
ous: In this thesis, the structure best fitting the bulk of the data is called the
global model. Taking the perspective of the global model, any local model will
look like outliers or a deviating substructure, which leads to goal 2. Thirdly, a
very influential data point in the global model may be a sign that this point is
distorting the model and should better be handled by a local model. Hence, in
the context of local models, goal 3 is connected with the question of discrim-
inating between global and local structures and identifying local patterns in
general. The problem formulated in goal 4 lies beyond the scope of this thesis.
It is, however, an interesting task when working with time-dependent data and
concept drift.

Historically, robust statistics dealt mostly with one-dimensional data and
statistics such as estimators for the location and the scale of the data like mean
and variance. A typical analysis in this setting is this: given a set of data points
x1, . . . , xn, the mean x̄ = 1

n

∑n
i=1 xi shows some structure of the data. Then,

the distance di = |xi − x̄| can be used as a measure for the deviation of a point
from the bulk of a data and one could select a threshold τ to define all points
xi with di > τ as outliers. Taking a closer look at x̄, however, makes clear that
even when all but one points lie very close together, the far away point can result
in x̄ lying arbitrarily far away from the rest of the data. Hence, a far away data
point is very influential, as it has a pronounced effect on the discovered structure
x̄. Removing the influence of these influential points, e.g. by removing extreme
points prior to calculating the mean (trimming, using the median), replacing
these points with nearer points (winsorising) or calculating a weighted mean
(L-estimators) leads to an estimate which lies closer to the bulk of the points.
These estimators are less influenced by far away points, they are more robust.

Looking at models for outlier-contaminated data in the supervised learning
setting, one can see that for a regression problem, the general definitions and
aims of robust statistics can be generalized by looking at the mutual distribution
P (X × Y ) of the observations and their label. For a classification model, the
problem becomes more complicated, as we do not have a density on X×{−1, 1}.
One can find a generalization of the usual outlier models by handling P (X|Y =
1) and P (X|Y = −1) separately and defining (x, y) as an outlier if x is an
outlier with respect to the distribution corresponding to y. Notice that in this
case (x, y) can be an outlier either because it is an outlier in the non-supervised
sense, that is, x lies far away of the bulk of the data regardless of its label,
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or because it has the wrong label, meaning it is an outlier with respect to
P (X|Y = y). This demonstrates an essential problem of outliers in supervised
learning: in principle, we are only interested in outliers with respect to the label,
because we are only interested in predicting the label in the first place and it
does not matter if x lies far away from the rest of the data as long as we can
predict its y correctly. But when predicting a new observation, the decision
whether this observation belongs to the main model or constitutes an outlier or
not can only be made on the basis of x, because y is not known at this point.

[Barnett and Lewis, 1994] make a distinction between influential points and
outliers: Consider the data in Figure 2.8. From the unsupervised perspective
it seems clear that point A is an outlier while point B fits to the rest of the
data. From the supervised perspective, it is reasonable to assume a linear
model Y = cX + d behind the data and now it turns out that point A perfectly
fits the linear model, while point B disrupts the structure behind the data.
This shows that inferring about outliers becomes a very complex problem with
structured data, gaining even more complexity with higher dimensions, as it
does not suffice to identify those points that are far away from the rest in some
way. This observation has a deep impact on construction principles for robust
methods: in the unsupervised case robustness is typically achieved by restricting
the influence a single observation can have. If an observation has high influence,
that is, if the model inferred from the data with and without this observation
differ significantly, this is a sign that the observation does not fit to the rest of
the data and should be called an outlier. In the supervised case, a high influence
does not need to be a sign of an outlier. In Figure 2.8 both points A and B have
a high influence on the model parameters c and d, but while the influence of B
is misleading, the influence of A will not disturb the parameters estimation, but
will be highly influential in reducing the standard error of the estimates. In fact,
in a controlled experiment point A may be especially constructed to achieve this
effect by choosing an extreme value of X and observing the corresponding Y.
In conclusion, one need to distinguish carefully between (perhaps influential)
outliers and (perhaps outlying) influential observations, where the important
difference is the ’pattern-breaking’ effect ([Barnett and Lewis, 1994], Ch. 8).

Robust statistics consists of three main parts, namely outlier models, outlier
detection procedures and robust methods. Outlier models are a formalization
of the assumptions how both the uncontaminated data and the outliers are
generated, outlier detection methods test whether some observation x belongs
to a given model or is an outlier, and robust methods estimate the main model
in the presence of outliers. These three parts are closely connected. Obviously,
the construction of an outlier detection method or a robust method depends on
the kind of outliers one accounts for and hence on the outlier model. Further,
given an outlier detection method, removing all outliers and estimating a model
in a classical way gives a robust model. Vice versa, estimating a robust model,
a threshold on the probability density defines an outlier detection procedure.

2.3.1 Outlier Models

The basic idea for outlier models is that there are two data sources, the “valid”
data, usually assumed to belong to a known family of models and the outlier
data, with a generally unknown, possibly very complex distributional form.
Each observation is drawn either from the uncontaminated distribution or from
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(B)

(A)

Figure 2.8: Influential point (A) and outlier (B) with of a linear model.

the outlier distribution, where the a-priori probability of an outlier is unknown,
but less than 0.5. For a finite sample this translates to the property that an
unknown number k of the observations in the sample are outliers.

One point that separates outlier models from models usually used in clas-
sification is that it is assumed that the observations in a sample are drawn
independently of another from the underlying distribution. This assumption is
necessary because the estimation of a model with several dependent observa-
tions is much more complex and often not practicable. Assuming independence
basically means that a sample of size k can be used as a set of k single exam-
ples instead of one example of size k. In the case of outliers, this assumption
may still be necessary and justified for the uncontaminated data, but one can
usually not guarantee this for the contaminated data. For example, assume we
had some technical equipment to automatically record data. As long as these
sensors work properly and the observed instances are selected randomly, it is
safe to assume independence of the sensor readings for each instance. However,
when the sensors fail it may take some time to repair them and hence the prob-
ability of getting a faulty sensor reading is much higher when the last reading
was faulty already.

Next to correlated observations, there are two kinds of outliers that can
occur, namely outliers with respect to location and outliers with respect to
scale. In the strict statistical sense, outlyingness with respect to scale describes
the situation where the outliers have a different mean than the uncontaminated
data while outlyingness with respect to scale means the outliers have a different
variance. In a more general sense, one has to distinguish between the situation
where the interesting properties (mean or optimal classification rule) of the
bulk of the data differ from those of the outliers and the situation where the
interesting properties are the same for both outliers and normal data, but the
variance of the estimator of these properties is different.

According to [Gather and Becker, 1997], the most important statistical mod-
els for outlier-contaminated data are the Ferguson-type model, labeled outlier
models, mixture models and the α-outlier model.



2.3. ROBUST STATISTICS 53

The Ferguson-type model [Ferguson, 1961, Gather, 1989] assumes that the
observations are independent, that the number k of contaminants in the sample
of size N are known, but the positions of the outliers in the sample are not
known. The regular observations belong to an unknown distribution F from a
known class of distributions (hypothesis space) F , while each of the contami-
nants belongs to a possibly different distribution Gi from a class of distributions
that can depend on F . For example, F could be a Gaussian distribution with
unknown mean and variance and each Gi could be a Gaussian distribution with
different mean but same variance.

One problem of the Ferguson-type model is that it may not coincide with
the intuition about outliers. The term ’outlier’ is connected with extremeness
in some way, but in the Ferguson-type model it may be the case that the outlier
distributions are such that the outlier lie right among the regular observations.
Although this may be unlikely for the maximum likelihood Ferguson-type model
[Gather and Kale, 1992], it may still be preferable to assure that only extreme
observations can become outliers. This is done in labeled outlier models, where
the observations are sorted in order of their ’extremeness’ and assumes the first
N − k observations to be uncontaminated and the k most extreme observations
to be the outliers. For both groups a distribution can then be found indepen-
dently of another. This approach needs a formal description of the ’order of
extremeness’ of the observations. For one-dimensional data, the usual order of
the real numbers can be used. For multivariate data, a center-outward ordering
induced by the data depth can be defined [Liu et al., 1999]. A data depth mea-
sure indicates how central a given point is in comparison to the other points
from the sample or with respect to a distribution. Some examples of data depths
are:

Mahalanobis Depth [Mahalanobis, 1936]: this depth is defined based on
the Mahalanobis distance of the point x to the mean of the distribution

D(x) =
1

1 + (x− µ)Σ(x− µ)

where µ is the mean and Σ the covariance matrix of the underlying dis-
tribution or the sample.

Half Space Depth [Hodges, 1955, Tukey, 1975]: this depth is defined as
the infimum of the probabilities of any half-space that includes the point
x.

Convex Hull Depth [Barnett, 1976]: The convex hull depth is defined it-
eratively: all points lying on the convex hull of the data have depth 1, and
all points lying on the convex hull of the data with all points of depth less
than i removed are assigned depth i.

See [Liu et al., 1999] for more examples of data depths and a more detailed
discussion.

Both Ferguson-type and labeled outlier models assume that the number
k of outliers in the sample is known. In practice, this assumption is seldom
fulfilled. Instead, one can view k itself as a random variable distributed by a
Binomial distribution with parameters N and p. This is equivalent to assuming
that each of the N observations is drawn from the regular distribution with
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probability 1 − p and from the outlier distribution with probability p. It is
assumed that the observations are independent and that all outliers come from
the same distribution. The corresponding model is called the mixture model of
outliers.

The α outlier model [Davies and Gather, 1993] is a result of the α outlier
identification rule. First, the α outlier region out(α, F ) of a distribution F with
density f is defined as

out(α, F ) = {x|f(x) < sup{δ|P (f(X) < δ) ≤ α}}.

That is, all points with density below a threshold δ are used and we pick the
largest of these thresholds which has probability of at most α. All points in
out(α, F ) are declared as outliers. Hence, the probability of mistakenly taking
a point from F as an outlier is at most α. The α outlier model is a model with
N − k regular observations, independently drawn from a distribution F and k
outliers. The only assumption about the outliers is that their support lies in
the α outlier region of F .

A problem common to all outlier models is that of model selection. All
outlier models assume the family of models that the regular observations are
distributed by is known. However, it is not clear from the original data which
model class to use, because labeling different observations as outliers may result
in the rest of the points being better modeled by different model classes. For
example in Figure 2.3.1 the data can either be modeled with a diagonal line,
taking points A and B as outliers, or with two lines parallel to the x-axis, taking
points C and D as outliers. Hence, from the contaminated data it may not be
obvious which model class to use for the uncontaminated data. Moreover, the
notions of “similarity” or “deviation” of observations from structures, which
are a fundamental concept for the definition of outliers, depend on a certain
representation of the data. For example, January, 1st and December, 31th
appear to be very far away when encoded as numerical values, but are close
together in the calendar. It is well known that a carefully selected representation
is essential for the success of a statistical analysis or data mining application
and it is important to remember that a transformation of the data can also
mean a change in the assumptions about outliers.

2.3.2 Robust Methods

The problem with outlier detection and outlier models is that in practical ap-
plication it is sometimes very hard to define which observation constitutes an
outlier, because it is not clear what the meaningful structure behind the data
looks like. Only when such a structure is known, observations that do not fit
to this structure or prevent a more sensible structure to be found can be called
outliers with a certain right. This brings us to the area of robust methods.
Roughly speaking, a method is called robust if changes in a small part of the
data only have a bounded, preferably very small, effect on the estimate.

There are several reasons to prefer a robust method. The first reason may
be that one has some prior about the data at hand, such that one can specify
the structure of the process one is looking for or at least can specify some
observations that are definitely not part of the structure one is looking for. For
example, in real-world applications one can often easily specify that a certain
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Figure 2.9: Model selection problem with outliers

measurement cannot exceed some bound, for example the heart rate of a patient
cannot lie above 300. Formally speaking, one has reason to select a specific class
of outlier models, and needs a procedure to analyze the regular observations only.
In other situations one does not have prior knowledge about the model class,
but chooses one based on measures like prediction performance. In this case,
one does not have reason to priori believe that a specific observation will be an
outlier or that the regular observations follow a specific structure and hence it is
not justified that the influence of some observations should be limited or ignored.
Still, the use of a robust method may be justified, as it is questionable whether
a structure inferred from only a small fraction of points will be repeated in new
data and hence lead to an increase in prediction performance. Here robustness
is used as a method to avoid overfitting the data. Finally, robustness is a pre-
requisite for interpretability: it is meaningless to try to understand a model if
a slight change in the data will give a very different model, because in this case
it is safe to say that the model did not capture the basic structure of the data
very good.

It is important to notice that robustness is only one property one would
like to have in a learning algorithm and that indeed an increase in robustness
only comes with a decrease in other performance criteria, such as prediction
performance. The problem is that there is no general way to be sure that a
certain observation is an outlier and not just a very unlikely regular observa-
tion. Hence, by excluding a certain kind of regular observations the learner can
become biased or less efficient.

The Approach based on Influence Functions

Much of the work in robust statistics is based on the influence function. First,
we consider functionals T , defined on a suitable set of probability distributions,
which map a distribution to a vector θ ∈ Θ ⊆ R

d. In particular, T should be de-
fined on the set of empirical distributions. An empirical distribution G(x1,...,xn)

corresponding to a set of observations x1, . . . , xn places probability mass 1/n
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on each xi and mass 0 elsewhere. In short, G(x1,...,xn) = 1
n

∑n
i=1 ∆xi

, where
∆x is the point mass in x. Hence, we can identify a set of observations with
a probability distribution. Next, we only consider statistical procedures which
can be written as a functional.

Definition 2.3.1 (Influence Function [Hampel, 1974]). The influence function
of a functional T at a distribution F is defined as

IF (x;T, F ) := lim
h→0

T ((1 − h)F + h∆x) − T (F )

h

The influence function is a kind of differential that measures how much an
infinitesimal change of the distribution F at a point x will influence the func-
tional’s T estimate of F . The influence function is by construction a local
measure of robustness. There are also many other statistical concepts to for-
malize robustness, like Gross-Error Sensitivity, Self-Standardized Sensitivity, or
Breakdown point (see [Hampel et al., 1986]).

The influence function is straightforward to convert into an easy to compute
empirical measure: instead of measure the influence of an infinitesimal change
of the distribution, we measure the influence of a new example x.

Definition 2.3.2 (Empirical Influence Function [Hampel et al., 1986]). The
value of the empirical influence function of an estimator Tn at a sample X =
(x1, . . . , xn−1) is

eIF (x, Tn,X) = Tn(x1, . . . , xn−1, x).

A variant of the empirical influence function is the sensitivity curve:

Definition 2.3.3 (Sensitivity Curve [Tukey, 1977]). The sensitivity curve of an
estimator Tn at a sample X = (x1, . . . , xn−1) is

SCn(x) = n(Tn(x1, . . . , xn−1, x) − Tn−1(x1, . . . , xn−1))

which is a linear transformation of the empirical influence function. It mea-
sures the difference between the estimates with and without a new observation
at x, scaled with the sample size. Taking the empirical distribution of the sam-
ple as an approximation of the actual distribution F and noting that the new
x corresponds to a point mass contamination of F of size 1/n, we find that the
sensitivity curve can be expected to converge against the influence function for
n→ ∞.

To get an estimate of the covariance matrix one can use the jackknife esti-
mator.

Definition 2.3.4 (i-th Jackknifed Pseudovalue [Tukey, 1958]). The sensitivity
curve of an estimator Tn at a sample X = (x1, . . . , xn) is

T ∗
ni = nTn(x1, . . . , xn) − (n− 1)Tn−1(x1, . . . , xi−1, xi+1, . . . , xn)

Noting that T ∗
ni − Tn(x1, . . . , xn) is the value of the sensitivity curve at xi,

we can approximate the variance of the influence function with respect to a
distribution F by its variance with respect to the empirical distribution Fn
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of the sample, and then approximate the influence function by the sensitivity
curve. This yields

V (T, F ) = V arF (IF (x;T, F )

≈ V arFn
(IF (x;T, F )

= V ar(IF (xi;T, F ); i = 1 . . . , n)

≈ V ar(SCn(x); i = 1 . . . , n)

= V ar(T ∗
ni − Tn(x1, . . . , xn); i = 1 . . . , n)

= V ar(T ∗
ni; i = 1 . . . , n)

=
1

n− 1

n∑

i=1

(T ∗
ni − avg(T ∗

ni))
2

Another empirical measure is the breakdown point which is defined for a
sample:

Definition 2.3.5 (Finite-sample Breakdown Point
[Hampel et al., 1986]). The finite-sample breakdown point of an estimator Tn

at a sample X = (x1, . . . , xn) is

ǫ∗n(Tn;x1, . . . , xn) =
1

n
max{m| max

i1,...,im

sup
y1,...,ym

|T (z1, . . . , zn)| <∞}

where the sample (z1, . . . , zn) is obtained by replacing the data points xi1 , . . . , xim

by the arbitrary values yi, . . . , ym.

However, it is in general unclear how to compute the supremum or to find
suitable points y1, . . . , ym, which makes this definition less practical than the
other empirical measures.

In [Carbrera et al., 1997], empirical robustness measures for estimators T
based on the distance of estimates and a resampling scheme are defined. It is
assumed that there exists a distance measure for estimates that is meaningful
for the task at hand. For a fixed values α ∈]0, 0.5[ and a set of observations
X = (x1, . . . , xn), samples S of size [n(1 − α)] are repeatedly drawn from X
and the distance of T (S) and T (X) is recorded. As a robustness measure, the
median of this distances divided by the maximum distance is proposed. The
authors also consider the measures of the mean divided by the maximum of the
interquartile range divided by the range. In general, one can define

Definition 2.3.6 (Resampling-based Robustness Measure
[Carbrera et al., 1997]). Given a measure of distance of estimates, a sample X
of size n, a constant α ∈]0, 0.5[, and a statistic S for the amount of variability
in a sample of real numbers, the resampling based robustness measure based on
S for an estimator T is the amount of variability in the distance of T (X) to the
value of T on a random subset of X of size [n(1 − α)] over repeatedly selecting
such a random subset.

The definition of the resampling-based robustness measure can be improved.
The problem is that many sophisticated learners have a correction for the finite
data size built in: in order to avoid over-fitting the data, these learners either
automatically or by use of a tunable parameter, adapt their complexity to the
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number of examples available. Generally, less examples will mean a less complex
model being estimated. The resampling-based robustness measure as defined
above compare the model on all available data with a model on a 1 − α sub-
set, hence the distance between the two models is only partly due to unwanted
random effects related to robustness, but partly due to wanted complexity re-
duction. To remove the bias introduced by different levels of complexity in the
estimates, it is better to use the following definition:

Definition 2.3.7 (Unbiased Resampling-based Robustness Measure). Given a
measure of distance of estimates, a sample X of size n, a constant α ∈]0, 0.5[,
and a statistic S for the amount of variability in a sample of real numbers,
the resampling based robustness measure based on S for an estimator T is the
amount of variability in the distance of T on two random subsets of X of size
[n(1 − α)] over repeatedly selecting such a random subset.

Robustness in Prediction Tasks

Up to now we have only considered the estimation of a point θ ∈ Θ ⊆ R
d.

Prediction tasks, i.e. classification and regression, differ from this setting in two
ways. First, the estimate is supposed to be a classification or regression function
f : X → Y , that is, Θ is a hypothesis space H. Second, there is a fixed the
performance criterion, that is, a definition of the optimal θ∗ ∈ Θ. The goal is
to find a function f ∈ H which minimizes the expected error with respect to a
loss function L:

Err(f) :=

∫
L(x, f(x), y)dP (x) → min .

Here, P is the probability distribution of the data and the loss function L :
X × Y × Y → ℜ≥0 measures the error that occurs when predicting the label of
x as f(x) instead of the true y. In many cases the loss function is defined to
depend only on the residual r = f(x)−y. While specific approaches have replace
the criterion of Err(f) with some approximation, because the true distribution
of the data P is generally not known, minimizing the prediction error is the true
goal of prediction.

One measure of the distance of two prediction models, which can be used
to define a resampling-based robustness measure, is the disagreement rate. In
classification tasks, the disagreement rate is defined as the probability that the
two models predict differently

Dis(f, g) = P (f(x) 6= g(x)).

A more general definition could be the estimated loss L of predicting f instead
of g

Dis(f, g) =
1

2

∫
(L(x, f(x), g(x)) + L(x, g(x), f(x))) dP (x)

which coincides with the previous definition for the 0-1-loss usually used in
classification. The empirical version of this measure can be estimated via cross-
validation.

Let us first consider the case of parametric functions. In this case, the
hypothesis space H consists of functions fθ indexed by a parameter θ ∈ Θ ⊆ R

d.
In this case the hypothesis space can be identified with the space Θ and recovered
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the case of point estimation. The best known example of parametric estimation
is the least sum of squares estimator which dates back to Gauss and Legendre.
Given data (xi, yi)

n
i=1 the goal is to find a linear functions

f(x) = θ ∗ x+ θ0 = θ1x
(1) + . . .+ θdx

(d) + θ0

which minimizes the L2 error

L2 =

n∑

i=1

(f(xi) − yi)
2.

The least square estimate is particularly susceptible to outliers, as can be seen
from an example in [Rousseeuw and Leroy, 1987].

This is a general problem when the value of the loss function is unbounded
and hence the influence of an example (x, y) on the estimated function f is
unbounded. We will later see that the crucial step towards robustification of
the estimates is to bound the value of the loss function of the influence one
example can have.

Let us now investigate more general cases of prediction tasks. Not all hy-
pothesis space can be cast into the framework of the estimation of a vector
θ ∈ R

d. For example, Support Vector Machines estimate a function

f(x) =

n∑

i=1

αiK(xi, x) + b

that is, they can be described by a n + 1-dimensional vector (α1, . . . , αn, b),
which is not of a fixed dimension, but depends on the number of examples n.
Logical learners like they occur in decision trees or Inductive Logic Programming
cannot readily be represented as a real vector at all.

Taking a closer look at the definitions of robustness and robustness measures
it turns out that the definitions can be generalized in a straightforward way to
estimates in a Banach space (i.e. a complete normed vector space), where the
norm is necessary to measure the size and distance of the estimates and the
completeness is necessary for the limit in the definition of the influence function
to exist. For example, the kernel function of a Support Vector Machine defines
a Reproducing Kernel Hilbert Space H which contains the SVM function. As
the name says, this space is a Hilbert space and hence a Banach space.

We can further generalize most of the robustness definitions and approximate
the empirical measures if only a measure of the distance or similarity of estimates
is defined. The general ideas and informal definitions of robustness – changes
in small parts of the data should only have a small or bounded effect on the
estimate – do not specify how the size of this effect should be measured at all.
For the empirical measures, the empirical influence function does not need to
be changed, the sensitivity curve can be adapted by using the distance instead
of the difference of the estimates and in the estimate of the variance of the
estimator we can use the variance of the new sensitivity curve approximation.
In the definition of the finite-sample breakdown point it is easy to see that it
is equivalent to replace the absolute value of the estimate by the distance of
the estimate to a fixed default value. The resampling-based robustness measure
again only uses a measure of distance of estimates in its definition.
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Robustness and Predictive Performance

In order to investigate the connection between robustness and predictive perfor-
mance, an experiment was conducted. Over 18 data sets and 10 cross-validation
folds each, 4 learners were compared with respect to predictive performance and
robustness. For each cross-validation fold, two sets of data were generated, each
consisting of a random subset of 80% of the points from the training data. The
learning algorithm was used to induce a model from each of these sets. Hence,
the training sets of both models are to 80% identical. To measure the predictive
performance of the learner, the error of the first model on the test set was re-
ported. To measure the robustness, the fraction of points from the test set that
were predicted differently by the two models was reported, the idea being that
the more robust the model is, the less influence the 20% non-identical examples
in both training sets should have. To obtain more general results, four very dif-
ferent learners were employed: a Support Vector Machine with dot kernel (linear
numeric learner), a Support Vector Machine with radial basis kernel (nonlinear
numeric learner), the J4.8 decision tree algorithm [Witten and Frank, 2000],
which is a variant of the popular C4.5 algorithm [Quinlan, 1993] (propositional
logic tree learner) and the JRip algorithm [Witten and Frank, 2000], which is a
variant of RIPPER [Cohen, 1995] (propositional logic rule set learner).
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Figure 2.10: Prediction error vs. resampling-based prediction difference

Figure 2.10 compares the prediction error and the disagreement rate over
four learners, 18 data sets and 10 cross-validation repetition. It shows that
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most of the data points (89.8%) lies below the diagonal, meaning that with high
probability the disagreement rate is a lower bound of the prediction error. This
result indicates that in order to achieve a low error, robustness is needed.

2.3.3 Robustification of Procedures

After realizing the importance of robustness in learning algorithms and defining
robustness measures to compare different procedures, an interesting question is
how to modify known algorithms to make them more robust. This is not only
interesting as a method to develop novel, hopefully better algorithms, it is also
important because in real-life situations there can be very different requirements
and restrictions apart from accuracy and robustness that call for a particular
learning algorithm or hypothesis space to be used. Hence, it may not be possible
to simply use some very different algorithm that is more robust from a technical
point of view. In conclusion, this leads to the question how learning algorithms
can be robustified without loosing too much of their specific desirable properties.

Huber [Huber, 1964, Huber, 1973, Huber, 1981] proposed the class of M-
estimators. Noticing that many statistical estimators are of the form

n∑

i=1

ρ(xi, Tn) → min
Tn

with ρ = − ln fTn
where f is the density function in maximum likelihood esti-

mation or ρ = (y − f(x))2 in least-sum-of-squares regression, or of the form

n∑

i=1

ψ(xi, Tn) = 0

where ψ is the derivate of ρ, Huber proposed to use also other functions ρ or ψ.

Definition 2.3.8 (M-estimator). Any estimator that can be written in the form

n∑

i=1

ρ(xi, Tn) → min
Tn

or in the form
n∑

i=1

ψ(xi, Tn) = 0

is called an M-estimator.

Obviously, the robustness properties are a matter of choosing the right func-
tion ρ or ψ. One example is to bound the derivative of ρ, e.g. by setting

ψ(x) = min(c,max(−c, ρ′(x)).

In particular, for prediction tasks the M-estimator translates into choosing
a different loss function L. One might ask whether it is admissible to change
the loss function, as the loss function is part of the definition of a prediction
task and changing the loss function will result in changing the learning problem.
In general, this objection is justified. When the setup of the learning problem
states that a misprediction at a certain point x causes a very large error, then
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the model should cover this example closely, even if this means a larger error
on all other examples. On the other hand, in real-world data mining tasks the
loss function is seldom specified precisely, it is more common that only parts of
it are specified, e.g. the desired symmetry properties, or that one simply resorts
to using a standard loss function like least-sum-of-square or minimum absolute
error without further consideration of the alternatives. Also, in the case of
outlier-contaminated data it may be that a model fitted to the contaminated
data with a modified loss function better fits the regular data with respect to
the real problem-specific loss function, as the distorting influence of the outliers
outweighs the errors introduced by the modified loss function.

For the case that outliers have already been identified, the M-estimator can
be modified to bound the influence of these observations.

Definition 2.3.9 (Generalized M-estimators
[Rousseeuw and Leroy, 1987]). An estimator that can be written in the form

n∑

i=1

w(xi)ρ(xi, Tn) → min
Tn

or in the form
n∑

i=1

w(xi)ψ(xi, Tn) = 0

is called M-estimator.

The most simple generalized M-estimator is to set w(x) = 0 for all outliers,
removing the outliers completely.

An approach which is somewhat orthogonal to the M-estimators is to not
modify the loss function, but the way the losses at the individual points are
aggregated into a single value. Instead of summing up, Rousseeuw proposed to
use the median of the squared errors in regression [Rousseeuw, 1984], yielding
the LMS estimator. Originally, the least median idea was only formulated for
regression, as one needs to identify the worst outliers from better approximated
examples, which is not possible for the 0-1-loss usually used in classification.
However, for numerical classifiers of the form sign(f(x)) one can generalize this
definition by looking at the error terms yf(x).

Definition 2.3.10 (Least Median Estimator). Given examples (xi, yi),
n
i=1, a

hypothesis space H and a loss function L, the least median estimator is the
function f ∈ H that minimizes

mediani=1...nL(xi, f(xi), yi).

A closer analysis of LMS regression exhibited that the LMS estimator has an
abnormally slow convergence rate[Rousseeuw, 1984, Rousseeuw and Leroy, 1987].
This may be explained by the fact that it makes use of very little of the informa-
tion in the error terms: only the size of the median is reported, from all other
errors only their order, but not their size is used. Obviously, there are still
many estimators possible that achieve the same median of errors, but predict
the examples with errors below the median better or worse. This is improved in
the least trimmed loss estimator, which is a generalization of Rousseeuw’s least
trimmed squares estimator [Rousseeuw, 1984].



2.4. PROBABILISTIC CLASSIFIERS 63

Definition 2.3.11 (Least Trimmed Loss Estimator). Given a set of examples
(xi, yi),

n
i=1, a hypothesis space H and a loss function L, assume that the ex-

amples are ordered such that L(x1, f(x1), yi) ≤ . . . ≤ L(xn, f(xn), yn). For an
number h, 1 ≤ h ≤ n, the least trimmed loss estimator is the function f ∈ H
that minimizes

h∑

i=1

L(xi, f(xi), yi).

The least trimmed loss estimator can easily be computed by use of a resam-
pling technique. A random subset of h examples is drawn from the training set
and a function is fitted using classical techniques and its error recorded. This
step is repeated for a fixed number of times and the function with the lowest
error is returned [Rousseeuw and Leroy, 1987]. This algorithm can further be
improved by local optimization: after finding the model on the h selected exam-
ples, the h examples with the lowest loss are chosen. If this set of examples differs
from the original h examples, a new model is estimated on these examples. One
example of local optimization can be found in the Minimum Covariance Determi-
nant Estimator [Rousseeuw and Van Driessen, 1999]. Finally, it is also possible
to generalize the least median and least trimmed loss estimators by choosing
other robust measures of the size of the loss, see [Rousseeuw and Leroy, 1987].

2.4 Probabilistic Classifiers

A particular type of numerical classifiers are estimators P̂ (Y = 1|x) of the
conditional class probability P (Y = 1|x). These can be transformed into regular
classifiers via

f(x) = sign
(
P̂ (Y = 1|x) − 0.5

)
.

These types of classifiers are called probabilistic classifiers.

A probabilistic classifier should be well-calibrated, that is for each inter-
val of probabilities [p1, p2] the probability of drawing a positive example given
the classifier predicts P̂ (Y = 1|x) ∈ [p1, p2] should also be in [p1, p2]. How-
ever, calibration is not sufficient because it is easy to construct a perfectly cali-
brated classifier by assigning the default probability P (Y = 1) to all examples
[Niculescu-Mizil and Caruana, 2005].

A better approach is to measure the error of a probabilistic classifier by
a loss function, e.g. the squared loss (using y ∈ {0, 1} as the target) or the
cross-entropy loss (see Section 2.1.1). For these losses it can be shown that a
small error corresponds to a small distance of the distributions P (Y = 1|x) and
P̂ (Y = 1|x).

2.4.1 Probabilistic Scaling Methods

Softmax Scaling

Probably the easiest scaling method is softmax scaling, which is defined by

σsoftmax(f(x)) =
1

1 + exp(−2f(x))
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The softmax scaler monotonically maps the real function values f(x) into the
interval ]0, 1[ and hence adheres to the intuition that a higher value of f(x)
corresponds to a higher conditional class probabilities σ(f(x)) = P (Y = 1|x).
It also maps the critical value f(x) = 0 into P (Y = 1|x) = 1/2, the value of
maximum uncertainty of the class. However, interpreting the softmax values as
probabilities is not justified by any information from the examples; the scaler
is not calibrated over the data set at all. It hence relies completely on the
learner to give meaningful values f(x) ≈ − 1

2 log(P (Y = 1|x)−1 − 1) (which, by
the way, is exactly the idea of logistic regression and kernel logistic regression
[Wahba, 1999]).

Gaussian Scaling

Gaussian Scaling assumes the function values f(x) are distributed according to
a mixture of two Gaussians, one for each class. Given a training set (xi, yi),
the mean µ1 and standard deviation σ1 of the two sets {f(xi)|yi = 1} and
the corresponding values µ−1 and σ−1 are computed. This yields Gaussian
density functions nµy,σy

(·) for y ∈ {−1, 1}. The conditional class probability
then follows from standard statistics as

σGauss(f(x)) =
nµ1,σ1

(f(x))

nµ1,σ1
(f(x)) + nµ−1,σ−1

(f(x))

As a special case, for σ1 = σ−1 and µ1 + µ−1 = σ1, the Gaussian scaling
function is identical to the softmax scaler. It should also be noted that the
Gaussian scaling function is only monotonic for σ1 = σ−1.

Isotonic Regression Scaling

Isotonic Regression [Zadrozny and Elkan, 2002] computes a monotonic, piece-
wise constant scaling function. The algorithm runs as follows: let the training
set (xi, yi)i∈I by ordered by f(xi). Define probability values pi := 1 iff y = 1
and pi := 0 iff y = −1. and weights wi := 1. For any two consecutive values
i and i + 1 that violate strict monotonicity, that is pi ≥ pi+1, remove these
two values from I and replace them by a new value i′ with f(xi′) = f(xi),
wi′ = wi +wi+1 and pi′ = (wipi +wi+1pi+1)/wi′ . Iterate this step until no more
violators of the monotonicity are found. Then, the final value f(xi), i ∈ I, define
the thresholds of the piecewise constant function and pi, i ∈ I the corresponding
scaled values.

One can also post-process the piecewise constant function in order to get a
continuous or smooth function, e.g. by approximation with splines.

Beta Scaling

Beta Scaling [Garczarek, 2002] is a scaling methods designed for multiple classes.
Given functions f1(x), ·, fk(x) that predict the membership of x in the k classes,
the Beta Scaling algorithm assigns each example to the class with the highest
membership value and scales each predicted class independently of the oth-
ers. The membership values fi(x) are initially scaled with an ad-hoc method,
e.g. softmax scaling, and then both the scaled membership values and the true
classes on an independent test set are viewed as realizations of Beta distributed
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random variables. The Beta distributions are a flexible class of distributions
that are completely characterized by their means and standard deviations. Op-
timally, both Beta random variables should agree and hence the parameters of
the two Beta distributions are selected such that the mean of the membership
values and class values agree. The standard deviation of the membership val-
ues is taken from the observations. The standard deviation of the distribution
modeling the true classes is finally optimized to minimize the mean squared
error.

Beta distributions are of the form

B(α, β)(x) =
Γ(α+ β)

Γ(α) + Γ(β)
(1 − x)β−1xα−1

with parameters α and β dependent on the mean and standard deviation, such
that the final scaling function has the form

σBeta(f(x)) = B(αT , βT )−1B(αM , βM )(σsoftmax(f(x)))

where the subscript M denotes the parameters estimated from the membership
function and the subscript T denotes the parameters estimated from the true
class.
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Figure 2.11: Beta Scaling Function

Beta Scaling has the problem that due to the independent scaling of the two
predicted classes, the scaled function does not need to be continuous at the class
borders. In Figure 2.11 we see the linear SVM decision function f(x) on the
Business data set plotted against the Beta Scalers estimation of P (Y = 1|x) on
the y-axis. There is obviously a discontinuity at f(x) = 0 which is not justified
by the continuous SVM decision function. This makes the estimated values
around f(x) = 0 unreliable. In Section 2.4.2 a modification of Beta Scaling for
the two class case will be presented that avoids discontinuities.
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Platt Scaling

Platt Scaling [Platt, 1999] was originally introduced for scaling Support Vector
Machines outputs but has been shown to be efficient for many other numerical
decision functions as well [Niculescu-Mizil and Caruana, 2005]. Based on an
empirical analysis of the distribution of SVM decision function values, Platt
suggests to use a scaling function

σPlatt(f(x)) =
1

1 + exp(Af(x) +B)
.

The form of the function is partly motivated by a monotonicity assumption,
note that this is exactly the form of Gaussian Scaling when the Gaussian scaling
function is monotonic.

The parameters A and B are optimized using gradient descend to minimize
the cross-entropy error

−
n∑

i=1

ti log(σPlatt(f(xi))) + (1 − ti) log(1 − σPlatt(f(xi)))

where ti is defined as ti = N1+1
N1+2 if yi = 1 and ti = N−1+1

N−1+2 if yi = −1 where Ny is

the number of examples with label y, these values are used instead of ti ∈ {0, 1}
to give a uniform uninformative Bayes prior over the true class probability.

2.4.2 Novel Probabilistic Scaling Methods

This section describes three new ideas for scaling methods, namely a fix for Beta
Scaling of binary classes, a robustification of Platt Scaling, and a simple scaling
algorithm for Support Vector Machines.

Binary Beta Scaling

We have seen that Beta Scaling suffers from the discontinuities at the class
border which stem from the independent scaling of each predicted class. For
binary problems, this problem can be circumvented by jointly modeling the
positive class probability P (Y = 1|x) instead of the correctness probability
P (y|x). This allows to model Beta distributions over both predicted classes
simultaneously. The rest of the algorithm remains unchanged.

This trick works only for the binary case, as is makes use of the fact that
P (Y 6= y|x) = 1 − P (Y = −y|x), thereby connecting the error probability to
the correctness probability of the complementary class.

Robust Platt Scaling

Platt Scaling uses the logarithm of the predicted class in its cross-entropy target
function and hence gives high weight to mispredicted points with high confidence
f(xi). This becomes a problem when a small set of outliers can not be appro-
priately modeled by the classifier. In particular with a linear classifier, these
outliers may get a very high confidence value, simply because they are very
far away from the linear decision function and hence a small set of points can
contribute a large part of the cross-entropy error. When the scaler lowers the
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probability prediction to reduce the error on these examples, due to the mono-
tonicity assumption the prediction on the rest of the examples from the same
predicted class will decrease as well, effectively increasing the error on a large
part of the examples.

This motivates a robustification of Platt Scaling. Inspired by a similar prob-
lem in robust regression, the least trimmed loss and least median loss estimator
[Rousseeuw, 1984, Rousseeuw and Leroy, 1987] from robust statistics are trans-
ferred to this problem.

The more simple approach is to remove a fraction τ , say τ = 0.05, of the
examples with highest absolute value |f(x)| in order to bound the maximum
influence a example can have. This approach will be denoted the Robust Platt
algorithm in the experiments.

A more sophisticated approach is to optimize the fraction τ over values in
]0.5, 1]. In order to get a reliable estimate of the overall error, the median of
the errors of all training examples is used to select τ . This approach is denoted
the Robust Platt Median algorithm in the experiments.

Theoretical Background and a Simple SVM Scaling

The goal of classification algorithms is to predict the class label itself, not its
probability. Of course, these goals are connected, but it still raises the question
if there is a bound on the error one can achieve by scaling a classifier into a
probability prediction. Bartlett and Tewari [Bartlett and Tewari, 2004] show
that there is a tradeoff between sparseness of a classifier and the ability to
estimate conditional probabilities. Their theorem shows that if the conditional
class probability can be estimated on some interval of values of f , sparseness is
lost in that region.

Support Vector Machines are sparse classifiers, they only put a restriction on
those examples with yf(x) ≤ 1. Hence, an optimal class probability estimation
is only possible for values |f(x)| ≤ 1. This motivates to only scale the SVM in
the region |f(x)| ≤ 1 and use a trivial scaler for the rest of the examples.

The following trivial scaling algorithm implements this idea: the training
examples are divided into three sets, those with function values f(x) < −1,
values f(x) ∈ [−1, 1] and values f(x) > −1. For the examples with values
f(x) > 1, the scaled value is the simply the precision of the rule in this region,
accordingly for the examples with values f(x) < −1. For the examples with
values f(x) ∈ [−1, 1], the scaled value is of the form

σsimple(f(x)) =
1

1 + exp(Af(x))

where the constant A is chosen such that σsimple(1) is the weighted mean of
the precisions in the outer regions. This yields small discontinuities at −1 and
1, but the scaling function is still monotonic. This scaling function requires no
optimization and can be computed in a single run over the training set.

2.4.3 Empirical Comparison

The following table shows the mean squared error and the cross-entropy error of
the compared methods for both the linear and the radial basis function Support
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Vector Machine. The given numbers are the means over the 18 standard data
sets.

Method linear RBF
MSE CRE MSE CRE

Platt Scaling 0.0891 0.2808 0.0809 0.2520
Beta Scaling 0.5352 8.3067 0.5312 6.7117
Isotonic Regression 0.0904 0.2847 0.0825 0.2613
Gauss 0.0877 0.2740 0.0831 0.2776
Binning 0.0982 0.3367 0.0858 0.3105
Softmax 0.0896 0.3013 0.1065 0.3491
Precision 0.0942 0.3032 0.1049 0.3344
Binary Beta 0.0887 0.2873 0.0870 0.2889
Robust Platt 0.0885 0.2793 0.0809 0.2519
Robust Platt Median 0.0869 0.2750 0.0808 0.2520
Simple Scale 0.0860 0.2716 0.1155 0.3476

As means over different data sets are hard to compare, every method was
compared against every other using a paired t-test with confidence level α =
0.05. The following table lists on how many data sets the method in the row
was better than the method in the column. This table contains the results for
the linear SVM and the mean squared error.

Name Pl Be Is Ga Bi So Pr BB RP RPM Si
Platt Scaling - 18 4 4 9 7 8 6 0 0 2
Beta Scaling 0 - 0 0 0 0 0 0 0 0 0
Isotonic Reg. 3 18 - 2 8 7 6 4 2 1 1
Gauss 6 18 5 - 12 7 9 6 6 4 6
Binning 2 18 1 2 - 1 5 1 1 1 1
Softmax 4 18 6 3 9 - 7 4 4 4 0
Precision 3 18 2 2 7 5 - 6 3 3 0
Binary Beta 5 18 5 5 9 5 8 - 3 1 1
Robust Platt 11 18 5 5 9 7 9 6 - 0 3
Rob. Platt Med 9 18 8 4 12 10 8 7 7 - 4
Simple Scale 5 18 6 5 11 10 11 7 4 3 -

The results for the linear SVM with the cross-entropy loss:

Name Pl Be Is Ga Bi So Pr BB RP RPM Si
Platt Scaling - 18 3 5 8 9 8 6 0 0 3
Beta Scaling 0 - 0 0 0 0 0 0 0 0 0
Isotonic Reg. 4 18 - 3 6 9 7 4 2 1 2
Gauss 9 18 7 - 8 8 10 8 9 7 7
Binning 2 18 1 2 - 5 4 2 1 0 1
Softmax 3 18 2 2 5 - 5 3 3 3 0
Precision 3 18 2 1 4 5 - 5 3 2 1
Binary Beta 5 18 3 7 5 10 8 - 4 1 2
Robust Platt 11 18 4 6 8 10 9 6 - 0 3
Rob. Platt Med 9 18 4 6 10 10 9 6 7 - 3
Simple Scale 7 18 5 5 10 9 12 7 5 4 -
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The results for the radial basis SVM with mean squared error:

Name Pl Be Is Ga Bi So Pr BB RP RPM Si
Platt Scaling - 18 3 5 8 13 13 11 0 1 10
Beta Scaling 0 - 0 0 0 0 0 0 0 0 0
Isotonic Reg. 2 18 - 3 4 11 12 7 2 0 5
Gauss 0 18 3 - 4 11 13 7 0 0 8
Binning 0 18 0 0 - 9 11 5 0 0 5
Softmax 0 18 0 0 1 - 7 0 0 0 6
Precision 0 18 0 0 1 6 - 5 0 0 2
Binary Beta 0 18 0 1 4 9 9 - 0 0 6
Robust Platt 4 18 3 5 8 13 13 11 - 1 10
Rob. Platt Med 4 18 2 6 7 14 13 9 2 - 9
Simple Scale 1 18 0 2 5 6 12 4 1 1 -

The results for the radial basis SVM with the cross-entropy loss:

Name Pl Be Is Ga Bi So Pr BB RP RPM Si
Platt Scaling - 18 3 7 5 13 17 11 3 0 10
Beta Scaling 0 - 0 0 0 0 0 0 0 0 0
Isotonic Reg. 1 18 - 6 2 12 15 8 1 1 4
Gauss 1 18 2 - 3 9 13 6 1 1 7
Binning 0 18 0 4 - 10 10 6 0 0 6
Softmax 0 18 0 2 0 - 7 0 0 0 5
Precision 0 18 0 1 0 5 - 4 0 0 2
Binary Beta 0 18 0 3 0 10 10 - 0 0 6
Robust Platt 5 18 4 7 5 13 17 11 - 0 10
Rob. Platt Med 5 18 2 8 4 13 16 10 5 - 9
Simple Scale 1 18 0 3 3 9 14 7 0 0 -

The final table sums up the rows of each of the last four tables, that is, it
lists the number of times the method in the row was better than some other
method on some data set.

Method linear RBF
MSE CRE MSE CRE

Platt Scaling 58 60 82 87
Beta Scaling 0 0 0 0
Isotonic Reg. 52 56 64 68
Gauss 79 91 64 61
Binning 33 36 48 54
Softmax 59 44 32 32
Precision 49 44 32 30
Binary Beta 60 63 47 47
Robust Platt 73 75 86 90
Rob. Platt Med 87 82 84 90
Simple Scale 80 82 50 55

Beta Scaling clearly performs worst. This is due to the fact that in Beta Scal-
ing both classes are handled independently of another. When both classes are
combined in binary Beta Scaling, the performance becomes comparable to the
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other methods. The best performance for the linear SVM and the MSE is the
new Robust Platt Medium approach, followed by Simple Scaling. For the lin-
ear SVM and the cross-entropy, Gaussian Scaling is best with the Robust Platt
Medium and Simple Scaling both second. For the radial basis SVM and both er-
ror measures, the robust Platt scaling performs best with Robust Platt Medium
a close second.

In conclusion, the Robust Platt Medium performs consistently good over
all data sets and error measures. A big surprise is the good performance of
the Gaussian Model and the Simple Scaler, which have a good performance in
particular for the linear Support Vector Machine with the lowest computational
efforts.



Chapter 3

Optimizing the Global

Model

This chapter deals with the optimization of a classification model in order to
improve interpretability. Rather than optimizing models of a specific learner
or constructing a new learning algorithm, the goal of this chapter is to inves-
tigate techniques to optimize interpretability for any learner, regardless of its
functionality and with no or very limited assumptions about the inner structure
of the model. The maximization of interpretability is based on the heuristics
explained in Section 1.1.2.

First, Section 3.1 will deal with feature selection. Feature selection can
be performed with any kind of classifier and aims at reducing the number of
concepts that are necessary to describe a single observation. In particular, in
Section 3.1.5 a new feature selection method will be presented that is especially
targeted at the situations where feature selection matters most, namely large
sets of observations, slow learning time and non-linear numerical classifiers.

A second very general approach is instance selection, which will be investi-
gated in Section 3.2. The idea is targeted at bringing the explanation of the
model close to the data by extracting a small set of examples that are rep-
resentative of the data from the view of the classifier. It will be shown that
a clustering algorithm can be employed to extract prototypical instances that
carry information about the way the hypothesis space of the classifier and the
examples labels structure the data space.

Section 3.3 deals with de-composing complex non-linear models into smaller,
easier to understand linear local models. At the end of this chapter the question
how the direct reduction of a technical complexity measure influences the accu-
racy and interpretability of a model will be investigated. Several techniques of
complexity reduction exist in standard learning algorithms to fight over-fitting
the data and to increase accuracy, but up to now there is no investigation of
the effect of these techniques when the level of complexity of the learner is re-
stricted to a higher extend than necessary for accuracy optimization. Section
3.4 presents an empirical investigation of this question.

71
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3.1 Feature Selection

Feature selection [Liu and Motoda, 1998] is an important step in simplifying a
classifier, because humans are very constrained in the number of mental con-
cepts they can operate with. As usually the representation of the examples is
designed driven from the application, a feature usually represents a well-defined
real-world aspect of the data that is meaningful by itself. Hence, in reducing
the number of features that are necessary in a classification rule, the number
of concepts the user has to deal with when trying to understand the rule is
minimized. For example, in an exemplary multimedia application that will be
described in Section 6.3, feature selection will be used to extract from a classifier
over 44 audio features and 508 text features the 10 simple keywords groove,

smooth, chill, jazzy, mood, fusion, piano, piece, paul, and jazz, which
are obviously sufficient to describe the musical taste the classifier has learned
to predict.

An empirical investigation in [Mladenic et al., 2004] has also shown that fea-
ture selection with respect to one algorithm (in this case linear SVM weights)
also works well with other learning algorithms (here Naive Bayes and the Per-
ceptron). This seems to indicate that feature selection does not need to depend
strongly on a single learning algorithm, but does capture the general importance
of features.

Although the impact of feature selection on interpretability is obvious, fea-
ture selection is usually motivated from the perspective of classification per-
formance. From the No-Free-Lunch-Theorem [Wolpert and Macready, 1997] we
know that on the average over all learning problems, any two learners achieve
equal performance. Hence, a carefully selected representation of the learning
problem is the key to better than average performance. The difference in select-
ing features for interpretability and for performance is that in order to achieve a
sufficient level of interpretability the number of features may have to be reduced
so much that the accuracy is negatively affected.

Finally, a carefully selected set of features not only maximizes classification
accuracy, a minimal set of features may also be desirable to speed up the clas-
sifier. Many classifiers can efficiently deal with only a low number of features,
making learning infeasible for many real-world learning tasks. While there are
other learners such as Support Vector Machines that can deal with problems of
very high dimension [Joachims, 1998], there may still be a problem to efficiently
apply the model to data sets containing millions of observations, e. g. in online
databases for the detection of credit card fraud. For example, the application of
a SVM model to new observations can be implemented as pure SQL code inside
a relational database [Rüping, 2002b, Rüping, 2002a], and in this case reduc-
ing the features (and hence the database operations) can result in a dramatic
speedup of the classification process.

In general, feature selection is a very complex problem, as it not only con-
cerns the characteristics of the data set, but also the geometry of the hypoth-
esis space, the learning strategy and the influence of the learners parameters
over input spaces of different dimensions. In particular, one cannot conclude
that a superset of features always performs at least as good as any of its sub-
sets, because estimating an optimal model from a fixed size data set becomes
increasingly hard in higher dimensions. This is known as the Curse of Di-
mensionality [Bellman, 1961]. There are several results on the complexity of
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feature selection. For example, finding a subset of n features, such that no
two examples have identical feature values and different class value, is NP-hard
[Davies and Russell, 1994]. Even in the case of the seemingly more simple linear
classifiers, minimizing the number of features of a separating linear classifier is
NP-hard [Amaldi and Kann, 1998].

3.1.1 General Feature Selection Methods

In general, the only way to find an optimal set of features is to test all 2d

possible feature sets. As this is practically infeasible for all but very small
numbers of features, one usually has to resort to a heuristic. Trivial heuristics
are known as the filter approach, where criteria such as correlation of the feature
with the label or mutual information of the feature and the label are used to
select promising features. However, this approach does not account for the role
the hypothesis space plays and for the dependencies between the features and
consequently shows only suboptimal results.

A better but computationally more expensive idea is the wrapper approach
[Kohavi and John, 1997, Kohavi and John, 1998], which describes the general
idea of using the actual performance of the learner on the feature sets to guide
the feature selection by repeatedly calling the learner with different sets of fea-
tures.
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Figure 3.1: Backward selection, forward selection and stepwise selection.

One particular variant of the wrapper approach is backward selection, where
one starts with the full set of features and then iteratively removes one feature
as long as the error decreases. In each step, the feature to remove from the
set of k available features is selected by testing the learner on all feature sub-
sets of size k − 1 and chosing the feature whose removal reduces classification
performance the least. The order in which the features are removed gives a
ranking of feature importance. The complementary approach of starting with
the empty set of features and iteratively adding one feature is known as forward
selection. Forward selection is computationally more simple, because it starts
with smaller feature sets, but is likely to give worse results because reliable in-
formation about the importance of a feature requires a reasonably good model
which is unlikely be found with too few features. A third variant is stepwise
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selection, which always iterates over all features and includes all features that
increased the accuracy and removes all other features. Figure 3.1 shows how
backward selection (blue), forward selection (red) and stepwise selection (green)
navigate through the lattice of feature sets.

One can easily see that backward and forward selection require
∑d

i=2 i =
Θ(d2) runs of the learner. A shorter runtime can be achieved by a Wrapper-
Filter-combination, where the error of the learner on the full feature set minus
one feature is used as the weight of the feature (the higher the error when the
feature is removed, the more important the feature is). That is, only the first
iteration of backward selection is executed and used as performance measure
for the feature filter. This results in Θ(d) runs of the learner.

A randomized approach for feature selection based on genetic algorithms has
been proposed [Punch et al., 1993, Yang and Honovar, 1998]. However, genetic
algorithms also need a high number of learning runs to evaluate the different
feature sets. Hence, we exclude these approaches from our investigation for
performance reasons.

A simple randomized feature selection can be based on resampling: this
method generates a fixed number of feature sets and returns the one with best
classification performance. The experiments will show that this method is sur-
prisingly effective for a small number i of iterations, e. g. i =

√
d.

3.1.2 Feature Selection for Logical Classifiers

Most logical classifiers build up a rule step by step in order to exploit the
structure given by generalization and specification of rule. For example, the
rule A → C is more general than A&B → C and hence one can conclude that
if the first rule does not cover enough examples, neither will the second rule
without further testing.

Therefore, logical classifiers implicitely contain a feature selection step in the
core of the learning algorithm. For example, decision tree learning [Quinlan, 1986]
can simply be described as recursively finding the best feature to split the cur-
rent training set by. Similarly, the refinement step in covering rule learners is
basically a feature selection step. In first-order logic, the search for the best
features can additionally be guided by the user by a proper definition of the
predicates and a sorted logic [Muggleton, 1992b, Morik et al., 1993].

In conclusion, feature selection is much less a problem for logical classifiers
than it is for numerical classifiers. For this reason in the rest of this section we
restrict the analysis to numerical classifiers.

3.1.3 Linear Feature Selection

For linear classifiers f(x) = w ∗ x + b the absolute value |w| of the weight
vector gives a canonical feature weight, given the features are scaled to identical
variance beforehand (we will assume this for the rest of the paper). Indeed, one
can see that several more complex feature selection methods for Support Vector
Machines boil down to this approach [Guyon and Elisseeff, 2003]. This feature
selection measure is particularly appealing as it requires to run the learner only
once.

This method may not provide an optimal set of features because of the
problem of feature correlation. Consider the case of d features x1, x2, . . . , xd
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and let w be the weights of the optimal linear classifier. Now assume, we add a
feature which is highly correlated with an existing feature. In the extreme case,
we could add a copy of x1 to the features. It is easy to see that for the new set
of features x1, x1, x2, . . . , xd, the weight vector

wλ = (λ,w1 − λ,w2, . . . , wd)

describes the same linear classifier as w on the original features (with the same b)
for all λ ∈ R. We can further see that in the case of SVMs the complexity term
||wλ||2 is minimized for λ = w1/2. It follows that (w1/2, w1/2, w2, . . . , wd) is the
optimal classifier for the larger feature set. Of course we can arbitrarily repeat
the same process. In other words, we can make a feature weight arbitrarily
small by simply adding highly correlated features.

Vice versa this means that the importance of a group of correlated features,
of which at least one feature is needed to make a good prediction, is underes-
timated by this method. One can circumvent this problem by removing one
feature at a time and re-training the classifier afterwards, or at least re-training
the classifier after a certain number of variables are removed. One could also
transform the data using principal components, forcing the features to be un-
correlated, but of course in terms of interpretability the transformed features
offer no advantage over using all features at once.

The proof of the NP-hardness of minimizing the number of features of a
separating linear classifier [Amaldi and Kann, 1998] shows that this is not only
an effect of the 2-norm used in SVMs.

3.1.4 Feature Selection for Nonlinear Classifiers

Feature selection for general nonlinear classifiers is the hardest feature selection
problem, as there is no global measure of an attribute’s importance like the
weight for a linear classifier or the number of times it was selected in the induced
hypothesis for a logical classifier.

This section investigates feature selection for nonlinear Support Vector Ma-
chines. In spirit of the interpretability approach, the problem is defined to
efficiently reduce a set of d features to a set of size k << d, where k is selected
by the user. We approach this problem by constructing feature weights wi, such
that the feature set in question is given by the k highest weighted features (ac-
tually, we would only need a ranking of the features). This has the advantage
that the user can try out different values of k without the need to start the
feature selection procedure all over again.

A multitude of feature selection algorithms have already been proposed for
Support Vector Machines [Guyon and Elisseeff, 2003]. Let us first survey a num-
ber of existing SVM-related feature selection algorithms.

Radius/Margin Bound Feature Selection

[Weston et al., 2000] propose a feature selection method based on the following
proposition:

Theorem 3.1.1 (Radius/Margin Bound [Vapnik, 1998]). Let W (α) be the tar-
get function of the SVM given by dual variables α, R be the radius of a sphere
in feature space containing the training data and l be the size of the training
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set. If the training data is separated with positive margin, the expectation of the
error probability over all training sets of size l is bounded by

EPErr ≤ 1

l
R2W 2(α).

This bound is called the radius/margin bound.

The idea is now to scale the features x1, . . . , xd by scaling factors σ1, . . . , σd

and minimize the radius/margin bound with respect to σ. The optimal factors σ
are then used as weights of the features. Optimization is carried out by gradient
descend algorithm. A SVM is trained with feature weights σ. For this SVM,
the gradient of the radius/margin bound with respect to σ is computed and a
gradient descend step is carried out to find new weights σ′. These steps are
iterated until convergence.

The drawback of this approach is that is does not only require to learn an
SVM at each gradient descend step, but also requires the solution of another
quadratic programming problem to find the radius R of the data scaled with
the new scaling factor.

Gradients of Performance Criteria

Rakotomamonjy [Rakotomamonjy, 2003] proposes to use the derivatives of the
performance criteria for feature selection instead of the criteria themselves. The
criteria he considers are the weight vector norm ||w||2, the radius/margin bound
and the span bound [Vapnik and Chapelle, 2000]. Computing the gradients
requires only one run of the SVM. In particular, the weight vector norm gradient
was reported to perform consistently well in [Rakotomamonjy, 2003].

3.1.5 Large-Scale Non-Linear Feature Selection

The previously discussed feature selection methods for nonlinear classifiers all
employ very computation intensive techniques. This section presents a new
method for non-linear feature selection, which computes feature weights after
only one run of the learning algorithm in a fashion similar to the successful
approach of the weight vector for linear SVMs. This allows to efficiently employ
this approach even for high-dimension datasets, which will not be possible for
the slower more computation intensive methods.

In the spirit of linear feature weights different linear approximations to the
SVM function

f(x) =
∑

αiyiK(xi, x) + b

are used. That is, instead of using the gradient of some performance criterion as
in Rakotomamonjy’s method, we directly use the gradient ∇f(x) of the decision
function. This gradient is evaluated at all training points x ∈ Mf = {x :
|f(x)| ≤ 1}, i. e. the set Mf contains the training points which fall on the
border or inside of the margin. Note that Mf is a subset of the support vectors,
excluding the bounded support vectors outside of the margin.

The intuition is that non-support vectors do not restrict the form of the
decision function (removing them results in the same decision function) and
hence, the form of the decision function and the gradient is somewhat arbitrary
as long as yf(x) > 1. As a conclusion, these points are likely to not give reliable
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information about feature importance. Points exceeding the margin on the other
side, i. e. points x with yf(x) < −1, disagree with the rest of the data so much
that are likely to be classified wrong with every kind of feature selection, hence
they are excluded as well.

Computing the gradient leaves us with several weights for each feature, one
for each training point in Mf . To aggregate these weights into a single weight
wi for each feature, we proceed as follows: the weights for each feature i are
sorted increasingly and the aggregated weight wi is set to the weight at position
q · |Mf | in the sorted sequence, where q ∈ [0, 1] is a user-defined parameter. This
accounts for the fact that features may have different importance in different
parts of the input space. The meaning of wi is that the i-th feature has an
importance of at least wi for a fraction of 1 − q of the examples in Mf . In the
experiments, q = 0.75 was used.

For a more formal justification of this approach, note that the SVM decision
function f can be written as

f(x) = w ∗ Φ(x) + b,

where Φ is a mapping that induces the kernel via K(x, x′) = Φ(x) ∗ Φ(x′) and
w is the hyperplane normal vector in feature space. Putting differentiability
considerations aside, the partial derivate of f can be written as

∂if(x) = ∂i(w ∗ Φ)(x) = w ∗ ∂iΦ(x)

and hence
||∇f(x)|| ≤ ||w|| · ||∇Φ(x)||.

As the gradient of Φ is fixed by the choice of the kernel, minimizing ||w|| in
the primal SVM problem leads to the minimization of the norm of the gradient
of the SVM decision function. Hence, the SVM seeks to find the smoothest
function that predicts the data. The control of the gradient shows that a high
partial derivate in the direction of one feature at a point x can only be due
to the fact that this feature is needed to correctly classify the points in the
neighborhood of x.

In conclusion, the presented method could theoretically be applied to any
classifier with derivable decision function, but promises particular good perfo-
mance in the case of learners that find smooth function like the SVM.

Experiments

This section will validate the proposed algorithm in terms of classification per-
formance. Following the discussion from the introduction, it would also be
interesting to investigate how interpretability is affected by a specific choice of
features. But as interpretability can hardly be quantified, this investigation will
be restricted to directly measurable performance criteria, hoping that a high
quality model with few features will somehow be interesting to the user.

A radial basis SVM was used as the nonlinear classifier. For each data
set, three experiments of dimension reduction were performed. In the first
experiment, the number of features was reduced from the full set of features
to 75%, in the second run, 50% of the features were selected and in the final
experiment, 25% of the features were selected. All reported results were obtained
with 10-fold cross-validation.
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The new quantile-of-gradients approach was compared against other feature
selection methods that allow a fast computation, namely the backward selec-
tion filter (selecting features by only the first step of backward selection), the
correlation filter (correlation between feature and class), the resampling-based
feature selection (evaluating

√
d random feature subsets) and Rakotomamonjy’s

method. More complex feature selection methods like full backward selection,
iterative methods like the radius/margin bound feature selection or repeatedly
removing a smaller subset of the features and re-training the classifier are likely
to give better results, but are not included in the comparison, as this investiga-
tion is targeted at finding a feature selection methods for large high-dimensional
data sets, where an iterative procedure is too slow.

The following table compares the complexity of several feature selection
methods in term of the number of necessary calls to the learner.

Method Complexity
Backward Selection O(d2)
1-step backward selection d
Weston #iterations

Resampling
√
d

Rakatomamonjy 1
Quantile 1
Correlation 0

Preliminary experiments suggested that the parameter q of the gradient
feature selection is best set to q = 0.75 over all data sets and dimensions.

The following table shows the accuracy when reducing the number of features
to 3/4 of its original size. The first column contains the name of the data set, the
second column the backward-selection-filter, the third column the correlation
filter, the fourth column the resampling-based feature selection, the fifth column
Rakotomamonjy’s performance criteria gradients and the final column the new
quantile of gradients approach.

Name Backward Correlation Resampling Perf. Grad. Quantile
liver 0.710 0.608 0.710 0.686 0.684
diabetes 0.769 0.766 0.769 0.773 0.766
breast 0.969 0.967 0.966 0.970 0.969
business 0.872 0.840 0.834 0.822 0.854
wine 0.988 0.977 0.982 0.977 0.971
voting 0.965 0.951 0.960 0.956 0.965
medicine 0.803 0.811 0.811 0.811 0.813
dermatology 1.000 1.000 1.000 1.000 1.000
ionosphere 0.940 0.928 0.940 0.937 0.934
covtype 0.800 0.793 0.804 0.801 0.803
digits 0.993 0.996 0.997 0.998 0.997
physics 0.506 0.506 0.506 0.506 0.506
mushroom 0.994 1.000 0.999 0.999 0.999
insurance 0.998 0.993 0.998 0.998 0.997
promoters 0.886 0.896 0.933 0.933 0.924
garageband 0.720 0.726 0.723 0.723 0.709
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The following table shows the accuracy when reducing the number of features
to 1/2 of its original size. The meaning of the columns is the same as in the
previous table.

Name Backward Correlation Resamp. Perf. Grad. Quantile
liver 0.672 0.588 0.680 0.605 0.571
diabetes 0.761 0.764 0.708 0.748 0.766
breast 0.963 0.963 0.972 0.961 0.967
business 0.808 0.840 0.872 0.764 0.827
wine 0.971 0.982 0.988 0.971 0.909
voting 0.963 0.949 0.958 0.956 0.965
medicine 0.787 0.771 0.807 0.779 0.809
dermatology 1.000 1.000 1.000 1.000 1.000
ionosphere 0.937 0.920 0.937 0.931 0.923
covtype 0.791 0.784 0.801 0.794 0.807
digits 0.992 0.994 0.997 0.996 0.997
physics 0.506 0.506 0.506 0.506 0.506
mushroom 0.970 0.999 0.999 0.999 1.000
insurance 0.998 0.991 0.998 0.997 0.997
promoters 0.876 0.858 0.914 0.867 0.915
garageband 0.728 0.728 0.725 0.736 0.708

The last table shows the accuracy when reducing the number of features to
1/4 of its original size. For most data sets this is an extreme reduction with a
significant reduction in accuracy.

Name Backward Correlation Resamp. Perf. Grad. Quantile
liver 0.632 0.579 0.727 0.576 0.579
diabetes 0.755 0.759 0.744 0.742 0.746
breast 0.931 0.948 0.950 0.937 0.947
business 0.739 0.827 0.802 0.751 0.770
wine 0.938 0.932 0.966 0.887 0.898
voting 0.958 0.956 0.919 0.956 0.967
medicine 0.735 0.721 0.790 0.759 0.722
dermatology 0.972 0.994 1.000 0.994 0.994
ionosphere 0.905 0.888 0.928 0.911 0.840
covtype 0.791 0.764 0.801 0.791 0.795
digits 0.983 0.992 0.994 0.993 0.998
physics 0.506 0.506 0.506 0.506 0.506
mushroom 0.965 0.981 0.999 0.999 0.999
insurance 0.997 0.985 0.998 0.998 0.997
promoters 0.810 0.934 0.914 0.897 0.896
garageband 0.712 0.731 0.725 0.735 0.709

To better compare the performance of these algorithms, a paired t-test with
significance level α = 0.05 was conducted for each data set and each fraction of
features (3/4, 1/2, 1/4) to check if one algorithm performs significantly better
than another. The following table contains the total number of a signifcantly
higher accuracy. Each entry in the table represents the number of times that
the method in the row had a significantly higher accuracy than the method in
the column.
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Name Backward Correlation Resamp. Perf. Grad Quantile
Backward - 7 0 2 4
Correlation 4 - 0 4 2
Resampling 13 14 - 6 6
Perf. Grad 7 7 0 - 4
Quantile 8 10 1 7 -

It can be seen that the resampling method performs best, with 39 wins over
other methods. The quantile method comes second with 26 wins, followed by
the performance criteria gradients with 18 wins and backward selection with 13
wins. Correlation based feature selection ranks last with only 10 wins, which is
not surprising as correlation is essentially a measure of linear dependence and
hence is not suited for nonlinear methods.

In the case of large-scale high-dimensional classifiers, where only one learning
step is feasible, the new quantile outperforms all other feature selection methods
by combining high accuracy with computational efficiency.

3.2 Instance Selection

Instance selection describes the problem of selecting a small set of highly in-
formative instances from a larger set of examples [Liu and Motoda, 2001]. In-
formative examples can be divided into protoypes and discriminating instances.
Prototypes are examples which are similar to a large number of examples and
can hence be taken as a typical representative of this set of examples. Discrim-
inating instances are examples which lie close to the class border and are hence
representative of the distinction between the classes.

In the context of interpretability instances are useful because their meaning
is easier for a domain expert to understand than abstract models and decision
rules. The idea is to describe a model by the examples it regards as important.
Hence, instance selection in this context is targeted at extracting an extremely
small set of examples, possibly less than 10. With more selected instances the
user runs into the risk of not seeing the wood for the trees.

A conceptual problem of instance selection in a classification setting is a
missing general measure of instance importance. The problem is that the im-
portance of an example should not reflect the information it has about other
examples per se, but the information from the view of the learner. Hence, the
definition of similarity of examples should reflect the geometry of the exam-
ple space that the hypothesis space of the learner induces. If, for example,
the learner cannot distinguish between two examples, these examples should be
considered similar.

Several ad-hoc solutions to instance selection in the context of specific learn-
ers exist. For example, k-medoids clustering can be seen as the explicit search
for prototypes that represent the structure of the data. But of course this struc-
ture is not optimized with respect to the class distribution. The support vectors
in SVMs are discriminating instances and it can be shown that the SVM trained
on the support vectors alone is identical to the SVM on the complete data set.
Usually only a small fraction of the data points become support vectors, but in
absolute numbers this can still be several hundreds or thousands of examples.
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3.2.1 Instance Selection by Data Squashing

Data Squashing [DuMouchel et al., 1999] is a technique to reduce large datasets
by constructing a set of instances with identical statistical probabilities as the
original data set. Squashing consists of three steps. The data set is first par-
titioned into groups, within each group a number of statistical properties are
computed and then pseudo-data is generated that accurately reproduces these
statistical properties.

An approach to instance selection based on data squashing is presented in
[Madigan et al., 2002] Assuming the optimal model for the data (xi, yi) is rep-
resented by a parameter θ ∈ R

d, the idea is to inspect a set of similar models
θj = θ+ δj and inspect the conditional probabilities pij = Pθj

(yi|xi) that these
models assign to the examples. The number of different models tested and the
size of the deviations δj are given as a parameter to the method.

The vector pi· represents the statistical properties the squashed data set
should reproduce. If for two examples i and i′ all models assign similar proba-
bilities, the learner does not disinguish between these examples and they should
be treated as similar. Hence, the examples (xi, yi) are only represented by their
probability “footprint” pi· and instance selection is performed as a k-medoids
clustering of the pi·.

3.2.2 Extending Instance Selection by Data Squashing

Instance selection by data squashing is restricted to models that can be rep-
resented by a real vector θ. More sophisticated learners employ more complex
structured models such as decision trees, rule sets or sets of support vectors
whose size is not fixed. In this case, one can not readily construct new models
θj and hence existing squashing methods can not be applied here.

In principle, the described squashing methods are white-box approaches. To
convert instance selection by squashing to a black-box approach, and hence to
a very general class of models, it is important to notice that the only general
way to modify the hypothesis returned by a learner without knowledge of the
learners internals and the hypothesis space is to modify the training set. Further,
as we do not want an arbitrary hypothesis but one that structures the training
examples and has a complexity similar to the original hypothesis used to predict
the data, the training set should not be modified (the modification of examples
would change the distribution P (x) and the removal of examples could reduce
the complexity of the induced classifier, e. g. in decision trees). This leaves the
modification of the examples labels yi as the only available way to generate
additional useful hypotheses.

A new distribution of the labels yi cannot be generated randomly, because
then with high probability there will be no structure in the examples for the
classifier to fit. The idea of the following algorithm is that the clustering should
contain maximal information about the class label. If a number of classifiers is
already known, an additional classifier will increase the information about the
examples the most if it is independent of the other classifiers. In the algorithm,
this independence is approximated by letting the new classifier predict where
the prior classifier has the most problems fitting the data in terms of the esti-
mated conditional class probability P (y|x). This induces independent classifiers
because if the previous classifier would have this information, it would use it to
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Figure 3.2: Instance selection for a linear classifier.

improve its prediction.

1. Input: Examples (xj , yj)j∈1...n, the desired number of clusters k, the num-
ber of iterations it

2. Learn a probabilistic classifier f1 on (xj , yj)j∈1...n

3. Let p1 be the vector of conditional class probabilites P1(Y = 1|xj) as
estimated by f1

4. Compute a clustering C1 with each observation represented by its condi-
tional class probability

5. For i in 2 . . . it

(a) Let y′j = 1 for the 50% examples with highest Pi−1(yj |xj) and y′j =
−1 else

(b) Learn probabilistic classifier fi on (xj , y
′
j)j∈1...n

(c) Let pi be the vector of conditional class probabilites Pi(Y = 1|xj) as
estimated by fi

(d) Compute a clustering Ci with each observation represented by its i
conditional class probabilities from the vectors p1, . . . , pi
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Figure 3.3: Instance selection for a nonlinear classifier.

6. Return the clustering Cj , j ∈ {1, . . . , i} with highest information about
the class label.

The theoretical background of the algorithm is as follows: under the assump-
tion that the clusterer is correct, the selected instances from the clusters will be
optimal, if the constructed hypotheses fi contain maximal information about
the examples. Viewing the examples as random variables Z = (X,Y ) and the
hypotheses as random variables Fi = f(Xi), this can be formulated as

I(Z; (F1, . . . , Fi)) → max

where I is the mutual information [Cover, 1991]. If the hypotheses ~F :=
F1, . . . , Fi−1 are fixed, it follows from the equation

I(Z; (F1, . . . , Fi)) = I(Z;Fi|~F ) + I(Z; ~F )

that the optimal additional hypothesis Fi maximizes the information I(Z;Fi|~F )
about the examples Z given that the values of the prior hypotheses are already
known (note that this greedy selection of hypotheses Fi is not necessarily opti-
mal, an optimal strategy would require to select all hypotheses in dependence
on all other).

The mutual information can be further decomposed into

I(Z;Fi|~F ) = H(Fi|~F ) −H(F|
~F ,Z)
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where H is the entropy. Hence, a optimal new hypothesis Fi should maximize
the entropy given ~F (i.e. Fi and ~F should be independent), while it should

minimize the entropy of Fi given ~F and Z (i.e. should depend on ~F and Z).
Using the approximation that only the last hypothesis Fi−1 is considered

instead of all hypotheses ~F , this maximal conditional information criterion is
implemented in the training set construction of the instance selection algorithm.
The independence of Fi and Fi−1 is guaranteed by the fact that the task of Fi

is to predict, whether Fi−1 will give a high likelihood Pi−1(yj |xj) or not. If
there was a dependency between this information and Fi−1, the classifier could
have used this information to select a better hypothesis (this assumes that the

classifier selects the optimal hypothesis). The dependence of Fi on ~F and Z is
obvious, as Fi is constructed using exactly this information as input.
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Figure 3.4: Instance selection for a logical classifier.

The figures show the instances and clusters generated by this algorithm on
a 2-dimensional data set. The data set consists of three Gaussian distributions
centered at (0, 0), (0, 2) and (2, 3) with different covariances. The label was set to
y = 1 iff the observation came from the distribution with mean (0, 2). Figure 3.2
shows the result of instance selection with a linear SVM classifier. It can be seen
that this induces linear bounds between each two clusters, but no cluster can be
described by a single linear rule alone. The selected instances (cluster centers)
are at the centers of the distributions. In Figure 3.3, a nonlinear radial basis
SVM has induced nonlinear bounds on the clusters. As the nonlinear decision
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function effectively covers the class distribution, the three clusters cover different
values of P (Y = 1|x) and very little other information about the distribution of
the examples. This can be seen in the selected observations, which do not reflect
the distribution P (x) at all. Figure 3.4 shows the situation with a decision tree
as base classifier. It can be seen that this induces boundaries parallel to the
coordinate axes between each two clusters. Further, the selected instances of
clusters 1 and 2 lie on a line parallel to a coordinate axis, just as the center
instances of clusters 2 and 3. This shows how the axis parallel decision rules
of the decision tree influence the geometry on which clustering and instance
selection works.

In summary, it can be seen that the method of classifier-dependent instance
squashing extracts more meaningful instances and clusters than usual clustering
because it reflects the information about the hypothesis space of the classifier.

3.3 Piecewise Linear Approximations

Linear function are usually much more interpretable than nonlinear functions,
because they assign a unique weight to each attribute and attributes usually
carry a well-defined meaning in terms of the application. Although this easy
interpretation has its loopholes – correlations between attributes can make an
attribute seem to appear more or less important than it actually is – this is still
a clear advantage compared to nonlinear functions, where a global measure of
an attribute’s importance is hard to find. On the other hand, several data sets
are intrinsically nonlinear, and it is clear that an easy-to-understand model is
useless if it is wrong.

In some cases, there is a way to retain nonlinearity without loosing to much
of the interpretability advantages of linear classifiers. Look at the data set shown
in Figure 3.5. The class distribution is obviously nonlinear – the positive points
form a square – but it is clear that we can easily describe the class boundary
by not one but four linear functions, one for each side of the rectangle. Hence,
a local linear model, consisting of several linear models plus a decision rule
where to apply each model, is a simple and correct solution to this classification
problem.

The idea of piecewise linearity itself is not new. It can be traced back to the
definition of manifolds in mathematics, which are locally similar to the Euclidean
space R

d for some d (with an appropriate mathematical definition of “local” and
“similar”, of course). This principle has been used in machine learning under
the name of local linear embedding [Roweis and Saul, 2000] for dimensionality
reduction. Local linear classifiers appear naturally in logical hypothesis space,
where the necessary discretization of numerical values naturally introduces lin-
ear functions paralles to the coordinate axes (e.g. the decision function in Figure
3.5 could be described as if x1 ≤ 1 and x1 ≥ -1 and x2 ≤ 1 and x2 ≥ -1

then class = blue). Local linear functions also naturally arise on classifiers
based on the minimal distance to prototypes, such as k-nearest-neighbor classifi-
cation and learning vector quantization [Kohonen et al., 1992]. These classifiers
assign a test point to the prototype with minimal distance and hence induce a
Voronoi tesselation on the input space, which has linear borders. However, in
these approaches the linear decision functions are only defined implicitely and
hence cannot easily be interpreted.
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Figure 3.5: A piecewise linear classification problem.

We will now introduce an algorithm which approximates a nonlinear function
by constructing local linear approximations. The main idea is that given a
function f , the gradient ∇f(x0) of f at a point x0 induces a linear function
g(x) = ∇f(x0)∗ (x−x0)+f(x0). This is the Taylor approximation of f at x0 of
order 1 and by Taylor’s Theorem we know that each continuously differentiable
function f can locally approximated by its Taylor approximation. Now, given
a training set (xi, yi)i=1...n and a continuously differentiable nonlinear function
f , e.g. the decision function of a radial basis SVM, we evaluate its gradient at
every training point, which gives us n linear functions gi. We could also use
other points to obtain a better description of the decision function, but it is
obviously meaningless to approximate the function at points that are not likely
to appear. By restricting the starting points to the training set we implicitely
weight the approximation quality at a point x with its probability Pemp(x).

Given the functions gi we cluster them into k clusters. Each cluster should
represent one linear component and hence we have to control the clustering such
that similar functions will fall into the same cluster. It is important to notice
that we are not interested in the classification function g itself but in the class
partitioning {x|g(x) > 0} it induces, because this is what controls the classi-
fication performance. Hence, any function that induces the same partitioning,
notably all αg with α > 0, should fall into the same cluster. The same is true
for functions which only differ on regions of the input space with low proba-
bility P (x), because if the number of points on which these functions differ is
very small, their performance will be similar. Hence, we construct a similarity
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measure σ(g, h) between functions g and h defined as

σ(g, h) =
1

n
# {i|g(xi)h(xi) > 0} .

That is, σ(g, h) is the fraction of training points that g and h agree on. Obvi-
ously, σ formalizes the previously discussed concept of function similarity. We
use a standard k-medoids clusterer with this similarity measure to obtain k
clusters and hence k linear functions. In the experiments, the clusterer pam
described in [Kaufman and Rousseeuw, 1990], Ch. 2 is used. To decide which
of the k functions to apply to a test point x we use the training points xi cor-
responding to the cluster medoids gi as prototypes and assign the test point to
the cluster with the nearest median xi. Figure 3.6 shows the resulting cluster-
ing of the training set from Figure 3.5, where the initial function was a radial
basis Support Vector Machine. Note that the data set is best described by
five linear functions, one for each side of the square and another for all points
far away from the positive class. The latter cluster corresponds to the default
negative classifier and is induced from the training points with zero gradient;
obviously this cluster could be removed as the nearest cluster from the square
also classifies these points as negative. Also notice that the four inner clusters
are not identical to the positive class! These four clusters cover more than the
positive examples, which are indicated by the black square in the middle, but
the decision boundaries from each class correspond to the sides of the square.
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Figure 3.6: A piecewise linear classifier.

In principle, this approach can be used for any kind of numerical decision
function. However, Support Vector Machines are specifically well-suited for the
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following reason: Note that Taylor’s Theorem guarantees that the function f can
be approximated locally by its gradient, but it does not give any information
about the size of this local neighborhood (the approximation quality is only
described in terms of limits). In general, the more complex the function f
is, the smaller the neighborhood where a sensible approximation is possible.
Support Vector Machines are specifically well suited because they explicitely
penalize function complexity in terms of regularizer ||w||. Note that the SVM
decision function can be written in the form

f(x) = w ∗ Φ(x) + b

where Φ is the nonlinear mapping in the Reproducing Kernel Hilbert Space.
Hence, the gradient of f is of the form

∇f(x) = w ∗ ∇Φ(x)

and hence the norm of the gradient is bounded by

||∇f(x)|| ≤ ||w||||∇Φ(x)||.
As the gradient of Φ at the training points is constant for a given kernel and a
given training set, minimizing ||w|| is equivalent to minimizing the gradient of
f . Hence, locally a good approximation by the gradient of f can be expected.

This algorithm was tested on the 18 standard data sets with the radial
basis SVM as the original classifier. Values of k between 1 and 10 were tested.
The following table shows the results. The first column contains the name
of the data set and the second column it dimension. The next two columns
show the classification error of the standard radial basis and the linear SVM,
respectively. The next two columns show the error achieved by the piecewise
linear approximation and the corresponding optimal number of clusters k, while
the last two columns contain the disagreement rate between the radial basis
SVM and its approximation, again with the corresponding k.

Name Dim. RBF SVM lin. SVM piecewise linear
Error Error Error k Disagree k

iris 4 0.000 0.000 0.000 2 0.000 2
balance 4 0.014 0.052 0.028 10 0.014 10
liver 6 0.303 0.306 0.265 8 0.066 10
diabetes 8 0.262 0.252 0.246 6 0.060 10
breast 9 0.034 0.032 0.030 6 0.008 6
business 13 0.127 0.139 0.126 4 0.108 7
wine 13 0.225 0.011 0.225 2 0.011 1
voting 16 0.066 0.043 0.069 2 0.0023 2
medicine 18 0.278 0.278 0.278 1 0.000 1
dermatology 33 0.021 0.005 0.000 5 0.016 2
ionosphere 34 0.065 0.131 0.171 10 0.111 10
covtype 48 0.284 0.280 0.286 7 0.158 10
digits 64 0.008 0.004 0.004 1 0.002 4
physics 78 0.378 0.360 0.384 4 0.140 9
mushroom 126 0.074 0.002 0.450 1 0.384 1
insurance 134 0.070 0.024 0.068 1 0.002 1
promoters 228 0.123 0.055 0.460 2 0.403 1
garageband 552 0.329 0.349 0.315 1 0.137 1
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At 11 of the 18 data sets, the piecewise linear approximation achieves a
better or equal error rate compared to the radial basis function it approximates.
Further, the error rate does not exceed the radial basis SVMs error by more
than 0.01 on 14 of the 18 data sets. Given the far superior interpretability
of a piecewise linear function compared to a linear combination of radial basis
functions, the approximation should be preferable on these data sets as well. The
error of the approximation is significantly higher than that of the approximated
function on 4 data sets (balance, ionosphere, mushroom, and promoters), with
an almost random prediction for the mushroom and the promoters data set.
One can see that these two data sets are the high dimensional data sets where
the radial basis SVM has a significantly higher error than the linear SVM, which
probably means both classifiers significantly disagree and no transfer between a
nonlinear and a linear function can be made.

Comparing the approximation ability of the piecewise linear function one
can see that the best approximation (lowest disagreement rate) is found at a
higher number of components on 6 data sets, an equal number of components
at 9 data sets and a lower number of components at 3 data sets. It is not
surprising that a higher number of components can increase the approximation
quality, as points will move closer and closer to their nearest median. However,
as can be seen this also increases the risk of overfitting and of course limits the
interpretability.

3.4 Direct Complexity Reduction

To conclude the investigation of general methods for enhancing interpretability,
this section presents an investigation of the relation between formal complexity
measures, interpretability and accuracy. Formal complexity measure like the
size of a decision tree or the number of features used by a classifier are easy to
measure and to reduce and often show a direct relationship to interpretability
heuristics. On the other hand, these complexity measures are primarily used
to improve the accuracy of learners by avoiding over-fitting, not to optimize
interpretability.

The question that is answered in the section is how the error of a classifier
develops when the complexity is restricted far more than what is necessary
for accuracy optimization. If there is a simple functional relationship between
the complexity measure and the error, e.g. a linear dependency, the user can
easily select a complexity value that optimally trades off the conflicting goals
of accuracy and understandability. If this relationship is very complex, that
is if it is hard to predict which complexity value will give which error, finding
an optimal value will require a high computational effort (e.g. a high number
of runs of the classifier), such that in practice this approach of interpretability
optimization becomes infeasible. The minimal requirement is that the functional
dependency is reasonably smooth, such that one can be sure that the results
are not mainly a result of random effects and that the desired level of accuracy
will also be met on future instance.

In short, the goal of the chapter is to investigate whether formal complex-
ity measures enable the user to reliably trade off his requirements of accuracy
against understandability.
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3.4.1 Decision Tree Size
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Figure 3.7: Absolute error of constrained decision tree

Decision Tree learning consists of a learning phase, which constructs the tree,
and a pruning phase which removes some subtrees in order to avoid overfitting.
It is straight-forward to extend the pruning phase to remove nodes from the
tree until a user-defined threshold on the size of the decision tree is met.

The impact of limiting decision tree size on interpretability is obvious, but
how does the prediction error behave? In order to answer this question, an ex-
periment was conducted where the complexity is restricted to a certain level. In
total 20 different complexity levels were investigated, where level i corresponds
to a size restriction of i/20 of the nodes in the unrestricted tree. For each level,
10-fold cross-validation was performed. Figure 3.7 shows the performance curve
of the 18 standard data sets (each data set one line) in dependency on the com-
plexity. Figure 3.8 shows the error in relation to the error of the tree without
size restriction on a logarithmic scale.

Several observation can be made. First, in all cases the complexity can be
limited to at least half of the nodes without hurting the performance. Second,
on several of the data sets the optimal decision tree is the most constrained one!
Third, for other decision trees the error increases sharply, sometimes several
orders of magnitude, if the complexity drops below a certain value.

The result of this investigation is that decision tree pruning is not optimal
with respect to interpretability. On all data sets, considerably smaller decision
trees could be obtained without hurting the classification performance. On the
other hand, no simple functional form that describes the relationship between
tree size and error could be obtained. Very small tree sizes can result in very
different relative performance values. This makes it hard to balance accuracy
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Figure 3.8: Relative error of constrained decision tree

and interpretability without testing out all different complexity values.

3.4.2 Feature Selection

Feature selection and its implications to interpretability have been discussed in
Section 3.1, which discussed how to reduce the number of features to a pre-
defined level. This section will deal with the question of how to find the optimal
number of features. The discussion will be limited to backward feature selection
(see Section 3.1.1), as it is currently the most popular feature selection method.

In the experiments, the number of features are fixed at different fractions
of the total number of features. For each number, 10-fold cross-validation was
performed. Figure 3.9 shows the performance curve with the linear SVM as base
learner on the 18 standard data sets (each data set one line). The performance
curve of the radial basis SVM (Figure 3.10), decision trees (Figure 3.11) and
the J48 covering rule learner (Figure 3.12) are also shown.

On most data sets, the error increases linearly with decreasing number of
features until a certain threshold is reached, below which it increases signifi-
cantly. This is different from the results of limiting decision tree size in the
previous section, which had a constant error for high complexity values. The
results are similar for all learners.

The linear dependency for not too small numbers of feature allows a more
fine-grained control of the trade-off between accuracy and complexity than with
decision tree sizes. On the other hand, feature selection is a hard problem (see
Section 3.1) and optimizing the number of features still needs several runs of
the learning algorithm.
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Figure 3.9: Absolute error of feature selection with linear SVM

3.4.3 VC-dimension

Support Vector Machines directly balance a complexity criterion based on the
VC-dimension against the error on the data (see Section 2.1.3). Using the
parameter C this trade-off can be regulated by the user. But how does this
formal measure of complexity relate to user-centered measures of complexity?

To answer this question, several experiments have been conducted to show
the relationship between C and the SVM error and a user-centered measure of
complexity. For linear SVMs, the sparsity of the hyperplane vector, i. e. the
number of its zero components, is such a user-centered measure. It describes
the number of features that are not used in the classification.

Figure 3.13 shows the absolute error of a linear SVM over the range of
sensible values for C for each data set (each line one data set). Figure 3.14
show the corresponding sparsity of the SVM hyperplane vector. It can be seen
that only values in a certain interval give sensible predictions, outside this range
the error increases significantly. A comparison of the two figures reveals that
on this interval of sensible values, sparsity is very limited and almost constant
in most cases. Only for very small values of C sparsity increases up to 1, which
means a zero hyperplane vector (constant decision function).

Figure 3.15 shows the absolute error of a radial basis SVM over the same
range of C values. As there is no explicit hyperplane vector for nonlinear SVMs,
the number of support vectors is used as complexity measure. Figure 3.16 shows
the corresponding number of support vectors in terms of the fraction of the
number of support vectors to number of training examples. It can be seen that
the number of support vectors increases with smaller C.

It can be concluded that the formal complexity measure of VC-dimension is
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Figure 3.10: Absolute error of feature selection with Radial Basis SVM

not a valid complexity measure in terms of interpretability by the user.

3.4.4 Summary

The investigations in this section showed that formal complexity measures do
not solve the problem of balancing interpretability and accuracy. Although deci-
sion tree size and number of features can be directly related to the interpretabil-
ity of hypotheses, their optimization is costly, because it involves generating a
large set of models and filtering out appropriate models in a subsequent step.
On the other hand, the complexity measure of VC-dimension in Support Vector
Machines, which can be influenced a-priori, does not lead to an optimization of
the user-defined interpretability.

3.5 Conclusions

This chapter investigated the question how the interpretability of a model can be
optimized in a black box scenario. Of course, some assumptions and information
about the model is necessary, so the contribution of this chapter may be better
described as mapping out how much interpretability is possible with how little
information.

The least possible information that is necessary to train and evaluate a clas-
sifier are the structure of the observations (the classifier’s input format) and
the predictions it produces (the classifier’s output).This information is enough
to iteratively minimize the number of features evaluated by the classifier (see
Section 3.1). Of course, the more information is available about the classifier
the more efficient this step can be performed. This was demonstrated in Section
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Figure 3.11: Absolute error of feature selection with decision tree

3.1.5 by making use of the classifier’s gradient to select features from a nonlin-
ear classifier in only one step, which was shown to significantly outperform all
existing approaches.

Section 3.2 showed that more information about the classifiers inner struc-
ture is needed to select informative instances in order to make up for a missing
measure of instance importance. It was shown that for all probabilistic classifiers
the unknown structure over the example space that is induced by the classifier
can be re-constructed by an algorithm based on data squashing and clustering.
In contrast to existing approaches, the new squashing algorithm is a black-box
approach and is hence applicable to every class of probabilistic models.

For numerical models, the gradient is a general property of the classifier that
can easily be computed. Section 3.3 showed that this information can be used
to construct a very general decomposition of a complex model into simpler parts
by making use of simple linear approximations.

Finally, many classifiers posses a specific complexity function that is con-
nected to their internal structure – e.g. VC dimension, depth of decision trees,
or rule length. Section 3.4 showed that this information is less useful with re-
spect to interpretability, as the complexity function is hard to optimize and its
connection with a user-centered definition of interpretability is often not clear.

In conclusion, even very little information about the classifier’s internals can
be used to optimize understandability. The task of the next chapter will now be
to investigate the complementary situation where complete information about
the classifiers structure is available.
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Figure 3.12: Absolute error of feature selection with covering rule learner
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Figure 3.13: Absolute error of linear SVM



96 CHAPTER 3. OPTIMIZING THE GLOBAL MODEL

complexity C

sp
ar

si
ty

 w

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10^−7 10^−4.75 10^−2.5 10^−0.25 10^2

Figure 3.14: Sparsity of hyperplane vector of linear SVM
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Figure 3.15: Absolute error of Radial Basis SVM
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Chapter 4

Interpreting Support

Vector Machines

This chapter deals with the problem of interpretability of Support Vector Ma-
chines. The reason for investigating SVMs in detail is that they are a very
popular learning algorithm that proved to be effective over a large range of
applications. Additionally this chapter exemplifies how interpretability can be
optimized in a white-box scenario with extensive knowledge of the learner’s
internals and the structure of the hypothesis space.

Support Vector Machine classifiers are a linear combination

f(x) =

n∑

i=1

αiK(xi, x) + b

with a high number n of basis functions K(xi, ·). The translation of SVMs into
the language of the domain experts is usually done by data miners, for example
by casting formulas into natural language sentences. For numerical learners, this
translation if very complex and usually one can only approximately describe the
learner in terms like the higher X, the more likely the class is positive. Finding
the right words to talk to a domain expert is obviously a task that is very hard
to automate.

This chapter presents three methods of transforming a SVM into a different
form which is easier to interpret. First, in Section 4.1 a transformation of the
SVM classifier in terms of different basis functions is presented. This method
significantly reduces the number n of components needed to describe the clas-
sifier. Section 4.2 investigates the possibility of describing a SVM using logical
formulas, which are easier to transform into natural language sentences than
numerical rules. Finally, Section 4.3 presents a novel visualization method for
Support Vector Machines that combines the structure of the hypothesis space
with the form of the decision function.

99
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4.1 Sparse Models

Sparse models are models with a low number of parameters. Although a SVM
classifier

f(x) =

s∑

i=1

αiK(xi, x) + b

is usually sparse in the sense that the number of support vectors s is usually
much smaller than the number of training examples, it can still be very complex
in the sense that s is much too large to understand the linear dependencies of
the single functions K(xi, x). The obvious question is whether it is possible to
express the same function f(x) with less basis functions.

4.1.1 Pre-Images

The sparsity situation becomes much more simple in feature space. Let Φ :
X → X be the feature map associated with the kernel K. Then, neglecting the
offset b, the SVM function can be written as

f(x) =
s∑

i=1

αiK(xi, x)

=

s∑

i=1

αiΦ(xi) ∗ Φ(x)

=

(
s∑

i=1

αiΦ(xi)

)
∗ Φ(x)

=: w ∗ Φ(x)

For linear SVMs (Φ(x) = x), the input space and the feature space fall together
and w can be directly interpreted as a vector of weights for the input vectors
attributes x(i). Another way of interpretation is to see w as prototypical for the
positive class, in the sense that from the view of the SVM an example is the more
likely to be positive the more similar it is to w in terms of the inner product ∗.
The question whether a similar interpretation is possible for nonlinear kernels
leads to the pre-image problem.

Definition 4.1.1 (Pre-Image Problem ([Mika et al., 1998])). Given a feature
map Φ : X → X and an element of the feature space w ∈ X , the pre-image
problem is to find a x ∈ X such that Φ(x) = w.

The pre-image of the SVM vector
∑s

i=1 αiΦ(xi) can then be interpreted as a
prototypical example. However, pre-images do not need to exist. For example,
for radial basis kernels the basis functions Φ(xi) are Gaussians centered at xi,
but it is known that no Gaussian can be written as a linear combination of
Gaussians centered at other points. To arrive at a solution, we have to relax
the problem:

Definition 4.1.2 (Approximate Pre-Image Problem [Mika et al., 1998]). Given
a feature map Φ : X → X and an element of the feature space w ∈ X , the
approximate pre-image problem is to find a x ∈ X which approximates w in the
2-norm in feature space. I. e. x = arg minx ||w − Φ(x)||2H.
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Figure 4.1: SVM decision function and pre-image

For example, in Figure 4.1 the green line shows the SVM decision function
over the data set (red and blue points) and the purple line shows its approximate
pre-image. The approximation is very coarse, but the pre-image at least covers
the largest peak of the decision function on the left.

As the feature map Φ is generally not known, the problem has to be solved
in feature space. The 2-norm is used in the definition of the problem, as it can
be computed using the kernel:

x = arg min
x

||w − Φ(x)||22
= arg min

x
w ∗ w − 2w ∗ Φ(x) + Φ(x) ∗ Φ(x)

= arg min
x

−2w ∗ Φ(x) + Φ(x) ∗ Φ(x)

= arg min
x

−2f(x) +K(x, x)

As a special case, for kernels where K(x, x) is constant for all x, we have

arg min
x

−2w ∗ Φ(x) + Φ(x) ∗ Φ(x) = arg max
x

w ∗ Φ(x)

that is, the pre-image of w is the point x with the highest decision function
value f(x).

An immediate approximate solution to the pre-image problem would be to
select the example in the training set with the lowest value of K(x, x)−2f(x) as
the pre-image of the decision functions normal vector. For differentiable kernels
K, one can use gradient search to minimize K(x, x)− 2f(x) [Mika et al., 1998].
However, gradient search is iterative and hence slow and can get trapped in
local minima. To avoid local minima the authors propose multiple restarts of
the gradient search with random starting points.
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Distance-based Pre-Image Construction

A more direct algorithm was proposed by [Kwok and Tsang, 2004], based on an
idea similar to multi-dimensional scaling. The idea is that for several kernels,
the distance in feature space can be related to the distance in input space.
In particular, this holds for the class of isotropic kernels. A kernel is called
isotropic if it only depends on the input space distance of its arguments, i. e. if
K(x, x′) = κ(||x−x′||) for a real function κ. Radial basis kernels are an example
of isotropic kernels. The idea is that as the feature space distances of w to the
xi in the training set can be calculated, the input space distances of the xi

to a pre-image x of w – should it exist – are also known. An approximate
pre-image should have similar distances and hence one can look for a point
which approximates the distance values as closely as possible. A solution to
this problem can be given in closed form. For numerical stability, the paper
proposes to use only the training points closest to w here. The paper does not
give a suggestion on how many training points should be used. A empirical
investigation on the standard data sets for this thesis showed that using only
10 training points is sufficient even for SVMs with high numbers of support
vectors.

One could also think of optimizing the solution of the distance-based ap-
proach by using it as a starting point for gradient search. This combines the
strength of the gradient search, which directly minimizes the target criterion,
and hence might lead to a better solution, with the computational efficiency of
the distance-based approach which does not fall into local optima.

Learning Pre-Images

In the case where one wants to compute several pre-images for the same feature
space, [Bakir et al., 2003] suggest to learn a function Γ : X → X, to compute
the pre-image, such that, approximately, γ(Φ(x)) = x. The trick is to use a
finite-dimensional basis in the feature space X and to work on the basis coordi-
nates instead of the possibly infinite original space. As a finite set of points xi

always spans only a finite dimensional subspace of X , this does not constrain
the problem. The problem of estimating a pre-image function Γ′ : Rk → X can
then be reduced to a standard regression problem. The basis itself can be found
be means of kernel principal component analysis with the kernel induced by Φ.

4.1.2 Reduced Set Methods

We will now show that the pre-image problem is actually too constrained. As we
are only concerned with linear maps in the feature space, one can easily see that
we do not need to know a pre-image of w, but actually the pre-image xv of any
vector w/β with β ∈ R\{0} will do, as w∗Φ(x) = β(w/β)∗Φ(x) = βΦ(xv)∗Φ(x).
Hence, we can modify the approximate pre-image problem by a linear factor:

Definition 4.1.3 (Linear Approximate Pre-Image Problem). Given a feature
map Φ : X → X and an element of the feature space w, find a vector x in input
space and a real number β, such that (x, β) = arg minx,β ||w − βΦ(x)||2H

Figure 4.2 shows the linear pre-image of the same function as in Figure 4.1.
It is obvious that due to the negative factor β the linear pre-image is a much
better description of the decision function.
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Figure 4.2: SVM decision function and linear pre-image

A little algebra shows that

(x, β) = arg min
x,β

||w − βΦ(x)||22
= arg min

x,β
||w||2 + β2K(x, x) − 2βw ∗ Φ(x)

= arg min
x,β

β2K(x, x) − 2βw ∗ Φ(x)

Derivation with respect to β shows that the minimum is obtained at

β =
w ∗ Φ(x)

K(x, x)

and hence we want to minimize

β2K(x, x) − 2βw ∗ Φ(x) = − (w ∗ Φ(x))2

K(x, x)

over all x. Note that this term can be expressed in terms of the kernel and can
hence be minimized by standard optimization techniques.

We can also generalize the idea of [Kwok and Tsang, 2004] to iteratively find
a solution to the linear pre-image problem using a distance-based approach.
Using an initial estimate β0 of β, for example the average of the value defined
in Equation 4.1 over all training points, we find a pre-image xi of w/β using
the approach for pre-images. Using xi we can now compute the corresponding
optimal βi using Equation 4.1 and start over to find xi+1 and so on until con-
vergence. We can see that this procedure monotonically decreases the distance
to w and hence convergences against a local minimum by observing that both
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the pre-image algorithm and the optimization of β minimize the distance:

||w − βiΦ(xi)||2 = β2
i ||
w

βi
− Φ(xi)||2

≥ β2
i ||
w

βi
− Φ(xi+1)||2

= ||w − βiΦ(xi+1)||2
≥ ||w − βi+1Φ(xi+1)||2

As this approach is based on a gradient optimization for β, it cannot be guar-
anteed that it will find a global minimum. Again, one can also use the distance-
based approach as an initialization step to find a good starting point for the
gradient approach.

The following table compares the feature-space distances ||w − βiΦ(xi)|| of
the three linear pre-image methods. The next to last column give the statistical
significance of the hypothesis that distance-based approach gives a larger error
value than the combined approach. A + stands for significance at the level
0.05, a ++ stands for significance at the level 0.01, a − or −− stands for the
significance of the complementary hypothesis of a lower error. The final column
compares the gradient-based approach and the combined approach in the same
way.

Name Distance Gradient Combined D ≥ C G ≥ C
business 6.393 6.538 6.186 + ++
covtype 26.101 26.164 26.002 + ++
diabetes 8.141 8.304 8.137 o ++
digits 10.286 10.358 10.358 −− o
physics 24.430 24.512 24.506 −− +
ionosphere 6.560 6.085 5.384 ++ ++
liver 7.327 7.492 7.304 o o
medicine 15.771 16.019 15.878 −− ++
mushroom 33.596 33.618 33.457 ++ ++
promoters 9.127 9.197 8.789 ++ ++
insurance 20.331 20.726 20.726 −− ++
balance 7.435 8.390 7.523 o ++
dermatology 6.026 6.147 5.479 ++ ++
iris 2.493 2.737 2.370 o ++
voting 9.713 9.793 9.793 −− o
wine 6.577 6.665 6.665 −− ++
breast 4.090 4.414 3.568 ++ ++
garageband 22.664 22.713 22.713 −− o

In conclusion, the combined method is far better than the gradient-based method,
it has a significantly lower distance on 13 of the data sets and performs equal on
another 4 data sets. In comparison to the distance-based method, the combined
method perform equal. Both are significantly better than the other on 7 of the
data sets. But as the combined method contains the result of the distance-based
method as an intermediate step, it is easy to compare both vectors and select
the one closer to the SVM hyperplane. This combines the advantages of both
approaches and gives an algorithm that is never worse than the distance-based
approach and better on 7 of the data sets.
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Reduced Sets

Reduced set methods take the linear pre-image idea a step further. Instead of
approximating w with a single pre-image w = βΦ(x), it is approximated by a
linear combination

∑
i βiΦ(xi) of basis functions Φ(x).

Definition 4.1.4 (Reduced Set Problem [Burges, 1996]). Given a feature map
Φ : X → X and an integer N , find vectors z1, . . . , zN in the input space and
coefficients β1, . . . , βN that minimizes ||w −∑N

i=1 βiΦ(zi)||2H.

Note that as w =
∑s

i=1 αiΦ(xi) is also defined in terms of a linear combina-
tion of basis functions, the solution is trivially given by the support vectors and
their weights for N ≥ s. One is usually interested in the case where N << s,
that is, to approximate the vector w by a small number of input patterns. Note
that there are no constraints on the coefficients βi, in contrast to the SVM co-
efficients αi. Hence, it is possible that one can even describe w exactly with less
linear combinations than there are support vectors.

Figure 4.3 shows the reduced set approximation of the decision function of
Figure 4.2 with N = 3. In comparison to the linear pre-image, this approxima-
tion covers most of the shape of the decision function.
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Figure 4.3: SVM decision function and reduced set approximation

In [Schölkopf et al., 1999] the problem is solved in three steps: selection of
the β’s, selection of a set of vectors zi and construction of a set of vectors zi.

First, it is shown that once the vectors zi are known, the appropriate coeffi-
cients β can be computed directly. Deriving the distance function with respect
to βi yields that the solution must fulfill

Kzxα = Kzβ
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and hence the solution is given by

β = (Kz)−1Kzxα (4.1)

where Kz
ij = Φ(zi)Φ(zj) and Kzx

ij = Φ(zi)Φ(xj). The matrix Kz is invertible
if the functions Φ(zi) are linear independent. Otherwise, the pseudo-inverse of
Kz can be used.

Given an SVM expansion w =
∑s

i=1 αiΦ(xi) the next question is how
to select a subset of N of the xi which minimizes the approximation error.
[Schölkopf et al., 1999] give two approaches. The first approach is to investi-
gate the null space of the kernel matrix K, i. e. to find coefficients vectors
α′ 6= 0 such that Kα′ = 0. The existence of such a vector means that the
functions Φ(xi) are linearly dependent and one can replace one of these func-
tion by a linear combination of the others without changing the vector w. An
approximative solution for small, non-zero eigenvalues of K is also given. The
second approach is to directly minimize

||
s∑

i=1

αiΦ(xi) −
s∑

i=1

βiΦ(xi)||2 + λ
∑

|βi|

λ > 0 is a constant to trade off the approximation of w via the first summand
against sparseness of β via the second term. The 1-norm of β is used instead of
the 2-norm in the usual SVM formulation to achieve sparseness. Theoretically,
one would like to directly minimize the number of nonzero components of β
(the 0-norm), but this would lead to a combinatorial optimization problem which
would not be efficiently solvable. Hence, the 1-norm is used as an approximation.
For numerical reasons, this optimization scheme is only used to obtain the right
base functions Φ(xi) (the ones with nonzero β). The actual β’s are computed
by the exact formula 4.1.

The final question concerns the construction of new points z in the input
space to be used in the reduced set. [Schölkopf et al., 1999] propose an iterative
algorithm. Starting with the empty set of points zk, each iteration finds a new
vector zk+1 by solving problem 4.1 to approximate the feature space vector

∆w =

s∑

i=1

αiΦ(xi) −
k∑

i=1

βiΦ(zi)

Again, coefficients β are obtained by formula 4.1. The algorithm is iterated a
certain number of times or until the distance of the approximate solution and
the original vector w falls below a pre-defined threshold.

This algorithm can be improved. The greedy selection of new vectors zi is
not optimal. The vectors zi can be optimized by repeatedly iterating on the set
of vectors, each time removing one vector and replacing it with the linear pre-
image of the SVM vector w minus the other vectors zi. The iteration is repeated
until the change of the estimate or the decrease in the distance falls below a pre-
defined threshold. The optimality of the linear pre-image in approximating its
feature space vector guarantees that this algorithm converges, as it guarantees
that in each iteration the distance between the SVM vector and its reduced set
approximation will decrease.

Figure 4.4 shows a comparison of the greedy reduced set approximation
(purple line) and the iterated approach (black line) on the one-dimensional
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Figure 4.4: Greedy and iterated reduced set approximation

data set. The following table shows a comparison of the greedy approach of
[Schölkopf et al., 1999] with the new iterated approach.

Name k Distance Error Greedy ≥ Iterated
Greedy Iterated Greedy Iterated Distance Error

business 2 5.779 5.714 0.253 0.241 + o
3 5.462 5.337 0.228 0.202 ++ o

10 4.251 3.793 0.158 0.145 ++ o
covtype 2 16.027 15.880 0.388 0.371 + o

3 16.065 15.864 0.370 0.367 ++ o
10 15.121 14.854 0.314 0.311 ++ o

diabetes 2 7.878 7.539 0.287 0.259 ++ ++
3 7.668 7.287 0.269 0.255 ++ o

10 6.647 5.776 0.260 0.243 ++ +
digits 2 10.358 10.240 0.498 0.501 ++ o

3 10.358 9.612 0.498 0.498 o o
10 10.358 1.951 0.498 0.003 ++ ++

physics 2 14.956 14.635 0.500 0.478 ++ +
3 14.750 13.155 0.492 0.356 ++ ++

10 14.705 12.731 0.508 0.354 ++ ++
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Name k Distance Error Greedy ≥ Iterated
Greedy Iterated Greedy Iterated Distance Error

ionosphere 2 4.644 4.475 0.094 0.076 ++ +
3 4.394 3.994 0.088 0.074 ++ o

10 3.485 2.459 0.065 0.062 ++ o
liver 2 6.744 6.354 0.457 0.441 + o

3 6.234 5.470 0.350 0.356 ++ o
10 5.584 3.659 0.344 0.298 ++ o

medicine 2 5.632 5.191 0.278 0.296 o o
3 5.301 4.403 0.278 0.291 + o

10 5.092 3.023 0.277 0.273 ++ +
mushroom 2 22.433 22.432 0.377 0.377 o o

3 22.428 22.428 0.365 0.366 o o
10 22.061 22.061 0.299 0.299 o o

promoters 2 8.608 8.579 0.207 0.179 ++ +
3 8.550 8.514 0.188 0.160 ++ +

10 8.155 8.105 0.122 0.140 ++ o
insurance 2 6.687 5.436 0.070 0.204 ++ o

3 6.969 5.567 0.069 0.316 ++ −
10 6.709 2.343 0.147 0.063 ++ o

balance 2 7.219 6.481 0.384 0.249 ++ +
3 7.002 4.299 0.386 0.057 ++ ++

10 6.459 3.298 0.308 0.057 ++ ++
dermatology 2 5.327 5.326 0.037 0.037 ++ o

3 5.219 5.216 0.037 0.037 + o
10 4.454 4.389 0.027 0.021 ++ o

iris 2 1.804 1.427 0.033 0.033 ++ o
3 1.563 0.875 0.106 0.006 ++ o

10 0.844 0.321 0.000 0.000 ++ o
voting 2 9.793 9.644 0.386 0.613 ++ −−

3 9.793 9.678 0.386 0.386 ++ o
10 9.793 0.570 0.386 0.069 ++ ++

wine 2 6.665 6.550 0.399 0.600 ++ −−
3 6.665 6.162 0.399 0.399 ++ o

10 6.665 0.548 0.399 0.220 ++ ++
breast 2 3.201 3.127 0.035 0.038 ++ o

3 2.953 2.807 0.030 0.033 ++ o
10 2.152 1.753 0.029 0.026 ++ o

garageband 2 18.919 18.853 0.404 0.479 ++ o
3 18.975 18.568 0.382 0.382 ++ o

10 18.941 13.959 0.432 0.296 ++ ++

In conclusion, one can see that the reduced set approximates the SVM much
better than a simple linear pre-image. It can also be seen that the iterated
reduced set approach is significantly better than the greedy approach. How-
ever, this decrease in distance comes at the price of higher runtime, as more
computations of pre-images will be necessary. In the experiments, the iterated
approach was between 16% (for k = 2) and 85% (for k = 10) slower than the
greedy approach.
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4.1.3 Function Approximation

Viewing an SVM decision function simply as a function f : R
d → R, one can

ask whether it is possible to simplify the function term. In the case of the linear
SVM it is trivial to write

k∑

i=1

αi(xi ∗ x) =

(
k∑

i=1

αixi

)
∗ x

=: w ∗ x,

thereby simplifying the term from a sum over k vectors xi to a single inner
product. As another example, in the case of polynomial kernels Kg(x, x

′) =
(x ∗ x′)g, it is easy to see that the function term

k∑

i=1

αi(xi ∗ x)g

is a linear combination of k polynomials of degree g and hence a polynomial of
degree g itself. Expanding this term into a standard form is a trivial task for
any computer algebra program.

These kinds of simplifications are possible because both the linear and the
polynomial kernel span a finite-dimensional space of functions. The simplifi-
cation of a function term does in principle correspond to the projection of the
function on a given basis. For infinite dimensional function spaces such as the
one spanned by radial basis functions, this is not possible.

When no exact simplified function term exists, one can ask how closely
this function can be approximated by a more simple function. Mathematical
approximation theory has given a large number of results in this field and, of
course, one is free to use a set of functions of one’s choice to approximate the
SVM function if one feels that this will give a clearer representation.

In the following, we will deal with the question of approximating an SVM
with other SVMs, which has the advantage of allowing a kernelized approach
and not deviating too much from the original model.

Augmenting the RKHS of a Kernel

Remember that a kernel function K defines a Reproducing Kernel Hilbert Space
HK via the basis functions K(x, ·) (see Chapter 2.1.3). Suppose we want to
increase the expressibility of this RKHS by adding some other basis functions
ψi. We can use the same construction as for HK to define a space HK,Ψ using
linear combinations of the old basis function K(x, ·) and the new basis functions
ψi. However, in order to follow the construction to the end, we have to guarantee
that the form

< f, g > = <
∑

i

αiK(ai, ·) +
∑

j

βjψj ,
∑

i

α′
iK(a′i, ·) +

∑

j

β′
jψ

′
j >

=
∑

i,j

αiα
′
j < K(ai, ·),K(a′i, ·) > +

∑

i,j

βiβ
′
j < ψi, ψ

′
j >

+
∑

i,j

αiβ
′
j < K(ai, ·), ψ′

j > +
∑

i,j

βiα
′
j < ψi,K(a′i, ·) >
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is positive definite, such that it forms an inner product. We will now give such
an inner product for the special case of RBF kernels.

An Alternative Representation for RBF Kernels

Radial Basis Kernels Kγ(a, b) = e−γ||a−b||2 allow for a different explicit repre-
sentation of K as an inner product in a space of functions.

We start this section a little technically. It is well known that on the space
L2(ℜd) of square-integrable functions R

d → R, the integral

f ∗ g :=

∫

Rd

f(x)g(x)dx

defines an inner product. In particular, for basis functions of possibly different
RBF kernels Kγ , we have

Kγa
(a, ·) ∗Kγb

(b, ·) =

∫

Rd

Kγa
(a, x) ∗Kγb

(b, x)dx

=

∫

Rd

e−γa||a−x||2e−γb||b−x||2dx

=

∫

Rd

e−γa||a−x||2−γb||b−x||2dx

=

∫

Rd

e−
Pd

i=1
γa(ai−xi)

2+γb(bi−xi)
2

dx

=

∫

Rd

d∏

i=1

e−γa(ai−xi)
2−γb(bi−xi)

2)dx

=
d∏

i=1

∫

Rd

e−γa(ai−xi)
2−γb(bi−xi)

2

dxi

Further, we can write

γa(ai − xi)
2 + γb(bi − xi)

2

= γa(a2
i − 2aixi + x2

i ) + γb(b
2
i − 2bixi + x2

i )

= (γa + γb)x
2
i − 2(γaai + γbbi)xi + γaa

2
i + γbb

2
i

= (γa + γb)(xi −
γaai + γbbi
γa + γb

)2

− (γaai + γbbi)
2

γa + γb
+ γaa

2
i + γbb

2
i

= (γa + γb)(xi −
γaai + γbbi
γa + γb

)2

+(γa − γ2
a

γa + γb
)a2

i −
2γaaiγbbi
γa + γb

+ (γb −
γ2

b

γa + γb
)b2i

= (γa + γb)(xi −
γaai + γbbi
γa + γb

)2

+
γaγb

γa + γb
a2

i −
2γaaiγbbi
γa + γb

+
γaγb

γa + γb
b2i

= (γa + γb)(xi −
γaai + γbbi
γa + γb

)2 +
γaγb

γa + γb
(ai − bi)

2
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and with the well-known identity
∫

Rd

(
1

2π
)d/2 det(Σ)−1/2e−

1

2
(x−µ)tΣ−1(x−µ)dx = 1

from the multivariate normal distribution we obtain

Kγa
(a, ·) ∗Kγb

(b, ·) =
d∏

i=1

∫

Rd

e−γa(ai−xi)
2−γb(bi−xi)

2

dxi

= Kγaγb/(γa+γb)(a, b)
d∏

i=1

∫

Rd

e−(γa+γb)(xi−µ)2dxi

= Kγaγb/(γa+γb)(a, b)

∫

Rd

e−
1

2

Pd
i=1

2(γa+γb)(xi−µ)2dx

= Kγaγb/(γa+γb)(a, b)(
π

γa + γb
)d/2

with µ = γaai+γbbi

γa+γb
and Σ−1 = diag(2(γa +γb)). In particular, for γa = γb = 2γ,

it follows that
(

(
4γ

π
)d/4K2γ(a, ·)

)
∗
(

(
4γ

π
)d/4K2γ(b, ·)

)
= Kγ(a, b)

Hence, the RBF kernel with parameter γ can be interpreted as the integral
product of two basis functions of a RBF kernel with parameter 2γ.

The advantage of this representation is that the integral product is also well-
defined for functions other than basis functions of a particular kernel. Here, we
are interested in the case of basis functions for two different RBF kernels. Let
γ1 and γ2 be their parameter and let γ = 2 γ1γ2

γ1+γ2

. We define an inner product
on the space of functions given by the basis functions of both Kγ1

and Kγ2
as

follows. Let

A(γ1, γ2) :=

(
π

2(γ1 + γ2)

)d/2

A(γ) := A(γ, γ) = (
π

4γ
)d/2

such that A(γ1, γ2)Kγ(a, b) = Kγ1
(a, ·) ∗Kγ2

(b, ·).
Now select a kernel parameter γ∗ and set A = A(γ∗, γ∗). For two basis

functions Kγ1
(a, ·) and Kγ2

(b, ·) of kernels Kγ1
and Kγ2

, we define an inner
product

< Kγ1
(a, ·),Kγ2

(b, ·) > =
1

A
K2γ1

(a, ·) ∗K2γ2
(b, ·)

=
A(γ1, γ2)

A
Kγ(a, b)

where γ = 2γ1γ2/(γ1 +γ2). With this definition, we recover the Kernel function
Kγ as the inner product in the case γ1 = γ2 = γ∗:

< Kγ∗(a, ·),Kγ∗(b, ·) > =
A(γ∗, γ∗)

A
Kγ(a, b)

= Kγ∗(a, b).
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To extend this definition to the linear space of basis functions of radial
kernels R = {Kγ(a, b)|γ ∈ ℜ>0, a ∈ ℜd}, let f and g be linear combinations of
these basis functions. That is, f =

∑
i αiKγi

(ai, ·) and g =
∑

i βiKγ′

i
(bi, ·). Set

Γ(γ, γ′) = 2γγ′/(γ + γ′) and define

< f, g > = <
∑

i

αiKγi
(ai, ·),

∑

i

βiKγ′

i
(bi, ·) >

:=
∑

i

∑

j

αiβj < Kγi
(ai, ·),Kγ′

i
(bi, ·) >

=
∑

i

∑

j

αiβj
A(γ, γ′)

A
KΓ(γ,γ′)(ai, bj)

To show that this definition indeed produces an inner product, we can transform
it into an integral product.

A < f, g > =
∑

i

∑

j

αiβjA(γ, γ′)KΓ(γ,γ′)(ai, bj)

=
∑

i

∑

j

αiβjK2γ(ai, ·) ∗K2γ′(bj , ·)

=
∑

i



αiK2γ(ai, ·) ∗




∑

j

βjK2γ′(bj , ·)









=

(
∑

i

αiK2γ(ai, ·)
)

∗




∑

j

βjK2γ′(bj , ·)





As A > 0 and ∗ is an inner product, so is < ·, · >. Again, for f and g as linear
combinations of basis functions with the fixed parameter γ∗, the inner product
reduces to the inner product induced by the usual kernel Kγ∗ .

H

x2
x1

γ

Figure 4.5: The new Hilbert space contains the RKHS H of a SVM

Hence, the space R with the newly defined inner product is a Hilbert Space
that contains the Reproducing Kernel Hilbert Space H of Kγ as a subspace (see
Figure 4.5). This means that, first, the H is a subset of R, and second, that
the inner product < ·, · >|H×H coincides with the inner product induced by the
Kγ∗ .

It should be noticed that R is not necessarily a Reproducing Kernel Hilbert
Space itself, as its inner product is not induced by a single kernel function.
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Back to the Pre-Images

With respect to the pre-images, the newly constructed Hilbert Space means
that we have a larger set of functions, such that we can choose a better approx-
imation. At the same time, the structure of the space, as defined by the inner
product, remains the same and hence mathematical similarity in the augmented
space translates to similarity with respect to the generalization ability.

The new augmented Hilbert space allows to solve the standard linear pre-
image problem

(β, x) = arg min
β,x

||f − βΦ(x)||2

also for pre-images of basis functions of RBF kernels other than the one used
to find f . In particular, we can use kernels with a smaller value of γ (higher
standard deviation), which corresponds to using larger Gaussian “hats” and
hence less detail to approximate the general characteristics of the function.
Again, the problem can be solved purely in terms of kernels. Let H1 be the
RKHS of a RBF kernel with parameter γ1, f be a function in that space, Φ be
a basis function of a RBF kernel with parameter γ2, H′ be the linear space of
both kernel functions and γ = 2γ1γ2/(γ1 + γ2). Then

||f − βΦ(x)||2H′ = < f − βΦ(x), f − βΦ(x) >H′

= ||f ||2H′ + β2||Φ(x)||2H′ − 2β < f,Φ(x) >H′

= ||f ||2H + β2A(γ2, γ2)

A(γ1, γ1)
Kγ2

(x, x)

−2β
A(γ1, γ2)

A(γ1, γ1)

∑

i

αiKγ(xi, x)

= ||f ||2H + β2A(γ2, γ2)

A(γ1, γ1)

−2β
A(γ1, γ2)

A(γ1, γ1)

∑

i

αiKγ(xi, x)

Derivation with respect to β yields that the minimum is attained at

β =
A(γ1, γ2)

A(γ2, γ2)

∑

i

αiKγ(xi, x)
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and hence it suffices to find

min
β,x

||f − βΦ(x)||2H′

= β2A(γ2, γ2)

A(γ1, γ1)
− 2β

A(γ1, γ2)

A(γ1, γ1)

∑

i

αiKγ(xi, x)

= min
β,x

β2A(γ2, γ2)

A(γ1, γ1)
− 2β

A(γ1, γ2)

A(γ1, γ1)

∑

i

αiKγ(xi, x)

= min
x

A(γ1, γ2)
2

A(γ1, γ1)A(γ2, γ2)

(
∑

i

αiKγ(xi, x)

)2

−2
A(γ1, γ2)

2

A(γ1, γ1)A(γ2, γ2)

(
∑

i

αiKγ(xi, x)

)2

= min
x

− A(γ1, γ2)
2

A(γ1, γ1)A(γ2, γ2)

(
∑

i

αiKγ(xi, x)

)2

= max
x

(
∑

i

αiKγ(xi, x)

)2

This problem differs from the original pre-image problem only by the kernel
width γ, so it can be solved with any standard pre-image algorithm.

Figure 4.6 compares the SVM decision function (green line), the usual linear
pre-image (purple line) with the linear pre-image in the augmented space (black
line), where the kernel parameter γ in the augmented space was chosen to
optimize the prediction error of the new pre-image. The new pre-image function
exactly covers the decision region of the SVM decision function. Alternatively,
one can optimize γ in order to minimize the feature space distance between
the function and the pre-image, which is more appealing when one want to
approximate the complete form of the decision function and not only its decision
region.

In the following experiments, the value of γ for the pre-image kernel was
optimized over values between γSV M/10 and γSV M by choosing the value with
the lowest difference between the original SVMs predictions and the pre-image
prediction (in order to describe the complete SVM function, the actual predic-
tion error of the pre-image was not directly used). No values higher than γSV M

were used because higher values correspond to smaller variance in the radial
basis function and hence to a more specific kernel, while a pre-image should
be more general than a single basis functions that comes from the complete
SVM hypothesis. The following table compares the standard pre-images with
the new multi-kernel approach, listing both the distance to the regular SVM
hypothesis in feature space and the prediction error obtained. The values are
the results of 10-fold cross-validation. Because of numerical problems due to
the high dimension, the distance values for the garageband data set could not
be computed.
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Figure 4.6: Linear pre-image and augmented kernel pre-image

Name Standard Multi-Kernel Comparison
Dist Err Dist Err Dist Err

business 5017.6 0.362 4873.5 0.249 + +
covtype 7.062E11 0.407 7.015E22 0.397 ++ o
diabetes 445.8 0.437 450.9 0.293 − +
digits 2.047E47 0.498 2.048E47 0.498 −− o
physics 1.067E38 0.491 1.067E38 0.487 −− o
ionosphere 6.908E16 0.170 7.531E16 0.641 −− −−
liver 154.6 0.457 161.3 0.385 − +
medicine 1.029E9 0.277 1.091E9 0.277 −− o
mushroom 2.877E29 0.433 2.871E29 0.414 + o
promoters 9.205E108 0.159 9.205E108 0.105 o o
insurance 3.569E97 0.070 3.696E97 0.070 −− o
balance 56.674 0.500 62.829 0.213 −− ++
dermatology 1.328E8 0.037 1.329E9 0.048 −− o
iris 18.61 0.286 19.92 0.126 −− +
voting 3.726E12 0.386 3.727E12 0.386 −− o
wine 1.709E10 0.399 1.713E10 0.399 −− o
breast 354.7 0.093 345.7 0.039 o o
garageband - 0.382 - 0.382 o o

One can see that the new pre-image algorithm performs significantly better
than the standard one on 5 on the data sets and performs better or equal
on another 11 of the data sets. It performs worse on only 2 of the data sets
(ionosphere and dermatology), where only the performance reduction on the
ionosphere data set is significant. One can also see that the distance to the
original SVM varies widely and the new approach performs less good in terms



116 CHAPTER 4. INTERPRETING SUPPORT VECTOR MACHINES

of the distance. However, this has no impact on the actual error which shows
that the distance in feature space is only useful as an intermediate concept,
but not as a performance measure itself. This can be explained by the fact
that the distance of the functions can be defined in terms of the differences of
the function values, while the different error rates are only described by the
difference of the signs. E.g. the functions f and 100 · f have a large distance,
but exactly the same error. An example can be seen in Figure 4.7 with the
distance-based pre-image in black and the error-based pre-image in purple.
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Figure 4.7: Distance-based and Error-based multi-kernel pre-image

In terms of understandability, the new augmented pre-image gives a much
better approximation to the decision function SVM hypothesis, while at the
same time it preserves the simple functional form of a single Radial Basis Func-
tion, i.e. the user has to inspect only a single observation x and a single linear
factor β. The advantage for understandability becomes apparent in the follow-
ing equation, which compares the SVM function of Figure 4.7 (first 52 lines)
with its augmented pre-image (last line).
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fsvm(x) = ·e−0.5||x−0.716||2 + e−0.5||x−0.579||2 + e−0.5||x−0.336||2

+e−0.5||x−0.645||2 + 0.311 · e−0.5||x−−2.319||2 + e−0.5||x−0.587||2

+0.716 · e−0.5||x−0.288||2 + e−0.5||x−0.403||2 + e−0.5||x−1.481||2

+e−0.5||x−0.726||2 − 0.959 · e−0.5||x−1.214||2 − e−0.5||x−1.112||2

−e−0.5||x−2.693||2 − e−0.5||x−1.031||2 − e−0.5||x−2.691||2

−e−0.5||x−2.871||2 − e−0.5||x−1.048||2 + −0.621 · e−0.5||x−2.685||2

−e−0.5||x−0.539||2 − e−0.5||x−3.157||2 − e−0.5||x−3.591||2

−e−0.5||x−3.270||2 − e−0.5||x−3.543||2 − e−0.5||x−1.135||2

−e−0.5||x−0.471||2 − e−0.5||x−2.961||2 − e−0.5||x−3.131||2

−e−0.5||x−3.006||2 − e−0.5||x−1.045||2 − e−0.5||x−3.409||2

−e−0.5||x−0.934||2 − e−0.5||x−3.113||2 − e−0.5||x−3.848||2

−e−0.5||x−1.041||2 − e−0.5||x−3.107||2 + e−0.5||x−2.568||2

+e−0.5||x−3.661||2 + e−0.5||x−2.949||2 + e−0.5||x−3.063||2

+e−0.5||x−3.208||2 + e−0.5||x−3.874||2 + e−0.5||x−3.763||2

+0.553 · e−0.5||x−3.886||2 + e−0.5||x−3.862||2 + e−0.5||x−2.609||2

+e−0.5||x−3.022||2 + e−0.5||x−2.461||2 + e−0.5||x−1.885||2

+e−0.5||x−3.794||2 + e−0.5||x−3.519||2 + e−0.5||x−2.939||2

+0.612

≈ −1.340 · e−0.397||x−1.916||2

Augmented Kernel Reduced Sets

Finally, not only the linear pre-image problem, but also the reduced set problem
is well-defined in the new augmented Hilbert space. It is straight-forward to
extend the gradient search algorithm of [Mika et al., 1998] to the case of radial
basis functions with different parameters γ in order to minimize the distance in
the new Hilbert space.

The following table compares the test errors of the standard reduced sets
and the augmented kernel version.

Name k Standard Multi-Kernel Comparison
business 2 0.241 0.209 o

3 0.202 0.177 o
10 0.152 0.197 −

covtype 2 0.368 0.355 o
3 0.362 0.359 o

10 0.305 0.319 −
diabetes 2 0.259 0.250 o

3 0.255 0.280 o
10 0.242 0.243 o

digits 2 0.501 0.003 ++
3 0.498 0.003 ++

10 0.003 0.003 ++
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Name k Standard Multi-Kernel Comparison
physics 2 0.451 0.331 ++

3 0.350 0.455 −−
10 0.335 0.347 −

ionosphere 2 0.076 0.076 o
3 0.074 0.173 −−

10 0.062 0.207 −−
liver 2 0.385 0.295 +

3 0.341 0.336 o
10 0.292 0.304 o

medicine 2 0.277 0.271 o
3 0.277 0.277 o

10 0.277 0.275 o
mushroom 2 0.383 0.35 ++

3 0.366 0.323 ++
10 0.333 0.294 ++

promoters 2 0.179 0.500 −−
3 0.160 0.178 o

10 0.140 0.102 o
insurance 2 0.070 0.062 ++

3 0.013 0.009 o
10 0.062 0.041 o

balance 2 0.280 0.046 ++
3 0.088 0.078 o

10 0.081 0.032 +
dermatology 2 0.037 0.163 −

3 0.037 0.112 −−
10 0.021 0.032 o

iris 2 0.033 0.000 o
3 0.006 0.000 o

10 0.000 0.000 ++
voting 2 0.613 0.069 ++

3 0.386 0.071 ++
10 0.069 0.073 o

wine 2 0.600 0.259 ++
3 0.399 0.214 ++

10 0.220 0.275 −−
breast 2 0.035 0.035 o

3 0.033 0.032 o
10 0.026 0.029 o

garageband 2 0.472 0.284 ++
3 0.399 0.283 ++

10 0.312 0.284 +

The comparison shows that for k = 2 the new method performs significantly
better than the standard reduced set on 9 data sets while it is significantly worse
on 2 data sets. For k = 3 it is better on 5 data sets and worse on 3 data sets
and for k = 10 it is better on 10 data sets and worse on 5.

[Schölkopf et al., 1998a] also proposes an algorithm for simultaneously ap-
proximating multiple feature space vectors. In the case of radial basis functions,
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an interesting second feature vector to approximate is that given by the kernel
functions of all n examples, each with weight 1/n, as this will be a form of kernel
density estimation, called the Parzen density estimate [Scott, 1992]. Reduced
set approximations for both a SVM vector and the density estimator will give a
set of points that are representative for both the decision function and the data
distribution.

4.2 Logical Approximation of Numerical Func-

tions

Numerical learners like the Support Vector Machine haven proven to be most
successful on many real-world learning tasks. On the other hand, a logical
representation has often found to be much more interpretable for humans. The
obvious question is whether and to what extend it is possible to approximate a
given numerical learner by some set of logical rules.

Given a numerical decision function f : X → R, there are two possible ap-
proximation tasks, namely approximating the function f itself and approximat-
ing its class prediction signf(x), which corresponds to identifying {x|f(x) > 0}.
This section will only deal with the latter tasks, as due to the discrete logical rep-
resentation the first tasks can be reduced to approximating the sets {x|f(x) > δ}
for different values of δ (although there may of course be more sophisticated ap-
proaches).

For a probability measure P we can define P (f 6= g) as a distance measure
between f and its logical approximation g. Such a probability measure is neces-
sary because a data-independent distance measure like the volume of all points
predicted differently by f and g will usually be not finite. This formulation
allows the following theorem:

Theorem 4.2.1 (Existence of a Logical Approximation). Let P be a probabil-
ity measure with a density ρ, i. e. P (A) =

∫
A
ρ(x)dx. Let f be a continuous

classifier. Then for all η > 0 there exists a logical classifier g with

P (signf(x) 6= g(x)) < η

and

Err(g) < Err(f) + η.

Proof. It is sufficient to show that there exists a g with P (signf(x) 6= g(x)) < η,
because g(x) 6= y implies g(x) 6= signf(x) ∨ signf(x) 6= y and hence

P (g(x) 6= y) ≤ P (f(x) 6= y) + P (signf(x) 6= g(x))

which means

Err(g) ≤ Err(f) + P (signf(x) 6= g(x)).

As P is a finite Borel measure, P is regular. Hence, there exists a compact
set K ⊂ Rn with P (K) = P (Rn)− η

2 = 1− η
2 . As P has a measure with respect

to the Lebesgue measure λ, P is continuous with respect to λ by the Theorem
of Radon-Nikodyn. Hence there exists a δ > 0 such that for every Borel set A
we have λ(A) < δ ⇒ P (A) < η

2 .
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Let K ′ = K ∩ {x|signf(x) = 1} = K ∩ f−1([0,∞[). As f is continuous,
f−1([0,∞[) is closed and K ′ is compact. Therefore, there exists a finite set of
boxes Qi such that K ′ ⊆ Q :=

⋃
iQi and vol(K ′) > vol(Q)−δ. Let g = 2·1Q−1

(which defines a logical classifier based on the discretization induced by the Qi),
then g(x) 6= signf(x) implies x /∈ K or x ∈ Q\K ′. It follows that

P (g(x) 6= signf(x)) ≤ P (x /∈ K) + P (Q\K ′)

<
η

2
+
η

2
= η

Of course, this theorem is only of theoretical interest because it does not
allow to estimate the number of discrete values needed to achieve a certain
error. For the goal of understandability, we need to find logical classifiers with
a small number of discrete values.

Several algorithms for logical approximations of numerical functions, a task
which is also called rule extraction, have been proposed in the literature, see
[Andrews and Diederich, 1996]. The main evaluation criteria for rule extraction
algorithms according to [Craven and Shavlik, 1999] are the comprehensibility of
the extracted rules, their fidelity (rate of agreement between rules and numerical
classifier), their accuracy, and the scalability and generality of the extraction al-
gorithm. According to the authors, the last two points are the main weaknesses
of existing algorithms.

The most well-known rule extraction algorithm is the Trepan algorithm
[Craven and Shavlik, 1996]. Trepan is a most general approach based on de-
cision tree construction [Quinlan, 1986]. Trepan effectively makes use of the
property that the numerical learner can label any given observation, such that
theoretically infinitely many training examples are available. In the Trepan deci-
sion tree, each leaf represents a region in the input space and the corresponding
example distribution P (x). The algorithm starts with a decision tree consisting
of only one leaf, which represents the whole example set. In each iteration it
selects the leaf v where the approximation is worst according to the measure

Err(v) = number(v) · (1 − fidelity(v))

where number(v) is the estimated number of examples that fall into this leaf
when classified by the tree and fidelity(v) is the estimated approximation ac-
curacy of the leaf. For the selected leaf, a number of additional examples is
generated by estimating the probability P (x) in this leaf based on the train-
ing examples and drawing additional observations for the numerical model to
classify. This additional information is used to find the optimal split for this
leaf.

4.2.1 Empirical Limits for Rule Extraction

A problem of rule extraction from black-box classifiers like the Trepan approach
is that although it is theoretically possible to generate infinitely many example
labels from the classifier, the problem of which unlabeled x to choose is more
tricky than it seems. Generally, it is impossible to approximate a classifier
with zero error and hence to minimize the error one has to concentrate on the
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most likely parts of the input space. For example, in figure 4.8 the logical
classifier (red) approximates the nonlinear decision line (blue) on a certain part
of the input space (green). Without the space restriction, the region where both
classifiers disagree could have an infinite volume.

Figure 4.8: A Logical Classifier Approximates a Numerical Classifier

Using an estimated distribution like in the Trepan algorithm allows to ap-
proximate the classifier more closely with respect to this distribution, but it is
not clear whether this holds for the true distribution. In the worst case, the
extracted rules build up much useless complexity in regions with low probability
or are biased towards artificial examples, sacrificing accuracy on the true train-
ing examples. This becomes a problem when the size of the extracted rule set is
bounded to improve interpretability. In short, a heuristic for machine learning
says to never solve a more complex problem (density estimation) in order to
solve a more simple one (rule extraction).

Another conceptual problem of rule extraction is the following: as the nu-
merical classifier approximates the data and the extracted rule approximates
the numerical classifier, the extracted rule also approximates the data. So, how
far can one distinguish between logical rules that predict the data and rules that
describe the classifier? In particular, when two such classifiers predict the data
with an error of ε, both cannot disagree more than 2ε and on the average one
would suspect an error of only ε. This has to be taken into account when the
quality of an approximation algorithm is evaluated.

Accordingly, the goal of this section is to investigate two problems:

• How does a logical classifier that predicts the data differ from a logical
classifier that predicts the output of a numerical classifier trained on the
data?

• How much better than the trivial method of training a logical classifier on
the numerical classifiers outputs can a rule extraction method perform?

Numerous approaches for extracting rules from numerical models exist, for ex-
ample [Craven and Shavlik, 1996, Nunez et al., 2002, Chen, 2004]. However,
none of these approaches considered the above questions.

Predicting the True Class vs. Predicting the Classifiers Output

In the following experiments, linear and radial basis Support Vector Machines
are used as numerical classifiers, while the logical approximation is generated
by a decision tree classifier. For each test, two decision trees are generated,
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one predicting the data and one approximating the SVM model. The goal is
to investigate the relationship between both decision trees (see Figure 4.9). In
other words, is it empirically possible to distinguish both learning tasks?

SVM

datadecision tree

rule extraction

?

predicts

predicts

predicts

Figure 4.9: First rule extraction problem

The following table shows the results of using the J48 decision tree algorithm
to predict the true class yi (columns labeled “class”) and predicting the output
of the SVM f(xi) (columns labeled “SVM”). In both cases, the columns give the
disagreement rate, that is the fraction of examples that are predicted differently
by the SVM and the decision tree. The final column in each case shows whether
the disagreement rate of the tree predicting the SVM output is significantly
lower than the disagreement rate of the regular decision tree (“++” denotes
significance at the 0.99 confidence level and “+” denotes significance at the 0.95
confidence level).

Name linear SVM radial basis SVM
class SVM Sig class SVM Sig

Business 0.165 0.133 o 0.147 0.145 o
Covtype 0.182 0.052 ++ 0.159 0.093 ++
Diabetes 0.132 0.066 ++ 0.142 0.080 ++
Digits 0.010 0.009 o 0.008 0.015 o
Physics 0.301 0.095 ++ 0.293 0.146 ++
Ionosphere 0.119 0.105 o 0.071 0.073 o
Liver 0.318 0.220 + 0.269 0.240 o
Medicine 0.230 0.040 ++ 0.191 0.063 ++
Mushroom 0.000 0.000 o 0.001 0.001 o
Promoters 0.256 0.238 o 0.180 0.180 o
Insurance 0.002 0.002 o 0.008 0.005 ++
Balance 0.165 0.149 o 0.142 0.156 o
Dermatology 0.000 0.000 o 0.016 0.016 o
Iris 0.013 0.013 o 0.013 0.013 o
Voting 0.020 0.000 ++ 0.038 0.025 o
Wine 0.061 0.066 o 0.220 0.135 ++
Breast 0.030 0.019 o 0.029 0.026 o
Garageband 0.281 0.225 ++ 0.267 0.210 ++

We can see that for each learner only on 7 out of 18 data sets the task of
predicting the SVM output instead of the true class produced significantly better
results at approximating the SVM. This shows that in most of the cases, the
task of predicting the SVM output is empirically very hard to distinguish from
the task of predicting the true labels. It follows that a regular decision tree
should always be considered as a benchmark approach.



4.2. LOGICAL APPROXIMATION OF NUMERICAL FUNCTIONS 123

Practical Limits for Approximating a Classifier

Every probability estimation in an intermediate step of rule extraction invariably
introduces the risk of constructing a sub-optimal approximator with respect to
the true distribution P (x). Hence, the most straight-forward way is to extract
rules only based on the given training examples of the numerical classifier. But in
this case, finding an optimal rule extractor gives rise to the well-known problem
of comparing two classifiers based on a finite number of examples, upon which
only a finite number of classifiers can be distinguished.

The idea of this section is that one can infer the bound on the proportion
of misclassified examples that an approximator has to exceed in order to be
distinguishable from an assumed optimal approximator. Assume there is an
approximator with zero empirical approximation error. As the error is computed
on n examples, the Bayes-optimal estimator of the true error rate is π̂ = 1

n+2
[Polasek, 1997]. This allows to directly compute the confidence region of a
B(π̂, n) binomial distribution.

The following experiment employs the direct rule extractor that learns a
decision tree on the given observation with the numerical learners predictions
as labels. A linear and a radial basis SVM are used as numerical classifiers.
The following table checks whether the disagreement rate of the decision tree
predicting the SVM is significantly higher than an assumed optimal approxima-
tor of the SVM with a disagreement rate of 1

n+2 , where n is the number of test
examples. The numbers in the columns give the number of cross-validation runs
where the approximating tree had a higher disagreement rate than the default
with a confidence of 0.99 or 0.95, respectively. There were 10 cross-validation
runs in total.

Name linear SVM RBF SVM
Confidence level 0.99 0.95 0.99 0.95
business 0 1 1 1
covtype 10 10 10 10
diabetes 6 7 8 10
digits 0 0 0 0
physics 10 10 10 10
ionosphere 3 5 0 4
liver 9 10 10 10
medicine 10 10 10 10
mushroom 0 0 0 0
promoters 2 4 1 2
insurance 0 4 7 9
balance 9 10 10 10
dermatology 0 0 0 0
iris 0 0 0 0
voting 0 0 0 0
wine 0 1 0 3
breast 0 0 0 1
garageband 10 10 10 10

We can see that on 6 data sets for the linear SVM and on 5 data sets for the
radial basis SVM, the disagreement rate was never significantly higher than the
theoretical optimum. On 11 data sets for the linear SVM and on 10 data sets
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for the radial basis SVM, the disagreement rate was significantly higher on at
most half of the runs.

This shows that in most cases, the second simple approach, which predicts
the SVM decision function on the training examples, cannot be significantly
improved. This result holds for all rule extractors, as no assumptions about the
algorithm have been made. Note that this result is even an optimistic bound on
the ability of a SVM approximator to produce better results than the standard
decision tree, in general one must expect an approximation algorithm to already
have a higher disagreement rate than 1

n+2 on a test sample. In conclusion,
for most learning problems a very simple rule extraction approach is already
optimal.

4.3 Visualization of Support Vector Machines

The trick of a good visualization method is that it displays the relevant structure
of the object of interest. For the visualization of Support Vector Machines,
many well-known visualization methods [Keim, 2002] can of course be used.
This section will deal with visualization a a dimension reduction problem with
the goal of retaining most of the relevant structure with respect to the SVM.

The structure of the possible SVM hypotheses is given by the Reproducing
Hilbert Kernel Space of the SVM kernel (see Section 2.1.3). To represent the
structure of the data in the RKHS and for dimension reduction with respect
to the features extracted by the kernel, kernel principal component analysis
(kPCA) has been proposed [Schölkopf et al., 1999].

kPCA is an extension of the regular (linear) principal component analysis
(PCA). The idea of PCA is shown in Figure 4.10: Given a set of data, the
vector along which the data shows the most variance is the first principal com-
ponent. Given the first i principal components, the i+1-st principal component
is the vector orthogonal to the first i principal components along which the
data shows the most variance. It follows that the best reconstruction of the
data in an i-dimensional subspace is given by the first i principal components.
Computationally PCA reduces to a eigenvector decomposition of the covariance
matrix.

1st p.c.

2nd p.c.

Figure 4.10: Linear Principal Component Analysis

A useful property of PCA is that it solely depends on the inner product and
hence one can use the kernel trick to develop a nonlinear variant, the kPCA. Let
the kernel K be given by the nonlinear mapping Φ, i. e. K(x, x′) = Φ(x)∗Φ(x′).
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To perform PCA in feature space, the covariance matrix C

C =
1

n

n∑

i=1

Φ(xi)Φ(xi)
t

is investigated. Here we assume that the data is centered in feature space, that
is
∑n

i=1 Φ(xi) = 0. The task is to find eigenvalues λ and eigenvectors V that
satisfy

λV = CV

⇔ λV =
1

n

n∑

i=1

Φ(xi)Φ(xi)
tV

⇔ ∀n
k=1 : λΦ(xk)tV = Φ(xk)tCV

where the last equation follows because all solutions V lie in the span of the
Φ(xk), i. e. V =

∑k
i=1 αiΦ(xi). Note that there are n principal components Vk,

each with a weight vector α(k) = (α
(k)
1 , . . . , α

(k)
n ). This yields the equation

nλKα = K2α

which is equivalent to finding the solutions of

nλα = Kα

because all solutions α(k) of the latter equation satisfy the former and it can
be shown that any additional solutions of the latter equation do not make a
difference in the expansion of Vk. Finally, the eigenvectors are normalized in
feature space which translates to setting ‖|α(k)||2 = 1/λk. Principal component
extraction for an observation x is computed by projecting x on the eigenvectors
Vk, i. e. computing

VkΦ(x) =

n∑

i=1

α
(k)
i Φ(xi)Φ(x)

=

n∑

i=1

α
(k)
i K(xi, x).

For non-centered data, i. e.
∑n

i=1 Φ(xi) 6= 0 the vectors Φ(x) are replaced by
their centered counterparts

Φ̃(x) = Φ(x) − 1

n

n∑

i=1

Φ(xi).

The kPCA solution can then be computed using the kernel matrix K̃ corre-
sponding to Φ̃:.

nλ~α = K̃~α

It can be shown that K̃ can be written as

K̃ = K − 1nK −K1n + 1nK1n
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Figure 4.11: Iris Data Set

where 1n is the n× n matrix with entries 1/n (see [Schölkopf et al., 1998b]).

Kernel PCA can be used to extract features from the data in order to show
up the structure defined by the kernel. For example, let us take a look at the
well-known Iris data set [Fisher, 1936]. Figure 4.11 shows the scatterplot matrix
of this 4-dimensional data set. The data set consists of three species of flowers,
where one of the species (Setosa) is marked blue in the plots. Figure 4.12 shows
9 plots of the same data set, projected on the first and third feature (i. e. every
plot of Figure 4.12 corresponds to the plot in the third row of the first column of
Figure 4.11). This time, the colors encode the values of points projected on the
first 9 principal components. A red point marks a negative value and a blue point
marks a positive value. One can see that the first principal component separates
the lower cluster from the upper cluster, the second principal component divides
the upper cluster in half and the following principal components highlight other,
more complex structures in the data (these structures may be better observable
in plots of other attributes).
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Figure 4.12: Kernel Principal Component Analysis

4.3.1 Projected Kernel Principal Component Analysis

Kernel PCA is a useful tool for extracting the structure of the data and the
kernel itself, but it does not include information about the classification task
and SVM solutions. The problem is that the class structure may not correspond
to the variance structure extracted by the PCA. It may very well be the case
the the SVM hyperplane is oriented along the smallest principal component and
that plot along the largest components do not exhibit any useful structure with
respect to classification. It may also be the case that the SVM prediction is
more or less correlated with the projections on all principle components, such
that there is no low-dimensional projection that includes sufficient information
to analyze the SVM hyperplane.

To circumvent this problem, information about the SVM hyperplane can be
incorporated into Kernel PCA. The idea is to use the SVM hyperplane vector
w as the first principle component. In this way, all information about the
SVM prediction is bundled into the first component while all other principle
components are uncorrelated to the SVM and hence include a maximum of
additional information. This novel variant of kPCA will be called Projected
Kernel Principal Component Analysis (pkPCA).
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To define the pkPCA algorithm, let w =
∑n

i=1 βiΦ(xi) be a SVM solution.
Assume that w is normalized to ||w|| = 1. To force kPCA to take w as the first
principal component, the data is projected onto the orthogonal complement of
w and a kPCA is carried out with the transformed data. This forces w in the
span of the eigenvectors with zero eigenvalue, which can be ignored and replaced
by w in the later feature extraction step.

Basic linear algebra states that the projection PΦ(x) of Φ(x) onto the or-
thogonal complement of w is given by

P (x) := Φ(x) − wwtΦ(x).

and it is straight-forward to show that P defines a new kernel function with
kernel matrix

K̃ = K −KBK

where K is the kernel matrix of Φ and B = ββt. Similar to kPCA, a centering
step is carried out by replacing P (x) with

P̄ (x) = P (x) − 1

n

n∑

i=1

P (xi).

with corresponding kernel matrix

K̄ = K̃ − 1nK̃ − K̃1n + 1nK̃1n.

Projected Kernel PCA is then equivalent to solving the kPCA eigenvector prob-
lem with the new kernel matrix K̄.

Figure 4.13 shows the results of pkPCA on the Iris data set. The SVM used
was generated by defining a classification tasks to separate the Setosa species
(lower cluster) from the rest. Notice that none of the principal components
separated the lower cluster from the rest, as this is already done by the SVM
decision function (the projection on w is not plotted here). Instead, independent
structure is extracted by the PCA.

To validate the independence of the extracted structures, the following table
show the correlation between the SVM parameter vector β and the 10 largest
principal components α(k) for both the usual kPCA and the new pkPCA.

# kPCA pkPCA
1 -0.123 -3.525e-17
2 -0.108 -4.084e-17
3 0.153 1.034e-16
4 -0.122 -6.669e-17
5 -0.206 1.969e-17
6 -0.071 -2.241e-16
7 -0.091 -6.055e-17
8 0.027 -4.816e-16
9 0.072 -7.158e-16

10 0.081 -4.127e-16
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Figure 4.13: Projected Kernel Principal Component Analysis

It can be seen that there is a considerate amount of correlation in the kPCA
(although the first kPCA component already provides a good separation of both
clusters, see Figure 4.12), while the pkPCA is uncorrelated. This shows that
pkPCA is much better suited for describing the SVM-relevancy of the structure
in the data than usual kPCA.

The plots generated by this technique optimally separate the class structure
that the SVM extracts (i.e. the decision function) and the structure that the
SVM could theoretically extract, but does ignore (uncorrelated components of
the same functional form). Still, the analysis of these plots in order to find
out whether the SVM is missing some information in the data that could be
extracted, e.g. by a feature transformation, lies in the responsibility of the user.

4.4 Conclusions

Detailed information about a classifiers internals allows many approaches to
construct a provably optimal transformation of the classifier into a more un-
derstandable form. This chapter has presented three such transformations of
Support Vector Machines: into formulas, rules, and plots.
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Section 4.1 embedded the Reproducing Kernel Hilbert Space of SVMs into a
larger space, which is even more complex, but which contains simple functions
with high approximation quality. From these functions, an approximation can
be found that is both mathematically well-defined and desirable from under-
standability aspects.

A negative result was obtained in Section 4.2: even with complete knowledge
about the classifier’s hypothesis space it may be not possible to transform the
classifier into a very different representation – in this case rules – that is more
sensible than a very trivial approach when the variance from the finite number
of examples is taken into account.

Finally, Section 4.3 introduced a new method for the visualization of Support
Vector Machines that is based on a dimension reduction of the hypothesis space
that is maximally informative about the decision function.

The most important result of this chapter is that the optimal transformation
of an accurate classifier into an understandable form depends largely on the
type of features and the structure the learner internally extracts from the data
– e.g. kernelized principal components and Reproducing Kernel Hilbert Spaces.
When this structure is known, more meaningful results can be obtained than in
the case where this structure has to be estimated from the data, as it was the
case in the last chapter. When this structure does not fit to the language the
model is to be described in, as in Section 4.2, only trivial transformations can
be performed.



Chapter 5

Detecting Local Patterns

The previous two chapters dealt with the task of describing a model itself; the
question of interest was “how does the model predict the data?” In this chapter,
the goal is slightly different. Instead of describing the model, the focus lies on
the performance of the model, that is the question becomes “how good does the
model classify the data”1. To answer this question, this chapter will look for
regions of remarkably high or low classification accuracy. This leads us to the
problem of local pattern detection.

Local pattern detection [Hand et al., 2002, Morik et al., 2005] is defined as
the unsupervised search for local accumulations of data points with unexpected
high density with respect to some background model [Hand, 2002]. For example,
in a retail store the background model may state that customers decide to buy
an item independently of other items. Deviations from this model are items
which are often bought together (e.g. pretzels and beer) or items which are
seldomly bought together (e.g. different brands of dish washing detergent), and
these are very interesting to retail stores to optimize their assortment of goods.
The search for frequent combinations of item has become very popular under
the name of “association rule mining” [Agrawal and Srikant, 1994].

Local pattern detection has similarities to the field of robust statistics (see
Section 2.3) . They share the idea that examples do not only come from one
distribution, but instead a small fraction of examples comes from a different
distribution. But in contrast to local models, robust statistics usually is not
interested in describing these local exceptions, but in removing their influence.
In this sense, local pattern detection and robust statistics are complementary
problems.

This chapter deals only with local patterns from the view of a classifier, that
is we are only interested in subsets of the data that deviate from the rest of the
data with respect to the ability of predicting their label. See for example Figure
5.1. In terms of usual unsupervised local pattern detection, the large circle on
the right is a likely background model, stating that all data lies in this circle,
while the small circle on the right then becomes a local pattern. In the case
of supervised local pattern detection, the vertical line dividing the large circle
on the right is a probable background model, declaring all points on the left as
positive and all points on the right as negative. In contrast to the unsupervised

1Note that this is a different question than “how sure is the classifier of its prediction?”,
which is the focus of probabilistic classifiers (Section 2.4)
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case, the smaller circle on the left only becomes a local pattern if its examples
are negative, because the focus lies on predicting the class, not describing the
location of the data.

? + −

Figure 5.1: Background model and a possible local pattern.

The problem of finding local patterns for classification can be formalized as
follows:

Definition 5.0.1 (Predictive Local Pattern Problem). Given examples (xi, yi)
n
i=1

i.i.d. drawn from a probability distribution P , a learner L, and a number
τ ∈]0, 1[, the predictive local pattern problem is to find a subset C of the input
space X such that

1. P (C) < τ (locality constraint)

2. the predictive performance of L on X\C is maximized.

The definition states the goal of minimizing the errors on the global part,
which is equivalent to concentrating the errors in the local part. More intuitively,
the Predictive Local Pattern Problem can be stated as: Given Hand’s equation
[Hand, 2002]

Data = GlobalModel + LocalModels+Noise,

give me the regions C where

Data = GlobalModel +Noise

still holds, taking the same level of noise in both cases.
Three fundamental questions arise from the definition of the Predictive Local

Pattern Problem.

Verification: Given a set C, is it a predictive local pattern? To answer this
question, one has to empirically verify that P (C) < τ and that the per-
formance of L on X\C is significantly higher than its performance on X.
These are readily solvable statistical standard problems.

Existence: Given a set of examples, does a predictive local pattern exist? In
general, this question cannot be answered, because if a local pattern exists,
the performance gain of L could be arbitrarily small, while there is a
fixed minimal performance value that can be distinguished from zero using
a finite set of examples. If the problem is restricted to find only local
patterns on the training data, it can be solved by enumerating all possible∑τn

k=1

(
n
k

)
possible local patterns.
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Optimality: Given a local pattern C, is it optimal, i.e. does no other local
pattern exists, on which L has a higher performance gain? Again, this
problem cannot be solved from a finite set of training data, as only finitely
many patterns can be distinguished from this data set, but there are in-
finitely many possible patterns and any two patterns that coincide on the
training data may have a significantly different true performance differ-
ence.

In conclusion, the problem of identifying predictive local patterns suffers from
the same theoretical problems as supervised learning in general: it is possible
to verify the existence of a given structure in the data, but it is not possible
to verify if the data contains any structure at all (see e.g. the definition of
Kolmogorov complexity in Section 2.1.4). Hence, the set of admissible patterns
C has to be restricted to form a practically solvable problem. A specific instance
of the Predictive Local Pattern Problem is defined by the hypothesis language
LC ⊂ P(X) of admissible patterns C.

How much performance gain can we expect from the local pattern approach?
Given a global classifierG with error ε, the best possible local pattern C contains
as much errors of G as possible. This leaves a classifier with max{ε−τ, 0} errors
on a set of size 1 − τ . The worst case is that the local pattern covers none of
the errors, which implies an increased error rate due to the smaller region of
size 1 − τ . Hence, assuming ε ≥ τ , for the error rate εG on the global part the
following bounds hold:

ε

1 − τ
≥ εG ≥ ε− τ

1 − τ
(5.1)

It follows that for fixed τ the relative error εG

ε is an appropriate measure to
quantify the performance of a predictive local pattern procedure.

For the criterion of interpretability, the performance of this approach largely
depends on the choice of the hypothesis language LC and hence on the local
pattern learner. A plethora of learners could be applied for this task and it is
practically impossible to validate the interactions of global learner and pattern
learner for all such combinations. To focus the investigation, this chapter will
concentrate on two approaches motivated by the interpretability heuristics from
Section 1.1.2. The most important heuristic says that whenever possible the user
should select the learner to use. Given that the user has already selected the
global learner as being understandable, it is a good idea to use the same learner
to describe the local patterns. This will be the main approach pursued in this
chapter. The other approach is based on the heuristic to stay close to the data
and avoid complex formal models, which proposes the use of a prototype-based
clustering algorithm for finding local patterns.

The rest of this chapter presents three approaches to local pattern detection.
Section 5.1 investigates how local patterns can be used to describe a classifier by
identifying the regions where the classifier fails to perform well. In Section 5.2,
the information of the local patterns will be used to improve the classifier on
the rest of the data. Section 5.3 finally will investigate unsupervised approaches
to local patterns.
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5.1 Describing a Classifier by Local Patterns

The crucial part of local pattern detection is finding the right hypothesis space
for the local patterns. This becomes even more important when interpretability
constraints are involved: as the user is supposed to not only understand the
global model, but also the description of the patterns, the question arised how
many different representations one can expect the user to become aquainted
with. As the used is expected to understand the global model anyway, from an
interpretability point of view the obvious solution is to encode the global model
and the patterns in the same hypothesis language.

This suggests to implement a predictive local pattern finder by first using
the learner to find a global model and then using the same learner again to
predict for each example whether the global models prediction will be correct.
To ensure that the locality constraint is met, we assume that the learner returns
a numerical or probabilistic classifier f (a classifier can be cast into a proba-
bilistic classifier via the methods presented in Chapter 2.4). We can then find
a threshold t such that the classifier f exceeds t only on a fraction of τ of the
training examples and define the local pattern as C = {x|f(x) > t}, which is
the region where the pattern detection classifier is most sure the global classifier
will mispredict.

Classifiers with a strongly restricted hypothesis space like linear classifiers
may profit from this combination as the hypothesis space will be significantly
larger. For example, it may be possible to improve accuracy be inverting the
global classifier on the local pattern, should the error there exceed 50%. More
flexible classifiers like radial basis SVMs or logical classifiers, which can adapt
to the data very much, will usually not be improved by this approach, because
the hypothesis space will not gain much expressibility from using two classifiers
instead of one. If it were possible to improve the classifier by using some more
rules or radial basis functions, the global learner would likely have found these
rules in the first place. However, it is important to remember that the goal was
not to improve the predictions of the global classifier, but to identify regions
with higher error rates, independently of whether it is possible to improve the
classifier on this regions. For example, if the overall error rate of the classifier is
5%, identifying a region with 20% error will be highly informative, even if one
cannot readily see how the classifier could be improved.

The following table gives the results of this approach on the 18 standard data
sets. The most important information is given in the second column, it contains
the error of the classifier on the global region in relation to the error on the
complete data set, i.e. Errrel =

Errglobal

Err . A low relative error means that the
local pattern captures many of the incorrectly predicted examples, as the points
from the local pattern are present in the complete data set but missing in the
global part. The relative error is reported instead of the absolute difference in
errors because it is obviously easier to remove errors if many of them are present.
The following columns of the result table contain the error rates on the global
part and on the local pattern and the fraction of test examples classified as
local examples. The final column indicates whether the error rate on the global
part alone is significantly lower than the error rate on all examples (computed
with a paired t-test. ++ indicates a 99% level of confidence for a lower error
and + a 95% level of confidence. −− and − indicate the same confidences for
a significantly larger error. Finally, o indicates confidences below 95%). The
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classifiers used were the linear SVM, the radial basis SVM, J4.8 and JRip. The
local fraction was set to τ = 0.1 and 10-fold cross-validation was used.

Here are the results using the linear SVM classifier.

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.925 0.127 0.233 0.116 o
covtype 0.996 0.235 0.242 0.105 o
diabetes 0.974 0.216 0.280 0.096 o
digits 1.000 0.001 0.000 0.083 o
physics 0.980 0.310 0.365 0.111 ++
ionosphere 0.557 0.084 0.317 0.170 ++
liver 0.974 0.301 0.349 0.095 o
medicine 0.872 0.239 0.566 0.105 ++
mushroom 0.822 0.000 0.006 0.017 o
promoters 0.970 0.092 0.066 0.047 o
insurance 0.528 0.005 0.068 0.076 ++
balance 0.885 0.040 0.112 0.088 +
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.695 0.031 0.205 0.094 +
wine 1.018 0.012 0.000 0.066 o
breast 1.047 0.032 0.014 0.098 o
garageband 0.975 0.285 0.321 0.179 +

The result using the radial basis SVM classifier:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.742 0.094 0.241 0.228 +
covtype 0.916 0.219 0.368 0.133 ++
diabetes 0.933 0.225 0.322 0.123 +
digits 1.011 0.004 0.000 0.077 o
physics 0.969 0.317 0.393 0.128 ++
ionosphere 0.502 0.038 0.181 0.208 ++
liver 0.913 0.283 0.414 0.182 o
medicine 0.848 0.235 0.653 0.100 ++
mushroom 1.000 0.017 0.000 0.000 o
promoters 1.000 0.123 0.000 0.000 o
insurance 0.036 0.002 0.568 0.103 ++
balance 0.717 0.007 0.064 0.086 o
dermatology 1.000 0.016 0.000 0.000 o
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.667 0.041 0.348 0.096 ++
wine 0.954 0.221 0.200 0.090 o
breast 0.325 0.006 0.264 0.087 ++
garageband 0.978 0.283 0.294 0.471 o
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The result using the JRip classifier:

Name Rel. Err Err Global Err Local Local C ≥ G
business 1.000 0.227 0.000 0.000 o
covtype 0.981 0.245 0.219 0.019 +
diabetes 0.973 0.260 0.174 0.024 o
digits 1.000 0.005 0.000 0.000 o
physics 0.988 0.342 0.411 0.069 +
ionosphere 0.892 0.084 0.300 0.022 +
liver 0.971 0.332 0.180 0.020 o
medicine 0.972 0.252 0.250 0.028 +
mushroom 1.000 0.001 0.000 0.000 o
promoters 1.000 0.180 0.000 0.000 o
insurance 0.989 0.061 0.366 0.001 +
balance 0.971 0.110 0.100 0.010 o
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.013 0.000 0.000 o
voting 0.878 0.046 0.083 0.011 o
wine 1.000 0.095 0.000 0.000 o
breast 0.902 0.037 0.116 0.014 +
garageband 0.992 0.290 0.141 0.015 o

The result using the J48 classifier:

Name Rel. Err Err Global Err Local Local C ≥ G
business 1.000 0.229 0.000 0.000 o
covtype 0.999 0.260 0.055 0.003 o
diabetes 1.002 0.270 0.158 0.020 o
digits 1.000 0.007 0.000 0.000 o
physics 1.000 0.395 0.000 0.000 o
ionosphere 1.000 0.102 0.000 0.000 o
liver 1.001 0.348 0.033 0.014 o
medicine 0.994 0.228 0.095 0.018 o
mushroom 1.000 0.002 0.000 0.000 o
promoters 1.020 0.194 0.000 0.018 o
insurance 1.000 0.012 0.000 0.000 o
balance 1.000 0.128 0.000 0.000 o
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.013 0.000 0.000 o
voting 1.000 0.036 0.000 0.000 o
wine 1.000 0.050 0.000 0.000 o
breast 1.000 0.038 0.000 0.000 o
garageband 0.990 0.316 0.262 0.007 o

This approach fails to perform as expected, which can be clearly seen from
the following summary table. It reports for each classifier the average relative
error (first column) the number of data sets with a significant reduction of error
(second column), the number of times no local pattern could be found (third
column) and the number of times the fraction of test examples assigned to the
local pattern exceeded the local threshold τ by more than 0.01 (fourth column).
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Classifier rel. err sig. err no local local > τ
linear SVM 0.901 7 2 4
RBF SVM 0.806 9 4 7
JRip 0.973 6 7 0
J48 1.000 0 12 0

Although the error reduction is good in some cases, it can be seen that in many
cases the classifiers either assigned too many examples to the local pattern or
found no local pattern at all. In total, in 36 of the 4*18 tests (50%), the approach
did not perform as expected. Additionally, in some cases the good performance
in error reduction may be due to the fact that the local pattern contains much
more examples, and hence much more errors, than allowed; see for example the
ionosphere data set for the radial basis SVM, which has a relative error of 0.5
but contains twice as much local examples than allowed. The next section will
explain this behaviour of the local patterns.

Adapting the Conditional Class Probability Threshold

The reason for the suboptimal behaviour of the direct approach can be found
by taking a closer look at the models learned for predicting the local pattern.
Figure 5.1 shows the values of the linear SVM decision function for predicting
the errors on the business data set. Obviously, the SVM has learned the default
negative hypothesis, with very low variation around the value of f(x) = −1.
The maximum decison function value is −0.997. Similarly, the decision tree
learner has learned the default negative model consisting of only one node. The
difference is that while the decision tree prediction is constant for all examples,
which prohibits the identification of local patterns on the basis of the predicted
values, the SVM function is still slightly influenced by the mispredicted examples
and this slight difference in the predicted values may be sufficient to identify
local patterns in the experiments.

This explains the both cases of errors found in the naive approach of finding
local patterns: when the global classifiers makes few errors, a local pattern
present in the errors is largely covered by the majority of the correctly predicted
examples. Hence, the best hypothesis in many cases is to assign all examples
to the negative class (no local example). In the cases of piecewise constant
classifiers as J48 and JRip, no local patterns can be defined by this model.
In the case of numerical classifiers as the two SVMs, slight variations in the
numerical function around −1 can be used to define a local pattern by putting
a threshold on the decision function. However, given that the differences are
very small and random influences are inevitable, it is very likely that many more
observations of the test set than allowed are assigned to the local pattern.

A solution to this problem can be found by analysing the optimal classifier
for a probabilistic problem, the Bayes classifier.

Theorem 5.1.1 (Bayes-Classifier [Hastie et al., 2001]). Given a probability dis-
tribution P (x, y) with Y = {−1, 1}, the classifier with the minimal expected
prediction error is the Bayes classifier given by

fBayes(x) = arg max
y

P (y|x)

=

{
1 if P (Y = 1|x) > 1

2
−1 if P (Y = 1|x) ≤ 1

2
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Figure 5.2: Histogram of the SVM decision function for local patterns

Proof. The expected prediction error is equal to the expected risk with respect
to the 0-1-loss. We can decompose P (x, y) into P (y|x)P (x). For any classifier
f : X → Y we can write

R(f) =

∫
L01(f(x), y)dP (x, y)

=

∫ ∫
L01(f(x), y)dP (y|x)dP (x)

The inner integral is
∫
L01(f(x), y)dP (y|x) =

∫
1f(x) 6=ydP (y|x)

=

{
P (Y = −1|x) iff f(x) = 1
P (Y = 1|x) iff f(x) = −1

≥ min
y
P (y|x)

It follows that
∫
L01(fBayes(x), y)dP (y|x) = min

y
P (y|x).

This means that for each x the Bayes classifier attains the minimal error, and
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from the monotonicity of the integral operator follows that

R(f) ≥
∫

min
y
P (y|x)dP (x)

= R(fBayes)

for all classifiers f .

This theorem tells us that in order to achieve a low classification error,
a classifier has to get a good estimate of the decision boundary {x|P (y|x) =
1/2}. Estimating other values of the conditional class probability P (y|x) is not
important for good classification performance. For detecting local patterns we
define a new random variable Y ′ ∈ {−1, 1} where y′ = 1 iff y 6= f(x) and try
to estimate the function f ′ : x 7→ y′. However, we are actually not interested in
finding points x with P (Y ′ = 1|x) > 1/2, that is, points that are more likely to
be mispredicted by f than not, but we generalize the problem to finding points
with P (Y ′ = 1|x) > α for some value α ∈ [0, 1]. In particular, we are interested
in α = P (y 6= fglobal(x)), meaning we want to find points that are more likely
to be mispredicted than what is described by the general misclassification error
of the the global classifier. For a reasonable classifier f , the error rate P (y 6=
f(x)) should be significantly less than 1/2 and hence using a standard learning
algorithm may not optimally solve this problem, as it will usually concentrate
on getting a good estimate of {x|P (y′|x) = 1/2}.

There are two approaches to finding an estimator of P (Y = 1|x) = α for a
binary random variable Y .

Theorem 5.1.2 (Asymmetric Loss Functions). Let L(f(x), y) be a loss function
such that L(y, y) = 0 and

L(1,−1)

L(−1, 1)
= β.

For any distribution P (x, y), the classifier with minimal expected error with
respect to L is the classifier

f(x) =

{
1 if P (Y = 1|x) ≥ β

1+β

−1 else

Proof. As in the proof of Theorem 5.1.1, it is sufficient to minimize the expected
loss with respect to P (y|x) for all x.

∫
L(f(x), y)dP (y|x) =

{
L(1,−1)P (Y = −1|x) iff f(x) = 1
L(−1, 1)P (Y = 1|x) iff f(x) = −1

Obviously, it is optimal to predict 1 iff L(1,−1)P (Y = −1|x) ≤ L(−1, 1)P (Y =
1|x). This is equivalent to

L(1,−1)P (Y = −1|x) ≤ L(−1, 1)P (Y = 1|x)

⇔ L(1,−1)

L(−1, 1)
≤ P (Y = 1|x)
P (Y = −1|x)

⇔ β ≤ P (Y = 1|x)
1 − P (Y = 1|x)

⇔ P (Y = 1|x) ≥ β

1 + β
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Hence, if we have a learner that can operate with asymmetric loss functions,
e.g. Support Vector Machines (see [Rüping, 1999] and Section 2.1.3), we can
optimize it to estimate decision lines of other conditional probabilities by setting
an asymmetric loss function according to Theorem 5.1.2. This is of course
subject to the assumption that the learned classifier approximates the optimal
decision function reasonably well. If the classifier performs good at P (Y =
1|x) = 1/2 (i.e. it is a good global classifier), this assumption may be valid for
other fixed values of P (Y = 1|x) as well (i.e. the classifier is a good for detecting
local patterns).

The approach with asymmetric loss functions was tested with Support Vector
Machines on the 18 standard data sets. The experimental setup was identical
to that of the direct approach reported earlier in this section, except that the
loss was adapted according to Theorem 5.1.2 to predict P (fglobal(x) 6= y|x) >
P (fglobal(x) 6= y). That is, for each x an error probability higher than the

average error should be predicted by the pattern classifier.
Here are the results using the linear SVM classifier.

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.936 0.124 0.275 0.114 o
covtype 0.959 0.226 0.327 0.094 ++
diabetes 0.981 0.221 0.272 0.108 o
digits 1.000 0.001 0.000 0.083 o
physics 0.953 0.302 0.440 0.102 ++
ionosphere 0.771 0.101 0.400 0.091 ++
liver 0.949 0.289 0.386 0.095 +
medicine 0.874 0.239 0.562 0.107 ++
mushroom 0.822 0.001 0.006 0.017 o
promoters 0.970 0.092 0.066 0.047 o
insurance 0.143 0.001 0.079 0.107 ++
balance 0.742 0.036 0.184 0.100 +
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.535 0.020 0.295 0.094 ++
wine 1.018 0.012 0.000 0.100 o
breast 1.091 0.033 0.000 0.089 −−
garageband 0.984 0.286 0.415 0.038 o

The local error is significantly higher than the global error on 8 of the data
sets, as opposed to 7 times with the original approach. On the other hand, on
one data set (breast) the local error is significantly lower than the global error,
which did not happen with the original algorithm. Now, there is only one data
set with a very high fraction of local examples (business with 0.114) instead of 4
with the original approach. This may indicate that the balanced cost approach
is not as stable as the original approach. The average relative error is 0.874
instead of 0.901 and the average difference of the error on the local to the error
on the global part is 0.095, as opposed to 0.064 for the original algorithm. This
is a clear improvement.
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Here are the results using the radial basis SVM classifier.

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.742 0.096 0.483 0.095 ++
covtype 0.960 0.229 0.408 0.050 ++
diabetes 0.934 0.228 0.422 0.085 +
digits 1.021 0.004 0.000 0.081 o
physics 0.954 0.312 0.460 0.103 ++
ionosphere 0.612 0.049 0.286 0.068 ++
liver 0.980 0.296 0.356 0.081 o
medicine 0.830 0.230 0.636 0.115 ++
mushroom 1.000 0.017 0.000 0.000 o
promoters 1.000 0.123 0.000 0.000 o
insurance 0.035 0.002 0.598 0.098 ++
balance 0.835 0.009 0.054 0.093 o
dermatology 1.000 0.016 0.000 0.000 o
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.933 0.062 0.114 0.096 o
wine 1.053 0.233 0.133 0.123 o
breast 0.300 0.006 0.207 0.105 ++
garageband 0.987 0.285 0.426 0.021 ++

The local error is significantly higher than the global error on 9 of the data sets,
which was the same with the original approach, but this time only 2 of the data
sets have a local probability greater than 0.11 instead of the original 7 data
sets. Hence, the results show that this approach is much better at producing
consistent results than the original approach.

In case we cannot influence the loss function, the next theorem gives an-
other method, which influences the conditional class probability at the decision
boundary.

Theorem 5.1.3 (Biased Sampling [Domingos, 1999]). Let P (X,Y ) be any prob-
ability distribution with 0 < P (Y = 1) < 1 and α ∈]0, 1[. Let P̃ (X,Y ) be another
probability distribution such that

P̃ (X, 1) = P (X|Y = 1)α

P̃ (X,−1) = P (X|Y = −1)(1 − α).

Then the classifier with minimal prediction error for P̃ is given by

f(x) =

{
1 iff P (Y = 1|x) ≥ β
−1 else

with

β =
P (Y = 1)(1 − α)

α− 2αP (Y = 1) + P (Y = 1)
.

In particular, for α = 1/2 we have β = P (Y = 1).

Proof. First, notice that P̃ (X,Y ) is a convex combination of two probability
distributions and hence a valid probability distribution itself. By definition we
have P̃ (Y = 1) = α. A sample of examples distributed by P̃ can be obtained
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by taking a sample of P and choosing a subsample that consists of a fraction of
α positive examples and 1 − α negative examples. As 0 < P (Y = 1) < 1, such
a subsample will exists with positive probability.

By Theorem 5.1.1 the optimal classifier for P̃ is of course its Bayes classifier

fBayes(x) =

{
1 iff P̃ (Y = 1|x) ≥ 1/2
−1 else

and hence it is sufficient to relate P̃ (Y = 1|x) to P (Y = 1|x).
We have

P̃ (Y = 1|x) =
P̃ (Y = 1, x)

P̃ (x, Y = 1) + P̃ (x, Y = −1)

=
P (x|Y = 1)α

P (x|Y = 1)α+ P (x|Y = −1)(1 − α)

and hence

P̃ (Y = 1|x) ≥ 1/2

⇔ 2P (x|Y = 1)α ≥ P (x|Y = 1)α+ P (x|Y = −1)(1 − α)

⇔ P (x|Y = 1)α ≥ P (x|Y = −1)(1 − α)

⇔ P (Y = 1|x)P (x)

P (Y = 1)
α ≥ P (Y = −1|x)P (x)

P (Y = −1)
(1 − α)

⇔ P (Y = 1|x)
P (Y = 1)

α ≥ 1 − P (Y = 1|x)
1 − P (Y = 1)

(1 − α)

⇔ P (Y = 1|x) ≥ P (Y = 1)(1 − α)

α− 2αP (Y = 1) + P (Y = 1)

This theorem tells us that in order to estimate {x|P (Y = 1|x) ≥ β} we
can draw biased samples with a fraction of α positive examples and use a stan-
dard learner, of course again with the assumption that the learned classifier
approximates the optimal decision function reasonably well.

This approach was tested in an experimental setup identical to that of
the direct approach at the beginning of this section, except that for the lo-
cal pattern classifier a sample with α = 1/2 was drawn in order to predict
P (fglobal(x) 6= y|x) ≥ P (fglobal(x) 6= y). That is, as in the balanced cost

approach, for each x an error probability higher than the average error should
be predicted by the pattern classifier. The sample was generated by repeatedly
including examples mispredicted by the global classifier until there was an equal
number of mispredicted and correctly predicted examples. This approach was
chosen instead of removing correctly predicted examples in order to not lose the
information present in the x values of the correctly predicted examples.
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These are the results of the linear SVM:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.899 0.122 0.300 0.108 +
covtype 0.962 0.227 0.309 0.102 ++
diabetes 0.997 0.224 0.235 0.109 o
digits 1.000 0.001 0.000 0.089 o
physics 0.956 0.303 0.427 0.105 ++
ionosphere 0.861 0.110 0.360 0.082 +
liver 0.960 0.294 0.371 0.092 +
medicine 0.869 0.238 0.569 0.107 ++
mushroom 0.821 0.000 0.007 0.015 o
promoters 0.951 0.088 0.100 0.028 o
insurance 0.180 0.001 0.079 0.104 ++
balance 0.993 0.045 0.058 0.078 o
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.575 0.023 0.279 0.101 ++
wine 1.025 0.012 0.000 0.123 o
breast 1.096 0.033 0.000 0.093 −−
garageband 0.985 0.287 0.373 0.045 o

These are the results of the radial basis SVM:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.831 0.108 0.350 0.121 o
covtype 0.959 0.229 0.423 0.049 ++
diabetes 0.909 0.223 0.436 0.102 ++
digits 1.016 0.004 0.000 0.085 o
physics 0.957 0.313 0.454 0.099 ++
ionosphere 0.620 0.049 0.311 0.074 ++
liver 0.969 0.295 0.321 0.098 o
medicine 0.817 0.226 0.661 0.116 ++
mushroom 1.000 0.017 0.000 0.000 o
promoters 1.000 0.123 0.000 0.000 o
insurance 0.039 0.002 0.626 0.093 ++
balance 0.839 0.009 0.047 0.097 o
dermatology 1.000 0.016 0.000 0.000 o
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.919 0.061 0.155 0.089 o
wine 1.060 0.234 0.133 0.129 o
breast 0.292 0.004 0.193 0.118 ++
garageband 0.988 0.285 0.471 0.024 ++
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These are the results of the JRip classifier:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.919 0.203 0.333 0.056 +
covtype 1.000 0.250 0.000 0.000 o
diabetes 1.000 0.268 0.000 0.000 o
digits 1.018 0.005 0.000 0.045 o
physics 1.000 0.346 0.000 0.000 o
ionosphere 0.785 0.076 0.196 0.102 +
liver 1.000 0.341 0.000 0.000 o
medicine 1.000 0.260 0.000 0.000 o
mushroom 0.700 0.000 0.078 0.006 o
promoters 1.041 0.184 0.000 0.037 −
insurance 1.000 0.062 0.000 0.000 o
balance 0.968 0.110 0.065 0.015 o
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.013 0.000 0.000 o
voting 0.691 0.031 0.287 0.092 ++
wine 0.995 0.092 0.100 0.028 o
breast 0.651 0.025 0.179 0.086 ++
garageband 1.000 0.293 0.000 0.000 o

These are the results of the J4.8 decision tree:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.973 0.227 0.200 0.044 o
covtype 0.986 0.256 0.287 0.099 o
diabetes 0.968 0.263 0.217 0.054 o
digits 1.005 0.007 0.000 0.006 o
physics 0.991 0.392 0.422 0.099 +
ionosphere 1.002 0.102 0.020 0.028 o
liver 1.003 0.349 0.253 0.101 o
medicine 0.937 0.215 0.354 0.101 ++
mushroom 0.910 0.002 0.116 0.000 o
promoters 0.987 0.188 0.183 0.104 o
insurance 0.678 0.008 0.684 0.006 ++
balance 0.924 0.115 0.213 0.125 o
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.013 0.000 0.000 o
voting 0.956 0.032 0.140 0.061 o
wine 1.005 0.050 0.000 0.016 o
breast 0.932 0.033 0.166 0.029 o
garageband 0.996 0.318 0.332 0.077 o

The following summary table compares all three approaches. It reports for
each classifier the average relative error (second column), the number of data sets
with a significant reduction of error (third column), the number of times no local
pattern could be found (fourth column) and the number of times the fraction
of test examples assigned to the local pattern exceeded the local threshold τ by
more than 0.01 (fifth column).
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Sampling
Classifier rel. err sig. err no loc loc > τ
linear SVM 0.896 8 2 1
RBF SVM 0.845 8 4 4
JRip 0.931 4 9 0
J48 0.958 3 2 1

Balanced Cost
Classifier rel. err sig. err no local local > τ
linear SVM 0.874 8 2 1
RBF SVM 0.843 9 4 2

Original
Classifier rel. err sig. err no local local > τ
linear SVM 0.901 7 2 4
RBF SVM 0.806 9 4 7
JRip 0.973 6 7 0
J48 1.000 0 12 0

Interpreting this numbers one has also to keep in mind that on some of the
data sets (balance and iris) a global classifier with zero test error can be
found. It is not an error when no local model is found on these data sets.

In comparison, both approaches with an adapted probability threshold pro-
duce far more consistent results than the direct approach. These approaches
are also superior at finding a local model in the case of the J48 classifier, but
not for the JRip classifier. The comparison of the error reduction between the
original and the new approaches is problematic as inconsistent local patterns
can greatly reduce the global error simply by removing much more examples.

In comparison between the sampling approach and the approach with a
balanced cost function, the balanced cost approach is superior for the radial
basis SVM. The explanation for this observation is that it is better to directly
optimize the estimation of the misclassification probability border P (y|x) ≥ α
than to indirectly encode this task in the examples distribution.

5.2 Optimizing Learning with Local Patterns

In order to further improve local pattern detection, some theoretical background
is needed. An analysis from the view of statistical learning theory can be found
in [Vapnik, 1998], Ch. 6.6. Statistical learning theory in general deals with the
goal of minimizing

R(f) =

∫
L(f(x), y)dP (x, y),

the expected risk (see Section 2.1.1). The goal is to find a function f that
predicts y well globally, that is with respect to P (x). However, depending on
the function class it may be easier to split up the input space into several regions
and for each region search a function which approximates the data only locally.
An analysis of the minimization of the local risk is presented in [Vapnik, 1998],
Ch. 6.6. The concept of locality is modeled by a “vicinity function” v(x, x0, β) ∈
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[0, 1] that depends on a center x0 and a parameter β > 0. In particular, the
hard threshold vicinity function

v(x, x0, β) =

{
1 if ||x− x0|| < β
0 else

and the soft threshold vicinity function

v(x, x0, β) = exp(− (x− x0)
2

β2
)

are considered. The hard threshold vicinity function defines exact borders of
a region around x0 while the soft threshold vicinity function defines a density
function around x0 (up to a multiplicative constant). Using some vicinity func-
tion, the following problem is defined:

Definition 5.2.1 (Local Risk Minimization Problem [Vapnik, 1998]). Let P (x, y)
be a probability distribution, x0 ∈ X be an observation and v(x, x0, β) be a
vicinity function. Define v(x0, β) =

∫
v(x, x0, β)dP (x). Given a set of functions

fα, α ∈ Λ, the local risk minimization problem is to find a function fα and a
parameter β > 0 that minimizes the local risk

R(α, β, x0) =

∫
L(y, fα(x))

v(x, x0, β)

v(x0, β)
dP (x, y).

The center point x0 is held fixed, only β is modified to define the locality.
Using the 0-1-loss, the following theorem can be proven.

Theorem 5.2.1 ([Vapnik, 1998], Theorem 6.14). Let the set of loss functions
L01(y, fα(x)), α ∈ Λ have VC dimension h1 and let the set of functions v(x, x0, β),
β > 0, have VC dimension h2. Then, on a set of l training points, with proba-
bility 1 − 2η simultaneously for all α ∈ Λ and all β > 0 the following inequality
holds:

R(α, β, x0) ≤
2Remp(α, β, x0) + Eh1

(l) + Eh2
(l)

2
(
vemp(x0, β) −

√
Eh2

(l)
)

+

(
1 +

√

1 +
4Remp(α, β, x0)

Eh1
(l) + Eh2

(l)

)

where

Remp(α, β, x0) =
1

l

l∑

i=1

L01(yi, f(xi))v(xi, x0, β)

Ehi
(l) = 4

hi

(
ln 2l

hi
+ 1
)
− ln η

4

l

vemp(x0, β) =
1

l

l∑

i=1

v(xi, x0, β)

In short, this theorem tells us that in order to get a good generalization,
we have to simultaneously minimize the empirical risk Remp and maximize the
local “likelihood” term vemp, both with functions of low complexity hi. In the
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approach used in this chapter, the vicinity functions are given by the set of local
pattern classifiers g(x), scaled to give values in [0, 1]. For example,

v(x, x0, β) =

{
1 if g(x) <= β
0 else

can be used. It does not matter that the definition of the function is independent
of x0, as long as all the term in Definition 5.2.1 are well defined. Note that the
examples that are local in terms of the vicinity function (the ones where the
risk shall be minimized) are the global examples in terms of the definitions used
in this thesis.

A consequence of this theorem is the particular importance of the capacity
(VC dimension) of the set of local pattern functions. Even with a consistent
global learner, a too complex learner for the local patterns could remove all
mispredicted examples of the global learner from the training set and lead to
the inconsistent error estimate of 0.

Also, the bounds of Theorem 5.2.1 suggest to use the quantity

Remp(α, β, x0)

vemp(x0, β)

as an error measure for the predictive local pattern problem. Note that by
definition

Remp(α, β, x0)

vemp(x0, β)
=

∑l
i=1 L(yi, f(xi, α))v(xi, x0, β)

∑l
i=1 v(xi, x0, β)

=
l∑

i=1

L(yi, f(xi, α))v̂(xi, x0, β)

where we define

v̂(xi, x0, β) =
v(xi, x0, β)

∑l
i=1 v(xi, x0, β)

.

This v̂ can be viewed as an empirical estimator of the probability distribution
P (x|Glob) of the global examples x, which has the attractive property of viewing
local risk minimization as usual risk minimization with a modified distribution
P (x):

Definition 5.2.2 (Locally Weighted Risk Minimization Problem). Given a set
of examples (xi, yi)i=1...n and two classes of function fα : X → Y, α ∈ Λ and
vβ : X → [0, 1], β ∈ Λ′ , the locally weighted risk minimization problem is to
find functions fα and vβ that minimize

RL(α, β) =
n∑

i=1

L(yi, fα(xi))vβ(xi)

such that
∑n

i=1 vβ(xi) = 1.

The role of the function vβ is to estimate v̂ and hence the locally weighted
risk minimization problem is to minimize the quantity

Remp(α, β, x0)

vemp(x0, β)
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as an approximation for minimizing the empirical part in the bound of Theorem
5.2.1. As an approximative algorithm for minimizing the complete bound of
Theorem 5.2.1, we use function classes of restricted complexity, and solve the
locally weighted risk minimization problem in these function classes. Several
classes of different complexities can be tried and the solution with the minimal
estimated error will be used.

This approach is similar to the Support Vector Machine idea (see Section
2.1.3): the Structural Risk Minimization principle requires an evaluation of the
error bounds, which is troublesome because the VC dimension of the function
classes is usually hard to derive. Hence, Structural Risk Minimization is replaced
by an approximation to the actual bound (the regularized risk for SVMs and
the locally weighted risk here) to guide the search for a consistent hypothesis,
the best complexity class being chosen by an estimation of the risk, e.g. by
cross-validation.

We can now show that the approach of detecting predictive local patterns
by means of two classifiers as in Section 5.1 solves the locally weighted risk
minimization problem. The only difference in the approaches is that in locally
weighted risk minimization the second function v describes the global examples
in terms of a density P (x|glob), while in the approach of Section 5.1 the func-
tion g is based on an estimate of the local pattern probability P (loc|x). Both
quantities are connected by

P (x|glob) =
P (glob|x)P (x)

P (glob)

=
(1 − P (loc|x))P (x)

P (glob)
.

As an empirical estimate, we can set P (xi) = 1/n for each example in the
training set and hence P (x|glob) is a strictly monotone decreasing function
of P (loc|x). The value P (loc|x) itself can either be obtained by probabilistic
scaling of g or one can choose P (loc|x) ∈ {0, 1}, depending on the sign of g.
The latter alternative corresponds to the selection of examples in the approach
of Section 5.1. In order to use a classifier to define the local patterns, we
replace the density estimating functions v in the previous definition by a pattern
classification function g and modify the condition on g such that it sums up to
a prior estimate τ = P (loc)

Definition 5.2.3 (Locally Weighted 2-Classifier Risk Minimization Problem).
Given a constant τ ∈]0, 1[, a set of examples (xi, yi)i=1...n and two classes of
function fα, α ∈ Λ and gβ : X → [0, 1], β ∈ Λ′ , the locally weighted 2-classifier
risk minimization problem is to find functions fα and gβ that minimize

RL(α, β) =

n∑

i=1

L(yi, fα(xi))(1 − gβ(xi))

such that
∑n

i=1 gβ(xi) = τ .

5.2.1 Expectation Maximization for Local Patterns

The following iterative algorithm solves the locally weighted 2-classifier risk
minimization problem:
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1. Input: examples (xi, yi)i=1...n, constant τ ∈]0, 1[, learners for the global
model and the local pattern

2. Set G = {1, . . . , n}

3. Learn function f on (xi, yi)i∈G

4. Define zi = sign(−yif(xi)) and learn function g on (xi, zi)i=1...n

5. Define G as the indices of the (1 − τ)n examples with highest confidence
values g(xi)

6. Return to 3.

In particular, the weights in step 5 can be defined as wi = 1 for the τn examples
with highest confidence g(xi). In the following, this algorithm will be called the
EM Local Risk Algorithm.

This algorithm is a variant of the Expectation Maximization algorithm
[Dempster et al., 1977]. It postulates and estimates hidden variable zi in order
to better model the known variables (xi, yi). As in the original EM algorithm,
the algorithm can be shown to converge to a local minimum of the local risk
under certain conditions.

Theorem 5.2.2 (Convergence of the EM Local Risk Algorithm). Assume the
learner for the global classifier f : X → {−1, 1} minimizes the empirical 0-
1-error and assume the learner for the local pattern classifier g : X → {0, 1}
minimizes the error on its training set under the condition #{i|g(xi) = 1} =
⌊τn⌋. Then, the sequence of local risks

RL(α, β) =

n∑

i=1

L01(yi, fα(xi))(1 − gβ(xi))

in each iteration step of the EM Local Risk Algorithm converges to a lower bound
R∗

L.

Note that in the theorem we define g as a binary classifier in the set {0, 1}
instead of a probabilistic classifier.

Proof. As RL is bounded below by 0, it is sufficient to show that it is non-
increasing in each iteration to guarantee the convergence of RL to some lower
bound R∗

L.

Obviously, for a fixed g the target function RL only depends on the xi with
g(xi) 6= 1 and hence only on the set G. Therefore, for a fixed g minimizing the
error of f on G as in step 3 of the EM Local Risk algorithm is equivalent to
minimizing RL.

For a fixed f , RL only depends on the examples with positive loss and hence
on the examples with zi = 1. Minimizing RL is then equivalent to maximizing
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g(xi) on the set E = {i|zi = 1} Further,

nErr(g) = #{i|zi = 1 ∧ g(xi) = 0} + #{i|zi = 0 ∧ g(xi) = 1}
=

∑
zi − #{i|zi = 1 ∧ g(xi) = 1} + #{i|zi = 0 ∧ g(xi) = 1}

=
∑

zi − #{i|zi = 1 ∧ g(xi) = 1}

+
∑

gi − #{i|zi = 1 ∧ g(xi) = 1}

=
∑

zi +
∑

gi − 2#{i|zi = 1 ∧ g(xi) = 1}

As the sum of zi is constant for fixed f and
∑
gi = #{i|g(xi) = 1} = ⌊τn⌋ is

constant, minimizing the error of g is equivalent to maximizing g(xi) for positive
zi and hence equivalent to minimizing RL.

Two remarks: Note that the theorem does not guarantee the convergence
of the functions f and g, it only guarantees that the functions found are in
the limit equivalent in terms of RL (the solution does not need to be unique).
Also note that if we do not fix

∑
gi = #{i|g(xi) = 1} = ⌊τn⌋ but only require∑

gi ≤ #{i|g(xi) = 1} = ⌊τn⌋, we still optimize an upper bound on #{i|zi =
1 ∧ g(xi)} by minimizing the error of g.

Theorem 5.2.3 (Expected Convergence of the EM Local Risk Algorithm).
Assume the examples are distributed by some P (X,Y ). Let the learner for the
global classifier f : X → {−1, 1} minimize the expected 0-1-error and assume
the learner for the local pattern classifier g : X → {0, 1} minimizes the expected
error under the condition E{i|g(xi) = 1} = τn. Then, the sequences of local
risks

RL,exp(α, β) = E (L01(yi, fα(xi))(1 − gβ(xi)))

in each iteration step of the EM Local Risk Algorithm converges to a lower bound
R∗

L,Exp.

Proof. Replace the sums and counts by their expected values in the proof of
Theorem 5.2.2.

Of course, in practice the distribution P is not known and the learner can not
be assumed to minimize the expected risk. Hence, some modifications to this
approach are necessary. The problem is that we want to minimize the expected
risk, but do not know the probability distribution behind the examples. We
could minimize the empirical risk, but this would lead to overfitting (this is
the basic problem of Machine Learning described in Chapter 2). In order to
generalize well, learners usually minimize some regularized risk (see Section
2.1.12) or some MDL criterion (see Section 2.1.4) in order to approximate the
expected error. The problem is that an equivalent theorem for learners which
minimize the regularized risk or a MDL criterion does not exist, because in this
approach we do not combine the complexities of both learners with each other,
but optimize them separately. In practice, we do not optimize the bound of
Theorem 5.2.1 but an approximation. To counter overfitting, it is necessary to
check in each step that the local risk RL does not increase.

The algorithm has empirically been tested with the same experimental setup
as in Section 5.1. The iteration has been run until the empirical error increased
in one step. For the sake of brevity, only the summary table is reported here.
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Balanced Cost
Classifier rel. err sig. err no local local > τ
linear SVM 0.862 8 2 0
RBF SVM 0.839 9 4 1

Sampling
Classifier rel. err sig. err no loc loc > τ
linear SVM 0.884 8 2 3
RBF SVM 0.837 9 5 4
JRip 0.931 4 9 2
J48 0.958 2 2 1

As a result, one can see that the relative errors are slightly smaller than the ones
reported in Section 5.1, but essentially the results are similar (one significant
error reduction more for the linear SVM with sampling, but one less for J48 and
sampling).

One can show that this result is an effect of overfitting the local pattern.
A first hint is that if one reduces the chance of overfitting by using a low-
complexity learner (the linear SVM) plus a larger local pattern (25% of the
examples instead of 10%), the relative error reduces as expected (from 0.810 to
0.801). A more thorough investigation of the overfitting effect will be presented
in the next section.

5.2.2 1.5-Step Iteration

In order to avoid overfitting one can fix the local pattern classifier after the first
iteration and only optimize the global model. That is, we only perform one full
step of the optimization and the first half of the second step. This approach
has been tested in the same experimental setup as before. Here are the results
of the linear SVM with the balanced cost approach.

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.940 0.124 0.275 0.114 o
covtype 0.949 0.234 0.364 0.094 ++
diabetes 0.949 0.207 0.315 0.108 o
digits 1.006 0.002 0.000 0.085 o
physics 0.955 0.306 0.438 0.102 ++
ionosphere 0.700 0.095 0.491 0.091 ++
liver 0.917 0.290 0.448 0.095 +
medicine 0.862 0.239 0.597 0.107 ++
mushroom 0.810 0.001 0.014 0.017 o
promoters 0.970 0.092 0.066 0.047 o
insurance 0.377 0.009 0.157 0.107 ++
balance 0.764 0.038 0.164 0.100 +
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.535 0.020 0.295 0.094 ++
wine 0.938 0.025 0.100 0.100 o
breast 1.091 0.035 0.000 0.089 −−
garageband 0.978 0.277 0.466 0.038 +
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The radial basis SVM with the balanced cost approach performs as follows:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.814 0.123 0.483 0.095 +
covtype 0.954 0.236 0.449 0.050 ++
diabetes 0.917 0.225 0.422 0.085 +
digits 1.021 0.004 0.000 0.082 o
physics 0.960 0.315 0.442 0.103 ++
ionosphere 0.624 0.055 0.316 0.071 ++
liver 0.959 0.290 0.430 0.084 o
medicine 0.828 0.230 0.642 0.115 ++
mushroom 1.000 0.017 0.000 0.000 o
promoters 1.000 0.123 0.000 0.000 o
insurance 0.078 0.005 0.657 0.098 ++
balance 0.839 0.009 0.054 0.097 o
dermatology 1.000 0.016 0.000 0.000 o
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.929 0.054 0.114 0.096 o
wine 0.772 0.307 0.900 0.129 ++
breast 0.300 0.006 0.221 0.105 ++
garageband 0.994 0.281 0.343 0.022 +

The linear SVM with the biased sampling can be found in the following
table:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.880 0.118 0.300 0.120 +
covtype 0.954 0.240 0.360 0.098 ++
diabetes 0.963 0.215 0.285 0.110 o
digits 1.020 0.004 0.000 0.089 o
physics 0.959 0.304 0.410 0.109 ++
ionosphere 0.812 0.102 0.388 0.091 +
liver 0.942 0.324 0.442 0.098 +
medicine 0.861 0.239 0.600 0.107 ++
mushroom 0.807 0.000 0.022 0.015 o
promoters 0.951 0.077 0.100 0.028 o
insurance 0.397 0.010 0.168 0.106 ++
balance 0.902 0.038 0.110 0.088 o
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.575 0.023 0.275 0.103 ++
wine 0.885 0.026 0.133 0.129 o
breast 1.094 0.035 0.000 0.092 −−
garageband 0.976 0.277 0.405 0.045 +
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Here are the results of the radial basis SVM and biased sampling.

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.821 0.130 0.483 0.127 +
covtype 0.951 0.230 0.456 0.050 ++
diabetes 0.902 0.219 0.418 0.098 +
digits 1.016 0.004 0.000 0.085 o
physics 0.966 0.317 0.432 0.097 ++
ionosphere 0.627 0.056 0.311 0.076 ++
liver 0.990 0.281 0.291 0.092 o
medicine 0.813 0.226 0.662 0.118 ++
mushroom 1.000 0.017 0.000 0.000 o
promoters 1.000 0.123 0.000 0.000 o
insurance 0.083 0.005 0.677 0.095 ++
balance 0.847 0.011 0.047 0.099 o
dermatology 1.000 0.016 0.000 0.000 o
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.880 0.051 0.172 0.092 o
wine 0.770 0.307 0.900 0.129 ++
breast 0.259 0.006 0.225 0.118 ++
garageband 0.999 0.281 0.285 0.029 o

Here are the results of JRip and biased sampling.

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.969 0.218 0.265 0.094 o
covtype 1.000 0.250 0.000 0.000 o
diabetes 1.000 0.268 0.000 0.000 o
digits 1.018 0.006 0.000 0.045 o
physics 1.000 0.346 0.000 0.000 o
ionosphere 0.901 0.091 0.200 0.102 +
liver 1.000 0.341 0.000 0.000 o
medicine 1.000 0.260 0.000 0.000 o
mushroom 0.797 0.001 0.112 0.006 o
promoters 1.050 0.165 0.100 0.084 o
insurance 1.000 0.062 0.000 0.000 o
balance 0.916 0.100 0.131 0.043 o
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.013 0.000 0.000 o
voting 0.657 0.030 0.260 0.087 ++
wine 0.872 0.070 0.200 0.028 o
breast 0.522 0.025 0.311 0.087 ++
garageband 1.000 0.293 0.000 0.000 o
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Finally, the J48 decision tree and biased sampling

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.968 0.227 0.200 0.044 o
covtype 0.985 0.249 0.282 0.103 +
diabetes 0.986 0.265 0.239 0.066 o
digits 1.002 0.006 0.000 0.006 o
physics 0.984 0.383 0.442 0.095 ++
ionosphere 1.002 0.108 0.020 0.028 o
liver 0.972 0.328 0.350 0.104 o
medicine 0.933 0.211 0.358 0.102 ++
mushroom 0.893 0.002 0.166 0.000 o
promoters 0.895 0.160 0.266 0.104 +
insurance 0.741 0.011 0.684 0.006 ++
balance 0.921 0.122 0.229 0.126 o
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.013 0.000 0.000 o
voting 0.905 0.036 0.240 0.061 o
wine 1.011 0.051 0.000 0.016 o
breast 0.898 0.028 0.200 0.027 o
garageband 0.985 0.298 0.356 0.071 o

Balanced Cost
Classifier rel. err sig. err no local local > τ
linear SVM 0.874 9 2 1
RBF SVM 0.833 10 4 2

Sampling
Classifier rel. err sig. err no loc loc > τ
linear SVM 0.888 9 2 3
RBF SVM 0.829 9 4 4
JRip 0.928 3 9 0
J48 0.949 5 2 1

One can see that this approach is indeed considerably better than the non-
iterative approach. The average relative error is smaller for all methods except
for the linear SVM with balanced costs, where it remains constant. The num-
ber of significant error reductions is higher for every method except for JRip,
where it drops from 4 to 3. This shows that with a controlled complexity for
the local patterns, an iterative EM-like method can considerably improve the
performance of learning with local patterns.

A more detailed discussion of the performance on the individual data sets
follows in the next section.

5.2.3 Effects of the Local Pattern on the Global Model

In order to get a deeper understanding of the effects the information of the de-
tected local pattern has on the optimality of the global model, and in particular
in order to understand how the global model can be further optimized outside
the local pattern, it is instructive to formalize the ideas behind the iterative
approach.



5.2. OPTIMIZING LEARNING WITH LOCAL PATTERNS 155

The following theorem formalizes the idea, that a classifier is optimized by
training only on the examples which it is supposed to predict.

Theorem 5.2.4 (Local Optimization of Hypotheses). Let R be a risk measure
with respect to an arbitrary loss function L and probability measure P , i.e.

R(f) =

∫
L(x, y, f(x))dP (x).

Let F be a hypothesis space and f∗ ∈ F be the hypothesis with minimal risk and
let A be a subset of the input space X, such that the risk of f∗ on A

R|A(f∗) =

∫
L(x, y, f∗(x))dP (x|A)

=
1

P (A)

∫

A

L(x, y, f∗(x))dP (x)

is higher than the risk of f∗ on X\A. Then the optimal hypothesis in F on
X\A will have lower risk than f∗.

Proof. We can decompose R(f) into

R(f) =

∫
L(x, y, f(x))dP (x)

=

∫

A

L(x, y, f(x))dP (x) +

∫

X\A

L(x, y, f(x))dP (x)

= P (A)R|A(f) + (1 − P (A))R|X\A(f)

≥ P (A)R|X\A(f) + (1 − P (A))R|X\A(f)

= R|X\A(f)

≥ minf∈FR|X\A(f)

Notice that by choosing P as the empirical probability measure defined by
the training data, the theorem in particular holds for the empirical risk. Intu-
itively, the theorem is clear: if we remove parts of the input space that are hard
to predict, then the performance on the rest will be better.

Unfortunately, the experimental results do not show the expected results.
For example, the linear SVM with the balanced costs on the data set covtype

achieves a global error of 0.226 after the first iteration (see the table in Section
5.1, the approach taken there is exactly the first iteration of the EM algorithm).
After the next optimization step for the global model, the global error increases
to 0.234 (see the 1.5 iteration in Section 5.2.2). The reason for this appar-
ent contradiction is that the actual situation differs from the assumptions of
Theorem 5.2.4 in two important points.

First, learners usually neither optimize the empirical risk (because this is not
wanted) nor the true expected risk (because this is infeasible). Instead, in order
to avoid overfitting, most learners can be described as optimizing a regularized
risk

Rreg(f) = Remp(f) + comp(f)
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(see Definition 2.1.12). One may argue that a good learning algorithm should
approximate the expected risk reasonably well, such that the theorem still holds
approximately. If one assumes that not much complexity is spent for approx-
imating the data in a high-error local pattern – there is no gain in increasing
complexity if the error does not decrease – both the complexity and the error on
this local pattern will only have a small influence on the choice of the hypothesis
and the learner will return similar hypotheses on the complete data set and on
the data set with the local pattern removed. However, it is still possible that
under certain circumstances large deviations may happen.

Second, Theorem 5.2.4 assumes that the hypothesis space F remains un-
changed, such that the old global model upper-bounds the possible error. In
practice, however, the hypothesis space over which the risk is minimized usually
depends on the training set. For example, most decision trees only induce splits
over attribute values that are contained in the training set, and Support Vector
Machines construct decision functions with basis functions centered at the train-
ing examples. As a consequence, it cannot be guaranteed that the hypothesis
which was induced over the complete data set is still contained in the hypothesis
space over a subset of examples, and even if an appropriate hypothesis exists,
the complexity assigned to it may be arbitrarily large.

Figure 5.3: Increased global error by local patterns

As a result, there may be a situation as in Figure 5.3: let the class of the
10 examples be denoted by its y-value and suppose we compare decision trees
with zero and one nodes. A decision tree with zero nodes is constant and can
achieve a minimal error of 3/10 on the depicted data set. A decision tree with
one node could place a threshold between the sixth and seventh example from
the left and predict the examples as labeled by the point’s colors, this tree will
have an error of only 1/10. Now suppose the local pattern is described by the
dashed line, separating the 7 examples on the left with prediction error 0/7 from
the examples on the right with prediction error 1/3. When a global classifier is
learned on the 7 global examples, the constant decision tree has an error of 1/7
and the decision tree with one node an error of 0/7. The difference between 1/7
and 0 is much smaller than the previous difference between 1/10 and 3/10, and
hence in a setting minimizing the regularized risk, it may be possible that this
smaller improvement in accuracy is no longer enough to justify a more complex
function. In this case, the simpler constant function will be chosen and the error
increases due to the local pattern.

In short, the problem is now that local examples may have information about
the class of near global examples that should not be ignored. To find a way out
of this dilemma one has to bear in mind that the idea of local models consists
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of two tasks, on the one side to describe the classifier, but on the other side also
to improve the classifier by use of a local model. The goal of this chapter is
to describe the classifier, which for example motivated the choice of a different
conditional class probability threshold in Section 5.1, but in order to improve
the global classifier we have to focus on those examples which clearly degrade
the performance of the global classifier.

As a solution, one can make use of two local pattern classifiers. The first
classifier as before describes the local patterns, i.e. regions with a higher than
default error probability, while the second one describes only the clearly iden-
tified errors of the global classifier. This second classifier is trained with an
unmodified conditional class probability threshold and is only used for identi-
fying the examples to be removed from the global learners training set in the
next iteration.

The experimental evaluation of this approach is summarized in the following
table:

Balanced Cost
Classifier rel. err sig. err no local local > τ
linear SVM 0.868 11 2 1
RBF SVM 0.843 11 4 2

Sampling
Classifier rel. err sig. err no loc loc > τ
linear SVM 0.889 8 2 3
RBF SVM 0.828 9 4 4
JRip 0.921 4 9 1
J48 0.946 5 2 1

In comparison with the 1.5-step iteration in Section 5.2.2, this algorithm is
significantly better for the balanced cost approach (both 11 significant error
reduction instead of 9 and 10, respectively). For the biased sampling approach,
it performs comparable (1 significant error reduction less for the linear SVM,
but 1 more for JRip).

5.3 Local Patterns by Unsupervised Learning

In the previous section, local patterns were defined by a classifier that separated
the global from the local examples. This is a discriminative approach, where in
order to perform well, the classifier must describe the differences between the
two kinds of examples. Accordingly, by understanding this classifier the user
understands how the two kinds of examples differ. In this section, an alternative
approach will be presented. This approach employs unsupervised learning to
describe the local pattern itself, instead of discriminating it from the global
pattern. By understanding this description, the user gets more information
about the complete local pattern. The difference can be seen in Figure 5.4:
the green line discriminates the global examples (blue) from the local examples
(red), using only the information about the horizontal position. The magenta
circle describes the local pattern, taking information from both the horizontal
and vertical position into account. Accordingly, the local pattern can be far
better reconstructed from the circle than from the line. Further, the most
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informative example in the classification case is the filled blue point (it lies
closest to the decision boundary), while in the descriptive case the red point is
most informative (it is most similar to all the other red points).

Figure 5.4: Discriminative versus descriptive local patterns.

A main advantage of the descriptive approach is in the reliability of the local
pattern. Assume that in Figure 5.4 some new test points are introduced that
lie on the far right side of the figure, yielding the situation of Figure 5.5. On
these new observations the linear classifier will be most certain of its decision
that these points belong to the local pattern, because the observations are far
away from the decision boundary. But actually it should be clear that no reliable
decision about these points can be made, because these observations do not look
similar to any point that the classifier has seen in training. Consequently, the
descriptive model where the new observations are not part of the local pattern
is much more reliable.

Figure 5.5: Reliability of discriminative and descriptive local patterns.

5.3.1 Local Patterns by Clustering and Density Estima-

tion

The approach of detecting predictive local patterns with unsupervised learning
has been tested with k-medoids clustering and Gaussian density estimation (see
Section 2.2). Similar to the supervised approach, the global model is learned
in the first step. Then, k-medoids clustering or Gaussian density estimation is
applied to the examples that were mispredicted by the global model to obtain
a local pattern membership function. Finally, a threshold on the membership
values is chosen such that only a given fraction of τ of the training examples
lie in the local pattern. For the k-medoids approach, the parameter k has been
chosen in the range of 1 to 10 to optimize the training error.

There is a technical problem with Gaussian density estimation in this algo-
rithm: Gaussian density estimation needs a non-singular covariance matrix in
order to define a proper density function. In the case of nominal attributes in
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the data, this cannot be guaranteed as it can easily be the case that only exam-
ples with a fixed attribute value are mispredicted by the global model. In this
case, the data has to be projected into the linear subspace that is defined by the
nonzero eigenvalues of the covariance matrix and density estimation has to be
carried out in the projected space. However, in this approach it is numerically
difficult to distinguish between small and zero eigenvalues and to decide whether
a new observation lies in the hyperplane or just very close to it. This problem
becomes even worse for the mixture of Gaussians density estimation, because,
every single Gaussian component could lie inside a different linear subspace at
some iteration of the algorithm. An approach to solve this problem using a ran-
domized algorithm with multiple restarts has been proposed in [Rüping, 2005].
However, this algorithm still turned out to be too unstable in the case of small
data sets with a high number of nominal attributes like in the task of local
pattern extraction. For this reason, mixture of Gaussians density estimation is
not included in the comparison here.

Here are the results of local patterns with Gaussian density estimation and
the linear SVM as global learner:

Name Rel. Err Err Global Err Local Local C ≥ G
business 1.000 0.139 0.000 0.000 o
covtype 1.018 0.240 0.198 0.101 −
diabetes 0.948 0.213 0.347 0.098 +
digits 1.000 0.001 0.000 0.000 o
physics 1.000 0.317 0.000 0.000 o
ionosphere 1.039 0.139 0.033 0.099 −
liver 0.944 0.288 0.421 0.081 +
medicine 0.902 0.247 0.502 0.104 ++
mushroom 0.900 0.001 0.002 0.005 o
promoters 1.000 0.102 0.000 0.000 o
insurance 0.705 0.007 0.038 0.092 ++
balance 0.526 0.019 0.339 0.090 ++
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.851 0.035 0.126 0.087 o
wine 1.000 0.011 0.000 0.094 o
breast 0.742 0.025 0.084 0.088 +
garageband 1.000 0.291 0.000 0.000 o
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Here are the results of local patterns with Gaussian density estimation and
the radial basis SVM as global learner:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.813 0.111 0.400 0.090 o
covtype 1.020 0.243 0.195 0.100 −−
diabetes 0.978 0.238 0.317 0.098 o
digits 1.000 0.003 0.000 0.034 o
physics 1.000 0.327 0.000 0.000 o
ionosphere 1.077 0.070 0.016 0.094 o
liver 1.013 0.307 0.230 0.104 o
medicine 0.905 0.250 0.512 0.100 ++
mushroom 1.000 0.017 0.000 0.000 o
promoters 1.000 0.123 0.000 0.000 o
insurance 0.595 0.036 0.455 0.058 ++
balance 1.027 0.014 0.000 0.024 o
dermatology 1.000 0.016 0.000 0.000 o
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.800 0.054 0.267 0.087 +
wine 0.894 0.201 0.366 0.055 +
breast 0.996 0.025 0.026 0.086 o
garageband 1.000 0.289 0.000 0.000 o

Here are the results of local patterns with Gaussian density estimation and
JRip as global learner:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.896 0.216 0.175 0.109 o
covtype 1.019 0.254 0.205 0.099 −
diabetes 0.938 0.252 0.405 0.098 ++
digits 1.021 0.005 0.000 0.071 o
physics 1.000 0.346 0.000 0.000 o
ionosphere 1.090 0.104 0.020 0.097 −
liver 1.013 0.345 0.237 0.113 o
medicine 0.925 0.240 0.433 0.103 ++
mushroom 0.800 0.000 0.018 0.009 o
promoters 0.906 0.169 0.200 0.048 o
insurance 0.499 0.031 0.498 0.067 ++
balance 0.882 0.100 0.230 0.088 +
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.013 0.000 0.000 o
voting 0.885 0.038 0.136 0.103 +
wine 0.996 0.092 0.050 0.028 o
breast 0.882 0.036 0.097 0.080 o
garageband 1.000 0.293 0.000 0.000 o
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Here are the results of local patterns with Gaussian density estimation and
J48 as global learner:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.888 0.206 0.333 0.120 ++
covtype 1.019 0.265 0.220 0.103 −
diabetes 0.941 0.252 0.411 0.102 +
digits 0.926 0.006 0.012 0.063 o
physics 1.000 0.395 0.000 0.000 o
ionosphere 1.021 0.103 0.077 0.094 o
liver 0.993 0.344 0.315 0.104 o
medicine 0.937 0.215 0.348 0.108 ++
mushroom 1.000 0.002 0.000 0.000 o
promoters 1.024 0.195 0.050 0.057 o
insurance 0.921 0.010 0.022 0.099 +
balance 0.803 0.103 0.356 0.097 ++
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.013 0.000 0.000 o
voting 0.912 0.031 0.095 0.085 +
wine 1.000 0.050 0.000 0.000 o
breast 0.687 0.029 0.119 0.079 +
garageband 1.000 0.319 0.000 0.000 o

Before we some up the results, let us also take a look at the results of local
patterns with k-medoids clustering. Here are the results with the linear SVM
as base learner:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.919 0.123 0.300 0.052 o
covtype 0.975 0.230 0.302 0.082 ++
diabetes 0.946 0.213 0.364 0.080 +
digits 1.000 0.001 0.000 0.000 o
physics 0.973 0.308 0.413 0.082 ++
ionosphere 1.031 0.131 0.098 0.082 o
liver 0.978 0.300 0.391 0.066 o
medicine 0.907 0.249 0.510 0.096 ++
mushroom 0.900 0.001 0.002 0.004 o
promoters 1.000 0.102 0.000 0.000 o
insurance 0.693 0.006 0.043 0.088 ++
balance 0.863 0.038 0.202 0.072 o
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.860 0.037 0.175 0.055 o
wine 1.000 0.011 0.000 0.061 o
breast 0.712 0.022 0.103 0.085 +
garageband 1.009 0.293 0.270 0.095 o
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Here are the results with the radial basis SVM as base learner:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.964 0.117 0.400 0.083 o
covtype 0.980 0.234 0.288 0.082 ++
diabetes 0.956 0.235 0.347 0.088 ++
digits 1.000 0.003 0.000 0.038 o
physics 0.984 0.322 0.377 0.096 ++
ionosphere 0.991 0.062 0.086 0.071 o
liver 1.037 0.312 0.108 0.064 o
medicine 0.887 0.245 0.567 0.099 ++
mushroom 1.000 0.017 0.000 0.000 o
promoters 1.000 0.123 0.000 0.000 o
insurance 0.413 0.025 0.409 0.092 ++
balance 1.030 0.014 0.000 0.057 −
dermatology 1.000 0.016 0.000 0.000 o
iris 1.000 0.000 0.000 0.000 n.a.
voting 0.686 0.046 0.416 0.068 ++
wine 1.024 0.228 0.100 0.039 o
breast 0.683 0.017 0.101 0.076 +
garageband 1.008 0.291 0.254 0.099 o

Here are the results with JRip as base learner:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.850 0.210 0.170 0.103 o
covtype 0.968 0.242 0.333 0.091 ++
diabetes 0.935 0.252 0.431 0.087 ++
digits 1.018 0.005 0.000 0.079 o
physics 0.983 0.340 0.403 0.094 +
ionosphere 0.851 0.088 0.141 0.085 +
liver 1.008 0.343 0.341 0.066 o
medicine 0.915 0.237 0.484 0.093 ++
mushroom 0.874 0.001 0.010 0.012 o
promoters 0.901 0.174 0.200 0.058 o
insurance 0.510 0.031 0.394 0.085 ++
balance 0.802 0.091 0.358 0.085 ++
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.013 0.000 0.000 o
voting 0.789 0.039 0.181 0.052 +
wine 0.868 0.085 0.100 0.033 o
breast 0.892 0.036 0.075 0.074 o
garageband 1.005 0.294 0.264 0.092 o
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Here are the results with J48 as base learner:

Name Rel. Err Err Global Err Local Local C ≥ G
business 0.942 0.214 0.266 0.082 o
covtype 0.983 0.256 0.312 0.088 +
diabetes 0.921 0.250 0.397 0.100 +
digits 0.928 0.006 0.011 0.068 o
physics 0.982 0.389 0.458 0.086 +
ionosphere 0.967 0.098 0.091 0.088 o
liver 1.001 0.348 0.248 0.069 o
medicine 0.953 0.219 0.332 0.096 ++
mushroom 1.000 0.002 0.000 0.000 o
promoters 0.931 0.190 0.100 0.046 o
insurance 0.539 0.006 0.074 0.084 ++
balance 0.725 0.091 0.426 0.105 ++
dermatology 1.000 0.000 0.000 0.000 n.a.
iris 1.000 0.013 0.000 0.000 o
voting 0.964 0.033 0.075 0.036 o
wine 1.000 0.050 0.000 0.000 o
breast 0.965 0.035 0.058 0.087 o
garageband 1.008 0.321 0.286 0.098 o

The following table sums up the results for both unsupervised local patterns.
It also contains the best result of the supervised local patterns from Section 5.1,
namely the balanced cost approach for the SVMs and the sampling approach
for JRip and J48.

Gaussian Density Estimation
Classifier rel. err sig. err no loc local > τ
linear SVM 0.921 6 7 0
RBF SVM 0.951 4 6 0
JRip 0.931 5 4 1
J48 0.948 7 6 1

k-Medoids
Classifier rel. err sig. err no local local > τ
linear SVM 0.931 6 4 0
RBF SVM 0.925 7 4 0
JRip 0.898 8 2 0
J48 0.934 6 4 0

Supervised
Classifier rel. err sig. err no local local > τ
linear SVM 0.874 8 2 1
RBF SVM 0.843 9 4 2
JRip 0.931 4 9 0
J48 0.958 3 2 1

The first result is that k-Medoids clustering is clearly superior to Gaussian
density estimation with a total of 27 significant error reductions instead of 22
for Gaussian density estimation. Only for the J48 classifier Gaussian density
estimation performs slightly better.
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What is more surprising is that the unsupervised approach is clearly superior
to the supervised approach for the JRip and J48 classifiers. This is surprising
because in clustering the information about the correctly predicted examples is
completely ignored. This result can be explained by the fact that both JRip
and J48 are propositional logic learners and hence can only make use of decision
boundaries that are locally parallel to the coordinate axes. Very smooth but
nonlinear decision boundaries are hard to approximate in this hypothesis space.
The partitions introduced by k-Medoids on the other hand are very smooth and
flexible and the combination of these very different types of functions leads to
the significant increase in the local pattern performance.

5.4 Conclusions

This chapter showed that describing a classifier in terms of patterns in its er-
rors cannot be thoroughly solved by applying a standard learner to predict the
other classifiers errors. The unbalanced distribution between many correctly
classified instances and few errors is a problem which can quite well be solved
by asymmetrical cost functions or biased sampling (Section 5.1). What is more
challenging is the increased risk of overfitting by the local pattern because of
the dependencies between both learners, in particular when both models shall
be optimized (Section 5.2). In the experiments only very carefully selected op-
timization strategies (Sections 5.2.2 and 5.2.3) could improve the results, which
is in accordance with the theoretical analysis in Section 5.2.3. Finally, with an
independent learner that increases the diversity of the available models, local
patterns can be optimized. This was shown in Section 5.3 for detecting local
patterns with clustering.



Chapter 6

Learning Local Models

In this chapter, the results of the previous chapters will be put together: given an
accurate learner, an understandable learner and a description of the error pat-
terns of the understandable model, the task is to create a model that combines
accuracy with interpretability. Section 6.1 will present an approach that can be
viewed as an extension of the local patterns in Chapter 5. To circumvent some
problems that occur when combining models of independent learners, Section
6.2 will present a SVM formulation of the local model task. Finally, Section 6.3
will present an exemplary application of local models in order to demonstrate
the superior understandability of local models.

The role of local models themselves in the local model framework is to achieve
a high accuracy classification in the regions defined by the local patterns. These
regions will usually cover the hard to predict cases, such that a considerably
more complex classifier than the one that found the global model and the local
patterns may be needed. On the other hand, no interpretability restrictions
are placed on the local models, such that it is solely its accuracy that is to be
optimized. As a result, the problem may be solved as a standard classification
problem, where only the examples from the local patterns are used to train the
classifier.

What distinguishes local model learning from standard classification is the
task of optimally combining the global and the local models. In Chapter 5, the
task of the local pattern was to describe where the global classifier is wrong,
but there is no guarantee that the local classifier can actually be better than
the global. Hence, regarding accuracy it is better to let a local pattern describe
the regions where the local classifier is better than the global one. This leads
to the task of iteratively optimizing the global classifier, the local patterns, and
the local models.

This approach is related to delegating classifiers [Ferri et al., 2004], or clas-
sifiers with reject option [Chow, 1970]. Delegating classifiers consist of two
classifiers and use a measure of confidence for the first classifier in order to
decide whether this classifier should classify the observation or delegate it to
the other classifier. The confidence measure in delegating classifiers is derived
from a numerical decision function, which may not be a reliable measure of
confidence, as was discussed in Section 2.4. Other related approaches are ar-
bitrating [Ortega et al., 2001] and grading [Seewald and Fürnkranz, 2001]. An
orthogonal approach to local models was taken in [Scholz, 2005], where a sam-
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pling approach is used to find rules that extract the most class information
from the data given that some rules are already known. These new rules still
make prediction over the complete input space, but modify the conditional class
probability predicted by the learner.

6.1 Local Models by Combining Local Patterns

In Section 5.1 a local pattern algorithm was presented that consists of two classi-
fiers, one for the global model and one for the local pattern. It is straightforward
to convert this algorithm into a local model learner. The role of the local model
is exactly the same as the role of the global model: to predict the examples
on its respective side of the local pattern boundary. Hence, the local model
problem can be viewed as two local pattern detection problems that share the
same local pattern. This gives rise to the following algorithm:

1. Input: examples (xi, yi)i=1...n, threshold τ

2. Learn an initial global classifier f

3. Learn an initial local classifier g (this can be done either by applying the
local learner to all examples, or by executing a local pattern step and
applying the local learner to the examples in the pattern)

4. Define zi ∈ {−1, 1} such that zi = 1 iff f(xi) is false but g(xi) is cor-
rect. Learn the local pattern classifier h on {(xi, zi)|i = 1 . . . n}, with the
restriction that P (h(x) = 1) < τ .

5. Adapt f to optimize the performance on {x|h(x) 6= 1}

6. Adapt g to optimize the performance on {x|h(x) = 1}

7. Return to 4.

Steps 5-7 are optional. The goal of the function h is to predict the examples x
where the global classifier can be improved by the local classifier. Note that we
require P (h(x) = 1) < τ for all x, not just the xi in h’s training set, to ensure
the property of being local. This algorithm will be called the EM Local Model
Algorithm.

Theorem 6.1.1 (Correctness of the EM Local Model Algorithm). Assume
both the learners for the global classifier f : X → {−1, 1} and the local classifier
g : X → {−1, 1} minimize the empirical 0-1-error and assume the learner for
the local pattern classifier h : X → {0, 1} minimizes the error on its training
set under the condition #{i|h(xi) = 1} = ⌊τn⌋. Then, the EM Local Risk
Algorithm minimizes an upper bound of the local risk

RL(α, α′, β) =
n∑

i=1

L01(yi, fα(xi))(1 − hβ(xi)) + L01(yi, gα′(xi))hβ(xi).

Proof. As RL is bounded below by 0, it is sufficient to show that it is non-
increasing in each iteration to guarantee the convergence of RL to some lower
bound R∗

L.
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Obviously, for a fixed h the problem consists of two independent learning
tasks, namely to minimize L01(yi, fα(xi)) over {i|hβ(xi) = 0} and to minimize
L01(yi, gα′(xi)) over {i|hβ(xi) = 1}. By assumption, this is done in steps 5. and
6. of the algorithm.

Since for fixed f and g the L01-terms are constants, minimizing RL in this
case is equivalent to minimizing

n∑

i=1

(L01(yi, gα′(xi)) − L01(yi, fα(xi))hβ(xi)

This is obviously minimized if

hβ(xi) =






1 iff L01(yi, gα′(xi)) = 0 ∧ L01(yi, fα(xi)) = 1
0 iff L01(yi, gα′(xi)) = 1 ∧ L01(yi, fα(xi)) = 0
arbitrary else

In the else-case, L01(yi, gα′(xi))−L01(yi, fα(xi)) = 0 holds and h may any value.
One can see that the values zi defined in step 4 are such a set of values, such
that if hβ(xi) = zi for all i, the error is minimized.

The problem lies in the case where no hypothesis hβ with zero error exists. In
this case, the learner may optimize its prediction of zi by accepting more errors
on the examples with different errors L01(yi, gα′(xi) and L01(yi, fα(xi) if this
reduces the error in the examples xi with L01(yi, gα′(xi) = L01(yi, fα(xi). But
as every example with a nonzero term (L01(yi, gα′(xi)−L01(yi, fα(xi))hβ(xi) is
also an error with respect to predicting zi, the number of errors of predicting zi

is an upper bound of the number of local risk errors. Hence, by minimizing the
empirical error of h an upper bound of the local risk is minimized (both under
the τ -constraint of #{i|h(xi) = 1} = ⌊τn⌋).

This proof shows that the catch in the algorithm – the reason why it is not
possible to show a convergence to a minimal error – is that the learner does not
distinguish between the errors in the local model algorithm and the errors in
predicting the zi which do not lead to errors in the local model prediction. This
raises the question why points with identical prediction of the global and the
local learner cannot simply be ignored in the intermediate task of learning h.
The reason is the τ -constraint. When the pattern learner does not know about
the additional examples, it cannot guarantee that it will satisfy the τ -constraint
over all examples. The prediction of the classifier h on the additional exam-
ples may be identical to its prediction of the examples with zi = 1, such that
both kinds of examples can even not be distinguished by some post-processing
method. In short, the simultaneous optimization of two criteria – minimal error
and τ -constraint – is beyond the capabilities of a usual classifier. While this
section is concerned with the use of standard classifiers as base learners and
hence may have to settle for a suboptimal solution, Section 6.2 will present a
novel learning method that can effectively learn under the τ -constraint.

6.1.1 Empirical Evaluation

To evaluate the local model algorithm an appropriate experimental setup has
to be defined. The local model idea assumes that the global learner is good
at most of the data, but there is a small region where a better learner exists.
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This excludes for example the radial basis SVM from being used as both global
and local learner, because the radial basis SVM is inherently a local learner.
Hence, defining a linear combination of radial basis functions on one part of the
input space and defining a second linear combination on the other part of the
input space will be not much different from using one such combination on the
complete input space in the first place. It can also often be observed that even
very different learners perform similar on most data sets and hence it is likely
that on a region where one learner has problems fitting the data other learners
are not much better.

When local models are used for interpretability reasons, a second assump-
tion is that the global learner and the pattern learner are restricted by some
interpretability constraints. Hence, in the following experiments an experimen-
tal setup similar to the one from [Morik, 2002] is used: both the global and
the pattern learner are restricted to use only a small, pre-defined number of
features, which was selected such that the error is significantly higher than with
all features. The local learner is allowed to use all features. This ensures that
both the local learner can achieve lower error than the global one and that the
global model and the local pattern are more interpretable than the local model.
In the experiments, linear Support Vector Machines have been used.

The following table shows the results of the local model algorithm when only
one iteration is used.

Name Error Significance
Glob Local Comb G ≥ C L ≥ C G ≥ L L < τ

business 0.260 0.139 0.228 + − ++ o
covtype 0.249 0.235 0.249 o − + o
diabetes 0.307 0.225 0.281 ++ −− ++ o
digits 0.072 0.001 0.054 + −− ++ o
physics 0.424 0.317 0.414 + −− ++ o
ionosphere 0.227 0.131 0.176 ++ o + o
liver 0.361 0.304 0.358 o −− ++ o
medicine 0.277 0.274 0.277 o o o o
mushroom 0.030 0.001 0.001 + o + o
promoters 0.185 0.102 0.159 o − + −
insurance 0.070 0.010 0.070 o −− ++ o
balance 0.161 0.053 0.144 ++ −− ++ o
dermatology 0.010 0.000 0.010 o o o o
iris 0.173 0.000 0.173 o −− ++ o
voting 0.046 0.043 0.046 o o o o
wine 0.061 0.011 0.056 o −− ++ o
breast 0.111 0.030 0.106 o −− ++ o
garageband 0.347 0.291 0.347 o −− ++ o

In total, on 7 of the data sets the combined classifier is better than the global
classifier alone. Additionally, on 3 of the data sets, the local classifier does not
outperform the global classifier when applied to all examples, which means that
the combination cannot become better than the global classifier alone. On 13 of
the data sets, the local classifier alone is better than the global one, which means
that the more the local pattern size τ is increased, the better the combination
will become.

An interesting result has been obtained with respect to the optimization
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by iterating the local model algorithm. When the global learner is trained
again on the examples from outside the detected local pattern, the combined
classifier still outperforms the global classifier on the 7 data sets from before.
The only noticeable effect is that one a single data set the local model is no longer
significantly better than the global one, which indicates that some outliers have
been removed. When the local learner is trained again on the local examples
alone, the performance deteriorates: the combined classifier outperforms the
global classifier on only 6 data sets, additionally on 7 of the data sets the
local classifier is no longer significantly better than the global classifier. In
conclusion, iterating the local model algorithm does not improve performance,
but is likely to decrease performance. This can be explained by the increased
threat of over-fitting that comes with assigning examples to different training
sets and the increased variance in the classifiers due to the smaller training
sets (in particular, the training set of the local classifier is severely reduced by
restricting it to the local examples).

Similar to the method in Section 5.1, the results can be improved by adapt-
ing the probability threshold β in the local pattern learner. In the following
approach, an iteration over several values of β has been used in the training
of the pattern classifier and the classifier with lowest training error has been
chosen.

Name Error Significance
Glob Local Comb G ≥ C L ≥ C G ≥ L L < τ

business 0.260 0.139 0.222 + − ++ o
covtype 0.249 0.235 0.249 o − + o
diabetes 0.307 0.225 0.277 ++ −− ++ o
digits 0.072 0.001 0.065 + −− ++ o
physics 0.424 0.317 0.411 ++ −− ++ o
ionosphere 0.227 0.131 0.213 o − + o
liver 0.361 0.304 0.341 + − ++ o
medicine 0.277 0.274 0.278 o − o o
mushroom 0.030 0.001 0.001 + o + o
promoters 0.185 0.102 0.177 o − + o
insurance 0.070 0.010 0.069 o −− ++ o
balance 0.161 0.053 0.144 ++ −− ++ o
dermatology 0.010 0.000 0.010 o o o o
iris 0.173 0.000 0.166 o −− ++ o
voting 0.046 0.043 0.046 o o o o
wine 0.061 0.011 0.056 o −− ++ o
breast 0.111 0.030 0.102 + −− ++ o
garageband 0.347 0.291 0.326 + −− ++ o

This approach clearly improves the results. Now the combined approach is
better than the global one on 9 of the data sets.

In analogy to the approach from Section 5.3.1, the local model algorithm can
also be applied with a clusterer for describing the local pattern. The following
table show the results of the local model algorithm without iteration and with
k-medoids clustering as local pattern learner.
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Name Error Significance
Glob Local Comb G ≥ C L ≥ C G ≥ L L < τ

business 0.260 0.139 0.228 ++ − ++ o
covtype 0.249 0.235 0.241 ++ o + o
diabetes 0.307 0.225 0.276 ++ −− ++ o
digits 0.072 0.001 0.050 + − ++ o
physics 0.424 0.317 0.414 + −− ++ o
ionosphere 0.227 0.131 0.210 o −− + o
liver 0.361 0.304 0.350 + −− ++ o
medicine 0.277 0.274 0.274 + o o o
mushroom 0.030 0.001 0.002 + − + o
promoters 0.185 0.102 0.185 o − + o
insurance 0.070 0.010 0.033 ++ −− ++ o
balance 0.161 0.053 0.137 ++ −− ++ o
dermatology 0.010 0.000 0.010 o o o o
iris 0.173 0.000 0.120 ++ −− ++ o
voting 0.046 0.043 0.046 o o o o
wine 0.061 0.011 0.061 o −− ++ o
breast 0.111 0.030 0.102 o −− ++ o
garageband 0.347 0.291 0.338 + −− ++ o

Similar to the results for local pattern detection, this approach is clearly superior
to pattern detection by a classifier. Now the combined algorithm outperforms
the global learner on 12 of the data sets instead of 9.

6.2 Basis Pursuit

The analysis in Section 6.1 has shown that the critical part in learning with
global and local models is the combination of both models. In particular it has
been shown that the problem is to integrate the τ -constraint with the goal of
minimum accuracy, which a standard learner is not designed to do. This section
will tackle this problem by defining a new SVM-type classifier that integrates the
information of a global model, such that it combines the excellent performance
of Support Vector Machines with a minimal disagreement from the global model.

In order to keep this section concise, it will deal only with logical learners,
in particular JRip, as global models and radial basis Support Vector Machines
for the local part. We will however see that the approach does not build upon
the specific properties of these learners and can in fact be used with any global
model and any SVM kernel.

Several approaches have been discussed in the literature in order to combine
the excellent understandability of a logical representation with a better general-
ization performance of numerical models. For example, [Botta and Piola, 2000]
proposes to optimize first order rules on numerical domains by using a gradient
descend method to optimize the discretization that is necessary to transform nu-
merical data into first-order representation. First-order rules are used as features
for a numerical learner in [Kijsirikil and Sinthupinyo, 1999] by constructing a
bit vector of the outputs of each rule. This approach does not increase under-
standability, as the combination of the features is completely unintelligible, but
is well suited to tackle noise in the input data. Similar approaches can also be
found in [Basilio et al., 2001] and [Popescul et al., 2002].
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Basis Pursuit [Chen et al., 1998] is a method for the sparse approximation of
a real function f in terms of a set of basis functions gi. There is no restriction on
the form of the basis functions. The idea is to generate a set of test points xi and
find a linear combination

∑
i αigi of the basis functions that approximates the

target function on this test points as closely as possible. To achieve sparseness,
the 1-norm ||α||1 =

∑
i |αi| of the parameter vector is added as a complexity

term similar as in Support Vector Machines. This norm is chosen because it will
give much sparser result than the 2-norm, but is computationally more tractable
than the otherwise preferable 0-norm ||α||0 = #{i|αi 6= 0}. The criterion of
sparseness will guarantee that only the most informative basis functions will be
chosen in the final function approximation.

The new idea is now to apply the same idea to a classification framework with
Support Vector Machines. Standard Support Vector Machines already achieve
good generalization performance by combining basis function gi(x) = K(xi, x)
given by the kernel centered at the training points xi. When the prediction
r(x) of a rule learner is added as another basis function, it should already give
a good prediction of the labels and hence be a very informative feature, such
that most of the other features can be ignored.

Remember that the standard SVM optimization task (see Section 2.1.3) is
given by

||w||2 + C
n∑

i=1

ξi → min

w.r.t.

∀n
i=1 yif(xi) ≥ 1 − ξi

∀n
i=1 ξi ≥ 0

where the decision function f has the form

f(x) = w ∗ Φ(x) + b =
∑

i

αiK(xi, x) + b.

To integrate the rule learners predictions p(x) into the SVM and to achieve
focus on the local errors, the form of the decision function is now changed to

f(x) = p(x) +
∑

i

αiK(xi, x)

=: p(x) + fnum(x)

where it is assumed that p(x) ∈ {−1, 1}. This SVM formulation will be called
the Local Model SVM. The change in the decision function has two effects.
First, for any example (xi, yi) that is correctly classified by p it holds that

yif(xi) ≥ 1 − ξi

⇔ yi(p(xi) + fnum(xi)) ≥ 1 − ξi

⇔ yip(xi) + yifnum(xi) ≥ 1 − ξi

⇔ yifnum(xi) ≥ −ξi
which is automatically fulfilled when fnum(xi) = 0 and hence for the examples
correctly predicted by p the optimal solution is w = 0. Additionally, the con-
stant b has been removed from the decision function. This has a special effect
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for locally concentrated basis functions such as the radial basis kernel function

fγ,xi
(x) = e−γ||xi−x||2 .

Any nonzero term b would require that in order to meet fnum(xi) ≥ 0 there need
to be basis functions with nonzero α if there are examples such that byi < 0.
Hence, setting b = 0 leads to a sparse decision function on the region correctly
predicted by p. It follows further that only errors of p lead to a value of fnum(x)
that is significantly different from 0 and hence the absolute value of fnum may
give an indication of the error probability of p.

Using the standard technique of Lagrangian multipliers it can easily be seen
that the dual formulation of the new SVM problem is given by

W (α) =
n∑

i,j=1

αiαjyiyjxi ∗ xj −
n∑

i=i

(1 − yip(xi))αi → min

subject to: ∀n
i=10 ≤ αi ≤ C

In particular, the removal of b leads to the removal of the linear constraint∑
yiαi = 0 and hence to a simpler optimization problem.
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Figure 6.1: Data for Local Model SVM

Figure 6.1 shows an example data set for the local model SVM. The one-
dimensional data set is given by the blue and red points while the prediction of
the logical model p – in this case a simple threshold rule – is plotted in green.
Figure 6.2 shows the prediction of the local model SVM, more precisely the
function fnum(x) in purple. The training points where the prediction of the
logical rule p(x) is false are marked as crosses. Notice that fnum drops to zero
outside the error region of p and that for all points yi(p(xi) + fnum(xi)) ≥ 1
holds, which implies that the local model SVM fulfills the margin property of
the standard SVM, which is imperative for good generalization performance.
However, it must be noticed that the generalization property of the local model
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SVM, in particular the susceptibility to overfitting, is directly dependent on the
quality of the global model p. A completely overfit model p will lead to a zero
local portion and hence to a overfit completely combined model. This risk can
for example be reduced by training p and the local model SVM on different data
sets.
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Figure 6.2: Prediction of Local Model SVM

Finally, in order to meet the τ -constraint the local decision function

f(x) = p(x) + fnum(x)

can easily be replaced by

fλ(x) = p(x) + λfnum(x)

where 0 ≤ λ ≤ 1 and λ is reduced until the disagreement rate between fλ and p
drop below τ . As fnum reaches is maximum for points mispredicted by p, this
new function will still be maximally correct.

6.2.1 Empirical Evaluation

The following experiments compare the local model SVM against two baseline
techniques. As the local model SVM principally a linear combination of the
global classifier p and a SVM-type classifier, the most direct solution would be
to learn a linear model on the outputs of p and a standard SVM. This approach
is an instance of Stacking [Wolpert, 1992]. It is straight-forward to modify the
stacked classifier

s(x) = Ap(x) +Bfsvm(x)

into a classifier
sλ(x) = Ap(x) +Bλfsvm(x)

that adheres to the τ -constraint.
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On the other hand, the stacked classifier does not incorporate any local
information present in the classification errors of p. This can be changed by
removing all examples that are correctly classified by p from the SVMs training
set. With this modified SVM classifier fsvm,rm one defines the stacked classifier

rλ(x) = Ap(x) +Bλfsvm,rm(x)

accordingly to sλ.

The following table compare the cross-validation errors of the local model
SVM, stacking and reduced stacking. The JRip classifier was used to construct
the global model p. In order to simulate incomplete information in the global
model, the most specific rules in each rule set were removed, such that on the
average only half of the rules found by JRip were used (as the more general
rules cover more examples, still most of the examples were classified by their
original JRip rules). The local threshold was set to τ = 0.1. The significance
values for the error differences at levels α = 0.05 and α = 0.01 are also given.

Name LMSVM Stacking L ≤ S Red. Stacking L ≤ R
business 0.216 0.255 o 0.293 ++
covtype 0.241 0.264 + 0.274 ++
diabetes 0.245 0.253 o 0.27 ++
digits 0.027 0.003 −− 0.027 o
physics 0.409 0.417 + 0.417 +
ionosphere 0.137 0.105 − 0.174 ++
liver 0.327 0.292 − 0.33 o
medicine 0.248 0.247 o 0.254 o
mushroom 0.482 0.482 o 0.482 o
promoters 0.372 0.391 o 0.391 o
insurance 0.03 0.068 ++ 0.07 ++
balance 0.247 0.219 o 0.257 o
dermatology 0.317 0.273 o 0.317 o
iris 0.013 0.02 o 0.013 o
voting 0.233 0.207 − 0.233 o
wine 0.14 0.175 o 0.14 o
breast 0.078 0.086 o 0.099 o
garageband 0.298 0.316 + 0.337 ++

Comparing the local model SVM with stacking we can see that both perform
significantly better than the other on 4 data set, so it is safe to say that both
perform equally well. In comparison to reduced stacking, the local model SVM
performs better on 7 data sets and is never worse.

To investigate whether the local classifier fnum holds information about the
errors of p, the following experiment uses isotonic regression (see Section 2.4.1)
to transform |fnum| into an estimator of the error probability of p. Isotonic
regression was used because there is no information about the distribution of
the errors except the assumption that higher values of |fnum| indicate a higher
error probability. In the following table, the mean squared error between the
predicted probability and the actual occurrence of an error is given.
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Name LMSVM Stacking L ≤ S Red. Stacking L ≤ R
business 0.187 0.228 + 0.236 ++
covtype 0.196 0.202 o 0.226 ++
diabetes 0.193 0.196 o 0.202 o
digits 0.027 0.027 o 0.027 o
physics 0.227 0.263 ++ 0.257 ++
ionosphere 0.123 0.143 + 0.155 ++
liver 0.226 0.223 o 0.233 o
medicine 0.187 0.186 o 0.187 o
mushroom 0.086 0.336 ++ 0.383 ++
promoters 0.34 0.275 −− 0.303 o
insurance 0.014 0.034 ++ 0.033 ++
balance 0.186 0.214 + 0.218 o
dermatology 0.021 0.194 ++ 0.195 ++
iris 0.016 0.014 − 0.014 −
voting 0.049 0.162 + 0.159 ++
wine 0.129 0.124 o 0.137 o
breast 0.078 0.111 ++ 0.08 o
garageband 0.236 0.241 o 0.284 ++

We can see that the local model SVM has a significantly lower mean squared
error than the other two methods on 9 of the data sets and is significantly
worse on only 2 data sets for stacking and only 1 for reduced stacking. This
shows that for the local model SVM |fnum| carries much information about the
error probability of p. This means in particular that the local model SVM will
perform well for any value of τ , because selecting a value of λ is equivalent to
cutting of the influence of the points with lowest values of |fnum|, which are
least likely to be mispredicted by p.

To validate whether the local model SVM also leads to a sparser solution,
the following table compares the number of Support Vectors for the standard
SVM (as used in stacking) and the local model SVM.

Name SV Local SV All L ≤ A
business 65.5 92.2 ++
covtype 618.8 746.5 ++
diabetes 349.9 388.1 ++
digits 42.9 146.9 ++
physics 717.4 801.6 ++
ionosphere 110.8 119.3 o
liver 194.3 252.6 ++
medicine 592.6 577.8 o
mushroom 999.9 999.4 −
promoters 78.7 95.4 +
insurance 174.8 178.3 o
balance 117.5 125.9 +
dermatology 100.1 116.9 o
iris 83.5 12.1 −
voting 134.4 181.9 +
wine 35.7 128.9 ++
breast 68.9 86.8 ++
garageband 734.8 807.2 ++
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We can see that on 12 of the data sets, the local model SVM returns significantly
less Support Vectors than the standard SVM. It should also be noted that the
kernel parameter γ of both SVMs was selected to optimize the classification
performance of the standard SVM (the same values that were used throughout
this thesis). An optimization of γ for the local model SVM is likely to achieve
even better results.

In conclusion, the local model SVM gives far superior information about the
local models errors compared to the competing solutions and is hence very well
suited for extracting sparse local models and local patterns at the same time
without any loss of accuracy.

6.3 A Multimedia Application of Local Models

To end this chapter on global models, an instructive application of global and
local models to the field of multimedia data will be presented. In mining multi-
media data, interpretability is a very important aspect because of the apparent
discrepancy between the intuitive form of the objects being observed (a picture,
a song) and their complex technical representations (bitmaps, Fourier trans-
forms, phase spaces). Also the very complex dependencies between the different
parts of the data (a movie and its soundtrack, a song and its lyrics) can make
the interpretation of a model very hard.

Figure 6.3: The Garageband.com website

The multimedia data set investigated here is the Garageband data set
[Homburg et al., 2005] that was used throughout this thesis. Let us first take
a closer look at this data set. Garageband.com is a website where independent
bands can upload their music and present themselves, while users can review
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and rate the songs. A typical page can be seen in Figure 6.3. It contains the
song ready for download, information about the band, lyrics of the song, the
reviews and ratings of the users, and a classification a the song into different
genres (pop, rock, jazz etc.).

The data set consists of 1885 songs from 8 genres. Each song is repre-
sented by 44 features describing the audio information, which where generated
with the method described in [Mierswa and Morik, 2005], plus 508 text fea-
tures which encode the reviews of the song. As the learning task defined in
[Homburg et al., 2005] consists only of subsets of the songs, a new classification
task was defined by letting a user listen to all 1885 songs and classify them with
respect to his personal taste (like / don’t like).

This data set is a good example of the problems one encounters when in-
vestigating interpretability: The user is only interested in the songs themselves
and can very easily make up his mind about a song when he listens to the
MP3 file. Turning the musical information into a good set features to classify
the song with, however, turned out to be a very complex problem. Although
given enough time good sets of features can be found using the method of
[Mierswa and Morik, 2005], these features consists of complex transformations
of the data like peaks of Fourier transforms and hence are are completely un-
intuitive. The review texts contain much less information for the user, because
people have very different tastes and pay attention to very different aspects of
the music when judging a song. Further, the reviews available here differ very
much in quality and size, some are very detailed, some only say “nice” and for
some songs there does not even exist a review. Hence, reviews usually only serve
as a first indicator to filter out the most or least promising songs. On the other
hands, text classification is a well-investigated problem which can be solved with
high accuracy [Joachims, 2002]. The standard approach is to use the so-called
bag-of-words representation, that is to represent a text by the counts of words
appearing in the text. The most important words of a classification rule pro-
vide a set of keywords which usually gives the user a good intuition about the
classification rule.

The idea of this section is to model this relationship between audio and text
features by global and local models. The global classifier will work on the text
features alone and will be restricted to a small set of features, thereby extracting
a set of keywords to filter out the most and least relevant examples. The local
pattern will by described by a set of clusters, again restricted to a small set of
text features to extract meaningful keywords. The clusters will be described
by medoids; it is obvious that a medoid corresponds to a single song and hence
contains much more information than a formal cluster model on the selected text
features alone. The local classifier will be obtained by training on all available
features and examples.

This approach is an instance of the problem of learning with multiple views
[Rüping and Scheffer, 2005], which means learning from data that is represented
by independent sets of features.

As text and audio classification are well-investigated machine learning tasks,
the cluster model for the local patterns will be the focus of this investigation. In
particular, it will be shown that the local pattern cluster can be well improved by
using additional information in the clustering, in particular information about
the global model and the general structure of the set of examples. This will
be implemented by using Conditional Information Bottleneck clustering, which



178 CHAPTER 6. LEARNING LOCAL MODELS

will by explained in the next section.

Information Bottleneck

The information bottleneck method [Tishby et al., 1999] extracts structure from
the data by viewing structure extraction as data compression while conserving
relevant information. With the data modeled by a random variable U1, rele-
vant information is explicitely modeled by a second random variable V , such
that there is no need to implicitly model the relevant structure in terms of ap-
propriately choosing distance or similarity measures as in standard clustering
algorithm. The idea is to construct a probabilistic clustering, given by a random
variable C, such that the mutual information I(U,C) between the data and the
clusters is minimized, i. e. C compresses the data as much as possible, while at
the same time the mutual information I(V,C) of the relevant variable V and
the clusters is maximized, i. e. the relevant structure is conserved. Hence, the
random variable C acts as a bottleneck for the information U has about V .
Both goals are balanced against each other by a real parameter β > 0, such
that the goal becomes to find a clustering P (c|u) which minimizes

F = I(U,C) − βI(V,C).

It can be shown that this problem can be solved by iterating between the
following three equations

P (c) =
∑

u

P (u)P (c|u)

P (v|c) =
∑

u

P (v|u)P (u|c)

P (c|u) ∝ P (c)eβP (v|u) log P (v|c).

The first two equations ensure the consistency of the estimated probabilities,
while the third equation gives a functional form of the clustering, depending
on the Kullback-Leibler-distance between P (v|u) and P (v|c) (removing factors
independent of c). The input consists of the probability distributions P (u) and
P (v|u).

Condition Information Bottleneck

In [Gondek and Hofmann, 2003] and [Gondek and Hofmann, 2004] Gondek and
Hoffmann extend the information bottleneck approach by considering not only
information about relevant, but also about irrelevant structure. It is often easier
to express what is already known and hence is uninteresting, than to specify
what is interesting and relevant. Examples of such irrelevant structures are
general categorization schemes and well-known properties of the data, when
instead one is interested in how the data differs from what one thinks it looks
like.

Conditional information bottleneck (CIB) is formulated by introducing a
random variableW to describe the irrelevant information. The learning problem

1We use the letters U, V, W instead of the usual X, Y, Z in order to avoid confusion with
the classification features X and labels Y used later
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corresponds to that of standard information bottleneck with the new target
function

F = I(U,C) − βI(V,C|W )

That is, one wants to maximize the information that C has of V , given that
W is already known. In a way, the goal is to extract information orthogonal to
what one can already infer via W .

Again, the problem can be solved by iterating between three estimation
equations

P (c) =
∑

u

P (u)P (c|u)

P (v|w, c) =
∑

u

P (v|u,w)P (u|w, c)

P (c|u) ∝ P (c)eβ
P

w P (w|u)
P

y P (v|u,w) log P (v|w,c)

The probabilities P (v|u,w), P (w|u) and P (u) have to be given to the learner
as input.

Informed Clustering for Local Patterns

Informed clustering describes the setting where the desired structure to be
extracted by a clustering is not only defined implicitly using the distance or
similarity function, but also explicit information about relevant and irrelevant
structure is given. The conditional information bottleneck algorithm is one
such approach, where one can explicitely define irrelevant structure which the
clustering algorithm should ignore.

There are two kinds of irrelevant information one can exploit. First, one
can use a probabilistic clustering p(c|x) of the complete training observations
(xi)i=1...n. This clustering shows, what the data generally looks like and can be
used as a background model to discriminate the local examples against. Note
that we do not require an information bottleneck clustering at this stage, we
could also use any other probabilistic clusterer. It would also be possible to use
an existing description of the data set at this stage (e. g. an ontology given by
the user).

The other method is to define the prediction of the global model or, more
precisely the conditional class probability Porig(Y = 1|x) as irrelevant. The idea
here is that the global model is used anyway and that it is better to look for
independent sources of information.

In either case, one arrives at a well-defined probability Pcib(w|u). Now one
can set up the conditional information bottleneck problem to find the local
patterns as follows: Identify U with the index i and the relevant features V
with the classification features X:

• Pcib(u) = P (xi) = Porig(xi|Y 6= f(xi))

• ∀w : Pcib(v|u,w) = Pib(v|u)
In other words, the problem is to compute a probabilistic clustering P (c|u) =
P (c|xi) of the observations xi which are misclassified by the classifier f (con-
trolled by Pcib(u) = Porig(xi|Y 6= f(xi))), such that the clustering describes
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how the local examples differ from the complete data set (via defining the clus-
ter information Pib(v|u) of the complete data set as irrelevant) or how the local
examples differ from structure from the global model (via Porig(Y = 1|x)).

To arrive at local models, we rank the CIB features y by their relevance to

the clusters c according to the mutual information I(y, c) = P (y, c) log P (y,c)
P (y)P (c) .

The larger I(y, c) is, the higher the probability that y and c appear together.
In particular, I(y, c) > 0 iff the joint probability P (y, c) is higher than the
probability P (y)P (c) that could be predicted from assuming independence. An
average of I(y, c) over all c gives a relevance measure for the features over all
clusters. Selecting the few most relevant features introduces a low-dimensional
view on the examples, which may give the user an intuition about the clusters.

As the information bottleneck method does not return a cluster model, but
only the cluster membership probabilities p(c|x), a model that induces these
memberships has to be found in order to apply the clustering to new obser-
vations. Following the goal of interpretability, it is advantageous to use a k-
medoids clustering model, as it is often easier to interpret single examples than
models. For each cluster, we choose that example as medoid, which – in the
space of projections on the most relevant features – minimizes the expected dis-
tance of the medoid to the examples in the cluster, where expectation is taken
with respect to the probability Pcib(x, c) for the cluster c. The local pattern
indexed by c consists of all points x which lie as least as close the medoid of
the cluster c as one of the τnPcib(c) closest training examples, where τ is the
user-defined local pattern threshold. This definition takes into account the sizes
Pcib(c) of the cluster from the CIB method and ensures that only a fraction of
τ of all examples lie in a local pattern.

6.3.1 Experimental Investigation

In these experiments, a linear Support Vector Machine was used as both global
and local classifier. Feature selection for the global classifier was performed by
repeatedly removing the features with lowest absolute weight in the decision
function.

To encode the text information as a probability distribution P (v|u) for the
information bottleneck clustering, the encoding of feature counts as probabilities
from [Gondek and Hofmann, 2003] was used here. This necessary encoding step
is the reason why the approach here is not readily transferable to other data
sets with continuous features.

The initial information bottleneck clustering was parameterized to return 8
cluster, in correspondence with the 8 music genres, and its parameter β was set
to maximize the correspondence to the genres. However, the most informative
words regarding the clustering were hello, power, blend, sounds, baby,

fat, quiet, bit, night, and give, which do not seem to reveal any obvious
genre structure.

Feature selection for classification returned groove, smooth, chill, jazzy,

mood, fusion, piano, piece, paul, and jazz as the most important features.
It is obvious that a certain music taste can be associated with this set of key-
words2.

2The reader might ask who Paul (second to last keyword) is. An inspection of the texts
showed that in fact there are several people with first name Paul in the data, who all make
good music according to the users taste. This was sufficient to make the keyword Paul very
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The CIB clustering returned talent, baby, sounds, check, neat, pass,

true, nice, sexy, and chorus as the most important features. Interestingly,
extracting two medoids from this clustering showed that the first medoid consists
only of the word chorus with no occurrence of the other keywords and the
second medoid consists of the words sounds and nice with no occurrence of
the other keywords. This is a result of the sparse structure of the text data, as a
medoid as any other example will have only a few nonzero features. For sparse
data it may be instructive to try out a different procedure to describe the CIB
clusters. However, the second medoid with the keywords “sounds nice” seems
to indicate that there are two aspects to musical taste in this data set, the genre
– which the initial clustering was optimized against – (the classifier indicates
that the user seems to like jazz) – and the quality of the music independent of
the style (whether the song sounds nice or not).

5-fold cross-validation showed an accuracy of the global model of 0.624 (σ =
0.0284), while the local model achieved an accuracy of 0.670 (σ = 0.0164)
measured over all examples. The combined model achieves an accuracy of 0.649
(σ = 0.0230). This lies between the accuracies of the global and the local
model, which was expected, as the amount of examples that the global and the
combined differ on is bounded by the parameter τ (in this experiment, τ = 0.05),
which stops the local model from correcting more errors of the global model.

To validate that the increase in performance is indeed a result of the con-
ditional information bottleneck approach, the experiment was repeated with a
standard information bottleneck clustering of the global models errors instead of
the CIB step (all other parameters left constant). With the same accuracies for
the global and local classifiers, the accuracy of the combined classifier dropped
to 0.627 (σ = 0.0329). This proves that the conditional information bottleneck
clustering finds novel structure in the errors of the global classifier.

To validate the effect of the parameter τ and the number of features for the
CIB clustering, more experiments were conducted. The result can be seen in
the following table.

Parameters Accuracy Disagree
τ #features global local combined

0.05 10 0.624 0.670 0.648 0.147
0.05 20 0.624 0.670 0.653 0.201

0.025 10 0.646 0.670 0.642 0.070
0.025 20 0.646 0.670 0.646 0.019

The table shows the accuracies of the global, local and combined models and
the disagreement rate (fraction of examples classified differently) between the
global and the combined model. We can see that the combined model performs
better when more features for the CIB clustering are present. We also see that
the actual disagreement rate is higher than the given threshold τ . This is again
a result of the sparse nature of the data, as in the space projected on the most
important keywords, several different examples fall together, which prevents a
more fine grained control of the number of local examples. An obvious tradeoff
between interpretability in terms of number of features and accuracy can be
observed here.

informative
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In conclusion, this specific example showed how local patterns and local
models can serve to model the approach of filtering songs with a keyword-
based search, as most users will do when they look for interesting songs by
hand. Further, local patterns could be interpreted themselves and showed up an
interesting aspect about the data that was not modeled by the global classifier,
namely the general judgment of the other users about the quality of the songs.
Indeed, the rating that is available on the website was not included in the
features and with these results of the local patterns one could think of including
this information if one wants to further improve the results.

6.4 Conclusions

This chapter presented two approaches for learning local models. The approach
in Section 6.1 is more general, because it can be applied with any base learner.
The approach in Section 6.2 is restricted to SVMs as local model learners, but
the experimental investigation showed that it can be performed without an a-
priori selected value of τ .

Section 6.3 presented an exemplary application of local models that showed
how local models can generate a very clear and concise description of the un-
derlying patterns in the data, in this case consisting of 10 keywords out of more
than 500 words.

A main result of this chapter is that although local models are easily under-
standable, finding these models is a very complex task. Hence, it is imperative
to have a clear concept on the semantics of local models, e.g. as given by the
τ -constraint and apply rigorous tests of model correctness in the learning phase.



Chapter 7

Conclusions

Learning interpretable models is a challenging task, whose complexity comes
from the problems that interpretability is a fuzzy, subjective concept and human
mental capabilities are in some ways astonishingly limited. Interpretability is a
critical problem, because it is crucial for problems that cannot be solved purely
automatically.

In order to find an interpretable model, it is not sufficient to generate a
model that is easily understandable to the user. At the same time, the model
must be accurate enough such that it is related to the true structures behind
the data in a sensible way. Moreover, as interpretability is only one of several
goals in a knowledge discovery process, optimizing interpretability should be
efficient enough such that it does not become a performance bottleneck. The
work presented in this thesis is structured along these three dimensions of un-
derstandability, accuracy and efficiency.

efficientaccurate

understandable

!

Figure 7.1: Three goals of interpretability

No single method exists that can successfully solve all requirements for in-
terpretable models. Accordingly, the approach of this thesis was to construct
a set of approaches to cover all single aspects of the interpretability problem,
taking into account the relations to the two other aspects, respectively.
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7.1 Contributions of this Thesis

This thesis contains contributions on the levels of the optimization of a learner
with and without knowledge of its internals (white box and black box approach),
the description of a models errors by local patterns and the improvement of
global models with local models. This necessarily includes a contribution to the
basic method of probabilistic scaling.

Probabilistic Scaling: Probabilistic information is a basic instrument to an-
alyze a learner’s output beyond the level of simple averages. Correctness prob-
abilities are the formal and widely understood measure of the confidence of the
learner in its prediction. They allow the user to form an opinion about the
quality of the predicted label itself. This gives the user important information
about the level of trust he can put in the prediction in critical situations. Fur-
ther, confidence probabilities serve as an intermediate tool in the detection of
local patterns to quantify how much this example fits to structure encoded in
the overall hypothesis.

Section 2.4.2 introduced an improved probabilistic scaling method by inte-
grating the concept of robustness, which is particularly important for scaling
models with undetected local patterns. It was shown that this improved the
quality of probabilistic scalers significantly.

7.1.1 Black Box Optimization

Black box optimization considers the methods to control a learned model that
are accessible from outside the learner. These are the input data, in particular
its size and dimension, the hypothesis space of the learner, which means choos-
ing between one learner and another, and the parameters the learner might
have. The feasibility of optimizing the understandability of the final model by
influencing each of these controls were investigated.

Feature Selection: A well-known method for the optimization of classifica-
tion models is to reduce the number of features that the model uses. Although
the connection between Feature Selection and interpretability is obvious, it is
usually used with the goal of optimizing classification performance. With respect
to interpretability, it is important that the feature selection strategy can deal
with very high amounts of features and many attributes, where interpretability
matters most. Since interpretability is often pursued as a secondary goal next
to performance (e.g. in an additional visualization step), it is important that
the feature selection method is fast.

Section 3.1.5 presented a feature selection method for large-scale non-linear
classifiers such as the SVM. This methods requires almost no additional effort
after building the model and it was shown that it provides a better selection
than most other methods and surpasses all other methods with respect to the
relation of accuracy to efficiency.

Instance Selection: Selecting the most relevant observations in a data set is
the complementary problem to feature selection. But unlike feature selection,
the quality of an instance selection method is hard to evaluate directly, because
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learning with an extremely reduced number of instances is usually infeasible.
Hence, a direct evaluation of the approximation quality of the selected instances
fails.

Section 3.2 showed that by extending the idea of data squashing it is pos-
sible to select a number of examples and a clustering of the input space that
reproduces the structure that the hypothesis space of the learner imposes on
the input space. It was shown that these prototypes can be derived from an
argument of maximizing the information the clustering has about the data. In
combination, this shows that the selected instances are representative for the
data set from the view of the learner.

Piecewise Linear Approximation: Choosing a simpler representation of
a model can have a big influence on understandability. For example, in the
class of numerical representations, linear models are a very easy to understand
and frequently used form. On the other hand, simple representations in many
cases fail to cover the structure of the entire data. An approach that combines
simple representations with a higher expressive power by constructing several
sub-models was introduced in this thesis.

In Section 3.3 it was shown that although a linear model itself is often not
adequate for complex data, the combination of a small number of linear models
can effectively approximate more complex nonlinear models. In particular, a
novel algorithm was introduced that combines linear models with clustering in
order to find an effective piecewise linear approximation of a nonlinear model.

Direct Complexity Reduction: To avoid over-fitting the data, learning al-
gorithms usually possess one or more parameters that control the complexity
of the model. This raises the question about the dependency between this
control of formal complexity and understandability. Can understandability be
controlled by this parameters?

An empirical investigation of this question that was presented in Section
3.4 showed both positive and negative results. On the positive side, it was
shown that in many cases a high reduction of complexity was possible with
little impact on performance, that is, for a standard learning algorithm which is
designed to optimize accuracy, it is not necessary to construct a most compact
and non-redundant model. On the negative side, no dependency of a parametric
form could be obtained, such that it is not possible to construct an analytical
guideline for choosing the optimal parameter. This means that the combined
optimization of both the performance and the complexity criterion requires the
high computational effort of testing out a large set of parameter values.

7.1.2 White Box Optimization

The optimization of the interpretability of a model is much easier if one can
analyze the structure of a model directly. But it follows on the other hand that
any white box optimization is limited to a specific class of models. In this thesis,
the popular class of Support Vector Machines was investigated, which is widely
recognized as a very effective, but not easily interpretable algorithm. In order
to understand a complex numerical model such as SVM models, one can either
try to simplify the model in the hypothesis space it is given in or represent it
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in another, more easily accessible space. Both approaches were investigated,
where logical models and visualizations where considered as alternative repre-
sentations.

Reduced Set Approximations of Support Vector Machines: Pre-images
and reduced set approximations of Support Vector Machines are an approach to
simplify a SVM model in the functional space that is defined by the kernel func-
tion. While this task is relatively easy for finite-dimensional hypothesis spaces,
infinite dimensional cases like Radial Basis Functions pose a hard problem of
simplification and approximation.

Next to an algorithmic optimization of reduced set methods, Section 4.1
presented a new functional space for Radial Basis SVMs, that allows to approx-
imate SVMs in an extended kernel space. The augmented space allows to find
better approximations, while at the same time its inner product and hence its
geometric properties remain identical to the original inner product defined by
the kernel. This means that the new distance measure of functions is based on
the same smoothness properties that form the basis of the good SVM inductive
properties.

Logical Approximations of Numerical Functions: Translating a model
into another formal language can very much increase understandability. This
was exemplified by the description of numerical models by logical formulas in
Section 4.2.

It was empirically shown that when there does not exist a way to directly
translate one model into the other, the only dependency given via the training
data, a trivial approximation algorithm is already statistically optimal. In other
words, existing approaches that promise to extract additional structure, e.g. by
using the given model to generate new labeled examples, are misleading because
they construct finer approximations on some regions of the input space without
any empirical evidence that this region is important.

Visualization of Support Vector Machines: The key of a good visualiza-
tion of high dimensional data is to present the user the structure that is impor-
tant and filter out the irrelevant information. To visualize which the structure
that a classification models extracts from the data, one can either plot the model
along the dimensions of the data and let the user reason about the structure of
the model, or plot along the structure of the model and let the user discover
meaningful real-world structures.

While a multitude of techniques exist for the first approach, the complemen-
tary approach is harder to solve in the general case, as it requires a meaningful
feature extraction from the model. For the case of SVM models, Section 4.3
presented an approach that solves this problem. It combines for the first time
feature extraction and kernel principal component analysis to extract features
which at the same time describe the model itself and the additional structure
that the hypothesis space induces on the data.
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7.1.3 Local Patterns

Models cannot be arbitrarily simplified without losing some amount of informa-
tion. When this happens, it is important to give the user detailed information
on the impact of this simplification on accuracy. In order to give understand-
able assertions about the approximation quality of the less complex model, and
with the goal of distinguishing different levels of complexity in the data, local
patterns in classification models where introduced.

Describing a Model by Local Patterns: Section 5.1 introduced the idea
that when a learner has been found to give interpretable models, it can not only
be used to give an approximation of the data, but also to describe the quality
of the approximating model. This gives qualitative guarantees about the model
correctness, which give the user far more information than traditional numerical
estimates such as error rates.

Optimizing a Model by Local Patterns: Examples from Robust Statistics
(see Section 2.3) shows that for several learners it is possible that a model may
be arbitrarily disturbed by a small set of mischievously placed observations.
This raises questions about the quality of the restricted interpretable model.

Sections 5.2 and 5.3 investigated this problem. It was shown that an op-
timization of the interpretable model is possible with an EM-style algorithm.
However, a theoretical analysis showed that this is a very complex task with
much risk of over-fitting, such that the optimization algorithm has to be very
much restricted. In particular, this shows that traditional approach of residual
analysis, i.e. the analysis of errors made by a model in order to improve this
model, cannot directly be applied with complex learners.

7.1.4 Local Models

When too much accuracy is lost by optimizing for interpretability, it is necessary
to use two different models for prediction and for analysis by the user. Extending
the idea of Chapter 5, Chapter 6 introduced the idea modeling the local error
patterns of the interpretable global model by additional, more complex local
models. While the idea of combining several models into one complete model
itself is not new, the idea of integrating an understandable approximation (global
model and local pattern) and a hierarchical model into the same approach has
not yet been considered.

The novel approach of achieving understandability by enforcing interpretabil-
ity constraints at the levels of the local patterns and the global model and by the
τ -constraint requires much different algorithms than usual hierarchical models.
Two such approaches have been introduced in this thesis.

Learning Local Models: Section 6.1 presented an EM algorithm for local
models on the basis of the EM local pattern algorithm from Section 5.2. This
algorithm is applicable to all base learners and has been shown to optimize the
global and local models, however at the cost of a high chance of over-fitting and
high computational effort.
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Basis Pursuit for Local Models: An alternative approach based on Sup-
port Vector Machine optimization was introduced in Section 6.2. This approach
is more efficient and less prone to over-fitting than the EM local model algo-
rithm, but at the trade-off of being restricted to an SVM model for the local
models.

In summary, these two approaches show that interpretability can be opti-
mized in a classifier-independent way, but that the most potential lies in con-
structing learning algorithms that incorporate interpretability considerations
from the beginning.

7.2 Summary

What can we learn from this thesis about interpretable models? First of all, the
more knowledge that is put into the learner, the better the model will be, in
terms of accuracy, performance, and interpretability. This can be seen from the
good performance of the white box approach (Chapter 4) and the local model
SVM (Section 6.2). Additionally, the selection of the learning algorithm and the
set of features that is right for the user is crucial, see the multimedia example
in Section 6.3.

However, as knowledge discovery nowadays changes more and more from a
pure research topic into large-scale, highly automated applications, it is nec-
essary to limit the amount of human interaction that is needed. Ideally, the
end-user should be capable of carrying out standard knowledge discovery tasks
by his own, without involvement of highly experienced data mining experts, and
still be capable of understanding what models he has found. This real-world sce-
nario – the optimization of interpretability with standard tools and algorithms
– has been the focus of this thesis.

It has been found that a high amount of understandability can already be
gained by automatizable optimization techniques such as feature or parameter
selection. This is mainly a question of efficiency of the applied procedures, see for
example the one-step feature selection in Section 3.1.4 versus complete feature
selection with Ω(2d) steps. For widely used standard learning algorithms, such
as the Support Vector Machine, it is possible to prepare a set of interpretability
optimizing techniques, such as the ones presented in Chapter 4. The availability
of such techniques should be taken into account in the choice of the learning
algorithm. Finally, when a joint optimization of interpretability and accuracy
in one model fails, local patterns and local models offer a structured way to split
the model into parts of different complexity.

The main insight of this thesis is the importance of considering the require-
ments of understandability from the very beginning of the data mining process
and in the design of learning algorithms themselves. Interpretability is hard to
achieve as a post-processing step of an existing model, instead the relation of
requirements for accuracy and understandability in the context of the available
time-frame for the analysis have to be considered jointly. A main point in this
context is to give guarantees about the relationship of accuracy and understand-
ability, because nothing is more misleading than correctly understanding a false
model.

In summary, the contribution of this thesis is a structured investigation of
interpretability in classification models. Starting from an analysis of the require-
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ments for and measures of interpretability in the context of knowledge discovery,
the diverse possible approaches of generating understandable models have been
investigated, with a particular focus on interpretable SVMs and local effects
in the data. This allowed to analyze problems of existing techniques and ad-
hoc approaches to understandability optimization and develop new, improved
algorithms.
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Chapter 8

Data Sets

This chapter gives a short description of the data sets used in this thesis. Data
sets were selected both from the well-known UCI machine learning repository
[Murphy and Aha, 1994] and from several real-world applications and chosen as
to cover a wide range of number of attributes, dimensionality and complexity,
ranging from the trivial iris data set to the very complex garageband data.

For all data sets, continuous attributes were scaled to expectancy 0 and
variance 1. Multi-class data sets have been converted to binary tasks by selecting
two of the classes or by joining several classes to one.

8.1 Description of the Data Sets

What follows is a short description of each data set. If nothing else is stated,
the data sets can be found in the UCI machine learning repository.

Balance

This data models results from psychological experiments. The original data
set contains 4 numeric attributes (values in {1, . . . , 5}) and 625 examples in 3
classes. In the experiments here, only the examples from the two largest classes
(L and R) have been selected, resulting in a binary problem with 576 examples,
288 from each class.

Breast Cancer

This data set consists of patients records for breast cancer diagnosis. It originally
consists of 9 attributes and 699 examples in two classes. For the experiments
here, 16 examples with missing values were removed.

Covtype

The task here is to predict forest cover types from cartographic variables. The
original data set consists of 581012 instances in 7 classes with 54 attributes.
Here, only a 1% sample of the two largest classes (Spruce-Fir and Lodgepole
Pine) was used and attributes that were constant on the sample were removed.
This results in a data set of size 4951 with 48 attributes.
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Dermatology

This data contains examples of dermatologic diseases. It originally consists of 34
attributes and 366 examples in 6 classes. Here, the two largest classes (psoriasis
and lichen planus) were used, resulting in 184 examples.

Diabetes

The Pima Indians Diabetes Database consists of 768 examples with 8 attributes.

Digits

This data set is concerned with the optical recognition of handwritten digits
from 32x32 bitmaps, converted to 8x8 integer matrices. Here, only the digits 1
and 7 are used to construct a data set with 776 examples.

Ionosphere

This data set of radar measurements of the ionosphere consists of 351 examples
with 34 attributes.

Iris

This simple data set describes iris plants. It originally consists of 150 examples
in 3 classes with 4 attributes. In the experiments here, the task was changed in
discriminating one class (setosa) against the rest.

Liver

This liver-disorders database consists of 345 instances with 7 attributes.

Mushroom

The task in this data set is to decide whether a mushroom is poisonous based
on its physical characteristics. It originally consists of 8124 examples with 22
nominal attributes. Here, the data was converted to 126 binary attributes.

Promoters

This molecular biology databases originally consists of 106 examples with 57
attributes with 4 distinct values each. Converting the data into binary form
resulted in 228 attributes.

Voting

This database contains voting records from the United States Congress. The
task is to classify the voter as Republicans or Democrats based on their votes
on different issues. It consists of 435 examples and 16 attributes. The binary
data with missing values was converted into numerical attributes in {−1, 0, 1}
with 0 representing missing values.
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Wine

The data set contains chemical analyses of wine and the task is to determine
the origin of the wine. It originally contains 13 attributes and 178 instances in
3 classes. Here, the task was changed to discriminate the largest class (class 2)
against the rest.

Business

The task in this data set is to classify German business cycles based on certain
macroeconomic variables. It originally consists of 157 observations in 4 classes
with 13 attributes. In the experiments here, the problem was changed into bi-
nary classification by combining the classes upswing and upper-turning-point
into one class and downswing and lower-turning-point into the other. More in-
formation about this data set can e.g. be found in [Heilemann and Münch, 2001]
and [Morik and Rüping, 2002].

Insurance

This data set consists of 10000 record of insurance customers with 135 attributes
identifying the changes in the customers contract. The task is to predict whether
a customer will cancel his contract. See [Morik and Köpcke, 2004] for more
information.

Physics

This data set is the physics data set from the 2004 KDD Cup. A 10% sample
was drawn resulting in 5000 examples and 78 attributes.

Medicine

The task in this data set from intensive care medicine is to decide whether the
dose of a certain drug (dobutrex) should decreased or not. It consists of 6610
examples and 18 classes and is described in [Morik et al., 2002].

Garageband

This music data set defines the task of classifying songs according to a users
taste. The data consists of 44 audio features describing the songs themselves
plus 508 text features in TF/IDF representation encoding reviews of the song
from other users. In total, there are 552 attributes and 1885 examples. The
observations from the data set are described in [Homburg et al., 2005]. The
labels are not part of the original data set and were generated independently by
the author of this thesis by listening to the 1885 songs.
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8.2 Data Set Statistics

The following table sums up the format of the data sets:

Name Size Dimension
balance 576 4
breast-cancer 683 9
covtype 4951 48
dermatology 184 33
diabetes 768 8
digits 776 64
ionosphere 351 34
iris 150 4
liver 345 6
mushroom 8124 126
promoters 106 228
voting 435 16
wine 178 13
business 157 13
insurance 10000 135
physics 5000 78
medicine 6610 18
garageband 1885 552

Finally, in the following table the accuracy values of the four learners used
in this thesis are given. The reported values are the results of 10-fold cross-
validation tests.

Name lin. SVM RBF SVM J48 JRip
balance 0.951 0.986 0.871 0.885
breast 0.969 0.973 0.961 0.958
covtype 0.785 0.807 0.791 0.775
dermatology 1.000 1.000 1.000 1.000
diabetes 0.774 0.770 0.730 0.731
digits 0.997 0.997 0.992 0.994
ionosphere 0.888 0.940 0.897 0.903
iris 1.000 1.000 0.986 0.986
liver 0.698 0.696 0.652 0.658
mushroom 1.000 0.999 1.000 1.000
promoters 0.936 0.904 0.808 0.819
voting 0.967 0.965 0.963 0.949
wine 0.988 0.988 0.950 0.904
business 0.854 0.866 0.770 0.772
insurance 0.998 0.993 0.996 0.962
physics 0.686 0.685 0.635 0.669
medicine 0.752 0.804 0.795 0.755
garageband 0.725 0.728 0.665 0.696
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Klinkenberg, R., Rüping, S., Fick, A., Henze, N., Herzog, C., Molitor, R.,
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Eigenanteil an in

Kooperation erzielten

Ergebnissen

Die folgenden in Kooperation entstandenen Veröffentlichungen sind in diese Dis-
sertation eingeflossen:

• [Morik et al., 2002]: Der vom Autor dieser Dissertation entwickelte An-
teil besteht aus der Evaluierung des Entscheidungsfunktion der SVM als
Konfidenzmaß für die Klassifikation.

• [Morik and Rüping, 2002]: Der vom Autor dieser Dissertation entwickelte
Anteil besteht aus der Diskretisierung numerischer Werte für das benutzte
logische Lernverfahren.

• [Klinkenberg and Rüping, 2003]: Der vom Autor dieser Dissertation en-
twickelte Anteil besteht aus der Integration von Beispielgewichten in einen
SVM-Klassifikator.

• [Rüping and Morik, 2003]: Dieser Artikel ist ein reiner Übersichtsartikel
ohne neue Ergebnisse.
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