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1 Introduction

This note reviews Bohmian mechanics, an alternative interpretation (or modi-
�cation) of quantum mechanics. Bohmian mechanics reproduces all predictions
of quantum mechanics but introduces a radically di�erent perception of the un-
derlying processes. Like most alternative interpretations it is not distinguishable
from standard quantum mechanics by e.g. any experimentum crucis.
We start out by a few historical remarks in Sec. 2 before we outline the main
characteristics of its non-relativistic formulation in Sec. 3. Here we put special
emphasis on the status of �observables� other than position. However, the most
important feature of the theory is its solution to the infamous measurement prob-
lem of quantum mechanics (see Sec. 3.3).

http://physphil.uni-dortmund.de/
https://eldorado.uni-dortmund.de/handle/2003/22198


Oliver Passon: Introduction to the deBroglie-Bohm theory and QFT generalizations

We then turn to the question of relativistic and quantum �eld theoretical general-
izations of the theory. Several such generalizations do exist and in Sec. 4 we give
a non-technical account of some of these models. We also address the question
of what it actually means to �generalize� a theory and make a little digression to
the �eld of �intertheory relations�.
However, before we get started, we would like to make some general remarks
concerning the interpretation of quantum mechanics. These may help to put the
debate on Bohmian mechanics into a wider context.

1.1 Re�ections on the interpretation of quantummechanics

The interpretation of quantum mechanics has been discussed ad nauseam and the
engagement with it can be a frustrating and disappointing business. This subject
matter continues to produce an endless stream of publications1 and nobody can
reasonably expect this issue to be settled in the future. So much the worse, the
di�erent camps stand in �erce opposition and one gets the impression that this
is an other obstacle for reaching substantial progress.
However, what do we actually mean by �progress�? Perhaps, in a situation like
this, we need to reconsider our criteria and standards for progress and success.
Given that the foundation of quantum mechanics has a smooth transition to
philosophy we may learn something from a similar debate there.
Chapter 15 of Bertrand Russell's little book The Problems of Philosophy (1912)
is titled The Value of Philosophy and starts with a remark which applies just as
well to the interpretation of quantum mechanics:

�[W]hat is the value of philosophy and why it ought to be studied. It
is the more necessary to consider this question, in view of the fact that
many men, under the in�uence of science or of practical a�airs, are
inclined to doubt whether philosophy is anything better than innocent
but useless tri�ing, hair-splitting distinctions, and controversies on
matters concerning which knowledge is impossible.�

And indeed, many practically minded physicists regard the interpretation of quan-
tum mechanics as pointless since no direct applications follow from it.
Russell continues, that although philosophy does aim at �knowledge which gives
unity and system to the body of the sciences�, it admittedly had little success in
this respect and could only answer very few of its questions de�nitely. However,
more important than the answers are the questions it asks:

�Philosophy is to be studied, not for the sake of any de�nite answers
to its questions since no de�nite answers can, as a rule, be known to
be true, but rather for the sake of the questions themselves; because
these questions enlarge our conception of what is possible, enrich our
intellectual imagination and diminish the dogmatic assurance which
closes the mind against speculation (...)�

1Cabello (2004) gives a bibliographic guide to the foundation of quantum mechanics (and
quantum information) and collects more than 105 entries.
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Now, rated by this measure, the debate on the interpretation of quantum mechan-
ics is a story of spectacular success indeed. Agreed, only few questions have been
settled ultimately, but every alternative interpretation enlarges �our conception
of what is possible�.2 And this is exactly what Bohmian mechanics does as well.
It enriches our conception of what the quantum world may be.

2 Some history

Bohmian mechanics was �rst developed by Louis de Broglie! Therefore we will
use the name �deBroglie-Bohm theory� in the remainder of this paper. Some
basic concepts of the theory were already anticipated in de Broglie's dissertation
in 1924 and his talk on the 5th Solvay meeting in October 1927 contained an
almost complete exposition of the theory � called the �pilot wave theory� (théorie
de l'onde pilote) by him (Bacciagaluppi/Valentini, 2007). For reasons which are
not entirely clari�ed yet the theory fell into oblivion until David Bohm developed
it independently in 1951 (Bohm, 1952). However, the reception of this work was
unfriendly, to say the least. See e.g. Myrvold (2003) for the early objections
against the deBroglie-Bohm theory.
Since the 70s John Bell was one of the very few prominent physicists who stood up
for the theory. Many papers in his anthology (Bell, 2004) use the deBroglie-Bohm
theory and the stochastic collapse model by Ghirardi/Rimini/Weber (1986) as an
illustration of how to overcome the conceptual problems of quantum theory. The
deBroglie-Bohm theory is even closely related to Bell's most important discovery,
the Bell inequality. It was the non-locality of the deBroglie-Bohm theory which
inspired him to develop this result.
Interestingly, during the 60s and most of the 70s even Bohm himself had only
little interest in his theory. Only since the late 70s he and his group (B. Hi-
ley, Ch. Dewdney, P. Holland, A. Kyprianidis, Ch. Philippidis and others) at
Birkbeck College in London started to work on that �eld again. They referred
to the theory as �ontological� or �causal� interpretation of quantum mechanics.
Since the 1990ies some new groups and researchers joined the �eld (D. Dürr, S.
Goldstein and N. Zanghi, A. Valentini, G. Grübl and others) and it came to the
formation of di�erent schools. Dürr/Goldstein/Zanghi (1992) coined the term
�Bohmian mechanics� which stands for a speci�c reading of the theory. While
mathematically equivalent to Bohm's exposition in 1952, it is in�uenced by Bell's
(and also de Broglie's) presentation of the theory (e.g. it puts no emphasis on
the �quantum potential�3).

2The above-mentioned should not be misconceived as a license for arbitrary speculations.
The possible answers still have to come under scrutiny.

3It should be noted that while all of the before mentioned Bohm students use the quantum
potential formulation, the presentation of the theory in Bohm/Hiley (1993) and Holland (1993)
shows di�erences nevertheless. In addition changed also Bohm's own interpretation of the
theory in the course of time. However, this is clearly not unusual and by no means speci�c to
the deBroglie-Bohm theory. We just mention this point here to call into attention that � given
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Researchers who want to stay away from this debate (or who entertain their own
sub-variant) are usually identi�ed by calling the theory �deBroglie-Bohm theory�,
�de Broglie-Bohm pilot wave model� or any similar permutation of the key words.

3 The non-relativistic formulation

The key idea of the (non-relativistic) deBroglie-Bohm theory (de Broglie, 1927;
Bohm, 1952) is to describe a physical system not by the wavefunction, ψ, alone
but by the couple of wavefunction and con�guration, i.e. the position, Qi, of the
corresponding objects (e.g. electrons, atoms, or even macroscopic entities).

ψ → (ψ,Qi)

quantum mechanics → deBroglie-Bohm theory

The theory is now de�ned by three postulates which will be explained in the
following4:

1. The wavefunction satis�es the usual Schrödinger equation

ih
∂ψ

∂t
= Hψ

2. The particle velocities (a real vector �eld on con�guration space) are given
by the so-called guidance equation:

dQk

dt
=

∇kS(Q(t))

mk

(1)

With Q(t) = (Q1(t), · · · , QN(t)) the con�guration of the system,mk denotes
the mass of particle k, ∇k is the nabla operator applied to its coordinates
and S the phase of the wavefunction in the polar representation ψ = Re

i
h̄
S.

3. The position-distribution, ρ, of an ensemble of systems which are described
by the wavefunction, ψ, is given by ρ = |ψ|2. This postulate is called the
quantum equilibrium hypothesis.

Postulate 1 shows that ordinary quantummechanics is embedded in the deBroglie-
Bohm theory and that everything which is known about solutions of the Schrödinger
equation remains valid and important. The deBroglie-Bohm theory is sometimes
called a �hidden variable� theory since it supplements quantum mechanics with
additional variables, i.e. the particle positions. However, this terminology is a
bit awkward since the positions are not really �hidden�.

these di�erent readings of the theory � talking about the �deBroglie-Bohm theory� may need
further quali�cation.

4More detailed expositions of the deBroglie-Bohm theory can be found in Holland (1993);
Bohm/Hiley (1993); Cushing (1994); Dürr (2001); Passon (2004a); Goldstein (2006).
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Postulate 2 equips the particles with a dynamic which depends on the wavefunc-
tion. Metaphorically speaking the quantum particles are �riding� on (or guided
by) the ψ-�eld.Thus the particles are moving on continuous trajectories and pos-
sess a well de�ned position at every instant. The proof for global existence of the
Bohmian trajectories is given by Berndl et al. (1995a) and was later extended by
Teufel/Tumulka (2005).
The form of the guidance equation can be easily motivated.5 One may take the
classical relation between velocity (v), current (j) and density (ρ):

v =
j

ρ
(2)

and inserts the quantum mechanical probability current, j, and the probability
density ρ:

j =
h̄

2mki
[ψ∗(∇kψ)− (∇kψ

∗)ψ]

ρ = |ψ|2 .

A di�erent motivation of the guidance equation � based on symmetry arguments
� is given in Dürr/Goldstein/Zanghi (1992).
The above equation applies only to spinless particles. However, the generalization
to fermions (or arbitrary spin) is straightforward. One only needs to consider
solutions of the Pauli equation (ψ1, ψ2)

t and arrives at the guidance equation 2
with the modi�ed current:

j =
∑
a

(
h̄

2mi
(ψ∗

a∇ψa − ψa∇ψ∗
a)−

e

mc
Aψ∗

aψa

)

Postulate 3 is needed for the deBroglie-Bohm theory to reproduce all predic-
tions of quantum mechanics. The continuity equation of quantum mechanics
(∂|ψ|

2

∂t
+ ∇

(
|ψ|2 · ∇S

m

)
= 0) ensures that any system will stay |ψ|2 distributed if

the quantum equilibrium hypothesis holds initially. The quantum equilibrium
hypothesis provides the initial conditions for the guidance equation which make
the deBroglie-Bohm theory to obey Born's rule in terms of position distributions.
Since all measurements can be expressed in terms of position (e.g. pointer posi-
tions) this amounts to full accordance with all predictions of ordinary quantum
mechanics.
Further more, the quantum equilibrium hypothesis ensures that the deBroglie-
Bohm theory does not allow for an experimental violation of Heisenberg's uncer-
tainty principle notwithstanding the well de�ned position the particles possess in
principle (Valentini, 1991a; Valentini, 1991b).
However, while it is ensured that the quantum equilibrium hypothesis is satis�ed
for a con�guration which is |ψ|2 distributed once, it is by no means clear why any
con�guration should be accordingly distributed initially. At �rst this seems like

5However, its form is not unique. One can add an arbitrary divergence-free vector-�eld and
arrive at the same statistical predictions (Deotto/Ghirardi, 1998).
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a very speci�c requirement which needs e.g. very special initial condition of the
universe. If the problem is viewed this way, it would be more appealing to have
a dynamical mechanism which explains why ρ 6= |ψ|2 distributed systems evolve
into a quantum-equilibrium distributed con�guration. This approach is explored
in Valentini (1991a); Valentini (1991b); Valentini (1992) who claims that the
dynamics of the deBroglie-Bohm theory gives rise to a relaxation into an approx-
imate (i.e. coarse grained) equilibrium distribution for an enlarged set of initial
con�gurations. However, there exists a more convincing approach to justify the
quantum equilibrium hypothesis. Work by Dürr/Goldstein/Zanghi (1992) shows,
that the quantum equilibrium hypothesis follows by the law of large numbers from
the assumption that the initial con�guration of the universe is �typical� for the
|Ψ|2 distribution (with Ψ being the wavefunction of the universe). This deriva-
tion resembles the way Maxwell's velocity distribution for a classical gas follows
from the �typicality� of the phase-space con�guration of the corresponding gas
(Dürr/Goldstein/Zanghi, 2004). According to this view the quantum equilibrium
hypothesis is no postulate of the deBroglie-Bohm theory but can be derived from
it.6

3.1 A remark on the quantum potential

While the above presentation introduced the guidance equation as fundamental,
the original work of Bohm (1952) (and later also e.g. Holland (1993) introduced
the notion of a �quantum potential�. For the phase of the wavefunction the
following equation holds:

− ∂S

∂t
=

(∇S)2

2m
+ V − h2∇2R

2mR
. (3)

Due to the similarity with the classical Hamilton-Jacobi equation (for the action
S) the term ∝ h̄2 has been baptized �quantum potential�. Within the Hamilton-
Jacobi theory the particle velocity is constraint to m ·v = ∇S, which corresponds
to the guidance equation of the deBroglie-Bohm theory. If one adopts the quan-
tum potential formulation the motion along the Bohmian trajectories can be
thought of as taking place under the action of a novel �quantum-force�.
However, the guidance equation can be motivated e.g. by symmetry arguments
(Dürr/Goldstein/Zanghi, 1992) and needs no recourse to the Hamilton-Jacobi
theory. Moreover, in Goldstein (1996) it is argued that the quantum potential
formulation is misleading since it suggests that the deBroglie-Bohm theory is
just classical mechanics with an additional potential (or force) term. But the
deBroglie-Bohm theory is a �rst-order theory (i.e. the velocity is constrained
by the position already) and this important trait is disguised in the quantum
potential formulation.
Whether this ambiguity in the formulation of the deBroglie-Bohm theory should
be viewed as a substantial debate or a secondary matter depends on the context.

6At the risk of being imprecise we gave only a short sketch of the di�erent strategies to
motivate the quantum equilibrium hypothesis. For details the reader is referred to the original
literature.
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These two readings of the theory have certainly a great deal in common and
in comparing the de Broglie-Bohm approach with standard quantum mechanics
the distinction between these di�erent schools is usually irrelevant. However,
more detailed discussions which involve subtleties regarding e.g. the status of the
wavefunction, particle properties and philosophical implications of the deBroglie-
Bohm theory in general have to pay attention to these di�erences.

3.2 Characteristic features

After the de�nition of the theory we want to discuss some of its characteristic
features and try to put them into the wider context.

Determinism

The deBroglie-Bohm theory is deterministic since the wavefunction and the con-
�guration at a given time �x the time evolution of the system uniquely. However,
given the quantum equilibrium hypothesis the predictive power of the theory is
not enlarged compared to ordinary quantum mechanics. All predictions of the
theory remain probabilistic but in contrast to ordinary quantum mechanics, the
randomness is arising from averaging over ignorance.
However, it should be noted that to many adherents of the deBroglie-Bohm
theory, determinism is not the key feature of the theory. For example Bohm/
Vigier (1954) have developed a hidden variable model which contains a stochastic
background-�eld and in a later section we will discuss a �eld-theoretical gener-
alization of the deBroglie-Bohm theory which also contains stochastic e�ects.
Moreover do many �Bohmians� appreciate the GRW model which includes a
stochastic term into the Schrödinger equation to describe the wavefunction col-
lapse. Short but to the point: not the indeterminism of quantum mechanics but
rather its vague account of the measurement process created discomfort with the
ordinary formulation and inspired the development of these alternative models.

�Complementarity� dispensable

Many quantum phenomena (e.g. interference e�ects) need both, the wave and
particle aspect of matter for their explanation. The notion of �complementarity�
was developed as an attempt to justify this common use of mutually contradictory
concepts. Within the deBroglie-Bohm theory matter is described by a wave-like
quantity (the wavefunction) and a particle-like quantity (the position). Hence,
the notion of complementarity is not needed.

Non-locality

Since the wavefunction is de�ned on the con�guration space, the guidance equa-
tion of a N -particle system links the motion of every particle to the positions of
the other particles at the same time. In principle the particles can in�uence each
other over arbitrary distances. However, this non-locality is needed in order to
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explain the violation of Bell's inequality. Moreover ensures the quantum equi-
librium hypothesis that the correlation of space-like separated particles can not
be used for faster than light communication (Valentini, 1991a; Valentini, 1991b).
Finally does the non-locality of the deBroglie-Bohm theory vanishes if the state
is not entangled.
Whether this non-locality is viewed as an unacceptable feature depends on the
attitude towards the problem of non-locality in quantum mechanics in general.
Following the work of Bell and the experimental con�rmation of quantum me-
chanics in tests of the Bell inequality it became widely accepted that quantum
mechanics itself is �non-local�. However, the precise meaning of the term �non-
local� is far from being unique and their exists a vast literature on that topic.
A thorough discussion of that issue is far beyond the scope of the present paper
(see e.g. Cushing/McMullins 1987). However, one can reasonably state, that
the �non-locality� of the deBroglie-Bohm theory is more explicit (i.e. dynamical)
than the �non-separability� of ordinary quantum mechanics.
Be that as it may, given that the deBroglie-Bohm theory is a reformulation of
non-relativistic quantum mechanics, any action-at-a-distance should be no threat
anyway. It is turned into an objection against the theory if one argues that no
�Bohm-like� relativistic or quantum �eld theoretical generalization of the theory
can be given. In Sec. 4 we will discuss the existing models for such generalizations.

�Measurements� deserve no special role

The main merit of the deBroglie-Bohm theory is its solution to the measurement
problem. This theory treats �measurements� like any other interactions or exper-
iments. This allows a reply to the frequent complaint that the trajectories of the
deBroglie-Bohm theory violate the rule �Entia non sunt multiplicanda praeter
necessitatem� which is usually attributed to William of Ockham (�Ockham's ra-
zor�). While the trajectories are additional entities indeed, any �measurement
postulate� or the like becomes unnecessary. Given the importance of this point
we devote Section 3.3 to a more detailed discussion of the measurement-problem
and how it is solved by the deBroglie-Bohm theory.

�Observables� other than position and contextuality

Much more important than being deterministic or having particle trajectories is
the novelty of the deBroglie-Bohm theory with regard to the status of �observ-
ables� other than position. Within ordinary quantum mechanics the identi�cation
of �observables� with linear Hilbert space operators is usually regarded as the key
innovation. Their non-commutativity is believed to be the mathematical embod-
iment of the deep epistemological lesson quantum mechanics teaches us.
The deBroglie-Bohm theory takes a di�erent route. First, it includes the particle
positions (which are described by real coordinates, and not by some operator) into
the state description. Second, it distinguishes these variables, i.e. the outcome
of every experiment is determined by the wavefunction and the con�guration.
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Note, that this holds also for experiments which are supposed to �measure� quan-
tities like energy, angular momentum, spin etc. There are no �hidden variables�
or continuous functions which correspond to the �actual� values of these quanti-
ties7. Within the deBroglie-Bohm theory all these quantities do have a di�erent
ontological status than position. Dürr et al. write (using spin as an example
only):

�Unlike position, spin is not primitive, i.e., no actual discrete degree
of freedom, analogous to the actual positions of the particles, added
to the state description in order to deal with �particles with spin�.
Roughly speaking, spin is merely in the wave function.� (Dürr et al.
1996, p. 11)

In common jargon these properties are called �contextual�, i.e. the measurement
does not reveal a pre-existing value of a system-property but depends crucially
on the experimental arrangement (the �context�).8
Thus, in general, �measurements� do not measure anything in the closer meaning
of the term. The only exception being of course position measurements, and, in
some sense momentum-measurements. The latter do indeed measure the asymp-
totic (Bohmian) velocities. Hence, the only properties of a �Bohmian particle�
are its position and its velocity. Just as ψ is no classical �eld, the Bohmian par-
ticles are no classical particles, i.e. they are no bearers of properties other than
position. Therefore a physical object like e.g. an electron should not be confused
with the Bohmian particle at position Qi. It is represented by the pair (ψ,Qi).
Agreed, this is a radical departure from the classical particle concept. However,
within the deBroglie-Bohm theory this move is not only natural (recall that e.g.
momentum and energy are concepts which arise in 2nd order Newtonian me-
chanics while the guidance equation of the deBroglie-Bohm theory is 1st order)
but allows for an elegant circumvention of the Kochen-Specker �no-go� theorem,
directed against hidden variable theories (see e.g. Mermin 1990). This theorem
demonstrates, that a consistent assignment of possessed values to all observables
for a quantum mechanical state is not possible. However, if you allow for con-
textuality � as the deBroglie-Bohm theory does � you do not expect such an
assignment to exist at all.
According to Dürr/Goldstein/Zanghi (2004) the �naive realism about operators�,
i.e. the identi�cation of operators with properties and the common talk about
�measuring� operators, is the source of most of the confusion in the interpretation
of quantum mechanics. However, given what we have said above, it may appear

7In fact, Holland (1993) pp. 91, introduces �local expectation values� for these quantities
which are supposed to correspond to their �actual� value along the trajectories. Averaged over
the quantum equilibrium distribution these local expectation values reproduce the quantum
mechanical predictions. However, one might object that these �properties� are redundant since
the position is already enough to reproduce all experimental predictions of quantum mechanics.
Further more they are not conserved along the Bohmian trajectories.

8In Dürr/Goldstein/Zanghi (2004), pp. 64, it is argued that the term �contextual property�
is actually misleading because it suggests that e.g. spin is still a �property�. But �properties
which are merely contextual are no properties at all� (Dürr/Goldstein/Zanghi (2004), p. 67).
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puzzling why operators can play such a prominent role in the usual formulation
of quantum mechanics and how exactly they relate to the Bohmian formulation.
In Dürr/Goldstein/Zanghi (2004) it is shown how operators naturally arise in the
deBroglie-Bohm theory. They are derived quantities which are coding the proba-
bility distributions for certain �measurement-like� (p. 11) experiments. This leads
us to the next section which is devoted to a discussion of how the deBroglie-Bohm
theory treats �measurements� and in particular how it solves the measurement
problem.

3.3 How the deBroglie-Bohm theory solves the measure-

ment problem

Let us �rst brie�y recall the measurement problem of quantum mechanics. It
can be stated in several ways, e.g. Maudlin (1995), p. 7, o�ers the following
formulation:9

The following three claims are mutually inconsistent:
A The wave-function of a system is complete, i.e. the wave-function
speci�es (directly or indirectly) all of the physical properties of a sys-
tem.
B The wave-function always evolves in accord with a linear dynamical
equation (e.g. the Schrödinger equation).
C Measurements of, e.g. the spin of an electron always (or at least
usually) have determinate outcomes [...]

The argument runs like this: Given a two-valued observable S with eigenvectors
ψ1 and ψ2. Let Φ0 denote its wavefunction in the �ready-state� and Φ1 (Φ2) the
state of the apparatus if the measurement yields ψ1 (ψ2). Hence, Û(ψi ⊗ Φ0) =
ψi ⊗ Φi (i ∈ {1, 2}) holds, with Û the time evolution of the combined system. A
general state will be a superposition:

ψ = c1ψ1 + c2ψ2

Now, given B, the action of Û on this state yields:

Û(ψ ⊗ Φ0) = c1ψ1 ⊗ Φ1 + c2ψ2 ⊗ Φ2 (4)

While individual measurements always result in either the state Φ1 or Φ2, this
is a superposition of di�erent pointer states. Thus, in contrast to our experience
quantum mechanics does not leave the joint object-apparatus system in a de�-
nite state.10 According to assumption A the wave-function should specify every

9In fact, Maudlin (1995) introduces three slightly di�erent formulations of the measurement
problem. We refer only to the �rst formulation (hence, Maudlin labels the following propositions
1.A, 1.B and 1.C).

10Our argument relied on simplifying assumption like an ideal measurement and pure states
for both, object and apparatus. One might suspect that the problem is only generated by
these unrealistic conditions. However, even in the completely general case employing density
operators (i.e. mixed states), non-ideal measurements, interactions with the environment etc.
the conclusion remains essentially unaltered (see Bassi/Ghirardi 2000 and Grübl 2003).
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physical fact about the measurement device. Maudlin argues that, since the two
Φi enter symmetrically, it is not clear by what argument one could attempt to
show that the �nal state 4 represents one but not the other indicator state. Thus,
assuming A and B contradicts C. Any resolution of this problem has to deny at
least one of the above assumptions.
To deny proposition A needs some sort of �hidden� (or actually �additional�) vari-
ables. The deBroglie-Bohm theory is a prominent example for this strategy and
we explain how this solves the measurement problem further below. Ballentine's
statistical or ensemble interpretation (Ballentine, 1970) can also be construed as
a denial of proposition A. It takes the quantum state to be the description of the
statistical properties of an ensemble of identically prepared objects only.
To deny proposition B leads to so-called �collapse theories� which abandon the
strict linear time evolution of the system. For example Ghirardi/Rimini/Weber
(1986) have developed such a non-linear model which describes this mechanism.
Also does von Neumann's proposal of a collapse of the wavefunction fall into
this category. However, von Neumann (like all other standard presentations of
quantum mechanics) did not specify the physical conditions under which the
linear evolution fails.
Finally one may question C and the many-world interpretation can be construed
as a solution of the measurement problem along this line.

E�ective collapse in the deBroglie-Bohm theory

Now we turn in more detail to the deBroglie-Bohm theory and its resolution of
the measurement problem. It denies assumption A from the previous section, i.e.
introduces the particle position as additional variables to arrive at a complete
state description. However, what is needed are not just �additional� variables but
variables which supply the necessary means to distinguish di�erent measurement
outcomes.11
Quantum mechanics describes how a superposition state evolves into a sum of
macroscopic distinct (i.e. non-overlapping) states, i.e. (ψ1 ⊗ Φ1) · (ψ2 ⊗ Φ2) ≈ 0.
It just fails to distinguish the branch which corresponds to the actual measure-
ment outcome. Within the deBroglie-Bohm theory the di�erent measurement
outcomes correspond to di�erent con�gurations (e.g. pointer positions). The
positions provide a record of the measurement outcome, or more generally they
�yield an image of the everyday classical world� (Bell 2001, p. 41).
Suppose for example that the measurement yields outcome �1�, i.e. the initial po-
sition of the Bohm particle was such that the deterministic evolution developed
into a con�guration that lies within the support of ψ1 ⊗Φ1. The Bohm particles
will be guided by this state because the non-overlapping ψ2 ⊗Φ2-part is dynam-
ically irrelevant. Thus the deBroglie-Bohm theory provides a so-called �e�ective
collapse� of the wavefunction. Given the quantum equilibrium hypothesis the
probability for this e�ective collapse obeys Born's rule.

11Maudlin (1995), p. 11, notes that therefore �additional� variables which would be really
�hidden� (i.e. unobservable) would not help at all.
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4 Relativistic and quantum �eld theoretical gen-

eralizations

Presumably the most common objection12 against the deBroglie-Bohm theory is
based on its non-locality and its apparent con�ict with relativity and quantum
�eld theory. However, several �Bohm-like� models for relativistic quantum me-
chanics and quantum �eld theory do exist. Here we give a non-technical account
of some of these models. But before doing so, we need to say a few words on the
actual meaning of �Bohm-like�.

4.1 What is a �Bohm-like� theory?

At �rst sight �Bohm-like� seems to mean �having trajectories� or even �having
deterministic trajectories�. Obviously this requirement is intended to capture the
spirit of the deBroglie-Bohm theory. The task of developing e.g. a Bohm-like
quantum �eld theory is then to reconcile this concept with the predictions of
QFT.
This may even be possible (see for example the Bell-type models below), however,
on closer inspection this requirement seems to be too narrow nevertheless. One
only needs to consider the history of physics, where many important features of
a given theory did not carry over to its generalization. In particular does QFT
provides examples for the departure from concepts which were accepted in non-
relativistic quantum mechanics. Or to put it di�erently: one should expect (or at
least not exclude from the outset) new concepts to enter a theory if it is extended
to new areas.
Another more reasonable demand for a quantum �eld theoretical generalization
of the deBroglie-Bohm theory is that it (i) reproduces the predictions of QFT
and (ii) includes the non-relativistic formulation as a limiting case. The last
requirement seems necessary to regard a model as a generalization. In Sec.4.4 we
will come back to this important question.
However, the existing models for �Bohm-like� QFT concentrate on still another
feature of the deBroglie-Bohm theory. They suggest, that the essence of the
deBroglie-Bohm theory is its �clear ontology�, i.e. that it attributes �being� to
certain entities. In common jargon, the theory possesses �beables�. This term was
coined by Bell (1976) and is meant in contrast to �observable� i.e. emphasizes that
any observation (i.e. measurement) deserves no special role in the formulation of
a fundamental theory. In Bell's own words:

�In particular we will exclude the notion of �observable� in favor of that
of �beable�. The beables of the theory are those elements which might
correspond to elements of reality, to things which exist. [...] Indeed
observation and observers must be made out of beables.� (Bell 1986,
p. 174)

12A comprehensive discussion of objections against the deBroglie-Bohm theory can be found
in Passon (2004b)
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The beables of the non-relativistic deBroglie-Bohm theory happen to be particles
(a good question is whether the wavefunction ψ should be regarded as a beable
likewise. Bell regarded the state-vector as a beable, �although not a local one�,
Bell 1986, p. 176) which move on continuous trajectories. In what follows we will
also come across �eld-beables and indeterministic dynamics in �Bohm-like� theo-
ries. As long as this beables provide the means to record measurement outcomes
they can be used to build a Bohm-like model.

4.2 The Bohm-Dirac theory

We begin with the question of a relativistic generalization. Already in Bohm
(1953) an extension of the deBroglie-Bohm theory to the Dirac equation was
given. The strategy here is analogous to the non-relativistic case. Solutions of
the Dirac equation ful�ll a continuity equation with a time-like current. The
spatial part of this current reads ψ†αkψ. In addition the density ρ = ψ†ψ (the
appropriate quantum equilibrium distribution) is positive de�nite. Thus, similar
to the non-relativistic case a particle velocity can be de�ned by the ratio of these
two quantities:

dQk

dt
=

ψ†αkψ

ψ†ψ
(5)

with: αik = 1⊗ · · · ⊗ αi ⊗ · · · ⊗ 1 and: αi =

(
0 σi
σi 0

)

In this way the description is complemented by the con�guration, i.e. the beables
of this theory are particles as in the non-relativistic formulation.
However, in the many-particle case this theory is not Lorentz covariant since it
uses a common time for all particles. The frame-of-reference in which ρ = ψ†ψ
holds is distinguished (Berndl et al., 1995b). But this non-covariance is only
relevant on the level of individual particles. The statistical predictions of the
Bohm-Dirac theory are the same as for the usual Dirac theory because (i) by
construction it is ensured that they hold in the distinguished frame and (ii) they
transform properly under Lorentz transformations. Hence, the preferred frame-
of-reference can not be identi�ed experimentally.
In fact, as shown by Dürr et al. (1999), it is even possible to formally restore
Lorentz invariance for the Bohm-Dirac theory by introducing additional structure.
Dürr et al. introduce a preferred slicing of space-time, determined by a Lorentz
invariant law.
In order to deal with anti-particles one might invoke the Dirac-sea concept, i.e.
introduce particle beables for every negative energy state (Bohm/Hiley 1993,
p. 276).
Other approaches to develop a relativistic deBroglie-Bohm theory use the concept
of the multi-time wavefunction ψ(q1, t1, · · · , qN , tN), i.e. introduce a di�erent time
variable for each particle. However, the resulting set of coupled Dirac equations
can only be solved in the absence of interaction potentials. See Tumulka (2006)
and the references therein for a more detailed discussion of these models.
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However, it is generally agreed that the uni�cation of quantum mechanics and
relativity needs a quantum �eld theoretical framework anyway. We therefore
turn to the �eld theoretical generalizations of the deBroglie-Bohm theory. Here
several competing models do exist.

4.3 Quantum �eld theoretical generalizations

We have learned in Sec. 4.1, that the beable is the decisive quantity in a Bohm-like
theory. Hence, the di�erent models for a quantum �eld theoretical generalization
of the deBroglie-Bohm theory can be classi�ed according to the beables they
employ. Roughly the models fall into the following three categories:

Field-beables for bosons and particle beables for fermions

Already in his seminal paper in 1952 Bohm presented a way of generalizing his
causal interpretation to the electromagnetic �eld. The additional variables (or
beables) were not particles but �elds. The quantum state is thereby a wave-
functional which guides the �eld beable. This approach can be extended to the
various bosonic �elds (see e.g. Bohm/Hiley 1984; Holland 1993; Kaloyerou 1996).
For example the second-quantized real Klein-Gordon �eld is described by a wave-
functional Ψ(φ(x), t), which satis�es the Schrödinger equation:

i
∂Ψ

∂t
=
∫
d3x

(
− δ2

δφ2
+ (∇φ)2

)
Ψ. (6)

The corresponding guidance equation for the �eld beable φ(x, t) reads

∂φ

∂t
=
δS

δφ
, (7)

where S is the phase of the wavefunctional Ψ.
In these models the con�guration space is the in�nite dimensional space of �eld
con�gurations. Since there does not exist a Lebesgue volume measure on these
spaces the rigorous de�nitions of an equivariant measure, i.e. the analogue of
|ψ(q)|2dq, is problematic (Tumulka 2006, p. 12).
For fermionic quantum �elds Bohm et al. argue that a causal interpretation in
terms of �eld beables cannot be constructed (Bohm/Hiley/Kaloyerou, 1987) and
(Bohm/Hiley 1993, p. 276). Instead Bohm and Hiley propose to introduce par-
ticle beables for fermions according to the Bohm-Dirac theory mentioned above.
In fact, models by Holland and Valentini which try to provide �eld-beables for
fermions did not succeed (Struyve/Westman 2006, p. 1).

Field-beables for bosons and no beable-status for fermions

Inspired by the di�culties to construct a Bohm-like theory for fermions with �eld-
beables, Struyve/Westman (2006) propose a di�erent direction. They recall that
e.g. the property �spin� can be described in the deBroglie-Bohm theory without
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assigning a beable status to it. They suggest, that the same may be done for the
fermionic degrees of freedom. Since fermions are always gauge-coupled to bosonic
�elds it is su�cient to introduce beables for the bosons.
Technically their work is similar to Bohm's model with �eld-beables for bosons
mentioned above. They introduce a speci�c representation for the bosonic �eld-
operators and trace out the fermionic degrees of freedom. Their beables are
the transversal part of the vector potential. In Struyve/Westman (2006) this
approach is carried out for QED, but it has a natural extension to other gauge
theories.
Struyve and Westman discuss in detail how this model accounts for an e�ective
collapse, i.e. how the total wavefunctional evolves to a superposition of non-
overlapping wavefunctionals. However, one might still worry if this model is
capable to contain a record of the measurement outcome, for example in terms
of pointer positions. They reply to this concern, that

�(...) if we continue our quantum description of the experiment, the
direction of the macroscopic needle will get correlated with the radia-
tion that is scattered o� (or thermally emitted from, etc.) the needle.
Because these states of radiation will be macroscopically distinct they
will be non-overlapping in the con�guration space of �elds and hence
the outcome of the experiment will be recorded in the �eld beables of
the radiation.�(p. 18)

We now turn to an approach which can be viewed as complementary to the
Struyve-Westman model. While their model views fermions as an epiphenomenon,
the Bell model we are going to discus next can be seen as tracing out the bosonic
degrees of freedom (Struyve/Westman 2006, p. 8).

Particle beables for fermions

Bell (1986) presented a model for Hamiltonian quantum �eld theories with the
fermion number as beable. He regarded this to be a natural generalization of the
particle concept, since

�The distribution of fermion number in the world certainly includes
the positions of instruments, instrument pointers, ink on paper, ...
and much much more.� (p. 175)

Hence, to assign beable status to this quantity ensures a solution of the mea-
surement problem.13 This model is formulated on a spatial lattice with points
enumerated by l = 1, 2, · · · , L (the time remains continuous). For each lattice
site a fermion number operator is de�ned with eigenvalues F (l) = 0, 1, 2, · · · , 4N
(N being the number of Dirac �elds).
The �fermion number con�guration� at each time is thus the list n(t) = (F (1), · · · ,
F (L)). While the non-relativistic deBroglie-Bohm theory regards (ψ,Qi) to be

13However, Bell acknowledges that this beable choice is everything but unique (p. 179).
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the complete speci�cation of the state of a system, this model considers the pair
(|ψ〉, n) (with |ψ〉 being the state vector).
The task is now to �nd the proper dynamics for this pair. For the state vector
the usual evolution

d

dt
|ψ(t)〉 =

1

i
H|ψ(t)〉

is considered (in the following h̄ is set to 1). Again this gives rise to a continuity
equation:

d

dt
Pn =

∑
m

Jnm (8)

with: Pn =
∑
q

|〈n, q|ψ(t)〉|2

Jnm =
∑
q,p

2Re〈ψ(t)|n, q〉〈n, q| − iH|m, p〉〈m, p|ψ(t)〉

Here q and p denote additional quantum numbers such that e.g. |p, n〉 forms
a basis in Hilbert space. The n and m in the state speci�cation denote the
fermion number. Thus Pn is the probability distribution for the fermion number
con�guration n. While ordinary quantum mechanics (or quantum �eld theory)
views this as the probability to observe the system in this state, Bell views it as
the probability for the system to be in this state. Therefore it is his ambition to
establish an analog to the guidance equation, i.e. to describe the time evolution
of this beable irrespectively of its being observed or not.
Bell prescribes a stochastic evolution14 for the fermion number with the jump
rate Tnm, i.e. the probability to jump to the con�guration n within the time
span dt, given that the present con�guration is m, is given by Tnmdt. Clearly the
following equation holds:

dPn
dt

=
∑
m

(TnmPm − TmnPn), (9)

i.e. the change of Pn in time is given by the jumps m → n diminished by the
jumps n → m. However, Equ.9 must be reconciled with condition 8, i.e. the
stochastic dynamics needs to obey the continuity constraint. This leads to the
condition Jnm = TnmPm − TmnPn, which is for example satis�ed by the choice:15

Tnm =

{
Jnm/Pm if Jnm > 0

0 if Jnm ≤ 0

Finally, the probability Tnndt for the system to remain in the same fermion num-
ber con�guration is �xed by the normalization

∑
m Tmndt = 1. Given an initial

14Bell expected the indeterminism to disappear in the continuum limit.
15This choice is not unique, e.g. one may add solutions of the homogeneous equation.
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con�guration of the fermion number in accordance with Pn(t0) =
∑
q |〈n, q|ψ(t0)〉|2

this model reproduces all predictions of ordinary quantum �eld theory.16
The physical picture is that the world describes a random walk in the fermion-
number con�guration space; this random walk being biased by the state |ψ(t)〉.
The non-deterministic jump processes correspond to the creation and annihilation
of particles.
Dürr et al. (2004); Dürr et al. (2005) have developed a similar process in the con-
tinuum for more or less any regularized quantum �eld theory and call it �Bell-type
quantum �eld theories�. While their model is continuous it still includes a random
processes i.e. is non-deterministic. However, work of Colin (2003) suggests that
it is also possible to construct a deterministic continuum limit. The di�erence
between these two continuum versions of the Bell-model lies in the treatment of
the vacuum. Dürr et al. take it to be the state with no particle-beables. In
contrast does Colin's model introduce particle beables for every negative energy
solution, i.e. invokes the Dirac sea concept. Thereby the con�guration space
becomes in�nite dimensional, i.e. does not possess a Lebesgue volume measure.
As mentioned before in the context of �eld-beables this introduces problems for
a rigorous de�nition of an equivariant measure (Tumulka 2006, p. 15).

4.4 Some remarks on theory-generalization

In Sec.4.1 we have argued that having beables quali�es a theory as �Bohm-like�.
Further more we have used the expression �Bohm-like� and �generalization of the
deBroglie-Bohm theory� synonymously. However, there seem to be reasonable
distinctions between these two concepts. In the remainder of that paper we
want to discuss the issue of theory generalization in some more detail. We will
argue that being a �generalization of the deBroglie-Bohm theory� is actually a
more restrictive property than being �Bohm-like� only. We investigate whether
this may help to single out a candidate from the competing models discussed in
the previous section. However, we will also see that this is complicated by the
fact that the concept of �theory generalization� is more involved than usually
considered.

Do all �Bohm-like� models generalize the de Broglie-Bohm theory?

So far we have been discussing �Bohm-like� QFT or actually �beable-QFT�. How-
ever, we have already indicated in Sec. 4.1, that in order to regard these models
as a �generalization� of the original theory it is reasonable to demand a speci�c
relation between the non-relativistic formulation and these models. Very natural
is the requirement that the Bohm-like QFT should include the non-relativistic
deBroglie-Bohm theory as a limiting case. After all, there is no strict boundary
between non-relativistic and relativistic physics and the corresponding theories

16Bell notes that this includes also the outcome of the Michelson-Morley experiment, although
this formulation relies on a particular division of space-time. Hence the violation of Lorentz
invariance is not detectable (p. 179).
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should ideally merge to each other. We want to call this our preliminary criteria
for �theory generalization�.
Vink (1993), p. 1811, investigates the relation between his generalized Bell-model
and the original deBroglie-Bohm theory. He shows that the stochastic dynam-
ics leads to the ordinary deBroglie-Bohm theory in the continuum limit. His
argument is mathematically not rigorous but given that this model employs a
particle-ontology from the outset it is certainly plausible to expect such a limit
to exist.
The situation seems very di�erent when it comes to �eld-beables; for example
in the Struyve-Westman model. Given that there the fermionic degrees of free-
dom have no beable status it is not conceivable how to obtain the non-relativistic
formulation as a limiting case. One may illustrate this with the example of the
hydrogen atom. In the deBroglie-Bohm theory the physical picture of this system
is a particle-beable (assigned to the electron) distributed according to |ψ|2. In
the Struyve-Westman model only the radiations degrees of freedom of the electro-
magnetic �eld have beable status and the �electron� is only an epiphenomenon.
Therefore the Bohm-like QFT à la Struyve and Westman can not be viewed as
a generalization of the ordinary deBroglie-Bohm theory (in the above sense) but
provides a complete reformulation of the non-relativistic theory.
Thus, the criteria whether a Bohm-like QFT includes the deBroglie-Bohm theory
as a limiting case seems to allow an assessment of the di�erent models. Rated
by this measure the Bell-type models seem to be superior since they start with
the same ontology as the non-relativistic formulation from the outset. But do
we really have compelling arguments to make the non-relativistic formulation the
touchstone for QFT generalizations? One could also be willing to modify the
non-relativistic deBroglie-Bohm theory (e.g. along the lines sketched above in
the hydrogen example). It seems reasonable to argue that not the non-relativistic
formulation itself but only its predictions need to be recovered.
But there is even another twist in the above argument. Sofar we have employed a
speci�c concept of �theory generalization� (the limiting case relation) and found
that the �eld-beable approach has problems to cope with it. However, one may
also ask how natural the requirement of the limiting case relation actually is. In
fact these and related intertheory relations have been critically examined within
the philosophy of science. We will therefore say a few words on this debate and
its possible impact on our question.

What does it mean to �generalize� a theory?

Within the philosophy of science this question is part of the study of intertheory
relations (Batterman, 2005) and o�ers some surprises.
Traditionally this and related questions were framed in the context of �reduc-
tive relations� between theories, i.e. the question whether a given theory T1 (the
primary theory) reduces to T2 (the secondary theory).17 In some sense �theory

17Here we take �reduction� to be the move from the general (i.e. more fundamental) to the
speci�c. In the philosophical literature it is often regarded the other way around.
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generalization� is the inverse operation to �theory reduction�. An early and in-
�uential treatment of theory reduction was given by Nagel (1961), Chapter 11,
who viewed theory reduction essentially as a relation of deduction, i.e. the laws
of the secondary theory should be derivable from the laws of the primary theory.
However, this typically requires a translation of the descriptive terms of T2 which
are absent in T1 into the T1-language (so-called �bridge principles�).
In reply to criticism against the highly idealized picture of the Nagelian account
more sophisticated models of reduction have been developed (e.g. Scha�ner 1967;
Scha�ner 1969; Nickles 1973 and Hooker 1981). Our above discussion used the
notion, that a theory, T1, reduces to an other, T2, if T2 is obtained as a limiting
case, i.e. if there is a parameter, say ε, in the primary theory such that the laws
of the secondary theory are obtained in the limit ε→ 0. This is a modi�cation of
the Nagelian account due to Nickles (1973). The textbook example is the relation
between special relativity and classical mechanics in the limit (v/c)2 → 0.
However, it has been shown that this notion of reduction can not account for
many relevant cases. For example the mathematical physicists Sir Michael Berry
noted with respect to this example, that

�(...) this simple state of a�airs is an exceptional situation. Usually,
limits of physical theories are not analytic: they are singular, and the
emergent phenomena associated with reduction are contained in the
singularity.� (Berry 1994, p. 599)

In such cases there is no smooth reduction relation between the corresponding
theories, i.e. the secondary theory can neither be derived from the primary theory
nor obtained as a limiting case, since the limit simply does not exist.18 Examples
investigated by Berry are the relation between wave and ray optics or quantum
and classical mechanics.19 In fact the classical limit of quantummechanics belongs
to the open foundational questions of the theory (see Landsman 2005 for an
excellent overview).
Thus, there are many relevant cases in physics which intuitively count as �theory
generalization� but fail to satisfy the limiting-case relation. If one is not willing
to loose these cases one can not require this condition.
With respect to the relation between higher level and lower level (i.e. more
fundamental) theories some authors argue for a relation called �emergence�. The
di�erent versions of emergence roughly share the idea that �emergent entities
(properties or substance) `arise' out of more fundamental entities and yet are
`novel' or `irreducible' with respect to them� (O'Connor/Wong, 2002). Another

18 A simple example of a singular limit is given by Batterman (2005). The equation x2ε +
x− 9 = 0 has two roots for any value of ε > 0 but only one solution for the ε = 0 case. Thus,
the character of the behavior in the case ε = 0 di�ers fundamentally from the character of its
limiting (i.e. ε small but �nite) behavior.

19Interestingly this is not taken as evidence against reduction per se. Berry states, that �what
follows should not be misconstrued as antireductionist. On the contrary, I am �rmly of the view
[...] that all the sciences are compatible and that details links can be, and are being, forged
between them. But of course the links are subtle [...]� (Berry 2001, p. 4).
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way to characterize emergence is simply by a denial of reduction (R-emergence)
or a denial of supervenience20 (S-emergence) (see Howard 2003, pp. 3).
However, if one denies the possibility to reduce a theory from a more fundamental
level, the inverse move (i.e. the theory generalization) is a�ected as well. In what
sense should a theory T1 be regarded as a generalization of (i.e. being more
�fundamental� than) a theory T2 if it is not possible to recover T2 from T1? The
whole talk about �higher level�, �lower level� or being �more fundamental� becomes
void and one seems to be left over with autonomous theories.
These brief remarks shall indicate that the concept of a �theory generalization� is
more involved than usually considered (at least in the physics community). Thus,
the failure of e.g. Bohm-like QFT with �eld-beables to recover the ordinary
deBroglie-Bohm theory as a limiting case may be viewed rather as a generic
feature in the relation between �higher� and �lower� level theories and not as a
reason to reject this model.
It might still be possible to justify a certain beable choice based on the criteria that
the relation between the corresponding Bohm-like QFT and the non-relativistic
deBroglie-Bohm theory has desirable properties. However, this needs a more
re�ned de�nition of �theory generalization�. It seems very promising to investigate
the Bohm-like quantum �eld theories as case studies for intertheory relations in
order to learn more about both, �theory generalization� in general and the de
Broglie-Bohm-program in particular.

5 Summary and conclusion

The non-relativistic deBroglie-Bohm theory is able to give an observer indepen-
dent account of all quantum phenomena. It solves the infamous measurement
problem, or, to be more precise, there is no such problem in the deBroglie-Bohm
theory. It serves as a counter example to the common claim that no descrip-
tion of quantum phenomena can be given which employs particles moving on
continuous trajectories. However, like most alternative interpretations it is not
experimentally distinguishable from standard quantum mechanics.
When it comes to relativistic and quantum �eld theoretical generalizations one
�rst needs to agree upon what one actually means by a �Bohm-like� theory.
Seemingly a theory needs to have deterministic trajectories to count as �Bohm-
like�. However, most Bohmians would suggest that the decisive property of the
deBroglie-Bohm theory is that it attributes a �beable-status� to certain proper-
ties. As long as these beables provide the means to record measurement outcomes
they can be used to build a Bohm-like model. Particle beables are just a speci�c
example for this strategy. For relativistic and quantum �eld theoretical general-
izations several competing models do exist. These display a surprising �exibility

20Supervenience may be characterized as an ontic relation between structures, i.e. sets of
entities together with properties and relations among them. A structure SA is said to supervene
on an other, say SB , if the A-entities are composed of B-entities and the properties and relations
of SA are determined by properties and relations of SB . It should be noted that neither does
reduction entails supervenience nor the other way around.
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with respect to the �beable-choice�. Some models stick to a particle ontology
while others introduce �eld-beables. Further more there is no need to introduce
beables for all particle species and e.g. the Struyve-Westman model does without
a beable status for fermions.21
A further investigation of the relation between these di�erent models and the
original deBroglie-Bohm theory seems to be an interesting case-study for what
has been called �intertheory relations� in the philosophy of science. Possibly an
assessment of these models could be based on the result.
Be that as it may, the common claim that the deBroglie-Bohm theory is incom-
patible with quantum �eld theory is certainly incorrect. Agreed, all these models
have a �cooked-up� �avor, but this is due to the fact that their task is (in gen-
eral) to reproduce the predictions of existing theories. These existing theories
work FAPP (for all practical purposes) and the ambition of �Bohm-like� reformu-
lations is not to extend their predictive power but to put them on a conceptually
�rm basis.
Now, does this mean that every physicist should be a Bohmian? Certainly not.
But those who reject this possible quantum world should use correct arguments.
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