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Abstract

Meta-analytic panel unit root tests such as Fisher’s χ2 test, which consist of
pooling the p-values of time series unit root tests, are widely applied in practice.
Recently, several Monte Carlo studies have found these tests’ Error-in-Rejection
Probabilities (or, synonymously, size distortion) to increase with the number of
series in the panel. We investigate this puzzling finding by modelling the finite
sample p-value distribution of the time series tests with local deviations from the
asymptotic p-value distribution. We find that the size distortions of the panel tests
can be explained as the cumulative effect of small size distortions in the time series
tests.
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1 Introduction

Meta-analysis is a useful tool to efficiently combine related information.1 In recent years,

the meta-analytic testing approach has been fruitfully applied to nonstationary panels:

Consider the testing problem on the panel as consisting of N testing problems for each unit

of the panel. That is, conduct N separate time series tests and obtain the corresponding

p-values of the test statistics. Then, combine the p-values of the N tests into a single

panel test statistic. Among others, Maddala and Wu [1999], Choi [2001] and Phillips and
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1See Hedges and Olkin [1985] for an excellent introduction to the topic.



Sul [2003] propose meta-analytic panel unit root and cointegration tests. The tests are

intuitive, relatively easy to compute and allow for a considerable amount of heterogeneity

in the panel.

Via Monte Carlo experiments, the above-cited authors show that their meta-analytic

tests can be substantially more powerful than separate time series tests on each unit in

the panel, justifying the use of panel tests. Disturbingly, however, Choi [2001], Hlouskova

and Wagner [2006] and Hanck [2005], inter alia, find the Error-in-Rejection Probability

(ERP ) (or, synonymously, size distortion) to be increasing in N . That is, the (absolute)

difference between the estimated rejection probability (or type I error rate) R(α, N) and

the nominal significance level α, ERPN(α) := |R(α, N)−α|, gets larger with N . A priori,

this finding is counterintuitive, since, more information should improve the performance

of the panel tests.

We argue that this behavior may be explained as the cumulative effect of arbitrarily small

ERP s in the underlying time series test statistics composing the panel test statistics.

Under a simple H0, assuming continuous distribution functions of the test statistics, p-

values of test statistics should be distributed uniformly on the unit interval, denoted

U [0, 1] [see, e.g., Bickel and Doksum, 2001, Sec. 4.1]. We model size-distorted time series

tests by deviations from the null distribution of the test statistics’ p-values. The analytical

and simulation evidence reported in the following sections corroborate our conjecture.

2 The P-Value Combination Test

We briefly review the p-value combination test whose ERP is investigated subsequently.2

We discuss the example of a panel unit root test. The conclusions might however be

valid also for other applications of the meta test. Denote by pi the marginal significance

level, or p-value, of a time series unit root test applied to the ith unit of the panel. Let

θi,Ti
be a unit root test statistic on unit i for a sample size of Ti . Let FTi

denote the

null distribution function of the test θi,Ti
. Since the tests considered here are one-sided,

pi = FTi
(θi,Ti

) if the test rejects for small values of θi,Ti
and pi = 1− FTi

(θi,Ti
) if the test

rejects for large values of θi,Ti
. We only consider time series tests with the null of a unit

root.

2Similar results for other widely used meta-analytic tests such as the inverse normal test are available
upon request.
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We test the following null hypothesis:

H0 : The time series i is unit-root nonstationary (i ∈ NN), (1)

against the alternative

H1 : For at least one i, the time series is stationary.

((i ∈ NN) is shorthand for i = 1, . . . , N .) The N p-values of the individual time series

tests, pi (i ∈ NN), are combined as follows to obtain a test statistic for panel (non-)

stationarity:

Pχ2 = −2
N∑

i=1

ln pi (2)

The Pχ2 test, via pooling p-values, provides a convenient test for panel (non-)stationarity

by imposing minimal homogeneity restrictions on the panel. For instance, the panel can

be unbalanced. For further discussion see Choi [2001] or Hanck [2005]. The following

lemma gives the asymptotic distribution of the test.

Lemma 1 (Distribution of the Pχ2 test).

Under the null of panel nonstationarity and assuming continuous distribution functions

of the θi,Ti
, the Pχ2 test is, as Ti →∞ (i ∈ NN), asymptotically distributed as

Pχ2 →d χ2
2N

Proof. The proof is an application of the transformation theorem for absolutely continuous random
variables (r.v.s) [see, e.g., Bierens, 2005, Thm. 4.2]. Under H0 and as Ti →∞ (i ∈ NN ), pi ∼ U [0, 1]. Let
y = g(pi) := −2 ln pi. Then, pi = g−1(y) = e−

1
2 y and

f−2 ln pi(y) = fpi(g
−1(y))|g−1′

(y)|.

Hence, g−1′
(y) = − 1

2e−
1
2 y. Thus, |g−1′

(y)| = 1
2e−

1
2 y. We have fpi

(g−1(y)) = 1 ∀ g−1(y) ∈ [0, 1]. This
implies f−2 ln pi(y) = 1

2e−
1
2 y. The density of a χ2

R r.v. is fχ2
R
(y) = 1

2R/2Γ(R/2)
y

R
2 −1e−

y
2 . With R = 2,

fχ2
2
(y) = 1

2Γ(1)e
− y

2 . Recall that Γ(1) =
∫∞
0

t1−1e−t dt = 1. So,

fχ2
2
(y) =

1
2
e−

y
2 .

We have shown that f−2 ln pi
(y) = fχ2

2
(y). The proof is completed by noting that the sum of N indepen-

dent χ2
R r.v.s is distributed as χ2

NR.

The decision rule is to reject the null of panel nonstationarity when Pχ2 exceeds the critical

value from a χ2
2N distribution at the desired significance level. We see from the proof that

the test has a well-defined asymptotic distribution (for T → ∞) for any finite N . This

feature is attractive because in many applications, the assumption that N , the number

of units in the panel, goes to infinity may not be a natural one.
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Table I—Simulated Type I Error Rates for the Pχ2 Test.

N 5 10 25 30 50 60 100
Maddala and Wu [1999] .044 .107 .131
Choi [2001] .050 .070 .090 .090 .130
Hanck [2005] .035 .031 .021 .014
Hlouskova and Wagner [2006] .090 .110 .120 .145
Choi [2006] .051 .042 .037
Note: All results are for the nominal 5% level.

3 The Error-in-Rejection Probability of the Combi-

nation Test

As should be clear from the previous discussion, any unit root for which p-values are

available can be used to compute the Pχ2 test statistic. Popular choices include the

Augmented Dickey-Fuller test [Dickey and Fuller, 1979]. It is well-known that using the

(first-order) asymptotic approximation F , a functional of Brownian Motions and possibly

nuisance parameters, to the exact, finite Ti null distribution of the test statistics, FTi
,

need not be accurate. This is because the null hypothesis (1) is not a simple one (and

the available test statistics are not pivotal). H0 is satisfied by all unit-root nonstationary

processes

yi,t = yi,t−1 + ui,t, (i ∈ NN)

where the errors ui,t can be from a wide class of dependent and heterogeneous sequences.

See, for instance, the fairly general strong mixing conditions on ui,t of Phillips [1987].

Hence, the p-values of the test need no longer be uniformly distributed on the unit inter-

val, even if the true Data Generating Process (DGP) of the time series is from the null

hypothesis set of unit-root nonstationary processes. Thus, the assumptions required for

validity of Lemma 1 need no longer be met.

As we argue in this section, this fact can explain the counterintuitive finding of a de-

teriorating performance of the Pχ2 test with increasing N . Table I summarizes selected

Monte Carlo results on the ERP of the Pχ2 test reported in the literature.3 Most au-

thors find R(α, N)−α to increase with N , while Hanck [2005] and Choi report an inverse

relationship. All find ERPN(α) := |R(α, N)− α| to increase with N .

3The differences stem from the length of the underlying time series, the type of non-stationarity test
applied to the time series, as well as the design of the DGP.
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We propose the following modelling assumption to investigate this behavior.

Assumption 1 (Generalized p-value distribution).

For finite Ti, the p-values are distributed as p̃i ∼ U [a, b], where a > 0, b 6 1

and a < b, (i ∈ NN).

Since the exact, finite Ti distribution of the test statistics is generally unknown, so is

the exact p-values’ distribution. The assumption is, however, convenient for modelling

purposes. First, letting a → 0 and b → 1, it comprises the asymptotic result as a limiting

case. Second, it is easy to characterize the ERP of a single time series test in terms of a

and b. More precisely, since a rejection at level α is equivalent to a p-value p < α,

P(Fp̃i
< α) = R(α, 1) =


0 for a > α

α−a
b−a

for a < α and b > α

1 for b < α

In particular, it is possible to model “oversized” unit root tests by taking p̃i ∼ U [0, b],

where b < 1. Intuitively, we remove the p-values corresponding to the test statistics

speaking most strongly in favor of H0. Conversely, p̃i ∼ U [a, 1], a > 0 represents an

“undersized” test. The following lemma derives the density function of −2 ln p̃i under

Assumption 1.

Lemma 2 (Distribution of −2 ln p̃i).

Under p̃i ∼ U [a, b], the density of −2 ln p̃i is given by

f−2 ln p̃i
(y) =


0 for y ∈ (−∞,−2 ln b)

1
2(b−a)

e−
y
2 for y ∈ [−2 ln b,−2 ln a]

0 for y ∈ (−2 ln a,∞),

taking − ln a = ∞ for a = 0.

Proof. Again, we can apply the transformation theorem for absolutely continuous r.v.s. Using the
notation from the proof of Lemma 1, we still have p̃i = g−1(y) = e−

1
2 y and hence |g−1′

(y)| = 1
2e−

y
2 . fp̃i

follows immediately from Assumption 1 as fp̃i
(g−1(y)) = 1

b−a for g−1(y) ∈ [a, b] and 0 otherwise. The
support of the r.v. −2 ln p̃i follows from solving g−1 for the lower and upper bounds of p̃i. It is verified
elementarily that f−2 ln p̃i

(y) satisfies
∫

R f−2 ln p̃i
(ỹ)dỹ = 1.

f−2 ln p̃i
(y) contains the density of the χ2

2 distribution as a special case with a = 0 and

b = 1. We now study the ERP of the Pχ2 test for the case N = 1, denoted ERP1(α).
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Let cα2 be the critical value of the χ2
2-distribution at nominal level α, i.e.

∫ cα2

0
1
2
e−

1
2
ỹdỹ =

1− α ⇒ cα2 = −2 ln α. Then,

R(α, 1) = 1−
∫ −2 ln α

−∞
f−2 ln p̃i

(ỹ)dỹ

=
α

b

Let us consider a specific example. We investigate the “oversized” case, p̃i ∼ U [0, 0.9],

and α = 0.05. Then, ERP1(0.05) =
∣∣∣0.05(1−0.9)

0.9

∣∣∣ = 0.05(1−0.9)
0.9

≈ 0.005, yielding an ERP

which would be considered small in most Monte Carlo analyses.

For N = 2, we derive the following lemma in the appendix:

Lemma 3 (Density function of f−2
P2

i=1 ln p̃i
(y)).

f−2
P2

i=1 ln p̃i
(y) =


0 for y ∈ (−∞,−2 ln b)

1
4(b−a)2

e−
y
2 (y + 4 ln b) for y ∈ [−4 ln b,−2 ln a− 2 ln b]

1
4(b−a)2

e−
y
2 (−y − 4 ln a) for y ∈ (−2 ln a− 2 ln b,−4 ln a]

0 for y ∈ (−4 ln a,∞),

taking − ln a = ∞ for a = 0.

Continuing the above example, we compute ERP2(0.05) as

ERP2(0.05) = |R(0.05, 2)− 0.05| = R(0.05, 2)− 0.05

= 1−
∫ cα4

−∞
f−2

P2
i=1 ln p̃i

(ỹ)dỹ − 0.05

≈ 0.009

Note that ERP2(0.05) > ERP1(0.05). To illustrate, Figure I displays f−2
P2

i=1 ln p̃i
(y) and

the density function of the χ2
4 distribution. The generalized p-value distribution lies to

the right of the χ2
4 distribution, as expected. The dashed line indicates the 0.95 quantile

of the χ2
4 distribution. f−2

P2
i=1 ln p̃i

(y) has probability mass of more than 0.05 to the right

of cα4 .

To analyze the ERP of the Pχ2 test for general N , we require the cumulative distribution

function of the r.v. −2
∑N

i=1 ln p̃i under Assumption 1. In keeping with most applications

in the literature, we assume independence across i. It is then possible to write the density

of −2
∑N

i=1 ln p̃i as the convolution of f−2 ln p̃i
(i ∈ NN) [see, e.g., Shiryaev, 1996, pp. 241]

f−2
PN

i=1 ln p̃i
(y) = f−2 ln p̃1 ∗ · · · ∗ f−2 ln p̃N

(y)

=
e−

y
2

2N(b− a)N
ϕ−2 ln b,−2 ln a ∗ · · · ∗ ϕ−2 ln b,−2 ln a,
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Figure I—The density functions for the case N = 2

where ϕ is the indicator function of y on the interval I = [−2 ln b,−2 ln a]. Introducing

a suitable standardization factor rN , the convolution for general N can be written as a

function of the indicator functions of y on the unit interval,

f−2
PN

i=1 ln p̃i
(y) = rN

e−
y
2

2N(b− a)N
ϕ0,1 ∗ · · · ∗ ϕ0,1.

By a Central Limit Theorem, the sum of N centered and standardized uniform r.v.s

converges to a standard normal r.v. Using a further scaling constant sN , we expect that

the density of f−2
PN

i=1 ln p̃i
(y) can be well approximated for N sufficiently large by an

expression of the form rNsN
e−

y
2

2N (b−a)N φN(y). Here, φN(y) is the density function of the

standard normal distribution (whose argument also depends on N).

The exact computation however quickly becomes cumbersome for large N . We shall

therefore rely on simulation to further illustrate the effect of increasing N . For each

N ∈ {1, 6, 11, . . . , 246} we generate p-values according to U [0.02, 1], U [0, 1] and U [0, 0.9],

corresponding to under-, correctly, and oversized tests. Based on R = 50, 000 replications,

Figure II displays the rejection rates of the Pχ2 test as a function of N when using the

5% critical values of the appropriate χ2
2N distribution.

The figure confirms the conjectures resulting from the theoretical analysis. When the

p-values are, as they should be under H0, distributed uniformly on the unit interval, the

ERP of the Pχ2 test is excellent uniformly in N . Conversely, even for small deviations from

the nominal size of the time series tests, the ERP s clearly increase in N . Reassuringly,
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Figure II—Rejection Rates of Pχ2 test at 5% as a Function of N

the simulation result for N = 1 is virtually indistinguishable from the analytical result

above. Similarly, Figure III reveals that the ERP of the panel test is the higher the

stronger the component test statistics are oversized, as one would expect.

Figure III—Rejection Rates of Pχ2 test at 5% for differing degrees of ”oversizedness”

4 Conclusion

We show that meta-analytic panel tests can have arbitrarily large Errors-in-Rejection

Probabilities (size distortions) even when the underlying time series tests have only slight
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Errors-in-Rejection Probabilities. The recommendation for empirical practice therefore is

to use critical values which take into account as well as possible the shape of the exact (but

generally unknown) finite sample distribution of the test statistics. One way to achieve

this is to compute correction factors depending on T using response surface regressions

[MacKinnon, 1991]. Even though we discuss the application of the Pχ2 test to testing

problems for nonstationary panel data, the conclusions may hold more generally for other

applications and other meta-analytic test statistics.

Appendix

Proof of Lemma 3

The convolution integral is given by

f−2
P2

i=1 ln p̃i
(y) = f−2 ln p̃i ∗ f−2 ln p̃i

=
∫

R

1
4(b− a)2

e−
1
2 xϕ−2 ln b,−2 ln ae−

1
2 (y−x)ϕ−2 ln b,−2 ln adx

=
1

4(b− a)2
e−

1
2 y

∫
R

ϕ−2 ln b,−2 ln aϕ−2 ln b,−2 ln adx (A.1)

Since we consider the convolution of two densities with support I = [−2 ln b,−2 ln a], the arguments have
to satisfy y−x, x ∈ [−2 ln b,−2 ln a], implying the following weak inequalities: x 6 y+2 ln b, x > y+2 ln a,
y 6 −4 ln a and y > −4 ln b. Together, these require that

x 6 min{y + 2 ln b,−2 ln a} =: M(y) and
x > max{−2 ln b, y + 2 ln a} =: m(y)

That is, we distinguish the following cases in (A.1):

1. For y ∈ (−∞,−4 ln b), we have f−2
P2

i=1 ln p̃i
(y) = 0.

2. We have −2 ln b > y + 2 ln a for y ∈ [−4 ln b,−2 ln a − 2 ln b] and hence m(y) = −2 ln b and
M(y) = y + 2 ln b. Thus,

f−2
P2

i=1 ln p̃i
(y) =

1
4(b− a)2

e−
1
2 y

∫ y+2 ln b

−2 ln b

dx

=
1

4(b− a)2
e−

y
2 (y + 4 ln b).

3. We have −2 ln b 6 y + 2 ln a for y ∈ (−2 ln a − 2 ln b,−4 ln a) and hence m(y) = y + 2 ln a and
M(y) = −2 ln a. Thus,

f−2
P2

i=1 ln p̃i
(y) =

1
4(b− a)2

e−
1
2 y

∫ −2 ln a

y+2 ln a

dx

=
1

4(b− a)2
e−

y
2 (−y − 4 ln a).

4. For y ∈ (−4 ln a,∞), we have f−2
P2

i=1 ln p̃i
(y) = 0.
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