
Optimal designs for free knot least squares splines

Holger Dette

Ruhr-Universität Bochum

Fakultät für Mathematik

44780 Bochum, Germany

e-mail: holger.dette@rub.de

FAX: +49 234 3214 559

Viatcheslav B. Melas

St. Petersburg State University

Department of Mathematics

St. Petersburg, Russia

email: v.melas@pobox.spbu.ru

Andrey Pepelyshev

St. Petersburg State University

Department of Mathematics

St. Petersburg , Russia

email: andrey@ap7236.spbu.ru

September 25, 2006

Abstract

In this paper D-optimal designs for free knot least squares spline estimation are inves-
tigated. In contrast to most of the literature on optimal design for spline regression models
it is assumed that the knots of the spline are also estimated from the data, which yields to
optimal design problems for nonlinear models. In some cases local D-optimal designs can
be found explicitly. Moreover, it is shown that the points of minimally supported D-optimal
designs are increasing and real analytic functions of the knots and these results are used
for the numerical construction of local D-optimal designs by means of Taylor expansions.
In order to obtain optimal designs which are less sensitive with respect to a specification of
the unknown knots a maximin approach is proposed and standardized maximin D-optimal
designs for least square splines with estimated knots are determined in the class of all
minimally supported designs.
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1 Introduction

Polynomial regression models have been widely used to analyze functional relations between real

valued predictors and response variables. However, in many practical applications a good fit

to the data using polynomial models can only be achieved by high degree polynomials coming

along with a rather large number of parameters. Because a polynomial function possessing

all derivatives at all locations is not flexible for approximating a curve with different degrees

of smoothness at different locations, many authors propose to fit piecewise polynomials to the

data, which are usually called splines in the literature [see e.g. De Boor (1978), Diercx (1995)

or Eubank (1999) among many others]. Smoothing splines owe their origin to Whittaker (1923)

and have been further developed by Schoenberg (1964) and Reinsch (1967). As an alternative

several authors propose to use least squares splines [see e.g. Gallant and Hudson (1966), Hartley

(1961), Fuller (1973) or Eubank (1988) among many authors]. If the knots are assumed to be

fixed, this approach is particularly attractive because of its computational simplicity. In this case

several authors have studied the problem of constructing optimal designs for the corresponding

segmented polynomial regression models [see e.g. Studden and Van Arman (1969), Studden

(1971), Murty (1971a,b), Park (1978), Kaishev (1989), Heiligers (1998, 1999), Woods and Lewis

(2006) among others]. On the other hand, if the knots are also estimated from the data the

estimation problem is a nonlinear least squares problem and the computation of the estimate

and appropriate designs is substantially more difficult [see e.g. Jupp (1978), Seber and Wild

(1989) or Mao and Zhao (2003)]. In particular - to the knowledge of the authors - optimal

designs for least squares splines with estimated knots have not been considered so far in the

literature.

The present paper is devoted to the D-optimal design problem for spline regression models with

estimated knots, which are introduced in Section 2. In Section 3 we discuss local D-optimal

designs, which depend on the unknown knots and have to be found numerically in nearly all

applications of practical interest. It is demonstrated that in most cases the support points of

minimally supported D-optimal designs are increasing and real analytic functions of the knots.

This allows us to represent these designs by means of Taylor expansions and efficient algorithms

for their numerical construction are presented and illustrated in several examples. In applications

of spline regression models with estimated knots there is usually not much prior information

regarding their location and the application of local D-optimal designs could be not robust with

respect to a misspecification of the unknown knots. For these reasons a standardized maximin

approach is proposed as a robust alternative, which does not require an exact knowledge of the

knots before any observations are available. Some theoretical results of minimally supported

standardized maximin D-optimal designs are derived, which can be used to construct these

designs by means of Taylor expansions. The results are illustrated by several examples, while all

more technical details are deferred to an appendix in Section 5.
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2 Spline regression models with estimated knots

The general form of a spline regression model is given by

E[Y | x] =
k∑

i=1

θix
i−1 +

r∑
i=1

ki−1∑
j=0

θij(x− λi)
m−j
+ ,(2.1)

where the explanatory variable x varies in a compact interval, say [a, b], λ1 < λ2 < . . . < λr

denote r knots located in the interval [a, b], ki ≤ m− 1 (i = 1, . . . , r), k ≤ m+ 1 and

θ1, . . . , θk, θ10, . . . , θ1k1−1, . . . , θr0, . . . , θrkr−1, λ1, . . . , λr

are unknown parameters which have to be estimated from the data. Here and throughout this

paper we define z+ = max{0, z}. Note that the model (2.1) is nonlinear in the parameters λ =

(λ1, . . . , λr)
T and linear with respect to the remaining parameters θ = (θ1, . . . , θk, θ10, . . . , θrkr−1)

T

[see Seber and Wild (1989)]. Following the common convention, we measure the worth of a design

by its Fisher information matrix [see Silvey (1980) or Pukelsheim (1993)]. To be precise we define

a (approximate) design ξ as a probability measure with finite support on the interval [a, b] [see

Kiefer (1974)]. Here the support points x1, . . . , xn represent the locations, where observations

are taken and the masses w1, . . . , wn give the proportions of total observations to be taken at

the particular points. If N independent observations with constant variance σ2 > 0 can be

made, an appropriate rounding procedure is applied to determine the number of observations

nj = Nwj , taken at each point xj ; (j = 1, . . . , n) [see e.g. Pukelsheim and Rieder (1992)]. Under

the assumption of normality, the covariance matrix of the maximum likelihood estimate of the

parameters (θ, λ) is approximately equal to the matrix

σ2

N
(CθM(ξ, λ)CT

θ )−1 ∈ R
µ×µ(2.2)

where Cθ ∈ R
µ×µ denotes a nonsingular matrix, which depends on the parameters θ10, . . . , θrkr−1

but not on the knots λ1, . . . , λr and on the design ξ. Here µ = k +
∑r

i=1 ki + r is the number of

parameters,

M(ξ, λ) =

∫ b

a

f(x)fT (x)dξ(x)

is the information matrix of the design ξ and the components of the vector f(x) = (f1(x), . . . , fµ(x))
T

are defined by

f�(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x�−1; � = 1, . . . , k

(x− λ1)
m+α0−�+1
+ ; � = α0 + 1, . . . , α1

(x− λ2)
m+α1−�+1
+ ; � = α1 + 1, . . . , α2

...

(x− λr)
m+αr−1−�+1
+ ; � = αr−1 + 1, . . . , αr

(2.3)
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(� = 1, . . . , µ) and αj = k +
∑j

s=1(ks + 1); j = 0, . . . , r. Usually optimal or efficient designs

maximize an appropriate function of the Fisher information matrix. Note that in the particular

model under consideration this matrix depends on the nonlinear parameter λ, that is the vector

of knots. There are many optimality criteria proposed in the literature [see Silvey (1980) or

Pukelsheim (1993)] and in the present paper we concentrate onD-optimal designs which minimize

the determinant of the matrix in (2.2). This is equivalent to minimizing the determinant of the

matrix M−1(ξ, λ), because the matrix Cθ does not depend on the design ξ.

Following Chernoff (1953) we call a design ξ∗D,λ local D-optimal if it maximizes

detM(ξ, λ).(2.4)

For the case of least squares estimation with given knots D-optimal designs have been considered

by Park (1978), Kaishev (1989) and Lim (1991), but no results seem to be available for the

situation where the knots have also to be estimated from the data. Note that the concept of

localD-optimality requires a prior guess for the vector of knots and that local optimal designs are

not necessarily robust with respect to a misspecification of the unknown parameters. Therefore

this methodology may result in an inefficient design if the (unknown) knots are misspecified. The

problem of non-robustness has been mentioned in many publications in the context of nonlinear

regression models and several authors propose to use a Bayesian or maximin optimality criterion

to obtain robust designs [see e.g. Chaloner and Verdinelli (1995) or Imhof (2001) among many

others]. The Bayesian approach requires the specification of a prior for the nonlinear parameters

in the models. Because the knots of a spline usually do not have a concrete interpretation it might

be difficult to specify such a prior in a concrete situation. As an alternative for the construction of

robust designs, we therefore propose in this paper a maximin approach based on the D-optimality

criterion, which only requires the specification of a certain range for the unknown knots of the

spline regression model. This method determines a design, which maximizes a minimum of D-

efficiencies [see Müller (1995), Dette (1997), Imhof (2001)] and is motivated by the fact that in

the case of free knot least squares splines it will be difficult to specify an r-dimensional prior for

the (unkown) knots λ1, . . . , λr, before any data is available.

A standardized maximin D-optimal design maximizes

min
λ∈Ω

detM(ξ, λ)

detM(ξ∗D,λ, λ)
(2.5)

where Ω ⊂ {z = (z1, . . . , zr)
T ∈ R

r | a < z1 < . . . < zr < b} is a given compact set for the

knots λ1, . . . , λr and ξ∗D,λ is the local D-optimal design for a fixed parameter λ. Throughout this

paper we will also consider the corresponding optimization problems in the class of all minimally

supported or saturated designs, i.e. the class of all designs with µ support points. In this case

the local D-optimal design in the numerator of the expression in (2.5) is also determined in the

class of all minimally supported designs.
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3 Local D-optimal designs

In most circumstances local D-optimal designs for free knot least squares spline estimation

in model (2.1) have to be found numerically. However, in some situations it is possible to

derive explicit solutions of the D-optimal design problem. Moreover, it is also possible to derive

some analytical properties (as smoothness or monotonicity) of the support points of minimally

supported designs.

3.1 Explicit solutions

An explicit solution of the local D-optimal design problem for the least squares spline estimation

problem is possible if the regression function in (2.1) has exactly one continuous derivative at

the knots λ1, . . . , λr. The following results presents the details.

Theorem 3.1. Consider the (nonlinear) regression model (2.1) with m ≥ k − 1 and ki =

m − 1; i = 1, . . . , r. There exists a unique local D-optimal design ξ∗D,λ with exactly µ support

points, say x1 < . . . < xµ and equal weights ξ∗D,λ(xj) = 1/µ j = 1, . . . , µ. Moreover, the support

points are given by

xi = a+ (γi,k + 1)
(λ1 − λ0

2

)
; i = 1, . . . , k,(3.1)

xi−1+k+(�−1)m = λ� + (γi,m+1 + 1)
(λ�+1 − λ�

2

)
; i = 2, . . . , m+ 1; � = 1, . . . , r ,(3.2)

where λ0 = a, λr+1 = b, γ1,s, . . . , γs,s are the ordered roots of the polynomial (x2 − 1)L′
s−2(x) and

Ls(x) denotes the sth Legendre polynomial orthogonal with respect to the Lebesgue measure.

Proof of Theorem 3.1. Let

ξ∗D,λ =

(
x∗1 . . . x∗n
w1 . . . w∗

n

)

denote a local D-optimal design for least squares estimation in the nonlinear model (2.1). By the

Cauchy Binet formula it is easy to see that there must be at least k support points in the interval

[a, λ1] and at least m support points in the intervals (λj, λj+1] (j = 1, . . . , r). Moreover, the

equivalence theorem of Kiefer and Wolfowitz (1960) shows that ξ∗D,λ is local D-optimal if and

only if the inequality

g(x) = fT (x)M−1(ξ∗D,λ, λ)f(x) − µ ≤ 0(3.3)

holds for all x ∈ [a, b], where the vector of regression functions is defined by (2.3). Consequently,

it follows that

g(x∗i ) = 0 i = 1, . . . , n(3.4)

g′(x∗i ) = 0 i = 2, . . . , n− 1.(3.5)
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Note that g is a polynomial of degree 2k−2 on the interval [λ0, λ1] = [a, λ1] and a polynomial of

degree 2m on the interval [λ1, λr+1] = [λ1, b]. If ξ∗D,λ would have more than µ = k + rm support

points there would exist at least one interval with more than k (for the interval [λ0, λ1]) or more

than m support points (for the remaining intervals (λj , λj+1]; j = 1, . . . , r). Both cases would

yield a contradiction and as a consequence we have n = k +mr. Moreover, the same argument

yields

λ0 = x∗1 < . . . < x∗k = λ1

λ1 < x∗k+1 < . . . < x∗k+m = λ2

...
...

...
...

λr < x∗k+(r−1)m+1 < . . . < x∗k+rm = λr+1.

(3.6)

A standard argument [see Silvey (1980)] now shows that the weights of the local D-optimal

design are all equal, that is ξ∗D,λ(x
∗
j ) = 1/µ; j = 1, . . . , µ. This implies

detM(ξ∗D,λ, λ) =
(1

µ

)µ

(detF )2,(3.7)

where

F =

⎡
⎢⎢⎢⎣
F1

F2

. . .

Fr+1

⎤
⎥⎥⎥⎦

denotes a block triangular matrix with blocks in the diagonal given by

F1 = (fi(x
∗
j ))

k
i,j=1 ∈ R

k×k

F� = (fi(x
∗
j ))

k+�m
i,j=k+(�−1)m+1 ∈ R

m×m � = 2, . . . , r + 1.

As a consequence we obtain from (3.7) the representation

detM(ξ∗D,λ, λ) =
( 1

µ

)µ
r+1∏
j=1

(detFj)
2,

and the blocks can be maximized separately. The first block is a classical Vandermonde deter-

minant with x∗1 = λ0 = a, x∗k = λ1 = b, and consequently maximized for the support points of

the local D-optimal design on the interval [a, λ1], which are given by (3.1) [see e.g. Hoel (1958)].

The other determinants are of the form

(detF�)
2 =

∣∣∣∣∣∣∣∣∣

(z1 − λ�)
m . . . (zm−1 − λ�)

m (λ�+1 − λ�)
m

...
...

...

(z1 − λ�)
2 . . . (zm−1 − λ�)

2 (λ�+1 − λ�)
2

(z1 − λ�) . . . (zm−1 − λ�) (λ�+1 − λ�)

∣∣∣∣∣∣∣∣∣

2
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= (λ�+1 − λ�)
2

m−1∏
j=1

(zj − λ�)
2(λ�+1 − zj)

2
∏

1≤i<j≤m−1

(zi − zj)
2,

where zj = x∗k+(�−1)m+j (j = 1, . . . , m − 1; � = 1, . . . , r). Now the results of Hoel (1958) show

again that this expression is maximized if z1, . . . , zm−1 are the interior support point of the D-

optimal design for a polynomial regression of degree m on the interval [λ�, λ�+1], which are given

by (3.2). �

Note that Theorem 3.1 generalizes a result of Lim (1991), who considered model (2.1) in the

special case k = m + 1, where the knots are known and do not have to be estimated from the

data.

Example 3.2. Consider the model

E[Y | x] = θ1 + θ2x+ θ3x
2 +

r∑
j=1

θ3+j(x− λj)
2
+; x ∈ [a, b],(3.8)

where we have k = 3;m = 2; kj = 1 (j = 1, . . . , r). According to Theorem 3.1 the local

D-optimal design is given by (λ0 = a, λr+1 = b)

ξ∗D,λ =

(
λ0

λ0+λ1

2
λ1 . . . λr

λr+λr+1

2
λr+1

1
2r+3

1
2r+3

1
2r+3

. . . 1
2r+3

1
2r+3

1
2r+3

)
.(3.9)

Table 1: The non-trivial support points of the local D-optimal designs in the regression model

(3.10) The local D-optimal design is given by ξ∗ = {0, x∗2(λ), . . . , x∗5(λ), 1; 1/6, . . . , 1/6}.

λ x∗2(λ) x∗3(λ) x∗4(λ) x∗5(λ)

0.1 0.033 0.094 0.345 0.750

0.2 0.065 0.180 0.410 0.775

0.3 0.095 0.258 0.473 0.799

0.4 0.124 0.330 0.536 0.824

0.5 0.151 0.398 0.602 0.849

0.6 0.176 0.464 0.670 0.876

0.7 0.201 0.527 0.742 0.904

0.8 0.225 0.590 0.820 0.935
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In general optimal designs for least squares slines with estimated knots have to be found numer-

ically. Consider as a typical example a cubic spline regression model (with continuous first and

second derivative)

E[Y |x] = θ1 + θ2x+ θ3x
2 + θ4x

3 + θ5(x− λ)3
+; x ∈ [0, 1].(3.10)

A straightforward calculation shows that the vector of regression functions in model (2.1) is given

by

f(x) = (1, x, x2, x3, (x− λ)3
+, (x− λ)2

+)T .

Some localD-optimal designs have been calculated numerically for various values of λ. The results

are presented in Table 1 and indicate that the support points of the local D-optimal design are

strictly increasing functions of the knots. This phenomenon will be further investigated in Section

3.2.

It might be also of interest to study the sensitivity of the local D-optimal design with respect to

a misspecification of the initial knots. For this purpose we present in Figure 3.1 the D-efficiencies

of the of the local D-optimal design in the spline regression model (3.8) for the values λ = 0.25

and λ = 0.5. We observe that the D-efficiencies decrease very rapidly if the knot is misspecified.

Figure 3.1: The D-efficiencies of the local D-optimal design in the spline regression model

(3.8), where λ = 0.25 (left panel) and λ = 0.5 (right panel).

3.2 Some properties of local D-optimal designs

In this section we discuss two important features of local D-optimal designs for free knot least

squares splines. It is indicated in Example 3.2 that the support points of local D-optimal designs

are increasing and analytic functions of the knots [see Table 1] and this property will be proved

for the case where the local D-optimal design is minimally supported [see Theorem 3.4 below].

Secondly, we prove a symmetry property of local D-optimal designs for least squares splines with
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estimated knots in the case where there is the same degree of smoothness at each knot. We begin

our investigations with the symmetry result.

Theorem 3.3. Consider the spline regression model (2.1) with knots λ = (λ1, . . . , λr)
T and let

ξ∗D,λ =

(
x∗1, . . . , x∗n
w∗

1, . . . , w∗
n

)

denote a local D-optimal design. The design

ξ̃D,λ =

(
x̃1, . . . , x̃n

w∗
1, . . . , w∗

n

)

with x̃i = b+ a− x∗i (i = 1, . . . , n) is local D-optimal for least squares spline estimation in the

model (2.1) with knots λ̃ = (λ̃1, . . . , λ̃r)
T = (b+ a− λr, . . . , b+ a− λ1)

T .

Proof of Theorem 3.3. The assertion follows from a basic property of the D-optimality

criterion observing that the functions

1, b+ a− x, . . . , (b+ a− x)k−1, (x− λ̃1)
m−k1
+ , . . . (x− λ̃1)

m
+ , . . . , (x− λ̃r)

m−kr
+ , . . . , (x− λ̃r)

m
+

and

1, x, . . . , xk−1, (x− λ1)
m−k1
+ , . . . , (x− λ1)

m
+ , . . . , (x− λr)

m−kr
+ , . . . , (x− λr)

m
+

generate the same space. �

Numerical results indicate that local D-optimal designs for free knot least squares splines are

minimally supported. In such cases it follows by a standard convexity argument that the local

D-optimal design is unique and the following theorems show that in this case the corresponding

support points are increasing and analytic functions of the knots, if the condition

m− k − 2 ≤ k1 = k2 = . . . = kr ≤ m− 1(3.11)

is satisfied. The proofs are complicated and therefore deferred to the Appendix.

Theorem 3.4. Consider the spline regression model (2.1) satisfying (3.11). If any local D-

optimal design is minimally supported, then the local D-optimal design ξ∗D,λ is unique and its

support points, which do not coincide with the knots a = λ0 < λ1 < . . . < λr < λr+1 = b,

are strictly increasing functions of any component of the vector λ = (λ1, . . . , λr)
T . Moreover, the

boundary points a and b of the design space are support points of the local D-optimal design ξ∗D,λ.

Theorem 3.5. Under the assumptions of Theorem 3.4 let

Ω := {(λ1, . . . , λk)
T | a < λ1 < . . . < λk < b} =

j∗⋃
j=1

Ωj(3.12)
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denote a partition of the set of possible knots such that Ωi ∩ Ωj �= ∅ and that for all λ ∈ Ωj

the number of suppport points of the (unique) local D-optimal design in each interval (λi, λi+1)

(i = 0, . . . , r) is fixed. The support points of the local D-optimal design, which do not coincide

with the knots a = λ0 < λ1 < . . . < λr < λr+1 = b are real analytic functions on Ωj (for each

j = 1, . . . , j∗).

3.3 Taylor expansions for local D-optimal designs

The analytic properties of local D-optimal designs for spline regression models allow an elegant

numerical calculation of the support points which will be briefly indicated in this paragraph. The

numerical results presented in Example 3.2 were already obtained by this method. To be precise

let the assumptions of Theorem 3.5 be satisfied, then the local D-optimal design is unique and

of the form

ξτ∗ =

(
a τ ∗1 . . . τ ∗µ−2 b
1
µ

1
µ

. . . 1
µ

1
µ

)
,

where the support points τ ∗(λ) = (τ ∗1 , . . . , τ
∗
µ−2) are real analytic functions of the vector of knots

λ = (λ1, . . . , λr) on each set Ωj defined in (3.12). For the sake of simplicity consider the case

r = 1, define λ = λ1 and denote by τ ∗(0) the vector of support points of the local D-optimal

design for the knot λ(0) ∈ Ωj (for some j = 1, . . . , j∗). From Theorem 3.5 it follows that a Taylor

expansion of the form

τ ∗(λ) = τ ∗(0) +
∞∑
i=1

τ ∗(i)(λ− λ0)
i(3.13)

is valid, where the coefficients are given by

τ ∗(s) =
1

s!

ds

dsλ
τ ∗(λ)

∣∣∣
λ=λ0

; s = 0, 1, 2, . . .

Moreover, the coefficients in the expansion can be calculated recursively [see Dette, Melas and

Pepelyshev (2004)] using the following recursive relations

τ ∗(s+1) = − 1

(s+ 1)!
J−1

(0)

{( ds+1

ds+1λ

)
g(τ ∗<s>(λ), λ)

}∣∣∣
λ=λ0,

s = 0, 1, . . . ,(3.14)

where

J(0) =
( ∂2

∂τi∂τj
ψ(τ, λ0)

∣∣∣
τ=τ∗

(0)

)µ−2

i,j=1
,

g(τ, λ) =
( ∂2

∂τi∂λ
ψ(τ, λ)

)µ=2

i=1
,

ψ(τ, λ) =
{

detM(ξτ , λ)
}1/µ

,
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and we define for any (sufficiently differentiable) function h

h〈s〉(λ) =
s∑

i=0

1

i!

( di

dλi
h(λ)

)∣∣∣
λ=λ0

(λ− λ0)
i(3.15)

We finally note that in the case of several knots (that is r ≥ 2) an extension of formula (3.13) is

given in Melas (2006) and the details are omitted for the sake of brevity.

Example 3.6. Consider the cubic spline regression model (3.10) of Example 3.2. The support

points of the local D-optimal designs in Table 1 have been calculated by a Taylor expansion at

the point λ = 0.5. To be precise note that the support points satisfy

x∗2(λ) = 1 − x∗5(1 − λ) x∗3(λ) = 1 − x∗4(1 − λ)

[see Theorem 3.3]. In the following we construct Taylor expansions for the support points of

the local D-optimal design at the point λ = 0.5. With the notation τ ∗i = x∗i+1 (i = 1, . . . , 4),

u = λ− 0.5 we obtain

τ ∗1 (u) = 0.151 + 0.261 u− 0.0689 u2 + 0.0692 u3 + 0.0595 u4 − 0.0425 u5

+0.0400 u6 + 0.0333 u7 + 0.0184 u8 + 0.0285 u9 + 0.0647 u10,

τ ∗2 (u) = 0.398 + 0.664 u− 0.153 u2 + 0.216 u3 + 0.0204 u4 + 0.0408 u5

+0.00556 u6 + 0.127 u7 + 0.0175 u8 + 0.146 u9 + 0.0569 u10,

τ ∗3 (u) = 1 − τ ∗2 (−u),
τ ∗4 (u) = 1 − τ ∗1 (−u).

The support point are depicted in Figure 3.3 as a function of the knot λ. Note that all support

points are increasing functions of the nonlinear parameter λ [see Theorem 3.4].

Figure 3.2: The interior points τ ∗j = τ ∗j (u) of the local D-optimal design for the spline regression

model (3.10) considered as a function of the parameter u.
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4 Standardized maximin D-optimal designs

If the knots of the spline regression model are estimated from the data there is usually not

too much knowledge available with respect to their location. At the same time the numerical

results of Section 3 indicate that local D-optimal designs are rather sensitive with respect to the

specification of the knots. The standardized maximin optimality criterion (2.5) might be more

appropriate for the construction of efficient designs in least squares spline estimation. In the

simplest case of model (3.8) with one knot the standardized maximin D-optimal design can be

found explicitly in the class of all minimally supported designs.

Figure 4.1: The non-trivial support point x∗ = x(u) of the minimally supported standardized

maximin D-optimal design (left panel) for the spline regression model (4.2) and its minimal

efficiency in the interval [u, 1 − u] (right panel).

Example 4.1. Consider the spline regression model

E[Y | x] = θ0 + θ1x+ θ2x
2 + θ3(x− λ)2

+,(4.1)

where (without loss of generality) x ∈ [0, 1]. The local D-optimal design is given by (3.9) with

r = 1 and it is easy to see that the minimally supported standardized maximin D-optimal design

must contain the point 0 and 1 in its support [see the proof of Lemma 5.2 in the Appendix]. In

the following we consider the set Ω = [u, 1−u] with u ∈ (0, 1/2) in the optimality criterion (2.5),

then it follows by similar arguments as given in the proof of Theorem 3.3 that the minimally

supported standardized maximin D-optimal design is of the form

ξ∗ =

(
0 x 1

2
1 − x 1

1
5

1
5

1
5

1
5

1
5

)
,

where x ∈ (0, 1/2). Consequently, the optimality criterion (2.5) reduces for minimally supported

designs to

min
λ∈[u,1−u]

detM(ξ∗, λ)

detM(ξ∗λ, λ)
= 4

x2(x− u)(2x+ 1)

(1 − u)3u2

12



Now a straightforward calculation shows that the function on the right hand side is maximal for

x∗(u) =
3

16
+

3

8
u− 1

16

√
(6u− 3)2 + 8u.

The non-trivial support point of the minimally supported design is displayed in Figure 4.1 for

various values of u ∈ (0, 1/2). In the right part of the Figure we display the minimal efficiency

of the minimally supported standardized maximin D-optimal design in the interval [u, 1 − u],

which decreases rapidly with an increasing length of the interval.

In the remaining part of this section we discuss the numerical construction of minimally supported

standardized maximin D-optimal designs. In order to derive a Taylor expansion for such designs

we consider the following set Ω in the optimality criterion (2.5):

Ω = Ωδ = {(λ1, . . . , λr)
T | (1 − δ)ci ≤ λi ≤ (1 + δ)ci; i = 1, . . . , r},(4.2)

where c = (c1, . . . , cr)
T with c1 < . . . < cr is a fixed vector (considered as preliminary guess

for the unknown vector of knots) and δ ∈ (0, 1) is the relative error of this approximation.

The following result shows that for sufficiently small δ and minimally supported designs the

minimization in the optimality criterion (2.5) can be replaced by a minimization with respect to

a two point set. For this purpose let Ξ̄ denote the set of all minimally supported designs for the

spline regression model (2.1) on the interval [a, b]. The proof of the next theorem is complicated

and therefore deferred to the Appendix [see Section 5.2].

Theorem 4.2.

(a) Let Ωδ be defined by (4.2), then there exists a number δ∗ > 0 such that for any δ ∈ [0, δ∗)

max
ξ∈Ξ̄

min
λ∈Ωδ

detM(ξ, λ)

supη∈Ξ̄ detM(η, λ)
= max

ξ∈Ξ̄
min
λ∈Ω∗

δ

detM(ξ, λ)

supη∈Ξ̄ detM(η, λ)
,

where Ω∗
δ ∈ R

r is a two point set defined by

Ω∗
δ = {(1 − δ)c, (1 + δ)c}.

In other words: If δ is sufficiently small the minimally supported standardized maximin

D-optimal design with respect to the set Ωδ coincides with the minimally supported stan-

dardized maximin D-optimal design with respect to the set Ω∗
δ .

(b) For any δ ∈ [0, δ∗) the support points of the minimally supported standardized maximin

D-optimal design are real analytic functions of the parameter λ ∈ Ωδ.

Note that Theorem 4.2 allows us to calculate minimally supported standardized maximin D-

optimal designs by means of a Taylor expansion as it was illustrated in Section 3.3 for the

13



Table 2: The support points of the minimally supported standardized maximin D-optimal design

with respect to the set Ω = [u, v] in the regression model (4.1). The right column shows the

minimal efficiency calculated over the set Ω

u v x1 x2 x3 x4 x5 min eff
0.4 0.6 0 0.220 0.5 0.780 1 0.796
0.3 0.7 0 0.178 0.5 0.822 1 0.636
0.2 0.8 0 0.125 0.5 0.875 1 0.494
0.1 0.9 0 0.065 0.5 0.935 1 0.346
0.05 0.95 0 0.033 0.5 0.967 1 0.253

0.5 0.6 0 0.261 0.545 0.789 1 0.890
0.5 0.7 0 0.270 0.581 0.833 1 0.794
0.5 0.8 0 0.274 0.604 0.882 1 0.702
0.5 0.9 0 0.272 0.599 0.937 1 0.594
0.5 0.95 0 0.264 0.564 0.967 1 0.510

case of local D-optimal designs. The corresponding recursive relations are obtained by a slight

modification from those presented in Section 3.3 and the details are omitted for the sake of

brevity. We conclude this section with a continuation of Example 4.1.

Example 4.3. The concrete values for the support points of the minimally supported standard-

ized maximin D-optimal designs for the spline regression model (4.2) are presented in Table 2,

which also shows results for a non-symmetric parameter space Ω = [u, v]. In this case there exists

no analytical solution and the designs have been derived by means of a Taylor expansion, which

was described in the previous paragraphs. In its last row the table also contains the minimal

efficiency of the minimally supported standardized maximin D-optimal design. We observe that

these minimal efficiencies decrease substantially, if the range for the free knot λ1 becomes large.

For example, if Ω = [u, v] = [0.1, 0.9] the minimally supported standardized maximin D-optimal

design has only efficiency 34.6 % at some points of the parameter space Ω (note that this is the

worst efficiency in the set Ω and that other values λ ∈ Ω can yield substantially larger efficien-

cies). On the other hand, if the prior information for the knot λ1 is rather precise (that is the

length v − u of the set Ω is small), the minimally supported designs are rather efficient for all

values of the set Ω.

The reason for the loss of efficiency in the situation where the length of the interval v − u

approaches 1 is that in this case the standardized maximin D-optimal designs have substantially

more support points than the number of parameters in the model. In fact it can be proved

using the techniques recently developed by Braess and Dette (2006) that the number of support

points of the standardized maximin D-optimal design becomes arbitrary large if v−u → 1. Two

illustrative examples are given in Table 3, which shows the standardized maximin D-optimal

14



designs for the parameter spaces Ω = [0.45, 0.55] and Ω = [0.4, 0.6], which have already 8 and 10

support points, respectively. If the interval is not symmetric the number of support points grows

rapidly with the length of the set Ω. For example, if Ω = [0.3, 0.5] the standardized maximin

D-optimal design has already 14 support points. However designs with with a moderate number

of support points yield usually reasonable efficiencies. For example, if Ω = [0.3, 0.5], the 8-point

designs with masses 0.198, 0.170, 0.074, 0.050, 0.045, 0.082, 0.181, 0.199 at the points 0, 0.170,

0.312, 0.372, 0.428, 0.490, 0.725, 1, respectively, is not globally optimal, but its minimal efficiency

over the set Ω = [0.3, 0.5] is given by 0.880.

Table 3: Globally standardized maximin D-optimal designs with respect to the set Ω = [u, v] in

the regression model (4.1). The right column shows the minimal efficiency of the set Ω.

u v x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 min eff
0.45 0.55 xi 0 0.238 0.452 0.484 0.516 0.548 0.762 1 0.923

wi 0.201 0.191 0.073 0.036 0.036 0.073 0.191 0.201
0.4 0.6 xi 0 0.225 0.406 0.451 0.484 0.516 0.549 0.594 0.775 1 0.883

wi 0.201 0.174 0.069 0.029 0.026 0.026 0.029 0.069 0.174 0.201
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plexitätsreduktion in multivariaten Datenstrukturen”) is gratefully acknowledged. The work by

V.B.Melas was partly supported by the Russian Foundation of Basic Research (project 07-01-

00534). The work of H. Dette was supported in part by a NIH grant award IR01GM072876:01A1.

The authors are also grateful to Isolde Gottschlich, who typed parts of this paper with consid-

erable technical expertise.

5 Appendix: More technical proofs

5.1 Proof of Theorem 3.4 and 3.5.

We start presenting two auxiliary results

Lemma 5.1. Consider the spline polynomial

ψ(x) =

µ∑
i=1

αifi(x),(5.1)

where the functions f1(x), . . . , fµ(x) are defined by (2.3) and condition (3.11) is satisfied. If∑µ
i=1 α

2
i �= 0, the number of isolated roots counted with their multiplicity is at most µ− 1.
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Proof. Assume that the spline polynomial in (5.1) has more than µ − 1 isolated roots, then it

follows that the function

ψ̃(x) =
( d
dx

)m−k1−1

ψ(x)

has at least µ−m+ k1 + 1 isolated roots. On the other hand this polynomial is of the form

ψ̃(x) =

k−m+k1∑
j=0

α̃jx
j +

r∑
i=1

k1+1∑
j=1

α̃ij(x− λi)
j.

Therefore ψ̃ is a polynomial of degree ≤ k −m + k1 on the interval [a, λ1] and a polynomial of

degree k1 + 1 on the remaining r intervals (λ1, λ2], . . . , (λr, λr+1]. Consequently, ψ̃ has at most

µ̃ := k −m+ k1 + r(k1 + 1)

isolated roots counted with multiplicity, which yields

µ−m+ k1 + 1 ≤ µ̃ = k −m+ k1 + r(k1 + 1).

Observing that µ = k + r(k1 + 1) this inequality reduces to 1 ≤ 0, which is a contradiction. �

Lemma 5.2. Any minimally supported local D-optimal design has the boundary points a and b

as its support points.

Proof. If ξ is a minimally supported local D-optimal design it must have equal weights 1/µ at

its support points x1 < . . . < xµ. From the discussion in the proof of Theorem 2.1 it follows that

detM(ξ, λ) =
{

det(fi(xj))
µ
i,j=1

}2

µ−µ.

Now consider the function

ψ(x1) = det(fi(xj))
µ
i,j=1 =

µ∑
i=1

αifi(x1),

where the last identity follows from Laplace’s rule and the constants α1, . . . , αµ depend on the

points x2, . . . , xµ but not on the point x1. Obviously, ψ(xj) = 0 for j = 2, . . . , µ and consequently

ψ′(x) vanishes at µ − 2 points x̃j ∈ (xj , xj+1); (j = 2, . . . , µ − 1). If x1 > a we would also have

ψ′(x1) = 0. On the other hand it follows from Lemma 5.1 that ψ′ has at most µ− 2 roots which

is a contradiction. Consequently, x1 = a and it can be proved by similar arguments that xµ = b.

�

It now follows that a minimally supported local D-optimal design is characterized by its interior

support points

τ = (τ1, . . . , τµ−2) = (x2, . . . , xµ−1)
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and consequently we denote candidates for such designs by

ξτ =
( a τ1 . . . τµ−2 b

1
µ

1
µ

. . . 1
µ

1
µ

)
.

Therefore the problem of determining minimally supported local D-optimal designs reduces to

the maximization of the function

ψ(τ, λ) = [detM(ξτ,λ)]
1/µ(5.2)

over the set

T = {τ = (τ1, . . . , τµ−2)
T | a ≤ τ1 ≤ . . . ≤ τµ−2 ≤ b},(5.3)

where

λ ∈ Ω := {(λ1, . . . , λk)
T | a < λ1 < . . . < λk < b}(5.4)

is a fixed parameter. Note that under the assumptions of Theorem 3.4 this optimization problem

has a unique solution, say τ ∗ = τ ∗(λ), which satisfies the necessary conditions for an extremum,

i.e.

∂

∂τi
ψ(τ, λ)

∣∣∣
τ=τ∗

= 0; i = 1, . . . , µ− 2.(5.5)

Using the same arguments as in Melas (2006), p. 65-66, it now follows from Lemma 5.1 that the

Jacobi matrix of equation (5.5),

J(λ) :=
( ∂2

∂τi∂τj
ψ(τ, λ)

∣∣∣
τ=τ∗(λ)

)µ−2

i,j=1
,

is non-singular and

(J−1(λ))ij < 0; i, j = 1, . . . , µ− 2(5.6)

∂2

∂τi∂λj
ψ(τ, λ)(−1)s(i) |τ=τ∗ < 0; i = 1, . . . , µ− 2; j = 1, . . . , r(5.7)

where s(i) ∈ {1, 2}. Note that there could exist several solutions of (5.5) corresponding to local

extrema of the function ψ. However, from the assumptions of the theorem it follows that for

a fixed parameter λ0 ∈ Ω there exists a global maximum of the function ψ and we denote

by τ = τ ∗(λ0) a solution of (5.5) corresponding to this global maximum. From the implicit

function theorem [see Gunning and Rossi (1965) ] it therefore follows that the function τ ∗(λ) is

a unique continuous solution of (5.5) such that τ̄ = τ ∗(λ0). By the same theorem we obtain for

j = 1, . . . , r; i = 1, . . . , µ− 2

∂

∂λj

τ ∗i (λ) =
(
J−1(λ)Gj(−1)s(i)

)
i
> 0,
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where the vector Gj is defined by

Gj =
( ∂2

∂τ�∂τj
ψ(τ, λ)

∣∣∣
τ=τ∗(λ)

)µ−2

�=1
.

As a consequence the support points of the local D-optimal design for the spline regression model

are increasing functions of the knots. Finally, if λ is an interior point of one of the sets Ωj in the

partition (3.12), the function ψ(τ, λ) is real analytic and by the implicit function theorrem the

solution τ(λ) of (5.5) is also real analytic.

5.2 Proof of Theorem 4.2.

Note that a minimally supported standardized maximin D-optimal design (with respect to any

set Ω) must have equal weights. Recall the definition of the function ψ in (5.2), define

ϕ(τ, λ) =
ψ(τ, λ)

ψ(τ ∗(λ), λ)
,(5.8)

where τ ∗ = τ ∗(λ) is the vector of support points of the minimally supported local D-optimal

design. Obviously, we have

min
λ∈Ω∗

δ

ϕ(τ, λ) = min
α∈[0,1]

ϕ(τ, α, δ)(5.9)

with

ϕ(τ, α, δ) = (1 − α)ϕ(τ, (1 − δ)c) + αϕ(τ, (1 + δ)c).(5.10)

Consequently, the problem of finding the minimally supported standardized maximin D-optimal

design with respect to the set Ω∗
δ can be reduced to finding a solution (τ̂ , α̂) of

max
τ∈T

min
α∈[0,1]

ϕ(τ, α, δ),(5.11)

where the set T is defined by

T = {τ = (τ1, . . . , τµ−2) | a < τ1 < . . . < τµ−2 < b}

(if two components of the vector τ would be equal the determinant would vanish). The necessary

conditions for an extremum yield

∂

∂τi
ϕ(τ, α, δ)

∣∣∣
τ=τ̂

= 0; i = 1, . . . , µ− 2,

(5.12)

∂

∂α
ϕ(τ, α, δ)

∣∣∣
α=α̂

= 0,
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which will be further investigated using the following parameterization

Φ(u, δ) = ϕ(τ ∗ + ρδ2,
1

2
+ βδ, δ) · ψ(τ ∗, c)

δ2
.(5.13)

Here u = (ρ, β) = (ρ1, . . . , ρµ−2, β) and τ ∗ denotes the vector of interior support points of the

minimally supported local D-optimal design for the vector c = (c1, . . . , cr); i.e. τ ∗ = τ ∗(c).
Obviously, the equations (5.12) are equivalent to

∂

∂ui
Φ(u, δ)

∣∣∣
u=û

= 0, i = 1, . . . , µ− 1,(5.14)

and the solutions û = (ρ̂, β̂) and (τ̂ , α̂) are related by

τ̂ = τ ∗ + ρ̂δ2; α̂ =
1

2
+ β̂δ.(5.15)

Assume that δ∗ is sufficiently small and define the set

Uρ :=
{
u = (ρ, β)

∣∣∣a− τ ∗

δ2
< ρ1 < . . . < ρµ−2 <

b− τ ∗

δ2
;− 1

2δ
≤ β ≤ 1

2δ

}
,

then we prove the following assertions.

(I) There exists a unique continuous function

û :

{
(−δ∗, δ∗) → U

δ → û(δ)
(5.16)

such that for each δ ∈ (−δ∗, δ∗) the value û(δ) is a solution of the system (5.14).

(II) The function defined in (I) is real analytic and the coefficients in the corresponding Taylor

expansion

û(δ) =
∞∑

j=0

u(j)δ
j

can be calculated recursively as

u(0) = −Ĵ−1[h(0, δ)](2),

(5.17)

u(s+1) = −Ĵ−1[h(u〈s〉(δ), δ)](s+3), s = 0, 1, 2, . . . ,

where u〈s〉 is defined in (3.15),

h(u, δ) =
( ∂

∂u1

Φ(u, δ), . . . ,
∂

∂uµ−1

Φ(u, δ)
)T

(5.18)
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A =
( ∂2

∂τi∂τj
ψ(τ, c)

∣∣∣
τ=τ∗

)µ−2

i,j=1

b =
( r∑

j=1

cj
∂2

∂τi∂cj
ψ(τ, c)

∣∣∣
τ=τ∗

)µ−2

i=1

Ĵ =

(
A b

bT 0

)
∈ R

µ−1×µ−1.(5.19)

(III) The design

ξτ̂ =

(
a τ̂1 . . . τ̂u−2 b
1
µ

1
µ

. . . 1
µ

1
µ

)

is the unique minimally supported standardized maximin D-optimal design with respect

to the set Ω∗
δ .

(IV) The design ξτ̂ is the unique minimally supported standardized maximin D-optimal design

with respect to the set Ωδ.

For a proof of (I) and (II) we note that h(u, δ) is a real analytic vector valued function in a

neighbourhood of the point (u∗, δ∗) = (0, 0), with components satisfying

hi(0, 0) =
∂

∂ui

h(u, δ)
∣∣∣
(u,δ)=(0,0)

= 0; i = 1, . . . , µ− 1,

and ( ∂

∂uj
hi(u, δ)

)µ−1

i,j=1
= δ2Ĵ +O(δ3),

where the matrix Ĵ is defined in (5.19). Obviously,

det Ĵ = −(detA)bTA−1b,

where detA �= 0 as demonstrated in the proof of Theorem 3.4 and 3.5. A similar argument

shows that b �= 0 and therefore the matrix Ĵ is non singular. The implicit function theorem [see

Gunning and Rossi (1965)] now shows the existence of a unique real analytic solution û of (5.14)

in a sufficiently small interval (−δ∗, δ∗). The recursive relation (5.17) for the coefficients in the

corresponding Taylor expansion is now a consequence of from Theorem 5.3 in Melas (2005).

In order to prove (III) we note that it follows from the uniqueness of the minimally supported

local D-optimal design for any δ ∈ (0, 1)

min
0≤α≤1

(1 − α)
ψ(τ, (1 − δ)c)

ψ(τ ∗((1 − δ)c), (1 − δ)c)
+ α

ψ(τ, (1 + δ)c)

ψ(τ ∗((1 + δ)c), (1 + δ)c)
< 1.(5.20)
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For δ ∈ [0, 1] define as (τ̃ , α̃) a point where the optimum in (5.11) is attained, that is

ϕ(τ̃ , α̃, δ) = max
τ∈T

min
α∈[0,1]

ϕ(τ, α, δ).

If α̃ = 0 we would obtain

ϕ(τ̃ , α̃, δ) = ϕ(τ̃ , 0, δ) = max
τ∈T

ψ(τ, (1 − δ)c)

ψ(τ ∗((1 − δ)c), (1 − δ)c)
= 1,

which contradicts (5.20). Similary, we can exclude the case α̃ = 1. The matrix A in (5.18) is

nonsingular and the Hesse matrix of the function ψ(τ, c) evaluated at the extreme point τ ∗ must

be negative definite. Consequently, it follows that for sufficiently small δ the function ϕ(τ, α, δ)

defined in (5.10) is a concave function of τ in a neighbourhood of the point τ ∗. This means that

(τ̂ , α̂) = (τ̃ , α̃) and consequently the design ξτ̂ is the unique minimally supported standardized

maximin D-optimal design with respect to the set Ω∗
δ .

Finally, we prove assertion (IV), which follows from the equation

min
λ∈Ωδ

ϕ(τ̂ , λ) = min
λ∈Ω∗

δ

ϕ(τ̂ , λ)(5.21)

To prove (5.21) we define the rescaled quantities γi = (λi − ci)/(δci) (i = 1, . . . , r) and note that

|γi| ≤ 1 if λ ∈ Ωδ. A straightforward but tedious calculation yields

ϕ(τ̂ , λ) = 1 + δ2γTBTABγ +O(δ3),(5.22)

where γ = (γ1, . . . , γr)
T , B = A−1D, the matrix D is defined by

D =
(∂2h(τ, c)

∂τi∂cj

∣∣∣
τ=τ∗

)j=1,...,r

i=1,...,µ−2
,

and the elements of the matrix A−1 and D are negative and positive, respectively (this follows

by similar arguments as given in Melas (2006), p. 56-57). Consequently, the elements of the

matrix DTA−1D, say zij (i, j = 1, . . . , r), are negative and (5.22) yields

ϕ(τ̂ , λ) = 1 + δ2
r∑

i,j=1

zijγiγj +O(δ3).

Therefore, if δ is sufficiently small, the minimum of ϕ(τ̂ , λ) is attained if all components of

γ = (γ1, . . . , γr) have the same sign and are equal to +1 or −1. Consequently, the minimum is

attained either at λ = (1 − δ)c or λ = (1 + δ)c.

�
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