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Preface

This work is a suggestion of teaching of quantum physics at high school. It consists of
three parts. The first part is the main part which is an introduction to quantum
mechanics. Beginning from the Stern-Gerlach experiment  and some other
<< gedanken>> experiments we introduce quantum mechanical  concepts which explain
the experiments. With the help of the simplest Hilbert space in two dimensions, which
describes a spin ½  particle ,we introduce the most important concepts of quantum physics
in a simple and understandable way. In addition the mathematical description is algebraic
so that the mathematical difficulties associated with differential equations and integrals
are overcame , since they are replaced by the algebra of vector states . Furthermore an
extension to some interesting and advanced subjects are considered. The second part
contains a series of questionnaires which  were given to pupils together with the
corresponding results, i.e. conclusions and remarks. The third part consists of three
appendices, the first one contains the mathematics which must be known to the teacher in
order to teach the lesson, the second one is  referred to the density matrix and the third
one to entanglements.
Also I would like to thank my Professors A. Pflug and E. Paschos for their unlimited help
during the preparation and development of this dissertation.         

N. G. Diamantis
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PART A
                                                    

                                                         states in quantum mechanics
                                                                operators-time evolution 



1. States In Quantum Mechanics

1.1 States in Classical Mechanics

The description of a particle in the frame of classical mechanics is supposed to be
complete if we know exactly the position and the velocity of the particle at any time. That
means that we know exactly the functions x (t) and v (t). Therefore the state of a particle
in classical mechanics is determined by the position x (t) and the velocity v (t).

Also if we know the initial values of position and velocity at t=0 that means, that we
know x (0) and v (0), then applying Newton law we calculate the values x (t) and v (t) at
any time t.

( x 0, v 0)
initial State

For a system that consists of many par
any  member of the system ( x 1, v 1), 

If we examine a thermodynamical sy
we know the state of it if we know 
volume (V ) and temperature (T ). 
thermodynamical system.

1.2 States in Quantum Mechanics

If we try to find the state of a microsc
physics, that is we try to define
momentum p mv= ) we will see that 
position x  and momentum p  is im
uncertainly relation 

That is the multiplication of the unce

greater or equal to 
2
h
π

=h , where 

question: What is the state in quantum

The state in quantum mechanics is ab
physical quantities, which we can me
position, momentum, energy, angula
label a state of a particle or system by

Let us suppose that we measure the E
that the particle (or system) is in state

value 2Ε  then the particle would be in
Newton law
7

( x (t), v (t))
the state at any time

ticles finding the position and the velocity for 
( x 2, v 2),… we determine the state of the system.

stem, for example a can which contains a gas then
the value of the physical quantities pressure ( P ),
That is ( P , V , T ) is an equilibrium state of a

opic particle i.e. electron , in the frame of classical
 the position x  and the velocity v  (or the
it is impossible. The simultaneous measurement of
possible. We conclude that from the Heisenberg

x p∆ ⋅∆ ≥ h

rtainty of position x∆  and momentum p∆ is always

h  is the Plank constant. Consequently we put the

 mechanics?

solutely connected with the measurement!! All the
asure, will be referred as observables for example

r momentum,…. It is very reasonable to define or
 the value of an observable.

nergy Ε  and we find the value 1Ε . Then we can say
 1Ε  which we remark as 1Ε  (ket). If we found the

 state 2Ε  and so on.
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There are observables that can be simultaneously measurable and other that can not, it
depends on their dependence on momentum and position. Let two observables A and B be
simultaneously measurable. Then if measuring the A and B we find the values ia  and jß
respectively, the state of the system is ,ai ßj . Repeating the measurement of the A or
B we find again the values ia  or jß  respectively. It is significant to have more and
more  observables simultaneously measurable to define a state. 
Let us suppose that two observables A and Γ are not simultaneously measurable and let us
measure the A and find the value 1a . Obviously the state is 1a . Then measuring the Γ

the result is 1γ . Can we say that the stat is 1 1,a γ ? The answer is no, because if we

measure again the A we will no absolutely find the value 1a . Simply the state was 1γ . As

we will see later in this case the state ia  can be written as a linear combination of jγ
and vice-versa.

We will examine the most simple system that of a particle with spin ½ and we will try to 
explain more on it.

1.3 Spin

As we know the earth revolves around the sun and rotates about its axis. For the first
motion the angular momentum is L m v r= ⋅ ⋅  and for the second one the spin angular
momentum is S I ω= ⋅ .

Where I : moment of inertia of the earth around an axis

and ω : angular velocity

It is experimentally confirmed that many microscopic particles have an intrinsic angular
momentum called spin S . A pedagogic way to explain the spin is to suppose that the
particles rotate about their axes, as the earth rotates about its axis. But attempts to explain
the spin of microscopic particles in this way have as results peculiar conclusions such as
velocities greater that the velocity of light. Therefore the spin is a clear quantum number
without classical analogy but on the other side it is a kind of angular momentum.

1.4 Stern-Gerlach Apparatus

The device which is described below and we will mention it as SG apparatus (Stern-
Gerlach apparatus) can be used to measure the components of the spin of a particle.

Fig 1(a) shows a schematic diagram of a SG apparatus. From a hot oven particles come
out and pass through a series of narrow slits. Then the beam is directed between the poles
of a magnet. One of the pole piece is flat and the other one has a sharp tip. An
inhomogeneous magnetic field is produced as in fig 1 (b).
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fig 1

If a particle which has a magnetic moment enters the magnetic field it is deflected and its
deflection depends on the component of the spin which is parallel to the direction of
magnetic field B . The deflection is proportional to magnetic moment which is
proportional to the spin. Consequently the deflection is proportional to the spin. Therefore
the measurement of deflection gives directly the value of the component of the spin.

1.5 Measurement of spin components

a) Measurement of Sz  - Well defined State

fig 2

OVEN

collimation

S

N

N

detector

S

(a) (b)

OVEN

Z

Y

X



We use the SG apparatus where B  is parallel to the z-axis. It will be mentioned as zSG
apparatus ( xSG , ySG  respectively). Passing the particles with spin ½ through a zSG
apparatus we expect, in the frame of classical physics, to find for Sz  any value from S+
to S− . It is happened because S  can make any angle ϑ  with z-axis 

0 ϑ π≤ ≤  (fig 3), consequently

cosSz S S Sz Sϑ ≤ ≤= ⇒ −

However the experiment shows that the beam split
two values for Sz ,

1
2

Sz = + h  (spin up)

and
1
2

Sz = − h (spin down)

If we use other particles perhaps we will find three and

consider only particles which their components take o

These particles are called spin ½ particles (i. e. electro
this type of particles for the rest of the text. Figure 4 s

fig 4

If we block the beam below and pass the higher beam 

only one beam that with 
2

Sz = + h  (fig 5)

S
ϑ

z

Sz

zSG

Sz

Sz
fig 3
10

s only in two beams. We find only

 more values for Sz . But we 

nly two values 
2

± h . 

ns, protons). We work only with 
hows schematically the experiment.

through a zSG  again we will take 

2
= + h

1
2

= − h
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fig 5

Consequently the beam with 
2

Sz = + h  is a well defined state and we write it as ↑z . It

is called a pure state

2
Sz = + = ↑

h z .

Similarly if we block the higher beam and pass the lower one through a zSG  we take only

one beam with 
2

Sz = − h  (fig 6). This is also a well define state, it is the state ↓z . It is

also a pure state

2
Sz = − = ↓

h z

       fig 6

β) Measurement of ,x yS S

If we pass the beam from oven trough a xSG  we also take two discrete beams with 

2
xS = + h and 

2
xS = − h  (fig7)

which correspond to 
states ↑x  and ↓x
Therefore we write

2
S = + 〉 = ↑

h xx

2
S = − 〉 = ↓

h xx
xSG

2
S× = + h

2
S× = − h

fig 7

zSG 2
Sz = − h

2
Sz = + h

zSG

2
Sz = + h

zSG 2
Sz = − h

zSG

2
Sz = − h
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Repeating the experiment using ySG  apparatus we define the state ↓y  and ↑y .
Where 

2
S = + 〉 = ↑

h
y y

and

2
S = − 〉 = ↓

h
y y .

γ) Measurement of zS  and S ×  simultaneously

Let us pass the beam from oven trough a zSG  apparatus and let the produced state ↑z  
to pass trough a SG ×  apparatus. We block the state below and examine the state above 
(fig 8).

fig 8

Finally our beam is the beam ( )a . Can we say that the beam ( )a  is a state

, ?
2 2

Sz Sα = = + × = + 〉
h h

According to classical mechanics it is correct but now the answer is no.
If we pass the ( )a  trough a zSG  it splits to two beams ↑z  and 

↓z , consequently the α  it was not only in ↑z  (Fig. 9).

fig 9

( )a 2
zS = +

h

2
zS = −

h

zSG

2
zS = + h

SG ×

2
zS = − h

2
S× = − h

2
S× = + h

( )a

zSG
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Consequently the components zS  and S×  are not simultaneously measurable (repeating

the measurement of the zS  we did find only the value 
2

+
h

). Similarly we can show that

the pairs ( zS , yS ), ( S× , yS ) are not also simultaneously measurable.
We can put the question: let the state be the ↑x . The experiments show that it contains

↑z  and ↓z . Can we write the ↑x  as a function of ↑z  and ↓z  ?

Let us examine the problem quantitively. If we have N  (large number) particles in state 

↑x and pass them through a zSG  then we take 
2
N  particles in state ↑z  and 

2
N  in state ↓z  (fig 10).

fig 10

Simply thinking someone could write the relation 

1 1
2 2

↑ = ↑ + ↓z zx

explaining the coefficients as the probability to find the state ↑x  in state ↑z  and 

↓z .

In the same way we could write

1
2
1
2
1
2

1
2
1
2
1
2

↓ = ↑ ↓

+

+

+

↑ = ↑ ↓

↓ = ↑ ↓

z z

z

z

x

x x

x x

(As we will see later these relations are false).

,
2
N

↑z

,
2
N

↓z

,N ↑x

zSG
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1.6 Modified SG  Apparatus

The device shown in fig 11 is called modified SG  apparatus ( )MSG . It consists of a
sequence of three SG  apparatus. The first and the last are the usual SG  but the second
one has the magnetic field in opposite direction and is twice as long.

   fig 11

A particle passing through a MSG×  follows one of the paths of fig 12, the higher path if

2
S× = + h  and the lower path if 

2
S× = − h , and it comes out moving along the initial

direction.

    fig 12

2
S× = + h

2
S× = − h

← →l 2← →l ← →l

S

S

S

N

N

N
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1.7 A very crazy result

We assume that N  particle in state ↑z  pass through a MSG×  apparatus and we have 

blocked the lower path (
2

S× = − h ). Finally the beam passes trough a zSG  (fig 13).

      fig 13
Obviously the beam after passing the MSG×  apparatus is in state ↑x  and passing the 

zSG  splits as follows:

4
N  particle in state ↑z

and

4
N  particle in state ↓z .

We repeat the experiment blocking the higher path. The result is drawn below (fig 14)

   fig 14

That is we find 
4
N  particles in state ↑z

and

4
N  particles in state ↓z

Suppose now that as we have been doing the last experiment at once we open the higher
channel. What do we expect to come out from zSG  apparatus? (fig 15).

,
4
N

↑z

,
4
N

↓z

,N ↑z
,

2
N

↑x
,

2
N

↑x

zSG
MSG×

,
4
N

↑z

,
4
N

↓z

,N ↑z
,

2
N

↓x

zSG

,
2
N

↓x

MSG×
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         fig 15

Obviously and the remaining 
2
N  particles in state ↑x  will give 

4
N  particles in state

↑z  and 
4
N  particles in state ↓z . Consequently we expect to find 

2
N  particle in state

↑z  and 
2
N  particles in state ↓z  as in fig 16.

fig 16

No!! the result is different. We find all of N particles in state ↑z !!! That is opening and

the other channel, the number of particles in state ↓z  becomes zero and in state ↑z
becomes N  (fig 17).

fig 17

,N ↑z

zSG
MSG×

,
4 4 2
N N N
+ = ↑z

,
4 4 2
N N N
+ = ↓z

,N ↑z

zSGMSG×

,N ↑z

,O ↓z

,N ↑z

zSGMSG×
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Consequently the old view for ↑x  and ↓x  can not be applied because we are led to

following inconsistency.

We have 
1 1
2 2

1 1 1 1 1 1
2 2 2 2 2 2
1 1
2 2

= + =

  = ↑ + ↓ + ↑ + ↓ =      

= ↑ + ↓

↑ ↑ ↓

z z z z

z z

z x x

However the experiment shows that the ↑z  is only ↑z . Therefore we cannot

interpret the coefficients as the probability to find the corresponding state.

From all experiments until now we can make two crucial remarks.

i) the values of zS , S × , yS  are discrete
ii) the contribution of the two beams ↑x  and ↓x  in the last experiment

gave two results one was the zero and the other the N (maximum).

But the above effects are wave effects. We observe discrete values in the case of standing
waves and in the case of interference of two waves we find out maximum and minimum
contribution. 

1.8 Vector State-Hilbert Space

As we know if we want to examine an one dimensional problem of classical mechanics it
is enough to work with scalar quantities. However for problems in two or three
dimensions some quantities such as velocity, force, acceleration,…. must be represented
by vectors. So we need different mathematics to describe  the problem. Also computers
work using matrix algebra.

After huge effort physicists found the convenient mathematical structure to describe the
behaviour of microscopic particles. This mathematical structure is the quantum
mechanics. We will try to make an introduction to this structure:

We shall restrict the discussion to spin 1
2

 particles. An observable quantity is the

component zS . The experiments show that zS  has two values ( 
2

±
h ). We assigned the

state ↑z  to value 
2

+
h  and the state ↓z  to value 

2
−
h . The states ↑z  and ↓z

constitute a basis of the Hilbert space for our problem.

Any state of the particle is a vector in Hilbert space and can be written as a linear
combination (superposition) of two vectors ↑z  and ↓z .

(contradiction)
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That is 

1 2c cΨ = ↑ + ↓z z

Where 1c  and 2c  are complex numbers! This is required as we will see in order to be able
to account interference phenomena.

We can explain the superposition, of course not strictly supposing that a beam in state 
Ψ  pass through a zMSG  (fig 18).

      fig 18

and as we know the emerging beam is also in state Ψ .

For any vector Ψ  (ket) we define a Ψ  (bra) as follows:

1 2c cΨ = ↑ + ↓z z

Where ↑z  and ↓z  are the bras corresponding to kets ↑z  and ↓z  and 1c  and 2c
the complex conjugates of 1c  and 2c  respectively.

We can also construct the Hilbert space of the problem by choosing as basis the
<<eigenstates>> of some other observable such as S × , yS  or nS  ( n  any direction). In this
case we will be measuring the projection of spin in the new direction and we will find

either 
2

+ h  or 
2

− h .

1.9 Probability amplitude-Probability

A crucial question is the following: If a particle is in state Ψ , what is the probability to

find it in some state Φ ? The answer is that:

We define as probability amplitude for a state Ψ  to be in state Φ :

Ψ

zMSG

Ψ
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probability amplitude = Φ Ψ  (inner product), (it is generally a complex number)
and the corresponding probability is 

2
P = Φ Ψ

We have seen that when a beam of particles is in state ↑z  and passes through a zSG

apparatus all particles outcome in state ↑z . Similarly if the initial beam is in state ↓z

we take the particles only in state ↓z . Therefore we can make the following table

↑z ↓z

   ↑z
2

1↑ ↑ =z z
2

0↑ ↓ =z z

         ↓z
2

0↓ ↑ =z z
2

1↓ ↓ =z z

From above table we conclude

1

0

0

1

↑ ↑ =

↑ ↓ =

↓ ↑ =

↓ ↓ =

z z

z z

z z

z z

Obviously when a particle is in state Ψ  the probability to be in that state is equal to one. 

Consequently:

2
1 1Ψ Ψ = ⇒ Ψ Ψ =

Let state Ψ  be

1 2c cΨ = ↑ + ↓z z
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Then from 1Ψ Ψ =  we find

2 2
1 2 1c c+ =

where 2
1 1 1c c c⋅= and 2

2 2 2c c c⋅=

Examples

We will try to write the state ↑x , ↓x , ↑y , ↓y  as a linear combination of the

states ↑z  and ↓z .

Let ↑x  be

1 2c c↑ = ↑ + ↓z zx

We know that 

2 1
2

↑ ↑ =z x ,
2 1

2
↓ ↑ =z x

and
1↑ ↑ =x x

From above relations we conclude (after some amount of work) that

1
1
2

c = and 2
2

iaec = .

Similarly we find that

1
2 2

ie β

↑ = ↑ + ↓z zy

And with the help of the relation

2 1
2

↑ ↑ =x y

finally we find 

1 1
2 2

↑ = ↑ + ↓x z z

1
2 2

i
↑ = ↑ + ↓y z z
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Working in the same way we also find

1 1
2 2

↓ = ↑ − ↓x z z

1
2 2

i
↓ = ↑ − ↓y z z

Let us explain the subject more explicitly using the experiments. We pass N  particles in
state ↑z  trough a MSG×  where we have blocked the ↓x . Then we pass the state

↑x  trough a zSG  (fig 19).

fig 19

The probability amplitude for the state ↑z  to be in state ↑x  is ↑ ↑x z  and the state 

↑x  to be in state ↑z  is ↑ ↑xz . Then the probability amplitude for the state ↑z  

to give ↑z  is
1 1 1

22 2
↑ ↑ ⋅ ↑ ↑ = ⋅ =x xz z

and the probability is

2 1
4

P = ↑ ↑ ⋅ ↑ ↑ =x xz z

Consequently 
4
N  particles are outcoming in state ↑z . Similarly the probability to

emerge out in state ↓z  is
2 1

4
P = ↓ ↑ ⋅ ↑ ↑ =x xz z

We repeat the experiment leaving open both of the paths (fig 20)

,
4
N

↑z

,
4
N

↓z

,N ↑z

zSGMSG×

,
2
N

↑x
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fig 20

The probability amplitude beginning as a state ↑z  to end in state ↑z  is 

↑ ↑ ↑ ↑ + ↑ ↓ ↓ ↑x x x xz z z z

and the probability is

2
P = ↑ ↑ ↑ ↑ + ↑ ↓ ↓ ↑ =z z z zx x x x

21 1 1 1 1
2 2 2 2

= ⋅ + ⋅ =

However the probability amplitude for an initial state ↑z  to end up in state ↓z  
is

↓ ↑ ↑ ↑ + ↓ ↓ ↓ ↑x x x xz z z z

and the corresponding probability is 

2
P = ↓ ↑ ↑ ↑ + ↓ ↓ ↓ ↑ =z z z zx x x x

2 2
= ↓ ↑ ↑ ↑ + ↓ ↓ ↓ ↑x x x xz z z z

2+ ⋅ ↓ ↑ ↑ ↑ ⋅ ↓ ↓ ↓ ↑ =x x x xz z z z
1 1 1 1 1 12 0
4 4 2 2 2 2

= + − ⋅ = − =

The last term is called interference term.

Conclusion: We realize that in order to explain the results of the experiments we treat the
probability amplitudes as the classical probabilities (addition, multiplication) and the
square of them gives the normal probability. As above we work with waves. If two waves

1Φ  and 2Φ  arrive at the same point then the resulting wave oscillates as the sum of waves
1 2Φ = Φ +Φ  with its intensity given by 2

1 2P = Φ +Φ .

,N ↑z

,O ↓z

,N ↑z

zSGMSG×
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2. OPERATORS - TIME EVOLUTION

2.1 Operators - Expectation Value of an Observable

Let us assume that a beam of N  particles in state

1 2c cΨ = ↑ + ↓z z

passes through a zMSG  apparatus with the lower path closed and the outcoming beam
passes through a zSG  apparatus. The results are drawn in fig 21.

fig 21

We observe that the first apparatus projects the state Ψ  onto the state ↑z

Ψ → ↑z

Mathematically it is described by an operator P ↑z  which is called projection operator and 
its action is:

1P c↑ Ψ = ↑ = ↑ ↑ Ψz z zz

It is convenient to write P ↑z as 
P ↑ = ↑ ↑z z z

Also blocking the higher path we could mathematically write the action:

Ψ → ↓z

as an operator P ↓z  where

2P c↓ Ψ = ↓ = ↓ ↓ Ψz z zz

,N Ψ

zSGzMSG

2
1 ,c N ↑z

2
1 ,c N ↑z
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and it could also be written as

P ↓ = ↓ ↓z z z

Let us suppose that we open both of paths. Obviously the Ψ  emerges unchanged 

Ψ → Ψ

Mathematically this action is described by an operator called unit operator Î .

Î Ψ = Ψ

We can also write the Î  as follows

I P P↑ ↓= +$ z z or

I = ↑ ↑ + ↓ ↓$ z z z z

Computing the quantity P ↑Ψ Ψz  we find 

( ) ( ) ( )1 2 1 2P c c c c↑Ψ Ψ = ↑ + ↓ ⋅ ↑ ↑ ⋅ ↑ + ↓z z z z z z z

( ) ( )1 2 1c c c= ↑ + ↓ ⋅ ↑ =z z z
2

1 1 1c c c⋅= =

We notice that the quantity P ↑Ψ Ψz  is the probability of the state Ψ   to be in the

state ↑z .

In the same way

2
2P c↓Ψ Ψ =z

is the probability of the state Ψ  to be in the state ↓z .

We want to measure the component zS  for a beam of N  particles in 
state 1 2c cΨ = ↑ + ↓z z .

Passing it through a zSG  apparatus we measure for 2
1c N  particle the value 

2
+
h  and for 

2
2c N  particles the value 

2
−
h  (fig 22)
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fig 22

Consequently the expectation value of the quantity zS  is

2 2
1 22 2

z

c N c N
S

N

   + + −   
   〈 〉 = =

h h

2 2
1 22 2

c c   = + + −   
   

h h ( )α

If for the quantity zS  we define a corresponding operator $zS  as follows 

$
2 2

zS P P= ↑ ↓
 + − 
 

h h
z z

We have that

$
2 2

zS P P↑ ↓
 Ψ Ψ = Ψ − Ψ = 
 
h h

z z

2 2
1 22 2 2 2

P P c c↑ ↓
 = Ψ Ψ − Ψ Ψ = + − 
 

h h h h
z z ( )β

From ( )α  and ( )β  we conclude that 

$z zS S〈 〉 = Ψ Ψ

In addition, the action of the $zS  on ↑z  and ↓z  gives 

$
2

zS ↑ = + ↑
hz z

$
2

zS ↓ = − ↓
hz z

The states ↑z  and ↓z  are called eigenstates of the $zS  with eigenvalues 
2

+
h  and 

2
−
h , respectively.

,N Ψ

zSG

2
1 ,

2
c N  + 

 
h

2
1 ,

2
c N  − 

 
h
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Substituting in the definitions of the $zS  the operators P ↑z  and P ↓z  we find

$
2 2

zS  = ↑ ↑ + − ↓ ↓ 
 

h hz z z z

General conclusion:

Any physical quantity which can be measured is known as observable. In quantum
mechanics an observable is represented by an operator. Let A be an observable and its
eigenstate are 1 2,a a〉 〉  and the corresponding eigenvalues 1, 2a a . Then A  is represented
by the operator.

1 1 1 2 2 2A a a a a a a= +

The expectation value of A is given by the relation 

A = A〈 〉 Ψ Ψ

Where Ψ  is the state of the system.

It is also valid

1 1 2 2I a a a a= 〉 〈 + 〉 〈$

where I$  is the unit operator. This relation is known as the completeness condition.

2.2 Matrix representation of operators

Generally for an operator A  it is valid 

A Ψ = Φ (γ)

where Ψ  and Φ  are in general different kets.

We write Ψ  and Φ  as follows:

( )IΨ = Ψ = ↑ ↑ + ↓ ↓ Ψ =$ z z z z

= ↑ ↑ Ψ + ↓ ↓ Ψz z z z

and

Φ = ↑ ↑ Φ + ↓ ↓ Φz z z z

Then the (γ)  takes the form



( )A ↑ ↑ Ψ + ↓ ↓ Ψ = ↑ ↑ Φ + ↓ ↓ Φz z z z z z z z (δ)

We will do the same as in the case where we write the vector form of Newton law
mF = a  equivalently with three scalar equations. As we know taking the dot product of

the vector equation with each one of the basis vector , ,i j k  we obtain these three
equations.

= ⋅F m a

In the same way taking th
↑z  and ↓z  we find th

A↑ ↑ ↑ Ψ +z z z z

and

A↓ ↑ ↑ Ψ +z z z z

These two equations can b

A A

A A

 ↑ ↑ ↑

 ↓ ↑ ↓

z z z z

z z z z

Consequently we can repr

 ↑ Ψ
 Ψ →
 ↓ Ψ 

z

z

 ↑ Φ
 Φ →
 ↓ Φ 

z

z
,

which means that these ar
of the operator A  by the 2

i
$k
x xF m a= ⋅
j
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y y

z y

F m a
F m a

= ⋅
= ⋅

e inner product of equation (δ)  successively with the bras 
e two equations:

A↑ ↓ ↓ Ψ = ↑ Φz z z

A↓ ↓ ↓ Ψ = ↓ Φz z z

e conveniently cast in matrix form 

    ↓ ↑ Ψ ↑ Φ
    ⋅ =
    ↓ Ψ ↓ Φ↓    

z z

z z

esent the kets Ψ〉  and Φ〉  by the column matrices:

e the components of the state vectors and the matrix elements 
x2 matrix:

k j$

i$
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A A
A

A A

 ↑ ↑ ↑ ↓
 →
 ↓ ↑ ↓ ↓ 

z z z z

z z z z

Also a bra Ψ  is represent by the row

( ),Ψ → Ψ ↑ Ψ ↓z z
Obviously the representation depends on the basis which we choose. The above
representations are in the basis which consists of the eigenstates of the zS .

Remark: Any relation between operators and kets is also valid if we replace all quantities
by their corresponding matrices.

Examples:

It is easy to show that the representations of ,P P↑ ↓z z , and I P P↑ ↓= +$ z z  are 

$1 0 0 0 1 0
, , I

0 0 0 1 0 1
P P P P↑ ↓ ↑ ↓

     
→ → = + →     

     
z z z z

Also we can confirm that the relations

P ↑ ↑ = ↑z zz and $I P P↑ ↑= +z z

are satisfied by matrices

1 0 1 1
0 0 0 0

P ↑
    

↑ = ↑ ↔ =    
    

z zz

1 0 0 0
0

0 0 1 0
P ↑

    
↓ = ↔ =    

    
zz

The representations of $ $,z xS S  and $yS  in the }{ ,↑ ↓z z  basis are:

$

$

$

1 0
0 12
0 1
1 02

0
2 0

z

x

y

S

S

i
S

i

 
→  − 

 
→  

 
 

⇒  
− 

h

h

h
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2.3 Time Evolution

We will examine the energy of a system. The corresponding operator of energy E  is
denoted as H  and is called Hamiltonian. Let the eigenstates of H  be 1E  and 2E  and
the corresponding eigenvalues 1E  and 2E . We put the question: If a particle is in state

1 1E ,0 E=  at 0t =  (initial state) how does it evolve with time?

As we know the states have wave features so it is reasonable to assume that its time
evolution would be that of waves. Therefore it must contain terms of the form sin tω .
Thinking in this frame we suggest the form

1
1 1E ,t Ei te ω−=

What is the value of 1ω ? We borrow the ideas of photons. The photon simultaneously
behaves as wave and as particle and the connection between energy and frequency is
given by the relation 

E =   h f⋅ or E
ω =

h
.

Therefore it is reasonable to suggest 

1
1

E
ω =

h

Consequently

1E

1 1E ,t E
i t

e
− ⋅

= h

the inner product is 

1 1E E

1 1 1 1 1 1E ,t E , t E E E E 1
i t i t

e e
+ ⋅ − ⋅

= ⋅ = =h h

That means that the probability is conserved. 

Generally if the initial state is 

1 1 2 2(0) (0) E (0) Ec cΨ = +

then the state ( )tΨ  (its time evolution) is given by the relation

1 2E E

1 1 2 2( ) (0) E (0) E
i t i t

t c e c e
− ⋅ − ⋅

⋅ ⋅Ψ = +h h
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Remark: If A  is  an operator where A i i ia a a=  then any operator f(A)  is defined as

( ) ( )f A fi i ia a a= .

That is any function ( )f A  of A  has the same eigenstates ia 〉  as A  and its 

corresponding eigenvalue is f( )ia .
Using the above remark we find 

H H

1 1 2 2( ) (0) E (0) E
i t i t

t c e c e
− ⋅ − ⋅

⋅ ⋅Ψ = + =h h

( )
Ht

1 1 2 2(0) E (0) E
i

e c c
−

= +h or

Ht

( ) (0)
i

t e
−

Ψ = Ψh (ε)

2.4 The Schrödinger equation

Let a particle be at time t  in state ( )tΨ  and after a small time interval t∆  its state is

( )t tΨ +∆ . From equation (ε) we find
H

( ) ( )
ti

t t e t
∆

−
Ψ + ∆ = Ψh .

It can be proved that if 0t∆  then 

H H(1 )
ti

e i t
∆

−
− ∆h

h

Consequently 

H( ) (1 ) ( )t t i t tΨ +∆ = − ∆ Ψ
h

or

H( ) ( ) ( )tt t t i t⋅∆
Ψ + ∆ − Ψ = − Ψ

h

or
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( ) ( ) H ( )
t t t

i t
t

Ψ +∆ − Ψ
= − Ψ

∆ h

If 0t∆ →  then we take the equation 

d ( )
H ( )

t
t i

dt
Ψ

Ψ = h

The last equation is the famous Schrödinger equation and it shows the time evolution of a 
state.

2.5 The Larmor Precession

Let an electron be in a magnetic field B  parallel to z-axis. It is proved that it has energy

E z Bµ= − ⋅

where zµ  is the z-component of the spin magnetic moment. It is given by the relation 

z z
e S
m

µ = − ⋅

where e : the absolute value of the charge of electron 
m : electron mass

zS : the spin component on z-axis

We know that zS  takes two values 
2

+
h  and 

2
−
h  and therefore the energy also takes two 

values 

01
1E =

2 2
e B
m

ω=
h

h

and

02
1E =-

2 2
e B
m

ω⋅ = −
h

h

where

0

eB
m

ω = .

Obviously the state ↑z  and ↓z  are also eigenstates of the operator H  with 
corresponding eigenvalues 1E  and 2E . Consequently if the state of electron at 0t =  is 

1 2(0) (0) (0)c cΨ = ↑ + ↓z z

after time t  it is
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1 2E t E t

1 2( ) (0) (0)
i i

t e c e c
− −

Ψ = ↑ + ↓h hz z
or

0 0
2 2

1 2( ) (0) (0)
t ti i

t e c e c
ω ω

−
Ψ = ↑ + ↓z z

Example:
We assume that

(0)Ψ = ↑x
or

1 1(0)
2 2

Ψ = ↑ + ↓z z

Then
0 0
2 21 1( )

2 2

t ti i
t e e

ω ω
−

Ψ = ↑ + ↓z z

The mean value of xS  is 

$x x( ) ( )S t S t〈 〉 = Ψ Ψ =
0

0 0

0

2

2 2

2

1
01 1 22

2 2 10
2 2

ti

t ti i

ti

e
e e

e

ω

ω ω

ω

−

−

       = =           

h

h

0 0
1 ( )
2 2

t ti ie eω ω−= + ⋅
h

or xS〈 〉  = 
2
h  0cos tω

Similarly we find

0y sin
2

S tω〈 〉 =
h

and z 0S〈 〉 =

The above equations imply that the expectation value of the spin angular momentum
vector lies down on x-y  plane and rotates about z-axis with angular velocity 0ω . This
picture (fig 23) is called Larmor precession.

fig 23
x

y

z

S
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SUMMARY

Experiments with microscopic particles show a new behaviour of nature. We observe that
the particles have features of waves. The mathematical model that describes this
behaviour 
is the quantum mechanics. The significant points of this theory are the followings: 

1. Measuring an observable A  we find a set of discrete values 1, 2a a . To each value 
corresponds a state 1 2,a a . These states constitute a basis of Hilbert space.

2. After a measurement of A  the particle (or system) is in a well defined state (pure
state). If we repeat the measurement of A we will find the same value.

3. Any pure state Ψ  is a vector belonging to Hilbert space 

1 21 2c a c aΨ = +

4. If the particle is in state Ψ  then the probability to be in state Φ  is the square of 
probability amplitude.

probability amplitude = Φ Ψ

probability 
2

= Φ Ψ

5. Any observable A  is represented by an operator A
1 1 1 2 2 2A a a a a a a= +

The expectation value of an observable A  is given by the relation
ˆA = AΨ Ψ

6. The time evolution of a state Ψ  is given as follows
Ht

(t) (0)
i

e
−

Ψ = Ψh

where H  is the Hamiltonian operator and it is governed by the Schrödinger equation

d ( )
H ( )

t
t i

dt
Ψ 〉

Ψ = h



34

QUESTION EXERCISES

1) The mass of a body is 2=m kg  and a constant force 4=F N  is exerted on it. At time
0=t  it is at position 0 2meterx =  and its velocity is 0 0=v . Find the state of the

body for any time t .

2) Which from the following pairs could define the state of a particle?

α) (position-momentum) β) (force-mass)
γ) (position-velocity) δ) (position-force)

3) How is the thermal equilibrium state defined in thermodynamics?

4) Why can we not define the state for a microparticle with the pair position-momentum?

5) Two observables A  and B  are simultaneously measurable. That means:

i) There is a measuring method by which we can measure the two observables A
and B  at the same time.

ii) Measuring the A  we find the value 1a , then measuring the B  we find the value

1β  and if we measure again the A  we find the value 1a .

iii) The two observables must be measured at the same time.

iv) Measuring the A  we find the value a  and measuring the B  we find the value β
which is independent on the value a . 

Choose the correct answer.

6) <<If we had ideal experimental devices we could simultaneously measure the position 

and the momentum of a particle without error.>>

Comment the above statement.

7) Two observables A  and B  are not simultaneously measurable. That means:

i) There is no method by which we can measure A  and B  at the same time.

ii) Measuring the A  we find the value a , then measuring the B  we find β .
Repeating the measurement of A  we do not find the value a  with probability
equal to unity.

iii) The result from the measurement of A  does not depends on if we first measure the
B .

Choose the correct answer.

8) What is the ket ( )?
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9) The results of the measurement of the energy of the atom of Hydrogen (H) are

13,6− eV , 13,6
4

− eV , 13,6
9

− eV , 13,6
16

− eV , ….

i) Write the general relation which gives the values of energy.
ii) Find the states of the system.
iii) Write the states as you like.

9a) When the Energy of the atom of Hydrogen is 2

13,6En eV
n

= −  then the amplitude of

the vector of angular momentum L  takes the values ( 1)= + ⋅l l hL  where
0,1,2,..., 1= −l n . Also the component zL  takes the values = ⋅hz eL m  where

,...,= − +l lem . The observables , , zLE L  are simultaneously measurable. Find the
states of the system as , ,l en m  in the cases 

α) 1=n β) 2=n

10) How do we define the spin of a rigid body?

11) Describe the Stern-Gerlach device.

12) What values of zS  component of spin we expect to find as result of a Stern-Gerlach
experiment?

13) Why do we say that every beam separately, emerging from of a zSG  device is a well
defined state?

14) Write T or F whether you think the statements are true or false.

For a well defined state of a system:

i) The value for any observable concerning the system is defined. 
ii) The value for at least one observable concerning the system is defined.
iii) It is unique for the system (there is no any other well defined state).
iv) It is always connecting with at least one observable.

15) Are the particles emerging from the oven of the SG  experiment in a well defined
state?

16) Write T or F whether you think the statement are true or false.

i) the state ↑z  is well defined state for the observable zS  but not for the observable
Sx .

ii) There is no state ,↑ ↓z y  because the observable zS  and yS  are not
simultaneously measurable.

iii) The state ↑z  can not be written as combination of ↑x  and ↓x  because the
last two states concern other observable.
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17) After what thoughts we wrote the relation
1 1
2 2

↑ ↑ ↓= +z y y ?

18) Which experiment shows that the philosophy of writing the relation

1 1
2 2

↑ ↑ ↓= +z x x

is false?

19) Which events of the experiments with the SG  and the MSG  devices lead us to
suspect that particles have wave behaviour?

20) Write T or F whether you think the statements are true or false.

The Hilbert space concerning a particle with spin 1
2

.

i) This is two dimension, that is the basis of it consists of two vectors because we
find two values for each observable S x , yS  or nS , where n̂  is an arbitrary
direction.

ii) Its dimension would have been greater if we had found more values for the
component S x .

iii) Any vector of it can be written as superposition of vectors ↑z  and ↓z  or

↑x  and ↓x .

iv) Every vector of it describes a realizable state.

21) Why the coefficients 1c  and 2c  in the relation

1 2↑ ↓Ψ = +c cz z

must be generally complex numbers?

22) Find the corresponding bra Ψ  of the ket

1
2 2

↑ ↓Ψ = +
iz z .

23) Consider the vector 

1 3
2 2

↑ ↓Ψ = + iz z .

We know that
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1 1
2 2

↑ ↑ ↓= +z x x

and
1 1
2 2

↓ ↑ ↓= −z x x

Write the ket Ψ  as linear combination of ↑x  and ↓x .

24) For a particle with spin 1 we find experimentally for the component zS  three values 
1− h , 0h  and 1+ h . Define the corresponding Hilbert space of the particle and write

any state as superposition of the vectors which constitute the basis of the space.

25) How is the probability amplitude a state Ψ  to be in Φ  defined and how is the
corresponding probability defined?

26) Explain why we write the relations 

i) 1↑ ↑ =z z ii) 0↑ ↓ =z z

iii)
2 1

2
↑ ↓ =z x iv) 0↑ ↓ =x x

27) A particle is in the state

1 1 2 2 3 3Ψ = + +E E Ec c c
where 1E , 2E  and 3E  are different eigenstates of the energy. What relation
do the coefficients 1c , 2c  and 3c  satisfy and why?

28) A particle is in state 

3 4
5 5

↑ ↓Ψ = +
i z z

Compute the probability for this state to be in the state 

2 5
7 7

↑ ↓Φ = − iz z

29) A particle with spin 1
2

 is in state

1 2
33

↑ ↓Ψ = + iz z

i) Passing the particle through a zSG  device, find the probability to end in the state
↑z  and similarly to end in the state ↓z .

ii) If we pass a huge numbers N  of particles which are in the same state Ψ ,
through a zSG  apparatus, how many particles will follow
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α) the higher path
β) the lower path

iii) If we pass the preceding ensemble of N  particles through a SGx  device, find the
number of particles which will follow

α) the higher path
β) the lower path

30) Show that 

i) ˆ ˆ ˆ↑ ↑ ↑=z z zP P P ii) ˆ ˆ 0↑ ↓=z zP P    iii) ˆ ˆ ˆ↓ ↓ ↓=z z zP P P

where ,ˆ ˆz zP P↑ ↓  projection operators onto the states ↑z  and ↓z  respectively.

31) Write the completeness condition using the state ↑x  and ↓x . Similarly for the

states ↑y  and ↓y .

32) Let a particle be in the state

6 13
7 7

↑ ↓Ψ = + iz z

Write T or F whether you think the following statements are true or false.

i) If the particle pass through a zSG  device the probability to follow the higher path

is 6
7

.

ii) If it pass through a zSG  the probability to follow the lower path is 13
49

.

iii) The expectation value of the component zS  is

23
49

= hzS

iv) If N  particles which are in the same state Ψ  pass through a zSG  device they
will follow an intermediate path corresponding to the expectation value of the
component zS .

33) The state of a particle is 

3 4
5 5

↑ ↓Ψ = + iz z

i) Calculate the expectation value of the component zS .
ii) If we measure the component zS  for one particle we will find:

α) The expectation value of zS



39

β) 
2

+
h  or 

2
−
h

What is the correct answer?

34) Measuring the energy for a system we find three values

1 3=E Jµ , 2 5=E Jµ , 3 6=E Jµ

i) Find a basis for the corresponding Hilbert space and write the general form for any
vector Ψ  belonging to Hilbert space.

ii) The system is in the state

1 2 3
11 2
6 2 3

iE E EΨ = + +

α) Find the most probable value for the energy.
β) Write the corresponding operator Ê  of the energy and calculate its 

expectation value in the state Ψ .
γ) Calculate the probability to find the value E< >  if we measure for one time 

the energy.

35) The state of a particle is 
2 5
3 3

↑ ↓Ψ = + iz z

i) Calculate the mean value of the component S x .
ii) Similarly for the component yS .

36) Show that the representation of the operators ˆzS , Ŝ x , ˆyS  in the basis which consists of 

the vectors ↑z  and ↓z  are

1 0
0 12
 

=  − 

h
zS , 

0 1
1 02
 

=  
 

hS x , 
0

02
 

=  − 

h
y

i
S

i

37) Find the representation of the operators ˆzS , Ŝ x , ˆyS  in the basis { },↑ ↓x x .

38) The state of a particle is 
12 5
13 13

↑ ↓Ψ = + iz z ,

calculate the S x  and yS  using the corresponding matrices of representation.

39) Why do we write the relation 

1 1( ) ii tE t e Eω−= where 1
1

E
ω =

h
?
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40) A system has only two eigenstates of the energy, the 1E  and 2E . If the initial state 

is the state 1Ψ = E , show that it remains for ever.

41) A particle with spin 1
2

 is in a homogeneous magnetic field B  with B
r

 parallel to z-

axis. If at the time 0=t  it is in the state (0) ↑Ψ = z , find the state ( )Ψ t . Then 

calculate the quantities ( )S tx , ( )yS t  and ( )zS t .

42) Repeat the preceding problem assuming that the initial state is (0) ↓Ψ = y .
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                                                                                                   PART   B.
                                                  

                                                                                    ensembles
                                                                                 tensor product
                                                                                entanglements



3. ENSEMBLES

3.1 Measurement of Observable Sn

Before we define the pure and mixed ensemble we examine the measurement of the

component Sn  (where n̂  is arbitrary direction) of the spin S  for a particle with spin 1
2

.

Let a beam of N  particles be in state ↑z . We pass the beam trough a SGn  apparatus
with its magnetic field to be parallel with n  axis. The n  axis belongs to x, z-plane and
forms with z-axis an angle ϑ  (see fig 1).

      fig 1

Schematically the experiment is the following (fig 2) 

      fig2

Obviously, assuming the resu

either 
2

+ h  or 
2

− h  and the co

Z x
ϑ

z

y

n

zSG
$nSG

1,N ↑n

2 ,N ↓n

N ↑z
43

lts of previous chapters, the result of the measurement is

rresponding eigenstates are ↑n  and ↓n .
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It can be proved that the vectors ↑n  and ↓n  are the following superposition of ↑z

and ↓z .

cos sin
2 2
ϑ ϑ

↑ = ↑ + ↓n z z

and sin cos
2 2
ϑ ϑ

↓ = ↑ − ↓n z z

Consequently the probability the initial state ↑z  to behave as ↑n  is 
2

2cos
2
ϑ

↑ ↑ =n z

and so 2
1 cos

2
N N ϑ

=  particles outcome with 
2

S = +
h

n .

The probability the initial state ↑z  to be the ↓n

is
2

2sin
2
ϑ

↓ ↑ =n z

and so 2
2 sin

2
N N ϑ

= ⋅  particles emerge with 
2

S = −
h

n .

The mean value of Sn  is

1 2
2 22 2 (cos sin ) cos

2 2 2 2

N N
S

N
ϑ ϑ

ϑ

   + + −   
   = = − =

h h

h h
n .

We also find the same result if we use the rules of quantum mechanics

ˆS S= ↑ ↑z zn n   ˆS S↑ ↑z zn n=

however ˆ
2 2

S = ↑ ↑ − ↓ ↓
h h

n n n n n

so 2 2

cos
2

S

ϑ

 = ↑ ↑ ↑ − ↓ ↓ ↑ = 
 

=

h h

h

z zn n n n n
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3.2 Pure Ensemble

The state of a particle with spin 1
2

 is a vector in the Hilbert space. Let us assume that the

state is

1 2c cΨ = ↑ + ↓z z

where ↑z  and ↓z  are the eigenvectors of the zS  component of the spin S .
What information does this state give us? It gives us the probability the particle to be in
the state Φ  and it is given through the relation 

probability = 2〈Φ Ψ〉

More particularly that means that if we measure an observable A  where the state Φ  is
an its eigenstates with corresponding eigenvalue a , then the probability of the result of a
measurement to be a  is 2〈Φ Ψ〉 .
For example if we measure the zS  component of spin, the probability to find the value

2
+
h  is 

2 2
1c↑ Ψ =z  and the probability to find the value 

2
−
h  is 22

2c↓ Ψ =z .

If we have a large number N  of particles and all particles are in the same state Ψ
(vector of Hilbert space) then we say that we have a pure ensemble.
For a pure ensemble the mean value of an observable A  is given through the relation
(rule of quantum mechanics, see previous).

A A〈 〉 = Ψ Ψ

where A  is the corresponding operator.

When do we have a pure ensemble? or how can we construct a pure ensemble?

a) After a measurement of an observable A  if we select all particles with the same 
eigenvalue then our ensemble is a pure ensemble because all particles are in the 
same state. For example each beam separately which is outcoming from the xSG  
apparatus is a pure ensemble (see fig 3).

  fig 3

xSG

,
2
N

↑x

,
2
N

↓xOven

pure ensemble

pure ensemble

N
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β) If we want to construct a pure ensemble in state Ψ  then we find the 

corresponding operator A  whose state Ψ  is its eigenstates with eigenvalue a . 
Then we measure the observable A  and select all the particles with the same 
result of measurement equal to a . This ensemble is a pure ensemble in state Ψ . 
However there are vectors in Hilbert space which is not constructed because there 
is no corresponding observables.

3.3 Mixed Ensemble

Let us construct a beam which consists of 1N  particles emerging from the upper path of a
xSG  apparatus and 2N  particles outcoming from the upper path of a ySG  apparatus. That

is 1N  particles are in state ↑x  and 2N  particles are in state ↑y  (see fig 4).

   fig 4

The new ensemble is not a pure ensemble because it does not consist of particles where all
of them are in the same state. In this case we say that our ensemble is a mixed ensemble.

Let us try to calculate the expectation value of an observable A  for the new ensemble.

1N  particles are in state ↑x . From the rules of quantum mechanics we find

1A A= ↑ ↑x x

2N particles are in state ↑y . Similarly we have 

2A A= ↑ ↑y y

Consequently using the rules of statistics we find 

1 1 2 2A AA = N N
N

〈 〉 + 〈 〉
〈 〉 ⇒

ySG

1,N ↑x

2,N ↑y

device measuring A

xSG
?
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1 2
1 2A = A AN N

N N
〈 〉 〈 〉 + 〈 〉 ⇒

1 1 2 2A = A Ap p+

where 1
1=

Np
N

 the ratio of particles in state ↑x  to all particles 

and 2
2=

Np
N

 the ratio of particles in state ↑y  to all particles 

Obviously 1+ 2=1p p .

Generally if for a mixed ensemble the particles are in state 1Ψ  with fraction 1p  and in

state 2Ψ  with fraction 2p  then the expectation value of an observable A is given
through the relation

1 1 1 2 2 2A = A Ap pΨ Ψ + Ψ Ψ .

It is possible the states of a mixed ensemble to be more than two. That is 1Ψ  with ratio

1p , 2Ψ  with ratio 2p , 3Ψ  with ratio 3p ,…. Then we have 

1 1 1 2 2 2 3 3 3A = A A A .....p p pΨ Ψ + Ψ Ψ + Ψ Ψ +

where 1 2 3+ + +...=1p p p

3.4 Superposition and Mixed Ensemble

Let us return to impressive experiment with the xMSG  apparatus. As we saw if a beam is
in state ↑z  and passes through a xMSG  apparatus then leaving both channels open the

beam in state ↑z  outcomes unchanged (see fig 5)

fig 5

Also we know that the state ↑z  is written as follows:

,N ↑z
,N ↑z,N ↑z

zSGMSG×
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1 1
2 2

↑ = ↑ + ↓z x x

Let us repeat the same experiment but now we use a technique in order to control the two
paths (see fig 6).

fig 6

That means that we know the path which is followed by each particle. Obviously the

result is now 
2
N  particles in state ↑x  and 

2
N  particles in state ↓x . Consequently the

beam is no more a pure ensemble it is now a mixed ensemble. We pass it through a zSG

apparatus. Then from the 
2
N  particles in state ↑x , 

4
N  outcome in state ↑z  and 

4
N  in

state ↓z . Also from the 
2
N  particles in state ↓x , 

4
N  emerge in state ↑z  and 

4
N  in

state ↓z . Really the experiment shows that 
4 4 2
N N N
+ =  particles outcome in state

↑z

and 
4 4 2
N N N
+ =  particles emerge in state ↓z .

From the last two experiments we conclude that the ensemble where all particles are in
state  ↑z  (vector in Hilbert space) which is a superposition of the states ↑x  and

↓x  and the ensemble which consists of 50% of particles in state ↑x  and 50% of

particles in ↓x  are two different things

1 1 50%
2 2

↑ + ↓ ≠ ↑x x x and 50% ↓x

An important point in the previous process is the change of the pure ensemble to mixed
ensemble. The first time the two states ↑x  and ↓x  make interference and have a
wave behaviour, they describe together the same particle. However the second time when
we know exactly the path which is followed by each particle we do not observe the

2
N

↑z

,
2 2
N N

↑ ↓x x

,N ↑z

zSG
2
N

↓z

?

controlled area

controlled area
MSG×
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interference effect, the two states ↑x  and ↓x  become foreign between themselves
and each one describes a different particle.

Conclusions:

a) The particle is in a state which is a vector in Hilbert space (? we will come to this
point later).

β) An ensemble is pure if all its members are in the same state Ψ . In order to
calculate the expectation value of an observable we use the rules of quantum
mechanics.

γ) An ensemble is mixed if its members are not all in the same state Ψ . In order to
calculate the expectation value we use the rules of statistics.

3.5 Unpolarized Beam

If a mixed ensemble from N  particles has 
2
N  particles in state ↑z  and the remaining

2
N  in state ↓z , then for any spin-component Sm  ( m  arbitrary) it is valid 

1 1ˆ ˆ
2 2

S S S= ↑ ↑ + ↓ ↓ =z z z zm m m

(cos cos( )) 0
2

ϑ π ϑ= + − =
h .

Where ϑ  is the angle forming with ẑ  and m̂ .

Such a beam is called unpolarized beam and is indistinguishable from any other beam
with half particles in state ↑n  and remaining half particles in state ↓n , where n  is an
arbitrary direction.

Generally there is no mechanism to distinguish two mixed ensemble, the first one with
half particles in state ↑n  and remaining half is state ↓n  and the second one with half

particles in state ↑m  and remaining half in state ↓m , where n̂  and m̂  arbitrary
directions. 

ϑ

z

π ϑ−

m
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TENSOR PRODUCT

4.1 Definition of Tensor Product

As we saw for a particle with spin 1
2

 it is defined a two dimensional Hilbert space. A

basis of this space can be the pairs of eigenstates of any of the observables xS  or yS  or
zS . We denote this space by 1H . 

Let A  be an observable which is a function of x, , ,y zS S S  for example the square of the total
spin 2 2 2 2

x y zS S S S= + + , the energy when the particle is in a magnetic field Bz  (it is

H Bz z
e S
m

= + ) and so on. Then the eigenstates of A  are also vectors in Hilbert Space 1H .

Particularly if the observable A  is a function of one observable, let it be the xS , that
means that ( )xA=f S , then the eigenstates of A  are the same with these of xS . That is the

eigenstates of A  are the ↑x  and ↓x  with corresponding eigenvalues 1 ( )
2

a f= +
h

and 2 ( )
2

a f= −
h .

Also for a vector state Ψ  in Hilbert space there is a corresponding observable which has

the state Ψ  as eigenstate (this is not true for all states Ψ ).

Let B  be an observable which is unrelated with any of the observables x, , .y zS S S  That is
the observables B  and xS  or yS  or zS  are foreign between themselves. In this case an
eigenstate of B  does not belong to Hilbert space 1H . If the state of particle is the Ψ  a
vector in Hilbert space 1H , the measurement of the observable B  does not change the
state Ψ . For example, the momentum of a particle and its spin are unrelated observables.
Another example is the energy of an electron due to an electric field and the spin.

For simplicity we assume that B  has also two eigenstates 1β  and 2β  with
corresponding eigenvalues 1β  and 2β . These obviously constitute a basis of a new
Hilbert space 2H . Observables which are not simultaneously measured with B  and
observables which are a function of B  constitute a new set of observables whose
eigenstates are vectors in the Hilbert space 2H .

We measure an observable A  which is related with the Hilbert space 1H  and let us find
the value 1a . The state of our particle after the measurement is 1a . Then we measure an
observable B  which is related with the Hilbert space 2H  and let us find the value 1β .
Obviously the state of our particle after the measurement is 1β . If we repeat the
measurement of A  and B , so many times as we like, every time we will find for A  and
B  the values 1a  and 1β  respectively. Consequently the state of the particle (or system) is
a well defined state. A simple way to write this state is writing it as follows:

1 1, 1a βΨ =
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That means that, if we measure the A  we will find the value 1a  and if we measure the
observable B  we will find the value 1β .
From the eigenvalues of A  and B  we define the following four states :

1 1, 1

2 1, 2

3 2, 1

4 2, 2

a

a

a

a

β

β

β

β

Ψ =

Ψ =

Ψ =

Ψ =

For example the state 3Ψ  is the state whose the results of the measurements of the
observables A  and B  are 2a  and 1β  respectively and so on.

We put the question “What is mathematically the new state?” A new Hilbert space H
is defined. It is called the tensor product of the spaces 1H  and 2H  and it is denoted as 

1 2H H H= ⊗

A basis of the new space consists of the vectors 

1 1 1

2 1 2

3 2 1

4 2 2

a

a

a

a

β

β

β

β

Ψ = ⊗

Ψ = ⊗

Ψ = ⊗

Ψ = ⊗

The state Ψ  of the particle (or system) is now a vector in the Hilbert space H .

1 1 1 2 1 2 3 2 1 4 2 2c a c a c a c aβ β β βΨ = ⊗ + ⊗ + ⊗ + ⊗

where 2 2 2 2
1 2 3 4 1c c c c+ + + =

The probability of finding the values 1a , 1β  is 2
1c , to find the values 1a , 2β  is 2

2c  and
so on.
If we ask for the probability to find the value 1β  for the observable B  the answer is

2 2
1) 1 3P( c cβ = +

Let us have measured the observable B  and the result is 1β . If after that we measure the
A  what is the probability to find the value 2a ? The answer is

2
32

2 2
1 1 3

P
ca

c cβ
 

= 
+ 
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4.2 Operators in New Space

Every observable A  which is related with the Hilbert space 1H  corresponds to an
operator 

HA A I= ⊗ $

and it acts as follows:

( ) ( ) ( ) ( ) ( )H 2A A I A Ii j j i ja a aβ β β⊗ = ⊗ ⋅ ⊗ = ⊗ ⋅$ $

Similarly every operator B  which is related with the Hilbert space 2H  takes the form 

HB I B= ⊗$

and it acts as follows:

( ) ( ) ( ) ( ) ( )HB I B I Bi j i j i ja a aβ β β⊗ = ⊗ ⋅ ⊗ = ⊗ ⋅$ $

The inner product is defined as

( ) ( ) Hi ja aκ λβ β ⊗ ⋅ ⊗ = 

1 2H H
i ja aκ λβ β= ⋅

Where the 
1H

ia aκ  and 
2H

j λβ β  are the inner products as they are defined in 1H  and

2H  respectively. From this definition we find that 

1 1 2 2 3 3 4 4 1〈Ψ Ψ 〉 = 〈Ψ Ψ 〉 = 〈Ψ Ψ 〉 = 〈Ψ Ψ 〉 =

and 

1 2 1 3 1 4 2 3 ... 0〈Ψ Ψ 〉 = 〈Ψ Ψ 〉 = 〈Ψ Ψ 〉 = 〈Ψ Ψ 〉 = = .

That is the basis 1Ψ , 2Ψ , 3Ψ , 4Ψ  is an orthonormal basis of the Hilbert space H .

The expectation value of any observable A  is calculated through the relation

HA = A〈 〉 Ψ Ψ

where Ψ  is a vector in the Hilbert space 1 2H H H= ⊗  and is also the state of the system.

Some important remarks

Remark I
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Let us assume that the state of the system in the Hilbert space 1H  is 1 1 2 2a aκ κΘ = +

and in the Hilbert space 2H  is 1 1 2 2λ β λ βΦ = + .

Then the probability measuring the observable A to find the value 1a  is 2
1κ  and to find

the value 2a  is 2
2κ . Also the probability measuring the observable B  is 2

1λ  and 2
2λ

to find the values 1β  and 2β  respectively. Measuring simultaneously the observables A
and B  we find the values.

1, 1 a β with probability 2 2 2
1 1 1 1κ λ κ λ=

1, 2a β ⇒ 2 2 2
1 2 1 2κ λ κ λ=

2, 1a β ⇒ 2 2 2
2 1 2 1κ λ κ λ=

2, 2a β ⇒ 2 2 2
2 2 2 2κ λ κ λ=

Consequently we can conclude that for the tensor product the distributive principle it is
valid.

Ψ = Θ ⊗ Φ =

1 1 2 2 1 1 2 2a aκ κ λ β λ β=  + +⊗  +    
1 1 1 1 1 2 1 2a aκ λ β κ λ β= ⊗ + ⊗

2 1 2 1 2 2 2 2a aκ λ β κ λ β+ ⊗ + ⊗ .

From the last relation the corresponding probabilities for any combinated result can be
explained. 

Remark II:

From the preceding remark and from the way through we constructed the tensor product
someone could be misleaded to think that for any vector Ψ  in the Hilbert space

1 2H H H= ⊗  we can find Θ  and Φ  from 1H  and 2H  respectively such as 

Ψ = Θ ⊗ Φ .

This is not true. For example the state 

1 2 2 1
1 1
2 2

a aβ βΨ = ⊗ + ⊗

is not written in the form Ψ = Θ ⊗ Φ .

That implies that the tensor product is something more than a simple cartesian product.
We will see that later and we will try to explain more on it.
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4.3 Hilbert Space of Two Particles with Spin 1
2

An useful example of tensor product is the Hilbert space of two particles where each one

has spin 1
2

.Let us consider two particles, the particle A  and the particle B . Every one is

particle with spin 1
2

. The Hilbert space related to particle A  is the space AH  and one

basis of it are the eigenvectors of the observable (A)ZS , this is the set{ }A A,↑ ↓z z .

Similarly the Hilbert space related to particle B is the space BH  which is generated by the
set{ }B B,↑ ↓z z , namely the eigenvectors of observable (B)ZS . The Hilbert space for

the system of two particles A  and B  is the tensor product

A BH H H= ⊗

and one basis is the following set.

1 A B A B

2 A B A B

3 A B A B

4 A B A B

Ψ = ↑ ⊗ ↑ = ↑ ↑

Ψ = ↑ ⊗ ↓ = ↑ ↓

Ψ = ↓ ⊗ ↑ = ↓ ↑

Ψ = ↓ ⊗ ↓ = ↓ ↓

z z z z

z z z z

z z z z

z z z z

Usually for simplicity we drop out the symbol ⊗ .

Any state Ψ  of H  is written as a superposition of 1Ψ , 2Ψ , 3Ψ  and 4Ψ .

1 A B 2 A B 3 A B 4 A Bc c c cΨ = ↑ ↑ + ↑ ↓ + ↓ ↑ + ↓ ↓z z z z z z z z

5. ENTANGLEMENT

5.1 Some Questions on Tensor Products

We tried to introduce the concept of tensor product beginning from the simple case of
systems (or particles) where the corresponding Hilbert space of each of them is two
dimensional. For simplicity, for the rest, we shall restrict the discussion to the system

which consists of two particles A  and B  with spin 1
2

.

The A particle is described by a Hilbert space AH  where a basis is the set

{ }A A,↑ ↓z z  and the B  particle is described by a Hilbert space BH  with

corresponding basis the set{ }B B,↑ ↓z z .

We constructed the Hilbert space H  as the tensor product of AH  and BH , namely
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A BH H H= ⊗

and we said that this describes the system of the particles A  and B . A  basis of H
consists of the four vectors

{ }A B A B A B A B, , ,↑ ↑ ↑ ↓ ↓ ↑ ↓ ↓z z z z z z z z

(for simplicity we drop out the symbol ⊗ ).

Let the particle A  be in state 0 AΘ , a vector in the Hilbert space AH  and the particle B

be in state 0 BΦ , a vector in the Hilbert space BH . Then the state of system A , B  is the
vector 

0 A 0 BinΨ = Θ ⊗ Φ
which belongs to Hilbert space H .

If we perform an experiment with the A  particle in order to measure an observable which
is related to Hilbert space AH , after the experiment the state of the particle A  is a vector
in the AH  and it can be written as

A 1 A 2 A= +c cΘ ↑ ↓z z

Similarly performing an experiment on the particle B  its state will be a vector BΦ  in
the BH  where

B 1 B 2 B=d +dΦ ↑ ↓z z

Consequently the new state of the system A , B  is

AB A B=Ψ = Θ ⊗ Φ

1 1 A B 1 2 A B

2 1 A B 2 2 A B

= d d

+ d d

c c

c c

↑ ↑ + ↑ ↓

↓ ↑ + ↓ ↓

z z z z

z z z z
.

Let us call these actions which are performed separately on A  and B  local performances.
We observe that local performances lead to states which can be written in the form

AB A BΨ = Θ ⊗ Φ  if the initial state was in the same form 0 A 0 BinΨ = Θ ⊗ Φ  (see
fig 7).
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fig 7

However the new space A BH H H= ⊗  which is supposed to describe our system A B ,
contains also states which can not be written in the form A BΘ ⊗ Φ , for example the
vector 

( )A B A B
1 -
2

−Ψ = ↑ ↓ ↓ ↑z z z z .

Obviously we must explain the physical meaning of these states. Some one could assert
the following: <<We have the pair AB . The A  is a particle which is described by AH ,
therefore its state is a vector of AH . Similarly the state of the particle B  is a vector in the

BH . Consequently the state of pair AB  is a vector in the Hilbert space A BH H H= ⊗  and
it must be in the form A BΘ ⊗ Φ . Therefore vectors of the form like −Ψ  are simply
mathematical constructions without physical significance.>> Is it true? We have put a
question and we will try to answer it.

5.2 Definition of Entanglement

We consider two particles A, B  each of them with spin 1
2

 and in addition, we suppose 

that these are very near to each other so that they form a pair because of a strong attractive 

force between them which is independent of the spin. A large number N  of these pairs 
pass through a zSG  apparatus. We suppose that the attractive force is strong enough such 
so that the particles A  and B  are not separated and emerge from the zSG  apparatus 
as a pair. 
Then the results are the followings (see fig 8):

0 A 0 BinΨ = Θ ⊗ Φ

A B

Divese of
separation

A

B 0 BΦ 〉

0 AΘ

$SGn

$SGn

A

B
BΦ

AΘ

A B

AB=Ψ

A BΘ ⊗ Φ

N pairs AB

zSG

1st beam

3rd beam

2nd beam

A B,
4
N

↑ ↑z z

, 0
2 ztot
N S =

A B,
4
N

↓ ↓z z
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fig 8

1st beam: 
4
N  pairs outcome with ZtotS = +h  (upper path) and are in state A B↑ ↑z z .

2nd beam: 
4
N  pairs outcome with ZtotS = −h  (lower path) and are in state A B↓ ↓z z .

3rd beam: 
2
N  pairs pass without deflection (middle path). They have ( ) 0ZtotS = .

Let us examine each beam separately.

1st beam: Each pair is in state A B↑ ↑z z  which is a vector in the Hilbert space 
A BH H H= ⊗ . 

Therefore the ensemble of pairs is a pure ensemble. If we pass the beam through a device 
D of separation which does not disturb the spin but it separates the pair into particle A  
and B counteracting the attractive force, we take all the particles A  in state A↑z  and 

all the particles B  in state B↑z  (see fig 9)

fig 9

That is examining separately the ensembles { }A  and { }B  we observe that both of them
are pure ensembles.

2nd beam: The ensemble of pairs is also a pure ensemble and separating the pairs into the
particle A  and B passing the beam through a <<D of separation>> outcome two new
pure subensembles. All the particles A  are in state A↓z  and all the particles B  are in

state B↓z . Generally if the state of the pair has the form

A BΨ = Θ ⊗ Φ ,

A B0N BA BA ....

Dof separation

0N

B↑z

A↑z

A A

B B

0N
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after the separation all the particles A  are in the vector state AΘ  in the Hilbert space

AH  and all the particles B  are in the state BΦ , vector in the Hilbert space BH .

Consequently both subensembles { }A  and { }B are pure ensembles.

3rd beam: For this beam we know that all pairs have ( ) 0ZtotS = . Obviously it is a vector 
belonging to the Hilbert space where a basis is the set of the vectors 

( ) ( ), 0z ztot totS S= − =h  and ( )ztotS = +h . This is a space corresponding exclusively to 

observable ( )ztotS . However the states of all pairs of this beam are not in the same vector 
state in the Hilbert space A BH H⊗ . It is due to the fact that the states 

A B, A B↑ ↓ ↓ ↑z z z z  and any linear combination 

1 A B 2 A Bc cΨ = ↑ ↓ + ↓ ↑z z z z  have ( ) 0ztotS =  (this effect is called degeneracy).
Consequently this beam is not a pure ensemble, it is a mixed one if we examine it in the
frame of Hilbert space A BH H H= ⊗ .

Let us pass the 3rd beam through an apparatus which measures the observable

( x ) ( y ) ( z )

2 2 2 2
tot tot tot totS S S S= + +

where ( x ) A(x) B(x)totS S S= +

( y ) A(y) B(y)totS S S= +

and ( z ) A(z) B(z)totS S S= +

Then it is separated into two beams, the 'a  one with 2 22S = h  and 'β  one with 2 20S = h  
(see fig 10).

fig 10

α´ beam: It is proved that 'a  beam is a pure ensemble and the state of each pair is a vector 

+Ψ belonging to the Hilbert space A BH H H= ⊗  where 

( z )

2 22 , 0tot totS S+Ψ = = =h

( ), 0
2 ztot
N S =

2( )s
D

α’ beam

3rd beam

β’ beam

4
N

4
N

2 2
12 ,totS = Ψ 〉h

2 20 ,totS −= Ψ 〉h
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Trying to write the vector +Ψ  as a linear compination we find that 

( )A B A B
1
2

+Ψ = ↑ ↓ + ↓ ↑z z z z

Really for this form it is valid

$
( z ) 0totS + +Ψ = Ψ

and $
2 22totS + +Ψ = Ψh

where $ ( z )totS  and $
2

0t tS  the corresponding operators of the observables ( z )totS  and 2
totS .

β´ beam: This beam is also a pure ensemble and the state of any pair is the vector −Ψ  in 

the H . Its linear combination is

( )A B A B
1
2

−Ψ = ↑ ↓ − ↓ ↑z z z z

We can also prove that 

$
( z ) 0totS − −Ψ = Ψ

and $2
0totS − −Ψ = Ψ

Therefore ( z )

2 0, 0tot totS S−Ψ = = = .

For both beam a  and β  the corresponding states +Ψ  and −Ψ  can not be written as 

A BΘ ⊗ Φ , however they are well defined states and have physical meaning.

Definition of entanglement

Entanglements are the vector states in the Hilbert space A BH H H= ⊗  which can not be 
written in the form A BΘ ⊗ Φ . Namely

If Ψ  is entangled⇔ ∃ A AHΘ ∈ and B BHΦ ∈

such that A BΨ = Θ ⊗ Φ .

If Ψ  is not entangled A AH⇔∃ Θ ∈ and B BHΦ ∈

such that A BΨ = Θ ⊗ Φ .

How can we have an entanglement? If we have two particles A  and B  where the A  is in 
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state AΘ and the B  is in state BΦ  then in order to the state A BΘ ⊗ Φ  end in an 
entangled state, two particles must come near each other and interact. We cannot produce 
an entanglement performing any local performance on A  and B .

Conclusions:

a) We must abandon our assertion that any particle A  (or B ) is in any case in a state 
vector in the Hilbert space AH  (or BH ). We found that states of the form

A BΨ ≠ Θ Φ  correspond to realizable situations.

β) We have two kinds of vectors in tensor product space 

1st kind: not entangled states, A BΨ = Θ Φ

2nd kind: entangled states, A BΨ ≠ Θ Φ

γ) To have entangled states particles must interact each other.

5.3 Maximal Entanglements

The states 

( )A B A B
1
2

±Φ = ↑ ↑ ± ↓ ↓z z z z

( )A B A B
1
2

±Ψ = ↑ ↓ ± ↓ ↑z z z z

constitute an orthonormal basis of Hilbert space A BH H H= ⊗  and are usually called 
Bell’s states. Bell’s states have the property that they keep their form invariant if we 
replace the ẑ  direction by any arbitrary $n  one. That is

( ) ( )A B A B A B A B
1 1
2 2

±Φ 〉 = ↑ ↑ ± ↓ ↓ = ↑ ↑ ± ↓ ↓n n n nz z z z

and ( ) ( )A B A B A B A B
1 1
2 2

±Ψ 〉 = ↑ ↓ ± ↓ ↑ = ↑ ↓ ± ↓ ↑n n n nz z z z

We can easily prove the above property  starting from the right hand side part and 
replacing the ↓n  by a linear combination of ↑z  and ↓z .

Especially the state −Ψ  is very important and we will work with it at the rest of this 

chapter. This state −Ψ  is realizable for example by the decay of a spin 0  particle into 

two particles spin 1
2

 under conservation of the internal angular momentum. Then the two 
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spins of the emerging particles are opposite and the pair is described by −Ψ .

The classical analogon with this state is the system of a pair of two similar disks which
have the same axle and are rotating in the opposite direction with the same angular
velocityω . The total angular momentum is 0totS S S= − =  and their component in any
direction are equal and opposite. For this system any direction of S  is allowed and is a
solution of the problem.

Also, if an explosion takes place in the middle of this system and the two disks separate 
then their spins S  remain opposite.

5.4 Pure and Mixed State of a Particle

Let a pair AB  be in state

( )A B A B
1 -
2

−Ψ = ↑ ↓ ↓ ↑z z z z

which is a vector in the Hilbert space A BH H H= ⊗ .

We separate the pair into particle A  and particle B  without disturbing the spins (see fig
11)

A
B

B

A
1 particle

1 particle
1 pair Dof separation

S S

ω ω

before after explosion
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fig 11
Now we have the particle A  and the particle B .

Question:

Is the particle A  (or B ) in some state which is a vector in the Hilbert space AH  (or BH )?

The answer is unfortunately NO! The assertion that one particle is in any case in a state, 
vector in the Hilbert space is equivalent to locality and is not true!!

Proof:

We know that the way to write the −Ψ  is not unique. Let us decide to measure the

component $ ( A )nS  of the particle A  and we find the value 
2

+
h . The corresponding

projection operator of this measurement is

$ $A A A BP In ↑= ↑ ↑ ⊗ $n n

Therefore the system end in state Ψ  where

$ $ ( )A A A B A B A B
1P I
2

n ↑
 Ψ = ↑ ↑ ⊗ ↑ ↓ − ↓ ↑  

$n n n n n n

( )A B
1
2

= ↑ ↓n n A B'Ψ = ↑ ↓n n .

Consequently the states of the particle A  and the particle B  are the vectors A↑n  in the

space AH  and B↓n  in the space BH  respectively.

However as we were measuring the observable $ ( A )nS  concerning the particle A  we did
not disturb the particle B . Therefore some one could assert that the state of particle B
was also the vector B↓n  in the BH  before the measurement. But all measurements
show that the particle A  and the particle B  have antiparallel spins. So if before the
measurement they were in states which were vectors in the AH  and BH  respectively their
states must have been the vectors A↑n  and B↓n . Consequently if we decided to

measure on some direction $≠m n  there were possibility to find parallel spins because

( ) ( ) 2
A B A B 0〈 ↑ 〈 ↑ ⋅ ↑〉 ↓ 〉 ≠m m n n

However experiments show that this probability is zero. Consequently neither particle A
nor particle B  were in states, which are vectors in the AH  or BH  respectively.

Definition:

normalitation
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If a particle is not in a state which is a vector in the Hilbert space then this state is
called mixed state or incoherent state. In the opposite case, when the state is a vector
of Hilbert space it is called pure state or coherent state.

Remarks:

a) The entangled states are vectors which are coherent states, vectors in the Hilbert 
space A BH H H= ⊗ . However each of particle A  and B  is in an incoherent state.

β) A mixed ensemble can consist of particles whose each one is in a pure state, but 
not all in the same one. However we saw that a mixed ensemble can also consist of 

particles whose each one is in incoherent state. There is no mechanism to
distinguish the two cases and there is no need.

5.5 Faster than Light?

Let us assume that we have a pure ensemble of N  pairs in state 

( )A B A B
1
2

−Ψ 〉 = ↑〉 ↓〉 − ↓〉 ↑〉n n n n .

We separate each pair and give the particles A  to Alice who lives on earth and particles
B  to Bob who lives on some star of Andromeda galaxy. Let Alice want to send a

message to Bob. She thinks this trick. She measures the first N
k

 particles A  in direction

x , and so the first N
k

 particles B  are prepared in a mixed ensemble 1E  where the half

particles are in state B↑x and the remaining half in state B↓x .

Then Alice measures the next N
k

 particles in direction ẑ . Consequently the next N
k

particles B  are prepared in a mixed ensemble 2E  where the half particles are in state
B↑z and the remaining half in state B↓z …. and so on.

Some one could think that Alice has sent a message to Bob faster than light. It would be
true only if Bob could distinguish the ensemble 1E  from ensemble 2E . But we know that
it is impossible because the two ensembles are indistinguishable and therefore the
message is unreadable.

5.6 Einstein Locality

As we saw quantum mechanics is an indeterministic theory. The complete knowledge of
the state and the knowledge of the time evolution of it does not assure the complete
prediction of the result of a measurement. We know only the probability to find a result.
On the other side in classical physics, if we know the initial conditions and the dynamics
of a system we can predict the result of any measurement with accuracy. The
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indeterministic features of quantum mechanics annoyed and annoy many people. Also the
following sentence is very interesting. 

<<Let two particles A  and B constitute a system. Suppose that we separate them and
move them along distance apart such as there is no any interaction between them. Then in
a complete description of physical reality any action performed on A  must not modify
the description of particle B >>.

This criterion is known as Einstein locality. Einstein considered that a theory is complete
and describes the physical reality only if it satisfies this criterion. Quantum mechanics as
we saw in case of entanglements does not satisfy it. Einstein believed that there are and
others hidden variables which have not been controlled with present-day experimental
technique. If we achieved to control them, quantum mechanics would become a
deterministic theory. More particularly, when a particle is prepared in a state ↑z , in

reality it is prepared in state , λ↑z  where 0 1λ≤ ≤  and λ  takes any value of the

interval [ ]0,1  with the same probability.

Now suppose that we measure the component $nS  where direction $n  forms an angle ϑ
with axis ẑ . 

Then the outcome will be

↑n for 20 cos
2
ϑ

λ≤ ≤

↓n for 2cos 1
2
ϑ

λ≤ ≤

If we known the value of λ  we could predict exactly the result. But λ  is completely
unknown and so the probability to find the state ↑n  or ↓n  agrees with the predictions
of quantum mechanics.

A class of theories with hidden variables which satisfy Einstein locality are called local
hidden variables theories. They are deterministic theories but the ignorance of hidden
variables leads to quantum mechanics. The validity of local theories can be tested by Bell
inequalities. Experiments have shown that these theories are not correct.



65

SUMMARY

1. Pure ensemble is an ensemble where all its members are in the same state Ψ . The 
mean value of an observable A  is given through the relation

ˆA A= Ψ Ψ

2. When the ratio 1p  of particles are in state 1Ψ , the ratio 2p  in state 2Ψ  and so on
then the ensemble is a mixed ensemble and the expectation mean value of an
observable A  is given through the relation

1 1 1 2 2 2A A A ..p p= Ψ Ψ + Ψ Ψ +

3. Unpolarized beam is an ensemble with 0nS =  for any direction n̂ .

4. If a particle A  is described by a Hilbert space AH  and a B  one by the BH  then the
system A,B  is described by the tensor product space A BH = H H⊗ .

5. If a vector Ψ  in H  space can not be written as A BΨ = Θ ⊗ Φ  then it describes
an entangled state.

6. Einstein supposed the existence of the hidden variables in order to make the Quantum
mechanics a deterministic theory.



66

QUESTION-EXERCISES

43) Using the relations

cos sin
2 2

n ϑ ϑ
↑ ↓↑ = +z z

sin cos
2 2

n ϑ ϑ
↑ ↓↓ = −z z

find the relations which give the vectors ↑x  and ↓x  as a function of ↑z  and

↓z .

44) Prove the relation

cos
2

nS ϑ=
h

by using for Ŝn  the following form 

ˆ
2 2

nS n n n n= ↑ ↑ − ↓ ↓
h h

45) A large number N  of particles which are in the state ↑z , pass through a nSG  where

n̂  belongs to plane zx  and form an angle 60ϑ = o  with z-axis.

i) calculate the number of particles which will outcome out in state n ↑  and the 

number in state n ↓ .
ii) Calculate the expectation value of the component nS  by two ways.

46) The quantum rule which gives the mean value is 

i)
1 22 2

n

N N
S

N

 + − 
 =

h h

ii) ˆn nS S↑ ↑= z z

iii) Both of them

iv) None of them

Choose the correct answer.
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47) Write T or F whether you think the following statements are true or false.

For a pure ensemble.

i) All its members are in the same state Ψ .
ii) All the members are in states which are vectors in the Hilbert space.
iii) In order to calculate of the mean value of an observable we use the quantum rules.
iv) Both statistical and quantum rules give the same results.

48) Write T or F whether you think the statements are true or false.

A large number N  of particles pass through a device which measures an observable 
A . We find three values 1a , 2a  and 3a .

i) The particles N  emerging from the device constitute a pure ensemble.
ii) If we select all particles with the value 1a , then we have a pure ensemble.
iii) The maximum number of pure ensembles that we can have is three.
iv) If we select the half particles with the value 2a  then they do not constitute a pure

ensemble.
v) The particles with corresponding value 3a  are in the same state Ψ .

49) For a mixed ensemble

i) All the particles have the same value a  for some observable A .
ii) The particles are not in the same state Ψ .
iii) For the calculation of the mean value of an observable we use only quantum rules.
iv) There is nSG  apparatus through which if we pass the mixed ensemble, all particles

follow the same path.

Choose the correct answer.

50) The particles emerging from the oven in Stern Gerlach experiment

i) They constitute a mixed ensemble
ii) They constitute an unpolarized beam
iii) Passing through a nSG  they separate into two ensembles with the same number of

members.
iv) All above are correct.

Choose the correct answer.

51) A mixed ensemble consists of 40 % particles in state ↑z  and 60 % in state ↓x .
Calculate the quantities

i) zS               ii)     S x              iii)     yS
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52) Write T or F whether you think the statements are true or false.

For an unpolarized beam:

i) The expectation value for any component nS  is zero.
ii) The expectation value for any observable is zero.
iii) It can be produced by several ways.
iv) It is a mixed ensemble.
v) We can distinguish if it is 50 % ↑x  and 50 % ↓x  or 50 % ↑z  and 50 % 

↓z .

53) Comment the relation

1 1 50% 50%
2 2

↑ ↓ ↑ ↓+ ≠ +x x x x

54) Write T or F whether you think the statements are true or false.

The Hilbert space 1H  is related to Sx , yS  and zS .

i) The observable A 3 zS S= x +  is related to 1H .

ii) The space 1H  describe the particle completely.

iii) The momentum p  of the particle is related to 1H .

v) The eigenstates of the observable B  are the states ↑x  and ↓x , that means
vectors of 1H , consequently B= f( S x) .

55) Write T or F whether you think the statements are true or false.

An observable B  is unrelated to Sx , yS  and zS  and 1H  is the corresponding space

which is connected to Sx , yS  and zS .

i) The B  is a function of Sx , yS  or zS .
ii) The B  is simultaneously measurable with Sx .
iii) There are eigenstates of B  which belong to 1H .

iv) Measuring the B  the state of the system in space 1H  does not change.

v) The B  is related to a space which differs from 1H .

56) A basis of the space 1H  is the set { }1 2,a a  and a basis of the space 2H  is the set

{ }1 2 3, ,β β β . Find a basis of the space 1 2H = H H⊗ .
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57) A pair of particles A , B  is in state 
A B

↑ ↑x x .

i) Write the state as a linear combination of the vectors of the basis

{ }A B A B A B A B
, , ,↑ ↑ ↑ ↓ ↓ ↑ ↓ ↓z z z z z z z z .

ii) Calculate the expectation value of the observable ( )totS x , where

( ) A( ) B( )totS S S= +x x x

58) When we say local performance on a system of two particles we mean:

i) A measurement which is a performance on two particles at the same time.
ii) We move the two particles near each to other and so they interact.
iii) A measurement concerning only one particle.
iv) A measurement of an observable which is related to both particles.

Choose the correct answer.

59) Write T or F whether you think the statements are true or false.

The initial state of a system is 0 0A Bin
Ψ = Θ ⊗ Φ . 

After a local performance:

i) The final state can not be written as product
A B

Θ ⊗ Φ .
ii) The state is again a vector in the tensor product space.
iii) Maybe some of 

A
Θ , 

B
Φ  changes but the final state has the form 

A B
Θ ⊗ Φ .

iv) Each particle is in a state which is a vector in the AH  and BH  space respectively.

60) Define the entangled state.

61) Why the state 

( )A B A B

1
2

− ↑ ↓ ↓ ↑Ψ = −z z z z

is an entangled state?

62) If we choose the convenient bases of the space 1H  and 2H , could we write the state
−Ψ  as a product

A B
Θ ⊗ Φ ?

63) Which is the physical system that can be described by the state −Ψ ?
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64) Prove the relations

( )
ˆ 0tot zS + +Ψ = Ψ

2 2ˆ 2totS + +Ψ = Ψh

65) Prove that the state 

( )A B A B

1
2

− ↑ ↓ ↓ ↑Ψ = −z z z z

can be written as 

( )A B A B

1
2

− ↑ ↓ ↓ ↑Ψ = −n n n n

where n̂  is an arbitrary direction on the plane xz .

66) Show that the vectors +Ψ  and −Ψ  are orthogonal.

67) Show that for the states +Ψ  and −Ψ  it is valid ( ) 0tot nS =  for any n̂ .

68) Write T or F whether you think the following statements are true or false.

Consider a pair of the particles A , B  which is described by the state

( )A B A B

1
2

− ↑ ↓ ↓ ↑Ψ = −z z z z

We separate the pair and give the particle A  to Alice and particle B  to Bob. They go
away so far that the particles do not interact any longer.

i) The particle A  is in a state 
A

Θ , vector in the space AH  which is a linear 

combination of 
A

↑z  and 
A

↓z .

ii) Every particle A  and B  examining separately is in an incoherent state.

iii) Alice measures the A(y)S  and find the value 
2

+
h , then automatically the particle B

<<goes>> to the state 
B

↓y  even though it was not disturbed by any way.

iv) The state −Ψ  is a well defined vector state in the space A BH = H H⊗ .

v) Alice measured the A( )S x  and found the value 
2

−
h . After that if Bob measures the

B( )S z  he will find the value 
2

+
h  with probability equal to unity.

69) Explain why Bob can not read the message which is sent by Alice by the way
described in the text of § 5.5.
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70) Write T or F whether you think the statements are true or false .

Quantum theory is an indeterministic theory because of:

i) Knowing completely the state of a system we can not predict with accuracy the
exactly result of a measurement, we are speaking only for probability of several
results.

ii) Knowing completely the state of the system we do not know its time evolution, so
we are not able to predict with accuracy.

iii) It is a non complete theory.

71) Which is the criterion of Einstein’s locality?

72) Write F or T whether you think the statements are true or false.

According to Einstein the hidden variables:

i) do not play any rule to definition of the state of the system.
ii) are not under control because of the deficient experimental ability.
iii) If we knew them, the result of a measurement would be different than now.
iv) If they were under control, the quantum mechanics would be a deterministic

theory.
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                                   PART II
                                               QUESTIONNAIRES

The Greek high school has  three classes the A’, B’ and C’. After the A’ class the pupils follow
one of the two different directions ,the classical direction which leads to classical studies
(jurisprudence, ancient Greek, Latin,…) or the practical direction which leads to exact studies 
(polytechnic schools, mathematics, physics,…) .
The lesson of quantum physics was taught to pupils of C’ class of practical direction . The
number of pupils was 32 and the duration of the course was about 16 hours.
Before the beginning of the course  the questionnaire A was given to the pupils and during the
course the pupils answered the questionnaires 1,2,3 and 4. Two weeks after the end of the lessons
they answered the questionnaire B’ and completed the form <<comparisons>>. 
The questionnaires and the corresponding results are following . Also there is a comparative study
on the relation  between quantum physics and physics/mathematics. Moreover there is a
comparative  study between quantum physics and the other chapters of physics which are taught
to C’ class. 
The part of this work which corresponds to questionnaire 1 was taught to another class from
another teacher and we compared the results.
At the end of this part there is the final conclusion of the research.  
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QUESTIONNAIRES

Questionnaire  A’ 

1) Write T or F whether you think the statements are true or false.

We are observing a body, which is on the move forming a track.

i) The same track is observed by every observer.
ii) If we did not observe it, this would follow a different path.
iii) If we did not observe it, its track would not make sense, consequently there would

not be the track.
iv) The body follows a path independently of any observer. If someone observes it, he

will see this track (the same to everyone)

n Choose the strongest  statement. 

2) Write T or F whether you think the statements are true or false.

A body is launched from a point on the ground with a certain velocity , forming a certain
angle with the horizon, and following a track it lands at certain point on the ground. We
repeat the experiment with exactly the same conditions (same velocity, angle, …).

i) The second time the body will also land at the same point as the first time.
ii) The second time the body will land at a different point.
iii) The second time the body will follows exactly the same track as the first time,

it will be moving for the same time and it will land at the same point.
iv) There is a case we find that it lands at a different point but it happens because 

of experimental error. If the experimental apparatus was ideal we would find that
it  lands at the same point

n Choose the  strongest  statement. 

3) Write T or F whether you think the statements are true or false.

We have two electrons, which are under the same initial conditions and are moving
exactly in the same way in a magnetic field. We measure the component of spin on the x-

axis, the S x , and for the first electron we find the value 
2

+
h . If we measure the same

quantity for the other electron in the same way

i) We will find the same value 
2

+
h

ii) We cannot predict the result of the measurement.

iii) It is possible to find the value 
2

−
h .
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iv) If we found the value 
2

−
h  we would  have made an experimental error.

v) In any case we must find the value 
2

+
h  because the measurement is exactly the 

same on the same systems consequently the results must be the same.

n Choose the strongest statement. 

4) Write T or F whether you think the statements are true or false.

A body with mass m  has a certain velocity v  and it is moving on the x-axis. At the
moment 0t =  it is at the point 0 0=x . The total force acting on the body is equal to zero
and so its motion is rectilinear and smooth. For this body

i) We can predict with certainty the position and the its velocity  at any time.
ii) We can predict its kinetic energy at any time.
iii) When its mass is very small we cannot predict with certainty the position and 

the velocity.
iv) The position and the velocity are two quantities , which if we know them, the 

description of the body is complete.

n Choose the  strongest statement. 

5) Write T or F whether you think the statements are true or false.

A body with mass m  at the moment 0t =  has a certain velocity 0v  and it is moving under
the influence of a certain constant force F  (motion in one dimension).

i) The reason for the change of the motion is the force and the result is the 
acceleration.

ii) Newton’s law F m a= ⋅  connects the cause and the result.
iii) Through Newton’s law we can predict with certainty the value of any observable 

related with the body at any time.
iv) There are some quantities whose value  we cannot predict  with accuracy.

n Choose the  strongest statement. 

6) Write T or F whether you think the statements are true or false.

We measure the component zS  of an electron and we find the value 
2

+
h . Then we

measure the component S x  and we find 
2

−
h . If we measure the component zS  again we

will find 

i) Again the value 
2

+
h .

ii) We can not predict, it is possible to find any value because the second 
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measurement disturbed the particle.

iii) Either 
2

+
h  or 

2
−
h .

iv) The physical quantities define the system and any measurement of one of them 
does not change the value of the others.

n Choose the strongest statement. 

7) Write T or F whether you think the statements are true or false.

For some reason two electrons are produced at a point of the space. They are initially at
rest and because of the repulsive force between them they begin to go move apart . The
distance between them becomes infinite. As we know the total momentum is conserved
and its value is equal to zero. Let us measure the momentum of the first of them and find

the value m
a kg

s
+ . Then 

i) We know at the same time that the value of the momentum of the second electron 

is ma kg
s

− .

ii) The momentum of the second electron was also m
a kg

s
−  before the measurement 

of the momentum of the first one.

iii) The momentum of the second electron was not m
a kg

s
−  before the measurement 

of the momentum of the first one, but it became m
a kg

s
−  exactly at the moment 

when we measured the first one.

iv) It is impossible, the measurement of the momentum of the first electron  
influences the second one (infinite distance), consequently before the 

measurement the momentum of the second electron was also m
a kg

s
− .

n Choose the strongest statement. 

8) Write T or F whether you think the statements are true or false.

n  moles of an ideal gas consist of N  very small particles, the atoms which move freely
and collide elastically with  each  other and with the inner sides of the can .

i) If for any particle we knew at a moment its velocity and position we could
predict with accuracy the motion of every one separately for any time.

ii) We could not predict the motion of the particle even though we knew the initial 
conditions for each of them because after the collisions all particles together 
constitute one system and so we cannot examine each particle separately.

iii) It is not valid  Newton’s law for each atom separately. 
iv) The calculation of the mean values of pressure is achieved  with the help of 

Newton’s law and the rules of statistic.
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n Choose the strongest statement. 

9) Write T or F whether you think the statements are true or false.

Two particles come from large distance, collide and move apart  until the distance
becomes infinite so that they do not interact. Suppose that the total momentum is equal to
zero.

i) Can we examine each particle separately defining velocity, position, energy, 
momentum for every one.

ii) The two particles constitute a system and must not be examined separately. 
iii) Measuring the momentum of one of them we know the momentum of the other. 
iv) The measurement of the momentum of the first particle changes the momentum of 

the second one , that means the measurement of the first one influences the second
one instantaneously. 

n Choose the strongest statement. 

10) When you hear the word quantum physics the first thing, which you remember is

  material waves
  quantum of energy
  Bohr’s atomic theory
  Schroedinger equation
  None of them 
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RESULTS  - CONCLUSIONS  OF  QUESTIONNAIRE A  

The aim of this questionnaire is to investigate how easily the pupils can show the concepts
of classical physics which are in their mind . The objects which are investigated and the
corresponding results are the following:

I. Physical  reality (P.R.)
<<The world exists independently of any observer. Any effect takes place in the same
way  irrespective of whether we observe it or no. The corresponding question is the
number 1. The plot of the ration of pupils (%) versus marks (0-100) is the following:

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      0      0    0    34      66
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II. Deterministic  theory – Identical measurements (D.I.M.)
Classical theory is a deterministic theory and because of this ,identical measurements
made on identical systems give identical results  The corresponding questions are the
numbers 2 and 3. The corresponding diagram is the following:

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)     3,1     18,7    9,4    21,9 46,9
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III. Deterministic  theory – Causality (Newton law) (D.C.N.L.)
We investigate if the pupils understand that through the Newton law we can predict with
certainty the time  evolution  of a system , when we know its initial condition . The
questions 4 , 5 , 8i , 8ii concern this object. The results are the following:

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      0       3,1    3,1 28,1 65,7
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IV. Simultaneously measurable observable   (S.M.O.)
In the frame of classical physics  all observables  are simultaneously measurable. The
corresponding question is the number 6. The results are the following:

     marks    0-20    20-40   40-60    60-80   80-100
Ratio  (%)     3,1      3,1     0    12,5     81,3
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V.   Locality (LOC)     
What happens in a place does not immediately affect what happens in another place.
Especially if two particles are in infinite distance , then any action on one of them does
not influence the other one. The corresponding questions are number 7 , 9iii) , and  9vi).
The results are the following: 

 
     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      0      3,1    9,3    28,1      62,5
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VI.    Separability   (SEP)
In any case we can examine a particle as a  system  apart from its surrounding. The
corresponding questions are 8iii) , 8iv) , 9i) and 9ii) . The results are the following:

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      0      0    0    6,3      93,7
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VII. Contact with quantum concepts.
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Conclusion:
The results  are the ones which we expected. We can see a little divergence in the case II.
It happens because pupils did not take the measurements as ideal.
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Questionnaire 1.

1) Which of the following pairs defines the state of a particle in the frame of classical 
mechanics.

i) (position, velocity) ii) (position, force)
iii) (velocity, force) iv) (velocity, acceleration)

Choose the correct answer.

2) With the ket ( )  we define the quantum state of a particle. Also 

i) It defines the position and the  momentum of the particle.
ii) It is connected with the value at least of one observable.
iii) It defines the value of two observables, which are not simultaneously measurable.
vi) It is always connected only with the value of one observable.

Choose the correct answer.

3) Two observables A  and B  of a system are simultaneously measurable if 

i) We can measure both of them at the same time.
ii) The measurement of the B  changes the value which we found when  we first 

measured the A .
iii) Measuring the A  and B  successively and for many times we always find the

same value for each of them.
iv) Measuring the A  and the B  the system comes to a state a, β  which changes to 

state 1a , β  if we measure the A  again.

Choose the correct answer.

4) Write T or F whether you think the statements are true or false.

Measuring the component of spin zS  of a particle with spin 1
2

i) We find two discrete values, 
2

+
h  and 

2
−
h .

ii) We find several values between S−  and S+ .
iii)  Classical physics predicts values between S−  and S+  but the experiments give 

two discrete values 
2

±
h .

iv) The values, which we find, depend on the experimental method  which we use.
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5) Write T or F whether you think the statements are true or false.

For a particle with spin 1
2

i) We can not write the state 
2 2

, yS S −= + h h
x  because the observables S x  and yS  

are not simultaneously measurable.
ii) There is the state ,↑ ↓z x .

iii) If we measure the component zS  and find the value 
2

+
h  and then we measure the 

component yS  and find the value 
2

−
h , then repeating the measurement of zS  we 

will find the value 
2

+
h  with probability equal to unity.

iv) For the state ↑z  we know that the value of the component S x  is 
2

+
h .

6) A particle is in the state
3 4
5 5

i↑ ↓Ψ = +z z ,

calculate the probability to be in the state 
4 3
5 5

i↑ ↓Φ = +z z

Solution

7) The measurements of the energy of a system always give the values 1 2,E E  and 3E .
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Find a basis of the corresponding Hilbert space.
If the state of the system is 

1 3
1 1
2 2

E EΨ = +

find the probability the system to be in the state 

1 2
1 1
2 2

E EΦ = +

Solution

8) A particle is in the state

1 3
2 2

i↑ ↓Ψ = +z z

i) Passing the particle through a zSG  apparatus, find the probability for it to come 
out in state ↑z  and also to come out in state ↓z .

ii) If 234.10N =  particles which are in the same state Ψ  pass through a zSG , how 
many will follow the higher path and how many will follow the lower path.

Solution
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9) Write T or F whether you think the statements are true or false.

For the quantum physics

i) If two particles with spin 1
2

 are in the same state, for example the ↑z , 

measuring for each one the same quantity S x  and in the same way, it is possible to 

find different results.
ii) The state ↑z  allows us to predict with accuracy the value of the component 

2
z zS S = + 
 

h  but does not allows us to predict with accuracy the value of the 

component S x

iii) On the other side, classical physics allows us to predict the value of any 
observable with certainty if we know the state of a system.

iv) If we know the state of a system we also know with certainty the value of every 
observable concerning the system.

10) Write T or F whether you think the statements are true or false.

i) According to quantum physics, a measurement of an observable can change the 
initial state of the system.

ii) Classical theory is a deterministic theory but quantum physics is not.
iii) Quantum theory is a probabilistic theory.
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RESULTS – CONCLUSIONS  OF  QUESTIONNAIRE 1.

The paragraphs  §1 . 1 until  §1 . 9 were taught. The duration of teaching was 4 hours.
After that this questionnaire which concerns these paragraphs was given to pupils. The
aims and the results are the following:

I. Understanding of new concepts.(U.C.)
The aim is to investigate  the level of understanding of the new concepts like quantum
state, simultaneously measurable observables and discrete values. The corresponding
questions are the numbers 1,2,3,4 and 5. The plot of the ratio of pupils ( % ) versus marks
( 0- 100 ) is the following:

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      0      3,1    25    37,5      34,5
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II. Mathematical skills. ( M. S ) 
The aim is to find out the abilities of the pupils to manipulate the new mathematics as to
find the bra of a ket , to calculate an inner product and the probability as a state
|Ψ>to be in an other state |Φ>. The results are the following:

     marks    0-20    20-40    40-60  60-80   80-100
Ratio  (%)      34,4     15,6     12,5    3,1      34,4
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I. Total result. ( T. R. )
This is the total result of the cases I. and II. and we can see the performance of the pupils
to a normal test  which is given for the lesson of Physics. The contribution of the I. and II.
is with weight 14/40 and 26/40 respectively. Obviously the corresponding questions are
the numbers 1 until  8. the corresponding diagram is the following:

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      3,1      37,5    15,6    9,4      34,4
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ΙV.      Introduction  to Quantum Spirit. ( Q. S. )

The questions 9 and 10 are an expansion of the questionnaire A. We want to investigate
how much the pupils are introduced to the philosophy of quantum physics. The results are
the following :

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      0      9,4    28,1    25      37,5
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Questionnaire 2.

1) The state of a particle with spin 1
2

 is 

2 5
3 3

i↑ ↓Ψ = +x x

i) Write the bra Ψ

Answer

ii) Write the projection operators P̂ ↑x  and P̂ ↓x

Answer

iii) Calculate the probability the result of the measurement of S x  to be 
2

+
h . Similarly to 

be 
2

−
h .

Solution

iv) Find the expectation value of the component S x .

Solution
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v) Write the Operator Ŝ x .

Answer

vi) Using the relation ŜΨ Ψx , calculate the expectation value of the component S x .

Solution

2) For a particle with spin 1
2

 

i) Write the operator ˆzS

Answer

ii) Find the matrix representation of the operator ˆzS  in the basis { },↑ ↓x x  using the 
relations

1 1
2 2

↑ ↑ ↓= +x z z , 1 1
2 2

↑ ↑ ↓= +x z z

1 1
2 2

↓ ↑ ↓= −x z z , 1 1
2 2

↓ ↑ ↓= −x z z

Solution
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iii) The state of N particles is
3 4
5 5

↑ ↓Ψ = +x x

Find the matrix representations of the ket Ψ  and bra Ψ  in the basis { },↑ ↓x x

Solution

iv) For the N  particles in state Ψ , find the expectation value of the component zS
using the 

relation between the matrices. The matrix representation of zS  in the basis
{ },↑ ↓x x  is the following 

0
2

0
2

zS =

 
 
 
  
 

h

h

Solution
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3) The eigenvalues of the energy are 1E E=  and 2E E= − . The corresponding 
eigenstates are noticed as 1E  and 2E  and constitutes an orthonormal basis of the 
Hilbert space. The initial state of the system is 

1 2
12 5(0)
13 13

E EΨ = −

i) Write the state ( )tΨ  

Answer

ii) Find the matrix representation of the ( )tΨ  and ( )tΨ  in the basis{ }1 2,E E .

Solution

iii) Write the operator of energy Ĥ .

Answer
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iv) Find the matrix representation of the operator Ĥ  in the basis { }1 2,E E .

Solution

v) Calculate the expectation value of the energy for any time (with any way you prefer).

Solution
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RESULTS – CONCLUSIONS  OF  QUESTIONNAIRE 2.

The paragraphs §2.1 until §2.5 were taught. The duration was four hours , but we taught
two hours more because there were problems with new mathematics . The aim of this
questionnaire is to investigate the mathematical skills of pupils and how easily they can
manipulate the new mathematical objects like the calculation of mean values using the
operators , finding the representation of an operator and doing calculations with matrices .
The results are the following :   

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)     6,3     18,7   37,5    15,6      21,9
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Remark : The result is more normal than that from the questionnaire 1. ,as we can 
observe there is some accumulation on the mark 50 . There are tow reasons 
for this: 
1) The pupils are used to working with new things .
2)  The two additional hours proved helpful. 
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Questionnaire  3.

1) A pure ensemble consists of 

i) particles of the same type.
ii) particles which are in the same state Ψ .
iii) particles of different type.
iv) particles of the same type which are not in the same state Ψ .

Choose the correct answer.

2) A mixed ensemble consists of 

i) same particles
ii) particles where some of them are in the 1Ψ  others are in the state 2Ψ  etc.

iii) particles which are in the state 1 2c c↑ ↓Ψ = +x x
iv) particles which are selected after the measurement of an observable A  with the 

same value a .

Choose the correct answer.

3) The dimension of the space 1H  is 2 and the dimension of the space 2H  is 3, then the 
dimension of the tensor product 1 2H H⊗  is 

i) 3     ii) 2      iii) 6     iv) 5

Choose the correct answer.

4) Write T or F whether you think the statements are true or false.

i) The particles which are emerging from the higher path of a n̂SG  apparatus 
constitute a pure ensemble.

ii) If N  particles which constitute a mixed ensemble pass through a convenient nSG  
device they will follow the same path.

iii) The particles of an unpolarized beam are in the same state Ψ .
iv) If two observables are not simultaneously measurable then they are related to  the 

same Hilbert space.
v) Irrelated observables are not related to the same Hilbert space.
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5) Write T or F whether you think the statements are true or false.

For a mixed ensemble, the ratio of particle in state 1Ψ  is 1p  and the ratio of particle 

in state 2Ψ  is 2p  ( )11 2p p+ = .

i) The state 1 21 2= p pΨ Ψ + Ψ  corresponds to this ensemble
ii) The expectation value of an observable A  is given through the relation 

1 1 2 2A A A1 2p p= Ψ Ψ + Ψ Ψ .
iii) If we pass this ensemble through a nSG  device it splits to two pure ensembles.
iv) The expectation value of an observable A  can be calculated through the relation

A A= Ψ Ψ .

6) Two observables A  and B of a system are not related. The measurement of A  
gives three values 1a , 2a  and 3a .

i) Define the Hilbert space AH  which is related to A

Solution

ii) The measurement of B  gives the values 1β  and 2β . Define the Hilbert space BH .

Solution

iii) Then define the tensor product A BH H⊗

Solution



96

7) A huge number of particles with spin 1
2

 pass through a nSG  device where the n̂  is on 

the xz plane and form angle 120θ = o  with Oz axis. We select all the particles, which 
follow the higher path (number N ).

i) Write the state of the N  selected particles. Do they constitute a pure ensemble?

Solution

ii) If the ensemble of N  particles passes through a zSG  device, how many particles will 
follow the higher path and how many the lower one? Calculate the mean value of the 
component zS .

Solution

8) A mixed ensemble consists of 30 % particles in the state ↑z  and 70 % particles in 

the state ↑x . Find the expectation value of the component S x .
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Solution

9) Write T or F whether you think the statements are true or false.

i) Quantum physics makes sense only in the case of a pure ensemble.
ii) The result of the measurement of an observable is equal to the mean value of the 

observable for each member of the ensemble.
iii) The measurement of an observable for each member of an ensemble gives discrete 

values, which are repeated.
iv) For a pure ensemble we can predict the mean value of any observable.

10) Write T or F whether you think the statements are true or false.

i) A particle always is in a state Ψ , vector in the Hilbert space.

ii) A state Ψ  can define an ensemble if all members are in the same state Ψ .
iii) The quantum rules are applied only for pure ensembles.
iv) The mean value of an observable makes sense in the case of a particle.
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RESULTS – CONCLUSIONS  OF  QUESTIONNAIRE 3.  

After having taught  the paragraphs §3.1 until §4.3 we gave  this questionnaire to pupils.
The aims and the results are the following:

I. Understanding of new concepts.(U.C.)

The aim is to investigate the level of understanding of the concepts like pure ensemble ,
mixed ensemble and tensor product .The corresponding questions are the numbers
1,2,3,4,5,9 and 10 . The results are the following:

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      0      0    6,9    51,7      41,1
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II. Mathematical skills. ( M. S.)

The aim is to find out the abilities of the pupils to calculate the mean value of an
observable for a pure and a mixed ensemble and to define the tensor product space of two
spaces . The corresponding questions are the numbers 6,7 and 8. The results are the
following:

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)     3,5      13,5   27,6   24,1      31
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III .Total result. ( T. R. )

This is the total result of the cases I. and II. Through this we can see the performance of
the pupils to a usual test such as is given for the subject of physics . The contribution of
the I. and II. is with the same weight (50/100).
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Remarks: We observe some improvement in the performance of the pupils. This happens 

because there is a repetition of the same mathematical objects and so they 
became more familiar with these.   

   

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      0      0    31,1   37,9      31
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Questionnaire  4.

1) Local performance for a system of two particles A  and B  is 

i) an action which is performed separately on A  and B .
ii) an action which is performed simultaneously on A  and B .
iii) a measurement concerning an observable, which is related to both particles.
iv) an action where we bring the two particles so near that they interact.

Choose the correct answer.

2) A vector in a tensor product space A BH = H H⊗  concerns entangled state if 

i) it is written as 
A B

Θ ⊗ Φ .

ii) it cannot be written as 
A B

Θ ⊗ Φ .

iii) Changing the basis we could write it as 
A B

Θ ⊗ Φ .
iv) Any vector in the H  concerns entangled state.

Choose the correct answer.

3) According to Einstein locality, if two particles A,B  do not interact that is they are 
isolated.

i) An action (measurement) on A  does not modify the state of B  particle.
ii) An action on B  instantaneously modifies the state of A .
iii) A  and B  must be faced as a unified system.
iv) Any measurement of A  gives information for the state of B .

Choose the correct answer.

4) Write T or F whether you think the statements are true or false.

A pair described by the state

( )A B A B

1
2

− ↑ ↓ ↓ ↑Ψ = −z z z z

that is an entangled state. We separate the two particles and move a long distance apart  so
that they do not interact.

i) We can examine each particle independently from the other.

ii) We measure the component (A)zS  and find the value 
2

+
h . The state of B  

instantaneously becomes the 
B

↓z .
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iii) We measure the component AS x( )  and find the value 
2

−
h , consequently the state 

of B  is the vector 
B

↑x . The state of B  was also 
B

↑x  before the measurement 

because the particles were a great distance apart  and the measurement of AS x( )  
did not disturb the particle B .

iv) We can consider the two particles as two different separated systems.

5) Write T or F whether you think the statements are true or false.

Einstein assumed the existence of <<hidden variables>>.

i) If we knew their value  we could predict with accuracy the results of any 
measurement.

ii) Their existence has been proved by experiments.
iii) Some experiments show their existence of  and other do not.
iv) If they existed , then quantum theory would be a causal theory, consequently 

identical measurements made on identical systems would give identical results.

6) The message sent by Alice to Bob is unreadable because

i) An ensemble 50 % ↑n  and 50 % ↓n  is identical to another one which is 50 %

↑m  and 50 % ↓m .
ii) It could be readable if they had  arranged the directions on which Alice would 

have measured.
iii) If it were readable it would be a message, which would not be sent 

instantaneously.
iv) It could be read if Bob took the particles A  and Alice took the particles B .

Choose the correct answer.

7) Is the state

A B A B

1 1
2 2

↑ ↑ ↓ ↑Ψ = +z z z z

an entangled state?

Solution
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8) Prove the relation

( ) ( )A B A B A B A B

1 1
2 2

− ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑Ψ = − = −z z z z x x x x

Using the relations

( )

( )

1
2

1
2

↑ ↑ ↓

↓ ↑ ↓

= +

= −

x z z

x z z

Proof

9) Write T or F whether you think the statements are true or false.

i) In any case a particle is in a state which is a vector in the Hilbert space.
ii) The vectors in a tensor product which are not in the form 

A B
Θ ⊗ Φ  do not have 

physical significance.
iii) If we want to produce an entangled state the two particles must interact.
iv) When A  and B  are in an entangled state , the measurement of the component 

AS x( )  leads the system to an unentangled state.

10) Comment on the object which causes  the greatest impression on you .
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RESULTS – CONCLUSIONS  OF  QUESTIONNAIRE 4.

We taught the paragraphs §5.1 until §5.6.The duration of teaching was four hours . The
aim of this questionnaire is to research the degree of understanding of the concepts
entanglement , local action , locality , separability  and hidden variables . Also the
mathematical skills are checked by the questions 7 and 8 . The contribution of the
questions 7 and 8 to the total result is 1/3 . The total result is the following:

  
     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)     3,3     16,7   33,4    26,6      20
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Remarks: 1) The results are normal without any surprises. 
2) For the question number 10 the most  of the pupils answered that the 

impressive object was that when two particles are in an entangled state a
measurement on  one of them defines the state of the other one , in spite of
the fact that they are at an infinite distance. 
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Questionnaire B’

1) We have seen that quantum mechanics describes  nature in a different way than the 
classical theory. What do you think (one answer)?

i) Two theories describe different things (microcosmos  - macrocosmos ) but both of 
them are correct.

ii) The correct theory is the quantum theory; the classical theory is an approximation 
of the quantum mechanics and its predictions for macro objects are very 
satisfactory.

iii) The correct theory is the classical one and the quantum theory is an approximation 

of the classical theory.
iv) If we apply the quantum rules to macrocosmos  the predictions will be very 

different from those of classical physics.

2) Write T or F whether you think the statements are true or false.

A body is following a track.

i) There is the track because we observe it.
ii) The track is independent from any observer.
iii) The observation modifies the track.
iv) The track does not make sense when we do not observe it.

3) Write T or F whether you think the statements are true or false.

Quantum theory.

i) This is a deterministic theory.
ii) Identical measurements made on identical systems give identical results.
iii) The measurement modifies or defines the state of the system. 
iv) Identical systems after the identical measurement could be in different states.

4) Write T or F whether you think the statements are true or false.

In quantum mechanics

i) The definition of the state is incomplete because some observables are not
simultaneously measurable.

ii) The definition of the state is as complete as the natural laws permit it .
iii) The definition of the state is incomplete because the experimental devices are not 

developed enough.
iv) The definition of the state is incomplete because we do not know the value of the 

hidden variables.
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5) Write T or F whether you think the statements are true or false.

In the case of an entangled state of two particles , when the two particles are moved a long
distance apart .

i) The two particles could be examined as separated systems (separability).
ii) Independently of the distance they remain as a unified system (non separability). 
iii) A measurement on one of these particles does not modify the state of the other 

because they are an infinite distance apart. 
iv) A measurement on one of them defines the state of the other. 

6) Write T or F whether you think the statements are true or false.

The quantum theory

i) This is a probabilistic theory.
ii) This does not contain a law through which we could find the time evolution of a 

state.
iii) It  concerns only ensembles and its significance for only one system is not so 

great.
iv) This is not a completely causal theory. 

7) The time evolution of a state in the frame of classical mechanics is estimated through 
the Newton’s law. Which is the corresponding law of quantum mechanics? 

Answer:

8) Write T or F whether you think the statements are true or false.

Elements of physical reality for a system are these quantities, which can be predicted with
accuracy.

i) Earth has spin. According to  classical mechanics we know the three components 
of its spin but quantum mechanics allows us to know only one.

ii) According to quantum mechanics we can know the three components S x , yS , zS  
of the spin of an electron.

iii) For the same system, according to classical mechanics the elements of physical 
reality are more than those of the quantum mechanics.

iv) The elements of physical reality are these which are described by quantum 
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mechanics. But in  classical mechanics  the quantities are large so the 
theoretical errors are smaller than the experimental errors. 

9) Write T or F whether you think the statements are true or false.

i) According to classical mechanics the results of a measurement are discrete values.
ii) The discrete values of some observables arouse suspicions that particles have 

wave features.
iii) The Hilbert space is a mathematical construction which is helpful to describe t 

nature in the frame of  quantum physics.
iv) Schroedinger equation is provable.

10) Comment the Einstein saying. <<God does not play dice>>.

Answer
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RESULTS  - CONCLUSIONS  OF  QUESTIONNAIRE B
This questionnaire was given about two weeks after the end of the lessons. The aims and
the corresponding results are the following:

1) Essential differences between quantum and classical physics(E.D.Q.C.):

By the questions 1,3,4,6,7 and 9 we tried to find out how much the pupils understood
about some important  differences between quantum and classical physics such as
determinisms, definition of state, causality , discrete values, and so on .The results are the
following:

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      0      0    32,3   67,7      0
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Remark: None above the 80!!!!!

2) Physical reality (P.R.)

Questions 2 and 8  investigated whether the initial views of the pupils which we had seen
in questionnaire A have changed according to the new frame of quantum physics. The
results are the following:

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%)      0 12,9    29   45,2     12,2
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Remark: We observe a change but it is not so massive.

3) Locality , Separability(L.S.)

In question 5 we investigate if the pupils understood that the quantum physics despite the
classical physics is a non-local theory, and that nonseparability is valid. The results are the
following:
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Remark:  The results are satisfactory .

     marks    0-20    20-40   40-60  60-80   80-100
Ratio  (%) 3,2     16,1 12,9   19,4 48,4
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COMPARISONS
 
A. Comparisons of lessons

1) From the results of the questionnaires 1,2,3 and 4we calculate the mean value (M. V. )

of the total results .  
Questionnaire  1.  M.V.= 57,15
Questionnaire  2.  M.V = 57,52
Questionnaire  3.  M.V = 70,03
Questionnaire  4.  M .V =56,58

The total mean value of all of them is

                  M.V.=60,3

2) The pupils of the C’ class of practical direction ( specializing in natural sciences )
have two lessons of physics , the first one is the same for both directions and the
second one is more special and it is taught only to practical direction. It is named
<<physics for the practical direction>> .The same is happens for the mathematics .
We examined the marks of the lessons <<physics for the practical direction >> and
<<mathematics for the practical direction>> of the writing tests and we compared
these with the results of our questionnaires . The results and the corresponding mean
values are the following 

:

MARKS 0-20 20-40 40-60 60-80 80-100
PHYSICS 12,5% 34,4% 18,7% 12,5% 21,9%
MATHEMATICS 12,5% 25% 15,6% 21,9% 25%
QUANTUM
PHYSICS

0% 21,2% 36,4% 18,2% 24,2%

LESSONS PHYSICS MATHEMATICS QUANTUM
PHYSICS

M.V.(mark)       49       52,8     60,3

The corresponding comparative diagram is the following:
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Remarks:

a) We observe a stability for the mean value of all questionnaires except the
questionnaire 3. where someone could see a noticeable difference from the remainder.
It is due to the fact that at that stage , the pupils were able to work with the new
mathematics and the new concepts were not so difficult . In spite of the fact that  the
mathematics in the questionnaire 4. were simple, the mean value is lower  because of
the fact that the new concepts were rather difficult.

b) The better performance on the quantum physics is due to the fact that the form of
questionnaires are a little different from those of two other lessons. I think that under
the same conditions the results would be the same.
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B. Comparisons of chapters of physics

We gave to the pupils the following form:

COMPARISONS

Put degree from 1 to 5 for each object:

i. Degree of interest: (  1= no interesting,……5= very interesting )

ii. Degree of difficulty:  ( 1= no difficult,……5=very difficult )

iii. Degree of mathematical difficulties: (  1= no difficult,……5=very difficult )

iv. Degree of suitability: ( 1= no appropriate , …5= very appropriate )

CHAPTER VIBRATIONS WAVES RIGID
BODY

QUANTUM
PHYSICS

INTEREST
DIFFICULTIES
MATHEMATICAL
DIFFICULTIES
SUITABILITY

The results are the following:

i. Degree of interest

DEGREE VIBRATIONS WAVES RIGID BODY QUANTUM
PHYSICS

       1  0% 9,7% 9,6% 0%
       2 12,9% 19,5% 6,5% 12,9%
       3 38,7% 22,5% 35,5% 25,7%
       4 41,9% 25,8% 35,5% 41,9%
       5 6,5% 22,5% 12,9% 19,5%

VIBRATIONS WAVES RIGID
BODY

QUANTUM
PHYSICS

 M.V,      3,42   3,32    3,35    3,68
  σ     0,80   1,3    1,1    0,9

ii. Degree of difficulty

DEGREE VIBRATIONS WAVES RIGID BODY QUANTUM
PHYSICS

       1       0%        0%    0%     0%
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       2   67,7%      25,8%    29%    9,7%
       3   22,6 %      25,8%    51,6%    29%
       4     9,7%      35,5%    19,4%    54,8%
       5     0%      12,9%     0%    6,5%

VIBRATIONS WAVES RIGID
BODY

QUANTUM
PHYSICS

 M.V,     2,42       3,35   2,9     3,58
  σ      0,66    1    0,7    0,8

iii. Degree of mathematical difficulties

DEGREE VIBRATIONS WAVES RIGID BODY QUANTUM
PHYSICS

       1   16,1%      9,7%     16,1%         0%
       2   54,8%    35,4%     38,7%    32,3%
       3   22,6%    38,7%     29,1%    29,0% 
       4     6,5%      9,7%    16,1%    32,3%
       5        0%      6,5%         0%      6,5%

VIBRATIONS WAVES RIGID
BODY

QUANTUM
PHYSICS

 M.V,     2,19    2,68    2,45    3,13
  σ     0,78    0,99    0,94    0,94

iv. Degree of suitability

DEGREE VIBRATIONS WAVES RIGID BODY QUANTUM
PHYSICS

       1     6,5%      9,7%     6,5%     9,7%
       2     6,5%    29,0%     9,7%   45,2%
       3   12,9%    19,4%   38,7%   19,3%
       4   54,8%    25,8%   29,0%   19,3%
       5   19,3%    16,1%   16,1%     6,5%

VIBRATIONS WAVES RIGID
BODY

QUANTUM
PHYSICS

 M.V,     3,75      3,10     3,39    2,68
  σ     1,04     1,28     0,96    1,09

Remarks:

a) The parameter σ is the dispersion   and expresses the dissent among the pupils , as the 
higher  the value of the  σ ,the higher the division of the opinion of pupils.

b) Despite the results of the questionnaires which show better performance of the pupils 
on the quantum physics, we observe that the pupils think the chapter of quantum
mechanics more difficult but also more interesting .

c) Very important is the fact that the pupils think quantum physics less appropriate for 
the high school !!! They think it very radical. 
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C . Comparisons of different groups

The paragraphs §1.1until § 1.9 were taught to another exact direction of C’ class (G2) by
another teacher . The questionnaire 1. was given to pupils .The total results of each group
are the following:

MARKS   0-20   20-40   40-60   60-80   80-100
G1   3,1%  37,5%   15,6%   9,4%  34,4%
G2   10%    60%   10%   10%  0%

   

The corresponding comparative diagram is the following:
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Remark: 

We observe that the results from two groups are a little different, it is due to the fact that
the number of the pupils of the G2 was very small ( 10) .Also the performance of the
pupils of the G2 to the other lessons is lower than this of the pupils of the first  class.
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FINAL CONCLUSION

For establishing a concrete curriculum for the teaching program some criteria must be
imposed. The main criteria  for the evaluation of the teaching material are the usefulness
and the suitability. In addition, it must be considered which topics can be replaced by the
new ones because of the limited school program. The aim of the given questionnaires was
to search and evaluate these two topics, i.e., the usefulness and the suitability.

Usefulness

Through the questionnaire A’ the basic concepts positivism ,determinism, physical reality
,locality ,….concepts which are not usually defined by all pupils but are commonly
accepted and are in the mind of everyone ,were researched. The results show that these
conceptions exist in the mind of the pupils and are connected with the philosophical frame
of classical physics . The questionnaires 1,3,4 and B’ contain questions which permit us to
compare the philosophical conceptions of classical physics with those of quantum
physics. The results show that a satisfactory fraction of pupils understood and
consolidated these differences .
The new concepts which are contrary to old concepts of classical physics were faced,
surprisingly, with intensive interest from a large fraction of pupils but also with aversion,
inability and conservatism from a smaller one.
In conclusion the result concerning this point is considered positive because the lesson
shocked, existed and made the pupils think.
Also there are objective reasons which strengthen the factor of usefulness. This way of
presentation of quantum mechanics relates to our world of digital and also the hard disc of
computers is an enormous number of spins. A second application is to magnetic
tomography as an application of the spins rotations. The majority of the pupils to which
the lesson is addressed , are going to study later on at departments of universities which
have the quantum physics as part of their program and the first contact with the subject at
the high school would have beneficial results. In addition the pupils would face material
which is at an advanced level of the scientific field and this makes the physics more
attractive. Finally, the prospect of the production of quantum computers is a great
challenge. 

Suitability

Of course the teaching of quantum physics to high school has demands and requirements .
The content of quantum physics is not the same with the other fields of physics and the
difference is apparently much larger than the difference between classical mechanics and
electrodynamics . The aim of questionnaires 1, 2, 3 and 4 is to investigate the suitability
of the lesson as a school lesson. The results, taking into account the fact that the lesson
was not obligatory and there was not pressure for reading and additional homework, are
considered satisfied. Also the comparison of these results with the results of the lessons
physics and mathematics of the existing curriculum strengthens the suitability of quantum
physics.
A negative factor is that there is no possibility of experimental displays. Also the answers
of the pupils to this point is a little discouraging. They show that the pupils are not ready
to adopt this lesson and consider it a little radical. 
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In conclusion, my opinion is that if the quantum physics was enrolled into the
curriculum, the performance of the pupils would be the same as that of the other lessons.
Consequently the main factor of the decision must be the comparative usefulness because
an other chapter must be left out of the curriculum and in addition the advantage of
student being exposed into new concepts of quantum mechanics at an earlier age.     
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I.          The Complex Numbers

1. Definition

The set  of complex numbers is an expansion of the set  of real numbers with
following properties 

α) The rules of summation and multiplication are the same as in R .
β) There is an element i  where 2 1i = − .
γ) Every element z  is written with unique manner as = a+ βiz  where a , β  real

numbers. Also a  is called the real part of z  ( Re(z)= a ) and β  is called the
imaginary part of z
( Imz = β ).

2. Definition of Some Concepts and Actions

If 1 1 1z = a + iβ , 2 2 2z = a + iβ ⋅  then we have 

i) Equality: 1 2 1 2z = z  a = a⇔ , 1 2β β= .

ii) Summation: ( ) ( ) ( ) ( )+ +1 2 1 1 2 2 1 2 1 2z + z  = a + β i a + β i a + a β + β i= ⋅

iii) Multiplication: ( ) ( ) 2
1 2 1 1 2 2 1 2 1 2 1 2 1 2z z  = a + β i a + β i a a a β i β a i β β i⋅ ⋅ ⋅ = + + ⋅ + ⋅ =

( ) ( )1 2 1 2 1 2 1 2a a β β a β β a i= − + +

iv) Reverse of: If z = a+ βi  (z 0)≠  then the reverse of z  is the number 
1x-1z = + y i =
z

⋅  such that 

( )( )1
2 2 2 21 x 1 x ,az z a+ βi yi y

a a
β

β β
− −

⋅ = ⇒ + = ⇒ = =
+ +

so 2 2
-1 a iz

a
β
β

−
=

+

v) Division: Division is defined as follows

 11
1 2 1

2 2

1z z z z
z z

−= ⋅ = ⋅ ( )2 0z ≠

vi) The complex conjugate: If z = a+ βi  then the complex conjugate is defined
as 

z = a - β i⋅

vii) Modules of z: It is defined as follows
( )2 2 ,z z z = a z a iβ β= ⋅ + = +
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viii) Geometric representation of z:

If z a iβ= +  then we can represent it as a point of x, y -plane. 
The angle ϑ  is called the argument of z  (arg (z)) and takes the values 20 nϑ≤ < .
One can easily show that 

cos , sina r rϑ β ϑ= ⋅ = ⋅

where 2 2r z a β= = + and 1tan
a
β

ϑ −  =  
 

.

Also we define as

cos sinie iϑ ϑ ϑ= +

where e  is the basis of Neper’s logarithm( 2,71....)e = .

Then cos sin (cos sin )z r r i r iϑ ϑ ϑ ϑ= ⋅ + ⋅ = + ⇒

iz r e ϑ= ⋅

the last form is the exponential form of a complex number.

II.        Matrices-Determinants

Matrix m n×  is an orthogonal arrangement n m⋅  numbers in m  rows and n  columns.

11 12 1

221 22

1 2

A =

n

n

m m mn

a a a
aa a

a a a

 
 
 
 
  
 

K

K

M

K

Specially we will work with matrices of the form n n×  (square matrices), 1n×  (column
matrices) and 1 n×  (row matrices).

For example A =
α β
γ δ
 
 
 

is a 2 x 2 matrix

B =
α
β

 
 
 

is a 2 x 1 matrix

( )= α βΓ is an 1 x 2 matrix.

ϑ

y

xa

iz = a + ββ
z r�



We denote by abbreviation a m n×  matrix A  as

A = ija   1 i n≤ ≤  ,            1 j m≤ ≤ .

1. Addition of matrices

If A = ija   , ijB = β    both of them m n×  matrices we define as

α) Addition: ijA + B = ija β + 

Example:
2 3 4 5 2 4 3 5 6 8
1 7 1 6 1 1 7 ( 6) 0 1

+ +       
+ = =       − − − + + −       

β) Product of a number λ  with a matrix A :

A = ij ija aλ λ λ   =   

for example
3 1 6 2

2
5 4 10 8

   
⋅ =   − −   

From the last two definitions we obtain

ijA + B = ija� � � ��� ��� �

2. Product between matrices

If A ija� �� � �  m n�  matrix and � �B = ���  is n r´  matrix then the product of two matrices

is a matrix  defined as follows

where

we have the form
-row
λ-column
120
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Example:

If

Then

and

It is not necessary to be  = . Generally 

Properties of products: i)

ii)

iii) ( )B A B A + A+ G = G

3. Unit Matrix

Unit matrix is a square matrix  with all diagonal elements equal to one and the rest
equal zero.

Obviously for any  matrix A  it is valid 

4. Reverse matrix

A matrix  is said reversible if there is a matrix B   also such that

Then the B  is called the reverse of A  and it is denoted as 

i. e.

Also it is valid 
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Example:

Let and

then

Consequently 

6. Transpose

For a matrix ( )A  m n´  we define its transpose matrix  as the matrix which has as rows
the columns of A  and as columns the rows of A . That is
 

if

11 12 1

221 22

1 2

A

n

n

m m mn

a a a

aa a

a a a

� �

� �

� �=
� �

� �� �
� �

K

K

M

K

then

Properties:

i)

ii)

7. Conjugate matrix

For a matrix A  we denote its conjugate matrix  as follows:

That is we take the  and replace any element with its complex conjugate.
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Example: If then

Obviously .

8. Hermitian or self conjugate matrix

If for a ( ) n n�  square matrix A  it is valid A A
+

=  then the matrix A  is called Hermitian
or self conjugate matrix.

Example:

The matrix is hermitian

because .

9. Unitary matrix

An  matrix U  is said to be unitary matrix if it is valid

Example:

The matrix 

is unitary. Really

and

10. Determinant of square matrix

If as we know its determinant is defined
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as

For a 3x3 matrix we define the determinant as follows

The following properties are valid

i) ( )d e t A B d e t A d e t B= �

ii)
iii)

11. Trace

The trace of a  matrix A  is the summation of all diagonal elements i.e. 

Property:

III.       Vector Space

Let us suppose the set V  of all matrices column 2x1 with its elements to be complex

numbers i.e. the matrices of the form  with 

We denote, for reason which we will see later. as 

where  is called ket.

We can write for any 



125

Denoting as  and  we obtain

Consequently every element of V  is written uniquely as linear combination of 1n  and

2n .

Then the pair ( V , )�  is a vector space over �  and the set  is a basis of the

space. The basis is not unique. Each set � �1 2,v v , with 1v  and 2v  linearly

independent constitute a basis of the vector space. Two vectors  are linearly
independent if they satisfy the property

if and only if 

Example:

The vectors  and  constitute a basis of V . Really for every

 we have  where

Consequently 

Remark:

The number of the element of any basis is unique and constant and it is called the
dimension of V .

IV.       Inner Product

Definition 

We consider the two vectors  and . Then the inner product of them is

defined as the complex number 
.
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But we have . For this reason it is useful to define for any

vector  (ket) a corresponding  (bra) as follows

Obviously if .

Consequently the inner product of two vectors 

and is defined as

.

We can easily verify the properties

i)

ii) 0a a �

iii)

iv) If then .

A vector space which is supplied with an inner product is called Hilbert space or an inner
product space.

2. Orthogonal Vectors

Two vectors  are orthogonal if 0a ab b= = .

3. Norm of a Vector - Unit Vector

It is defined as .
If the norm of a vector is equal to unity, then it is a unit vector

1a a a= � is a unit vector.
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4. Orthonormal Vectors

Two vectors  and b  are orthonormal if 

and 1a b= = .

5. Orthonormal Basis

A basis which consists of orthonormal elements is called orthonormal basis.

Example:

Then basis which consists of the vector  and  is an orthonormal basis

because 1 2 0n n =  and . On the other hand the basis � �1 2,v v

where  and  is not orthonormal because .

But the vectors 1 1

1

2

v v� =  and  constitute an orthonormal basis.

For the next chapters all our vectors will have norm one and all bases will be orthonormal.

V.   Linear Operator

1. Definition

Let V  be a vector space over the � . Operator A  is a map

i. e. where , Va b � …….

Linear operator is the operator with the property

If A  and B  are linear operators then their sum is defined by the relation 

and their product by the relation
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Generally A B B A�

2. Commutaror

The commutaror of two operators A , B  is defined as follows

If A B B A=  then � �A , B 0=

and we say that the operators A  and B  commute.

VI.       Representation of Operator by Matrix

Let  be an orthonormal basis from which we keep in mind the order of them,

1n  is the first and 2n  is the second. Let A  be a linear operator and 

Then we correspond to A  the matrix 

Thus the corresponding matrix of operator A  is the matrix

For any vector  we suppose that 

where

We find that

.

Consequently 
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The last relations can be written in the form

Remark:

1. Any relation which is satisfied by operators is also satisfied by the corresponding 
matrices.

2. Also the matrix representation of an operator depends on the choice of the basis.

Example:

Let  be an orthonormal basis of a vector space over the �  and three operators

 where it is valid

α) Find the corresponding matrices 
β) Prove the relations

i)
ii)

Solution

α)

Similarly and

β) i) For any vector  we find 
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Also

Consequently

x y za i as s s=   for any vector 

Thus

.

The same relation could be proved using the corresponding matrices. Really

ii) Using the matrices we obtain 

Thus

4. Unit Operator

Unit operator is the operator A  where

A a a=  for any .

Its representation in any basis is the unit matrix I . We use to denote A  with I  

.

VII.     Eigenvectors and Eigenvalues

A vector  is an eigenvector of an operator A  with the corresponding eigenvalue l  if

A a al= .
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Example:

As we have seen in the preceding example the vectors 1n  and 2n  are eigenvectors of
the operator zs  with eigenvalues 1+  and 1-  respectively, but they are not eigenvectors of

the operator xs . However for the vectors 

  ( )2 1 2

1

2

v n n= -

we find that 

and .

Consequently the vectors 1v  and 2v  are eigenvectors of the operator xs  with
eigenvalues 1+  and 1-  respectively.

General Problem:

An important problem is to find the eigenvectors and eigenvalues of an operator A , if we
know its representation relative to a given basis.

Let  be a given basis and the representation of the operator A  relative to this
basis is

The technique is the following (we work with vectors which their norm is equal to one):

α) We solve the equation (characteristic polynomial)

( )d e t A - I 0l =

We have 

We find the roots 1l  and 2l  which are the eigenvalues of the operator A .

β) We suppose that the corresponding eigenvectors are 

and
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From the equations

and from the equation  we calculate the numbers  and 

2c . In the same way we also calculate the coefficients 3c  and 4c .

Remark:

The number of the solutions is infinite because if a vector 1v  is eigenvector then any

other vector of the form 1 1
ix

v e v� =  is also eigenvector with the same eigenvalue.

Example:

The representation of the operator xs  relative to the basis  is .

Find the eigenvalues and eigenvectors of the operator xs .

Solution:

For its eigenvalues we have

Let

are the eigenvectors of xs  with corresponding eigenvalues 1+  and 1- .

Then

Also 
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One solution is . Consequently 

Similarly .

Also .

One solution is  and . Thus ( )2 1 2

1

2

v n n= - .

Degeneracy:

If for an operator it is valid that 1 2l l=  that is two different eigenvectors of an operator
have the same corresponding eigenvalue then it is said to be a degeneracy.

Remark:

If we have an orthonormal basis  then any vector  can be written as a linear

combination of 1n  and 2n  that is 

Then we can substitute the ket  by a column vector  and the bra  by a row

vector ( )1 2c c . Then the action of an operator A  on  is the same as the action of the

corresponding matrix A  on the column vector .

That is

        matrix

Many times we denote as  but we must keep in mind what we mean.

VIII.    Hermitian Operators

Conjugate operator

We suppose a basis  and let the representation of an operator A  relative to this
basis be the matrix
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Then if  and  are two arbitrary vectors 

we find

(1)

We define as conjugate operator of A  the operator B  such that

(2)

We consider that the B  has the form

Then 

We obtain the last result using the property  for the matrices.

Consequently (3)

From (1), (2), (3) we obtain

and because of it is valid for any  it must be valid

That is the matrix of a conjugate operator is the conjugate matrix.

If  A A
+

=  then A  is called Hermitian operator or selfconjugate operator. Then we write 
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The Hermitian operators play an important rule to quantum mechanics.

Below we give without proof four very important theorems concerning the Hermitian
operators.

1st Theorem: The eigenvalues of a Hermitian operator are real numbers.

2nd Theorem: The eigenvectors of a Hermitian operator are orthogonal.

3rd Theorem: If two Hermitian operators commute i. e. � �A , B 0=  someone can have a 
complete set of simultaneous eigenvectors of A  and B .

4th Theorem: If A  is a Hermitian operator acting on a space V  then the space V  has an 
orthonormal basis which consists of eigenvectors of operator A  (spectral 
theorem)

Unitary Operators

An operator U  is called a unitary operator if it preserves the inner product. That is for any
two vectors ,a b  we have

U b b �=

such that b a b a� � =

we find

thus U U I
+

= .

Obviously the corresponding matrix is a unitary matrix.
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APPENDIX II

DENSITY MATRIX
A. Pure State

We consider a basis of Hilbert space 

� �1 2, , . . . . na a a

and a linear operator A  where:

Through the above set of relations, the operator A  is completely defined. An elegant
form to write the operator A  is

It is readily to show that the last form satisfy all the relations defining the operator A .

Operators of the form 

are projection operators. Also any operator of the form 

is also a projection operator. The action of them is to project any vector F  to vector

Q . That is 

Also

Consequently

      

As we know a complete set of

i i ip a a=
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has the property

Specially if a system is in Y  state, then the projection operator

is called density operator. We will see follow the uses and some properties of this
operator.

Remark: For any operator of the form

we find that

n n n n
n n

T r D a a a a= F Q = Q F =� �

   

   

Properties:

α) r  is a Hermitian operator 

Proof:

β)

Proof:

γ) r  is positive

Proof:

For any vector F
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δ) For any observable A  with corresponding operator A  it is valid

Proof:

ε) Its eigenvalues are real nonnegative numbers and sum to one.

Proof:

Let the  is the basis consists of the eigenvectors of r  and 

1 , . . . , np p  the corresponding eigenvalues.

Obviously 

As we know the trace is invariant, irrespectively of the basis. Thus

 
στ)

Proof:

Density Matrix for spin state

The general form of spin state is , thus
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The density matrix r  is a 2x2 matrix where its elements are complex numbers. As we
know   constitute a basis of these matrices. We write r  in the form

( )
1

1
2

r = + �p s

We put the factor 1

2
 because 0iT r s =  and .

Then  

Consequently p  is a unit vector.

Also

But

Thus

 and

( )
1

ˆ1
2

r = + �n s
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B. Mixed State

Generally, density matrix, expressed in the basis in which it is diagonal, has the form

where 0 1ip� �  and 

If the state is pure then the above form has only one term so that  and .
That is the state is a ray. However if it has two or more terms then

2
r r� because

In this case we say that r  is an incoherent superposition of states  and the state of
the system is mixed state.

Also in this case r  has the properties.

α) 
β) r r

+
=

γ) r  is positive
δ) For any observable A  we have

ε) d e t 0r �

ζ) 

As we have already discussed we can construct a new space where from the mixed state
we take a state which is pure state. We suppose the orthonormal vectors 
which generate a space H �. The new space is 

where H  is the Hilbert space produced by .

We consider the state

of tH  space. Then the operator

r �= Y Y
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is of course a projection operator and the state Y  is a pure state. This is the density
operator of the new space.

We find that

Consequently

If we have an observable A  in H  space we define the  an operator which acts
on tH  space. 

We find that

Also

Pure and mixed state and Stern-Gerlach experiment

We will give another argument trying to persuade that pure and mixed states are two
different things.

We consider two beams like these emerging from the inhomogeneous magnetic field in
Stern-Gerlach experiment with the following properties

1st beam is emerging from an inhomogeneous magnetic field and is in the pure state -z .
This for a system which arises after a rotation �  (right handed sense) about y-axis is also
a pure state

2nd beam consisting of two different pure beams -�  and ��  with statistical weight

2
c o s

2

�  and 2
s i n

2

�  respectively.

If each beam passes through an inhomogeneous magnetic field  then we will
read off the same results. But if each one pass through an inhomogeneous magnetic field
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 then for the first one we will have  but for the

second one .

As we can see the two beams are not the same thing.

Evolution of the density operator

The time evolution of a state Y  is given through the relation 

Consequently

As we have pointed out r  is defined for the definite state Y . So we can say that

For the mixed state we have also the same result.
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APPENDIX III

ENTANGLEMENTS

Let us suppose that we have two  spin particles  and . The state of the system is

where  and  are the individual states for each particle. For the  particle the

Hilbert space  is two dimensional space and a basis of it is the set .

For simplicity we write them as . Similarly for the  particle the  is the

expansion of the set .

The Hilbert space of the two particles  and  is the expansion of the basis 

(α)

that is, it is , a four dimensional space.

Let ,

be the spin operators for  and  particles respectively. Obviously  and  are
operators acting on . Also they commute because they refer to different particles.

The total spin angular momentum of the system is

.
It is easy to show that

Consequently the total spin  is also angular momentum. Thus we can construct a basis
constituted of eigenvectors of  and . We labelled these vectors as  and it is
valid

(we have put  for simplicity).



144

Each of the states (α) is eigenvector of .

Thus 

         

Also

The possible values of  are only 

and .

In any other case the total number of the states would be more than four.

i) The state is the state . We can show that

.

Also we have seen that

Similarly we can show that the state  is the state .

ii) The state  is the state , because

and
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Eventually we have a new basis  of  

What is the Entanglement?

The two  spins system could be in any state of the form

Some of them states are characterized as entanglement and the others as not
entanglements. What is the criterion by which we can discrite a state as entanglement or
not? We will give this criterion later.

Let us suppose a system of two spins  and  which we will call biparticle quantum
system. The Hilbert space of the system is  and an arbitrary pure state has
the form

where

.

If we measure an observable  concerning only the  particle, its expectation value is
given through the relation

Where

Similarly 

triplet
states

single
states



146

Where  is the density matrix operator in  Hilbert space

and  is a pure state. 

We can say that  is the density operator for subsystem  and  is the density
operator for subsystem .

It is easy to show that

i)
ii)  is positive
iii)

We can find the eigenvectors  and  and its nonnegative eigenvalues  and 

.

Then 

where

If the sum contains only one term then  and state  of subsystem  is pure

state (  also). Then the state  is NOT ENTANGLEMENT.

On the other hand if it contains two terms then 

and the state  is a mixed state. Then the state  is ENTANGLEMENT. The
particle  and  are entangled!!

We can show that the states

 and 

are not entanglements

but

are both of them entanglement.
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In mixed state case 

so we can interpret  as describing an ensemble of pure quantum states, in which the
state  occurs with probability .

Above we have seen how we can take an incoherence state. The two systems  and 
interact each other, become entangled (correlated), the entanglement destroys the
coherence states which the  and  were in. Also we use to say that the coherence state
of  collapses.

BLOCH SPHERE

As we have said the general form of density matrix is 

 and

If  then

.

So in this case the state is pure.

If  then

and the state is a mixed state.

Consequently we can correspond any possible density matrix with a point in unit 3-ball
. When  the point belongs to surface of the ball (is the sphere) and the

state is pure. In other case is mixed. This ball is called Bloch-sphere. We will give the
physical significance of the vector . Let  is the corresponding state having density
matrix

Then 
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If  then  and the state is pure and completely polarized. On the other hand

if  then the state is mixed and completely unpolarized. Thus the 

parameterises the polarization of the spin. We can determine  if we measure the 
along each of three axes (-x, -y, -z).

CONVEXITY

For any operator 

We can find two other operators (density matrices)

,  

such that
   (1)

It is valid also and the converse. For any ,  the linear combination 

is also density matrix if ,  are density matrices. Set with above property are called
convex set. A set is convex set if all points of the segment formed by the straight which
connects any two points of it, also belongs to it.

An example is the Bloch sphere (ball). The points of the surface cannot be written through
relation (1). In this case it is valid . These points are called extremes and are
pure states.
Any mixed state can be written through infinite ways. We can prepare a mixed state with 

as a combination of pure states, the edges of any chord passing through the point  (see
figure a).
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This that we can write it through many ways is called ambiguity. 

fig a 
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