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Abstract: If two Bose-Einstein condensates are prepared independently and
then overlapped, a spatial interference pattern is observed. This prompts the
question what determines the phase of the fringe pattern, and whether a conden-
sate has a well-de�ned value of the phase. This problem has been studied in the
literature in detail. The objective of this article is, to present an introduction to
the subject and to summarize the discussion for a wider audience.
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1 Bose-Einstein condensation

Bose-Einstein-condensation is a quantum-statistical e�ect, which occurs if an
ideal gas of indistinguishable bosons is cooled to extremely low temperatures.
Under these conditions, the ground state of the system is occupied by a large
number of atoms. In the thermodynamic limit, this occupation is macroscopic.
To create a Bose-Einstein condensate (BEC), the gas must be cooled to such
low temperatures, that the so-called phase-space density nλ3

dB exceeds a critical
value, which is close to unity. Here, n denotes the spatial density of atoms,
λdB = h/

√
2πmkBT the thermal de-Broglie wavelength, m the mass of an atom,

and T the temperature.
Bose-Einstein condensation is closely related to super�uidity in liquid helium and,
to some degree, related to superconductivity in solids. Despite this connection,
the latter systems are not at all ideal gases. Indeed, the forces between particles
are so strong, that a liquid or solid is formed. A quantitative comparison with
the ideal-gas theory is therefore di�cult.
The �rst BEC in a dilute gas was created in 1995 (Anderson et al., 1995; Davis et al.,
1995; Bradley et al., 1995). Here, the collisions between particles have such a weak
e�ect that a perturbative treatment of the interactions yields a very successful,
quantitative description. Many properties known from liquid helium and super-
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conductors were reproduced. But now, a quantitative comparison to an ab-initio
theory became possible. In addition, many new e�ects were observed in these
systems with methods, which are not applicable in liquid helium or superconduc-
tors.
Almost all experiments on BEC of dilute gases use the following two-stage cooling
scheme. The �rst stage uses cooling of atoms with laser light in a so-called
magneto-optical trap. This yields a cloud of a cold atomic gas consisting of up
to 1010 atoms at temperatures around 100 µK and a phase-space density of up
to 10−6. For the second stage of the cooling scheme, the cloud is transferred into
a magnetic trap and cooled with radio-frequency (rf) induced evaporation. Here,
the magnetic trap creates a conservative, harmonic potential of �nite height. By
lowering the potential height with the rf �eld, the hotter atoms are allowed to
escape from the trap, so that the remaining cloud is colder.
The critical temperature TC for the phase transition to BEC is typically near
1 µK. At TC , the ground-state population becomes noticeable. This population
grows during further cooling. The atoms in the ground state are referred to as
the condensate. The remaining atoms in the excited states form the so-called
thermal cloud. Present-day experiments reach a BEC fraction near 100%. Thus,
one obtains an almost pure BEC with typically 106 atoms and a central density
of typically n = 1014 cm−3. For further details on the creation of a BEC, the
reader is referred to Pethick/Smith (2002); Pitaevskii/Stringari (2003).

2 Condensate wave function

A BEC is a many-body system of indistinguishable particles. An accurate descrip-
tion of the system will therefore typically be formulated in second quantization.
For simplicity, the following discussion focuses on the case with a �xed particle
number N at T = 0, so that all particles occupy the ground state χ(~x) of the
potential. The position representation of the many-body state is the product
Ψ(~x1, ~x2, . . . , ~xN) = χ(~x1)χ(~x2) . . . χ(~xN). In the Fock basis, this corresponds to
a single Fock state |N〉.
A treatment in second quantization is precise but often mathematically cum-
bersome. Interestingly, many e�ects can alternatively be described to a good
approximation using the condensate wave function φ(~x) =

√
Nχ(~x). This is a

wave function in �rst quantization, but it is normalized to N instead of 1. The
condensate wave function describes the long-range order in the system and plays
the role of the order parameter in the phase transition to BEC (Pethick/Smith
2002; Pitaevskii/Stringari 2003; Huang 1987, pp. 298�302).
The condensate wave function has a modulus and a phase φ(~x) =

√
n(~x) eiϕ(~x),

where the modulus is related to the spatial density n(~x). The phase of the
ground state of the harmonic oscillator potential is independent of the position.
Hence, the condensate wave function of the BEC in the trap also has a position-
independent phase. Interestingly, nothing in the preparation of the BEC prefers
a speci�c value of the phase ϕ, which prompts the questions what value the
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phase has and whether a well-de�ned value of the phase exists at all. These very
questions are the subject of the rest of this paper.

3 Measuring the relative phase of two BECs

In order to measure the phase of a condensate wave function, one BEC is not suf-
�cient, because the overall phase of a quantum state vector can principally not be
measured. Hence, is it necessary to compare the BEC to a phase reference, such
as a second BEC. Both BECs must be prepared independently, and subsequently
they must be overlapped to create an interference pattern. Results of such an
experiment were published in 1997 by the group of W. Ketterle (Andrews et al.,
1997). In this experiment, two BECs are created independently in two approxi-
mately harmonic traps with a small spatial separation. Next, the harmonic traps
are switched o� and both clouds fall freely in the gravitational �eld. In addition,
each BEC expands because of its �nite kinetic energy. An e�ectively repulsive
atom-atom interaction additionally drives the expansion. After a su�cient ex-
pansion time, the clouds overlap almost completely. At this point, the atomic
position distribution is measured.
The phase of each BEC becomes position dependent during the expansion. This
is true under very general conditions. The basic physics behind this is that, if a
particle emitted from a point source traveled a distance ~x in a given time of �ight
t, then the particle must have had a momentum of ~p = m~x/t. This means that in
a small region around this point ~x, the wave function must approximately have
the form of a plane wave with this momentum ~p. This can be illustrated with the
textbook example of a freely expanding Gaussian wave packet (Cohen-Tannoudji/
Diu/Laloë 1977. p. 61�66). If the initial wave packet has a position-independent
phase, then a position dependence of the phase will naturally emerge during the
expansion.
In a simpli�ed model, each BEC can be described as a plane wave. Denoting the
wave vectors as ~kA and ~kB, the wave functions of condensates A and B become√

nA exp(i~kA~x + iϕA) and √
nB exp(i~kB~x + iϕB). The phase o�sets ϕA and ϕB

develop from the initial position-independent phases of the trapped BECs. The
actual wave functions have a more di�cult position dependence, but the plane
wave model captures all the physics, which is relevant for the following discussion.
The total wave function is the coherent superposition of the two BEC wave func-
tions, so that the total atomic density is

nA + nB + 2
√

nAnB cos[(~kA − ~kB)~x + ϕA − ϕB] (1)

Corresponding interference fringes were clearly observed in the experiment by the
Ketterle group. The position of the minima in the interference pattern is sensitive
to the relative phase ϕA − ϕB of the two initially trapped BECs.
If the experiment is repeated many times, one �nds a large contrast of the in-
terference fringes in each repetition of the experimental. But, the value of the
relative phase ϕA−ϕB �uctuates randomly from shot to shot. Hence, when aver-
aging over many shots, one does not obtain any interference fringes. This re�ects
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the fact that nothing in the preparation of the BECs prefers any speci�c value of
the relative phase.
It should be emphasized that the two BECs must be prepared independently,
to observe the overall phase of one BEC. There is a large number of alternative
experiments that �rst create a single BEC, then coherently split it into two or
more parts, and �nally recombine the parts to observe interference. None of these
experiments can address the question of the overall phase of the initial condensate,
because they observe only the relative phase accumulated between splitting and
recombination. These experiments would also show interference if a thermal cloud
above TC were used, as long as the experiment stays within the coherence length
of the thermal cloud. The interference of two independently prepared BECs is
conceptually di�erent from the split-and-recombine experiments.
It is interesting to note that no interference would be observed, if the experiment
were performed with two independently prepared atomic clouds at a temperature
above TC . In this case, almost all atoms are in a singly-occupied quantum state
to begin with. Each pair of occupied states could in principle give rise to a
well-de�ned fringe pattern. But the observation of interference fringes requires
the recoding of many detector clicks and each pair of states contributes only
two detector clicks. Hence, one has to record many clicks from di�erent pairs of
states. Thus, one obtains an incoherent mixture of the corresponding interference
patterns. This washes out the fringes completely.
A BEC belongs to a special class of systems where many indistinguishable bosons
occupy the same quantum state. Other systems with the same property show
analogous interference e�ects. Examples are the interference of light emitted by
two independent lasers as well as the Josephson e�ect in superconductors.

4 Spontaneous symmetry breaking

The random shot-to-shot �uctuations of the value of the relative phase have an
interesting analogy in a simple mechanical system. Consider a classical particle
shaped as a sphere, sitting in the center of a Mexican-hat potential. This location
of the particle at the local potential maximum is metastable: if the particle is
placed precisely at the center, then it will theoretically remain there inde�nitely.
But a small mechanical perturbation or a slight imperfection in the preparation
of the initial conditions will cause the particle to roll away from the potential
maximum towards the ring where the potential energy is minimal. All points
in this ring have the same energy, that is the ground state of the system is
degenerate. Due to friction, the particle will come to rest at some point near
this ring, but it is irreproducible and unpredictable at what point that will be.
The symmetry of the original problem is broken in each individual repetition
of the experiment. But an average over many shots will re�ect the symmetry
of the original problem. This is called spontaneous symmetry breaking. This
concept is widely used in many �elds of physics, most prominently in elementary
particle physics. A similar e�ect exists, e.g., in the thermodynamic description
of a ferromagnet (Huang 1987, pp. 298�302).
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The analogy to a BEC is obvious: nothing in the preparation of the BEC prefers
a speci�c value of the phase of the condensate wave function. Yet, in each experi-
mental shot, a well-de�ned value of the phase may be present due to spontaneous
symmetry breaking. The value obtained in an individual experimental shot is
utterly unpredictable. When creating the BEC with evaporative cooling, one
might imagine that the �rst few atoms, which fall into the ground state, happen
to have some value of the phase and that all the following atoms enter the al-
ready occupied ground state in an induced process, which leaves the value of the
phase of the ground-state population almost unchanged. Note that the use of the
condensate wave function relies on spontaneous symmetry breaking.

5 Interference without an initial value of the rel-

ative phase

The concept of spontaneous symmetry breaking can explain all observations of
the experiment reported in Andrews et al. (1997). Furthermore, spontaneous
symmetry breaking assumes that prior to the measurement, the two BECs have
a well-de�ned value of the relative phase for each experimental shot. This prompts
the question whether the assumption of such a well-de�ned value of the phase
is necessary to describe the experimental results. The following discussion will
show that the answer is, �No�.
Interestingly, one can show that an interference pattern is also obtained if the
initial state has no well-de�ned value of the relative phase (Javanainen/Yoo,
1996; Naraschewski et al., 1996; Cirac et al., 1996; Castin/Dalibard, 1997). An
interesting example is the hypothetical case, where each BEC is initially prepared
in a Fock state. Here, the concept of spontaneous symmetry breaking is not ap-
plicable, because the number-phase uncertainty relation implies that a Fock state
cannot have a well-de�ned value of the phase. More precisely, if a measurement
is performed to determine the phase of a Fock state, then the probability distri-
bution for the resulting value of the phase is �at, i.e. each possible value of the
phase occurs equally likely. Nevertheless, numerical calculations show that if two
BECs in Fock states are overlapped, an interference pattern will be recorded.
An intuitive understanding of this can be gained by considering an atom detector,
which produces detection clicks with good spatial and temporal resolution. The
absence of a well-de�ned value of the initial phase δ between the two BECs is
equivalent to saying that the probability distribution p(δ) for having a relative
phase δ is equally distributed between 0 and 2π. As a consequence, the probability
distribution p(x1) for the position x1 of the earliest detector click is also �at. In
other words, p(δ) = const and p(x1) = const.
The central idea is that the �rst detector click leads to a quantum state reduction.
The quantum state before the �rst click is assumed to be the tensor product of the
two Fock states |NA〉 ⊗ |NB〉. Now, the atom detected with the �rst click might
stem from either one of the BECs. Therefore, the state vector for the atoms
remaining after the �rst click is a coherent superposition of the two possibilities
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that the �rst detected atom came from BEC A or B

c1 |NA − 1〉 ⊗ |NB〉+ c2 |NA〉 ⊗ |NB − 1〉 (2)

The relative phase between the coe�cients c1 and c2 depends on x1. After the
second click, the state is a superposition of |NA−2〉⊗|NB〉 and |NA−1〉⊗|NB−1〉
and |NA〉 ⊗ |NB − 2〉. The relative phases in the superposition depend on x1 and
x2. Therefore, the number uncertainty of each individual BEC grows with the
number of detected atoms.
This build-up of a number uncertainty is accompanied by the build-up of a well-
de�ned value of the relative phase, for the following reason: The �rst click yields
some information about the relative phase according to Bayes' theorem

p(δ|x1) =
p(δ)

p(x1)
p(x1|δ) (3)

Here, p(x1|δ) is the conditional probability that the click occurs at position x1,
given that the relative phase has the value δ. One can consider the above example
with two interfering plane waves, with δ = ϕA − ϕB and ~k = ~kA − ~kB. One can
assume that nA = nB and that ~k points along the x axis. From Eq. (1), one
obtains p(x1|δ) = const× [1 + cos(kx1 + δ)]. As noted earlier, p(δ) = const and
p(x1) = const. Bayes' theorem thus yields the conditional probability that the
relative phase of the remaining two BECs takes on the value δ, after the �rst click
is recorded at x1

p(δ|x1) = const× [1 + cos(kx1 + δ)] (4)

Hence, the probability for the position of the second click x2 is no longer equally
distributed. Indeed, x2 is most likely near x1 (modulo 2π/k). The second click
again yields information about the value of the relative phase, thus changing the
probability for the following detection, etc. During the �rst ten, or so, detection
events, the initially �at probability distribution p(δ) evolves into a distribution
with almost all probability in one narrow peak. In other words, a rather well-
de�ned value of the relative phase builds up. The subsequent clicks do not change
this value much any more. This is illustrated in Fig. 2 of Cirac et al. (1996).
Here, the particular value of the relative phase, which is found in one experimental
shot, has a clear origin. It is determined by the quantum state reduction resulting
from the �rst few detection events. This has nothing to do with imperfections in
the preparation of the initial state.
In conclusion, the presence of interference fringes in the experiment cannot answer
the question about the existence of a well-de�ned value of the relative phase
between the two BECs prior to the measurement.

6 Atom-number shot noise

The previous section discussed the case of Fock states, where it is guaranteed that
initially there is no well-de�ned value of the relative phase. Present-day experi-
ments do not deal with BECs in a Fock state. Instead, the repeated production
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of BECs typically produces at least shot noise in the atom number (and in most
cases even broader atom-number distributions). That is, the atom number in
BEC A can be described with a Poisson distribution

pA(NA) =
µNA

NA!
e−µ with µ = 〈NA〉 (5)

There is an analogous distribution for BEC B. The density matrix of the two
BECs prior to the measurement is then

ρ =
∑
NA

pA(NA)|NA〉〈NA| ⊗
∑
NB

pB(NB)|NB〉〈NB| (6)

This Fock-state picture with shot noise has no well-de�ned value of the relative
phase.
Let us now compare this density matrix to the one for the model with spontaneous
symmetry breaking. In second quantization, a state with spontaneously broken
symmetry is represented by a Glauber state |α〉. This is also called a coherent
state and can be expanded in the Fock-state basis as

|αA〉 = e−|αA|2/2
∑
NA

αNA
A√
NA!

|NA〉 (7)

where αA =
√
〈NA〉 eiϕA . There is an analogous state for BEC B. With sponta-

neous symmetry breaking, ϕA and ϕB are assumed to be �xed for each individual
shot, but they �uctuate randomly from shot to shot. The density matrix must
therefore be averaged over a �at distribution of ϕA and ϕB

ρ =
∫ 2π

0

dϕA

2π
|αA〉〈αA| ⊗

∫ 2π

0

dϕB

2π
|αB〉〈αB| (8)

One can show that this density matrix is mathematically identical to the above
density matrix, Eq. (6), of the Fock-state picture with shot noise (Cirac et al.,
1996; Castin/Dalibard, 1997). Therefore, all predictions for any observables are
identical with the two models. In particular, both models predict the same in-
terference pattern. Consequently, no present-day experiment can distinguish be-
tween the two models.
If future experiments should manage to reproducibly produce BECs in a single
Fock states, then a description with an well-de�ned value of the initial relative
phase would be impossible because of the number-phase uncertainty relation.
While the realization of such experiments is not principally forbidden by funda-
mental laws of physics, a substantial increase in experimental control would be
required. Such a development would certainly take a while.
To summarize, the observed interference between two BECs can be described
easily in �rst quantization using the condensate wave function, which is based
on spontaneous symmetry breaking. With this approach, a well-de�ned value of
the phase between the two BECs is assumed to exist prior to the measurement.
This value of the relative phase �uctuates randomly from shot to shot. But
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the assumption of this well-de�ned value of the relative phase is not necessary
to explain the existence of interference fringes. A model in second quantization
requires considerably more computational e�ort, but it also produces interference
fringes, even if there is no well-de�ned value of the relative phase before the
measurement. Such a value gradually builds up during the �rst few detection
events. According to this view, the initial value of the phase of the BEC is
only �a convenient �ction� (Mølmer, 1997). In the end, both models are equally
successful in describing present-day experiments.
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