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Abstract

We investigate the OLS-based estimator s2 of the disturbance variance in the
standard linear regression model with cross section data when the disturbances are
homoskedastic, but spatially correlated. For the most popular model of spatially
autoregressive disturbances, we show that s2 can be severely biased in finite samples,
but is asymptotically unbiased and consistent for most types of spatial weighting
matrices as sample size increases.
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1 Introduction

We consider the standard linear regression model

y = Xβ + u,

where y is N × 1, X is nonstochastic N ×K with rank K and β is unknown K × 1. The

components of u have expected value E(u) = 0 and a common variance E(u2
i ) = σ2. The

OLS estimate for β is β̂ = (X ′X)−1X ′y, and the OLS-based estimate for σ2 is

s2 =
1

N −K
(y −Xβ̂)′(y −Xβ̂) =

1

N −K
u′Mu, (1)

where M = I −X(X ′X)−1X ′. It has long been known that s2 is in general (and contrary

to β̂) biased whenever V := Cov(u) is no longer a multiple of the identity matrix. Krämer

[1991] and Krämer and Berghoff [1991] show that this problem disappears asymptotically

for certain types of temporal correlation such as stationary AR(1)-disturbances, although

it is clear from Kiviet and Krämer [1992] that the relative bias of s2 might still be sub-

stantial for any finite sample size. The present paper extends these analyses to the case

of spatial correlation, where we allow the disturbance vector u to be generated by the

spatial autoregressive scheme

u = ρWu + ε, (2)

where ε is a N × 1 random vector with mean zero and scalar covariance matrix σ2
ε I

and W is some known N × N -matrix of nonnegative spatial weights with wii = 0 (i =

1, . . . , N). Such patterns of dependence are often entertained when the objects under

study are positioned in some “space,” whether geographical or sociological (in some social

network, say) and account for spillovers from one unit to its neighbors, whichever way

“neighborhood” may be defined. They date back to Whittle [1954] and have become

quite popular in econometrics recently. See Anselin and Florax [1995] or Anselin [2001]

for surveys of this literature.
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The coefficient ρ in (2) measures the degree of correlation, which can be both positive and

negative. Below we focus on the empirically more relevant case of positive disturbance

correlation, where

0 6 ρ 6
1

λmax

(3)

and where λmax is the Frobenius-root of W (i.e. the unique positive real eigenvalue such

that λmax > |λi| for arbitrary eigenvalues λi). The disturbances are then given by

u = (I − ρW )−1ε, (4)

so

V = Cov(u) = σ2
ε [(I − ρW )′(I − ρW )]−1 (5)

and

V = σ2
ε I (6)

whenever ρ = 0.

Of course, for our analysis to make sense, the main diagonal of V should be constant, i.e.

V = σ2Σ, (7)

where Σ is the correlation matrix of the disturbance vector.1 It is therefore important

to clarify that many, though not all, spatial autocorrelation schemes are compatible with

homoskedasticity. Consider for instance the following popular specification for the weight

matrix known as “one ahead and one behind:”

W̃ :=



0 1 0 · · · 0 1

1 0
. . . 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . 0
. . . 0

0 · · · 0 1 0 1

1 0 · · · 0 1 0


1Note that σ2 = V ar(ui) need not be equal to σ2

ε = V ar(εi), unless Σ = I. In the sequel, we keep σ2
ε

fixed, so σ2 will in general vary with W and N .
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and renormalize the rows such that the row sums are 1. Then it is easily seen that E(u2
i ) is

independent of i, and analogous results hold for the more general “j ahead and j behind”

weight matrix W which has non-zero elements in the j entries before and after the main

diagonal, with the non-zero entries equal to j/2. This specification has been considered

by, for instance, Kelejian and Prucha [1999] and Krämer and Donninger [1987].

As another example, consider the equal-weight matrix (see, e.g., Kelejian and Prucha

[2002], Lee [2004], Case [1992] or Kelejian et al. [2006]), defined by

WEW = (wEW
ij ) =

{
1

N−1
for i 6= j

0 for i = j
. (8)

One easily verifies that, for |ρ| < 1,

(I − ρWEW )−1 = δ1JN + δ2IN , (9)

where

δ1 =
ρ

(N − 1 + ρ)(1− ρ)
, δ2 =

N − 1

N − 1 + ρ
(10)

and JN is an (N × N) matrix of ones. Without loss of generality, let σ2
ε = 1. We then

have, using symmetry of W ,

V = [(I − ρWEW )′(I − ρWEW )]−1

= (I − ρWEW )−1(I − ρWEW )−1 (11)

= (δ1JN + δ2IN)2.

Carrying out the multiplication, it is seen that

E(u2
i ) = (δ2

1 + δ2
2)

2 + (N − 1)δ2
1 for i = 1, . . . , N.

So V is homoskedastic. It is straightforward to extend this result to the case where W is

block-diagonal with B blocks of dimension (R×R), defined as
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WEW
R = (wEW

R,ij ) =

{
1

R−1
for i 6= j

0 for i = j,
(12)

where N = BR. We therefore conclude that our analysis is applicable in many relevant

spatial econometric specifications.

2 The relative bias of s2 in finite samples

We have

E

(
s2

σ2

)
= E

(
1

σ2(N −K)
u′Mu

)
=

1

σ2(N −K)
tr(MV ) (13)

=
1

N −K
tr(MΣ).

Watson [1955] and Sathe and Vinod [1974] derive the (attainable) bounds

mean of N −K smallest eigenvalues of Σ

6 E

(
s2

σ2

)
6 (14)

mean of N −K largest eigenvalues of Σ,

which shows that the bias can be both positive and negative, depending on the regressor

matrix X, whatever Σ may be. Finally, Dufour [1986] points out that the inequalities

(14) amount to

0 6 E

(
s2

σ2

)
6

N

N −K
(15)

when no restrictions are placed on X and Σ. Again, these bounds are sharp and show

that underestimation of σ2 is much more of a threat in practise than overestimation.
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The problem with Dufour’s bounds is that they are unnecessarily wide when extra in-

formation on V is available. Here we assume a disturbance covariance matrix V as in

(5) and show first that the relative bias of s2 depends crucially on the interplay between

X and W . In particular, irrespective of sample size and of the weighting matrix W , we

can always produce a regressor matrix X such that E(s2/σ2) becomes as close to zero as

desired. To see this, let W be symmetric2 and let

W =
N∑

i=1

λiωiω
′
i (16)

be the spectral decomposition of W , with the eigenvalues λi in increasing order and ωi

the corresponding orthonormal eigenvectors. Now it is easily seen that

lim
ρ→1/λN

E

(
s2

σ2

)
= 0 (17)

whenever

MωN = 0. (18)

This follows from

V = σ2
ε

[
N∑

i=1

1

(1− ρλi)2
ωiω

′
i

]
(19)

and

Σ =
1

σ2
V =

1∑N
i=1

1
(1−ρλi)2

ω2
i1

N∑
i=1

1

(1− ρλi)2
ωiω

′
i, (20)

where ω2
i1 is the (1, 1)-element of ωiω

′
i (under homoscedasticity, we could select any diag-

onal element of ωiω
′
i) and

σ2 = σ2
ε

N∑
i=1

1

(1− ρλi)2
ω2

i1. (21)

2Notice that for all the homoskedastic examples considered above, row-normalization does not destroy
symmetry of W .
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Multiplying the numerator and denominator of (20) by (1− ρλN)2, we obtain

Σ =
1

σ2
V =

1∑N
i=1

(1−ρλN )2

(1−ρλi)2
ω2

i1

N∑
i=1

(1− ρλN)2

(1− ρλi)2
ωiω

′
i, (22)

which tends to

1

ω2
N1

ωNω′N (23)

as ρ → 1/λN . Given W , one can therefore choose X to be (N × 1) and equal to ωN .

Then, M is by construction orthogonal to ωN , which implies that tr(MΣ) and therefore

also E(s2/σ2) tend to zero as ρ → 1/λN .

Figure I—The relative bias of s2 as a function of ρ and N

For illustration, consider the following example. The largest eigenvalue λN of a row-

normalized matrix such as W̃/2 is 1. (This follows immediately from Theorem 8.1.22
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of Horn and Johnson [1985].) It is then readily verified that ωN = ι := (1, . . . , 1)′

is (up to the usual multiple) the eigenvector corresponding to λN . Now, if X = ι,

MωN = (I− 1
N

ιι′)ι = 0. Figure I shows the behaviour of the relative bias as ρ → 1/λN = 1.

We see that (17) holds for any given N . Also, pointwise in ρ, the relative bias vanishes

as N →∞, as one would expect. We now rigorously establish the latter property.

3 Asymptotic bias and consistency

From (15), it is clear that, for any V , the relative upward bias of s2 must vanish as

N →∞. A sufficient condition for the relative downward bias to disappear as well is that

the largest eigenvalue of Σ, µN , is

µN = o(N). (24)

This is so because, using
∑N

i=1 µi =
∑N−K

i=1 µi +
∑K

i=1 µi+N−K = N , we have

mean of N −K smallest eigenvalues of Σ =
N

N −K
− 1

N −K

K∑
i=1

µi+N−K

>
N

N −K
− K

N −K
µN

and the right-hand side tends to 1 when (24) holds as N →∞.

Condition (24) also guarantees consistency. From (1), we have

s2 =
1

N
u′Mu =

1

N
u′u− 1

N
u′Hu, (25)

where H = X(X ′X)−1X ′. Since u′u/N
p−→ σ2, it remains to show that

1

N
u′Hu

p−→ 0. (26)
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To this purpose, consider

E

(
1

N
u′Hu

)
= E

(
1

N
ε′Σ1/2HΣ1/2ε

)
(where ε = Σ−1/2u)

=
σ2

N
tr(Σ1/2HΣ1/2)

=
σ2

N
tr(HΣ)

6
σ2

N
K · µN , (27)

where the inequality follows from the fact that HΣ has rank K (since rank (H) = K).

Since no eigenvalue of HΣ can exceed µN , and HΣ has exactly K nonzero eigenvalues, the

inequality follows from the well known fact that the trace of a matrix equals the sum of its

eigenvalues. By assumption, µN/N → 0 as N →∞, so in view of (27), E(u′Hu/N) → 0.

As u′Hu is nonnegative, this in turn implies u′Hu/N
p−→ 0 and therefore the consistency

of s2.

The crucial condition (24) is a rather mild one; in the present context, it obviously depends

on the weighting matrix W . From (7) and (19), we have

µN =
σ2

ε

σ2(1− ρλN)2
, (28)

so the condition (24) obtains whenever

σ2(1− ρλN)2N →∞ (29)

For row-normalized weight matrices, λN ≡ 1 irrespective of N , so (29) holds trivially,

provided σ2 remains bounded away from zero. This in turn follows from the fact that, in

view of (21),

σ2 >
σ2

ε

(1− ρλN)2

N∑
i=1

ω2
i1, (30)

where
N∑

i=1

ω2
i1 = 1 (31)
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as Ω = (ω1, . . . , ωN) satisfies ΩΩ′ = I.

As another example, consider the “one ahead and one behind” matrix adapted to a “non-

circular world” where the (1, N) and (N, 1) entries of W̃ are set to zero, such that after

row-normalization,

W ′ :=



0 0.5 0 · · · 0 0

0.5 0
. . . 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . 0
. . . 0

0 · · · 0 0.5 0 0.5

0 0 · · · 0 0.5 0


.

Ord [1975] shows that the eigenvalues of W ′ are then given by

λ′i = cos

(
πi

N + 1

)
, i = 1, . . . , N,

so

λ′i ∈ [−1, 1], i = 1, . . . , N.
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