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Summary

The modeling and simulation of forming processes and springback in sheet metal structures re-
quires taking a number of physical processes into account and involves a number of algorithmic
and numerical issues in the context of the finite-element method. On the material side, one must
account for the effects of the material microstructural evolution on the material behavior due to
complex, non-proportional loading-path histories involved. On the structural side, contact and
friction between the tool and work-piece, as well as large deformation of very thin structures,
are important. On the numerical side, issues such as the type of solution procedure, the type
of element used, the mesh topology, as well as contact and friction algorithms, all play a role.
The current work falls within this context and deals with selected aspects of the modeling and
simulation of such processes in detail.

To this end, the thesis begins in Chapter 1 with a discussion of the thermodynamically-
consistent formulation of material models for anisotropic elastic and inelastic behavior as based
on the concept of evolving structure tensors. In this approach, all dependent constitutive fields
(e.g., stress) are by definition isotropic functions of the independent constitutive variables which
include the evolving structure tensors. The evolution of these during loading results in an evo-
lution of the anisotropy of the material. From an algorithmic point of view, the current ap-
proach leads to constitutive models which are quite amenable to numerical implementation. To
demonstrate the applicability of the resulting constitutive formulation, we apply it to the case
of metal plasticity with combined hardening involving both deformation- and permanently-
induced anisotropy. Comparison of experimental and simulation results for the bending-tension
of DP600 steel sheet-metal strips show good agreement.

Accurate simulation of forming and springback in sheet metal structures involves taking a
number of processes into account. These include (i) complex loading path changes, (ii) con-
tact and friction between the tool and work-piece, and (iii) the large deformations of very thin
structures. In particular, (1) has a marked effect on the material, in particular the hardening, be-
havior, and has been investigated in more detail elsewhere (Wang et al., 2006a,d). In Chapter 2,
attention is focused on some numerical aspects involved in such simulations. In particular, we
examine the roles played by the element formulation as well as the type of contact and friction
modeling, in the simulation of sheet metal forming. The goal here is an optimal choice of algo-
rithms, element types, contact and friction modeling, as well as numerical control parameters
in such a way that an efficient, robust and convergent solution is achieved.

Since standard combined hardening models do not account for additional hardening pro-
cesses occuring during non-proportional (e.g., orthogonal) loading-path changes, these must
be extended accordingly. The third part (Chapter 3) of the thesis is concerned with the for-
mulation of a phenomenological model for directional hardening effects in metals subject to
non-proportional loading. This model is motivated by that of Teodosiu and Hu (1995, 1998). In
their model, a fourth-order symmetric tensor-valued stress-like internal variable S is introduced
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to account for the effect of the directional strength of planar dislocation structures on the ma-
terial hardening behavior. The model for S is based on the formulation of evolution equations
for its projections s? parallel, and S* orthogonal, to the current direction of (the rate of) plastic
deformation. Several approaches have been proposed in the literature on how to integrate the
evolution equations for s? and S* in order to obtain S, each leading to different physical results.
The alternative model for directional hardening proposed here is based on an evolution relation
for S itself. As in the model of Teodosiu and Hu (1995, 1998), this alternative model for di-
rectional hardening captures in particular hardening stagnation after a load reversal as well as
cross hardening after an orthogonal strain-path change. Difference between the two models in-
clude their behavior during (i) monotonic shear loading and (ii) continuous strain-path changes.
Besides this, plastic spin effects not accounted for in the Teodosiu model are taken into account
in the current model.

Finally, in Chapter 4, the results of the previous two chapters are applied to the modeling and
simulation of several sheet metal forming processes as well as springback. The first of these is
the so-called draw-bending test, which has been widely used, in particular for the investigation
of the effect of kinematic hardening and hardening stagnation on forming processes. Next, the
so-called ring-splitting test for springback, as based on the deep-drawing of cylindrical cups,
is simulated. Given the complex non-proportional loading history involved here, this test is in
particular suited to the study of the contribution of directional hardening to the development
of the residual stress state and to springback in such forming processes. In addition, the deep-
drawing of a square box is considered. In particular, the simulation results for the draw-bending
of the steel DP600 are used to show the significance of the hardening stagnation on the spring-
back. With the help of the steel DC06, which exhibits a more pronounced directional hardening
behavior than DP600, the initial application of the current model to the simulation of hardening
effects on residual stresses during deep-drawing and subsequent springback in the ring-splitting
test demonstrates its capabilities in the context of a non-trivial example involving complex non-
proportional loading histories and in particular orthogonal strain-path changes. Lastly, in the
case of square box, it was shown that in the areas where the load reversal dominates, the current
model predicts lower residual stresses due to hardening stagnation, while in areas with strain-
path changes close to orthogonal, it predicts higher residual stresses due to cross hardening
effect.



Zusammenfassung

Die Modellierung und Simulation von Umformprozessen samt Riickfederung erfordert die Be-
rlicksichtigung mehrerer physikalischer Prozesse und umfasst diverse algorithmische und nu-
merische Aspekte im Rahmen der FE-Methoden. Auf der konstitutiven Seite hat man den
Einfluss der mikrostrukturellen Entwicklung bei komplexen nichtproportionalen Belastungsp-
faden auf das Materialverhalten zu beriicksichtigen. Auf der Strukturseite sind solche Aspekte
wie Kontakt und Reibung zwischen dem Werkstiick und den Werkzeugen sowie grof3e De-
formationen sehr diinner Strukturen von groer Bedeutung. Auf der numerischen Seite spie-
len die Losungsprozedur, Elementtyp, Netztopologie sowie Kontakt- und Reibungsalgorithmus
eine entscheidende Rolle. Die vorliegende Arbeit beschiftig sich detailliert mit mehreren aus-
gewihlten Aspekten der Modellierung und Simulation solcher Prozesse.

Zu diesem Zweck beginnt das erste Kapitel der Arbeit mit der Beschreibung der thermo-
dynamisch konsistenten Formulierung anisotroper elastisch-plastischer Modelle, die auf dem
Konzept sich entwickelnder Strukturtensoren basiert. Im Rahmen dieser Vorgehensweise sind
alle abhédngigen konstitutiven Variablen (z.B. die Spannung) per Definition isotrope Funktio-
nen von den unabhingigen konstitutiven Variablen einschlieBlich der Strukturtensoren. Deren
Entwicklung im Laufe des Deformationsprozesses induziert eine Anisotropie im Werkstoff.
Algorithmisch gesehen fiihrt diese Vorgehensweise zu Materialmodellen, die sich sehr gut zur
numerischen Implementierung eignen. Um die Anwendbarkeit dieser konstitutiven Modelle zu
demonstrieren, betrachten wir plastisch deformierbare metallische Werkstoffe mit kombinierter
Verfestigung einschlieBlich anfénglicher und deformationsinduzierter Anisotropie. Der Vergle-
ich experimenteller und numerischer Ergebnisse fiir den Streifenzugbiegeversuch an Streifen
aus dem hochfesten Stahl DP600 zeigen eine gute Ubereinstimmung.

Eine akkurate Simulation von Blechumformprozessen samt Riickfederung erfordert die Be-
riicksichtigung mehrerer Aspekte. Diese Aspekte umfassen insbesondere (i) komplexe Belas-
tungsrichtungswechseln, (i1) Kontakt und Reibung zwischen dem Werkzeug und dem Blech and
(ii1) groBe Deformationen diinner Strukturen. Vor allem (i) hat hat einen starken Einfluss auf die
Mikrostruktur und das Materialverhalten, insbesondere das Verfestigungsverhalten, und wurde
in (Wang et al., 2006a,d) untersucht. Im zweiten Kapital ist das Augenmerk vor allem darauf
gerichtet, welche Rolle die Elementformulierung sowie die Kontakt und Reibungsmodellierung
in der Simulation von Blechumformprozessen spielen. Das Ziel dieses Kapitels ist es, den Al-
gorithmus, den Elementtyp, die Kontakt- und Reibungsmodellierung sowie die numerischen
Kontrollparameter so zu wihlen, dass eine effiziente, robuste und konvergierte Losung erreicht
wird.

Weil die konventionellen Modelle mit nichtlinearer kombinierter Verfestigung die zusitz-
lichen Effekt, die bei nichtproportionaler (z.B. orthogonaler) Belastung auftreten, nicht abbilden
konnen, miissen sie erweitert werden. Das dritte Kapitel befasst sich mit der Formulierung eines
phidnomenologischen Materialmodells fiir gerichtete Verfestigungseffekte in Metallen bei nicht-
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proportionaler Belastung. Dieses Modell basiert auf dem Modell von Teodosiu and Hu (1995,
1998). In dem Modell von Teodosiu and Hu (1995, 1998) wird eine symmetrische vierstufige
tensorwertige innere Variable S mit Spannungsdimension eingefiihrt, die den Einfluss der ori-
entierungsabhéngigen Stirke der Versetzungswinde auf das Materialverhalten beschreibt. Um
S zu beschreiben, werden Entwicklungsgleichungen fiir die Projektionen von S in Richtung
des plastischen Fliessens s¢ und senkrecht dazu S* eingefiihrt. Mehrere Ansitze wurden in
der Literatur vorgeschlagen, die beschreiben, wie die Entwicklungsgleichungen fiir s¢ und S*
integriert werden sollen, um S zu gewinnen. Sie fiihren allerdings zu verschiedenen Ergeb-
nissen. Das alternative Modell fiir gerichtete Verfestigung, das in dieser Arbeit vorgeschla-
gen wird, basiert auf einer Entwicklungsgleichung fiir S selbst. Genauso wie das Modell von
Teodosiu and Hu (1995, 1998) beschreibt auch die alternative Formulierung die Effekte der
Verfestigungsstagnation nach einer Belastungsumkehr sowie der Querverfestigung nach einem
orthogonalen Belastungsrichtungswechsel. Die beiden Modelle unterscheiden sich hinsichtlich
deren Verhaltens in einfacher Scherung sowie in Prozessen mit kontinuierlichen Dehnungsp-
faddnderungen. AuBerdem wurde das aktuelle Modell um den Effekt des plastischen Spins
erweitert.

Im vierten Kapitel werden die Ergebnisse der Kapiteln 2 und 3 zu der Simulation mehrerer
Blechumformprozesse samt der Riickfederung angewendet. Das erste Beispiel ist der soge-
nannte Streifenzugbiegeversuch, der zur Untersuchung des Einflusses der kinematischen Ver-
festigung sowie der Verfestigungsstagnation auf Umformprozesse benutz wurde. Als nichstes
wird der sogenannte Ringzerlegungsversuch, der auf dem Zerlegen eines zylindrischen tiefge-
zogenen Napfes basiert, simuliert. Angesichts der komplexen nichtproportionalen Belastung
ist dieser Test besonders gut zur Untersuchung des Einflusses von Querverfestigung auf die
Eigenspannungen und die Riickfederung geeignet. Auferdem betrachten wir den Tiefzieh-
prozess eines quadratischen Blechkastens. Die Simulationsergebnisse des Streifenzugbiegev-
ersuchs am hochfesten Stahl DP600 wurden benutzt, um die Bedeutung der Verfestigungsstag-
nation auf die Riickfederung zu zeigen. Unter Benutzung des weichen einen ausgeprigten
Querverfestigungseffekt aufweisenden Tiefziehstahls DC06 konnte man mit Hilfe des Ringzer-
legungsversuches zeigen, wie wichtig die gerichtete Verfestigung bei Prozessen mit komplexen,
insbesondere orthogonalen Belastungsrichtungsénderungen fiir die Simulation von Eigenspan-
nungen und Riickfederung ist. Im Falle des Blechkastens wurde gezeigt, dass in Bereichen, wo
die Lastumkehr dominiert, das aktuelle Modell niedrigere Eigenspannungen infolge der Verfes-
tigungsstagnation hervorsagt, wihrend in Bereichen, wo der Deformationspfad einen nahezu
orthogonalen Wechsel vollzieht, hhere Eigenspannungen infolge der Querverfestigung.



Chapter 1

On the modeling and simulation of induced
anisotropy in polycrystalline metals with
application to springback®

Abstract — The presence of initial, and the development of induced, anisotropic elastic and inelastic
material behaviour in polycrystalline metals, can be traced back to the influence of texture and dislocation
substructural development on this behaviour. As it turns out, via homogenization or other means, one can
formulate effective models for such structure and its effect on the macroscopic material behaviour with
the help of the concept of evolving structure tensors. From the constitutive point of view, these quantities
determine the material symmetry properties. Most importantly, all dependent constitutive fields (e.g.,
stress) are by definition isotropic functions of the independent constitutive variables which include these
evolving structure tensors. The evolution of these during loading results in an evolution of the anisotropy
of the material. From an algorithmic point of view, the current approach leads to constitutive models
which are quite amenable to numerical implementation. To demonstrate the applicability of the resulting
constitutive formulation, we apply it to the case of metal plasticity with combined hardening involving
both deformation- and permanently-induced anisotropy. Comparison of simulation results based on this
model for the bending-tension of DP600 steel sheet-metal strips with corresponding experimental ones
show good agreement.

1.1 Introduction

Initial and induced, anisotropic elastic and inelastic material behaviour in polycrystalline metals
can often be traced back to concurrent texture and dislocation substructural evolution in the ma-
terial. Indeed, many kinds of materials possess a microstructure which results in a macroscopic
anisotropic material response. Classical examples of such behaviour include single crystals and
composites in which the anisotropy can be considered to be fixed. A major simplicifation in the
formulation of phenomenological material models for such anisotropy was achieved with the in-
troduction of so-called structure tensors by Boehler (1979) (see also, e.g., Liu, 1982; Svendsen,
1994; Zhang and Rychlewski, 1990). To be precise, the term “’structure tensor” is used here to
designate quantities with respect to which the dependent constitutive fields can be represented
as being isotropic functions of their arguments, i.e., with respect to some local configuration
. In order to model induced elastic and inelastic anisotropic material behaviour, such an ap-
proach has been extended more recently, e.g., in the framework of the plastic spin (Dafalias,
1998), or in a thermodynamical setting (Reese and Svendsen, 2003; Svendsen, 1998, 2001) to

*Wang et al. (2005b)
'In the phenomenological terminology of Truesdell & Noll (Truesdell and Noll, 1992, §32), such a configura-
tion is referred to being “undistorted”.



2 CHAPTER 1

the modeling of internal variables having to do with processes such as kinematic hardening or
texture development. In particular, evolution of the internal variables modeled in this fashion
leads in general to induced orthotropic or yet more complex elastic and inelastic anisotropic
material behaviour. The purpose of the current work is to show that, among other things, this
approach results in further simplifications of the modeling of induced anisotropic elastic and
inelastic material behaviour. In particular, in the current thermodynamic setting, the modeling
of the internal variables as such tensors in the free energy with respect to the so-called interme-
diate configuration results in a six-dimensional flow rule. This is complementary to a previous
result in Svendsen (2001) showing that the stress measure thermodynamically conjugate to the
plastic “velocity gradient” is symmetric when the free energy is an isotropic function of its ar-
guments, and in particular of any tensor-valued internal variables. As shown there, this result
is completely general, i.e., does not depend on any further assumptions about the form of the
free energy. Beyond this, various applications of this approach are developed and discussed
here, demonstrating that it can be applied to such diverse materials as metals and polymers. In
recent work, Dettmer and Reese (2004) have compared such models with other approaches to
the modeling of non-linear kinematic hardening in the context of large deformation.

The paper begins with a summary of the basic constitutive framework utilized in the sequel
(§2). The corresponding formulation is carried out in a thermodynamic setting and in the context
of the dissipation inequality. In particular, this is based on the modeling of the local inelastic
deformation as a material isomorphism, as well as that of the internal variables as structure
tensors (§3). Even in the case of a single scalar-valued, and a single symmetric-tensor-valued,
internal variable, the approach is able to account for an evolving effective isotropic to general
orthotropic elastic and inelastic material behaviour. Finally, to exemplify the approach, it is
applied in the last part of the work (§4) to formulate a model for metal plasticity with combined
hardening. This model is then applied to the simulation of DP600 steel sheet metal strips subject
to tension and bending.

1.2 Basic framework

As stated in the introduction, the approach pursued here is based on a thermodynamic approach
to the formulation of inelastic material behaviour (e.g., Reese and Svendsen, 2003; Svendsen,
2001). For simplicity, attention is restricted here to the isothermal and quasi-static special case
of this approach. In this case, the “external” mechanical state of any given material point is
determined at any time by the values of the deformation gradient F'. Analogously, the “internal”
mechanical state of any material point at any time is determined by the values of a set e :=
(e, F,) of internal variables, with € := (€,...,€,). In particular, F, represents the local
inelastic deformation. Except for F},, the e are all modeled here as referential quantities, i.e.,
quantities defined with respect to the above-mentioned arbitrary reference configuration of the

material in question.

In the current isothermal context, the basic dependent constitutive fields of interest are the
second Piola-Kirchhoff stress S, the free energy density ¢, and the rates €. In the context
of generally rate-dependent or rate-sensitive inelastic material behaviour, the thermodynamic
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analysis Svendsen (2001), one obtains the reduced form

Y =19(C,e) (1.1)

for the isothermal free energy density ¢). Here, C' := F" F represents as usual the right Cauchy-
Green deformation. Further, one obtains the hyperelastic form

S=2¢, (1.2)
for the second Piola-Kirchhoff stress, as well as the residual form
)=s-é (1.3)
for the dissipation-rate density, where
s=—1, (1.4)

represents the thermodynamic force conjugate to e. Now, in general, one might expect the
inelastic rates € to remain bounded during a loading process. One possible measure of such
boundedness can be based on the convex set

Cy(s) ={s. | ¢(s.) < ¢(s)} (L.5)
of all thermodynamic forces bounded by s as measured by an inelastic potential
¢ = ¢(s) (1.6)

(e.g., Edelen, 1973; Han and Reddy, 1999; §ilhav3’/, 1997) convex in s. Indeed, one could
assume that the inelastic rates attainable for a given thermodynamic force s are bounded by the
normal cone

Ny(s) ={é |s. & <s-é Vs, €Cyls)} (1.7)

to C,(s). Assuming in this context that s represents an interior point of the domain of ¢ such
that ¢(s) > 0, then é € N, (s) iff there exists a 7 > 0 such that?

e =70 (1.3)
holds (e.g., Han and Reddy, 1999; Rockafellar, 1973). In this case,
§=7s¢s>70>0 (1.9)

from (1.3), the second form following from the convexity of ¢ in s. On this basis, the Coleman-
Noll dissipation principle (e.g., Coleman and Gurtin, 1967) is satisfied sufficiently here.

In particular, in the rate-independent special case, v corresponds to the standard plastic mul-
tiplier. In general, however, the current formulation pertains to so-called rate-dependent ma-
terial behaviour. Technically speaking, rate-independent behaviour is realized in the current
formulation as a special case when the dissipation potential thermodynamically-conjugate to
¢ 1s positive homogeneous of order one in s. Even in this case, note that ¢ does not reduce
to a yield function in general. Indeed, in order to formulate rate-independent thermodynamic
models for non-linear kinematic hardening, it is necessary to deviate from standard associated
elastoplasticity here (e.g., in the small deformation context, Lemaitre and Chaboche, 1990).

’In general, the derivative here does not exist for all generalized stress states, in which case it should be replaced
by the subdifferential (e.g., Han and Reddy, 1999; Silhavy, 1997).
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1.3 Internal variables as structure tensors

Recall now that e = (e, F},). In this work, inelastic processes represented by F,, are assumed
to not affect the form of the dependence of ¢ on C and the e. In this case, F}, represents a
so-called material isomorphism for ¢ (e.g., Bertram, 1993; Svendsen, 1998; Wang and Bloom,
1974). As shown in previous work (e.g., Svendsen, 1998, 2001), this will be the case when
there exists a reduced form 1), of ) such that

V(C e, F,) = (F,,C, F,.€) =4(Cy¢€) (1.10)

holds. Here, C,, := F,,C = F, "C F, " represents the elastic right Cauchy-Green deformation
tensor, and €, := F, € the push-forward of € by F, to the intermediate configuration. The
particular form of this latter pull-back depends on the nature of the e. Examples of this will be
given in the following sections. From an alternative point of view, (1.10) follows from the idea
that only a "part” of the deformation processes represented by C' and the € are responsible for
energy storage in the material during deformation, i.e., ’parts” F,,,C and F,, e, respectively. On
the basis of (1.10), one obtains

b=—tp  é—tp F=06+5- L, (1.11)
from (1.3) for the reduced dissipation-rate density. Here,
o = Y
Y, = 20, @/)I,CE - (EI,FP)TWI,GI]FPT )

represent thermodynamic forces in the intermediate configuration driving the evolution of € and
F,, respectively, with

(1.12)

* .
e, = F, €,

. . (1.13)
L. = F.,F, = FF'.
Note that the effective stress X, in (1.12), conjugate to L, is determined by the difference of
the Mandel stress 2 C', ¢, ¢, (€-g., Mandel, 1974) and the back stress

XI = (GI,FP)T[wI,eI]FPT : (1.14)

In the context of (1.11), analogous to the reduced form (1.10) of the free energy, we work with
that

¢ =¢ (X, o) (1.15)

for the inelastic potential ¢ from (1.6) relative to the intermediate configuration in terms of X/,
and o;. On the basis of (1.3), (1.8) and (1.11), we have
él = 7 ¢1, o

LP =7 ¢1, >N

These constitute the basic relations of the model with respect to the intermediate configuration.
With the help of the alternative form

(1.16)

§=0-¢+X -M,=0, €.+X%. M, (1.17)
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of d, these relations can also be formulated with respect to the reference or current configuration.

Here,
o = <€I,e)T03 = _<€1,e)Tw17eI ) (1.18)
Y = F'SF"™ = CS-X,, '
are the referential forms, and
O, = (FEiT)*o.I = _(FEiT)*q/JI,eI ) (1.19)
¥ = F'SF = K-X,, '
the current forms, of o; and 3/, respectively, with
= el (1.20)

K = 2F4 ¢ F7,

the second Piola-Kirchhoff stress and the Kirchhoff stress, respectively, the former via (1.2),
and

XR = FPT(GI, FP)TM}I, EI] )
. . . (1.21)
Xc = FE (EI,FP) WJLeI]F )
the referential and current forms of the back stress. In addition,
M, =F'L,=F,'L,F, (1.22)
represents the referential form of L. Further,
e. = Feé,
(1.23)
M, = F,L, = FELPFEil )

are the corresponding forms with respect to the current configuration. These transformations
of the stress measures into the current configuration facilitate the formulation of the material
model with respect to this configuration.

A second major simplification of interest here arises when the free energy in the reduced
form (1.10), as well as the inelastic potential ¢, in the form (1.15), can be modeled as isotropic
functions of their arguments. As discussed elsewhere (Svendsen, 2001), in this case the internal
variables €, and o; with respect to the intermediate configuration play (at least formally) the role
of so-called structure tensors. Consequences of this include the fact that both 3/, as given by
(1.12)5 and the corresponding Eshelby-like stress are symmetric with respect to the Euclidean
metric. On this basis, ¢, and ¢, reduce further to

wI(CE?GI) = wl(GP*C7G:€) )
(1.24)
¢1(2170'1) - ¢1(G:2aG:O-) >

respectively, via the polar decomposition F, = R U, of U,. Here,

G, =C,'=U*=F,'FE," (1.25)
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is a symmetric, positive-definite-tensor-valued referential internal variable with evolution rela-

tion
G,=—2F'D,F,"=-M,G, — G,M? (1.26)
following from (1.13), and (1.22);. From (1.24),, one obtains the referential forms
¢R(C’67GP) = wI(GP*C7GP*€) )
i . (1.27)
(bR(E’a?GP) = (bI(GPE?GP 0') )

for the free energy and inelastic potential, respectively, determined by the isotropic forms of 9,
and ¢, respectively. Again, we emphasize that ), and ¢, are not arbitrary, but rather follow
from the isotropic forms of v, and ¢,, respectively. In particular, the reduction (1.24); induces
in turn that

2 =21y 6,Gr (1.28)

for the thermodynamic conjugate to M, in terms of the dependence of ¢, on G, via (1.18)2. As
in the reduced form (1.27); of the free energy, note that the form (1.26) of the evolution relation
for G,, as well as that (1.11) of the residual dissipation rate density, are explicitly independent
of F,. For this class of material models, then, one can in effect reduce the dependence of the
model on the nine-dimensional quantity F;, to one on the six-dimensional quantity GG,,. Lastly,
note that the isotropy of ¢, and ¢, leading to the reductions (1.24) also implies the forms

wC(BE7€C> = wI(B];kI7B1;k€C>7
¢C(BE7EC7O.C) = ¢I(B];;EC7B;UC)7

(1.29)

of the free energy and inelastic potential with respect to the current configuration in terms of
the left elastic Cauchy-Green deformation

B, =FF' =FG F" . (1.30)

Analogous to (1.26), we have

*

B, =FG.F"=-M_B, — B_M" (1.31)
via (1.22),. Likewise, analogous to (1.28) is the form
.= Q@chvBEBE (1.32)

for X', via (1.19),, again with respect to the current configuration.

This completes the discussion of the general results required for the sequel. Now we turn
to the application of the current approach to the cases of induced anisotropy in metals and in
polymer membranes.

1.4 Application to metal inelasticity with hardening

To examine some of the aspects and consequences of the general formulation outlined in the
last section in more detail, consider its application to the formulation of a model for rate-
independent metal plasticity including isotropic and non-linear kinematic hardening. More gen-
eral models involving elastic anisotropy due to texture development, as well as flow anisotropy
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resulting from the development of persistent dislocation structures (e.g., Li et al., 2003), are
developed and discussed in Svendsen (2001). For simplicity, attention is restricted here to the
case of non-linear isotropic and kinematic hardening, the latter including the effects of dynamic
recovery. In particular, this latter effect is represented in the current context with the help of
a referential symmetric second-order tensor GG, formally analogous to G,. As such, we have
€ = (Gy,¢) in this case, where ¢ represents the equivalent accumulated plastic strain. Analo-
gous to that C, = F, "CF, ! of C, the push-forward G, = F,,,G,, = F.G, F, of G, to the
intermediate configuration is interpreted as a measure of local internal deformation resulting in
energy storage in the material. Let o; = (J,, <) represent the thermodynamic conjugates to €,,
with

ST e (1.33)

S = —¢157

FE =

E

E =

1

2

) (1.34)
H 2 -
determined by C, and G, respectively, are small, a model for combined hardening behaviour
with respect to the intermediate configuration can be based on the special isotropic “quadratic”
forms

wI(CE7GHI76) = %A (I ’ EE)2 +:U’EE : EE + %C‘EH ’ EH +wH(€) )
(1.35)

b
¢I<217JI7§) = yI(Eﬂg)—’—%I.JIQ?

of the free energy density and inelastic potential, respectively, with respect to the intermediate
configuration, where

U(X,6) =1/2 dev(X) - dev(X) + ¢ — oy, (1.36)

represents the yield function, with dev(X,) := X, — 4 (I - X\) I the deviatoric part of 3.
Here, A and i represent Lame’s constants. Further, ¢ and b are kinematic hardening parameters
controlling deformation-induced hardening and dynamic recovery, respectively. In addition,
o,, — ¢ represents the yield stress, and o, the initial yield stress. Note that (1.35); results in
the forms

= NI-E)I+2uE,—cE, +0(2),
J, = -lcBE,, (1.37)
S = —¢H,57
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for the stress-like internal variables to first order in F/, and E,. Complementary to these are

3
S dev(X)
F.F ' = = 3 I :
PP 7o, 2 v \/; \/dev(Z‘I) ~dev(X)

FPGHFPT e f}/ ¢I,JI = —% *)/ b EH s (138)

the forms

e = T = 7,
for the corresponding evolution relations via (1.8) and (1.13). As mentioned in §2, the inelastic
potential ¢, is not a yield function here. On the other hand, being a yield function, y, does bound
the X -states from above. And ¢, is assumed to bound the (X, .J,)-states via the corresponding
normal cone, as discussed in §2.

As in the case of finite-deformation elasticity, there exist a number of possible finite forms
for the free energy and inelastic potential which reduce in the case of small elastic strain to the
same model relations (e.g., Svendsen, 2001). In this case, we have

F, ~ R_,

(1.39)
V, ~ I+nV,.
In addition, this approximation results in the simpl