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Abstract

Time series cointegration tests, even in the presence of large sample sizes, of-
ten yield conflicting conclusions (“mixed signals”) as measured by, inter alia, a low
correlation of empirical p-values [see Gregory et al., 2004, Journal of Applied Econo-
metrics]. Using their methodology, we present evidence suggesting that the problem
of mixed signals persists for popular panel cointegration tests. As expected, there
is weaker correlation between residual and system-based tests than between tests of
the same group.
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1 Introduction

An extensive battery of tests is available to investigate the unit root and cointegration

properties of economic time series. Typically, however, an applied researcher has little

practical guidance as to which test to use, as most tests test very similar hypotheses. It

would therefore be reassuring if rejection or acceptance of a particular economic hypothe-

sis did not depend on which of the tests is used. For instance, in the context of hypothesis

testing with stationary variables it is well-known that the classical likelihood ratio, La-

grange multiplier and Wald tests are asymptotically numerically equivalent under quite

general conditions [Davidson and MacKinnon, 1993, Ch. 13].

As analytical characterizations of the correlations of the various test statistics for coin-

tegration are difficult to obtain, Gregory et al. [2004] analyze this question by means

of Monte Carlo methods. They generate replications of two independent random walks

and test the null of no cointegration using the popular residual-based tests by Engle and

Granger [1987] and Phillips and Ouliaris [1990] as well as the system-based λtrace and

λmax tests [Johansen, 1988]. They then calculate p-values from the empirical distribution

of the test statistics by taking rank order of the latter and dividing by M , the number of

replications. Disturbingly, for most pairs of tests, virtually any combination of p-values

can arise. That is, while the combinations should ideally cluster around the 45◦-line, it

frequently occurs that a particularly high test statistic of, say, the λtrace-test is associated

with a low test statistic of, say, the Engle and Granger [1987] Augmented Dickey-Fuller

(ADF )-test. The main conclusion is that using different tests is likely to yield conflicting

conclusions in applications.

In recent years, the cointegration methodology has been extended to panel data. Pedroni

[2004] and Kao [1999] generalize residual-based tests, Larsson et al. [2001] extend the

Johansen [1988] tests, while McCoskey and Kao [1998] propose a test for the null of panel

cointegration in the spirit of Shin [1994]. Hanck [2005] extends the p-value combination

panel unit root tests of Maddala and Wu [1999] and Choi [2001] to the panel cointegration

case.

Under cross-sectional independence all the above-mentioned panel tests provide a means

to better exploit the variation in the data. Furthermore, Phillips and Moon [1999] show

that panel data can help mitigate the spurious regression phenomenon. The contribution

of this paper is to investigate whether the availability of panel data is also useful for
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obtaining more consistent decisions among the competing tests. To shed light on this

question we adopt the methodology suggested by Gregory et al. [2004] and extend it to

the panel data setting.

The remainder of the paper is organized as follows. Section 2 briefly reviews the panel

cointegration tests compared in this paper. Section 3 describes the simulation setup of

the comparative study and reports the results. Section 4 concludes.

2 Panel Cointegration Tests

We give the key statistics of the various tests that are considered. For more details, refer to

the original contributions. Furthermore, Banerjee [1999] or Baltagi and Kao [2000] provide

surveys of the literature. We focus on tests with the null of no panel cointegration.

Pedroni [2004]

Pedroni [2004] derives seven different tests for panel cointegration. These may be cate-

gorized according to what information on the different units of the panel is pooled. The

“Group-Mean” Statistics are essentially means of the conventional time series tests [see

Phillips and Ouliaris, 1990]. The “Within” Statistics separately sum the numerator and

denominator terms of the corresponding time series statistics. Let Ai =
∑T

t=1 ẽi,tẽ
′
i,t,

where ẽi,t = (∆êi,t, êi,t−1)
′ and T is sample size. The êi,t are obtained from heterogenous

Engle/Granger-type first stage OLS multivariate time series regressions of one of the

variables xik on the remaining xi,−k, possibly including some deterministic regressors. We

consider the “Group-ρ”, “Panel-ρ” and (nonparametric) “Panel-t”-test statistics which

are given by, respectively,

Z̃ρ̂NT−1 =
N∑

i=1

A−1
22i(A21i − T λ̂i),

Zρ̂NT−1 =

(
N∑

i=1

A22i

)−1 N∑
i=1

(A21i − T λ̂i) and

Zt̂NT
=

(
σ̃2

NT

N∑
i=1

A22i

)−1/2 N∑
i=1

(A21i − T λ̂i).

The expressions λ̂i and σ̃2
NT estimate nuisance parameters from the long-run conditional

variances. After proper standardization, all statistics have a standard normal limiting
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distribution. The decision rule is to reject the null hypothesis of no panel cointegration

for large negative values.

Kao [1999]

Kao [1999] proposes five different panel extensions of the time series (A)DF -type tests.

We focus on those that do not require strict exogeneity of the regressors. More specifically,

DF ∗
ρ =

√
NT (ρ̂− 1) +

3
√
Nσ̂2

ν

σ̂2
0ν√

3 +
36σ̂4

ν

5σ̂4
0ν

and

DF ∗
t =

tρ +

q
6Nσ̂2

ν

2σ̂0ν√
σ̂2

0ν

2σ̂2
ν

+
3σ̂2

ν

10σ̂2
ν

.

Here, ρ̂ is the estimate of the AR(1) coefficient of the residuals from a fixed effects panel

regression and tρ is the associated t-statistic. The remaining terms play a role similar

to the nuisance parameter estimates in the Pedroni [2004] tests. Again, both tests are

standard normal under the null of no panel cointegration and reject for large negative

values.

Larsson et al. [2001]

The panel cointegration test of Larsson et al. [2001] applies a Central Limit Theorem to

the set of N λtrace test statistics [Johansen, 1988] for each unit in the panel. (See also

(2) below.) Defining λtrace = N−1
∑N

i=1 λtrace,i, their panel cointegration test statistic is

given by

ΥLR =
√
N

λtrace − E[λtrace]√
Var[λtrace]

 .

Under some conditions, including
√
NT−1 → 0, Larsson et al. [2001] can show that

ΥLR
T,N−→ N (0, 1). The moments are obtained by stochastic simulation and are tabulated

in the paper. The null hypothesis of no cointegration at a level α is rejected if the test

statistic exceeds the (1 − α)-quantile of the standard normal distribution, i.e. for large

values.

Hanck [2005]
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The main idea of the testing principle has been used in meta analytic studies for a long

time [cf. Fisher, 1970; Hedges and Olkin, 1985]. Consider the testing problem on the

panel as consisting of N testing problems for each unit of the panel. That is, conduct N

separate time series cointegration tests and obtain the corresponding p-values of the test

statistics. The test statistics are obtained by combining the p-values of the N tests into

panel test statistics as follows:

Pχ2 = −2
N∑

i=1

ln(pi) (1a)

PΦ−1 = N− 1
2

N∑
i=1

Φ−1(pi), (1b)

where Φ−1 denotes the inverse of the cumulative distribution function (cdf) of the standard

normal distribution. When considered together we refer to Eqs. (1a) and (1b) as P tests

from now on. Assuming continuous distribution functions of the time series test statistics

under H0, as Ti →∞ for all i, the test statistics are asymptotically distributed as

Pχ2 →d χ
2
2N

PΦ−1 →d N (0, 1),

where χ2
2N is a χ2 random variable with 2N degrees of freedom. The decision rule is to

reject the null of no panel cointegration when Pχ2 exceeds the critical value from a χ2
2N

distribution at the desired significance level. On the other hand, for (1b) one would reject

for large negative values of PΦ−1 .

We obtain the p-values from the ADF cointegration tests [Engle and Granger, 1987] as

provided by MacKinnon [1996]. That is, the p-values are from the t-statistic of γi − 1 in

the OLS regression

∆ûi,t = (γi − 1)ûi,t−1 +
P∑

p=1

νp∆ûi,t−p + εi,t.

Here, ûi,t is the usual residual from a first stage multivariate OLS time series regressions

of one of the variables xik on the remaining xi,−k. Alternatively, one could capture serial

correlation by the semiparametric approach of Phillips and Ouliaris [1990]. Finally, we

obtain the p-values for the Johansen [1988] λtrace and λmax tests provided in MacKinnon

et al. [1999]. That is, we test for the presence of hcointegrating relationships by estimating
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the number of significantly non-zero eigenvalues of the matrix Π̂i estimated from the

Vector Error Correction Model

∆xi,t = −Πixi,t−P +
P−1∑
p=1

Γi,p∆xi,t−p + εi,t

by the λtrace-test

λtrace,i (h) = −T
K∑

k=h+1

ln (1− π̂k,i) (2)

and the λmax-test

λmax,i (h|h+ 1) = −T ln (1− π̂h+1,i) . (3)

Here, π̂k,i denotes the kth largest eigenvalue of Π̂i. In (2), the alternative is a general one,

while one tests against h+ 1 cointegration relationships in (3).

3 Do Panel Cointegration Tests Produce “Mixed Sig-

nals”?

We now use the panel cointegration tests outlined in the previous section to investigate

the extent to which different widely used panel cointegration tests yield the same decision

for a given (artificial) sample. Gregory et al. [2004] observe mixed signals, i.e. a relatively

high test statistic for one test and a relatively low test statistic for another, for time

series cointegration tests.1 This effect is particularly strong when comparing residual-

and system-based tests.

It might be conjectured that the availability of panel data, leading to standard (normal)

null distributions of the test statistics, could help alleviate this problem. To shed light

on this question, we adopt the methodology of Gregory et al. [2004].2 More precisely, we

generate many replications of two integrated time series for each of the N units in the

panel. For each replication, we store the different panel cointegration test statistics. The

1Berndt and Savin [1977] study the related problem of conflicting decisions among the classical hy-
pothesis tests in linear regression models. A crucial difference is that the numerical relationship between
the criteria is well understood for these simpler models. Furthermore, in this context the situation is
resolved asymptotically.

2Gregory et al. [2004] complement their simulation study with an extensive analysis of all applications
of the cointegration methodology published in the Journal of Applied Econometrics in recent years. While
such an approach has obvious appeal it is not yet promising in the panel data context due to the small
number of empirical applications. We therefore exclusively rely on artificial data.
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extent to which the different tests yield identical decisions is measured by two related

criteria. First, we compute empirical p-values of the tests by taking rank order of the test

statistics and dividing by M . We then compute the correlation of the empirical p-values

for each pair of tests. If both have the same null and the same alternative, the correlation

should therefore ideally be close to one, i.e. a strong rejection of one test should also be a

strong one of the other. Second, we record all the instances of each pair of tests rejecting

jointly. The critical values are either taken from the asymptotic distribution of the tests

or the empirical distribution arising from the replications under the null. Thus, when

testing a sample generated under the null at the 5% level, all pairs of tests should ideally

jointly reject in close to 5% of the replications.

We compare the tests of Kao [1999], Pedroni [2004] and Larsson et al. [2001] presented

in the previous section. We further include the two P tests. For each, we use both Engle

and Granger’s [1987] ADF test with one lagged difference (Pχ2DF and PΦ−1DF ) as well

as Johansen’s [1988] λtrace test for r = 0 versus r 6 K = 2 cointegrating relationships

(Pχ2J and PΦ−1J). Following Gregory et al. [2004], we choose relatively large time series

dimensions to limit size distortions. More specifically, T ∈ {250, 500, 1000, 2000} and

N ∈ {10, 20, 50, 100, 150}. The Data Generating Process (DGP) is similar to the one

used by Engle and Granger [1987]. The extension to the panel data setting is discussed

in Kao [1999]. For simplicity we only consider the bivariate case:

DGP

xi,1t − αi − βxi,2t = zi,t, a1xi,1t − a2xi,2t = wi,t

where

zi,t = ρzi,t−1 + ezi,t, ∆wi,t = ewi,t

and (
ezi,t

ewi,t

)
iid∼ N

([
0

0

]
,

[
1 ψσ

ψσ σ2

])

Remarks

• When |ρ| < 1 the equilibrium error in the first equation is stationary such that xi1t

and xi2t are cointegrated with βi = (1 αi β)′.

• When writing the above DGP as an error correction model [see, e.g., Gonzalo, 1994]

it is immediate that xi2t is weakly exogenous when a1 = 0.

6



We consider the parameter space β = 2, a2 = −1, σ ∈ {0.5, 1}, ψ ∈ {−0.5, 0, 0.5} and

a1 ∈ {0, 1}. This implies that, for instance, the Pedroni [2004] and P tests cannot exhibit

their comparative advantage of being able to detect cross-sectional heterogeneity in the

slope coefficients. Similarly, a bivariate system necessarily has at most one cointegrating

relationship. Thus, the Larsson et al. [2001] test have no opportunity to detect multiple

cointegration. But, the Kao [1999] tests require a common β for all i. Hence, in order

to be able to validly compare all tests under both the null and the alternative we use

this simple DGP. We carry out the experiments under both the null and the alternative.3

For the latter we set ρ = 0.98. The fraction of cointegrated series in the panel is either

zero or one, δ ∈ {0, 1}. For a given cross-sectional dimension we draw the unit specific

intercepts as αi ∼ U [0, 10] and keep them fixed for all T . The number of replications for

each experiment is M = 10, 000.

Here, we report the (representative) results for a1 = 1, σ = 1, ψ = 0.4 Table I shows the

correlation of the empirical p-values for N = 50. Panels (a) and (b) consider T = 250 and

T = 2000, respectively. Within each of the panels there is a fairly high correlation among

the different residual-based tests (rows 2-8) and, especially, among the different system-

based tests (rows 1, 9-10). The pattern is not uniform, though. For the residual-based

tests, the correlation ranges from roughly 30% (Pχ2DF and Zt̂NT
) to almost 95% (DF ∗

ρ

and Zρ̂NT−1). For a graphical illustration, see the scatter plot of the empirical p-values

for these cases in Figure I. Panel (a), depicting the correlation of Pχ2DF and Zt̂NT
, shows

that, even within the group of residual-based tests, virtually any combination of empirical

p-values can arise. On the other hand, Panel (b) reveals that for some cases the p-values

cluster around the 45◦-line, indicating a close correspondence.

Furthermore, different tests by the same author do not seem to be any more related than

tests by different authors. Across the two groups the correlation typically is substantially

lower, with several entries even being negative (see, e.g., the first column). Finally,

compare Panels (a) and (b). Increasing the time series dimension barely affects the

correlation of the empirical p-values. (Similar results obtain for increasing N .)

We provide some further insights in Table II. Using 5% size-adjusted critical values we

report the fraction of each pair of test rejecting jointly.5 The case considered in Panel

3Uniform random numbers are generated using the KM algorithm from which Normal variates are cre-
ated with the fast acceptance-rejection algorithm, both implemented in GAUSS. Part of the calculations
are performed with COINT 2.0 by Peter Phillips and Sam Ouliaris.

4The full set of results of the finite sample study is available upon request.
5Horowitz and Savin [2000] correctly point out that size-adjusted critical values are usually of little
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(a) Pχ2DF and Zt̂NT
(b) DF ∗ρ and Zρ̂NT−1

Figure I—Correlation of Empirical p-values

(a) corresponds to Panel (a) of Table I. The entries under (b) give results under the

alternative of panel cointegration. As expected from Table I, no pair of tests achieves a

fraction of joint rejections of 5%. Reassuringly, the combinations having a high correlation

of empirical p-values also have a relatively high fraction of joint rejections. However,

in spite of fairly high correlation (take Pχ2J and PΦ−1J with more than 90%) we still

observe pairs of tests jointly rejecting for a rather small fraction of samples (1.6% for this

example). That is, conflicting testing decisions are not uncommon. As all tests reject

more frequently under the alternative, the fraction of joint rejections of course increases

(see Panel b). Nevertheless, there is still a large amount of disagreement especially across

groups of tests.

Comparing the results with Gregory et al. [2004], we state that the consensus in test

decisions among panel data cointegration tests generally does not seem to be higher than

among time series cointegration tests. Thus, it seems all but unlikely that a researcher

will find conflicting evidence when applying some pairs of panel cointegration tests to a

given dataset. The issue is not resolved asymptotically. A possible explanation of this

phenomenon could be that the complexities inherent to panel data—such as treatment

of cross-sectional heterogeneity—lead to different implicit alternatives of the tests. Con-

sequently, we observe a rather low correlation of empirical p-values and fractions of joint

rejections when the data is generated under the null.

use for applied work. Here, however, we use them to avoid spurious results that could arise if, say, two
tests were both heavily oversized and would therefore also frequently reject jointly.

8



Table I—Correlation of the Empirical p-values under the Null

ΥLR DF ∗
t Zρ̂NT−1 Z̃ρ̂NT−1 DF ∗

ρ Zt̂NT
Pχ2DF PΦ−1DF Pχ2J PΦ−1J

ΥLR 1.00
DF ∗t -.055 1.00 (a) T = 250
Zρ̂NT−1 .115 .445 1.00
Z̃ρ̂NT−1 .264 .312 .698 1.00
DF ∗ρ .098 .514 .944 .658 1.00
Zt̂NT

-.087 .935 .486 .341 .492 1.00
Pχ2DF .235 .314 .583 .927 .599 .304 1.00
PΦ−1DF .213 .466 .764 .919 .806 .439 .898 1.00
Pχ2J .984 -.059 .116 .268 .099 -.089 .245 .213 1.00
PΦ−1J .961 -.045 .106 .242 .090 -.078 .205 .198 .898 1.00

ΥLR 1.00
DF ∗t -.096 1.00 (b) T = 2000
Zρ̂NT−1 .131 .466 1.00
Z̃ρ̂NT−1 .346 .320 .652 1.00
DF ∗ρ .094 .552 .949 .614 1.00
Zt̂NT

-.112 .938 .505 .359 .530 1.00
Pχ2DF .265 .330 .545 .929 .561 .330 1.00
PΦ−1DF .242 .487 .736 .915 .782 .467 .896 1.00
Pχ2J .984 -.097 .135 .351 .099 -.111 .279 .245 1.00
PΦ−1J .964 -.090 .119 .318 .083 -.107 .229 .222 .903 1.00
Note: (a) N = 50 (b) ρ = 1, ψ = 0, σ = 1, δ = 1 and a1 = 1.

(c) M = 10, 000 replications.

4 Conclusion

We perform a simulation study to investigate whether several widely used panel cointe-

gration tests yield the same acceptance or rejection decisions. Broadly in accordance with

the evidence presented by Gregory et al. [2004] for time series tests, the panel versions

also exhibit a low correlation of empirical p-values under the null. The persistence of the

phenomenon even at T = 2000 indicates that this problem does not seem to be resolved

asymptotically. When analyzing the relative frequency of joint rejections, we constrain

the tests to have the desired size by using size-adjusted critical values. Low fractions of

joint rejections (relative to the size of the tests) show that the tests do not reject for the

same samples. This phenomenon is less prevalent under the alternative.

The practical upshot is that researchers are likely to be confronted with conflicting test

decisions when using different tests in applied work. Given that there rarely is a com-
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Table II—Fraction of joint rejections under H0 and H1

ΥLR DF ∗
t Zρ̂NT−1 Z̃ρ̂NT−1 DF ∗

ρ Zt̂NT
Pχ2DF PΦ−1DF Pχ2J PΦ−1J

ΥLR .050
DF ∗t .002 .050 (a) ρ = 1
Zρ̂NT−1 .005 .011 .050
Z̃ρ̂NT−1 .007 .008 .021 .050
DF ∗ρ .004 .015 .037 .020 .050
Zt̂NT

.002 .036 .012 .011 .014 .050
Pχ2DF .006 .008 .016 .036 .017 .008 .050
PΦ−1DF .006 .012 .025 .036 .028 .013 .032 .050
Pχ2J .043 .002 .004 .007 .004 .002 .007 .006 .050
PΦ−1J .040 .002 .004 .007 .004 .002 .005 .006 .016 .050

ΥLR .191
DF ∗t .191 .999 (b) ρ = .98
Zρ̂NT−1 .190 .975 .975
Z̃ρ̂NT−1 .183 .872 .869 .873
DF ∗ρ .176 .857 .858 .809 .858
Zt̂NT

.191 .999 .975 .873 .858 1.00
Pχ2DF .135 .516 .516 .516 .504 .516 .516
PΦ−1DF .169 .750 .750 .749 .733 .750 .513 .750
Pχ2J .164 .174 .173 .166 .161 .174 .124 .155 .174
PΦ−1J .173 .227 .225 .215 .208 .227 .153 .197 .028 .227
Note: (a) N = 50, T = 250, ψ = 0, σ = 1, δ = 1 and a1 = 1.

(b) M = 10, 000 replications. (c) Size-adjusted 5% critical values.

pelling theoretical reason to prefer one test over another in practice, this issue is rather

troublesome. More research clarifying the theoretical relationship between the different

tests would be welcome.
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