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Abstract

We use meta analytic combination procedures to develop new tests for panel
cointegration. The main idea consists in combining p-values from time series coin-
tegration tests on the different units of the panel. The tests are robust to hetero-
geneity as well as to cross-sectional dependence between the different units of the
panel. To achieve the latter, we employ a sieve bootstrap procedure with joint re-
sampling of the residuals of the different units. A simulation study shows that the
suggested bootstrap tests can have substantially smaller error-in-rejection probabil-
ities than tests ignoring the presence of cross-sectional dependence while preserving
high power. We apply the tests to a panel of Post-Bretton Woods data to test for
weak Purchasing Power Parity (PPP).
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1 Introduction

The application of unit root and cointegration tests in macroeconometric practice is often

hampered by the lack of large sample sizes. The (first-order) asymptotic approximation

used for deriving the distribution of the test statistics may then be rather inaccurate.

One solution to improve the power and reduce the error-in-rejection probability (size

distortion) of these tests is to pool several time series into a panel data set and develop

panel unit root and cointegration tests.

Pedroni [2004] and Kao [1999] generalize the residual-based tests of Engle and Granger

[1987] and Phillips and Ouliaris [1990], Larsson et al. [2001] extend the Johansen [1988]

tests to panel data while McCoskey and Kao [1998] propose a test for the null of panel

cointegration in the spirit of Shin [1994]. All these tests, however, rely on the assumption

that the different cross-sectional units of the panel are independent or, at most, exhibit

dependence of a rather simple form. This assumption, characterizing the so-called first

generation tests, greatly simplifies the derivation of limiting distributions of the panel

test statistics, but may not hold in practice. Phillips and Sul [2003], Moon and Perron

[2004] and Bai and Ng [2004] put forward factor approaches to deal with cross-sectional

correlation in panel unit root and cointegration testing. Their approach may, however,

require the validity of the factor structure assumption modelling the correlation structure

of the panel units. As argued by Breitung and Das [2005], size distortions may result if

this assumption, which is hard to verify, is not met.

The main contribution of the present paper therefore is to suggest new tests for panel coin-

tegration that are robust to cross-sectional dependence (or, synonymously, cross-sectional

correlation) of an arbitrary form. The main idea of the testing principle has been used

in meta analytic studies for a long time [see Fisher, 1970; Hedges and Olkin, 1985] and

was introduced into the panel literature by Maddala and Wu [1999] and Choi [2001], who

propose meta analytic panel unit root tests: Consider the testing problem on the panel

as consisting of N testing problems for each unit of the panel. Conduct N separate time

series tests and obtain the corresponding p-values of the test statistics. Then, combine

the p-values of the N tests (in a sense to be made precise below) into a single panel test

statistic. Hanck [2005] extends their framework to the panel cointegration setting.

To robustify the panel cointegration tests against cross-sectional correlation of an arbitrary

form, we use a bootstrap scheme that jointly resamples entire cross-sections of residuals to

preserve the cross-sectional correlation structure in the panel. We provide some simulation
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evidence to demonstrate the effectiveness of the suggested procedure. In particular, the

bootstrap tests can have dramatically smaller error-in-rejection probabilities than tests

ignoring the presence of cross-sectional dependence. At the same time, the bootstrap tests

preserve high power. We use the tests to investigate the weak PPP hypothesis for a panel

of Post-Bretton Woods exchange rate data. Our main result is that using cross-sectional

correlation corrected critical values may make an important difference in econometric

practice.

The remainder of the paper is organized as follows. The next section establishes notation

and reviews the meta analytic p-value combination tests for panel cointegration under the

assumption of cross-sectional independence. Section 3 discusses the bootstrap algorithm

used to robustify the tests against general forms of cross-sectional dependence. Section

4 summarizes the simulation evidence on the effectiveness of the bootstrap tests under

cross-sectional dependence. Section 5 illustrates the use of the tests. The final section

concludes.

2 P-Value Combination Tests for Panel Cointegra-

tion

Consider the multivariate time series regression

yi,t = αi + κit+ ϑit
2 + βixi,t + ui,t (i ∈ NN , t ∈ NTi

) (1)

for each of the N units of a possibly unbalanced panel. (a ∈ Nb
c is shorthand for

a = b, . . . , c, omitting b if b = 1.) The (K × 1) column vector xi,t = (xi1t, . . . , xiKt)
>

(i ∈ NN , t ∈ NTi
) collects the observations on the K regressors for given i and t. yi,t and

xi,t are integrated of order one, I(1) (i ∈ NN). The row vector βi, αi, κi and ϑi may vary

across i, allowing for heterogeneous cointegrating vectors and time polynomials of order

up to two, i.e. constants, trend and squared trend terms. We make the following Func-

tional Central Limit Assumption on the Data Generating Process (DGP) of the variables.

Assumption 1 (Invariance Principle).

Let zi,t := (yi,t,x
>
i,t)

> and ξi,t := (ξiyt, ξi1t, . . . , ξiKt)
>. The true process zi,t is

generated as zi,t = zi,t−1 + ξi,t, (i ∈ NN , t ∈ NTi
).

ξi,t satisfies T
− 1

2
i

∑[Tir]
t=1 ξi,t ⇒ Bi,Ωi

(r) (i ∈ NN) as Ti → ∞, where r ∈ [0, 1]

and ⇒ denotes weak convergence. [x] is the integer part of x and Bi,Ωi
(r)
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is vector Brownian motion with asymptotic covariance matrix Ωi. Also, the

K ×K lower right submatrix of Ωi, Ωxx,i, has full rank.

This assumption ensures, among other things, that there are no cointegrating relationships

among the regressors in (1).1 pi denotes the p-value of a time series cointegration test

applied to the ith unit of the panel. Let θi,Ti
be a time series cointegration test statistic

on unit i for a sample size of Ti. Let FTi
denote the null cumulative distribution function

(cdf) of θi,Ti
. Since the tests considered here are one-sided, pi = FTi

(θi,Ti
) if the test

rejects for small values of θi,Ti
and pi = 1− FTi

(θi,Ti
) if the test rejects for large values of

θi,Ti
. We only consider time series tests with the null of no cointegration.

We test the following null hypothesis:

H0 : There is no cointegration for any i (i ∈ NN),

against the alternative

H1 : There is cointegration for at least one i.

Under H0, {ui,t}t in (1) is an I(1) stochastic process (i ∈ NN). The alternative H1 states

that there are 1 to N cointegrated units in the panel. That is, a rejection neither allows

to conclude that the entire panel is cointegrated nor does it provide information about

the number of units of the panel that exhibit cointegrating relationships.

We make the following assumptions [see Pedroni, 2004]:

Assumption 2 (Continuity).

Under H0, θi,Ti
has a continuous distribution function (i ∈ NN).

Assumption 3 (Cross-Sectional Uncorrelatedness).

E[ξi,tξ
>
l,s] = 0 (s, t ∈ NTi

, i 6= l). The error process ξi,t is generated as a linear

vector process ξi,t = Ci(L)ηi,t, where L is the lag operator and ηi,t is vector

white noise.

Remarks

• Assumption 2 is a regularity condition which ensures a uniform distribution of the

p-values of the time series test statistics under H0: pi ∼ U [0, 1] (i ∈ NN) [see, e.g.,

Bickel and Doksum, 2001, Sec. 4.1]. It is satisfied by the time series tests considered

in this paper.

1See Pedroni [2004] for further discussion.
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• Assumption 3 is strong [see, e.g., Banerjee et al., 2005]. It implies that the different

units of a panel must not be linked to each other beyond relatively simple forms of

correlation such as common time effects. These can be eliminated by demeaning

across the cross-sectional dimension. This assumption is likely to be violated in

many typical macroeconomic panel data sets. For instance, consider a panel data

set consisting of exchange rates vis-à-vis the U.S. dollar. The exchange rates of, say,

the Euro and the Mexican Peso generally do not react identically to a macroeconomic

shock in the U.S., given the very different structure of financial and trade links with

the U.S.

• We emphasize that Assumption 3 is sufficient, but not necessary. Section 3 presents

an approach that allows to dispense with this assumption.

We now present the test statistics for panel cointegration put forward in this paper.

Combine the N p-values of the individual time series cointegration tests, pi (i ∈ NN), as

follows:

Pχ2 = −2
N∑

i=1

ln(pi) (2a)

PΦ−1 = N− 1
2

N∑
i=1

Φ−1(pi), (2b)

where Φ−1 denotes the inverse of the cdf of the standard normal distribution.2 When

considered as a group we refer to Eqs. (2a) and (2b) as P tests. Furthermore, we refer

to P tests relying on Assumption 3 as “simple” P tests. The P tests, via pooling p-

values, provide convenient tests for panel cointegration by imposing minimal homogeneity

restrictions on the panel. For instance, the different units of the panel can be unbalanced.

Furthermore, the evidence for (non-)cointegration is first investigated for each unit of

the panel and then compactly expressed with the p-value of the time series cointegration

test. Hence, the coefficients describing the relationship between the different variables

for each unit of the panel can be heterogeneous across i. Thus, the availability of large-

T time series allows for pooling the data into a panel without having to impose strong

homogeneity restrictions on β as in traditional panel data analysis.3

We now turn to the asymptotic distributions of the tests.

2See also Maddala and Wu [1999] and Choi [2001].
3For an overview of panel data models relying on N →∞ asymptotics see Hsiao [2003].
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Theorem 1.

Under the null of no panel cointegration and Assumptions 1, 2 and 3, as Ti →∞ (i ∈ NN),

the P tests are asymptotically distributed as

(i) Pχ2 →d χ
2
2N

(ii) PΦ−1 →d N (0, 1).

Proof. (i) The proof is an application of the transformation theorem for absolutely continuous random
variables (r.v.s) [see, e.g., Bierens, 2005, Thm. 4.2]. Under H0, pi ∼ U [0, 1]. Let y = g(pi) := −2 ln(pi).
Then, pi = g−1(y) = e−

1
2 y and the density of −2 ln(pi) is given by

f−2 ln(pi)(y) = fpi
(g−1(y))

∣∣∣∣ ∂∂y g−1(y)
∣∣∣∣ .

Hence, ∂
∂y g

−1(y) = − 1
2e
− 1

2 y and | ∂
∂y g

−1(y)| = 1
2e
− 1

2 y. We have fpi
(g−1(y)) = 1 ∀ g−1(y) ∈ [0, 1]. This

implies f−2 ln(pi)(y) = 1
2e
− 1

2 y. The density of a χ2
R r.v. is fχ2

R
(y) = 1

2R/2Γ(R/2)
y

R
2 −1e−

y
2 . With R = 2, we

get fχ2
2
(y) = 1

2Γ(1)e
− y

2 . Recall that Γ(1) =
∫∞
0
t1−1e−t dt = 1. So,

fχ2
2
(y) =

1
2
e−

y
2 .

We have shown that f−2 ln(pi)(y) = fχ2
2
(y). The proof is complete since the sum of N independent χ2

R

r.v.s is distributed as χ2
NR.

(ii) Since, under H0, P(Φ−1(pi) 6 x) = P(pi 6 Φ(x)) = Φ(x), we have Φ−1(pi) ∼ N (0, 1). By the
convolution theorem [see, e.g., Spanos, 1986, pp. 99], the sum of N independent N (0, 1) r.v.s has a
N (0, N) distribution. Hence, PΦ−1 is also normal with

E[PΦ−1 ] = 0 and Var[PΦ−1 ] = Var

[
N− 1

2

∑N

i=1
Φ−1(pi)

]
=

1
N

Var

[∑N

i=1
Φ−1(pi)

]
= 1.

Using consistent (as Ti →∞) time series cointegration tests, pi →p 0 under the alternative

of cointegration. Hence, quite intuitively, the smaller pi, the more it contributes towards

rejecting the null of no panel cointegration. The decision rule therefore is to reject the

null of no panel cointegration when the realized test statistic Pχ2 exceeds the critical value

from a χ2
2N distribution at the desired significance level. For (2b) one would reject for large

negative values of the panel test statistic PΦ−1 . We also see from the proof that the tests

have a well-defined asymptotic distribution for any finite N . This feature is attractive

because in many applications of panel cointegration analysis like the above example, the

assumption of N , the number of units in the panel, going to infinity may not be a natural

one. To rationalize the alternative hypothesis H1, note that a small fraction of the units

of the panel exhibiting strong evidence of time series cointegration, thus yielding low p-

values, might lead to a rejection of the null hypothesis. Thus, as stated above, rejection

of H0 should not be taken as evidence of the entire panel being cointegrated.
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We now discuss how to obtain the p-values required for computation of the P test statis-

tics. The null distributions of residual based cointegration tests generally converge to

functionals of Brownian motion. Hence, analytic expressions of the distribution functions

are not available and p-values of the tests cannot simply be obtained by evaluating the cor-

responding cdf. In the time series case, it is now fairly standard practice to obtain p-values

of unit root and cointegration tests using response surface regressions. We use p-values

of the Augmented Dickey-Fuller (ADF ) cointegration tests [Engle and Granger, 1987] as

provided by MacKinnon [1996].4 Suppressing deterministic trend terms for brevity, the

p-values are derived from the t-statistic of %i − 1 in the OLS regression

∆ûi,t = (%i − 1)ûi,t−1 +

Ji∑
j=1

νj∆ûi,t−j + εJi,i,t, (3)

where ∆ := 1 − L and Ji is the number of lagged differences required to render εJi,i,t

white noise. Here, ûi,t is the usual OLS residual from the first stage Engle and Granger

[1987] regression (1). However, as should be clear from the above discussion, the P

tests are general enough to accommodate any time series cointegration test for which

p-values are available. Alternatively, one could, for instance, capture serial correlation

by the semiparametric approach of Phillips and Ouliaris [1990].5 We focus on the Engle

and Granger [1987] ADF cointegration test because of its popularity and widespread

availability.

3 Allowing for cross-sectional error dependence

We now relax Assumption 3. As can be seen from the proof of Theorem 1, this assumption

guarantees the correct null distributions of the test statistics. Theorem 1 no longer holds

under general forms of cross-sectional dependence. We suggest a bootstrap approach to

capture the dependence structure in the panel with the aim to construct panel cointe-

gration tests robust to the presence of cross-sectional correlation. We employ the sieve

4MacKinnon improves upon his prior work by using a heteroskedasticity and serial correlation robust
technique to approximate between the estimated quantiles of the response surface regressions.

5In Hanck [2005], we also employ the p-values for the Johansen [1988] λtrace and λmax tests. The
corresponding P tests perform poorly, however, as the Johansen [1988] time series cointegration tests
severely overreject for the time series lengths usually available in macroeconometric practice. Accordingly,
the corresponding p-values are not distributed as U [0, 1] under H0 and hence not suitable for the P tests.
Hanck [2005] also discusses other p-value combination tests and provides more extensive Monte Carlo
evidence on the simple P tests.
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bootstrap.6 The sieve bootstrap approximates ui,t with a finite order autoregressive pro-

cess, where the order increases with sample size, and resamples from the residuals. Under

the following assumption, the sieve bootstrap yields an accurate approximation [Chang

and Park, 2003]:

Assumption 4 (Linearity).

The first differences of the equilibrium errors are generated as (possibly het-

erogeneous) linear processes, ∆ui,t = φi(L)εi,t, where φi(z) :=
∑∞

`=0 φi,`z
`.

More precisely, the bootstrap algorithm proceeds as follows.

1. Compute the P test statistic(s) according to (2a) and (2b). Denote the realizations

by P̃χ2 and P̃Φ−1 .

2. Suppressing deterministic trend terms and denoting estimates by a ˆ , estimate

equation (1) by OLS:

yi,t = α̂i + β̂ixi,t + ûi,t. (i ∈ NN , t ∈ NTi
)

3. Fit an autoregressive process to ∆ûi,t (i ∈ NN , t ∈ N2
Ti

). It is natural to use the Yule-

Walker procedure because it always yields an invertible representation [Brockwell

and Davis, 1991, Secs. 8.1–2]. Letting ∆ûi := (Ti − 1)−1
∑Ti

t=2 ∆ûi,t, compute

γ̂i(j) :=
1

Ti − 1− j

Ti−j∑
t=2

(∆ûi,t −∆ûi)(∆ûi,t+j −∆ûi), (i ∈ NN , j ∈ Nq)

the empirical autocovariances of ∆ûi,t up to order q. Defining

Γ̂i,q :=

 γ̂i(0) · · · γ̂i(q − 1)
...

. . .
...

γ̂i(q − 1) · · · γ̂i(0)


and γ̂i := (γ̂i(1), . . . , γ̂i(q))

>, obtain the AR coefficient vector as

(φ̂q,i,1, . . . , φ̂q,i,q)
> := Γ̂−1

i,q γ̂i. (i ∈ NN)

4. The residuals are, as usual, given by

ε̂q,i,t := ∆ûi,t −
q∑

`=1

φ̂q,i,`∆ûi,t−`. (i ∈ NN , t ∈ Nq+2
Ti

)

Center ε̂q,i,t to obtain

ε̃q,i,t := ε̂q,i,t −
1

Ti − q − 1

Ti∑
g=q+2

ε̂q,i,g. (i ∈ NN , t ∈ Nq+2
Ti

)

6For related approaches, see Maddala and Wu [1999] and Swensen [2003].
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5. Resample nonparametrically from ε̃q,i,t to get ε∗q,i,t. To preserve the empirical cross-

sectional dependence structure, jointly resample residual vectors

ε̃q,�,t := (ε̃q,1,t, . . . , ε̃q,N,t). (t ∈ Nq+2
Ti

)

6. Recursively construct the bootstrap samples as7

∆u∗q,i,t =

q∑
`=1

φ̂q,i,`∆u
∗
q,i,t−` + ε∗q,i,t. (i ∈ NN , t ∈ Nq+2

Ti
)

7. It is necessary to impose the null of a unit root when generating the artificial data in

bootstrap unit root tests to achieve consistency [Basawa et al., 1991]. Accordingly,

impose the null of non-cointegration by integrating ∆u∗i,t to obtain u∗i,t and form

y∗q,i,t = α̂i + β̂ixi,t + u∗q,i,t. (i ∈ NN , t ∈ NTi
)

8. Perform the P tests using the artificial data set (y∗q,i,t,x
>
i,t)

>. Denote the realizations

of the test statistics by, e.g., P b∗
χ2 .

9. Repeat steps 4 to 8 many, say B, times.

10. Denote the indicator function by 1{ } and choose a significance level α. Then, reject

H0 of the Pχ2 or the PΦ−1 test if

1

B

B∑
b=1

1{P b∗
χ2 > P̃χ2} < α or

1

B

B∑
b=1

1{P b∗
Φ−1 < P̃Φ−1} < α, (4)

respectively.

Remarks

• We provide no formal proof of the consistency of this bootstrap procedure. It might

be conjectured from the proofs of bootstrap consistency for unit root tests [Swensen,

2003; Chang and Park, 2003] and for inference in cointegrating regressions [Chang

et al., 2006]. The latter authors argue that their results may hold more generally,

e.g., for panel cointegration models.

• Steps 4 and 6 respectively “prewhiten” (or “sieve”) and “recolour” the residuals us-

ing the sieve bootstrap. Thus, we attempt to generate a valid bootstrap distribution

of the data across the time series dimension using a parametric AR approximation

to the true DGP. There is, however, no plausible parametric approximation of the

7We run the recursion for 30 initial observations before using the ∆u∗q,i,t to mitigate the effect of initial
conditions.
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dependence structure across the cross-sectional dimension. We therefore resample

entire cross-sections of residuals to preserve the cross-sectional dependence struc-

ture of the data. The resampling scheme across the cross-sectional dimension is thus

similar to block bootstrap procedures [Künsch, 1989].

• The selection of the lag order q in step 3 can be based on any of the well-known

selection criteria such as the Akaike Information Criterion or a top-down procedure.

The goal of the sieve bootstrap is to prewhiten the residuals across t to obtain

random resamples from ε̃q,i,t. Hence, a selection scheme based on the whiteness of

ε̃q,i,t is also an appealing choice.

• It is possible to let q vary over i, qi 6= q, to capture heterogeneity in the error

processes. We do not make this possibility explicit in the notation.

• It is also possible to compute the bootstrap P tests based on resamples from

prewhitened residuals of a VAR regression of (∆ûi,t,∆x>i,t)
>. For a related pur-

pose, Chang et al. [2006] advocate a similar scheme in order to capture endogeneity

of the regressors xi,t. Our simulation results are however similar to the ones to be

presented for the sieve bootstrap in the next section. The VAR approach is com-

putationally considerably more expensive and is therefore not discussed in detail.

Results are available upon request.

4 Monte Carlo study

We perform a Monte Carlo study of the tests proposed in the previous sections. The main

results are as follows. The simple P tests can have high errors in rejection probabilities

(ERPs) when the units of the panel exhibit cross-sectional correlation of a general form.8

Compared to the simple P tests, bootstrapping the P tests as outlined in the previous

section can strongly reduce the ERP.

The DGP used here is an extension of a design which has been used in many Monte

Carlo studies of (panel) cointegration tests. See Engle and Granger [1987] and, for the

extension to the panel data setting, Kao [1999]. For simplicity, consider the bivariate

8Suppose the DGP is in the null hypothesis set, the tests are performed at a nominal level α and the
rejection frequency, or type I error rate, of the test is R(α). Then, ERP := |R(α) − α|. The term size
distortion is often used synonymously [see Davidson and MacKinnon, 1999].
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case, i.e. K = 1.

yi,t − αi − βixi,t = vi,t, a1yi,t − a2xi,t = wi,t (i ∈ NN) (5)

where

vi,t = ρivi,t−1 + ĕzi,t, ∆wi,t = ĕwi,t,

ĕzi,t = ezi,t + λiεt ĕwi,t = ewi,t + πiewi,t−1

and  ezi,t

ewi,t

εt

 iid∼ N

 0

0

0

 ,
 1 ψσ 0

ψσ σ2 0

0 0 1


Remarks

• When |ρi| < 1 the equilibrium error vi,t in (5) is stationary such that yi,t and xi,t

are cointegrated with (1 αi βi)
>. Further, ρi need not be constant across i. We do,

however, choose a common ρ in the simulations to limit the number of experiments

and to facilitate the interpretation of the results.

• Solving the system of equations (5) for xi,t, we can write

xi,t =
a1αi + a1vi,t − wi,t

a2 − a1βi

.

xi,t is weakly exogenous when a1 = 0.

• The panel is cross-sectionally dependent because of the common factor εt and the

idiosyncratic factor loadings λi ∼ U [ζ1, ζ2], where U [ζ1, ζ2] denotes the uniform

distribution with lower bound ζ1 and upper bound ζ2.
9 Similar factor structures have

been employed by Bai and Ng [2004] and Phillips and Sul [2003]. Even though we

generate cross-sectional dependence via a single factor, the validity of the suggested

bootstrap tests does not depend on knowledge of the latent factor structure.

• Since λi 6= λ = cst. it is not possible to remove the cross-sectional dependence by

subtracting time-specific means N−1
∑

i zi,t, as would be possible under the stronger

assumptions of, e.g., Westerlund [2005].

• If πi 6= 0 there is a moving-average component in the errors. In particular, values

−1 < πi < 0 are well-known to have a potentially severe size-distorting effect on

unit root and cointegration tests [Schwert, 1989].

9Uniform random numbers are generated using the KM algorithm from which Normal variates are cre-
ated with the fast acceptance-rejection algorithm, both implemented in GAUSS. Part of the calculations
are performed with COINT 2.0 by Peter Phillips and Sam Ouliaris.
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The dimensions of the panel are N ∈ {10, 30} and, after having discarded 75 initial

observations, T ∈ {50, 100}. These are representative for the dimensions of data sets often

encountered in macroeconometric applications. For a given cross-sectional dimension we

draw the unit specific intercepts as αi ∼ U [0, 5] and keep them fixed for both T . We

choose βi = U [1, 2], a2 = −1 and σ = 1 and investigate all combinations of the following

values for the parameters of the model: a1 ∈ {0, 1}, ψ ∈ {0, 0.5}, π ∈ {−0.5, 0} and

ρ ∈ {0.8, 0.9, 1}. Further, there are three different degrees of cross-sectional dependence:

(ζ1, ζ2) = (0, 0), (ζ1, ζ2) = (0, 1) and (ζ1, ζ2) = (1, 4), corresponding to no, “weak” and

“strong” cross-sectional dependence [see Mark et al., 2005]. That is, 72 experiments are

conducted for each of the 4 panel dimensions.

To limit the computational burden, we use M = 1, 000 replications with B = 1, 000

bootstrap resamples in each.10 The p-values are obtained from the Engle and Granger

[1987] ADF test, selecting the number of lagged differences Ji in the second stage ADF

regressions (3) according to the automatic procedure suggested by Ng and Perron [2001].

We record a rejection if (i) the Pχ2 test statistic exceeds the 5% critical value of the χ2
2N

distribution, the PΦ−1 test statistic falls below the 5% quantile of the cdf of the standard

normal distribution, −1.645, or (ii) for the bootstrap version of the tests, if equation (4)

applies.

To summarize, the DGP used here simultaneously addresses several issues that have

proved both relevant for empirical work and challenging for unit root and cointegration

tests. Hence, while cautioning that interpretation of Monte Carlo results should strictly

speaking be confined to the DGP at hand [see Horowitz and Savin, 2000], we are optimistic

that tests which perform well under this experimental design may be useful for applied

studies.

Table I reports the rejection rates from the Monte Carlo study of the bootstrap and

the simple P tests. For brevity, we only give the (representative) results for the serially

correlated case (π = −0.5) and ψ = 0.5.11 In order to illustrate the importance of a

suitable lag order q when applying the sieve bootstrap we choose q = 2 (columns BS2)

and the data dependent rule q = [4 · (T/100).25] (columns BSs). The columns “Sim” refer

to the simple P tests.

The main findings may be summarized as follows. The simple P tests overreject in

10To gauge the sampling variability of the experiments we perform selected experiments several times.
The rejection rates never differed by more than 2 percentage points and usually by less. This suggests
the number of replications is sufficient.

11The full set of results of the study is available upon request.
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Table I—Rejection Rates of the P Tests.

Pχ2 PΦ−1

N 10 30 10 30
T BS2 BSs Sim BS2 BSs Sim BS2 BSs Sim BS2 BSs Sim

(a) λi ∼ U [1, 4] (i) a1 = 0
50 .068 .049 .090 .092 .072 .141 .111 .081 .143 .127 .113 .193ρ = 1
100 .099 .056 .102 .114 .082 .166 .125 .091 .142 .156 .119 .233
50 .138 .092 .228 .156 .133 .313 .208 .157 .319 .235 .216 .452ρ = .9
100 .433 .294 .548 .477 .341 .691 .521 .393 .679 .691 .437 .815
50 .332 .267 .483 .396 .279 .632 .438 .379 .606 .502 .394 .753ρ = .8
100 .842 .736 .913 .879 .753 .954 .890 .805 .950 .912 .825 .981

(ii) a1 = 1
50 .200 .084 .272 .387 .148 .470 .237 .150 .214 .451 .253 .379ρ = 1
100 .256 .082 .162 .471 .128 .293 .289 .124 .180 .536 .248 .346
50 .185 .101 .165 .369 .160 .272 .224 .152 .096 .443 .307 .191ρ = .9
100 .273 .104 .078 .536 .143 .142 .327 .152 .076 .658 .334 .149
50 .229 .116 .155 .408 .211 .206 .303 .202 .093 .546 .415 .106ρ = .8
100 .452 .150 .138 .749 .300 .251 .550 .288 .162 .839 .593 .295

(b) λi ∼ U [0, 1] (i) a1 = 0
50 .047 .021 .024 .044 .011 .008 .077 .043 .021 .086 .055 .009ρ = 1
100 .103 .034 .035 .126 .036 .033 .127 .055 .033 .195 .087 .039
50 .157 .090 .090 .328 .208 .174 .326 .250 .131 .627 .540 .297ρ = .9
100 .763 .484 .599 .968 .873 .924 .903 .786 .774 .995 .980 .978
50 .569 .423 .486 .922 .773 .862 .804 .732 .630 .987 .974 .948ρ = .8
100 .999 .987 .998 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00

(ii) a1 = 1
50 .159 .057 .216 .289 .080 .322 .201 .119 .131 .383 .255 .182ρ = 1
100 .237 .068 .114 .477 .099 .191 .289 .118 .127 .559 .239 .185
50 .219 .113 .170 .404 .192 .275 .315 .229 .132 .590 .450 .188ρ = .9
100 .469 .232 .244 .905 .551 .537 .626 .455 .308 .974 .867 .695
50 .418 .227 .346 .790 .569 .625 .618 .470 .346 .942 .889 .630ρ = .8
100 .972 .791 .908 1.00 .989 1.00 .993 .946 .963 1.00 1.00 1.00

(c) λi ≡ 0 (i) a1 = 0
50 .030 .018 .015 .044 .006 .005 .059 .041 .011 .074 .033 .005ρ = 1
100 .081 .030 .019 .098 .015 .013 .092 .049 .016 .172 .063 .010
50 .145 .091 .068 .349 .165 .111 .332 .255 .091 .737 .605 .186ρ = .9
100 .789 .512 .567 .996 .940 .958 .927 .797 .784 1.00 .999 .995
50 .577 .367 .444 .953 .853 .848 .843 .742 .592 1.00 .998 .964ρ = .8
100 1.00 .995 .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(ii) a1 = 1
50 .157 .062 .196 .271 .085 .308 .198 .129 .132 .370 .153 .170ρ = 1
100 .265 .071 .142 .496 .090 .209 .304 .110 .124 .564 .215 .199
50 .241 .127 .198 .425 .205 .305 .327 .237 .143 .645 .510 .250ρ = .9
100 .583 .319 .345 .946 .664 .709 .744 .551 .450 .990 .940 .853
50 .481 .317 .405 .863 .649 .752 .680 .535 .435 .983 .947 .784ρ = .8
100 .994 .890 .969 1.00 1.00 1.00 .999 .990 .995 1.00 1.00 1.00

Note: ψ = 0.5, πi = −0.5. M,B = 1, 000 replications and resamples.
Panels (a), (b) and (c) correspond to “strong”, “weak” and no correlation.
Panels (i) and (ii) correspond to the exogenous and endogenous case.
BS2, BSs and Sim are the sieve bootstrap with q = 2, q data dependent, and simple, resp.
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the presence of cross-sectional correlation. The strength of the dependence—see the rows

ρ = 1 in panels (a) and (b)—does matter. The ERPs are particularly severe in the presence

of endogenous regressors (see panels (ii) vs. (i)). Under “strong” correlation (panel (a))

and endogeneity (a1 = 1), the simple P tests even seem to be biased as they reject more

frequently for samples generated under H1 than for samples generated under H0. On

the other hand, the difference in the performance of the tests between the uncorrelated

case (c) and the weakly correlated case (b) is small, suggesting that correlation robust

tests may be most expedient when one suspects strong forms of dependence in the data.

Generally, the sieve bootstrap is capable of removing or at least substantially reducing the

ERP. Size control usually is more effective in columns BSs than in columns BS2. Thus,

as expected, it is necessary to suitably prewhiten the residuals with a data-dependent lag

order selection scheme for q. This is in line with many other studies in the nonstationary

panel literature. For instance, Hlouskova and Wagner [2006] find that selection of the lag

length in panel unit root ADF regressions plays an important role for the behavior of

many popular tests.

Concerning the power of the tests, consider rows ρ = 0.9, 0.8. Power increases with

T , as expected. The increase in power with growing N is more pronounced when the

dependence in the data is smaller. This is intuitive because under strong dependence, the

amount of independent information in the panel is smaller for a given N .

5 An Empirical Application to the PPP Hypothesis

In this section, we reconsider the Purchasing Power Parity (PPP) hypothesis that has

attracted wide attention in the literature [see Taylor and Taylor, 2004, for a recent survey].

Assuming the law of one price to hold at least in the long run, its absolute version implies

that the ratio of domestic price level Pi,t and foreign price level P ∗i,t should be close to

the exchange rate Si,t. Equivalently, the real exchange rate Ri,t should be near one.

Empirically, denoting natural logs by lowercase letters, the PPP hypothesis therefore

postulates that

ri,t = pi,t − p∗i,t − si,t (i ∈ NN)

is a stationary process. Due to factors such as transportation costs, one often allows for

non-unitary coefficients to obtain an equation of the form

p∗i,t = ai + βi1pi,t + βi2si,t + ei,t, (i ∈ NN) (6)
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Table II—Tests for Weak Purchasing Power Parity

Countries âi β̂1i β̂2i Ji t%i−1

Australia 16.848 0.833 3.982 2 -1.912
Austria -23.109 1.216 -0.115 2 -2.412
Belgium -3.907 1.114 -0.205 1 -1.626
Canada -5.292 0.943 10.491 1 -0.809
Denmark 12.461 0.974 -1.005 0 -0.751
Finland 10.224 0.915 0.455 3 -1.841
France 18.154 0.959 -2.014 1 -0.446
Germany -40.631 1.425 -3.421 3 -2.778
Greece 38.940 -0.036 0.352 0 -2.273
Ireland 30.309 0.875 -23.705 0 -1.082
Italy 28.505 0.659 0.003 3 -2.815
Japan 6.847 1.098 -0.119 0 -1.222
Netherlands -21.331 1.290 -6.165 0 -3.010
New Zealand 26.845 0.734 3.613 2 -1.727
Norway 11.707 0.888 0.489 1 -1.500
Portugal 38.443 0.383 0.155 3 -2.821
Spain 27.919 0.657 0.046 1 -2.340
Sweden 14.692 0.766 1.426 3 -2.423
Switzerland -30.012 1.313 -2.622 0 -1.203
United Kingdom 16.231 0.819 5.693 1 -2.002
United States numeraire country

Panel Results simple bootstrap critical values for q =
cr. val 2 4 6 8 10

P̃χ2 16.751 55.758 46.018 33.160 38.908 37.408 41.151
P̃Φ−1 3.483 -1.645 -0.522 1.190 0.383 0.432 -0.052
Note: First 3 columns are estimates of (6), Ji are number of lagged differences
chosen for unit root tests on êi,t. t%i−1 is t-statistic from (3). Bottom part gives
realized test statistics (left), simple (middle) and bootstrap (right) 5% critical
values for different AR orders q in the sieve bootstrap procedure.

referred to as the weak PPP hypothesis. Since the variables typically are I(1), the weak

PPP hypothesis implies that ei,t is stationary, or, equivalently, that p∗i,t, pi,t and si,t are

cointegrated.

We use quarterly Post-Bretton Woods data for a panel of OECD countries, observing the

spot exchange rate and the consumer price index ranging from 1973:1 until 1998:2.12 The

numeraire country (with respect to which the spot exchange rate is sampled) is the United

States. As has been pointed by, inter alia, O’Connell [1998], the choice of a numeraire

country naturally induces a common component in the set of regressions (6). It is therefore

12The data is from the IMF Financial Statistics CD-ROM. The list of included countries can be found
in Table II.
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interesting to investigate the effect of using cross-sectional correlation robust tests of the

PPP hypothesis. Table II reports the estimation results. The first three columns give the

estimates of ai, βi1 and βi2. The results differ across countries, making it attractive to

use a panel procedure that allows for heterogeneity. The number of lagged differences Ji

chosen by the procedure of Ng and Perron [2001] is reported in column 4. The fifth column

gives the results for the t-statistics of the individual ADF cointegration regressions (3).

All statistics fail to produce evidence in favor of PPP, clearly exceeding the critical value

of -3.837. The Netherlands have the smallest statistic t%Neth−1
= −3.010, implying a p-

value of 0.251 [MacKinnon, 1996]. The estimates of the panel tests are reported in the

bottom of Table II. In view of the individual outcomes, it is not surprising to see that

the simple and bootstrap p-value combination tests also do not reject the null hypothesis

of no PPP.

Even though neither tests rejects the null, the critical values differ substantially. In

particular, the bootstrap critical values are almost all closer to the realized test statistic,

indicating that using the critical values of the simple tests would be overly conservative

in the present application. We conclude that using cross-sectional correlation robust tests

may well make an important difference in econometric practice.

6 Conclusion

We suggest new meta analytic p-value combination tests for panel cointegration. The tests

are robust to cross-sectional dependence of an arbitrary form. To achieve robustness, a

bootstrap procedure is used. Further advantages compared to other widely used panel

cointegration tests are that they are flexible, intuitively appealing and comparatively easy

to compute.

The simulation study reveals that the approach is generally effective in improving the

reliability of the “simple” P tests. However, care is needed in properly selecting the lag

order in the sieve bootstrap scheme. This finding is analogous to the well-known result

that the size and power of time series unit root and cointegration tests are fairly sensitive

to the selection of the correct number of lagged differences in the ADF regressions (or,

selection of lag truncations in estimating long-run variances).

A further interesting finding is that the power gains from using panel tests are the smaller

the stronger the cross-sectional correlation in the data. We interpret this as reflecting
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that combining correlated time series leads to less additional information than combining

independent series. This could imply that the impressive power gains reported in simula-

tions of first generation panel unit root tests vs. time series unit root tests are partially an

artefact of the experimental design relying on independence of the units. Our empirical

study of the weak PPP hypothesis reveals that cross-sectional correlation robust critical

values for the P tests can differ substantially from their simple counterparts. It would be

interesting to investigate how other commonly used panel cointegration tests such as those

developed by Pedroni [2004] or Kao [1999] perform under general forms of cross-sectional

correlation.

Another task for future research is to establish whether the bootstrap procedure suggested

in this paper is consistent in the sense of leading to the same limiting distributions for

the bootstrap statistics as for the original ones. It may be possible to establish bootstrap

consistency along the lines of Chang and Park [2003], Chang et al. [2006] and Swensen

[2003].
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