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Chapter 1

Introduction

T
his thesis is part of the project “Analysis and Modelling of the Deep-Hole Drilling

Process with Methods of Statistics and Neuronal Networks” in the Collaborative

Research Centre 475 “Reduction of Complexity for Multivariate Data Struc-

tures” of the German Research Council (Deutsche Forschungsgemeinschaft, DFG). The

goal of this project is to model the process in order to prevent dynamic disturbances,

chatter vibration and spiralling, to identify the cause(s) of these disturbances, and to

choose optimal production parameters for faster and more secure production with high

quality.

1.1 Motivation

Usually, the BTA (Boring and Trepanning Association) deep-hole drilling process is used

during the last production phases of expensive workpieces. For example, axial bores in

turbines or compressor shafts are made with this process. Thus, it is necessary that a

process monitoring system is devised to detect disturbances during the process operation.

The aim of this PhD thesis is to develop such real-time monitoring strategies for the early

and reliable detection of chatter vibration and changes in the process by using statistical

process control (SPC) techniques. Such strategies are needed in order to allow engineers

to know when and how to adjust the process.

SPC is a collection of problem solving tools useful in achieving process stability

through the reduction of variability. The major tools in SPC are control charts. These

charts have been shown to be useful in monitoring many industrial processes. For the

drilling process, many assumptions used by SPC are no longer valid. This is due to the

time varying dynamics of the process and the nature of the collected data, “data-rich”

environments in industry. Therefore, we will focus on the development of adequate SPC

1



2 CHAPTER 1. INTRODUCTION

procedures by understanding and modelling the time varying dynamics of the process

using times series techniques.

1.2 Introduction to Statistical Process Control (SPC)

Reducing variation in manufacturing processes is desirable to reduce cost and improve

product performance and quality. To achieve this objective SPC is used. SPC consists of

methods and techniques for understanding and monitoring a production process. That

is, to determine whether the process is stable over time and capable of producing high

quality products. Montgomery (2001) mentioned that no two units of product produced

by a manufacturing process are identical. Some variation is inevitable. Then improving

quality will be obtained if the aim is to reduce variation around the target. That is,

quality is inversely proportional to variability.

The approach towards reduction of variability is based on the idea that the phenomena

causing variation in process outcomes can be classified in two groups:

• Common or chance causes of variation are considered to be due to the inherent

nature of the process and cannot be altered without changing the process itself.

• Assignable or special causes are unusual shocks or other disruptions to the process.

These causes can and should be removed.

One purpose of control charting, the featured tool of SPC, is to distinguish between

these two sources of process variation. In other words, control charts are used to detect

the presence of assignable causes of variation by checking the desired stable state of

the process. Reduction of variation is thus achieved via rapid detection and elimination

of such special causes. A process is said to be in a state of statistical control if it

operates under common causes of variation and the probability distribution representing

the quality characteristic is constant over time. If there are some changes over time

in this distribution, the process is said to be out-of-control. Woodall (2000) mentioned

that this traditional definition of statistical control has been generalized over the years

to include cases for which an underlying statistical model of the quality characteristic is

stable over time. These useful generalizations include, for example, regression, variance

components and time series models.

The Shewhart X̄ Control Chart

A typical Shewhart X̄ control chart is given in Figure 1.1. Samples of size n are taken

at equally spaced intervals. The control statistic X̄ is calculated from the sampled data.

The control chart is based on the idea that if the process is in state of statistical control,

then the outcomes are predictable. That is, based on previous observations, it is possible
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Figure 1.1: An illustration of a Shewhart control chart (UCL: Upper control limit and

LCL: Lower control limit)

for a given set of control limits to determine the probability that future observations fall

within these control limits. An out-of-control signal is given by the chart as soon as X̄

calculated from a sample falls outside the upper and lower control limits, labelled UCL

and LCL, respectively. Other rules are also used for signaling an out-of-control situation

based on “non-random” patterns of the chart. Shewhart X̄ control charts use only the

current observation or sample to monitor the process. Other control charts, such as

cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) charts,

accumulate information across successive observations. That is, they not only use the

current sample statistic, but incorporate the information that can be gained from the

previous sample statistics in some fashion. For further details, see Montgomery (2001).

Monitoring Autocorrelated and Nonnormal Data

An important assumption in the application of statistical control charts is that the obser-

vations generated by the monitored process are independent. However, this assumption

is often violated in many industrial processes and the observations are frequently auto-

correlated. This may be due, for example, to the measurement system and the dynamics

of the process. The autocorrelation has a large impact on the performance of control

charts developed under the independence assumption. Its typical effect is to increase the

number of false alarms compared with an independent process.

Some SPC methodologies have been developed in recent years in order to monitor

autocorrelated data. One approach is to use residual control charts. They are suggested

by several authors. For example, see Alwan and Roberts (1988) and Montgomery and

Mastrangelo (1991). This procedure requires a model of the autocorrelative structure
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of the data which can be achieved by fitting an appropriate time series model to the

observations. The idea behind residual control charts is if the time series model fits the

data well, the residuals will be approximately independent. Then, traditional control

charts designed to monitor independent observations can be applied to the residuals.

Another basic assumption, used in the development of many control charts, is that

the underlying distribution of the process is normal. The statistical properties of these

charts are exact only if this assumption is satisfied. In practice, it is well known that this

assumption rarely holds. Therefore, distribution-free or nonparametric control charts are

used. For further details, see Chakraborti et al. (2001).

Control Chart Performance Measures

The statistical design of a control chart refers to choices of its parameters. It ensures

the chart performance meets certain statistical criteria. These criteria are often based

on aspects of the run length distribution of the control chart. The run length (RL)

of a control chart is a random variable that represents the number of plotted statistics

until a signal occurs. The most common measure of control chart performance is the

expected value of the run length; i.e. the average run length (ARL). The ARL should be

large when the process is statistically in-control (in-control ARL) and small when a shift

has occurred (out-of-control ARL). However, conclusions based on in-control and out-of-

control ARL alone can be misleading. Knowledge of the in-control and out-of-control RL

distributions would provide a comprehensive understanding of the in-control and out-of-

control control chart performances. For example, the lower percentiles of the in-control

and out-of-control RL distributions give information about the early false alarm rates

and the ability to quickly detect an out-of-control condition of a control chart.

1.3 Overview of the Thesis

The thesis is divided into two main parts. The first part is devoted to the development

of a new distribution-free control chart for multivariate data, the study of its proper-

ties and comparison of its performance against alternative procedures. In Chapter 2,

the principles used to construct the new control chart are given and its statistical de-

sign is proposed. Simulations are conducted in Chapters 3 and 4 in order to assess its

applicability and to compare its performance against alternative procedures, respectively.

The second part of the thesis is devoted to the introduction and modelling of the

drilling process and experimental investigation of the performance of the proposed mon-

itoring strategies. In Chapter 5, the BTA deep-hole drilling process is introduced. Pre-

vious work to understand and to predict the temporal development of the process is

reviewed in Chapter 6. Based on it, a modelling approach of the sampled data is pro-

posed in order to setup the monitoring procedures. In Chapter 7, nonlinear time series
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modelling is used to describe the time varying dynamics of the process. It provides the

basis of nonlinear time series based control charts. In Chapter 8, the empirical perfor-

mance of the proposed monitoring strategies is studied using several data sets.

Finally, some thoughts and discussion for possible future research issues are given in

Chapter 9.
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Part I

A Nonparametric Control Chart for

Multivariate Data

7



This page intentionally left blank



Chapter 2

The Rank Based Multivariate EWMA

Control Chart

I
n this chapter, we propose a new rank based multivariate EWMA (rMEWMA) con-

trol chart. It is a generalization, using the data depth notion, of the nonparametric

EWMA control chart for individual observations proposed by Hackl and Ledolter

(1992). In section 2.1, we review the data depth notion. The proposed control chart is

introduced in section 2.2. Its asymptotic in-control average run length is approximated

in section 2.3. Finally, an illustrative example is given in section 2.4.

2.1 Data Depth

Data depth measures how deep (or central) a given point X ∈ R
d is with respect to

(w.r.t.) a probability distribution F or w.r.t. a given data cloud S = {Y1, . . . , Ym}.

There are several measurements for the depth of the observations, such as Mahalanobis

depth, the simplicial depth, half-space depth, and the majority depth of Singh, see Liu

et al. (1999). In this work, the Mahalanobis and simplicial depths are considered.

The Mahalanobis Depth

The Mahalanobis depth of a given point X ∈ R
d w.r.t. F is defined by

MD(F,X) =
1

1 + (X − µF )′Σ−1
F (X − µF )

,

where µF and ΣF are the mean vector and covariance matrix of F , respectively. The

sample version of MD is obtained by replacing µF and ΣF with their sample estimates.

9



10 CHAPTER 2. THE rMEWMA CONTROL CHART

The Simplicial Depth

The simplicial depth was introduced by Liu (1990) and revised by Burr et al. (2004).

Definition 2.1.1 Simplicial depth (Liu, 1990)

Given a probability distribution F in R
d, the simplicial depth of X w.r.t. F is the prob-

ability that X belongs to a random closed simplex in R
d, that is

SDLiu(F,X) = PF {X ∈ s[Y1, . . . ,Yd+1]},

where s[Y1, . . . ,Yd+1] is a d-dimensional closed simplex whose vertices are random ob-

servations {Y1,. . . , Yd+1} from F .

Definition 2.1.2 Simplicial depth for the sample version (Liu, 1990)

The simplicial depth of a point X w.r.t. a data set S ={Y1,. . . , Ym} is the fraction of

closed simplices formed by d + 1 points of S containing X

SDLiu(S,X) =





m

d + 1





−1

∑

1≤i1<···<id+1≤m

I
(

X ∈ s[Yi1 , . . . ,Yid+1
]
)

, (2.1)

where I(.) is the indicator function.

Note that a simplex in R
d is the boundary of the region defined by d + 1 vertices in

general position. It represents the simplest polytope in any dimension. In one dimen-

sion, a simplex is simply a line segment. In 2 and 3 dimensions, it is a triangle and a

tetrahedron, respectively.

Liu (1990) investigated the basic properties of the simplicial depth. The author

showed that if F is absolutely continuous, then as m −→ ∞, SDLiu(S,X) converges

uniformly and strongly to SDLiu(F,X) and that SDLiu(F,X) is affine invariant.

Several problems arise in the finite case of simplicial depth under Liu’s definition.

Burr et al. (2004) proposed a revised definition of simplicial depth.

Definition 2.1.3 Revised simplicial depth (Burr et al., 2004)

Given a data set S = {Y1,. . . , Ym}, the simplicial depth of a point X is the average of

the fraction of closed simplices containing X and the fraction of open simplices containing

X, that is

SDBRS(S,X) =
1

2





m

d + 1





−1

∑

1≤i1<···<id+1≤m

[

I
(

X ∈ s[Yi1 , . . . ,Yid+1
]
)

+ I
(

X ∈ int
(

s[Yi1 , . . . ,Yid+1
]
))

]

,

(2.2)

where int
(

s[Yi1 , . . . ,Yid+1
]
)

refers to the open relative interior of s[Y1, . . . ,Yd+1]. Equiv-

alently, this could be formulated as, SDBRS(S,X) = ρ(S,X) + (1/2)σ(S,X), where
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Figure 2.1: Computation of the simplicial depth in R
2

ρ(S,X) is the number of simplices with data points as vertices which contain X in their

open interior, and σ(S,X) is the number of simplices with data points as vertices which

contain X in their boundary.

Figure 2.1 shows the computation of the simplicial depth in R
2. Using the definition

of Liu, the simplicial depths of X1 and X2 w.r.t. S = {A, B, C} are equal to 1. The

simplicial depth of X3 w.r.t. S is equal to 0. Using the revised definition, the simplicial

depths of X1, X2 and X3 w.r.t. S are equal to 1, 0.5 and 0, respectively.

In the following, the revised simplicial depth is used and we will omit the word revised

from it.

Simplicial Depth Algorithms

In this section, algorithms to compute the simplicial depth of a point or a position in

R
d are reviewed. For the simplicial depth computation in R

2, Rousseeuw and Ruts

(1996) proposed an efficient algorithm to compute the simplicial depth of a point using

Liu’s definition. It has a time complexity O(n logn), where n is the size of the reference

sample. Burr et al. (2004) proposed certain modifications to this algorithm in order

to compute the revised simplicial depth. When the point or position is in R
3, Cheng

and Ouyang (2001) proposed an O(n3) time algorithm. They generalized it to R
4 with

a time complexity O(n4). These two algorithms are based on Liu’s definition. Burr

et al. (2004) showed that these algorithms remain valid under the revised definition with

some adjustments. For R
d (d ≥ 5), there are no known algorithms faster than the

straightforward method. That is to generate all the simplices s[Yi1 , . . . ,Yid+1
] and then

to count the number of containments. A point X is in the simplex s[Yi1 , . . . ,Yid+1
] if

X can be expressed as a convex combination of Yi1 , . . . , Yid+1
. As there are O(nd+1)

simplices, it takes O(nd+1) time in the real RAM model of computation. This algorithm is

extremely computationally intensive which constitutes an obstacle for the use of simplicial

depth in practice.
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2.2 The Proposed rMEWMA Control Chart

Let Xt = (x1,t, . . . , xd,t)
′ denote the d × 1 vector of quality characteristic measurements

taken from a process at the tth time point where xj,t, j = 1, . . . , d, is the observation

on variate j at time t. Assume that the successive Xt are independent and identically

distributed random vectors. Assume that m > 1 independent random observations {X1,

. . . , Xm} from an in-control process are available. That is, the rMEWMA monitoring

procedure starts at time t = m.

Let RS = {Xt−m+1, . . . , Xt} denote a reference sample comprised of the m most

recent observations taken from the process at time t ≥ m. It is used to decide whether

or not the process is still in control at time t. The main idea of the proposed rMEWMA

control chart is to represent each multivariate observation of the reference sample by

its corresponding data depth. Thus, the depths D(RS,Xi), i = t − m + 1, . . . , t, are

calculated w.r.t. RS.

Now, the same principles proposed by Hackl and Ledolter (1992) are used to construct

the rMEWMA control chart. Let Q∗
t denote the sequential rank of D(RS,Xt) among

D(RS,Xt−m+1), . . . , D(RS,Xt). It is given by

Q∗
t = 1 +

t
∑

i=t−m+1

I

(

D(RS,Xt) > D(RS,Xi)

)

, (2.3)

where I(.) is the indicator function. It is assumed that tied data depth measures are

not observed. Thus, Q∗
t is uniformly distributed on the m points {1, 2, . . . , m}. The

standardized sequential rank Qm
t is given by

Qm
t =

2

m

(

Q∗
t −

m + 1

2

)

. (2.4)

It is uniformly distributed on the m points
{

1

m
− 1,

3

m
− 1, . . . , 1 −

1

m

}

,

with mean µQm

t
= 0 and variance σQm

t
= m2−1

3m2 . For more details, see Hackl and Ledolter

(1992).

The control statistic Tt is the EWMA of standardized sequential ranks. It is computed

as follows

Tt = min

{

B, (1 − λ)Tt−1 + λQm
t

}

, (2.5)

t = 1, 2, . . . , where 0 < λ ≤ 1 is a smoothing parameter, B > 0 is a reflecting boundary

and T0 = u is a starting value. The process is considered in-control as long as Tt ≥ h,

where h < 0 is a lower control limit (h ≤ u ≤ B). Note that the lower-sided EWMA is

considered because the statistic Qm
t is higher “the better”. In section 2.4, an illustrative

example is given to introduce the implementation of the rMEWMA control chart.
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A reflecting boundary is included to prevent the rMEWMA control statistic from

drifting to one side indefinitely. It is known that EWMA schemes can suffer from an

“inertia problem” when there is a process change some time after beginning of monitoring.

That is, an EWMA control statistic can have wandered away from a center line in a

direction opposite to that of a shift that occurs some time after the start of monitoring.

In this unhappy circumstance, an EWMA scheme can take long time to signal.

Hackl and Ledolter (1992) considered a continuous quality criterion. This continuity

assumption assures that ties are not observed. However, in practice when measurements

or other numerical observations are taken, it is often that two or more observations are

tied. For example, ties may be due to the nature of the phenomenon modelled or rounding

of continuous variables. In this work, the simplicial depth is a discrete measure and ties

may occur. Especially, there always exist at least (d + 1) extreme points that share the

minimum simplicial depth of d+1

2m
, see Stoumbos and Jones (2000). The most common

approach to this problem is to assign to each observation in a tied set the midrank, that

is, the average of the ranks reserved for the observations in the tied set, see Gibbons and

Chakraborti (1992).

2.3 Asymptotic Average Run Length of the In-Control Process

The statistical design of the rMEWMA control chart refers to choices of combinations

of λ, h, B and m. It ensures the chart performance meets certain statistical criteria.

As mentioned in section 1.2, these criteria are often based on aspects of the run length

distribution of the control chart.

In this work, we used the integral equation to approximate the in-control ARL, see

Crowder (1987). Let L(u) be the ARL of the lower-sided rMEWMA control chart given

that T0 = u. It can be shown that the integral equation for L(u) is given by

L(u) = 1 + L(B)Pr

(

q ≥
B − (1 − λ)u

λ

)

+

∫ B

h

L

(

(1 − λ)u + λq

)

dF (q),

where F (q) is the cumulative distribution of q = Qm
t . We assumed that ties are not

observed. Therefore, Qm
t are uniformly distributed on the m points {1/m− 1, 3/m− 1,

. . . , 1 − 1/m},

For moderate and large m the discrete distribution of Qm
t is approximated by a

continuous uniform distribution, which leads to

L(u) = 1 + L(B)Pr

(

q ≥
B − (1 − λ)u

λ

)

+

∫ B

h

L

(

(1 − λ)u + λq

)

f(q)dq, (2.6)

where f(q) is the probability density of the uniform distribution. The solutions to the

integral equation (2.6) can be obtained by replacing the equation with a system of linear
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Table 2.1: In-control ARL values of the rMEWMA control chart with reflecting boundary

B = −h

h λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3

−0.10 − − − −
−0.15 137.2 − − −
−0.20 382.7 − − −
−0.25 + 127.3 − −
−0.30 + 286.4 − −
−0.35 + 766.1 − −
−0.40 + + 123.5 −
−0.45 + + 249.4 −
−0.50 + + 580.3 103.2
−0.55 + + + 197.9
−0.60 + + + 437.5
−0.65 + + + +

“−”In-control ARL less than 100,
“+”In-control ARL greater than 1000.

equations using the collocation method and solving the system of equations, see Messaoud

et al. (2004). As recommended by Calzada and Scariano (2003), the collocation method

is used because the continuous uniform distribution does not have the entire real line as

numerical support.

In the previous approximation, we ignored the slight dependence among successive

ranks Qm
t . Therefore, the result in (2.6) applies only approximately, as there are small

correlations among successive ranks. For moderate and large values of m the correlations

are quite small, see Hackl and Ledolter (1992). Table 2.1 shows the in-control ARL of

the rMEWMA control charts with different smoothing parameters λ and control limits

h. It assumed that the rMEWMA statistic starts at 0, that is T0 = 0. Table 2.1 shows a

decrease in the ARL with increasing λ for fixed control limit h. As mentioned by Hackl

and Ledolter (1992), this is explained by the fact that σ2
Tt

increases with λ so that the

probability of crossing the control limit h becomes larger.

A simulation study is carried in order to validate the ARL approximation. We gen-

erate independent random vectors {Xt} from a bivariate normal distribution with zero

mean vector and identity covariance matrix. Note that due to the nonparametric na-

ture of the monitoring strategy, the normality is not required and any other distribution

could be used. The simulation strategy is described in section 3.1.1. Note that only the

Mahalanobis depth is considered. In fact, the simulations of the proposed monitoring

strategy based on simplicial depth are extremely time consuming for reference samples

larger than 200 observations.

Figure 2.2 shows the simulated in-control ARL (ARL0) values of the rMEWMA

control charts with λ = 0.05, 0.1, 0.2 and 0.3. Note that 10000 replications are used.
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Figure 2.2 shows that for large values of m, the ARL0 values of the rMEWMA control

charts approach their asymptotic values. Moreover, the four rMEWMA control charts

achieve their asymptotic ARL0 performances when a relatively small reference samples

are used. However, it is shown in section 3.1.2 that the use of these reference samples

is not optimal with respect to the out-of-control performance of the rMEWMA control

charts.

2.4 Illustrative Example

In this section, an illustrative example is given to introduce the implementation of the

rMEWMA control charts. Table 2.2 shows 20 observations simulated from a bivariate

normal distribution with mean vector µ = (0, 0)′ and the identity matrix as variance

covariance matrix. The rMEWMA control chart based on simplicial depth with λ = 0.2,

h = −0.435 and B = −h is considered. Its asymptotic in-control ARL is equal to 200. A

small reference sample of size m = 10 is considered in order to facilitate this illustration.

Note that the simplicial depth is computed using the revised definition.

The monitoring procedure starts at time t = 10. That is after the first 10 observations

are obtained and the reference sample is formed, i.e., RS = {X1, . . . ,X10}. The simplicial

depth of X10 w.r.t. RS, SD(RS,X10), is equal to 0.250. Its sequential rank Q∗
10 among

SD(RS,X1), . . . , SD(RS,X10) is computed using equation (2.4). It is equal to 0.5. The

observed value of the control statistic of the rMEWMA control chart, T10, is computed

using equation (2.5). It is equal to 0.100. Note that it is assumed that the starting

value is equal to 0. T10 is larger than the lower control limit h, see Figure 2.3. It causes

no concerns of a process change to the engineers and they assumed that the process is

in-control. Thus, they wait until the next observation X11 = (0.61,−0.37)′ is obtained

and compute the control statistic.

At time t = 11, RS is equal to {X2, . . . ,X11}. SD(RS,X11) and Q∗
11 are respectively

0.317 and 0.9. The control statistic T11 is equal to 0.260 > h which causes no concerns

of process change. The process engineers wait until another observation is obtained, and

so on, until an out-of-control signal is generated.
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Table 2.2: Illustrative example of the rMEWMA control chart

Observations Xt

t xt,1 xt,2 SD(RS,Xt) Q∗

t Qm
t Tt

1 0.13 −0.09
2 1.67 0.73
3 1.00 −1.28
4 −2.40 −0.68
5 −0.04 0.89
6 −0.02 −1.30
7 −0.67 0.18
8 0.83 −0.55
9 −0.64 0.01

10 −0.67 −0.83 0.250 8 0.5 0.100
11 0.61 −0.37 0.317 10 0.9 0.260
12 −0.29 −0.92 0.317 10 0.9 0.388
13 −0.58 0.06 0.342 10 0.9 0.435
14 0.05 −0.75 0.292 9 0.7 0.435
15 −0.14 1.48 0.150 3 −0.5 0.248
16 −0.21 −0.26 0.375 10 0.9 0.378
17 −0.14 −2.54 0.150 3 −0.5 0.203
18 0.58 −0.04 0.150 3.5 −0.4 0.082
19 −0.23 0.72 0.250 8 0.5 0.166
20 1.58 −0.39 0.150 2.5 −0.6 0.013

Figure 2.3: Plot of the rMEWMA Control Chart



Chapter 3

Simulation Results

I
n this chapter, simulations are conducted in order to assess the application of the

proposed rMEWMA control charts. The effect of the use of reference samples of

limited amount of observations on the performance of rMEWMA monitoring proce-

dures is studied in section 3.1. In section 3.2, we examine the effect of the geometrical

nature of simplicial depth on the performance of rMEWMA control charts.

In the following, Mahalanobis and simplicial rMEWMA control charts refer to the

rMEWMA control charts based on Mahalanobis and simplicial depths, respectively. Note

that in this chapter only the bivariate case is considered. This is explained by the

computational difficulty of simplicial depth in R
d, d ≥ 3, see section 2.1.

3.1 Effect of the Reference Sample Size on rMEWMA Control Charts

Performance

In section 2.3, the in-control ARL of rMEWMA control charts is approximated using the

integral equation (2.6). It is assumed that a sufficiently large reference sample, m −→ ∞,

is available so that the in-control distribution can be estimated with negligible error. In

practice, reference samples of limited amount of observations are used and the estimation

effect may affect the performance of rMEWMA monitoring procedures.

In this section, a simulation study is conducted in order to examine the estima-

tion effect on the desired in-control and out-of-control run length (RL) performances

of rMEWMA control charts. A desired in-control and out-of-control RL performances

mean that the empirical in-control and out-of-control RL distributions approach their

asymptotic counterpart. Note that only the Mahalanobis rMEWMA control charts are

considered. Indeed, the computation of simplicial depth is extremely time consuming for

reference samples larger than 200 observations.

19
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3.1.1 Simulation Study

The four Mahalanobis rMEWMA control charts with smoothing parameters λ = 0.05,

0.1, 0.2, and 0.3 are studied in detail. Their parameter combinations (λ, h and B) are

chosen so that they have the same asymptotic in-control ARL equal to 200. Thus the

respective values of h are −0.169, −0.279, −0.435, and −0.551. The different reflection

boundaries B are chosen equal to −h. Different values are considered for the reference

sample size m. Note that m = 10000 is considered as m ≈ ∞.

For the simulation, we generate random independent observations {Xt} from a bi-

variate normal distribution with mean vector µ0 = (0, 0)′ and variance covariance matrix

ΣX . The shift scenario in the mean vector from µ0 to µ1 is considered to represent the

out-of-control process. Its magnitude δ is given by

δ2 = (µ1 − µ0)
′Σ−1

X (µ1 − µ0). (3.1)

Other scenarios are not considered, for example a change in the in-control covariance ma-

trix ΣX . Note that in the context of multivariate normality, δ is called the noncentrality

parameter.

Since the multivariate normal distribution is elliptically symmetrical and the Ma-

halanobis depth is affine invariant, see Liu et al. (1999), the Mahalanobis rMEWMA

control charts are directionally invariant. That is, their out-of-control ARL performance

depends on a shift in the process mean vector µ only through the value of δ. Thus,

without any loss of generality, the shift is fixed in the direction of e1 = (1, 0)′ and the

variance covariance matrix ΣX is taken to be the identity matrix I. Note that due to the

nonparametric nature of the rMEWMA control charts, the normality of the observations

is not required and any other distribution could be used.

The simulation strategy proceeds as follows

1. Generate m − 1 independent random vectors X1, X2, . . . , Xm−1.

2. At time t ≥ m, generate a random vector Xt and add a shift of magnitude δ given

by equation (3.1). It is fixed in the direction e1 = (1, 0)′. Form the reference

sample, RS = {Xt−m+1, . . . , Xt}, and compute data depths of all its observations,

i.e., D(Xt−m+1), . . . , D(Xt).

3. Compute the control statistic Tt and check the in-control state. If the process is

in-control, go to step 2. Otherwise the run-length is equal to t − m + 1.

The above steps are repeated a total of 100000 times.

3.1.2 Simulation Results

Tables A.1 to A.8 in Appendix A show summary statistics of the in-control (δ = 0)

and out-of-control (δ 6= 0) run length (RL) distributions of the Mahalanobis rMEWMA
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control charts. SDRL is the standard deviation of the run length. Q(.10), Q(.50), and

Q(.90) are respectively the 10th, 50th, and 90th percentiles of the in-control and out-of-

control RL distributions. In the following, ARL0 and ARL1 are used to represent the

in-control and out-of-control ARL, respectively. Similarly, Q0(q) and Q1(q) refer to the

qth percentile of the in-control and out-of-control RL distributions, respectively. Note

that Q0(.50) and Q1(.50) are respectively the in-control and out-of-control median RL.

Performance of rMEWMA Control Charts Based on Small Reference Samples

Tables A.1 to A.4 in Appendix A show that the four rMEWMA control charts with

λ = 0.05, 0.1, 0.2, and 0.3 have an ARL0 performance approximately equal to the

desired ARL0 of 200 when the respective reference samples of sizes m = 47, 41, 31,

and 28 are used. Moreover, Q0(.10), Q0(.50) and Q0(.90) are approximately equal to

their asymptotic counterparts. However, Tables A.1 to A.4 in Appendix A and Figure

3.1 show that the ARL1, Q1(.50), and Q1(.90) values of these control charts are much

larger than the ARL1, Q1(.50) and Q1(.90) values of rMEWMA control charts with

larger values of m. For example, consider the rMEWMA control chart with λ = 0.05.

Table A.1 in Appendix A shows that the ARL1 and Q1(.50) values for detecting a shift

of magnitude δ = 1.0 are equal to 153.92 and 89, respectively, when m = 47. They

are much larger than the ARL1 and Q1(.50) values of 23.73 and 19, respectively, when

m = 1000. That is, the control chart with m = 47 detects the shift much slower than the

one with m = 1000. Note that the Q1(.50) values imply that there is a 50% of chance

that the first out-of-control signal is given in less than 89 and 19 observations after the

occurrence of the shift when m = 47 and m = 1000, respectively.

Therefore, even though that using relatively small reference samples achieves the de-

sired in-control RL performance, this choice reduces considerably the rMEWMA control

charts ability to quickly detect an out-of-control condition.

Performance of rMEWMA Control Charts Based on Moderate and Large Reference Samples

In the following, the three rMEWMA control charts with moderate and large reference

samples are considered, i.e., m = 100, 200, 500, and 1000. Table 3.1 shows the percentage

of decrement and increment in ARL0 and ARL1 values, respectively, with respect to the

asymptotic ARL0 and ARL1 performances, i.e., m = 10000.

In-Control Case (δ = 0)

Table 3.1 and Figure 3.1 show that the ARL0 values of the rMEWMA control charts are

shorter than the desired ARL0 of 200. That is, these control charts produce more false

alarms than expected. However, interpretation based on the ARL0 values alone can be

misleading. The Q0(.90) values given in Tables A.1 to A.4 in Appendix A indicate that

the larger percentiles of the in-control RL distributions affect the ARL0 values.
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Figure 3.1: The ARL values of Mahalanobis rMEWMA control charts for mean shifts of size δ
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Table 3.1: Percentage of decrement and increment in the ARL0 and ARL1 values of

Mahalanobis rMEWMA control charts with respect to the asymptotic ARL0 and ARL1

values, i.e., m ≈ ∞

Shift magnitude

m 0.0 0.5 1.0 1.5 2.0 2.5 3.0

(a) λ = 0.05

100 −14.03 +87.26 +281.27 +111.56 +18.71 +9.58 +7.10
200 −12.38 +68.49 +107.30 +17.30 +6.89 +4.02 +3.10
500 −5.13 +41.77 +17.34 +4.86 +2.54 +1.53 +1.11

1000 −1.68 +20.40 +6.32 +2.24 +1.20 +0.57 +0.44

(a) λ = 0.10

100 −11.32 +83.91 +325.38 +172.67 +23.04 +8.19 +4.26
200 −9.89 +66.96 +141.84 +23.85 +6.86 +3.57 +1.65
500 −4.51 +41.92 +25.12 +5.53 +2.45 +1.26 +0.71

1000 −1.86 +20.91 +8.71 +2.66 +0.82 +0.42 +0.47

(a) λ = 0.20

100 −8.95 +75.78 +344.44 +269.87 +43.90 +10.89 +5.85
200 −7.60 +63.70 +173.36 +41.44 +8.56 +4.46 +2.63
500 −3.24 +40.20 +36.70 +7.40 +2.91 +1.73 +0.88

1000 −1.26 +20.46 +10.35 +3.38 +1.28 +0.99 +0.29

(a) λ = 0.30

100 −7.89 +72.59 +351.87 +350.42 +73.35 +12.21 +5.47
200 −6.44 +62.44 +193.12 +65.45 +11.15 +4.42 +2.13
500 −2.38 +39.73 +45.68 +8.56 +3.40 +1.82 +0.91

1000 −0.82 +20.81 +14.03 +3.44 +1.70 +0.78 +0.61
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For example, consider the rMEWMA control chart with λ = 0.05 and m = 200. Its

ARL0 value is 12.38% shorter than its asymptotic value, see Table 3.1. Table A.1 in

Appendix A shows that the Q0(.10) value is equal to its asymptotic value of 26. The

Q0(.50) value is equal to 136. It is slightly shorter than its asymptotic value of 140.

That is, the control chart produce in average a false alarm within 136 observations with

a probability of 0.5 and within 140 observations with the same probability when m ≈ ∞.

Thus, the control chart does not suffer from the problem of early false alarms. However,

the Q0(.90) value is equal to 376. It is much shorter than its asymptotic value of 453.

This implies that the larger percentiles affect the ARL0 value. In this case, practitioners

may draw inaccurate conclusions about the in-control performance of the considered

rMEWMA control chart based on the ARL0 value alone.

Now we will focus on the probabilities of the occurrence of early false alarms for the

considered rMEWMA control charts. As mentioned in section 1.2, these probabilities

are reflected in the lower percentiles of the in-control RL distributions. Table 3.2 gives

the 5th, 10th, 20th, 30th, 40th and 50th percentiles of the in-control RL distributions of

the four rMEWMA control charts. Table 3.2 shows that almost all lower percentiles are

nearly the same as their asymptotic values. Only the Q0(.40) and Q0(.50) values of the

rMEWMA control charts with 100 ≤ m ≤ 200 are slightly shorter than their asymptotic

values.

Therefore, we can conclude that the observed decreases in the ARL0 values in Table

3.1 are caused by the shorter values of the larger percentiles. Practitioners should not

fear for the problem of early false alarms when rMEWMA control charts are applied

using reference samples of size m ≥ 100 observations.

Out-of-Control Case (δ 6= 0)

Table 3.1 and Figure 3.1 show that the ARL1 values of the rMEWMA control charts are

larger than their asymptotic counterparts. As mentioned in section 1.2, interpretation

based on the ARL1 values alone may lead to inaccurate conclusions. Thus, the lower

percentiles and the median of the out-of-control RL distributions are investigated. They

provide useful information about the ability of rMEWMA control charts to quickly detect

an out-of-control condition.

First, we investigate the out-of-control performance of the four rMEWMA control

charts for shifts of magnitude δ ≥ 1.5. Tables A.1 to A.4 in Appendix A show that the

Q1(.10) and Q1(.50) values are nearly the same as their asymptotic values. However,

the Q1(.90) values are larger than their asymptotic values. That is, the ARL1 values

are affected by some long runs. For example, consider the rMEWMA control chart with

λ = 0.3 and m = 100. Its ARL1 value for detecting a shift of magnitude δ = 1.5 is

350.42% larger than its asymptotic value, see Table 3.1. Table A.4 in Appendix A shows

that the Q1(.10) and Q1(.50) values are nearly the same as their asymptotic counterparts.
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Table 3.2: Lower percentiles of the in-control run length distributions of Mahalanobis

rMEWMA control charts based on reference samples of size m

λ m Q0(.05) Q0(.10) Q0(.20) Q0(.30) Q0(.40) Q0(.50)

100 17 26 49 75 101 130
200 17 26 48 74 103 136

0.05 500 17 26 49 74 104 140
1000 17 26 48 74 104 140

∞ 17 26 49 75 105 140

100 15 26 49 74 101 132
200 15 26 48 74 103 137

0.10 500 15 26 48 74 105 140
1000 15 25 48 75 105 141

∞ 15 25 49 75 105 141

100 14 24 48 73 101 132
200 14 24 47 72 102 136

0.20 500 14 25 47 73 103 139
1000 14 24 47 74 104 139

∞ 14 24 48 74 104 139

100 13 24 47 73 101 133
200 13 23 47 73 102 138

0.30 500 13 24 47 74 105 141
1000 13 24 47 74 105 141

∞ 13 24 47 74 104 141

NOTE: Q0(q) = qth percentile of the in-control run length distribution
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Table 3.3: Lower percentiles of the out-of-control (δ = 0.5) run length distributions of

the Mahalanobis rMEWMA control charts based on reference samples of size m

λ m Q1(.05) Q1(.10) Q1(.20) Q1(.30) Q1(.40) Q1(.50)

100 12 18 31 50 78 110
200 12 16 27 40 57 82

0.05 500 11 16 25 36 49 66
1000 11 16 24 35 47 62

∞ 11 16 24 34 45 59

100 11 16 31 52 82 114
200 10 15 27 41 61 89

0.10 500 10 15 25 37 52 71
1000 10 15 25 36 49 66

∞ 10 14 24 35 47 62

100 9 15 30 53 84 115
200 9 14 27 43 64 95

0.20 500 9 14 25 39 55 76
1000 9 14 24 37 52 70

∞ 9 13 24 36 49 65

100 9 15 31 55 86 118
200 8 14 27 45 67 99

0.30 500 8 14 26 40 57 79
1000 8 13 25 38 54 73

∞ 8 13 24 37 51 68

NOTE: Q1(q) = qth percentile of the out-of-control run length distribution

The control chart detects the shift on average within 10 observations with a probability

of 0.5 and within 8 observations with the same probability when m ≈ ∞. However, the

ARL1 value is affected by some long runs. The Q1(.90) value is equal to 124. It is much

larger than its asymptotic value of 18. Therefore, we can conclude that the ability of

the four rMEWMA control charts to quickly detect shifts of magnitude δ ≥ 1.5 is not

affected when reference samples of size m ≥ 100 are used.

Now we investigate the out-of-control performance of the four rMEWMA control

charts for shifts of magnitude δ = 0.5 and 1.0. Tables 3.3 and 3.4 show that the lower

percentiles of the out-of-control RL distributions of rMEWMA control charts with 100 ≤

m ≤ 200 are larger than their asymptotic values. That is, the estimation effect affects the

sensitivity of these control charts to react to shifts of magnitude δ ≤ 1.0. For rMEWMA

control charts with 500 ≤ m ≤ 1000, the lower percentiles of the out-of-control RL

distribution are nearly the same or slightly larger than the asymptotic values. Therefore,

we can conclude that using reference samples of size m ≥ 500 ensures that the rMEWMA

control charts perform like ones with sufficiently large reference samples, i.e., m ≈ ∞.

Their ability to quickly detect an out-of-control condition is not affected.
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Table 3.4: Lower percentiles of the out-of-control (δ = 1.0) run length distributions of

the Mahalanobis rMEWMA control charts based on reference samples of size m

λ m Q1(.05) Q1(.10) Q1(.20) Q1(.30) Q1(.40) Q1(.50)

100 7 9 12 16 21 28
200 7 8 11 14 17 21

0.05 500 7 8 11 13 16 19
1000 7 8 11 13 16 19

∞ 7 8 11 13 15 18

100 6 8 11 15 21 29
200 6 7 10 13 17 22

0.10 500 6 7 10 12 16 19
1000 6 7 10 12 15 18

∞ 6 7 10 12 15 18

100 5 7 10 15 22 34
200 5 6 9 13 17 23

0.20 500 5 6 9 12 16 20
1000 5 6 9 12 15 19

∞ 5 6 9 11 15 18

100 5 6 10 15 24 40
200 4 6 9 13 18 25

0.30 500 4 6 9 12 16 21
1000 4 6 9 12 15 20

∞ 4 6 8 11 15 19

NOTE: Q1(q) = qth percentile of the out-of-control run length distribution
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Sample Size Requirements

In this section, it is shown that using large reference samples of size m ≥ 500 will reduce

the estimation effect on the in-control and out-of-control performances of rMEWMA

control charts. However, only the shift scenario in the mean vector is considered to

represent the out-of-control process. The early false alarms produced by the rMEWMA

control charts and the early detection of out-of-control conditions are mainly used to

evaluate their in-control and out-of control performances. The reader should be aware

that the sample size recommendation may differ for other out-of-control scenarios. For

example, a shift in the in-control covariance matrix.

The required large reference samples of size m ≥ 500 observations should not be a

problem for the applications of rMEWMA monitoring procedures. Nowadays, advances

in data collection activities as well as the computational power of digital computers have

increased the available data sets in many industrial processes. However, practitioners

should not neglect the estimation effect on the in-control and out-of-control performances

of the rMEWMA control charts if for some industrial applications forming large reference

samples might be problematic.

Relation Between the Smoothing Parameter and the Reference Sample Size m

An important consideration is the relation between the smoothing parameter λ and the

reference sample size m. Table 3.1 shows that the smaller the value of λ, the larger

the reference sample size m is necessary for achieving desired ARL0 performance. This

suggests that for a fixed reference sample size m, rMEWMA control charts with smaller

values of λ are more plagued by false alarms than charts with larger values of λ. Finally,

rMEWMA control charts with smaller values of λ are more effective to detect small shifts

and drifts in the process mean vector than charts with larger values of λ. This is a known

property of the EWMA schemes.

3.2 Effect of the Geometrical Nature of Simplicial Depth on the Per-

formance of rMEWMA Control Charts

In this section, a simulation similar to that described in section 3.1.1 is conducted in order

to study the in-control and out-of-control performances of the four simplicial rMEWMA

control charts with λ = 0.05, 0.1, 0.2, and 0.3. The simplicial depth is computed using

the revised definition. Note that simplicial rMEWMA control charts are directionally

invariant because the simplicial depth is affine invariant. For the simulation, 10000

replications are used and only reference samples of size m = 100 and 200 observations

are considered. This is due to the computational difficulty of the simplicial depth for

large values of m, see section 2.1.
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Tables A.5 to A.8 in Appendix A show summary statistics of the in-control (δ = 0)

and out-of-control (δ 6= 0) run length distributions of the simplicial rMEWMA control

charts. SDRL is the standard deviation of the run length. Q(.10), Q(.50), and Q(.90)

are respectively the 10th, 50th, and 90th percentiles of the in-control and out-of-control

run length distributions.

In Figure 3.2, the ARL0 and ARL1 values of Mahalanobis and simplicial rMEWMA

control charts are plotted for m = 100 and 200. To compare the control charts fairly, the

ARL0 and ARL1 values of Mahalanobis rMEWMA control charts are calculated using the

same number of replications of 10000. Figure 3.2 shows that the simplicial rMEWMA

control charts have larger ARL0 and ARL1 values than charts based on Mahalanobis

depth. Furthermore, the percentiles of their in-control and out-of-control RL distribu-

tions are slightly larger than the respective percentiles of Mahalanobis rMEWMA control

charts. This suggests larger in-control and out-of-control run lengths. This is explained

by the geometrical nature of simplicial depth. One drawback of its use in quality control

is that it assigns the same depth to the extreme points of the reference sample. This

reduces the ability of simplicial rMEWMA control charts to quickly react to process

changes.

The extreme points of the reference sample play a central role in investigating the

properties of simplicial rMEWMA control charts. Let RS denote a reference sample of

size m > d observations from a d-variate continuous distribution. Let Em denote the

number of extreme points of RS. Stoumbos and Jones (2000) showed that the minimum

simplicial depth that any point in RS can have is d+1

2m
and that a point assumes this

minimum depth only and only if it is an extreme point. They also showed that there

always exist at least d + 1 extreme points, i.e., Em ≥ d + 1.

3.2.1 Lower Bounds to Qm
t

In section 2.2, it is mentioned that the statistics Q∗
t and Qm

t given by equations (2.3)

and (2.4) are uniformly distributed on the m points {1, 2, . . . , m} and {1/m − 1, 3/m−

1, . . . , 1− 1/m}, respectively. Indeed, it is assumed that the data depths of the observa-

tions of RS are continuous. This ensures that ties are not observed. Therefore the lower

bounds to the statistics Q∗
t and Qm

t (t ≥ m) given by equations (2.3) and (2.4) are

1 ≤ Q∗
t ,

1

m
− 1 ≤ Qm

t .
(3.2)

However, for the simplicial rMEWMA monitoring procedure, the Em ≥ d+1 extreme

points of RS are treated in an indistinguishable manner. They share the minimum

simplicial depth of d+1

2m
. The midrank of their simplicial depth is equal to (Em + 1)/2.
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Figure 3.2: The ARL of Mahalanobis (MD) and simplicial (SD) rMEWMA control charts for mean shifts of size δ
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Figure 3.2: The ARL of Mahalanobis (MD) and simplicial (SD) rMEWMA control charts for mean shifts of size δ (Continued)
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Table 3.5: Lower bounds to Qm
t when the Mahalanobis (MD) and simplicial (SD) depths

are used (d = 2)

MD SD

m 1/m − 1 (d + 1)/m − 1 E(Em)/m − 1

50 −0.980 −0.920 −0.834
100 −0.990 −0.960 −0.908
200 −0.995 −0.980 −0.950
500 −0.998 −0.992 −0.978

1000 −0.999 −0.996 −0.988
10000 −1.000 −1.000 −0.999

Therefore the lower bounds to the statistics Q∗
t and Qm

t (t ≥ m) are now

1 <
d + 2

2
≤

Em + 1

2
≤ Q∗

t ,

1

m
− 1 <

d + 1

m
− 1 ≤

Em

m
− 1 ≤ Qm

t .

(3.3)

More generally, Hueter (1994) derived an asymptotic expression for the expected

number of vertices or extreme points on the convex hull of a bivariate normal sample of

size m. It is given by

E(Em) ≈ 2
√

2πln(m),

where π = 3.142 and ln(.) is the natural log function. Stoumbos and Jones (2000)

found that, for a given finite value of m, this result overestimated the exact E(Em) by

a constant. They derived an accurate approximation for E(Em) and V ar(Em), where

E(Em) ≈ 2
√

2πln(m) − 1.6,

and

V ar(Em) ≈ 1.291623
√

ln(m).

Therefore, the lower bounds to E(Q∗
t ) and E(Qm

t ) can be approximated by

1 <
d + 2

2
≤

E(Em) + 1

2
≤ E(Q∗

t ),

1

m
− 1 <

d + 1

m
− 1 ≤

E(Em)

m
− 1 ≤ E(Qm

t ).

(3.4)

Now we assume that a change occurs in the process at time t ≥ m. For example

it can be represented by a shift in the in-control mean vector µ0 or a change in the

in-control covariance matrix ΣX . At each sampling time t, the simplicial rMEWMA

control statistic Tt wander in the direction of an out-of-control by λQm
t , where

λ

(

1

m
− 1

)

< λ

(

d + 1

m
− 1

)

≤ λ

(

E(Em)

m
− 1

)

≤ λE(Qm
t ).
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Figure 3.3: Plot of Mahalanobis (MD) and simplicial (SD) rMEWMA control charts

On the other hand, the Mahalanobis rMEWMA control statistic Tt wander fast in the

direction of an out-of-control by λQm
t , where

λ

(

1

m
− 1

)

≤ λQm
t .

Table 3.5 shows the lower bounds to Qm
t for different values of m when the Maha-

lanobis and simplicial depths are used. It shows that as m −→ ∞, the lower bound of

E(Qm
t ) approaches its limiting value of −1. This ensures that the simplicial rMEWMA

control charts will behave similar to the Mahalanobis rMEWMA control charts.

3.2.2 Illustrative Example

To illustrate the effect of the geometrical nature of simplicial depth on the performance

of rMEWMA control charts, we consider the example given in section 2.4. We assume

that the process mean vector shifts from µ0 = (0, 0)′ to µ1 = (2, 1)′ at time t ≥ 12.

At time t = 11, the two control statistics T11 of the Mahalanobis and simplicial

rMEWMA control charts are equal to 0.26. Figure 3.3 shows that the Mahalanobis

rMEWMA control chart is more sensitive to the shift and detect it after 5 observations.

However, using the simplicial depth, the shift is detected after 11 observations.

After the occurrence of the shift, observations Xt, t = 12, . . . , 16, are extreme points

to RS = {Xt−9, . . . , Xt}. Table 3.6 shows that the Mahalanobis rMEWMA control

statistic Tt wander fast in the direction of an out-of-control. For example, at t = 16,

using the Mahalanobis depth, the sequential rank of MD(RS,X16) among MD(RS,X7),

. . . , MD(RS,X16) is equal to 1. The Mahalanobis rMEWMA control statistic T16

wander in the direction of an out-of-control by −0.18 and an out-of-control signal is

given. However, observation X16 share the minimum simplicial depth of 0.15 with 5 other
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extreme points. Therefore, the sequential midrank of SD(RS,X16) among SD(RS,X7),

. . . , SD(RS,X16) is equal to 3.5 and the simplicial rMEWMA control statistic T16

wander in the direction of an out-of-control only by −0.08.

In conclusion, simplicial rMEWMA control charts are less powerful than Mahalanobis

rMEWMA control charts when reference samples of limited amount of observations are

used. This is due to the geometrical nature of simplicial depth.
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Table 3.6: Illustrative example of the effect of the lower boundary to Qm
t on the out-of-control performance of the rMEWMA control

charts

Observations Xt Mahalanobis depth Simplicial depth

t xt,1 xt,2 MD Q∗

t Q10
t Tt SD Em Q∗

t Qm
t Tt

11 0.61 -0.37 0.749 10 0.9 0.260 0.317 6 10 0.9 0.260
12 1.71 0.08 0.271 3 −0.5 0.108 0.150 5 3 −0.5 0.108
13 1.42 1.06 0.208 2 −0.7 −0.054 0.150 5 3 −0.5 −0.014
14 2.05 0.25 0.157 1 −0.9 −0.022 0.150 5 3 −0.5 −0.111
15 1.86 2.48 0.123 1 −0.9 −0.358 0.150 5 3 −0.5 −0.189
16 1.79 0.74 0.163 1 −0.9 −0.467 0.150 6 3.5 −0.4 −0.231
17 1.86 −1.54 0.150 4 2.5 −0.6 −0.305
18 2.58 0.96 0.150 5 3 −0.5 −0.344
19 1.77 1.72 0.150 5 3 −0.5 −0.375
20 3.58 0.61 0.150 5 2.5 −0.6 −0.420
21 3.18 2.79 0.150 5 3 −0.5 −0.436



Chapter 4

Performance Comparisons

I
n this chapter, the performances of the proposed rMEWMA control charts and the

parametric alternative procedure are compared using simulations. In section 4.1,

the parametric multivariate EWMA control chart is introduced. In section 4.2, the

simulation study is described. The results are given in section 4.3.

4.1 The Parametric Multivariate EWMA Control Chart

The parametric multivariate EWMA (pMEWMA) control chart is introduced by Lowry

et al. (1992). This chart is used to monitor the mean vector µ of a d-variate process

observations, X = (x1, . . . , xd)
′. The authors assumed that the in-control mean vector

µ0 and covariance matrix ΣX of the observations {Xt} are known. For this control chart,

the vectors of EWMA’s are defined as

zt = r(Xt − µ0) + (I − r)zt−1, (4.1)

t = 1, 2, . . . , where the smoothing matrix r is a d × d diagonal matrix whose diagonal

elements are 0 < ri ≤ 1, i = 1, 2, . . . , d, and the starting value z0 is usually chosen

to be equal to 0. Lowry et al. (1992) suggests using ri = r, i = 1, 2, . . . , d, if there is

no practical reason to weight past observations differently. The control statistic of the

pMEWMA control chart is

T 2
t = z′t Σ−1

zt
zt,

t = 1, 2, . . . , where Σzt
is the covariance matrix of zt given by

Σzt
=

r[1 − (1 − r)2t]

2 − r
ΣX .

Lowry et al. (1992) mentioned that it may be more likely that the process will stay in

control for a while and then shift to an out-of-control state. Therefore, they suggest the

37
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use of asymptotic covariance matrix, i −→ ∞. That is,

Σzt
≈

r

2 − r
ΣX . (4.2)

Note that the use of the exact covariance matrix or the asymptotic covariance matrix

leads to two different monitoring procedures. The exact covariance matrix can be used

in equation (4.1) if it is believed that there may be some initial process disturbances.

In this case, the pMEWMA control chart has the fast initial response (FIR) and then

detects more quickly initial process disturbances.

The pMEWMA control chart produces an out-of-control signal as soon as T 2
t > L,

where L > 0 represents the chart’s upper control limit. It is usually determined so that

the pMEWMA control chart achieves a desired in-control ARL.

In practice, the in-control mean vector µ0 and covariance matrix ΣX of the monitored

observations {Xt} are rarely known. A common practice is to collect data over a sub-

stantial amount of time when the process is in-control to estimate them. Moreover, this

data could be used to check the assumptions of independence and multivariate normality.

For the estimated version of the pMEWMA control chart, µ0 and ΣX are replaced

by their respective estimators µ̂0 and Σ̂X . Thus, the vectors of EWMAs are given by

zt = r(Xt − µ̂0) + (I − r)zt−1,

t = 1, 2, . . . , where z0 = 0. The control statistic is defined as

T 2
t = z′t Σ̂−1

zt
zt,

t = 1, 2, . . . , where Σ̂zt
is given by

Σ̂zt
=

r[1 − (1 − r)2t]

2 − r
Σ̂X .

The asymptotic form of Σ̂zt
is

Σ̂zt
≈

r

2 − r
Σ̂X .

Note that the pMEWMA control chart with ri = 1, i = 1, 2, . . . , d, is the Hotelling’s T 2

control chart.

For a pMEWMA control chart, it is assumed that the underlying distribution of the

d × 1 quality vector is multivariate normal. Stoumbos and Sullivan (2002) and Testik

et al. (2003) investigated the effect of non-normality on its statistical performance. They

considered the multivariate t-distribution to represent a large-tailed distribution and the

multivariate gamma to represent a skewed distribution. Stoumbos and Sullivan (2002)

noted that a control chart for the mean vector would be distribution free in the sense that

its performance would be sensitive to changes in the mean vector, but independent of all

other aspects of the control statistic’s distribution, as determined by the higher moments.
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They concluded that using r ∈ [0.02,0.05], the pMEWMA control charts are insensitive

to departures from multivariate normality. That is, this choice ensures in-control perfor-

mance comparable to that with multivariate normal observations. Furthermore, they are

very effective at detecting process shifts of any size or direction even for highly skewed

and extremely heavy-tailed multivariate distributions.

4.2 Simulation Study

In this section, the in-control and out-of-control performances of the rMEWMA and

pMEWMA control charts are compared using simulations. The shift scenario in the

process mean vector from µ0 to µ1 when the higher moments of the distribution are

fixed is considered to represent the out-of-control process. Its magnitude is given by

equation (3.1). The four rMEWMA control charts with λ = 0.05, 0.1, 0.2 and 0.3 and

the pMEWMA control charts with r = 0.05 are considered. As mentioned, using r = 0.05,

the pMEWMA control chart is insensitive to departure from multivariate normality.

The pMEWMA control charts with estimated parameters are designed similar to the

rMEWMA control charts in order to compare their in-control and out-of-control RL

performances fairly. That is, at time t ≥ m, the reference sample comprised of the m > 1

most recent observations taken from the process is used to estimate µ0 and ΣX .

Reference samples of sizes m = 200 and m ≈ ∞ (i.e., m = 10000) are considered. In

fact, reference samples of size m = 200 may be practical in many industrial applications.

In this case, the parameters are unknown and the estimation effect should not be ne-

glected, see section 3.1. The case m ≈ ∞ is similar to the parameter known case. In fact,

a sufficiently large reference sample is available so that the in-control parameters µ0 and

ΣX of the pMEWMA control charts and the in-control distributions of the rMEWMA

control charts can be estimated with negligible error.

To compare all control charts fairly when m = 200, we need to adjust their control

limits so that their in-control ARL is approximately the same. Table 4.1 shows the

adjusted (m = 200) and asymptotic control limits (m ≈ ∞) of all control charts. The

adjusted control limits are obtained using simulation, where we generate independent

random vectors {Xt} from the bivariate normal distribution with mean vector µ0 =

(0, 0)′ and variance covariance matrix equal to the identity matrix.

Table 4.1 shows that the control limit of the pMEWMA control chart is shrunk. The

effect of the use of adaptive estimates µ̂0 and Σ̂X in place of known parameters µ0 and ΣX

increases the ARL0 values. This result is different of the traditional pMEWMA control

charts where estimates of µ0 and ΣX from an in-control Phase I reference sample are

used in the monitoring phase (Phase II). In this case, Champ and Jones-Farmer (2005)

showed that a dramatic increase in the number of false alarms is observed because of the

reduced ARL0 values and percentiles of the in-control RL distribution.
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Table 4.1: Adjusted and asymptotic control limits of the rMEWMA and pMEWMA

control charts

pMEWMA rMEWMA
r λ

m 0.05 0.05 0.10 0.20 0.30

200 7.200 −0.176 −0.284 −0.440 −0.555
∞ 7.346 −0.159 −0.279 −0.435 −0.551

For the pMEWMA control charts, the asymptotic covariance matrix given by equa-

tion (4.2) is used. In fact, the use of a fast initial response (FIR) feature increases the

probability of early false alarms. Stoumbos and Sullivan (2002) noted that in the pres-

ence of non-multinormal observations this would impair the ability to achieve robust

performance.

Similar to Stoumbos and Sullivan (2002), we consider the multivariate t-distribution

to represent a large-tailed distribution and the multivariate gamma distribution to rep-

resent a skewed distribution. For a complete discussion about the motivation of this

choice see Stoumbos and Sullivan (2002). We consider t(v) observations with degrees of

freedom values of v = 3, 6, 20 and 100. Stoumbos and Sullivan (2002) noted that with

degrees of freedom below 3, the second moment is undefined so the pMEWMA control

chart statistic is also undefined. For the G(α,1), we consider observations having shape

parameter values of α = 1, 4, 16 and 64. Note that t(3) and G(1,1) depart from multi-

normality greatly with respect to the third/or fourth moments. As v and α increase,

the t and gamma distributions, respectively, approach multivariate normality. Note that

only results with t(3) and G(1, 1) distributions are reported in this work.

For the multivariate normal and t-distributions, the pMEWMA and rMEWMA con-

trol charts are directionally invariant. That is, their ARL performance depends on a

shift in the process mean vector µ only through the value of δ given by equation (3.1).

Note that for the pMEWMA control charts, this property holds only when a diagonal

smoothing matrix r is used, see Lowry et al. (1992). Thus, without any loss of generality,

the shift is fixed in the direction of e1=(1,0)’ and ΣX is taken to be equal to I and

v/(v − 2)I for the multivariate normal and t-distributions, respectively.

For the multivariate gamma distribution, the pMEWMA and rMEWMA control

charts are directionally not invariant. Stoumbos and Sullivan (2002) showed that the

shift direction affects the detection power of the pMEWMA control charts. Similar to

Stoumbos and Sullivan (2002) we report the ARL averaged over a uniform distribution

(all directions being equally likely) for the shift directions. The shift directions were gen-

erated using the algorithm suggested by Johnson (1987) (p. 127). A new shift direction

is generated for each simulation run. ΣX equal to I is used for the simulations. Note that
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the details but not the general conclusions depend on this choice of parameter settings.

The simulation strategy is similar to that described in section 3.1.1. The results

are based on 10000 replications. The simplicial depth is computed using the revised

definition. The random t and gamma observations are generated similar to Stoumbos

and Sullivan (2002).

4.3 Simulation Results

Tables A.9 through A.17 in Appendix A presents the in-control (δ = 0) and out-of-control

(δ 6= 0) performances of the rMEWMA and pMEWMA control charts for multivariate

normal, t(3) and G(1, 1) distributions with various parameters. The Mahalanobis and

simplicial depths are used for the rMEWMA control charts. Similar as in Chapter 3,

ARL0 and ARL1 represent the in-control and out-of-control average run lengths, respec-

tively. Q0(q) and Q1(q) refer to the qth percentile of the in-control and out-of-control

run length distributions, respectively.

4.3.1 Comparison of Performances of Mahalanobis rMEWMA and pMEWMA Con-

trol Charts

In this section, the in-control (δ = 0) and out-of-control (δ 6= 0) RL performances of

rMEWMA and pMEWMA control charts are compared. Note that only Mahalanobis

rMEWMA control charts with λ = 0.05 are considered.

In-Control Case (δ = 0)

Table 4.2 gives the ARL0, Q0(.10), Q0(.50) and Q0(.90) values of the pMEWMA and

Mahalanobis rMEWMA control charts for m = 200 and m ≈ ∞. It shows that us-

ing reference samples of size m = 200 observations, the ARL0, Q0(.10), Q0(.50) and

Q0(.90) values of the pMEWMA control charts with bivariate t(3) and G(1, 1) observa-

tions are shorter than the respective values with bivariate normal observations. That is,

pMEWMA control charts with bivariate t(3) and G(1, 1) observations are more plagued

by false alarms than with bivariate normal observations. This might be explained by the

fact that pMEWMA control charts are designed assuming the multivariate normality of

the observations. In the other hand, the Mahalanobis rMEWMA control charts have

approximately equal Q0(.10), Q0(.50) and Q0(.90) values with bivariate normal, t(3) and

G(1, 1) observations. This is explained by their distribution-free design.

Table 4.2 shows that the ARL0, Q0(.10), Q0(.50) and Q0(.90) values of the pMEWMA

control charts are approximately equal or shorter than the respective values of the Maha-

lanobis rMEWMA control charts. Note that only the Q0(.50) value of the pMEWMA con-

trol chart with bivariate normal observations is slightly larger than the respective value

of the Mahalanobis rMEWMA control chart. Thus, we can conclude that pMEWMA
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Table 4.2: In-control (δ = 0) run length properties of Mahalanobis rMEWMA and

pMEWMA control charts with bivariate normal, t(3) and G(1,1) distributions. Reference

samples of size m = 200 and m ≈ ∞ are used.

pMEWMA rMEWMA

δ N t(3) G(1, 1) N t(3) G(1, 1)

m = 200

0.0 ARL 201.56 153.67 192.90 202.94 200.14 203.20
Q1(.10) 32 24 30 30 30 30

Q1(.50) 143 114 140 158 156 157

Q1(.90) 451 337 429 438 429 439

m ≈ ∞

0.0 ARL 199.10 194.95 196.60 201.93 199.17 200.54
Q1(.10) 34 28 30 27 27 25

Q1(.50) 145 137 136 140 140 140

Q1(.90) 445 440 441 467 452 465
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control charts are more plagued by false alarms than Mahalanobis rMEWMA control

charts for extremely heavy-tailed and highly skewed distributions when reference sam-

ples of size m = 200 observations are used. For the asymptotic in-control performance,

Table 4.2 shows that the two control charts have approximately the same performances.

Out-of-Control Case (δ 6= 0)

Tables A.9 through A.17 in Appendix A show that the ARL1 values of pMEWMA control

charts are shorter than the respective values of Mahalanobis rMEWMA control charts.

The difference is large for small shifts in the mean vector of magnitude δ ≤ 1.0. However,

interpretation based on the ARL1 values alone can be misleading. An investigation of

the percentiles of the out-of-control run length distributions is needed.

First, we investigate the performance of the two control charts to detect shifts in

the mean vector of magnitude δ ≥ 1.5. Table 4.3 shows that the Q1(.10) and Q1(.50)

values of the rMEWMA and pMEWMA control charts are nearly equal. That is, the

two control charts have nearly the same performance when m = 200 and m ≈ ∞.

Now, we compare the performances of Mahalanobis rMEWMA and pMEWMA con-

trol charts for detecting shifts in the mean vector of magnitude δ ≤ 1.0. The Q1(.90)

values in Table 4.4 show that the ARL1 values of Mahalanobis rMEWMA control charts

are more affected by some long runs more than the ARL1 values of pMEWMA control

charts. For example, using reference samples of size m = 200 observations, the ARL1

value of the Mahalanobis rMEWMA control chart with G(1, 1) observations is equal to

93.73. It is larger than the ARL1 value of 11.89 of the pMEWMA control chart. The

Q1(.90) value of Mahalanobis rMEWMA control chart is equal to 346. It is much larger

than the respective value of 18 of the pMEWMA control chart. That is, the ARL1 value

of the Mahalanobis rMEWMA control chart is affected by some extremely long runs.

Table 4.4 shows that the Q1(.10) and Q1(.50) values of pMEWMA control charts

are much shorter than the respective values of Mahalanobis rMEWMA control charts

when bivariate normal observations are monitored than when bivariate t(3) and G(1, 1)

observations are monitored. Indeed, it is expected that pMEWMA control charts perform

much better than Mahalanobis rMEWMA control charts when the normality assumption

is met. As mentioned, they are designed assuming the multivariate normality of the

observations.

When δ = 0.5, the Q1(.50) values of Mahalanobis rMEWMA control charts with

t(3) and G(1, 1) observations are nearly equal to the double of the respective values

of pMEWMA control charts when m = 200. The difference decreases when m ≈ ∞.

When δ = 1.0, the Q1(.10) and Q(.50) values of Mahalanobis rMEWMA control charts

with bivariate t(3) and G(1, 1) observations approach the respective values of pMEWMA

control charts when m = 200. They are nearly the same when m ≈ ∞.
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Table 4.3: Out-of-control (δ > 1.0) run length properties of Mahalanobis rMEWMA and

pMEWMA control charts with bivariate normal, t(3) and G(1,1) distributions. Reference

samples of size m = 200 and m ≈ ∞ are used.

pMEWMA rMEWMA

δ N t(3) G(1, 1) N t(3) G(1, 1)

m = 200

1.5 ARL 7.51 7.16 7.42 12.55 7.62 21.59
Q1(.10) 5 5 5 6 5 5

Q1(.50) 7 7 7 10 7 8

Q1(.90) 10 10 10 21 10 19

2.0 ARL 5.57 5.29 5.48 7.51 5.81 6.54
Q1(.10) 4 4 4 5 5 5

Q1(.50) 5 5 5 7 6 6

Q1(.90) 7 7 7 11 7 8

2.5 ARL 4.44 4.26 4.42 5.73 5.17 5.33
Q1(.10) 3 3 3 4 5 5

Q1(.50) 4 4 4 5 5 5

Q1(.90) 6 5 6 8 6 6

3.0 ARL 3.78 3.61 3.74 4.90 4.93 5.03
Q1(.10) 3 3 3 4 4 5

Q1(.50) 4 3 4 5 5 5

Q1(.90) 5 5 5 6 5 5

m ≈ ∞

1.5 ARL 7.17 7.06 7.16 10.31 6.76 8.74
Q1(.10) 5 5 5 6 5 5

Q1(.50) 7 7 7 9 6 7

Q1(.90) 10 9 10 17 9 14

2.0 ARL 5.28 5.23 5.26 6.64 5.36 5.82
Q1(.10) 4 4 4 5 5 5

Q1(.50) 5 5 5 6 5 5

Q1(.90) 7 7 7 9 6 7

2.5 ARL 4.24 4.19 4.21 5.23 4.79 5.01
Q1(.10) 3 3 3 4 4 4

Q1(.50) 4 4 4 5 5 5

Q1(.90) 5 5 5 7 5 6

3.0 ARL 3.55 3.51 3.53 4.51 4.29 4.56
Q1(.10) 3 3 3 4 4 4

Q1(.50) 3 3 3 4 4 5

Q1(.90) 4 4 4 5 5 5
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Table 4.4: Out-of-control (δ ≤ 1.0) run length properties of Mahalanobis rMEWMA and

pMEWMA control charts with bivariate normal, t(3) and G(1,1) distributions. Reference

samples of size m = 200 and m ≈ ∞ are used.

pMEWMA rMEWMA

δ N t(3) G(1, 1) N t(3) G(1, 1)

m = 200

0.5 ARL 33.31 33.00 33.39 163.26 119.62 163.88
Q1(.10) 12 11 12 18 14 12

Q1(.50) 25 24 25 98 52 55

Q1(.90) 59 58 58 390 325 440

1.0 ARL 11.86 11.42 11.89 54.23 18.07 93.73
Q1(.10) 7 6 7 9 7 7

Q1(.50) 11 10 11 23 12 15

Q1(.90) 18 17 18 115 26 346

m ≈ ∞

0.5 ARL 26.78 28.25 26.87 82.82 44.98 280.41
Q1(.10) 12 12 12 16 13 10

Q1(.50) 23 25 23 58 34 36

Q1(.90) 47 48 47 182 91 782

1.0 ARL 11.19 11.31 11.28 22.41 11.69 30.14
Q1(.10) 7 7 7 8 7 6

Q1(.50) 11 11 11 18 11 12

Q1(.90) 17 16 17 42 18 69
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Results Summary

The results show that Mahalanobis rMEWMA control charts are less powerful than

pMEWMA control charts to react to shifts in the mean vector of magnitude δ ≤ 1.0.

This is no surprise because Mahalanobis rMEWMA control charts only use the rank

information of the data depth measures of the observations. Thus, it can wander to the

direction of an out-of-control of no more than 1/m − 1 per sample. On the other hand,

the parametric design of pMEWMA control charts imply that they use the information

of the observations. They can wander to the direction of an out-of-control by any value

per sample.

4.3.2 Performance of Mahalanobis and Simplicial rMEWMA Control Charts

First, the effect of widening the control limits on the ARL1 performance of rMEWMA

control charts is discussed. Tables A.9 through A.17 in Appendix A show that the

different rMEWMA control charts achieve desired ARL0 performance for all considered

distributions. However, their sensitivity to react to process changes is reduced compared

to charts with asymptotic control limits. The ARL1 values and percentiles of the out-of-

control run length distributions are inflated when control limits are widened. Note that

this is inevitable. The probability of crossing the control limit h becomes larger when h

is widened.

The Q1(.90) values in Tables A.9 through A.17 in Appendix A show that the ARL1

values of simplicial rMEWMA control charts are more affected by long runs than the

ARL1 values of Mahalanobis rMEWMA control charts. Furthermore, the Q1(.10) and

Q1(.50) values show that simplicial rMEWMA control charts are more powerful to quickly

detect shifts in the mean vector when bivariate G(1, 1) observations are monitored.

Finally, Mahalanobis and simplicial rMEWMA control charts are more sensitive to

react to shifts in the mean vector when the distribution is heavy-tailed, t(3), than normal.

However, they are less powerful to highly skewed, G(1, 1), distribution. For example,

Figure 4.1 shows the ARL values of Mahalanobis and simplicial rMEWMA control charts

with bivariate normal, t(3) and G(1, 1) observations. The smoothing parameter λ and

the reference sample size m are equal to 0.05 and 200, respectively.

4.4 Discussion and Conclusion

In this chapter, we compared the in-control and out-of-control performances of rMEWMA

and pMEWMA control charts. The results show that pMEWMA control charts are more

effective to detect sustained shifts of small magnitude in the mean vector. However,

only the sustained shift scenario in the mean vector is considered to represent the out-of-

control process. It is known that pMEWMA control charts are designed to have excellent
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performance in detecting sustained shifts in the mean vector. Furthermore, Stoumbos

and Sullivan (2002) mentioned that designing pMEWMA control charts to be insensitive

to deviations from normality in the higher moments, including kurtosis, has the side effect

of decreased sensitivity to isolated outlying process observations. In this case, rMEWMA

control charts might be used. We are currently investigating this issue. Moreover, we are

investigating the performance of rMEWMA control charts to monitor process variability.
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Chapter 5

The BTA Deep-Hole Drilling Process

I
n this chapter, the BTA deep-hole drilling process is introduced. In section 5.1,

the drilling machine, drilling tool and principles of the process are reviewed. Then,

the dynamic process disturbances are described in section 5.2. Finally, a previous

experimental investigation conducted in order to study the dynamics of the process and

its main results are reviewed in section 5.3.

5.1 The Drilling Process

Deep hole drilling methods are used for producing holes with a high length-to-diameter

ratio, good surface finish and straightness. For drilling holes with a diameter of 20

mm and above, the BTA deep-hole machining principle is usually employed. Deep-hole

drilling means that l/D ≥ 3, where l and D are the length and the diameter of the hole to

be machined, respectively. The special construction of this tool leads to long holes with

very smooth walls and a high degree of straightness. As mentioned, the BTA deep-hole

drilling process is usually the final step in the production of expensive workpieces.

5.1.1 The Drilling Machine

In this section, we briefly review the BTA deep-hole drilling machine. For more details,

see Weinert et al. (2002). The machine tool has six main components: two drive units

for the rotary motion of the workpiece and the rotary and translation motion of the tool,

the machine bed, the oil supply device containing the starting bush, the damper, and the

tool-boring bar assembly. Figure 5.1 shows the BTA deep-hole drilling machine. Drilling

can be performed in three different ways:

1. Turning tool and standing workpiece

51
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Machine bed

Feed

Boring bar Drive
unit

Oil supply
deviceworkpiece

RotatingDrive
unit

BTA tool

Figure 5.1: BTA deep-hole drilling machine

2. Standing tool and turning workpiece

3. Turning tool and workpiece in opposite directions

The following parameters can be influenced on the machine:

• The axial feed (f) in mm/rev

• The cutting velocity or cutting speed (vc) in m/min

• The flow rate of the oil (V̇ ) in l/min

• The position of the damper

• The operating-pressure of the damper

The cutting velocity is automatically controlled and therefore not exactly on target in

the process. This is taken into account by measuring the true number of revolutions

per second which then allows the effect of the variation in this parameter to be inferred.

The axial feed influences the speed of the boring substantially, since it determines the

thickness of the chips which are removed by the cutting edge. The flow rate of the oil

determines the speed of transportation of the chips from the cutting edge and the cooling

and lubrication of the process. It also influences the damping properties of the whole

assembly. The damper serves to prevent dynamic disturbances, see section 5.2. It can

be positioned along the boring bar. Its position can be fixed on the machine bed or

relative to the drive unit of the tool. The pressure with which the damper is clamped to

the boring bar, is determined by the machine operator. If a disturbance is detected, the

operator can vary the position and the pressure until it disappears.

5.1.2 The Drilling Tool and Principle of the Process

In this section, the BTA tool and principle of the drilling process are discussed. The BTA

tool has only one cutting edge and two or three guiding pads, see Figures 5.2 and 5.3.
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Figure 5.2: Working principle of the BTA deep-hole drilling

Cutting inserts Guiding pads

Figure 5.3: Boring tool as used in the experiments

In contrast to conventional twist drills, the tool has an asymmetric cutting edge. This

induces a nonzero radial component of the cutting force, which leads to forces pushing

outwards against the walls of the hole. Therefore the tool has to be guided at the start

of the process until its self guiding action becomes effective. For this purpose, the BTA

deep-hole drilling machine is equipped with a stationary starting bush integrated in the

oil supply device, see Figure 5.2. The necessary guiding action during the starting phase

of the process is achieved through the radial forces pushing the guide pads of the boring

head onto the internal cylindrical surface of the starting bush. With increasing drilling

depth, the boring head together with its guide pads enters the bore hole and the function

of the starting bush is taken over by the bore hole wall.

The lubrication oil or cutting fluid flows through the outside of the tool to the cutting

edge. Therefore, the chips are pushed out of the workpiece via the chip mouth and

through the boring bar, see Figure 5.2. Thus, the chips cannot contact and damage the

bore hole wall surface. Hence, a high quality of the holes can be achieved.
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5.2 Process Disturbances

The machining of bore holes with high length-to-diameter ratio implies the use of slender

tool-boring assembles featuring low static and dynamic stiffness properties. This in turn

leads to the process being susceptible to dynamic disturbances usually classified as either

chatter vibration or spiralling. This limits the productivity and accuracy of the drilling

process and therefore the good surface roughness and roundness of the produced holes.

In mechanical engineering, the quality of a hole might be measured by roughness and

roundness. The roughness measurements describe the deviation of the surface from the

ideal totally smooth surface. Note that the surface roughness produced by a turning

operation depends on the cutting tool geometry and tool path traversed throughout the

workpiece. Roundness measures the deviation of the machined hole from an optimal

circle. For more details, see Theis (2004).

For the drilling process, chatter is a form of unwanted and excessive self excited

vibration between the tool and the workpiece. It leads to a poor surface finish of the

workpiece. Usually, its effect is restricted to radial chatter marks at the bottom of the

bore hole. In extreme cases it damages the boring wall by causing marks, called chatter

marks, on the cylindrical surface of the bore hole, see Figure 5.4. The effect of chatter on

Figure 5.4: Radial chatter marks

the BTA tool are more severe. It leads to excessive wear of the cutting edges and guiding

pads of the tool. This has a deteriorating effect on the machine tool life and therefore

the reliability and safety of the machining operation.

Spiralling is a periodic movement of the tool around the center of the boring bar. It

damages the workpiece severely. It leads to a multi lobe-shaped deviation of the cross

section of the hole from absolute roundness which constitutes a significant impairment

of the workpiece. Figure 5.5 shows the effect of spiralling on the workpiece.
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Figure 5.5: Effect of spiralling on the bore hole wall

5.3 Experimental Investigation

In order to study the dynamics of the process, several drilling experiments are conducted

according to a given experimental design. The experiments were carried out on a CNC

BTA deep hole drilling machine type Giana GGB 560, see Figure 5.6, with a bed length of

10.4 m, a maximum spindle speed of 1600 min−1, a maximum feed rate of 5700 mm/min

and a maximum spindle power of 125 kW. A commercially available multi-edge BTA solid

boring tool has been employed. It is equipped with three guiding pads and two cutting

inserts and has a nominal external diameter of 60 mm, see Figure 5.7. The workpiece

material was C60 with an external diameter of 83 mm and a length of 500 mm. The

experiments were carried out with a stationary tool and rotating workpiece. This was

chosen because an appropriate measuring device to transmit the signals of drilling torque

and feed force from the rotating boring bar was not available. The experimental setup is

illustrated in Figure 5.8. The process parameters were varied within the following ranges

according to a central composite experimental design comprising of 21 experiments, see

Theis (2004):

• Cutting speed vc: 60 - 120 m/min,

• Feed f : 0.12 - 0.25 mm,

• Oil flow rate V̇ : 200 -400 L/min.

The damper was not considered in order to allow the system to evolve to chatter and

spiralling. Note that there are some uncontrollable influences such as the temperature of

the boring bar oil and more importantly the wear of the cutting edges and the guiding

pads. During these experiments several on-line measurements were sampled. Chatter is

easily recognized in the on-line measurements by a fast increase of the dynamic part of

the torque, force and acceleration signals. However, the drilling torque measurements

yield the earliest and most reliable information about the transition from stable operation

to chatter. They are recorded using strain gauges applied to the boring bar close to its

clamped end. For a complete discussion about the experimental setup, see Weinert et al.

(2002).
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Figure 5.7: BTA deep-hole drilling tool as used for the experimental investigation
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Figure 5.8: Experimental setup
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(a) (b)

Figure 5.9: Two time series of the drilling torque from experiments with the same

parameters

In these experiments, it was observed that experiments with identical machine pa-

rameters can exhibit qualitatively different behavior. For example, Figure 5.9 shows

the evolution of the torque in two experiments with the same machine parameters, feed

f = 0.185 mm/rev, cutting speed vc = 90 m/min and oil flow rate V̇ = 300 l/min. The

two time series are recorded with a sampling rate of S = 20000 Hz. The whole drilling

process takes almost six minutes. In the first experiment, only one kind of chatter vibra-

tion is observed, see Figure 5.9a. First, the drilling process is stable and the distribution

of the measured data is almost Gaussian with a very low of amount of additional struc-

ture. Approximately after depth 300 mm, a rapid but smooth increase of the torque

is observed. The observed time series is very smooth and periodic. This means that

chatter vibration is present. In the second experiment, chatter starts right after leaving

the bushing, approximately depth 32 mm, see Figure 5.9b. The amplitude of the torque

rapidly increased approximately after depth 280 mm, which means that a change of the

structure of chatter vibration have occurred. In both experiments, the BTA tool leaves

the workpiece and the torque decreases to the starting value of 0 Nm after depth 500

mm.

The spectrograms of the drilling torque showed clearly that single frequencies domi-

nate the process when chatter vibration is observed. These frequencies are mostly related

to the eigenfrequencies of the boring bar. Figure 5.10 shows the spectrogram of an exem-

plary process showing varying dynamic states. The cutting parameters are feed f = 0.185

mm/rev, cutting speed vc = 90 m/min and oil flow rate V̇ = 300 l/min. In this case, the

spectrogram is a pictorial representation of the frequency content of the drilling torque

over depth (mm). Usually, this representation is useful for signals whose frequency char-

acteristics change over time (non-stationary). In Figure 5.10, frequencies are plotted on

the vertical axis. The intensity of each frequency is represented with a scale of colors.
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Figure 5.10: Spectrogram calculated from drilling torque data

Note that this spectrogram is constructed by breaking the drilling torque into small seg-

ments in time, then finding the fast fourier transform (FFT) of each segment. This yields

the frequency content. Figure 5.10 shows that the process exhibits an initial non-chatter

phase followed by three phases during which the process is in different states of chatter.

These states can be distinguished by the different dominating frequencies of approxi-

mately 234 Hz, 703 Hz, and 1183 Hz, respectively. Theis (2004) studied the features of

the development of amplitudes of the drilling torque over time. He determined all the

relevant frequencies of the process and showed that the most prominent frequency bands

are near 234 Hz, 703 Hz, and 1183 Hz. In fact, the chatter states can be distinguished

by these different dominating frequencies in all experiments.

5.3.1 A Drilling Depth Dependency of Chatter Frequency

Figure 5.11 shows a plot of the different process phases over the drilling depth for the

21 experiments. A horizontal line in the graph represents one drilling experiment. For

each experiment, the corresponding process parameters and the experiment number in

the experimental design are given. Colored line segments indicate chatter vibration with

a dominating frequency according to the graph legend. Chatter vibration is observed in

all experiments. Figure 5.11 shows that chatter vibration is observed at later stages of

the process only in 6 experiments. In the others, chatter is observed straight after the

guiding pads left the starting bush. The observed dynamic states always occurred in

the following sequence: drilling without chatter vibration followed by chatter vibration

at approximately 1183 Hz, 234 Hz, and 703 Hz, respectively. In the majority of the

experiments only a subset of the overall observed states occurred. Weinert et al. (2002)

noted that the transitions from stable drilling to chatter as well as from one chatter

state to another one are not sudden but are result of a long-term process over minutes.
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However, chatter observed directly after the guiding pads left the starting bush occurs

spontaneous. Figure 5.11 shows a drilling depth dependency of the chatter frequency. In

fact,

• Chatter around 234 Hz is observed at different stages of the process. In 11 exper-

iments, it is observed after the high-frequency (1183 Hz) chatter. In experiments

#13 and #19, it is developed developed straight after the guiding pads left the

starting bush. In experiment #11, it is observed at later stage of the process,

namely after depth 150 mm.

• Chatter around frequency 703 Hz is developed only at later stages of the process.

In all the 21 experiments, there is no transition from 703 Hz chatter to any other

chatter state. In this sense, 703 Hz chatter seems to be the most stable.

• Chatter around 1183 Hz is only observed as initial process chatter vibration. In

fact, right after leaving the starting bush the process is more likely to enter the

1183 Hz chatter state. Note that this kind of chatter is the less stable. Always, a

transition to 234 Hz or 703 Hz chatter occurs.

5.3.2 Mechanical Interpretation

Weinert et al. (2002) proposed a mechanical interpretation that explains the temporal

development of the process dynamics. The authors showed that the drilling depth depen-

dency of chatter is caused by slowly varying boundary conditions. In fact, they identified

the stiffness and damping effects through the contact between the stuffing box within

the oil supply device and the boring bar as the main influencing factors, see Figure 5.12.

For the drilling process, the stuffing box is used to prevent the lubrification oil to go

outside. A relative translatory motion between the boring bar and the stuffing box during

the drilling process is necessary. Therefore, the point of contact between the stuffing box

and boring bar changes during drilling. Moreover, the stuffing box exerts a constant

friction on the boring bar and therefore a drilling depth damping effect on the torsional

modes, 234 Hz, 703 Hz, and 1183 Hz. Note that in engineering applications a “distributed

parameter system”, such as the boring bar, is modelled as a collection of distinct harmonic

oscillators, each representing a vibrational mode of the entire apparatus. The frequency

and effective damping ratio of each mode are computed in laboratory tests. Generally,

only the lowest frequency modes are considered if the peaks in the power spectrum of

the vibratory response are sufficiently separated.

Weinert et al. (2005) showed that in the beginning of the drilling process the damping

of the third mode 1183 Hz due to the stuffing box is close to its minimum. Therefore,

the amplitudes of frequency 1183 Hz increases. This explains that chatter vibration with

1183 Hz occurs as initial phase chatter. In accordance with the increased damping of the
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Figure 5.12: Cross sectional illustration of the BTA deep-hole drilling principle showing

the location of the contact between stuffing box and boring bar

third mode transitions to the first mode 234 Hz occur further along the process. Towards

the end of the drilling process, the damping effect of the stuffing box on the second 703

Hz reaches a minimum. This explains that chatter vibration associated with frequency

703 Hz was only observed towards the end of the process.



Chapter 6

Time Varying Process Dynamics

A
s mentioned in section 5.3, the experimental investigation shows that during

the drilling process time varying dynamics can be observed while drilling with

identical machine parameters. It consists of alternating chatter and non-chatter

phases as well as sudden changes of frequency during chatter phases.

In this chapter, previous work to understand and to predict the temporal development

of the process is reviewed. Based on it, we propose a modelling approach in order to

setup the proposed rMEWMA monitoring procedure in Chapter 8. First, the van der

Pol equation is introduced in section 6.1. Then, a purely phenomenological model based

on the van der Pol equation that describes the transition from stable drilling to chatter

vibration in one frequency is reviewed in section 6.2. Finally, time series analysis and

modelling of the amplitude of the relevant frequencies of the process are proposed in

section 6.3.

6.1 Introduction to Dynamical Systems Theory: The van der Pol

Equation

The theory of dynamical systems is an area of mathematics used to describe the behav-

ior of complex systems by employing differential and difference equations. Ozaki (1980)

mentioned that nonlinear random vibrations are typically described by second-order dif-

ferential equations of the form

ẍ(t) + f
(

ẋ(t)
)

+ g
(

x(t)
)

= η(t),

where f
(

ẋ(t)
)

is called the damping force, g
(

x(t)
)

is called the restoring force of the

oscillation and η(t) is a random disturbance.
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In this work, we will focus on the limit cycle behavior which is typical for processes

of van der Pol equation type,

ẍ(t) + ε
(

a2 − x(t)2
)

ẋ(t) + ω2bx(t) = 0, (6.1)

where ε is a parameter that determines the degree of nonlinearity, a characterizes the

degree of nonlinear saturation, and f0 = ω/2π is the frequency of the free running

oscillator. This equation was described in connection with electrical circuit. It describes

oscillations generated by a triode valve under excitation. In this equation, the restoring

force is linear. However, the damping force is nonlinear and could vary between positive

and negative values. The solution of this equation becomes periodic as t → ∞. It is not

constrained to be sinusoidal in character. The parameter ε determines the properties of

the periodic solution. When ε > 0, the fixed point x = 0 is an attractor of equation (6.1),

i.e. the dynamic systems tends to approach this value with increasing time. When ε < 0,

the oscillations of the system are very stable for large ε. As ε decreases the stability

of the system decreases as well. In this case, the van der Pol oscillator represents a

physical system. For small oscillations, energy is fed into the system. Whereas for

large oscillations, energy is taken from the system. For such systems, large oscillations

are damped, due to the positive damping. While small oscillations are magnified due

to the negative damping. This is known as limit cycle behavior and implies that the

system has a “self-exciting” mechanism. That is, the process shows a stochastic behavior

whose oscillations are sustained not by external disturbances but by their own nonlinear

structure. In fact, assuming ε > 0

1. for x2 < a2, the system has negative damping force and it starts to oscillate and

diverge

2. for x2 > a2, the system has positive damping force and it starts to damp out.

The interplay of these two opposite effects, negative damping for small x and positive

damping for large x produces the steady oscillation of a certain amplitude, which is called

a limit cycle. Tong (1990), page 27, stated

“. . .Physically, limit cycles represent the (now dynamic) station-

ary state of sustained oscillations which does not depend on initial

conditions but depends exclusively on the parameters of the system,

that is they are intrinsic properties . . . ”

The van der Pol equation may also be extended to the stochastic van der Pol equation

given by

ẍ(t) + ε
(

a2 − x(t)2
)

ẋ(t) + ω2bx(t) = η(t),

where η(t) is an external random disturbance. That is, the system is perturbed by η(t)

which produces a perturbed limit cycle process.
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6.2 Modelling the Drilling Torque by a Stochastic Differential Equa-

tion

Weinert et al. (2002) used dynamical systems to model the process. At a first stage, they

are not interested in an exact and global modelling of all microscopic details of the drilling

process, but only in a local description of adequate accuracy to predict disturbances

sufficiently early and to provide insights into how to react in order to prevent them.

Therefore, they proposed a phenomenological approach with a special emphasis on the

temporal neighborhoods of instabilities or state transitions from stable drilling to chatter

vibration and back.

The authors proposed a phenomenological model based on the van der Pol equation

(6.1) to describe the transition from stable drilling to chatter vibration in one frequency.

In fact they noted that the different kinds of solutions of (6.1) qualitatively coincide with

the experimentally observed states in the drilling process. They proposed to model the

transition by Hopf bifurcation in the van der Pol equation. Therefore, the drilling torque

is described by

ẍ(t) + ε(t)
(

b2 − x(t)2
)

ẋ(t) + w2x(t) = W (t), (6.2)

where x(t) is the drilling torque, b and w are constants, ε(t) is a bifurcation parameter

and W (t) is a white noise process. Here w describes the behavior of a prominent fre-

quency component at 703 Hz, see section 5.3. Note that the authors included W (t) in

order to model all the uncontrollable parameters of a drilling experiment, as well as the

microscopic details of the drilling process. In this case, Hopf bifurcation occurs in the

system when a stable fixed point becomes unstable to form a limit cycle, as ε(t) varies

from positive to negative values. That is, the periodic solution of equation (6.2) changes

from a stable fixed point to limit cycles as the process changes from stable drilling to

chatter. For further details and motivation of the choice of this phenomenological model,

see Weinert et al. (2002).

Weinert et al. (2004) noted that the proposed model correctly accounts for a subset

of experimental results, especially when chatter occurs later during the process. This

is because in most of these experiments only the single frequency 703 Hz is dominant

in producing chatter. Naturally, the model fails to capture all aspects of the process

when this assumption becomes invalid, which is always the case for experiments which

start to chatter during the initial phase. These show a more varied and complex be-

havior since there are always at least two, but in most cases three dominant frequencies

that are involved in chatter. Phenomenologically, one observes alternations between dis-

tinct chatter states where different frequencies dominate singly or in combination with

their harmonics. Furthermore, the frequencies affect each other either by excitatory or

inhibitory interaction.



66 CHAPTER 6. TIME VARYING PROCESS DYNAMICS

6.3 Modelling the Amplitudes of Relevant Frequencies

In section 5.3, it is noted that the single frequencies of approximately 234, 703, and 1183

Hz dominate the process when chatter vibration is observed. Furthermore, it is known

that their amplitudes are not normally distributed, see Theis (2004). A natural idea is to

monitor the amplitudes of these frequencies using the proposed nonparametric rMEWMA

control charts, see Chapter 2, in order to detect the start of the transition from stable

drilling to chatter vibration. However, it is necessary to check if the amplitudes of these

frequencies are independent because rMEWMA control charts are developed to monitor

independent observations.

6.3.1 Time Series Analysis

In this section, time series analysis is used to check the independence assumption of

the amplitudes of the relevant frequencies. Data sets from experiments where chatter

vibration is observed at later stages in the process are used. These experiments are run

numbers #5, #7, #9, #11, #15, and #21 of the experimental design, see Figure 5.11.

For each data set, data collected before the occurrence of chatter vibration can be used to

check the presence of autocorrelation in the amplitude of the relevant frequencies during

stable drilling. Chatter vibration is developed and its effect is apparent on the bore

hole wall after depths 340 mm, 250 mm, 150 mm, 270 mm, and 300 mm in experiments

#7, #9, #11, #15, and #21 of the experimental design, respectively. Experiment #5

is the most stable experiment of the experimental design. In fact, chatter vibration is

developed after depth 400 mm and slight chatter marks are observed on the bore hole

wall at the end of the process.

The transition from stable drilling to chatter vibration is not sudden but a result of

long term process over minutes. In each experiment, it is expected to start before the

mentioned depths and during it the process may not be stable. Furthermore, the process

is not stable when the guiding pads of the BTA tool leave the starting bush, see section

5.1.2, and the BTA tool enters the bore hole completely. These two physical changes

occur approximately at depths 32 mm and 110 mm, respectively.

The independence assumption is checked using the Ljung-Box test in different time

windows of length 200 observations. Note that in the following analysis, the amplitude of

frequencies 234, 703, and 1183 Hz are considered in all experiments. The test statistics

and p-values are reported in Tables C.1 to C.6 in Appendix C.

Table C.1 in Appendix C shows that the amplitudes of the three frequencies in exper-

iment #5 are almost independent before the occurrence of chatter vibration i.e., depth

≤ 400 mm. This can be explained by the fact that experiment 5 is the most stable ex-

periment in the experimental design. For the experiments #7, #9, #11, #15, and #21,

the total number of time windows before the occurrence of chatter vibration is equal to



6.3. MODELLING THE AMPLITUDES OF RELEVANT FREQUENCIES 67

81. The null hypothesis of independence of the amplitudes of the three frequencies is

rejected 47 times, see Tables C.2 to C.6 in Appendix C. In some time windows, the auto-

correlation can be explained by the instabilities of the process caused by the mentioned

physical changes (i.e., guiding pads of the BTA tool leave the starting bush, the BTA

tool enters the bore hole completely and the start of the transition from stable drilling

to chatter vibration). However, the autocorrelation seems to be an inherent part of the

process in the others time windows. In this case, it cannot be ignored and need to be

modelled.

The observations are moderately positively autocorrelated. This kind of autocorre-

lation should be distinguished from the autocorrelation in the amplitudes of the three

frequencies during chatter vibration. After the occurrence of chatter vibration, the total

number of time windows for the three frequencies is 75. The null hypothesis of inde-

pendence of the amplitudes of the three frequencies is rejected 58 times. In this case,

the amplitudes are highly positively autocorrelated. The presence of this high autocor-

relation indicates the presence of some variability which should be removed rather than

modelled. Furthermore, it can provide the basis for active process control as a tool for

minimizing short term variability.

In conclusion, we assume that the amplitudes of the relevant frequencies might be

autocorrelated during stable drilling. This autocorrelation is not explained by the men-

tioned physical changes of the process and seems to be an inherent part of the process.

Therefore, it cannot be ignored and need to be modelled.

6.3.2 Autoregressive Approximation

In section 1.2, it is mentioned that residual control charts are adequate SPC procedures

when the data are autocorrelated. In this case, a model of the autocorrelative structure

of the data is needed. This can be achieved by fitting an appropriate time series model

to the observations.

In this section, a time series modelling approach of the amplitudes of the relevant

frequencies of the process is proposed in order to setup the monitoring procedure in

Chapter 8. Theis (2004) described the development of the amplitudes of these frequencies

using a logistic function. He showed that his approximation is directly connected to

the phenomenological model given by equation (6.2). In fact, he considered x(t) as a

harmonic process

x(t) = R(t)cos(2πf + φ),

where f ∈ [0, π/2] and φ is the corresponding phase. He showed that

2
dR(t)

dt
+ ε(t)R(t)

(

b2 −
R(t)2

2

)

=
W (t)

w
, (6.3)
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is the amplitude-equation for the differential equation in (6.2) if there is only one fre-

quency present in the process. Assuming ∆t is sufficiently small and by discretization of

equation (6.3), the amplitudes of the relevant frequencies may be described by

Rt = φ1,tRt−1 + φ2,tR
3
t−1 + εt, (6.4)

where φ1,t =
(

1 − b2ε(t)/2
)

and φ2,t = ε(t)/4 are time varying parameters and εt is

normally distributed with mean 0 and variance σ2
ε . As discussed in sections 6.1 and 6.2,

the bifurcation parameter ε(t) should be small when the process is stable and large when

there is chatter. That is, the nonlinear term φ2,tR
3
t−1 in equation (6.4) only becomes

important when there is chatter. Therefore, we propose to approximate the amplitudes

of the relevant frequencies by the linear autoregressive part AR(1) of equation (6.4)

Rt ≈ φ1,tRt−1 + εt.

The empirical evidence of this approximation is studied in section 6.3.3 using real data.

To estimate the AR(1) model parameters, a moving window of length m is used.

Moving window techniques are useful to estimate model parameters which are time vary-

ing assuming stationarity only locally. The window moves in each period covering m

observations Rt−m+1, Rt−m+2, . . . , Rt. In each window, parameters φ1, β and σε of the

linear regression model

Rt = βt + φ1,tRt−1 + εt. (6.5)

are estimated and used to calculate the residuals, given by

et = Rt − φ̂1,t−kRt−1 − β̂t−k, (6.6)

where φ̂1,t−k and β̂t−k are estimates of the regression parameters φ1 and β at time t− k,

k ≥ 1. Note that β is included because there is a general shift in the amplitudes after

depth 32 mm due to a change in the physical conditions of the process, see section 5.1.2.

The use of φ̂1,t−k and β̂t−k in equation (6.6) is motivated by the fact that using the esti-

mated parameters at time t to calculate the residuals may rather serve to mask changes

than to detect them, see section 8.4. Note that in the following work, the residuals are

calculated using k = 1. However, as k increases, the residuals will unavoidably be larger.

6.3.3 Empirical Results: Diagnostic Checks of the Residuals

In this section, the empirical evidence of time series modelling of the amplitudes of

the relevant frequencies during stable drilling is studied using the amplitudes of the

dominating frequencies obtained from experiments #5, #7, #9, #11, #15, and #21 of

the experimental design. That is frequency 703 Hz in experiments #5, #7, #9, #15,

and #21 and frequency 234 Hz in experiment #11, see Figure B.1 in Appendix B. At

time t ≥ 100, the 100 most recent amplitudes of each frequency are used to estimate
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the parameters of the AR(1) model given by equation (6.5). The choice of m = 100 is

motivated in section 8.3.3. The first 100 residuals are calculated using equation

et = Rt − φ̂1,100Rt−1 − β̂100,

where φ̂1,100 and β̂100 are estimates of the regression parameters φ1 and β at time 100.

In the previous section it is indicated that the amplitudes of the relevant frequencies

given by equation (6.4) are approximated by an AR(1) model within each time window.

That is, the nonlinear term φ2,tR
3
t−1 in equation (6.4) is not important before chatter.

This assumption is checked using the Teräsvirta et al. (1993) statistical test for nonlinear

dependence. This test is used for nonlinear residual structure, after linear structure has

been removed by fitting the AR(1) model. The idea behind this test is by fitting the

linear AR(1) model to the data, the inherent nonlinear structure has been swept into the

residuals. The same time windows of length 200 observations as in section 6.3.1 are used

to test for neglected nonlinearity for the regression (6.5).

Tables C.7 to C.12 in Appendix C show the calculated test statistics and p-values for

the residuals of the dominating frequency in each experiment.

Before the occurrence of chatter vibration, the total number of time windows of the

residuals of the considered frequencies is equal to 37. Tables C.7 to C.12 in Appendix

C show that the null hypothesis of linearity is rejected 11 times. 4 rejections can be

explained by the change in the dynamics of the process when the guiding pads of the

BTA tool leave the starting bush, see Tables C.9, C.10, C.11, and C.12. 5 rejections

occur before the occurrence of chatter vibration, see Tables C.7, C.9, C.10, C.11, and

C.12. They are explained by the start of the transition from stable drilling to chatter

vibration.

Moreover, the independence and normality assumptions are checked. In fact, if the

AR(1) model fits the data well, the residuals will be “approximately” independent. As

mentioned, this is a basic assumption for the application of the proposed rMEWMA

control charts. The normality assumption is important only for control charts that are

designed based on the normal distribution. Indeed, the statistical properties of these

charts are exact only if this assumption is satisfied, see section 1.2.

The Ljung-Box and Shapiro-Wilks tests are used to test the independence and nor-

mality assumptions of the residuals, respectively. The same time windows of length 200

observations used for the Teräsvirta-Lin-Granger nonlinearity test are considered. The

results are reported in tables C.7 to C.12 in Appendix C for the residuals of the dom-

inating frequencies in each experiment. The results show that the null hypothesis of

independence of the residuals is rejected only 6 times before the occurrence of chatter

vibration. As mentioned, the total number of time windows is 36. 5 rejections can be

explained by the change in the dynamics of the process when the guiding pads leave the

starting bush, see Tables C.8, C.9, C.11, and C.12 in Appendix C. The hypothesis of

normality is rejected in all time windows.
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In conclusion, during stable drilling the amplitudes of the relevant frequencies of the

process can be approximated by the AR(1) model given by equation (6.5). The residuals

are independent. However, they are not normally distributed.

6.4 Conclusion

In this chapter, previous work and results of the project are reviewed. The phenomeno-

logical model used to describe the transition from stable drilling to chatter vibration is

reviewed. Time series analysis of the amplitudes of the relevant frequencies showed that

they might be autocorrelated during stable drilling. Therefore, we proposed a time series

model in order to remove this autocorrelation. Its empirical evidence is studied. This

model is used in chapter 8 in order to setup the monitoring strategy.



Chapter 7

Nonlinear Time Series Modelling of the

the Drilling Process

A
mplitude-dependent exponential autoregressive time series models are intro-

duced by Ozaki and Oda (1978) and Ozaki (1980) in an attempt to reproduce

certain features of nonlinear random vibration theory. They are able to reveal

certain types of nonlinear dynamics such as fixed points and limit cycles.

In this chapter, these models are used to model the drilling process in order to char-

acterize its time varying dynamics. Furthermore, this modelling approach provides an

on-line monitoring strategy using control charts. In section 7.2, the properties of the

nonlinear exponential autoregressive time series models are reviewed. The estimation of

their parameters is discussed in section 7.3. These models are used to model the drilling

torque in section 7.4. Finally, exponential autoregressive time series models based control

charts are proposed in section 7.5.

7.1 Basic Definitions

In this section, we give an explicit definition of fixed or singular points and limit cycles

of a general discrete time difference equation,

xt = f(xt−1, . . . , xt−p). (7.1)

These definitions are given by Ozaki (1985).

Definition 7.1.1 Fixed or singular point

A fixed point of equation (7.1) is a point ξ, for which every trajectory of equation (7.1)

beginning sufficiently near ξ approaches it either for t → ∞ or t → −∞. If it approaches

71
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ξ for t → ∞ we call ξ a stable fixed point, and if it approaches ξ for t → −∞ we call ξ

an unstable fixed point.

Definition 7.1.2 Limit cycle

A limit cycle of equation (7.1) is an “isolated” and “closed” trajectory xt+1, xt+2, . . . ,

xt+q, where q is a positive integer.

“Closed” means that if the initial values (x1, . . . , xp) belong to the limit cycle, then

(x1+kq , . . . , xp+kq) = (x1, . . . , xp) for any integer k. “Isolated” means that every tra-

jectory beginning sufficiently near the limit cycle approaches it either for t → ∞ or

t → −∞. If it approaches the limit cycle for t → ∞ we call it a stable limit cycle, and if

it approaches the limit cycle for t → −∞ we call ξ an unstable limit cycle. The smallest

integer q which satisfies definition 7.1.2 is called the period of the limit cycle of equation

(7.1). Ozaki (1985) noted that the fixed point can be considered to be a limit cycle of

period 1 but he distinguishes it because it has a significantly different physical meaning.

7.2 Amplitude-dependent Exponential Autoregressive Time Series

Models

Amplitude-dependent exponential autoregressive (ExpAr) time series models have simple

structure similar to the autoregressive (AR) time series models except for the state-

dependent coefficients. An ExpAr time series model is given by

xt =
(

φ1 + π1e
−γx2

t−1

)

xt−1 + · · · +
(

φp + πpe
−γx2

t−1

)

xt−p + et, (7.2)

where {et} is a sequence of i.i.d. random variables, usually with zero mean and finite

variance. γ, φi, πi, i = 1, . . . , p, are constants, p is the model order. The nonlinearity

of the process comes from the exponential form. This function renders the dynamics

of the series locally linear but globally nonlinear. The autoregressive coefficients of the

model are amplitude dependent. They depend on xt−1. They change from φi + πi to

φi as |xt−1| changes from zero to +∞. That is, whenever |xt−1| becomes large, the

coefficients (φi + πie
−γx2

t−1) −→ φi for i = 1, 2, . . . , p. Whenever |xt−1| becomes small,

the coefficients (φi + πie
−γx2

t−1) −→ φi + πi for i = 1, 2, . . . , p. The nonlinear coefficient

γ acts as a scaling factor. It modifies the effect of xt−1 in the term e−γx2
t−1.

Haggan and Ozaki (1981) showed that the ExpAr time series model exhibits a limit

cycle behavior under the following conditions

i) All the roots of the characteristic equation

λp − φ1λ
p−1 − φ2λ

p−2 − · · · − φp = 0.

lie inside the unit circle. Therefore xt starts to damp out when | xt−1 | becomes

too large.
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Figure 7.1: Limit cycle obtained for the model xt = (1.95 + 0.23e−x2
t−1 )xt−1 − (0.96 +

0.24e−x2
t−1 )xt−2 + et

ii) Some roots of the characteristic equation

λp − (φ1 + π1)λ
p−1 − (φ2 + π2)λ

p−2 − · · · − (φp + πp) = 0.

lie outside the unit circle. Therefore xt starts to oscillate and diverge for small

| xt−1 |.

The results of these two effects are expected to produce a similar sort of self excited

oscillation as the van der Pol equation, see section 6.1. Figure 7.1 shows the limit cycles

obtained for the model

xt =
(

1.95 + 0.23e−x2
t−1

)

xt−1 −
(

0.96 + 0.24e−x2
t−1

)

xt−2 + et.

where the coefficients satisfy the above conditions (i) and (ii).

The above two conditions are necessary for the existence of a limit cycle but not

sufficient. A sufficient condition is

iii)
(

1 −

p
∑

i=1

φi

)

/

p
∑

i=1

πi > 1 or
(

1 −

p
∑

i=1

φi

)

/

p
∑

i=1

πi < 0.

The condition (iii) guarantees that a fixed point does not exist for the ExpAr time series

model. For example, the model

xt =
(

1.80 + 4.00e−x2
t−1

)

xt−1 −
(

0.97 + 0.10e−x2
t−1

)

xt−2.
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Figure 7.2: Singular point obtained for the model xt = (1.80+4.00e−x2
t−1 )xt−1−(0.97+

0.10e−x2
t−1 )xt−2

satisfies conditions (i) and (ii) but the trajectory of xt converges to a singular or fixed

point ξ, see Figure 7.2. It holds that

ξ =
(

1.8 + 4e−ξ2
)

ξ −
(

0.97 + 0.1e−ξ2
)

ξ.

In this case, the singular point exists because the coefficients does not satisfy condition

(iii). That is

0 <
(

1 −
2
∑

i=1

φi

)

/
2
∑

i=1

πi < 1.

Some ExpAr time series models without satisfying condition (iii) still have a limit cycle.

Ozaki (1982) noted that this is because the fixed points themselves of the model are

unstable. The following condition is used to check whether the fixed points are stable or

not whenever the condition (iii) is unsatisfied.

iv) The fixed point of an ExpAr time series model, if it exists, is stable if and only if

the roots of the equation

λp − β1λ
p−1 − β2λ

p−2 − · · · − βp = 0,
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lie inside the unit circle, where the βi’s are given by

β1 =

π1 + φ1

p
∑

j=1

πj − π1

p
∑

j=1

φj

p
∑

j=1

πj

+ 2



1 −

p
∑

j=1

φj



 log













1 −
p
∑

j=1

φj

p
∑

j=1

πj













,

βi =

πi + φi

p
∑

j=1

πj − πi

p
∑

j=1

φj

p
∑

j=1

πj

, ( i = 2, 3, . . . , p).

7.3 Estimation of the ExpAr Models

7.3.1 Maximum Likelihood Estimate

The maximum likelihood estimate γ̂ is obtained by minimizing the variance of the pre-

diction errors

J(θ) = σ2
e =

1

N − p

N
∑

j=p+1



xt −

p
∑

i=1

(φj + πje
−γx2

t−1)xt−i





2

,

where θ = (φ1, . . . , φp, π1, . . . , πp, γ), see Shi et al. (2001), and N is the total number

of observations. Such estimation is a commonly time consuming nonlinear optimization

procedure. Moreover, it can be proved that J(θ) for the nonlinear coefficient γ is not

convex and multiple local optima may exist. Therefore, there is no guarantee that a

derivative-based method will converge to the global optimum.

To overcome this problem, Haggan and Ozaki (1981), Shi and Aoyama (1997) and

Baragona et al. (2002) proposed alternative estimation procedures. Haggan and Ozaki

(1981) proposed an approximate straightforward estimation method. First, a pre-specified

interval for the γ value is fixed. This interval is divided in sub-intervals, so that a grid of

candidate γ values is built. Then, the parameters {φi, πi}, i = 1, 2, . . . , p, are estimated

by linear least squares problem on centered series. The order p of the fitted model is

selected by use of the Akaike information criterion (AIC), given by

AIC(p) = (N − p)logσ̂2
e + 2(2p + 1),

where p is the order of the model to be considered and σ̂2
e is the least squares estimate

of the residual variance of the model.

Shi and Aoyama (1997) and Baragona et al. (2002) used a genetic algorithm to es-

timate the parameters of the model. The genetic algorithm is a class of global opti-

mization procedures distinguished from other optimization techniques by using concepts

from population genetics to guide the search. Its basic principles are crossover, mutation
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Figure 7.3: Illustration of the “golf-hole-like” problem

and selection. However, for large values of {xt}, the objective function J(θ) may have

a “golf-hole-like” problem. Genetic algorithms are not applicable to this kind of hard

problems. For example, the fluctuations in a far-infrared laser data, see example 4 of Shi

and Aoyama (1997), are considered with a time lag p = 3. Figure 7.3 shows that the

deep minimum of J(θ) being of “golf-hole-like” character. The genetic algorithm used

by the authors failed to find this global optima.

7.3.2 Real-time Estimate

The estimation procedures proposed by Haggan and Ozaki (1981), Shi and Aoyama

(1997) and Baragona et al. (2002) involve computation difficulties and are not suitable for

use in manufacturing systems (real-time), where CPU-time and memory are important.

The important task of a real-time estimation procedure is the fast determination of the

nonlinear coefficient γ. The estimation of the other coefficients {φi, πi}, i = 1, 2, . . . , p,

in the model is only a linear least squares problem whenever γ is determined. Shi et al.

(1998) noted that in terms of the mechanism of the ExpAr time series model to reveal

the limit cycle or cyclical behavior, the scaling parameter γ takes the role of adjusting

the instantaneous roots of the model. Whenever the state xt−1 becomes far away from

the equilibrium point, {φi + πie
−γx2

t−1} terms in the ExpAr time series model should

approach φi. That is, the nonlinear term e−γx2
t−1 should approach zero, so that the

resulting model has all roots less than unit to force the next state xt not to diverge

further. From this viewpoint, Shi et al. (2001) proposed a heuristic determination of the

nonlinear coefficient γ from the original data set, and defined

γ0 = −
logδ

max x2
i

, (7.3)
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where δ is a small number (i.e., δ = 0.0001), 1 ≤ i < N and N is the length of the data

series. Fixing γ = γ0, the model coefficients can insist on changing toward constants φi

even if the observation moves far away from the equilibrium, since exp{max x2
i } = δ,

i.e., approximately zero. Moreover, fixing γ = γ0, the model coefficients {φt +πte
−γx2

t−1}

can always approach φi + πi when the state xt−1 moves to zero. So the instantaneous

model may have some roots outside the unit circle to force the next state to increase.

Thus, based on fixing γ0 = γ, though it is not optimal, the ExpAr time series model is

still assured to reveal the limit cycle behavior of the underlying time series.

7.4 Modelling the Drilling Torque Using ExpAr Time Series Models:

Experimental Results

In Chapter 6, it is mentioned that a model based on the van der Pol equation is used

to describe the transition from stable drilling to chatter vibration. It is used due to the

nonlinear time varying dynamics of the process, see section 6.2. In the previous section,

it is shown that the ExpAr time series models are able to reveal complex nonlinear

dynamics such as singular point and limit cycle. Therefore, we propose to use the ExpAr

time series models to describe the drilling torque and to characterize this time varying

dynamics.

The ExpAr time series model is used to fit the drilling torque moments in experiment

#21 of the experimental design. The data are recorded with a sampling rate of S = 20000

Hz and consist of 6807552 observations, see Figure 5.9a. For the problem of on-line

monitoring of the drilling process, a common way is to segment on-line measurements

of the drilling torque. Then, it becomes very important to achieve fast decision-making

about the dynamics through inference and analysis of the estimated time ExpAr time

series model in each segment. Therefore, the data are divided into segments of length

4096, which is used by Theis (2004) to calculate the periodograms. In each segment,

the ExpAr(p) time series model is fitted to centered data. The parameters are estimated

using the real-time estimation procedure with δ = 0.0001 in equation (7.3).

The choice of a proper model order p is not an easy task. Figure 7.4 shows the

AIC criterion for two time series segments before and after chatter. It is clear that the

AIC criterion is decreasing as p increases. This may be explained by the autocorrelation

function. Figure 7.5 shows the autocorrelation function for the two time series segments.

It shows that for the first segment the autocorrelation decreases as p increases. For the

second segment, the autocorrelation shows the existence of a periodic behavior. The

selection of a model without a big enough lag will unavoidably result in larger residuals.

We think that the selection of p = 40 is a reasonable choice. For statistical interpretation,

a model with lag 40 (i.e., 81 parameters) is often out of the imagination of an analyst. In

practice, it is easy to justify the use of a model with 81 parameters for 4096 observations.
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(a) (b)

Figure 7.4: AIC criterion of two time series segments (a) before chatter (b) after chatter

Moreover, the nature of collected data in this process, “data-rich” environment, justifies

the use of such models.

7.4.1 Diagnostic Checks

For model diagnostic, the residuals are plotted against hole depth in (mm) in Figure 7.6.

Note that there is a slight increase in the variance of the residuals after depth 300 mm.

That is during chatter vibration. This increase is clear in Figure 7.7. This figure shows

the least squares estimate of the residual variance, σ̂2
e , of the model against hole depth in

mm. We also check whether the errors are probably centered, symmetric and Gaussian.

Figure 7.8 shows the histograms of the errors over two segments during stable drilling and

chatter. They have a symmetric shape around zero and Gaussian appearance. However,

the null hypothesis of normality of the residuals is rejected in all time segments using the

Kolmogorov Smirnov test. This is explained by the presence of outliers. As a final check,

the fitted model is simulated using the estimated coefficients and residual variance. The

first p = 40 values of the drilling torque in each segment are used as initial values. In fact,

a model which cannot reproduce a similar series by simulation is certainly not interesting

to statisticians and engineers. The result shows that the simulated values behave similar

to the observed data. In conclusion, the estimated ExpAr(40) model provide a good fit

to the drilling torque measurements.

7.4.2 Description of the Time Varying Dynamics

An important question is whether the ExpAr(40) time series model describes the nonlin-

ear time varying dynamics of the process, see section 6.2. In section 7.2, we mentioned
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(a) (b)

Figure 7.5: Autocorrelation function of two time series segments (a) before chatter (b)

after chatter

Figure 7.6: Plot of the residuals
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Figure 7.7: The least squares estimate of the residual variance, σ̂2
e

(a) (b)

Figure 7.8: Histograms of the predicted errors (a) before chatter (b) after chatter
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that the ExpAr time series model exhibit the limit cycle behavior under some conditions.

These conditions are checked in each data segment. Figure 7.9 shows the results. It is

clear that these conditions are satisfied during chatter vibration (depth ≥ 300 mm). This

result is obvious for engineers. It is used by Weinert et al. (2002) in order to propose the

phenomenological model that describes the transition from stable drilling to chatter, see

section 6.2. In fact, it is known that machine tool chatter is a nonlinear oscillation of the

limit cycle type, which can be regarded as an intrinsic property independent of process

working conditions and measuring noise, see Tobias (1965).

In conclusion, it is shown that using the ExpAr(40) time series model, an on-line

procedure can be used to answer questions about the nonlinear time varying dynamics

of the process. Its real-time implementation can be guaranteed. Furthermore, it can

be used to decide whether the process is stable or not. Shi et al. (1998) proposed the

limit cycle behavior as criterion of chatter occurrence. Shi et al. (2001) used the limit

cycle behavior for monitoring the dynamics evolution of boiling water reactor (BWR)

oscillation.

7.5 ExpAr(p) Time Series Models Based Control Charts

In this section, we propose ExpAr times series models based control charts. Usually,

time series based control charts are used to monitor the residuals. That is, a time

series model is used to fit the data and to calculate the residuals. However, the drilling

process is characterized by the large amount of data and therefore residuals. For example,

more than 4000000 residuals are available in experiment #21 before the occurrence of

chatter vibration. This causes the inapplicability of monitoring the residuals. Therefore,

we propose to monitor the parameters of the ExpAr(p) time series model. The two

parameters γ̂ and σ̂2
e might be monitored. For the monitoring procedure, the drilling

torque moments are divided into segments with a given length N0. In each segment,

the ExpAr(p) time series model is fitted to the centerd data and parameters γ and σ2
e

are estimated. Note that in the following, the index t refers to the segment number t of

length N0. For the monitoring procedure, we propose the rank based univariate EWMA

(rUEWMA) control chart proposed by Hackl and Ledolter (1992).

Monitoring {γ̂}

At time t ≥ m, the sequential rank of γ̂t among RS ={γ̂t−m+1, . . . , γ̂t} is given by

Q∗
t = 1 +

t
∑

i=t−m+1

I
(

γ̂t > γ̂i

)

.
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1: No limit cycle (necessary condition 1)

2: No limit cycle (necessary condition 2)

3: No limit cycle (stable singular point)

4: Limit cycle (unstable singular point)

5: Limit cycle

Figure 7.9: Description of the time varying dynamics of the drilling process (experiment #21)
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The standardized sequential rank Qm
t is computed using equation (2.4). The control

statistic Tt is computed as follows

Tt = min{B1, (1 − λ1)Tt−1 + λ1Q
m
t },

t = 1, 2, . . . , where B1 is an upper reflection boundary, T0 is a starting value, usually set

equal to zero, and 0 < λ1 ≤ 1. The process is considered in-control as long as Tt ≥ h1,

where h1 < 0 is a lower control limit. Note that, the lower-sided EWMA is considered

because the statistic Qm
t is “higher the better”. Indeed, an increase in γ̂t means a process

improvement.

Monitoring {σ̂2
e}

Similarly, the sequential rank of of σ̂2
e,t among RS = {σ̂2

e,t−m+1, . . . , σ̂2
e,t} is given by

Q∗
t = 1 +

t
∑

i=t−m+1

I
(

σ̂2
e,t > σ̂2

e,i

)

.

The standardized sequential rank Qm
t is computed using equation (2.4). In this case, the

EWMA recursion is given by

Tt = max{B2, (1 − λ2)Tt−1 + λ2Q
m
t },

t = 1, 2, . . . , where B2 is a lower reflection boundary, T0 is a starting value and 0 < λ2 ≤

1. The process is considered in-control as long as Tt ≤ h2, where h2 > 0 is an upper

control limit. In this case, the upper-sided EWMA is considered because the statistic

Sm
t is “lower the better”. Indeed, a decrease in σ̂2

e means a process improvement.

7.6 Conclusion

The main objective of this chapter is to investigate whether ExpAr time series models can

be used to model the drilling process and to setup an on-line monitoring strategy. The

results show that they provide an explanation of the nonlinear time varying dynamics

of the process namely fixed points and limit cycles. Finally, ExpAr time series based

control charts are proposed. They are used to monitor the drilling process using several

data sets in Chapter 8.
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Chapter 8

Experimental Results

I
n this chapter, the proposed rMEWMA and ExpAr(p) time series based control

charts are used to monitor the drilling process using several data sets of run numbers

#5, #7, #9, #11, #15, and #21 of the experimental design. In these experiments

chatter vibration is observed at later stages in the process. Thus, data collected before

its occurrence can be used to evaluate the performance of the control charts during stable

drilling.

For the drilling process, a successful monitoring procedure would detect all changes

in the physical conditions of the process and especially the start of the transition from

stable drilling to chatter. It should produce few false alarms during stable drilling in

order to avoid unnecessary process adjustments. Moreover, it should be easy to visualize

and interpret for the process operator.

8.1 Experimental Settings

Table 8.1 gives the cutting parameters, sampling rates and series lengths of the drilling

torque and the amplitudes of the relevant frequencies in each experiment. The drilling

torque is recorded with a sampling rate S = 20000 Hz. They are divided into segments

of length N = 4096 observations to calculate the periodograms. The use of different

cutting speeds vc and feeds f leads to different sampling rates of the amplitudes of the

relevant frequencies and therefore series lengths. The boring tool moves with a velocity

v = vcf/(2πr), where r is the radius of the workpiece. An amplitude Rt of each frequency

is obtained at vN/S mm of drilling.

Figure 5.11 shows the occurrence of chatter vibration in each experiment. It is de-

termined by the inspection of chatter marks on the bore hole wall of the workpiece. It

is observed after hole depths 400, 340, 250, 150, 270, and 300 mm in experiments #5,

85
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Table 8.1: Experimental settings

Cutting Parameters Sampling Rate Series Length

f vc V̇oil Drilling R Drilling R
Experiment Torque Torque

Number (mm) (m/min) (L/min) (Hz) (mm)

#5 0.120 90 300 20000 19.456 10−2 10506240 2565

#7 0.231 69 371 20000 28.672 10−2 7131136 1741

#9 0.139 69 371 20000 17.408 10−2 11747328 2868

#11 0.185 60 300 20000 20.139 10−2 10178560 2485

#15 0.231 69 229 20000 28.672 10−2 7266304 1774

#21 0.185 90 300 20000 30.037 10−2 6807552 1662
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#7, #9, #11, #15, and #21, respectively. Chatter is dominated by frequency 703 Hz in

experiments #5, #7,# 9, #15, and #21 and frequency 234 Hz in experiment #11, see

Figure B.1 in Appendix B. Data obtained after the occurrence of chatter are not used.

Indeed, the objective of the use of control charts is to detect the start of the transition

from stable drilling to chatter vibration in order to quickly adjust the process and not

to signals when chatter is observed.

8.2 Transition from Stable Drilling to Chatter Vibration

The start of the transition from stable drilling to chatter vibration is not sudden as it

may be expected from Figure B.1 in Appendix B. It is increasing with time, see Weinert

et al. (2002). Its identification is very important for the investigation of the empirical

performance of the different control charts. A successful monitoring procedure would

quickly detect this change in the dynamics of the process and not only signals when

chatter is observed. This allows the process engineers to quickly adjust the process and

avoid the occurrence of chatter vibration.

The mechanical interpretation proposed by Weinert et al. (2002), see section 5.3.2,

is used to identify the start of the transition from stable drilling to chatter vibration.

First, experiments #5, #7,# 9, #15, and #21 are investigated. As mentioned, chatter

vibration is dominated by frequency 703 Hz in these frequencies. Figures 8.1 to 8.6

show the means of the amplitudes of frequencies 234, 703, and 1183 Hz within segments

of length 5 mm. They show that in all experiments frequency 1183 Hz dominate the

process in the beginning of drilling. As noted in section 5.3.2, the damping effect due

to the stuffing box of torsional mode 1183 Hz is close to its minimum. After that, the

amplitudes of frequency 703 Hz increase and dominate the process. This is explained

by a change in the boundary conditions of the process. The damping effect changes

from torsional mode 1183 Hz to 703 Hz. The transition from stable drilling to chatter

vibration starts when a fast increase in the amplitudes of frequencies 703 Hz is observed.

Finally, the process is subject to chatter vibration when the damping effect of torsional

mode 703 Hz reaches a critical value. Therefore, the amplitudes of frequency 703 Hz

explode and chatter is observed, see Figure B.1 in Appendix B.

Moreover, there are two known physical changes in the process that should be con-

sidered. First, it is known that the guiding pads of the BTA tool leave the starting bush

approximately at depth 32 mm, see section 5.1.2. From previous experiments, the process

has been observed to either stay stable or start with chatter vibration, see Weinert et al.

(2002). This change in the physical condition of the process induces a sudden increase

in the amplitudes of the relevant frequencies. In fact, before that depth, the vibrations

of the tool are strongly damped by the starting bush supporting the guiding pads and

the amplitudes are low. The fact that the guiding pads leave the starting bush induces
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a sudden change in the dynamics of the process, caused by the tool being freed. This

explains that there is always an increase in all amplitudes of the relevant frequencies, see

Figure B.1 in Appendix B. Secondly, it is known that depth 110 mm is approximately

the position where the tool enters the bore hole completely. Theis (2004) noted that this

might lead to changes in the dynamics of the process because the boring bar is slightly

thinner than the tool and therefore the pressures in the hole may change.

8.3 Monitoring Strategies

8.3.1 Residual rMEWMA Control Charts

In chapter 6, it is shown that the amplitudes Rt of frequencies 234, 703 and 1183 Hz

might be autocorrelated during stable drilling. This autocorrelation is a normal and

unremovable part of the process. Then, monitoring Rt = (Rt,234, Rt,703, Rt,1183)
′ will

lead to an ineffective strategy that produces out-of-control signals because of the presence

of autocorrelation. In this case, residual control charts are adequate SPC procedures

suggested by several authors, see section 1.2. As mentioned, this procedure requires a

model of the autocorrelative structure of the data which can be achieved by fitting an

appropriate time series model to the observations. For this reason, the autoregressive

approximation of the amplitudes of the relevant frequencies proposed in section 6.3.2 is

used. The m > 1 most recent observations Rt−m+1, . . . , Rt of each frequency are used

to estimate the parameters of the AR(1) model given by equation (6.5). The residuals

are calculated using equation (6.6). Note that k = 5 is used in equation (6.6) in order

to avoid the masking problem, see section 8.4. The rMEWMA control charts are used

to monitor the residual vectors et = (et,234, et,703, et,1183)
′, t ≥ m. In the following, we

will omit the word residual from residual rMEWMA control charts.

In this chapter, only Mahalanobis rMEWMA control charts are considered because

the calculation of simplicial depth in R
3 is extremely time consuming, see section 2.1.

8.3.2 ExpAr(40) Time Series Based rUEWMA Control Charts

The drilling torque observations are divided into segments of length 4096. In each seg-

ment, the ExpAr(40) time series model is fitted to the centered data. The nonlinear

coefficient γ of the model is estimated using the heuristic approach described in section

7.3.2 with δ = 0.0001 in equation (7.3). The other parameters {φi, πi}, i= 1, 2, . . . ,

40, of the model are estimated using the least squares method. The resulting estimated

parameters γ̂ and σ̂2
e of all segments are monitored using the rUEWMA control charts,

see section 7.5. Note that in the following rUEWMAγ̂ and rUEWMAσ̂ refer to the

ExpAr(40) time series based rUEWMA control charts used to monitor {γ̂t} and {σ̂2
e,t},

t = 1, 2, . . . , respectively.
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Table 8.2: Adjusted control limits of the rMEWMA and UMEWMA control charts

rMEWMA rUEWMAγ̂ rUEWMAσ̂

λ λ1 λ2

m 0.10 0.30 0.50 0.10 0.30 0.50 0.10 0.30 0.50

Control
limit −0.318 −0.593 −0.756 −0.318 −0.593 −0.756 0.318 0.593 0.756

Reflection
boundary 0.318 0.593 0.756 0.318 0.593 0.756 −0.318 −0.593 −0.756

8.3.3 Choice of the Control Charts Parameters

For the different control charts, reference samples of size m = 100 observations are used

because the monitoring procedures should start before depth 32 mm. As noted chatter

vibration may be observed after that depth. Furthermore, large reference samples can

not be used due to the time varying dynamics of the process. In all experiments, 100

amplitudes are obtained at 19.456 - 30.037 mm of drilling. Note that the statistical

performance of rMEWMA and rUEWMA control charts may be poor when reference

samples of size 100 observations are used. That is, the control charts may signal fre-

quently with no assignable causes presents and do not quickly detect changes in the

process, see section 3.1.

The rMEWMA and rUEWMA control charts with smoothing parameters equal to

0.1, 0.3 and 0.5 are considered. Their control limits and reflection boundaries are chosen

so that they all have an in-control ARL equal to 370. This choice should avoid excessive

false alarm signals. The control limits are adjusted using simulation. As noted in section

3.1, the estimation effect should not be neglected when reference samples of size m =

100 observations are used. Table 8.2 gives the adjusted control limits and reflection

boundaries of the different control charts.

8.3.4 Experimental Results

Tables 8.3 to 8.7 show the out-of-control signals produced by the different control charts

in all experiments. All control charts produced out-of-control signals at 32 ≤ depth ≤

50 mm. That is, they detect the change in the dynamics of the process when the guiding

pads leave the starting bush. Most control charts did not signal at 100 ≤ depth ≤ 125

mm. That is, when the BTA tool enters the bore hole completely. Figures 8.1 to 8.6.

show that there is a decrease in the amplitudes of frequency 1183 Hz after depth 110

mm in all experiments. This explains that most control charts fail to detect the change

in the dynamics of the process when the BTA tool enters the bore hole completely.
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Table 8.3: Out-of-control signals of the different control charts (experiment #5)

Hole Depth Residual rUEWMA rUEWMA
(mm) rMEWMA γ̂ σ̂2

e

λ λ1 λ2

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

≤32 0 0 1 0 0 0 0 0 0
32-50 43 15 10 21 4 2 0 7 39
50-75 0 0 0 0 0 0 0 0 0
75-100 0 0 0 0 0 0 0 0 0
100-125 0 0 0 6 1 0 0 0 1
125-150 0 0 1 2 2 1 0 0 0
150-175 0 0 0 4 1 0 0 0 0
175-200 0 1 0 0 0 0 0 0 0
200-225 0 0 0 0 0 0 0 0 0
225-250 0 0 0 0 0 0 0 0 0
250-275 1 0 1 0 0 0 3 8 12
275-300 7 3 0 13 4 3 13 37 72
300-325 0 2 2 12 4 2 8 21 53
325-350 5 5 4 0 0 0 0 0 1
350-375 14 8 5 25 11 9 1 1 0
375-400 43 29 25 91 50 30 30 38 38

In the following we will focus on the capability of the different control charts to detect

the start of the transition from stable drilling to chatter vibration in each experiment.

Experiment #5

As mentioned, experiment #5 is the most stable experiment of the experimental design

and only slight chatter marks are observed on the bore hole wall at the end of the process,

after depth 400 mm. This may be explained by the low cutting speed used, see Table

8.1. Chatter vibration is dominated by frequency 703 Hz.

Figure 8.1 shows that a change in the damping effect of the stuffing box from torsional

mode 1183 Hz to 703 Hz occurs after depth 250 mm. The rMEWMA control charts

with λ = 0.1 and 0.5 produce two out-of-control signals at depths 258 and 251 mm,

respectively, see Table 8.3. The three rUEWMAσ̂ control charts produce many out-of-

control signals. Then, a first increase in the amplitudes of frequency 703 Hz is observed

at 275 ≤ depth ≤ 350 mm. All control charts detect this change in the dynamics of

the process and produce out-of-control signals. The transition from stable drilling to

chatter vibration starts after depth 350 mm. Indeed, a fast increase in the amplitudes

of frequency 703 Hz is observed. All control charts detect it and many out-of-control

signals are produced until depth 400 mm.

Note that few out-of-control signals are not related to known changes in the dynamics

of the process. They are produced by the two rMEWMA control charts with λ = 0.3
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Figure 8.1: Means of the amplitudes of frequencies 234, 703 and 1183 Hz within segments

of length 5 mm in experiment #5

and 0.5 at depths 178 and 141 mm, respectively, and rUEWMAγ̂ control charts at

125 ≤ depth ≤ 175 mm.

Experiment #7

In this experiment, chatter vibration is dominated by frequency 703 Hz. Its effect is

apparent on the bore hole wall after depth 340 mm.

Figure 8.2 shows that a change in the damping effect of the stuffing box from torsional

mode 1183 Hz to 703 Hz occurs after depth 175 mm. Frequency 703 Hz dominates the

process and a first increase in its amplitudes is observed at 225 ≤ depth ≤ 275 mm. Only

the rMEWMA control charts with λ = 0.1 and rUEWMAσ̂ control charts with λ2 = 0.1

and 0.3 produce out-of-control signals, see Table 8.4. A second increase is observed at

275 ≤ depth ≤ 300 mm. It is detected by the three rMEWMA control charts. However

the different rUEWMA control charts did not signal. The transition to chatter vibration

starts after depth 300 mm. All control charts detect it. Similar as for experiment #5, few

out-of-control signals are not related to known changes in the dynamics of the process.

Experiment #9

In this experiment, chatter vibration is dominated by frequency 703 Hz. Its effect is

observed on the bore hole wall after depth 250 mm.

Figure 8.3 shows that the transition from stable drilling to chatter occurs approx-

imately after depth 200 mm. All control charts detect this transition and many out-

of-control signals are produced after that depth, see Table 8.5. Note that the three

rUEWMAσ̂ control charts produce many out-of-control signals at all depth segments,

except at 175 ≤ depth ≤ 200 mm.
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Figure 8.2: Means of the amplitudes of frequencies 234, 703 and 1183 Hz within segments

of length 5 mm in experiment #7

Table 8.4: Out-of-control signals of the different control charts (experiment #7)

Hole Depth Residual rUEWMA rUEWMA
(mm) rMEWMA γ̂ σ̂2

e

λ λ1 λ2

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

≤32 0 0 0 0 0 0 0 0 0
32-50 59 28 17 8 2 2 62 33 19
50-75 13 1 1 0 0 0 20 1 1
75-100 0 0 0 0 0 0 0 0 0
100-125 2 0 0 5 5 2 0 0 0
125-150 0 1 1 0 0 0 4 2 0
150-175 0 0 0 0 0 0 0 0 0
175-200 0 0 0 0 0 0 0 0 0
200-225 0 0 0 0 0 0 0 0 0
225-250 4 0 0 0 0 0 17 2 0
250-275 0 0 0 0 0 0 0 0 0
275-300 3 2 1 0 0 0 0 0 0
300-325 52 42 33 51 44 43 38 36 25
325-350 50 11 2 31 18 15 56 10 2
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Figure 8.3: Means of the amplitudes of frequencies 234, 703 and 1183 Hz within segments

of length 5 mm in experiment #9

Table 8.5: Out-of-control signals of the different control charts (experiment #9)

Hole Depth Residual rUEWMA rUEWMA
(mm) rMEWMA γ̂ σ̂2

e

λ λ1 λ2

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

≤32 0 0 0 4 2 2 39 19 13
32-50 75 29 16 10 3 4 62 25 13
50-75 0 0 0 7 5 2 31 18 14
75-100 0 1 1 0 0 0 47 10 3
100-125 2 1 1 1 0 0 80 32 18
125-150 1 1 1 0 0 0 15 2 0
150-175 7 1 1 0 0 0 10 10 8
175-200 0 1 1 0 0 0 0 0 0
200-225 18 4 2 1 0 0 60 24 6
225-250 14 14 15 11 12 12 20 11 9
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Figure 8.4: Means of the amplitudes of frequencies 234, 703 and 1183 Hz within segments

of length 5 mm in experiment #11

Table 8.6: Out-of-control signals of the different control charts (experiment #11)

Hole Depth Residual rUEWMA rUEWMA
(mm) rMEWMA γ̂ σ̂2

e

λ λ1 λ2

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

≤32 0 0 0 16 4 3 12 0 0
32-50 73 38 25 38 4 1 65 52 39
50-75 0 0 0 3 0 0 31 27 10
75-100 3 1 0 0 0 0 35 9 1
100-125 4 3 2 0 0 0 22 0 0
125-150 26 14 10 34 29 28 78 52 32
150-175 36 14 9 51 21 11 25 2 0

Experiment #11

In this experiment, chatter vibration is dominated by frequency 234 Hz. Its effect is

observed on the bore hole wall after depth 140 mm.

Figure 8.4 shows that the amplitudes of frequencies 234 Hz, 703 Hz and 1183 Hz

increased after approximately depth 30 mm. In contrast to the other experiments, none

of the three frequencies dominates the process at the beginning of drilling. Chatter

vibration is developed suddenly before 140 mm. Figure 8.4 shows that there is not a

distinguishable start of transition from stable drilling to chatter vibration. Indeed, a

sudden large increase is observed in tha amplitudes of frequencies 234 Hz and 703 Hz.

The respective thresholds are 200 and 70, see Figure B.1 in Appendix B. Table 8.6 shows

that all control charts detect the sudden development of chatter vibration. Similar as in

experiment #9, the three rUEWMAσ̂ control charts produce many out-of-control signals

in most of the depth segments.
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Figure 8.5: Means of the amplitudes of frequencies 234, 703 and 1183 Hz within segments

of length 5 mm in experiment #15

Experiment #15

In this experiment, chatter vibration is dominated by frequency 703 Hz. Its effect is

observed on the bore hole wall after depth 270 mm.

Figure 8.5 shows that frequency 1183 Hz dominates the process at the beginning

of drilling. The change in the damping effect of the stuffing box from torsional mode

1183 Hz to 703 Hz occurs approximately after 160 mm. Frequency 703 Hz dominates

the process. A fast increase in their amplitudes is observed after depth 225 mm. This

means that the transition from stable drilling to chatter vibration occurs approximately

at that depth. The three rMEWMA control charts detect the start of this transition

and produce many out-of-control signals until depth 275 mm, see Table 8.7. Most of

the rUEWMA control charts did not detect the start of this transition. Indeed, only

rUEWMAσ̂ control charts with λ2 = 0.3 and 0.5 signals at 225 ≤ depth ≤ 250 mm.

Experiment #21

In this experiment, chatter vibration is dominated by frequency 703 Hz. Its effect is

apparent on the bore hole wall after depth 300 mm. Figure 8.6 shows that a change in

the boundary conditions occurs approximately after depth 210 mm. Frequency 703 Hz

dominates the process and a first increase in its amplitudes is observed at 210 ≤ depth ≤

250 mm, see Table 8.8. The three rMEWMA control charts detect this change in the

dynamics of the process. They signal at 200 ≤ depth ≤ 250 mm. The different rUEWMA

control charts signal only at 200 ≤ depth ≤ 225 mm. The transition from stable drilling

to chatter vibration starts after depth 250 mm. A fast increase in the amplitudes of

frequency 703 Hz is observed. The different control rMEWMA and rUEWMAγ̂ control

charts detect the start of this transition and produce many out-of-control signals at

250 ≤ depth ≤ 300 mm. However, rUEWMAσ̂ produced out-of-control signals only at
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Table 8.7: Out-of-control signals of the different control charts (experiment #15)

Hole Depth Residual rUEWMA rUEWMA
(mm) rMEWMA γ̂ σ̂2

e

λ λ1 λ2

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

≤32 0 0 0 1 1 1 1 0 0
32-50 58 39 28 57 20 9 63 50 37
50-75 6 0 0 2 0 0 9 0 0
75-100 0 1 0 0 0 0 0 0 0
100-125 0 1 0 1 1 1 0 0 0
125-150 0 0 0 0 0 0 13 1 0
150-175 1 1 0 0 0 0 0 0 0
175-200 0 0 0 1 0 0 31 17 13
200-225 2 1 0 0 0 0 0 0 0
225-250 5 2 3 0 0 0 0 1 1
250-275 22 19 18 35 31 30 16 16 16

250 ≤ depth ≤ 275 mm. Similar as experiments #9 and #11, rUEWMAσ̂ produced

many out-of-control signals in many depth segments.

Results Summary

The results show that the three rMEWMA control charts quickly detect the start of the

transition from stable drilling to chatter vibration in the considered experiments. That

is, chatter may be avoided if corrective actions are taken after these signals. Furthermore,

most of the out-of-control signals produced by the three rMEWMA control charts are

related to changes in the dynamics of the process. Indeed, few out-of-control signals are

not explained. For example, only 2 out-of-control signals are not related to any known

change in the dynamics of the process in experiment #5. Therefore, we can conclude

that rMEWMA control charts do not produce many false alarms during stable drilling,

which avoid unnecessary process adjustments. However, rUEWMA control charts are

less powerful than rMEWMA control charts. This is explained by the “non-optimal”

estimation procedure of the ExpAr(40) time series model parameters and the choice of

the time lag p.

8.4 The Masking Problem

In section 8.3.1, it is mentioned that the residuals of the amplitudes of frequencies 234,

703 and 1183 Hz are computed using k = 5 in equation (6.6) in order to avoid the

masking problem. In fact, one limitation of the use of adaptive estimates to calculate

the residuals is the “masking” or parameter adaptation problem. If an early process
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Table 8.8: Out-of-control signals of the different control charts (experiment #21)

Hole Depth Residual rUEWMA rUEWMA
(mm) rMEWMA γ̂ σ̂2

e

λ λ1 λ2

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

≤32 0 0 0 1 3 2 0 0 0
32-50 53 24 15 60 18 10 59 37 21
50-75 0 0 0 19 4 1 12 0 0
75-100 2 1 0 0 0 0 0 0 0
100-125 0 0 0 0 0 0 16 6 2
125-150 0 0 0 0 0 0 32 2 0
150-175 0 1 1 3 1 1 0 1 2
175-200 0 0 0 0 0 0 57 10 3
200-225 0 1 1 4 2 1 32 8 3
225-250 15 3 2 0 0 0 0 0 0
250-275 21 1 1 5 1 0 1 1 1
275-300 6 1 1 5 1 2 0 0 0
300-325 66 27 21 0 0 0 0 0 0
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Figure 8.6: Means of the amplitudes of frequencies 234, 703 and 1183 Hz within segments

of length 5 mm in experiment #21
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Table 8.9: Out-of-control signals of the two rMEWMA control charts using k = 1 and

k = 5 in equation (6.6) (252.91≤ depth ≤ 258.32 mm)

Observation Hole rMEWMA rMEWMA
number depth k = 1 k = 5

842 252.91
843 253.21
...

847 254.42 ×
848 254.72
...

860 258.32 ×

change is not quickly detected, then the parameter estimates may be adversely affected

by the change, thus masking the shift from future detection. To illustrate this problem

we consider the Mahalanobis rMEWMA control chart with λ = 0.3, h = −0.593 and

B = −h used to jointly monitor the residuals of the amplitudes of frequencies 234, 703

and 1183 Hz in experiment #21. The residuals are calculated using k = 1 and k = 5 in

equation (6.6).

Messaoud et al. (2004) showed that the transition from stable drilling to chatter

vibration starts at depth 252.91 mm (t = 842). Table 8.9 shows that using k = 5 in

equation (6.6), the rMEWMA control chart quickly detect the change in the dynamics

of the process after 5 observations, see Figure 8.7. However, using k = 1 in equation

(6.6), the rMEWMA control chart is less powerful. The first out-of-control signal is

observed after 18 observations (depth = 258.32 mm). The reason is that the change is

quickly transferred to the adaptive estimated parameters. Figure 8.8 shows that using

k = 1, observation e842 is outside the data cloud. This is due to the fact that the

residuals of the amplitudes of the three frequencies are computed using β̂841 and φ̂1,841

in equation (6.6). They are estimated before the start of the transition from stable

drilling to chatter vibration. The Mahalanobis depth of e842 and its rank are equal to

0.030 and 1, respectively, see Table 8.10. This causes the rMEWMA control statistic T842

to wander to the direction of an out-of-control, see Figure 8.7. At t = 843, the residuals

of the amplitudes of the three frequencies are computed using β̂842 and φ̂1,842 in equation

(6.6). Table 8.10 shows that the change is quickly transferred to φ̂1,842 (frequency 703

Hz). Therefore, observation e843 is deep in the data cloud or reference sample, see Figure

8.8. The Mahalanobis depth of e843 and its rank are equal to 0.446 and 77, respectively.

This causes the rMEWMA control statistic T843 to wander in a direction opposite of an

out-of-control, see Figure 8.7.
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Table 8.10: Illustration of the masking problem

Observation Hole 234 Hz 703 Hz 1183 Hz MD Q∗

t Qm
t Tt

number depth β̂t−1 φ̂1,t−1 β̂t−1 φ̂1,t−1 β̂t−1 φ̂1,t−1

t (mm)

836 251.11 0.090 0.022 0.448 0.020 0.183 0.107 0.463 84 0.67 0.303
837 251.41 0.090 0.023 0.447 0.026 0.179 0.119 0.430 80 0.59 0.389
838 251.71 0.091 0.021 0.448 0.025 0.181 0.105 0.261 45 −0.11 0.239
839 252.01 0.089 0.030 0.449 0.023 0.183 0.096 0.700 95 0.89 0.434
840 252.31 0.090 0.027 0.452 0.021 0.182 0.106 0.120 4 −0.93 0.025
841 252.61 0.089 0.031 0.451 0.037 0.180 0.114 0.223 33 −0.35 −0.087
842 252.91 0.090 0.033 0.434 0.088 0.181 0.113 0.030 1 −0.99 −0.358
843 253.21 0.089 0.042 0.399 0.203 0.181 0.106 0.446 77 0.53 −0.092
844 253.51 0.090 0.045 0.383 0.239 0.181 0.116 0.120 4 −0.93 −0.343
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Figure 8.7: Plot of the the two rMEWMA control charts with λ = 0.3 and using k = 1

and k = 5 in equation (6.6) (835 ≤ t ≤ 860)
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Figure 8.8: Plot of Et={et−100+1, . . . , et} (a) t = 842 and (b) t = 843
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Chapter 9

Summary and Future Work

T
he main objective of this thesis is to develop on-line monitoring procedures

for the early and reliable detection of chatter vibration in the BTA deep-hole

drilling process. This chapter summarizes the content of thesis and identifies

some important directions for future research.

9.1 Summary

In the first part of the thesis, a new distribution-free control chart for monitoring pro-

cesses with multivariate quality measurements is developed. As it is shown in this thesis,

the normality assumption of the collected data from the process is not valid. The main

idea of the proposed rMEWMA control chart is to represent each multivariate observa-

tion by its corresponding data depth. In Chapter 2, data depths and the principles used

to construct the new rMEWMA control chart are introduced. Its statistical design with

respect to the asymptotic in-control ARL performance is proposed.

In Chapter 3, two important issues for the application of rMEWMA control charts

are discussed. First, the effect of the use of reference samples of limited amount of ob-

servations on the in-control and out-of-control performances of rMEWMA monitoring

procedures is studied using simulations. General recommendations for the required ref-

erence sample sizes so that the in-control and out-of-control performances of rMEWMA

control charts approach their asymptotic counterparts are given. Second, it is shown

that the geometrical nature of simplicial depth imply that simplicial rMEWMA control

charts are less powerful than Mahalanobis rMEWMA control charts.

In Chapter 4, a simulation study is conducted in order to compare the in-control and

out-of-control performances of rMEWMA control charts and the parametric MEWMA

control charts.
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The second part of the thesis is devoted to the introduction and modelling of the

drilling process and experimental investigation of the performance of the proposed mon-

itoring strategies. The principles of the drilling process are introduced in Chapter 5.

Furthermore, previous experimental investigation conducted in order to study the dy-

namics of the process and its main results are reviewed.

In Chapter 6, time series analysis is used to provide a modelling approach in order

to predict the temporal development of the process. It is used in Chapter 8 to setup the

rMEWMA monitoring procedure. The empirical evidence of the proposed time series

model is checked using several data sets.

In Chapter7, amplitude-dependent exponential autoregressive time series modelling

is used to describe the time varying dynamics of the process. The results showed that

using this approach, an on-line procedure can be used to answer questions about the

time varying dynamics of the process namely fixed points and limit cycles. Furthermore,

it provides the basis of ExpAr(p) time series based control charts.

Finally, the performances of the proposed rMEWMA and ExpAr(p) time series based

control charts are investigated using several data sets in Chapter 8. The results showed

that the rMEWMA control charts quickly detect the start of the transition from stable

drilling to chatter vibration. Furthermore, most of the out-of-control signals produced

by these control charts are related to known changes in the dynamics of the process

(i.e., guiding pads leave the starting bush, the tool is completely in the hole). For the

ExpAr(40) time series based control charts, the results showed that they are less powerful

than rMEWMA control charts. This is due to the “non-optimal” estimation procedure

of the ExpAr(40) time series model parameters and the choice of its time lag p = 40.

9.2 Future Work

9.2.1 Multiple Frequency Modelling

In Chapter 6, the van der Pol model is used to describe the transition from stable drilling

to chatter vibration in one frequency. Therefore, the amplitudes of the relevant frequen-

cies are modelled separately. As noted by Weinert et al. (2004), the van der Pol model

accounts for a subset of experimental results, especially when only one frequency domi-

nates chatter vibration. Naturally, the model fails to capture all aspects of the process

when this assumption becomes invalid. It is always the case when chatter vibration at

the beginning of the drilling process is observed. Indeed, two or three frequencies domi-

nate the process and they affect each other either by excitatory or inhibitory interaction.

Therefore a more complicated model that include the interactions between the relevant

frequencies is needed. In this case a multivariate time series model can be used instead

to calculate the residuals. The proposed rMEWMA control chart can be easily used to

monitor such residuals.
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9.2.2 Integration of Process Monitoring and Adjustment

The objective of this work is to provide on-line monitoring strategies to detect chatter

vibration as early as possible in order to adjust the process and suppress chatter vibration.

Hence, a procedure to integrate process monitoring and adjustment is needed. A possible

procedure can be summarized in the following steps:

1. Employ a control chart on-line to detect any possible process change.

2. Once the control chart has produced a signal, estimate the shift magnitude, identify

the time point at which the shift has occurred and interpret the out-of-control

signal.

3. Using the information of step 2 adjust the process based on a control scheme.

Future research should focus on step 2. If the control chart react to process change and

produce an out-of-control signal, a procedure to estimate the shift magnitude, to identify

the time point at which the shift has occurred and to interpret the out-of-control signal

are needed.

Firstly, the estimation of the amount of shift in the process may help the process

engineers to distinguish between out-of-control signals. Moreover, it provides a basis for

the adequate corrective action in order to adjust the process. Secondly, the identifica-

tion of the time point at which the shift has occurred may help the process engineers to

adjust the process. Finally, the out-of-control interpretation is basic for the adjustment

of the process. In fact, when the control chart indicates an out-of-control condition, it is

important to determine which frequency, or combination of frequencies, of the multivari-

ate process caused the process to go out-of-control. In practice, the identification of the

type of chatter (i.e., chatter at the beginning of the drilling process, low-high frequency

chatter) will usually make it easier for engineers to adjust the process.
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Appendix A

Tables on the Performance of rMEWMA

and pMEWMA Control Charts
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Table A.1: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of Maha-

lanobis rMEWMA control charts with λ = 0.05 and h = −0.169 based on reference samples

of size m

Shift Magnitude δ

m 0.0 0.5 1.0 1.5 2.0 2.5 3.0

ARL 766.26 764.05 756.17 744.60 729.75 714.32 699.50
SDRL 762.02 761.96 761.61 760.86 760.45 758.67 757.25

10 Q(.10) 83 81 73 61 47 34 25

Q(.50) 533 530 522 510 494 479 462

Q(.90) 1762 1759 1750 1737 1723 1705 1690

ARL 200.45 191.11 153.92 83.93 27.99 8.62 5.60
SDRL 189.63 189.31 182.54 148.26 82.08 26.82 8.65

47 Q(.10) 28 20 10 6 5 5 4

Q(.50) 144 134 89 16 8 6 5

Q(.90) 447 437 393 262 28 10 7

ARL 171.96 153.33 85.10 21.77 7.93 5.72 4.83
SDRL 152.16 150.68 125.51 51.72 8.40 1.59 0.92

100 Q(.10) 26 18 9 6 5 4 4

Q(.50) 130 110 28 11 7 5 5

Q(.90) 370 351 245 29 12 8 6

ARL 175.27 137.96 46.27 12.07 7.14 5.43 4.65
StErr 151.49 145.27 80.76 11.26 2.61 1.34 0.81

200 Q(.10) 26 16 8 6 5 4 4

Q(.50) 136 82 21 10 6 5 4

Q(.90) 376 334 91 20 10 7 6

ARL 189.77 116.08 26.19 10.79 6.85 5.30 4.56
StErr 170.64 135.97 26.38 5.42 2.31 1.25 0.76

500 Q(.10) 26 16 8 6 5 4 4

Q(.50) 140 66 19 9 6 5 4

Q(.90) 425 287 50 18 10 7 6

ARL 196.66 98.58 23.73 10.52 6.76 5.25 4.53
StErr 184.50 113.12 17.91 5.04 2.23 1.21 0.74

1000 Q(.10) 26 16 8 6 5 4 4

Q(.50) 140 62 19 9 6 5 4

Q(.90) 445 222 45 17 10 7 5

ARL 200.03 81.88 22.32 10.29 6.68 5.22 4.51
SDRL 194.77 75.05 15.10 4.76 2.17 1.19 0.73

∞ Q(.10) 26 16 8 6 5 4 4

Q(.50) 140 59 18 9 6 5 4

Q(.90) 453 179 42 17 10 7 5

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution



PERFORMANCE OF rMEWMA AND pMEWMA CONTROL CHARTS 109

Table A.2: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of Maha-

lanobis rMEWMA control charts with λ = 0.1 and h = −0.279 based on reference samples

of size m

Shift Magnitude δ

m 0.0 0.5 1.0 1.5 2.0 2.5 3.0

ARL 647.29 645.62 640.58 631.54 619.95 605.50 590.84
SDRL 641.19 641.28 641.02 640.92 640.54 639.29 637.40

10 Q(.10) 70 68 63 53 41 27 17

Q(.50) 450 448 444 435 424 408 393

Q(.90) 1489 1488 1482 1473 1461 1446 1428

ARL 199.30 193.05 165.56 106.89 44.33 13.44 5.79
SDRL 191.38 191.55 188.45 166.97 112.75 52.17 17.12

41 Q(.10) 27 20 9 6 4 4 4

Q(.50) 141 134 104 19 8 5 4

Q(.90) 449 443 413 322 132 11 7

ARL 178.39 161.66 97.71 26.64 7.53 5.15 4.41
SDRL 163.13 161.73 141.74 68.24 12.04 1.58 0.79

100 Q(.10) 26 16 8 5 4 4 4

Q(.50) 132 114 29 10 6 5 4

Q(.90) 389 372 283 33 11 7 5

ARL 181.27 146.76 55.55 12.10 6.54 4.93 4.30
SDRL 162.45 156.65 98.90 17.06 2.75 1.30 0.65

200 Q(.10) 26 15 7 5 4 4 4

Q(.50) 137 89 22 9 6 4 4

Q(.90) 394 356 144 21 10 7 5

ARL 192.08 124.75 28.74 10.31 6.27 4.82 4.26
SDRL 175.87 146.12 38.36 6.00 2.39 1.18 0.60

500 Q(.10) 26 15 7 5 4 4 4

Q(.50) 140 71 19 9 6 4 4

Q(.90) 431 312 56 18 9 6 5

ARL 197.41 106.28 24.79 10.03 6.17 4.78 4.25
SDRL 186.51 123.53 21.41 5.52 2.29 1.13 0.58

1000 Q(.10) 25 15 7 5 4 4 4

Q(.50) 141 66 18 9 6 4 4

Q(.90) 446 243 50 17 9 6 5

ARL 201.16 87.90 22.97 9.77 6.12 4.76 4.23
SDRL 196.13 84.10 17.29 5.16 2.23 1.11 0.56

∞ Q(.10) 25 14 7 5 4 4 4

Q(.50) 141 62 18 8 6 4 4

Q(.90) 456 195 46 16 9 6 5

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.3: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of Maha-

lanobis rMEWMA control charts with λ = 0.2 and h = −0.435 based on reference samples

of size m

Shift Magnitude δ

m 0.0 0.5 1.0 1.5 2.0 2.5 3.0

ARL 427.12 426.15 422.95 416.50 406.57 394.16 380.78
SDRL 424.32 424.29 424.26 423.72 423.00 421.94 420.50

10 Q(.10) 46 45 42 36 26 14 6

Q(.50) 296 295 292 286 275 262 248

Q(.90) 985 984 981 975 964 952 937

ARL 200.54 196.66 179.91 141.45 86.38 39.88 15.14
SDRL 194.34 194.18 192.76 184.71 156.57 110.59 63.81

31 Q(.10) 26 21 9 5 4 3 3

Q(.50) 141 137 120 71 9 5 4

Q(.90) 454 451 433 382 281 119 8

ARL 181.87 166.66 109.11 34.99 7.90 4.48 3.63
SDRL 170.94 169.89 153.88 89.21 22.27 2.73 0.93

100 Q(.10) 24 15 7 4 3 3 3

Q(.50) 132 115 34 9 5 4 3

Q(.90) 404 388 309 64 11 7 5

ARL 184.55 155.20 67.11 13.38 5.96 4.22 3.51
SDRL 171.25 167.85 118.04 28.35 3.80 1.44 0.81

200 Q(.10) 24 14 6 4 3 3 3

Q(.50) 136 95 23 8 5 4 3

Q(.90) 409 376 202 23 10 6 5

ARL 193.26 132.92 33.56 10.16 5.65 4.11 3.45
SDRL 182.22 157.14 52.13 7.24 2.64 1.32 0.75

500 Q(.10) 25 14 6 4 3 3 3

Q(.50) 139 76 20 8 5 4 3

Q(.90) 436 336 68 19 9 6 4

ARL 197.22 114.21 27.09 9.78 5.56 4.08 3.43
SDRL 189.28 133.08 27.25 6.46 2.54 1.29 0.73

1000 Q(.10) 24 14 6 4 3 3 3

Q(.50) 139 70 19 8 5 4 3

Q(.90) 449 266 57 18 9 6 4

ARL 199.74 94.81 24.55 9.46 5.49 4.04 3.42
SDRL 196.10 93.09 20.62 5.94 2.42 1.26 0.71

∞ Q(.10) 24 13 6 4 3 3 3

Q(.50) 139 65 18 8 5 4 3

Q(.90) 454 215 51 17 9 6 4

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.4: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of Maha-

lanobis rMEWMA control charts with λ = 0.3 and h = −0.551 based on reference samples

of size m

Shift Magnitude δ

m 0.0 0.5 1.0 1.5 2.0 2.5 3.0

ARL 342.18 341.42 339.42 334.52 326.63 316.80 306.92
SDRL 338.74 338.62 338.77 338.89 338.54 337.80 337.35

10 Q(.10) 38 37 35 30 22 12 5

Q(.50) 238 237 236 230 222 212 201

Q(.90) 786 785 784 779 771 759 749

ARL 199.77 196.56 183.44 151.96 105.25 59.10 28.04
SDRL 193.98 193.91 193.13 187.73 169.44 133.97 93.43

28 Q(.10) 25 21 9 5 3 3 3

Q(.50) 140 137 124 86 12 5 4

Q(.90) 456 452 438 399 325 205 44

ARL 185.15 170.90 118.21 43.15 9.17 4.32 3.47
SDRL 176.11 175.05 162.56 104.09 31.47 4.67 0.91

100 Q(.10) 24 15 6 4 3 3 3

Q(.50) 133 118 40 10 5 4 3

Q(.90) 414 398 329 124 12 6 5

ARL 188.05 160.85 76.68 15.85 5.88 4.02 3.36
SDRL 177.44 173.60 131.29 40.39 4.87 1.49 0.75

200 Q(.10) 23 14 6 4 3 3 3

Q(.50) 138 99 25 8 5 3 3

Q(.90) 420 389 234 26 10 6 4

ARL 196.22 138.36 38.11 10.40 5.47 3.92 3.32
SDRL 185.11 163.28 63.83 8.37 2.85 1.34 0.69

500 Q(.10) 24 14 6 4 3 3 3

Q(.50) 141 79 21 8 5 3 3

Q(.90) 445 350 78 20 9 6 4

ARL 199.35 119.63 29.83 9.91 5.38 3.88 3.31
SDRL 192.86 140.93 32.33 7.28 2.73 1.31 0.67

1000 Q(.10) 24 13 6 4 3 3 3

Q(.50) 141 73 20 8 5 3 3

Q(.90) 455 280 65 19 9 6 4

ARL 201.00 99.02 26.16 9.58 5.29 3.85 3.29
SDRL 197.71 98.23 23.12 6.66 2.61 1.26 0.65

∞ Q(.10) 24 13 6 4 3 3 3

Q(.50) 141 68 19 8 5 3 3

Q(.90) 459 223 56 18 9 5 4

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.5: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of simpli-

cial rMEWMA control charts with λ = 0.05 and h = −0.169 based on reference samples of

size m

Shift Magnitude δ

m 0.0 0.5 1.0 1.5 2.0 2.5 3.0

ARL 172.81 153.57 92.25 26.66 9.20 6.39 5.54
SDRL 152.84 152.08 133.61 61.88 15.95 1.87 1.05

100 Q(.10) 27 18 9 6 5 5 5

Q(.50) 130 110 29 12 7 6 5

Q(.90) 375 355 266 35 13 9 7

ARL 175.79 140.26 48.23 12.49 7.51 5.81 5.04
SDRL 152.35 148.52 83.26 10.32 2.78 1.42 0.83

200 Q(.10) 26 17 9 6 5 4 4

Q(.50) 137 84 22 10 7 5 5

Q(.90) 378 340 97 21 11 8 6

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution

Table A.6: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of simpli-

cial rMEWMA control charts with λ = 0.1 and h = −0.279 based on reference samples of

size m

Shift Magnitude δ

m 0.0 0.5 1.0 1.5 2.0 2.5 3.0

ARL 181.56 162.46 105.28 33.88 9.28 5.76 4.86
SDRL 165.62 163.62 146.44 82.07 19.13 2.03 1.11

100 Q(.10) 26 16 8 5 4 4 4

Q(.50) 135 114 32 11 7 5 5

Q(.90) 398 375 302 52 13 8 6

ARL 181.66 150.83 60.65 13.25 6.91 5.16 4.49
SDRL 163.66 161.99 107.64 26.04 3.04 1.42 0.82

200 Q(.10) 26 16 8 5 4 4 4

Q(.50) 140 91 23 9 6 5 4

Q(.90) 391 360 170 22 11 7 6

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.7: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of simpli-

cial rMEWMA control charts with λ = 0.2 and h = −0.435 based on reference samples of

size m

Shift Magnitude δ

m 0.0 0.5 1.0 1.5 2.0 2.5 3.0

ARL 186.39 169.38 118.15 46.50 11.92 5.51 4.26
SDRL 176.97 174.44 161.38 106.30 38.02 9.82 1.30

100 Q(.10) 25 16 7 4 4 3 3

Q(.50) 133 116 40 11 6 4 4

Q(.90) 415 399 330 135 14 8 6

ARL 186.55 158.92 73.79 15.34 6.43 4.56 3.81
SDRL 176.87 173.57 127.70 34.09 3.80 1.60 0.95

200 Q(.10) 24 15 7 4 3 3 3

Q(.50) 137 96 24 9 5 4 4

Q(.90) 413 377 221 25 11 7 5

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution

Table A.8: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of simpli-

cial rMEWMA control charts with λ = 0.3 and h = −0.551 based on reference samples of

size m

Shift Magnitude δ

m 0.0 0.5 1.0 1.5 2.0 2.5 3.0

ARL 193.06 177.47 129.83 59.24 17.23 5.92 4.12
SDRL 186.12 185.20 174.97 127.57 61.12 17.08 5.30

100 Q(.10) 24 15 7 4 3 3 3

Q(.50) 138 122 50 11 6 4 4

Q(.90) 431 415 352 191 18 8 6

ARL 191.00 167.77 86.78 20.30 6.58 4.31 3.58
SDRL 184.23 183.79 145.91 57.37 9.46 1.75 0.98

200 Q(.10) 24 15 6 4 3 3 3

Q(.50) 138 104 28 9 5 4 3

Q(.90) 426 405 260 31 11 6 5

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.9: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of Ma-

halanobis rMEWMA and pMEWMA control charts with bivariate normal observations.

Reference samples of size m = 200 are used. The control limits are selected using simula-

tion in order to achieve an in-control ARL of 200

pMEWMA rMEWMA
λ

δ 0.05 0.10 0.20 0.30

0.0 ARL0 201.56 202.94 198.95 199.48 198.77
SDRL0 190.14 177.94 180.68 186.97 190.36
Q0(.10) 32 30 27 25 24

Q0(.50) 143 158 150 146 145

Q0(.90) 451 438 432 444 447

0.5 ARL1 33.32 163.26 163.80 170.90 173.85
SDRL1 35.95 175.13 176.26 186.05 190.73
Q1(.10) 12 18 17 15 15

Q1(.50) 25 98 99 105 106

Q1(.90) 59 390 392 413 422

1.0 ARL1 11.86 54.23 61.91 74.85 85.10
SDRL1 4.7 98.73 112.34 133.22 145.42
Q1(.10) 7 9 8 7 6

Q1(.50) 11 23 23 24 26

Q1(.90) 18 115 173 225 259

1.5 ARL1 7.51 12.55 12.72 14.16 16.05
SDRL1 2.21 10.84 19.45 36.26 40.44
Q1(.10) 5 6 5 4 4

Q1(.50) 7 10 9 9 8

Q1(.90) 10 21 21 23 25

2.0 ARL1 5.57 7.51 6.70 6.09 6.09
SDRL1 1.35 2.74 2.86 3.19 8.82
Q1(.10) 4 5 4 3 3

Q1(.50) 5 7 6 5 5

Q1(.90) 7 11 10 10 10

2.5 ARL1 4.44 5.73 5.00 4.30 4.07
SDRL1 0.93 1.39 1.33 1.51 1.52
Q1(.10) 3 4 4 3 3

Q1(.50) 4 5 5 4 4

Q1(.90) 6 8 7 6 6

3.0 ARL1 3.78 4.90 4.35 3.55 3.39
SDRL1 0.72 0.84 0.70 0.84 0.80
Q1(.10) 3 4 4 3 3

Q1(.50) 4 5 4 3 3

Q1(.90) 5 6 5 5 4

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.10: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of

Mahalanobis rMEWMA and pMEWMA control charts with bivariate t(3) observations.

Reference samples of size m = 200 are used. The control limits are selected using simulation

in order to achieve an in-control ARL of 200

pMEWMA rMEWMA
λ

δ 0.05 0.10 0.20 0.30

0.0 ARL0 153.67 200.14 197.14 199.62 199.73
SDRL0 139.45 173.66 176.54 186.79 189.14
Q0(.10) 24 30 28 27 26

Q0(.50) 114 156 149 146 146

Q0(.90) 337 429 426 438 437

0.5 ARL1 33.00 119.62 129.16 149.83 163.62
SDRL1 40.20 151.53 158.89 175.92 185.20
Q1(.10) 11 14 13 12 13

Q1(.50) 24 52 59 78 95

Q1(.90) 58 325 344 384 406

1.0 ARL1 11.42 18.07 20.35 31.34 47.55
SDRL1 6.99 34.83 46.74 78.52 104.88
Q1(.10) 6 7 6 5 5

Q1(.50) 10 12 12 12 14

Q1(.90) 17 26 30 46 104

1.5 ARL1 7.16 7.62 6.89 6.89 8.10
SDRL1 3.34 2.51 2.77 8.92 20.76
Q1(.10) 5 5 5 4 4

Q1(.50) 7 7 6 6 6

Q1(.90) 10 10 10 10 12

2.0 ARL1 5.29 5.81 5.07 5.54 4.30
SDRL1 1.59 1.11 1.16 1.74 1.57
Q1(.10) 4 5 4 4 3

Q1(.50) 5 6 5 4 4

Q1(.90) 7 7 6 6 6

2.5 ARL1 4.26 5.17 4.36 3.83 3.46
SDRL1 1.11 0.55 0.64 0.77 1.01
Q1(.10) 3 5 4 3 3

Q1(.50) 4 5 4 4 4

Q1(.90) 5 6 5 5

3.0 ARL1 3.61 4.93 4.11 3.40 3.15
SDRL1 0.88 0.45 0.36 0.57 0.46
Q1(.10) 3 4 4 3 3

Q1(.50) 3 5 4 3 3

Q1(.90) 5 5 4 4 4

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.11: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of

Mahalanobis rMEWMA and pMEWMA control charts with bivariate G(1, 1) observations.

Reference samples of size m = 200 are used. The control limits are selected using simulation

in order to achieve an in-control ARL of 200

pMEWMA rMEWMA
λ

δ 0.05 0.10 0.20 0.30

0.0 ARL0 192.90 203.20 200.34 198.98 200.38
SDRL0 177.97 179.22 182.15 185.14 189.18
Q0(.10) 30 30 28 26 26

Q0(.50) 140 157 150 146 146

Q0(.90) 429 439 437 442 449

0.5 ARL1 33.39 163.88 154.79 153.36 160.24
SDRL1 37.82 196.73 191.18 186.00 187.41
Q1(.10) 12 12 11 10 11

Q1(.50) 25 55 57 69 87

Q1(.90) 58 440 418 403 407

1.0 ARL1 11.89 93.73 88.80 77.36 75.87
SDRL1 4.81 170.64 166.19 150.81 145.58
Q1(.10) 7 7 6 5 5

Q1(.50) 11 15 13 14 16

Q1(.90) 18 346 321 277 255

1.5 ARL1 7.42 21.59 17.65 18.75 19.11
SDRL1 2.25 72.57 61.82 67.39 64.84
Q1(.10) 5 5 5 4 4

Q1(.50) 7 8 7 6 6

Q1(.90) 10 19 18 19 21

2.0 ARL1 5.48 6.54 5.82 5.50 5.17
SDRL1 1.35 7.07 7.16 12.61 9.19
Q1(.10) 4 5 4 4 3

Q1(.50) 5 6 5 4 4

Q1(.90) 7 8 8 7 8

2.5 ARL1 4.42 5.33 4.56 4.06 3.69
SDRL1 0.96 0.73 0.83 0.87 0.96
Q1(.10) 3 5 4 3 3

Q1(.50) 4 5 4 4 3

Q1(.90) 6 6 5 5 5

3.0 ARL1 3.74 5.03 4.18 3.58 3.26
SDRL1 0.76 0.48 0.50 0.64 0.58
Q1(.10) 3 5 4 3 3

Q1(.50) 4 5 4 4 3

Q1(.90) 5 5 5 4 4

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.12: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of

Mahalanobis rMEWMA and pMEWMA control charts with bivariate normal observations.

Reference samples of size m = 10000 are used.

pMEWMA rMEWMA
λ

δ 0.05 0.10 0.20 0.30

0.0 ARL0 199.10 201.93 203.44 201.36 202.37
SDRL0 182.71 196.04 198.04 195.38 202.05
Q0(.10) 34 27 26 25 24

Q0(.50) 145 140 144 140 138

Q0(.90) 445 467 451 459 465

0.5 ARL1 26.78 82.82 88.10 94.39 99.62
SDRL1 15.18 77.13 85.18 92.37 99.04
Q1(.10) 12 16 15 14 13

Q1(.50) 23 58 62 66 68

Q1(.90) 47 182 194 213 226

1.0 ARL1 11.19 22.41 23.15 24.93 26.31
SDRL1 4.07 15.34 17.33 20.96 23.01
Q1(.10) 7 8 7 6 6

Q1(.50) 11 18 18 19 19

Q1(.90) 17 42 47 52 57

1.5 ARL1 7.17 10.31 9.76 9.46 9.59
SDRL1 2.07 4.78 5.13 6.05 6.64
Q1(.10) 5 6 5 4 4

Q1(.50) 7 9 8 8 8

Q1(.90) 10 17 16 17 18

2.0 ARL1 5.28 6.64 6.12 5.50 5.33
SDRL1 1.29 2.13 2.23 2.45 2.59
Q1(.10) 4 5 4 3 3

Q1(.50) 5 6 6 5 5

Q1(.90) 7 9 9 9 9

2.5 ARL1 4.24 5.23 4.77 4.03 3.87
SDRL1 0.90 1.19 1.12 1.24 1.27
Q1(.10) 3 4 4 3 3

Q1(.50) 4 5 4 4 3

Q1(.90) 5 7 6 6 6

3.0 ARL1 3.55 4.51 4.23 3.42 3.29
SDRL1 0.69 0.74 0.56 0.72 0.63
Q1(.10) 3 4 4 3 3

Q1(.50) 3 4 4 3 3

Q1(.90) 4 5 5 4 4

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.13: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of

Mahalanobis rMEWMA and pMEWMA control charts with bivariate t(3) observations.

Reference samples of size m = 10000 are used.

pMEWMA rMEWMA
λ

δ 0.05 0.10 0.20 0.30

0.0 ARL0 194.95 199.17 206.00 198.36 200.70
SDRL0 189.54 195.12 203.44 193.40 198.41
Q0(.10) 28 27 26 24 24

Q0(.50) 137 140 144 138 141

Q0(.90) 440 452 467 446 461

0.5 ARL1 28.25 44.98 51.56 64.97 77.98
SDRL1 18.07 36.01 45.10 61.21 75.98
Q1(.10) 12 13 12 11 12

Q1(.50) 25 34 38 46 54

Q1(.90) 48 91 108 143 175

1.0 ARL1 11.31 11.69 11.55 12.68 14.71
SDRL1 4.44 5.00 5.89 7.96 10.96
Q1(.10) 7 7 6 5 5

Q1(.50) 11 11 10 11 11

Q1(.90) 16 18 19 23 29

1.5 ARL1 7.06 6.76 6.19 5.80 5.82
SDRL1 2.06 1.67 1.76 2.16 2.55
Q1(.10) 5 5 4 4 4

Q1(.50) 7 6 6 5 5

Q1(.90) 9 9 9 8 9

2.0 ARL1 5.23 5.36 4.71 4.25 3.92
SDRL1 1.24 0.78 0.90 0.96 1.11
Q1(.10) 4 5 4 3 3

Q1(.50) 5 5 5 4 4

Q1(.90) 7 6 6 5 5

2.5 ARL1 4.19 4.79 4.18 3.56 3.27
SDRL1 0.89 0.60 0.46 0.65 0.58
Q1(.10) 3 4 4 3 3

Q1(.50) 4 5 4 3 3

Q1(.90) 5 5 5 4 4

3.0 ARL1 3.51 4.29 4.05 3.19 3.07
SDRL1 0.70 0.50 0.26 0.45 0.33
Q1(.10) 3 4 4 3 3

Q1(.50) 3 4 4 3 3

Q1(.90) 4 5 4 4 3

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.14: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of

Mahalanobis rMEWMA and pMEWMA control charts with bivariate G(1, 1) distributions.

Reference samples of size m = 10000 are used.

pMEWMA rMEWMA
λ

δ 0.05 0.10 0.20 0.30

0.0 ARL0 196.60 200.54 200.77 199.52 201.65
SDRL0 191.07 192.59 195.76 195.85 198.02
Q0(.10) 30 25 25 24 23

Q0(.50) 136 140 142 140 140

Q0(.90) 441 465 453 450 458

0.5 ARL1 26.87 280.41 169.13 114.92 101.73
SDRL1 15.25 677.57 337.32 193.47 147.18
Q1(.10) 12 10 9 9 10

Q1(.50) 23 36 37 42 49

Q1(.90) 47 782 486 314 253

1.0 ARL1 11.28 30.14 27.64 24.52 25.19
SDRL1 4.13 53.67 43.71 34.57 34.50
Q1(.10) 7 6 6 5 5

Q1(.50) 11 12 12 12 13

Q1(.90) 17 69 69 60 60

1.5 ARL1 7.16 8.74 8.19 7.83 7.84
SDRL1 2.02 4.76 5.14 5.68 6.18
Q1(.10) 5 5 5 4 4

Q1(.50) 7 7 7 6 6

Q1(.90) 10 14 14 14 14

2.0 ARL1 5.26 5.82 5.17 4.69 4.42
SDRL1 1.24 1.24 1.32 1.41 1.61
Q1(.10) 4 5 4 4 3

Q1(.50) 5 5 5 4 4

Q1(.90) 7 7 7 6 6

2.5 ARL1 4.21 5.01 4.36 3.81 3.50
SDRL1 0.89 0.70 0.71 0.76 0.78
Q1(.10) 3 4 4 3 3

Q1(.50) 4 5 4 4 3

Q1(.90) 5 6 5 4 4

3.0 ARL1 3.53 4.56 4.09 3.38 3.15
SDRL1 0.68 0.63 0.38 0.58 0.46
Q1(.10) 3 4 4 3 3

Q1(.50) 3 5 4 3 3

Q1(.90) 4 5 4 4 4

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.15: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of

simplicial rMEWMA control charts with bivariate normal observations. Reference samples

of size m = 200 are used. The control limits are selected using simulation in order to

achieve an in-control ARL of 200

rMEWMA
λ

δ 0.05 0.10 0.20 0.30

0.0 ARL0 206.39 201.61 202.39 200.48
SDRL0 183.34 179.83 193.32 192.14
Q0(.10) 29 29 28 27

Q0(.50) 158 153 146 145

Q0(.90) 444 439 443 438

0.5 ARL1 165.43 165.29 174.43 182.31
SDRL1 172.56 169.86 189.19 196.39
Q1(.10) 19 17 17 16

Q1(.50) 102 102 107 118

Q1(.90) 394 396 415 436

1.0 ARL1 57.06 74.83 86.97 97.64
SDRL1 102.64 132.46 144.88 158.13
Q1(.10) 9 8 7 7

Q1(.50) 24 24 27 31

Q1(.90) 134 224 264 286

1.5 ARL1 14.65 13.80 17.06 22.27
SDRL1 25.59 29.54 42.69 58.84
Q1(.10) 6 5 4 4

Q1(.50) 11 10 9 10

Q1(.90) 23 23 27 34

2.0 ARL1 7.98 7.00 6.76 6.79
SDRL1 2.98 2.96 3.79 9.67
Q1(.10) 5 4 4 3

Q1(.50) 7 6 6 5

Q1(.90) 12 11 11 11

2.5 ARL1 6.11 5.25 4.62 4.41
SDRL1 1.43 1.45 1.62 1.85
Q1(.10) 5 4 3 3

Q1(.50) 6 5 4 4

Q1(.90) 8 7 7 7

3.0 ARL1 5.29 4.57 3.86 3.60
SDRL1 0.74 0.85 0.96 0.97
Q1(.10) 5 4 3 3

Q1(.50) 5 4 4 3

Q1(.90) 6 6 5 5

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.16: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of

simplicial rMEWMA control charts with bivariate t(3) observations. Reference samples of

size m = 200 are used. The control limits are selected using simulation in order to achieve

an in-control ARL of 200

rMEWMA
λ

δ 0.05 0.10 0.20 0.30

0.0 ARL0 197.97 189.90 191.20 202.48
SDRL0 178.79 174.42 178.28 190.18
Q0(.10) 31 26 27 27

Q0(.50) 144 138 137 148

Q0(.90) 438 413 418 451

0.5 ARL1 126.13 129.56 146.84 156.12
SDRL1 160.42 160.86 169.37 180.99
Q1(.10) 14 12 12 12

Q1(.50) 56 60 79 86

Q1(.90) 340 343 368 401

1.0 ARL1 18.50 20.91 36.16 56.45
SDRL1 42.81 44.91 85.58 122.68
Q1(.10) 7 6 6 5

Q1(.50) 13 12 13 15

Q1(.90) 28 31 56 159

1.5 ARL1 7.87 7.05 6.86 10.16
SDRL1 2.40 2.64 3.85 33.95
Q1(.10) 6 5 4 4

Q1(.50) 7 6 6 6

Q1(.90) 11 10 11 14

2.0 ARL1 6.00 5.25 4.71 4.63
SDRL1 1.12 1.26 1.38 1.83
Q1(.10) 5 4 4 3

Q1(.50) 6 5 4 4

Q1(.90) 8 7 6 7

2.5 ARL1 5.36 4.57 3.99 3.68
SDRL1 0.69 0.74 0.77 0.89
Q1(.10) 5 4 3 3

Q1(.50) 5 4 4 3

Q1(.90) 6 5 5 5

3.0 ARL1 5.05 4.25 3.68 3.35
SDRL1 0.48 0.49 0.64 0.64
Q1(.10) 5 4 3 3

Q1(.50) 5 4 4 3

Q1(.90) 6 5 4 4

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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Table A.17: In-control (δ = 0) and out-of-control (δ 6= 0) run length properties of

simplicial rMEWMA control charts with bivariate G(1, 1) distributions. Reference samples

of size m = 200 are used. The control limits are selected using simulation in order to achieve

an in-control ARL of 200

rMEWMA
λ

δ 0.05 0.10 0.20 0.30

0.0 ARL0 201.53 197.23 205.15 202.85
SDRL0 171.20 179.05 191.49 186.99
Q0(.10) 31 27 26 27

Q0(.50) 157 147 149 153

Q0(.90) 421 427 459 441

0.5 ARL1 155.72 154.13 150.76 140.30
SDRL1 202.24 204.45 208.87 197.62
Q1(.10) 7 6 4 4

Q1(.50) 29 26 26 24

Q1(.90) 431 434 443 412

1.0 ARL1 117.92 115.43 112.33 111.38
SDRL1 193.78 194.84 193.13 192.28
Q1(.10) 5 4 3 3

Q1(.50) 11 10 9 9

Q1(.90) 404 407 396 377

1.5 ARL1 73.62 75.91 84.93 83.94
SDRL1 157.23 161.28 180.15 169.89
Q1(.10) 5 4 3 3

Q1(.50) 7 7 6 6

Q1(.90) 307 324 349 328

2.0 ARL1 14.59 21.47 33.54 40.79
SDRL1 51.66 78.74 113 120.20
Q1(.10) 4 4 3 3

Q1(.50) 6 5 5 4

Q1(.90) 15 15 22 43

2.5 ARL1 6.48 5.81 8.35 11.50
SDRL1 12.33 9.55 39.78 50.72
Q1(.10) 4 4 3 3

Q1(.50) 5 5 4 3

Q1(.90) 9 8 8 9

3.0 ARL1 5.44 4.74 4.12 4.59
SDRL1 1.24 1.17 1.61 11.71
Q1(.10) 4 4 3 3

Q1(.50) 5 4 4 3

Q1(.90) 7 6 6 6

NOTE: ARL = average run length
SDRL = standard deviation of run length distribution

Q(q) = qth percentile of run length distribution
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(a) Experiment #5

(b) Experiment #7

(c) Experiment #9

Figure B.1: Amplitudes of frequencies 234, 703 and 1183 Hz in experiments (a) #5, (b)

#7 and (c) #9
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(d) Experiment #11

(e) Experiment #15

(f) Experiment #21

Figure B.1: Amplitudes of frequencies 234, 703 and 1183 Hz in experiments (d) #11,

(e) #15 and (f) #21 (Continued)
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Table C.1: Test statistics and p-values for Ljung-Box tests (Experiment #5)

Hole Observation 234 Hz 703 Hz 1183 Hz

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-39 1-200 0.03 0.86 0.19 0.66 128.67 0.00**
39-78 201-400 0.11 0.74 0.00 0.96 1.44 0.23
78-117 401-600 1.12 0.29 1.42 0.23 10.53 0.00**
117-156 601-800 1.10 0.29 0.01 0.93 1.80 0.18
156-195 801-1000 1.61 0.20 1.26 0.26 0.41 0.52
195-234 1001-1200 2.43 0.12 1.39 0.24 0.85 0.35
234-273 1201-1400 0.59 0.44 0.24 0.62 3.00 0.08*
273-312 1401-1600 0.60 0.44 1.55 0.21 0.00 0.97
312-351 1601-1800 1.03 0.31 0.69 0.40 3.27 0.07*
351-390 1801-2000 2.49 0.11 88.62 0.00** 0.90 0.34
390-429 2001-2200 6.70 0.00** 186.02 0.00** 5.26 0.02**
429-468 2201-2400 11.20 0.00** 119.02 0.00** 3.97 0.04**

NOTES: - ** and * denote significant values at the 5% and 10 % confidence level, respectively.

- The shaded lines refer to chatter vibration.
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Table C.2: Test statistics and p-values for Ljung-Box tests (Experiment #7)

Hole Observation 234 Hz 703 Hz 1183 Hz

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-57 1-200 4.21 0.04** 5.38 0.02** 59.38 0.00**
57-115 201-400 0.12 0.72 1.03 0.31 0.10 0.75
115-172 401-600 1.70 0.19 1.13 0.29 0.03 0.86
172-229 601-800 0.80 0.37 2.65 0.10* 0.02 0.90
229-287 801-1000 0.35 0.55 26.89 0.00** 0.13 0.72
287-344 1001-1200 110 0.00** 197.55 0.00** 40.26 0.00**
344-401 1201-1400 40.34 0.00** 125.03 0.00** 0.08 0.78
401-459 1401-1600 31.35 0.00** 103.26 0.00** 2.60 0.10*

NOTES: - ** and * denote significant values at the 5% and 10 % confidence level, respectively.

- The shaded lines refer to chatter vibration.



1
3
0

A
P

P
E

N
D

IX
C

Table C.3: Test statistics and p-values for Ljung-Box tests (Experiment #9)

Hole Observation 234 Hz 703 Hz 1183 Hz

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-35 1-200 2.37 0.12 1.42 0.23 33.51 0.00**
35-70 201-400 5.42 0.02** 6.15 0.01** 4.15 0.04**
70-104 401-600 3.47 0.06* 2.05 0.15 4.40 0.04**
104-139 601-800 4.47 0.03** 2.69 0.10 0.29 0.59
139-174 801-1000 1.87 0.17 0.06 0.80 0.40 0.53
174-209 1001-1200 5.51 0.02** 7.67 0.00** 2.86 0.09*
209-244 1201-1400 2.13 0.14 34.4 0.00** 0.88 0.35
244-279 1401-1600 77.9 0.00** 193.5 0.00** 2.73 0.10*
279-313 1601-1800 12.17 0.00** 40.44 0.00** 0.58 0.45
313-348 1801-2000 1.52 0.22 56.84 0.00** 0.60 0.44
348-383 2001-2200 0.10 0.75 98.50 0.00** 0.07 0.80
383-418 2201-2400 0.50 0.48 30.08 0.00** 1.58 0.21
418-453 2401-2600 4.08 0.04** 151.85 0.00** 0.02 0.90
453-487 2601-2800 4.10 0.04** 29.30 0.00** 1.01 0.31

NOTES: - ** and * denote significant values at the 5% and 10 % confidence level, respectively.

- The shaded lines refer to chatter vibration.
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Table C.4: Test statistics and p-values for Ljung-Box tests (Experiment #11)

Hole Observation 234 Hz 703 Hz 1183 Hz

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-40 1-200 107.1 0.00** 95.20 0.00** 108.23 0.00**
40-81 201-400 16.94 0.00** 0.47 0.49 0.31 0.58
81-121 401-600 21.95 0.00** 0.32 0.57 0.29 0.59
121-161 601-800 198.12 0.00** 197.97 0.00** 186.60 0.00**
161-201 801-1000 150.18 0.00** 90.77 0.00** 108.06 0.00**
201-242 1001-1200 27.25 0.00** 60.79 0.00** 39.05 0.00**
242-282 1201-1400 30.57 0.00** 30.49 0.00** 33.35 0.00**
282-322 1401-1600 130.04 0.00** 167.30 0.00** 2.80 0.09*
322-362 1601-1800 1.04 0.30 22.82 0.00** 18.12 0.00**
362-403 1801-2000 16.59 0.00** 30.18 0.00** 6.32 0.01**
403-443 2001-2200 158.15 0.00* 153.93 0.00** 76.50 0.00**
443-483 2201-2400 24.20 0.00** 62.66 0.00** 12.41 0.00**

NOTES: - ** and * denote significant values at the 5% and 10 % confidence level, respectively.

- The shaded lines refer to chatter vibration.
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Table C.5: Test statistics and p-values for Ljung-Box tests (Experiment #15)

Hole Observation 234 Hz 703 Hz 1183 Hz

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-57 1-200 4.89 0.00** 41.61 0.00** 57.01 0.00**
57-115 201-400 2.08 0.15 12.20 0.00** 0.10 0.76
115-172 401-600 5.17 0.02** 6.77 0.01** 0.00 0.99
172-229 601-800 4.18 0.04** 5.40 0.02** 1.80 0.18
229-287 801-1000 138.6 0.00** 188.91 0.00** 50.56 0.00**
287-344 1001-1200 41.44 0.00** 7.90 0.00** 1.83 0.17
344-401 1201-1400 22.88 0.00** 14.42 0.00** 0.04 0.85
401-459 1401-1600 39.69 0.00** 25.90 0.00** 1.90 0.17

NOTES: - ** and * denote significant values at the 5% and 10 % confidence level, respectively.

- The shaded lines refer to chatter vibration.
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Table C.6: Test statistics and p-values for Ljung-Box tests (Experiment #21)

Hole Observation 234 Hz 703 Hz 1183 Hz

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-60 1-200 9.16 0.00** 37.41 0.00** 176.99 0.00**
60-120 201-400 0.78 0.38 0.09 0.76 113.44 0.00**
120-180 401-600 1.80 0.18 5.09 0.03** 49.27 0.00**
180-240 601-800 0.29 0.59 6.05 0.01** 19.15 0.00**
240-300 801-1000 0.12 0.73 68.54 0.00** 0.39 0.53
300-360 1001-1200 4.60 0.03** 118.02 0.00** 0.42 0.51
360-420 1201-1400 1.48 0.22 132.31 0.00** 0.66 0.42
420-480 1401-1600 19.3 0.00** 162.77 0.00** 18.46 0.00**

NOTES: - ** and * denote significant values at the 5% and 10 % confidence level, respectively.

- The shaded lines refer to chatter vibration.
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Table C.7: Test statistics and p-values for Teräsvirta-Lin-Granger (TLG), Shapiro-Wilks and Ljung-Box tests (experiment #5,

frequency 703 Hz)

Hole Observation TLG test Shapiro-Wilks test Ljung-Box test

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-39 1-200 0.73 0.69 0.97 0.00** 0.01 0.90
39-78 201-400 0.38 0.83 0.96 0.00** 0.00 0.96
78-117 401-600 0.54 0.76 0.95 0.00** 0.27 0.61
117-156 601-800 0.55 0.76 0.99 0.03** 0.90 0.34
156-195 801-1000 1.41 0.49 0.95 0.00** 2.49 0.11
195-234 1001-1200 1.05 0.59 0.98 0.00** 0.16 0.69
234-273 1201-1400 1.16 0.56 0.96 0.00** 0.06 0.80
273-312 1401-1600 8.41 0.01** 0.97 0.00** 0.78 0.38
312-351 1601-1800 0.40 0.82 0.97 0.00** 0.16 0.69
351-390 1801-2000 2.55 0.28 0.95 0.00** 1.45 0.23

NOTE: ** and * denote significant values at the 5% and 10 % confidence level, respectively.
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Table C.8: Test statistics and p-values for Teräsvirta-Lin-Granger (TLG), Shapiro-Wilks and Ljung-Box tests (experiment #7,

frequency 703 Hz)

Hole Observation TLG test Shapiro-Wilks test Ljung-Box test

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-57 1-200 0.57 0.75 0.95 0.00** 6.00 0.01*
57-115 201-400 4.54 0.10* 0.97 0.00** 1.11 0.29
115-172 401-600 0.20 0.90 0.98 0.00** 0.05 0.82
172-229 601-800 0.32 0.85 0.97 0.00** 0.02 0.89
229-287 801-1000 0.40 0.82 0.97 0.00** 0.10 0.75
287-344 1001-1200 2.43 0.29 0.76 0.00** 7.10 0.01**

NOTE: ** and * denote significant values at the 5% and 10 % confidence level, respectively.
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Table C.9: Test statistics and p-values for Teräsvirta-Lin-Granger (TLG), Shapiro-Wilks and Ljung-Box tests (experiment #9,

frequency 703 Hz)

Hole Observation TLG test Shapiro-Wilks test Ljung-Box test

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-35 1-200 9.50 0.01** 0.19 0.00** 37.84 0.00**
35-70 201-400 0.41 0.81 0.98 0.01** 3.02 0.08*
70-104 401-600 0.53 0.77 0.98 0.01** 0.07 0.79
104-139 601-800 0.11 0.94 0.95 0.00** 0.00 0.94
139-174 801-1000 4.87 0.09* 0.95 0.00** 0.16 0.69
174-209 1001-1200 2.41 0.30 0.92 0.00** 0.39 0.53
209-244 1201-1400 2.70 0.26 0.97 0.00** 1.73 0.19

NOTE: ** and * denote significant values at the 5% and 10 % confidence level, respectively.
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Table C.10: Test statistics and p-values for Teräsvirta-Lin-Granger (TLG), Shapiro-Wilks and Ljung-Box tests (experiment #11,

frequency 234 Hz)

Hole Observation TLG test Shapiro-Wilks test Ljung-Box test

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-40 1-200 20.91 0.00** 0.81 0.00** 0.05 0.83
40-81 201-400 0.11 0.95 0.95 0.00** 0.08 0.80
81-121 401-600 2.43 0.30 0.98 0.00** 1.00 0.31
121-161 601-800 6.23 0.04** 0.05 0.00** 0.17 0.68

NOTE: ** and * denote significant values at the 5% and 10 % confidence level, respectively.
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Table C.11: Test statistics and p-values for Teräsvirta-Lin-Granger (TLG), Shapiro-Wilks and Ljung-Box tests (experiment #15,

frequency 703 Hz)

Hole Observation TLG test Shapiro-Wilks test Ljung-Box test

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-57 1-200 12.70 0.00** 0.90 0.00** 20.63 0.00**
57-115 201-400 0.83 0.66 0.98 0.04** 0.38 0.54
115-172 401-600 1.89 0.40 0.97 0.00** 0.63 0.43
172-229 601-800 1.20 0.55 0.97 0.00** 0.09 0.77
229-287 801-1000 52.78 0.00** 0.69 0.00** 1.25 0.26

NOTE: ** and * denote significant values at the 5% and 10 % confidence level, respectively.



T
IM

E
S
E

R
IE

S
A

N
A

L
Y

S
IS

1
3
9

Table C.12: Test statistics and p-values for Teräsvirta-Lin-Granger (TLG), Shapiro-Wilks and Ljung-Box tests (experiment #21,

frequency 703 Hz)

Hole Observation TLG test Shapiro-Wilks test Ljung-Box test

depth number test p-value test p-value test p-value
(mm) statistic statistic statistic

0-60 1-200 20.46 0.00** 0.89 0.00** 6.20 0.01**
60-120 201-300 5.87 0.05** 0.97 0.00** 0.16 0.68
120-180 301-400 0.16 0.92 0.97 0.00** 0.34 0.56
180-240 401-500 4.70 0.09* 0.95 0.00** 0.27 0.60
240-300 501-600 0.27 0.87 0.85 0.00** 2.40 0.12

NOTE: ** and * denote significant values at the 5% and 10 % confidence level, respectively.
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