
CONVERGENCE RATES OF GENERAL REGULARIZATION METHODS FOR
STATISTICAL INVERSE PROBLEMS AND APPLICATIONS

BY N. BISSANTZ1, T. HOHAGE2, A. MUNK2 AND F. RUYMGAART3

1UNIVERSITY OF BOCHUM, 2UNIVERSITY OF GÖTTINGEN, 3TEXAS TECH UNIVERSITY

Abstract. During the past the convergence analysis for linear statistical inverse problems has mainly focused
on spectral cut-off and Tikhonov type estimators. Spectral cut-off estimators achieve minimax rates for a broad
range of smoothness classes and operators, but their practical usefulness is limited by the fact that they require
a complete spectral decomposition of the operator. Tikhonov estimators are simpler to compute, but still involve
the inversion of an operator and achieve minimax rates only in restricted smoothness classes. In this paper we
introduce a unifying technique to study the mean square error of a large class of regularization methods (spectral
methods) including the aforementioned estimators as well as many iterative methods, such as ν-methods and the
Landweber iteration. The latter estimators converge at the same rate as spectral cut-off, but only require matrix-
vector products. Our results are applied to various problems, in particular we obtain precise convergence rates for
satellite gradiometry, L2-boosting, and errors in variable problems.
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1. Introduction. This paper is concerned with estimating an element f of a Hilbert space
H1 from indirect noisy measurements

Y = Kf + ”noise” (1.1)

related to f by a (known) operator K : H1 → H2 mapping H1 to another Hilbert space H2. The
operator K is assumed to be linear, bounded, and injective, but not necessarily compact. We are
interested in the case that the operator equation (1.1) is ill-posed in the sense that the Moore-
Penrose inverse of K is unbounded. The analysis of regularization methods for the stable solution
of (1.1) depends on the mathematical model for the noise term on the right hand side of (1.1):
If the noise is considered as a deterministic quantity, it is natural to study the worst-case error.
In the literature a number of efficient methods for the solution of (1.1) has been developed, and
it has been shown under certain conditions that the worst-case error converges at optimal order
as the noise level tends to 0 (see Engl et al. [14]). If the noise is modeled as a random quantity,
the convergence of estimators f̂ of f should be studied in statistical terms. Here we consider the
expected square error E ‖f̂ − f‖2, also called mean integrated square error (MISE). This problem
has also been studied extensively in the statistical literature, but the numerical efficiency has not
been a major issue so far. It is the purpose of this paper to provide an analysis of a class of
computationally efficient regularization methods including Landweber iteration, ν-methods, and
iterated Tikhonov regularization, which is applicable to linear inverse problems with random noise
as they occur for example in parameter identification problems in partial differential equations,
deconvolution or errors in variable models.

There exists a considerable amount of literature on regularization methods for linear inverse
problems with random noise. For surveys we refer to O’Sullivan [37], Nychka & Cox [36], Evans &
Stark [16] and Kaipio & Somersalo [26]. A large part of the literature focusses on methods which
require the explicit knowledge of a spectral decomposition of the operator K∗K. The simplest of
these methods is spectral cut-off (or truncated singular value decomposition for compact operators)
where an estimator is constructed by a truncated expansion of f w.r.t. the eigenfunctions of K∗K
(e.g. Diggle & Hall [10], Healy, Hendriks & Kim [21]). It has been shown in a number of papers
that spectral cut-off estimators are order optimal in a minimax-sense under certain conditions
(e.g. Mair & Ruymgaart [30], Efromovich [13], Kim & Koo [27]). Based on a singular value
decomposition (SVD) of K it is also possible to construct exact minimax estimators for given
smoothness classes (see Johnstone & Silverman [25]).

Another major approach are wavelet-vaguelette (and vaguelette-wavelet) based methods which
lead to estimators of a similar functional form as SVD methods. In general these estimators are
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based on expansions of f and Kf with respect to different bases of the respective function spaces
than those provided by the SVD of K (e.g. Donoho [11], Abramovich & Silverman [1], Johnstone
et al. [24]).

A well-known method both in the statistical and the deterministic inverse problems literature
is Tikhonov regularization. This has been studied for certain classes of linear statistical inverse
problems by Cox [9], Nychka & Cox [36] and Mathé & Pereverzev [31, 33].

The main restriction of the usefulness of spectral cut-off and related estimators is the need of
the spectral data of the operator (i.e. an SVD if K is compact) to implement these estimators.
This is known explicitly only in a limited number of special cases, and numerical computation of
the spectral data is prohibitively expensive for many situations. Although Tikhonov regularization
does not require the spectral data of the operator, there is still a need of setting up and invert-
ing a matrix representing the operator. For iterative regularization methods such as Landweber
iteration or ν-methods (see Nemirovskii & Polyak [35], Brakhage [6], and Engl et al. [14]) only
matrix-vector multiplications are required. Furthermore, it is known that Tikhonov regularization
achieves minimax rates of convergence only in a restricted number of smoothness classes, which
is highlighted by the fact that its qualification number is 1, whereas Landweber iteration has in-
finitely large qualification, and ν−methods with qualification ν are available for every ν > 0 (see
[14]).

Iterative regularization methods are particularly attractive for inverse problems in partial
differential equations (pde’s). Here the operator K maps an unknown parameter f in a pde to
(part of) the solution to this pde. Hence, applying K to a vector f simply means solving the pde
with the parameter f , whereas inverting or even setting up the matrix for K is often not feasible.
We will discuss two linear inverse problem for pde’s (the backwards heat equation and satellite
gradiometry) in §5. However, most inverse problems for pde’s are nonlinear even if the pde is
linear. Such problems are often solved by regularized Newton methods. In this case the methods
and the analysis of this paper can be applied to the linearized operator equations in each Newton
step as discussed in the forthcoming paper [2].

In this paper we will show that general spectral regularization methods as defined in section
2 achieve the same rates of convergence of the MISE as spectral cut-off, which is known to be
optimal in most cases (see above). Whereas the bias or approximation error is exactly the same in
a deterministic and a statistical framework, the analysis significantly differs in the estimation of the
noise term. In spectral cut-off for compact operators, the noise (or variance) part of the estimators
f̂α belongs to a finite-dimensional space of “low-frequencies”. The main difficulty in the analysis
of general spectral regularization methods is the estimation of the “high-frequency” components
of the noise. Unlike in a deterministic framework, the bound on the noise term depends not only
on the regularization parameter, but also on the distribution of the singular values of K (if K is
compact). Therefore, a statistical analysis has to impose additional conditions on the operator.
We will verify these conditions for several important problems including inverse problems in partial
differential equations and errors in variable models. As an example of particular interest in the
machine learning context we obtain optimal rates of convergence of L2-boosting by interpreting
L2-boosting as a Landweber iteration (see also Bühlmann & Yu [7], Yao et al. [42]).

The plan of this paper is as follows: The following section gives a brief overview of regulariza-
tion methods and source conditions and introduce an abstract noise model. §3 contains the main
results of this paper on the rates of convergence of general spectral regularization methods. In
§4 we demonstrate how a number of commonly used statistical noise models fit into our general
framework. Finally, in §5 we discuss the application of our results to the backwards heat equation,
satellite gradiometry, errors in variable models with dependent random variables, L2-boosting,
and operators in Hilbert scales. Proofs of §3 are collected in §6.

2. Framework. We first review some basic notions of regularization theory.

2.1. Spectral theorem. Halmos’ version of the spectral theorem (see, for instance, Hal-
mos [20], Taylor [40]) turns out to be particularly convenient for the construction and statistical
analysis of regularized inverses of a self-adjoint operator. This has been demonstrated by Mair &
Ruymgaart [30] for the spectral cut-off estimator. The theorem claims that for a (not necessarily
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bounded) self-adjoint operator A : D(A) → H defined on a dense subset D(A) of a separable
Hilbert space H there exists a σ-compact space S, a Borel measure Σ on S, a unitary operator
U : H → L2(Σ), and a measurable function ρ : S → R such that

UAf = ρ · Uf, Σ-almost everywhere, (2.1)

for all f ∈ D(A). Introducing the multiplication operator Mρ : D(Mρ) → L2(Σ), Mρϕ := ρ · ϕ
defined on D(Mρ) := {ϕ ∈ L2(Σ) : ρϕ ∈ L2(Σ)}, we can rewrite (2.1) as A = U∗MρU , i.e. A is
unitarily equivalent to a multiplication operator. The essential range of ρ is the spectrum σ(A) of
A. If A is bounded and positive definite as below, then 0 < ρ ≤ ‖A‖, Σ-a.e.

Remark 1. In the special case that A is compact, a well-known version of the spectral theorem
states that A has a complete orthonormal system of eigenvectors ui with corresponding eigenvalues
ρi, and Af =

∑∞
j=0 ρj 〈uj, f〉uj. This can be rewritten in the multiplicative form (2.1) by choosing

Σ as the counting measure on S = N, i.e. L2(Σ) = l2(N), the multiplicator function as ρ(i) = ρi,
i ∈ N, and defining the unitary operator U : H → l2(N) by (Uf)(i) := 〈f, ui〉, i ∈ N.

2.2. Regularized estimators. Recall Halmos’ spectral theorem from §2.1. For a self-adjoint
operatorA : D(A) → H and a bounded, measurable function Φ : σ(A) → R one defines an operator
Φ(A) ∈ L(H) by

Φ(A) = U∗MΦ(ρ)U, (2.2)

(see e.g. Taylor [40]). The mapping Φ �→ Φ(A), called the functional calculus at A, is an algebra
homomorphism from the algebra of bounded measurable functions on σ(A) to the algebra L(H)
of bounded linear operators on H, and

‖Φ(A)‖ ≤ sup
λ∈σ(A)

|Φ(λ)|, (2.3)

with equality if Φ is continuous. We will construct estimators of the input function by regulariza-
tion methods of the form

f̂α,σ = Φα(K∗K)K∗Y. (2.4)

Here Φα : σ(K∗K) → R is a collection of bounded filter functions approximating the unbounded
function t �→ 1

t on σ(K∗K), which are parametrized by a regularization parameter α > 0.
A particular example of a regularization method of the form (2.4) is the spectral cut-off esti-

mator (also known as truncated singular value decomposition) described by the functions

ΦSC
α (t) :=

{
t−1, t ≥ α,
0, t < α.

As explained in the introduction, we will focus on regularization methods which can be imple-
mented without explicit knowledge of the spectral decomposition of the operator K∗K. This
includes both implicit methods such as Tikhonov regularization (Φα(t) = (α + t)−1), iterated
Tikhonov regularization and Lardy’s method, which involve the inversion of an operator and ex-
plicit methods such as Landweber iteration (Φ1/(k+1)(t) =

∑k−1
j=0 (1−βt)j where β ∈ (0, ‖K∗K‖−2

is a step-length parameter) and ν-methods, which require only matrix-vector products in a discrete
setting. For a derivation and discussion of these methods we refer to the monograph [14].

2.3. Smoothness classes. We will measure the smoothness of the input function f relative
to the smoothing properties of K in terms of source conditions : Let Λ : [0,∞) → [0,∞) be a
continuous, strictly increasing function with Λ(0) = 0, and assume that there exists a “source”
w ∈ H1 such that

f = Λ(K∗K)w (2.5)

(see [14, 15, 32]). The set of all f satisfying this condition with ‖w‖H1 ≤ w, w > 0 will be denoted
by FΛ,w,K∗K := {Λ(K∗K)w : w ∈ H1, ‖w‖ ≤ w}. We will shortly write FΛ,w := FΛ,w,K∗K if there
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is no ambiguity. The most common choice, which is usually appropriate for finitely smoothing
operators K is

Λ(t) = tν , ν > 0. (2.6)

In particular, (2.5) with Λ(t) =
√
t is equivalent to f = K∗v, ‖v‖H2 ≤ 1 (see Engl et al. [14, Prop.

2.18]). For exponentially ill-posed problems such as the backwards heat equation, (2.6) is usually
too restrictive and logarithmic source conditions corresponding to the choice

Λ(t) = (− ln t)−p, p > 0, (2.7)

are more appropriate (see Hohage [23], Mair [29]). Since Λ is singular at t = 1, we assume that
the norms in H1 and H2 are scaled such that ‖K∗K‖ < 1 in this case. For a further discussion of
source conditions and interpretations as smoothness conditions in Sobolev spaces we refer to the
applications in §5.

If f belongs to the smoothness class FΛ,w and we are given exact data Y = g, then the error
is bounded by

‖Φα(K∗K)K∗g − f‖ = ‖(Φα(K∗K)K∗K − I)Λ(K∗K)w‖ ≤ sup
t∈σ(K∗K)

|(Φα(t)t− 1)Λ(t)|w, (2.8)

where we have used (2.3).

2.4. Assumptions on smoothness and the regularization method. In the following
we discuss a number of standard assumptions on the filter functions Φα satisfied for all commonly
used regularization methods, in particular those discussed in §2.2 (see [14]). First, we assume that
there exists a constant C2 > 0 such that

sup
t∈σ(K∗K)

|tΦα(t)| ≤ C2, uniformly in α > 0. (2.9a)

To bound the so-called propagated deterministic noise error τ‖Φα(K∗K)K∗ξ‖, we impose the
condition

there exists C3 > 0 : sup
α>0

sup
t∈σ(K∗K)

|αΦα(t)| ≤ C3. (2.9b)

In view of the bound (2.8) on the approximation error, we also assume that there exists a number
ν0 > 0 called qualification of the method and constants γν > 0 such that

sup
t∈σ(K∗K)

|tν(1 − tΦα(t))| ≤ γνα
ν , for all α and all 0 ≤ ν ≤ ν0. (2.9c)

The qualification of a method is a measure of the maximal degree of smoothness in terms of the
Hölder-type conditions (2.5), (2.6) under which the approximation error (2.8) converges at optimal
order. The qualification some commonly used methods is: Tikhonov regularization: 1, K-times
iterated Tikhonov regularization: K, Landweber iteration: ∞ (in the sense that it is greater than
any real number), ν-methods: ν (where ν > 0 is a parameter in the method), see references in the
Introduction.

Note that the condition (2.9c) with ν0 > 0 implies that limα↘0 Φα(t) = 1
t for all t ∈ σ(K∗K).

For ν = 0 the condition (2.9c) implies (2.9a) with C2 = 1+γ0. However, this value of C2 is usually
not optimal as for most regularization methods (2.9a) holds true with C2 = 1.

For general source conditions we assume that there exists a constant γΛ such that

sup
t∈σ(K∗K)

|Λ(t)(1 − tΦα(t))| ≤ γΛΛ(α), α↘ 0. (2.10)

Under Hölder-type source conditions (2.6) this holds true for ν ≤ ν0 by assumption (2.9c). For
the choice Λ(t) = (− ln t)−p, it has been shown in Hohage [23] that (2.9c) with ν0 > 0 implies
(2.10). For more general functions Λ we refer to Mathé & Pereverzev [32] for similar implications.
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2.5. Noise model. In this subsection we introduce an abstract noise model which will be
used in the proof of our main result. In §4 we will demonstrate that several noise models commonly
encountered in statistical modelling fit into this general framework.

Following Mathé & Pereverzev [31] we assume that our given data can be written as

Y = g + σε+ τξ, g := Kf, (2.11)

where ξ ∈ H2, ‖ξ‖ ≤ 1 is a deterministic error, ε is a stochastic error, and τ, σ > 0 are the
corresponding noise levels. Note that model (2.11) allows for stochastic and deterministic noise,
simultaneously.

Often, the stochastic error is modelled as a Hilbert-space valued random variable Ξ, i.e. a
measurable function Ξ : Ω → H2 where (Ω,P , P ) is the underlying probability space. However,
we will assume more generally that it is a Hilbert-space process, i.e. a continuous linear operator

ε : H2 → L2(Ω,P , P ).

Every Hilbert-space valued random variable Ξ with finite second moments, E ‖Ξ‖2 < ∞ can
be identified with a Hilbert-space process ϕ �→ 〈Ξ, ϕ〉, ϕ ∈ H2, but not vice versa. We will
use the notation 〈ε, ϕ〉 := εϕ, ϕ ∈ H2. The covariance Covε : H2 → H2 of a Hilbert-space
process ε : H2 → L2(Ω,P , P ) is the bounded linear operator defined implicitly by 〈Covεϕ1, ϕ2〉 =
Cov (〈ε, ϕ1〉 , 〈ε, ϕ2〉), ϕ1, ϕ2 ∈ H2. We call ε a white noise process if Covε = I and E 〈ε, ϕ〉 = 0
for all ϕ ∈ H2. Note that a Gaussian white noise process in an infinite-dimensional Hilbert space
cannot be identified with a Hilbert-space valued random variable.

If ε : H2 → L2(Ω,P , P ) is a Hilbert-space process and A : H2 → H1 is a bounded linear
operator, we define the Hilbert-space process Aε : H1 → L2(Ω,P , P ) by 〈Aε, ϕ〉 := 〈ε,A∗ϕ〉,
ϕ ∈ H1. Its covariance operator is given by CovAε = ACovεA∗.

Assumption 1. In the noise model (2.11) ξ ∈ H2 is a deterministic vector with ‖ξ‖ = 1, and
ε is a Hilbert space process such that

E 〈ε, ϕ〉 = 0, ‖Covε‖ ≤ 1 (2.12)

for all ϕ ∈ H2. Moreover, K∗ε is a Hilbert-space valued random variable satisfying

E ‖K∗ε‖2 <∞, (2.13)

and there exists a spectral decomposition (2.1) of K∗K such that for almost all s ∈ S

Var (UK∗ε(s)) ≤ ρ(s). (2.14)

The first condition in (2.12) is not a restriction since an expected value different from zero
can be included in τξ, and the second condition is a scaling condition analogous to ‖ξ‖ ≤ 1.
Assumption (2.13) ensures that the estimators defined in (2.4) are Hilbert-space valued random
variables with finite second moments. (2.13) is usually a mild assumption, but it excludes e.g. very
mildly ill-posed problems in combination with white noise. The following lemma implies that (2.14)
is a condition on the choice of U in the Halmos representation (2.1) rather than a condition on
the noise model. Moreover, we can arrange that ρ ∈ L1(Σ) as required in §3 below. Noise models
with a finite number of observations satisfying Assumption 1 are discussed in §4 below.

Lemma 2. If ε is a Hilbert space process satisfying (2.12), K∗ε is a Hilbert space valued
random variable satisfying (2.13), and K is injective, then there exists a spectral decomposition
(2.1) of K∗K such that (2.14) holds true, and ρ ∈ L1(Σ).

Proof. According to Halmos’ spectral theorem there exists a Borel measure Σ̃ on a σ-compact
space S, and a unitary operator Ũ : L2(Rd) → L2(Σ̃) such that K∗K = Ũ∗MρŨ . For any Σ̃-
measurable function χ > 0 on S we can construct another Halmos representation of K∗K by
introducing the Borel measure Σ := χΣ̃ on S and the mapping U : L2(Rd) → L2(Σ), Uf :=
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χ−1/2 · Ũf since U is unitary and UK∗Kf = ρ · Uf Σ-a.e. for all f ∈ H1. In particular, we may
define

χ(s) :=
Var (ŨK∗ε)(s)

ρ(s)
for s ∈M, M := {s ∈ S : Var (ŨK∗ε)(s) > 0}. (2.15)

Here we use that ρ > 0 Σ̃-a.e since K and hence K∗K is injective by assumption. We first consider
the case Σ̃(M c) = 0 where M c := S \M . Then (2.14) holds true for s ∈ M as Var (UK∗ε)(s) =
χ(s)−1Var (ŨK∗ε)(s) = ρ(s). Moreover,∫

ρ dΣ =
∫

Var (UK∗ε) dΣ = E
∫

|UK∗ε|2 dΣ = E ‖K∗ε‖2 <∞, (2.16)

which is the assertion. Now assume that Σ̃(M c) > 0. Let ψ be an arbitrary strictly positive

function in L1(Σ̃), e.g. ψ(s) :=
(
j(s)2Σ̃(Aj(s))

)−1

, where j(s) := min{j : s ∈ Aj} for a sequence

A1 ⊂ A2 ⊂ . . . ⊂ Ω with Σ̃(Aj) < ∞ and Σ̃(S \⋃j Aj) = 0. Such a sequence exists because Σ̃ is

σ-finite. We define χ(s) by (2.15) for s ∈M and χ(s) := ψ(s)
ρ(s) for s ∈M c. Then (2.14) is trivially

satisfied for s ∈M c, and ρ ∈ L1(Σ) since
∫
M ρ dΣ <∞ as in (2.16) and

∫
Mc ρ dΣ ≤ ∫ ψ dΣ̃ <∞.

This finishes the proof.

3. MISE estimates. In this section the main results of this paper are presented. Recall the
definition of the estimator f̂α,σ of the input function f in (2.4). Since EΦα(K∗K)K∗ε = 0, the
MISE satisfies the bias-variance decomposition

E ‖f̂α,σ − f‖2 = B (f̂α,σ)2 + E ‖f̂α,σ − E f̂α,σ‖2, (3.1)

with the bias term B (f̂α,σ) := ‖E f̂α,σ−f‖. As discussed in the introduction, the bias term can be
bounded by standard estimates whereas the variance term requires a special treatment involving
a splitting in the frequency domain.

3.1. Estimation of the bias. The bias in our model coincides with the error in a determin-
istic setting and can be estimated by standard techniques (see [14]). Using the triangle inequality,
the noise model (2.11), (2.12), and the definition (2.4) of f̂α,σ, we get

B (f̂α,σ) ≤ ‖Φα(K∗K)K∗Kf − f‖ + τ‖Φα(K∗K)K∗ξ‖.
The first term (called approximation error) is bounded by γΛΛ(α)w due to (2.8) and (2.10). For
the second term (called propagated deterministic noise error) we obtain the bound

‖Φα(K∗K)K∗ξ‖2 = 〈Φα(KK∗)ξ,KK∗Φα(KK∗)ξ〉 ≤ C2C3

α
(3.2)

using the identity Φα(K∗K)K∗ = K∗Φα(KK∗), (see [14, eq. (2.43)]) and (2.9). Hence,

B (f̂α,σ) ≤ γΛΛ(α)w +

√
C2C3

α
τ. (3.3)

Since we aim to show optimality of general regularization methods by comparison to spectral cut-
off (see Introduction and §3.3), we now compare the approximation errors of general regularization
methods and spectral cut-off. To this end, we introduce the following notations.

Notation: For two real-valued functions f, g defined on an interval (0, ᾱ] we write

f(α) ∼ g(α) (or f(α) ∼< g(α)) , α↘ 0,

if g(α) �= 0 for α in some neighborhood of 0 and limα↘0
f(α)
g(α) = 1 or lim supα↘0

f(α)
g(α) ≤ 1.

Furthermore, we write

f(α) � g(α), α↘ 0,
6



if there exist constants ᾱ > 0 and Cᾱ ≥ 1 such that (1/Cᾱ)f(α) ≤ g(α) ≤ Cᾱf(α) for 0 < α ≤ ᾱ.
Recall that Λ : [0,∞) → [0,∞) is assumed to be a strictly increasing, continuous function with

Λ(0) = 0 and that 1 − tΦSC
α (t) = χ[0,α](t), i.e. (I −K∗KΦSC

α (K∗K)) is an orthogonal projection
operator. Therefore,

sup
f∈FΛ,w

‖(I −K∗KΦSC
α (K∗K))f‖ = sup

t∈σ(K∗K)

(1 − tΦSC
α (t))Λ(t)w ∼ Λ(α)w, α↘ 0.

The last relation holds since 0 is not an isolated point of the spectrum σ(K∗K) for ill-posed
operator equations. Using (2.8) and (2.10) we obtain the estimate

sup
f∈FΛ,w

‖(I −K∗KΦα(K∗K))f‖ ≤ γΛΛ(α)w ∼ γΛ sup
f∈FΛ,w

‖(I −K∗KΦSC
α (K∗K))f‖ (3.4)

as α↘ 0. For many regularization methods and smoothness classes we have γΛ ≤ 1.

3.2. Estimation of the integrated variance and rate of convergence of the MISE.
The more difficult part is the estimation of the integrated variance of the error f̂α,σ − f . Under
Assumption 1 we have

E ‖f̂α,σ − E f̂α,σ‖2 = σ2E ‖Φα(ρ)UK∗ε‖2 ≤ σ2

∫
S

Φ2
α(ρ)ρ dΣ. (3.5)

A crucial point in the following analysis is the estimation of the tails of the spectral function ρ.
To this end, we bound the variance in terms of the function

R(α) := Σ({ρ ≥ α}), α > 0. (3.6)

In order to control the MISE of f̂α,σ as α↘ 0 it is tempting to assume that R is smooth in a
neighborhood around 0. However, this is not true in general. Therefore, we will pose instead that
R can be approximated suitably by a smooth function S with similar properties as R, as α ↘ 0.
Obviously, R is monotonically decreasing (see (3.8a) below). If ρ ≥ 0 belongs to L1(Σ), then
− ∫∞0 α dR(α) =

∫
S
ρ dΣ <∞ (see (3.8b)), and it follows from Lebesgue’s dominated convergence

theorem that limα↘0 αR(α) = limα↘0

∫
S
α 1{ρ≥α} dΣ = 0 (see (3.8c)).

Assumption 2. There exists a constant ᾱ ∈ (0, ‖ρ‖∞] and a function S ∈ C2((0, ᾱ]) such
that

R(α) ∼ S(α), α↘ 0, (3.7)

with R defined by (3.6) in terms of the spectral decomposition (2.1), and S satisfies

S′ < 0, (3.8a)
−αS′(α) is integrable on (0, ᾱ], (3.8b)
lim
α↘0

αS(α) = 0, (3.8c)

∃γS ∈ (0, 2) ∀α ∈ (0, ᾱ] :
S′′(α)
−S′(α)

≤ γS

α
. (3.8d)

We will show in §5 for a number of examples that this assumption is satisfied. Now we are in
the position to give an estimate of the MISE. The estimate of the MISE in the image space H2 in
(3.10) is needed in the analysis of L2-boosting (§5.4) and for nonlinear inverse problems.

Theorem 3. Consider the model (2.11), and let Assumptions 1 and 2 hold true. We define
a general spectral estimator f̂α,σ by (2.4) and assume that Φα satisfies (2.9).

1. If condition (2.10) is satisfied for the function Λ defining the smoothness class FΛ,w,K∗K ,
then for all f ∈ FΛ,w,K∗K the MISE can be asymptotically bounded by

E ‖f̂α,σ − f‖2
H1 ∼<

(
γΛΛ(α)w +

√
C2C3

α
τ

)2

+
(C2

2 + C2
3 )σ2

α2

∫ α

0

S(β) dβ, α↘ 0. (3.9)
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2. Assume that g ∈ FΛ̃,w,KK∗ ⊂ H2 and that Λ̃ satisfies (2.10). (If g = Kf with f ∈
FΛ,w,K∗K , then Λ̃(t) :=

√
tΛ(t), but we do not assume g ∈ R(K) here!) Then

E ‖Kf̂α,σ− g‖2
H2 ∼<

(
γΛ̃Λ̃(α)w + C2τ

)2

+
(C2

2 + C2
3 )σ2

α2

∫ α

0

βS(β) dβ, α↘ 0. (3.10)

Note that for statistical inverse problems as opposed to deterministic inverse problems, the
estimates of the noise term and hence the rates of convergence of the MISE do not only depend
on the relative smoothness of the solution (i.e. on Λ), but also on the operator (i.e. on S).

Remark 4. We comment on the choice of the regularization parameter α > 0. If the noise
levels σ and τ , the spectral properties of K∗K (i.e. S) and the smoothness of f (i.e. Λ) are known,
one can choose α by minimizing the right hand side of (3.9). Since typically the smoothness of the
solution is not known a-priori, so-called adaptive methods must be employed for the selection of
α. We do not intend to review the considerable amount of literature on this topic here, but want
to mention that the explicit bounds on the variance given in Theorem 3 allow the application of
the Lepskij balancing principle as proposed for inverse problems by Mathé & Pereverzev [32, 33]
and Bauer & Pereverzev [3]. We will discuss this in more detail elsewhere. With this method
one typically loses a log factor in the asymptotic rates of convergence. In most cases this can be
avoided by using Akaike’s method as studied for spectral cut-off and related methods by Cavalier et
al. [8]. Unfortunately, Assumption 2 in this paper is not satisfied for the methods discussed here.

3.3. Comparison with spectral cut-off. To show that with an optimal choice of α our
estimators can achieve the best possible order of convergence among all estimators as σ ↘ 0,
we compare them to the spectral cut-off estimator for which minimax results are known in many
situations (see references in the introduction). Since we are mainly interested in the case that the
statistical noise is asymptotically dominant, we will assume that τ = 0 for simplicity. Moreover,
we assume in addition to (2.14) that the lower bound

Var (UK∗ε(s)) ≥ γvarρ(s). (3.11)

holds true for some constant γvar > 0. For the white noise model this is satisfied with γvar = 1
and for the inverse regression model with γvar = Cv,l/C1 (see (4.13)). Moreover, we need the
following assumption to prove optimal rates in many mildly ill-posed problems.

Assumption 3. There exists a constant C4 > 0 such that for all α ∈ (0, ᾱ]

C4

α
≤ −S′(α)

S(α)
. (3.12)

Theorem 5. Let Assumptions 1 and 2 and the lower bound (3.11) hold true and assume that
the family of functions {Φα} satisfies (2.9). Moreover, assume that either S = R, or Assumption 3
holds true. Then the integrated variance of the estimator f̂α,σ is bounded by the integrated variance
of the spectral cut-off estimator f̂SC

α,σ

E ‖f̂α,σ − E f̂α,σ‖2 ∼<
C2

2 + κC2
3

γvar
E ‖f̂SC

α,σ − E f̂SC
α,σ‖2, α↘ 0, (3.13)

with C2 and C3 as in Theorem 3 and κ := γS/(2 − γS), γS defined in (3.8d). Moreover, if condition
(2.10) is satisfied for the function Λ defining the smoothness class FΛ,w and if τ = 0, then there
exists a constant C > 0 such that

sup
f∈FΛ,w

E ‖f̂α,σ − f‖2 ≤ C sup
f∈FΛ,w

E ‖f̂SC
α,σ − f‖2, (3.14)

for all σ > 0 and all α > 0 sufficiently small.
Whereas condition (3.12) is usually satisfied for mildly ill-posed problems, it is not satisfied for

exponentially ill-posed problems where S(α) ∼ c(− lnα)q for constants c, q > 0. Nevertheless, the
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error bounds in Theorem 3 yield optimal rates of convergence in the limit σ ↘ 0 for logarithmic
source conditions after taking the infimum over all α. This is made precise in the following result
which relies on a comparison of the rates for general regularization methods and bounds on the
spectral cut-off rates, which are known to be optimal in many situations (e.g. Mair & Ruymgaart
[30]).

Theorem 6. Under the assumptions of Theorem 3, Part 1 with τ = 0 define the increasing
functions γ1(α) := − ∫ ᾱα 1

β dR(β) and γ2(α) := 1
α2

∫ α
0 S(β) dβ and assume that

Λ (γ2(γ1(α))) ∼< CΛ(α), α↘ 0, (3.15)

with the inverse function γ2 of γ2 and a constant C > 0. Then

inf
α>0

E ‖f̂α,σ − f‖2 ∼< inf
α>0

(
CγΛΛ(α)w + (C2

3 + C2
2 )σ2γ1(α)

)
, σ ↘ 0,

i.e. if we choose the optimal value of α for every noise level σ, all spectral regularization methods
achieve the same rate of convergence of the MISE as spectral cut-off.

Assumption (3.15) is satisfied if Λ(t) = (− ln t)−p and γ1(α) ≤ γ2(α2) since

Λ(γ2(γ1(α))) ≤ Λ(α2) = (−2 lnα)−p = 2−pΛ(α).

4. Noise models satisfying Assumption 1. In this section we show that several commonly
used noise models fit into the general framework described in Assumption 1. We start with an
(infinite dimensional) white noise model, and then continue with several models based on finitely
many observations.

4.1. White noise. A frequently used model is to assume that ε in (2.11) is a white noise
process in H2 (see e.g. Donoho [12, 11], Mathé & Pereverzev [31]). Moreover, we assume that K∗K
is a trace-class operator, i.e. it is compact and the eigenvalues ρj of K∗K satisfy tr(K∗K) :=∑∞

j=0 ρj <∞. Then CovK∗ε = K∗K, so

E ‖K∗ε‖2 = tr(CovK∗ε) = tr(K∗K) <∞.

Therefore, K∗ε can be identified with a Hilbert-space valued random variable. Using the notation
introduced in Remark 1 and defining ej : N → R by ej(k) := δjk, uj = U∗ej ∈ H1 is a unit-length
eigenvector of K∗K to the eigenvalue ρj , and

Var (UK∗ε(j)) = Var 〈UK∗ε, ej〉 = Var 〈ε,Kuj〉 = ‖Kuj‖2 = ρj ,

for j = 0, 1, 2, . . . . Therefore, (2.14) is satisfied with equality.

4.2. Quasi-deconvolution, errors in variable, non-compact operators. Suppose we
want to estimate the density f of a random variable Z with values in R

d, but we can only observe
a random variable X = Z +W perturbed by a random variable W . Hence, our data are

X1, . . . , Xn
i.i.d.∼ X = Z +W. (4.1)

The density g of X is given by

g =
∫

Rd

h(· − z|z)f(z) dz =: Kf, (4.2)

where h(·|z) is the conditional density of W given Z = z. If Z and W are stochastically inde-
pendent, K is a convolution operator. Recovering of f is known as deconvolution problem and
has been studied extensively (e.g. Stefanski & Carroll [38], Fan [17] and Diggle & Hall [10]). De-
pendent Z and W in (4.1) occur in many scientific applications, e.g. brightness determination of
extragalactic star clusters in astrophysics, where the variance σ2 of the noise W increases mono-
tonically with decreasing brightness of the object Z. Here, a reasonable model is described by
h(y|z) = (2πσ2(z))−1/2 exp(−y2/σ2(z)) (see Bissantz [4]).
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We assume that f ∈ L2(Rd) and that K is a bounded, injective operator in L2(Rd). As
opposed to the previous section, in general, K is not compact here. Obviously, an unbiased
estimator of q := K∗g is given by

q̂n(y) :=
1
n

n∑
j=1

h(Xj − y|y). (4.3)

To fit this into our general framework, we show that q̂n = q + K∗ε̃ for a Hilbert-space process
ε̃ : L2(Rd) → L2(Ω,P , P ) defined by

〈ε̃, ϕ〉 :=
1
n

n∑
j=1

ϕ(Xj) − 〈g, ϕ〉 . (4.4)

In fact, for ψ ∈ L2(Rd),

〈K∗ε̃, ψ〉 = 〈ε̃, Kψ〉 =
1
n

n∑
j=1

∫
Rd

h(Xj − z|z)ψ(z) dz − 〈K∗g, ψ〉 = 〈q̂n − q, ψ〉 .

The next result states that Assumption 1 is satisfied:
Proposition 7. Assume that the operator K defined by (4.2) is injective and satisfies

‖K‖2,2 < ∞ and ‖K‖2,∞ < ∞, where ‖K‖r,s is defined as the operator norm of K : Lr(Rd) →
Ls(Rd). Moreover, let q̂n and ε̃ be defined by (4.3) and (4.4), and let

σ :=
1√
n

(‖g‖L∞ + ‖g‖2
L2

)1/2
and ε := ε̃/σ. (4.5)

Then ε satisfies Assumption 1, and q̂n = q + σK∗ε.
Proof. We have to show that (2.12)–(2.14) hold true. Since the Xj are assumed to be indepen-

dent, it suffices to consider the case n = 1. The first part of (2.12), i.e. 〈ε, ϕ〉 = 0 for ϕ ∈ L2(Rd)
follows from Eϕ(X) =

∫
ϕg dx. Since

Cov(〈ε̃, ϕ1〉 , 〈ε̃, ϕ2〉) =
∫

Rd

ϕ1ϕ2g dx− 〈g, ϕ1〉 〈g, ϕ2〉 for all ϕ1, ϕ2 ∈ H2,

the covariance operator of ε̃ is given by Covε̃ = Mg − g ⊗ g, where Mg means multiplication by
g, and g ⊗ g : L2(Rd) → L2(Rd) is the rank-1 operator defined by (g ⊗ g)ϕ := g 〈ϕ, g〉. Now
‖Covε‖ ≤ 1 follows from the estimate ‖Covε̃‖ ≤ ‖g‖L∞ + ‖g‖2

L2, which completes the proof of
(2.12).
To show (2.13), i.e. E ‖q̂n − q‖2 <∞, note that

Covq̂1 = K∗Covε̃K = K∗MgK − (K∗g) ⊗ (K∗g).

We have to show that this is a trace class operator. Obviously (K∗g) ⊗ (K∗g) is trace class as a
rank-1 operator. It is not obvious, however, that K∗MgK is trace class since neither K nor Mg

are even compact in general. To show this, we rewrite the kernel of K as k(x, z) := h(x − z|z)
and note that ess sup ‖k(x, ·)‖L2 = ‖K‖2,∞ <∞. Since g ≥ 0, the operator K∗MgK is self-adjoint
and positive semi-definite. Let {ϕj : j ∈ N} be a complete orthonormal system in the separable
Hilbert space L2(Rd). The B. Levi Theorem yields

∑
j∈N

〈ϕj ,K∗MgKϕj〉 =
∑
j∈N

∫
g(x)|(Kϕj)(x)|2dx

=
∑
j∈N

∫
g(x)| 〈k(x, ·), ϕj〉 |2dx ≤ ‖g‖L1 ess sup

x∈X2

‖k(x, ·)‖2
L2 <∞,
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which implies that K∗MgK is trace class with tr(K∗MgK) ≤ ‖K‖2
2,∞. Finally, (2.14) follows

from Lemma 2.

If K is a convolution operator with convolution kernel w(x− z), then the canonical choice of
the unitary operator U in the Halmos decomposition is the Fourier transform

(Uϕ)(ξ) = (Fϕ)(ξ) =
∫

Rd

ϕ(x)e−2πiξ·xdx, (4.6)

and the multiplier function is then ρ = |Fw|2. In this case the condition (2.14) in Assumption 1
can be verified explicitly, see Mair & Ruymgaart [30].

4.3. Inverse regression. We now review another commonly used noise model (see Wabha
[41], O’Sullivan [37], Nychka & Cox [36], Bissantz et al. [5]) and show how it is related to the
model (2.11). Suppose that Hi = L2(μi) are L2-spaces with respect to measure spaces (Xi,Xi, μi),
i = 1, 2, H1 is separable, and that K : L2(μ1) → L2(μ2) is an integral operator

(Kf)(x) :=
∫

X1

k(x, y)f(y) dμ1(y), x ∈ X2, (4.7)

with kernel k. Recall that K∗K is trace class if and only if K is Hilbert-Schmidt and that K is a
Hilbert-Schmidt operator if and only if k ∈ L2(μ2 × μ1) (see Taylor [39]). The latter condition is
easy to verify in most applications.

We will assume in the following that the measure space H2 is finite. Then we can arrange
that μ2(X2) = 1. We consider the regression model

Yi = (Kf)(Xi) + εi, f ∈ H1, i = 1, . . . , n, (4.8)

where we assume for simplicity that the random variables Xi ∈ X2 have uniform distribution
on X2 (see also Remark 9). Moreover, we assume that (Yi, Xi) ∼ (Y,X), i = 1, . . . , n are i.i.d.
random variables with values in R × X2 such that

E [Y |X ] = (Kf)(X), (4.9)

and hence E [ε|X ] = 0 for ε := Y − (Kf)(X). Finally we assume that that v(X) :=
√

E [ε2|X ]
satisfies

0 < Cv,l ≤ v(X) ≤ Cv,u <∞ a.s., (4.10)

for some constants Cv,l, Cv,u > 0. A straightforward computation shows that

q̂n =
1
n

n∑
i=1

Yik(Xi, ·). (4.11)

is an unbiased estimator of the vector q := K∗Kf . To fit the inverse regression model with
random design in our general framework, we introduce the Hilbert-space (noise) process ε̃ : H2 →
L2(Ω,P , P ) by

〈ε̃, ϕ〉 :=
1
n

n∑
j=1

Yjϕ(Xj) − 〈g, ϕ〉 , ϕ ∈ H2, (4.12)

and show that

〈K∗ε̃, ψ〉 = 〈ε̃, Kψ〉 =
1
n

n∑
j=1

Yj

∫
Xj

k(Xj , y)ψ(y) dμ1(y) − 〈K∗g, ψ〉 = 〈q̂n − q, ψ〉

for all ψ ∈ H1, i.e. q̂n = q +K∗ε̃.
11



Proposition 8. Assume the inverse regression model (4.7)–(4.10), and let q̂n and ε̃ be
defined by (4.11) and (4.12). Moreover, let K : L2(μ1) → L2(μ2) be Hilbert-Schmidt, and μ2 −
ess sup ‖k(x, ·)‖L2(μ1) <∞. Define

σ :=

√
C1

n
and ε := ε̃/σ,

with C1 := Cv,u+ ‖g‖2
L∞(μ2) + ‖g‖2

L2(μ2)
. Then ε satisfies Assumption 1 for the unitary transform

U defined in Remark 1, and q̂n = q + σK∗ε. Moreover,

Cv,l
n
ρ(j) ≤ Var ((Uq̂n)(j)), j = 0, 1, 2, . . . . (4.13)

Proof. It suffices to prove this for n = 1. Since X is uniformly distributed and (4.9) holds
true, we have

E (Y ϕ(X)) = E (E [ε|X ]ϕ(X)) + E (g(X)ϕ(X)) =
∫
gϕdμ2 = 〈g, ϕ〉

for all ϕ ∈ H2 and hence the first part of eq. (2.12) holds true. Using once more the same properties
of X and Y we find that

Cov(〈ε̃, ϕ1〉 , 〈ε̃, ϕ2〉) = E
{
Y 2ϕ1(X)ϕ2(X)

}− 〈g, ϕ1〉 〈g, ϕ2〉
= E

{
(ε2 + 2εg(X) + g(X)2)ϕ1(X)ϕ2(X)

}− 〈g, ϕ1〉 〈g, ϕ2〉
=
∫
ϕ1

(
v2 + g2

)
ϕ2 dμ2 − 〈g, ϕ1〉 〈g, ϕ2〉

for all ϕ1, ϕ2 ∈ H2. Hence, Covε̃ = Mv2+g2 − g ⊗ g where Mv2+g2ϕ := (v2 + g2) · ϕ and
(g ⊗ g)ϕ := 〈g, ϕ〉 g. This implies ‖Covε̃‖ ≤ C1 and finishes the proof of (2.12). Using the
notation of Remark 1, condition (2.13) can be seen as follows:

E ‖q̂1 − q‖2 = tr (Covq̂1−q) =
∞∑
j=0

〈Kuj,Covε̃Kuj〉 ≤ C1

∞∑
j=0

‖Kuj‖2 = C1 tr(K∗K) <∞.

Since

Var (Uq̂1)(j) = 〈uj ,Covq̂1uj〉 = 〈Kuj,Covε̃Kuj〉 ≤ C1‖Kuj‖2 = C1ρj,

we obtain the bound (2.14). The lower bound in (4.13) holds true since the operator M2
g − g ⊗ g

is positive definite as covariance operator of ε̃ for the case ε ≡ 0.

As opposed to [30] we do not need the assumption that the singular vectors uj ∈ H1 and
vj ∈ H2 in the singular value decomposition Kf =

∑∞
j=0

√
ρj 〈f, uj〉H1

vj be uniformly bounded
sequences in L∞(μ1) and L∞(μ2), respectively. We only require that μ2− ess sup ‖k(x, ·)‖L2(μ1) <
∞. This condition is often less restrictive and easier to verify.

Remark 9. Generalizations:
1. We can replace L2(μ1) by an arbitrary Hilbert space H1 (e.g. a Sobolev space) by replac-

ing k(x, ·) by k̃(x) :=
∑∞
j=0

√
ρ
j
v(x)uj , x ∈ X2. Then (4.7) and (4.11) read (Kf)(x) =

〈k̃(x), f〉H1 and q̂n = 1
n

∑n
i=1 Yik̃(Xi), respectively. Proposition 8 remains valid with lit-

erally the same proof if L2(X1) is replaced by H1.
2. (deterministic and nonuniform design). The noise model (2.11) also allows to treat models

of the form (4.8) where the measurement points are either nonuniformly distributed on X2

or xi = x
(n)
i are deterministic quantities (see, for instance, Nychka & Cox [36], O’Sullivan

[37]). For conditions on the design density see Munk [34].
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5. Applications. In this section we discuss how Assumption 2 of our main result (Theorem
5) can be verified for some specific operators A of practical interest.

A remarkable number of interesting inverse problem can be expressed in the form

K∗K = Θ(−Δ) (5.1)

in terms of the Laplace operator Δ on some compact, smooth d-dimensional Riemannian manifold
M with a (possibly empty) boundary ∂M . Our first three examples are of this form. Here
Θ : [0,∞) → (0,∞) is a function satisfying limλ→∞Θ(λ) = 0. Under the given assumptions
the Laplace operator −Δ defined on D(−Δ) := H1

0 (M) ∩ H2(M) ⊂ L2(M) (i.e. with Dirichlet
condition on ∂M) is a positive, self-adjoint operator, which has a complete orthonormal system
of eigenvectors ui in L2(M) with corresponding eigenvalues λi (see e.g. Taylor [40, Chap. 8.2]).
Hence the operator on the right hand side of (5.1) defined in (2.2) can be written as Θ(−Δ)f =∑

iΘ(λi) 〈f, ui〉 ui for f ∈ L2(M). Due to a famous result of Weyl (see Taylor [40, Ch.8, Thm
3.1. and Cor.3.5]), the distribution of the eigenvalues

N(λ) := #{λi : λi ≤ λ}, λ ≥ 0

has the asymptotic behavior

N(λ) ∼ cMλ
d/2, cM :=

volM
Γ
(
d
2 + 1

)
(4π)d/2

(5.2)

as λ → ∞, where volM =
∫
M 1 dx denotes the volume of M . Under the given assumptions the

operator A is compact as operator norm limit of the finite rank operators
∑k

i=1 Θ(λi) 〈ui, ·〉ui
as k → ∞. Assume that Θ(λ) is monotonically decreasing for λ ≥ λ0 and that Θ(λ) > α0 :=
Θ(λ0) for λ < λ0. As limλ→∞Θ(λ) = 0, the inverse function Θ : (0, α0] → [λ0,∞) satisfies
limα↘0 Θ(α) = ∞. If the spectral decomposition of A is chosen as in Remark 1, then the function
R defined in (3.6) satisfies

R(α) = #{λi : Θ(λi) ≥ α} = N
(
Θ(α)

) ∼ cM
(
Θ(α)

)d/2
, α↘ 0. (5.3)

5.1. Backwards heat equation. We consider the inverse problem to reconstruct the tem-
perature at time t = 0 on M from measurements of the temperature at time t = T . The forward
problem is described by the parabolic equation

∂tu(x, t) = Δu(x, t), x ∈M, t ∈ (0, T )
u(x, t) = 0, x ∈ ∂M, t ∈ (0, T ]
u(x, 0) = f(x), x ∈M,

(5.4)

with an initial temperature f ∈ L2(M) and the final temperature in g(x) := u(x, T ), x ∈ M . We
have g = exp(−TΔ)f , i.e. K = exp(−TΔ) ∈ L(L2(M)) and K∗K = exp(−2TΔ). Hence,

Θ(λ) = exp(−2Tλ)

in (5.1). By virtue of (5.3) the condition R ∼ S is satisfied for

S(α) := cM

(
− 1

2T
lnα

)d/2
.

It is easy to check that this function satisfies the conditions (3.8). In particular

S′′(α)
−S′(α)

=
1
α

(
1 − d− 2

2
1

lnα

)
(5.5)

so (3.8d) holds with any γS ∈ (1, 2) for sufficiently small ᾱ if d ≥ 3 and with γS = 1 for all ᾱ < 1
for d ≤ 2.
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If M is a compact Riemannian manifold without boundary, then the smoothness class FΛ,1

for a logarithmic source condition (2.7) is the unit ball in the Sobolev space H2p(M) with respect
to some equivalent norm (see Hohage [23]). Similar results hold true if M has a boundary with a
Dirichlet or Neumann condition. In this case we additionally need to impose boundary conditions.
Hence, if the initial temperature is bounded in some Sobolev norm, ‖f‖Hs ≤ C, s = 2p > 0, if the
regularization parameter is chosen such that α � σ, and if τ = O(σμ) with μ > 1

2 as σ ↘ 0, then
it follows from Theorem 3 after some elementary computations that the MISE decays like

E ‖f̂α,σ − f‖2
L2 = O

(
(− lnσ)−s

)
, σ ↘ 0

for all regularization methods satisfying (2.9).

5.2. Satellite gradiometry. In satellite gradiometry measurements of the gravitational
force of the earth at a distance a from the center are used to reconstruct the gravitational potential
u at the surface of the earth (see Hohage [23], Bauer & Pereverzev [3] and references therein). Let
the earth be described by E := {x : |x| < 1}, and let M := ∂E denote the surface of the earth.
Then u satisfies the Laplace equation

Δu(x) = 0, x ∈ R
3 \ E

and decays like |u(x)| = O
(|x|−1

)
as |x| → ∞. The available data consist of noisy measurements

of the rate of change of the gravitational force −∇u in radial direction r = |x|, i.e.

g(x) :=
∂2u

∂r2
(x), for |x| = a.

A discussion of the measurement errors shows that they are mainly of random nature (see [3]).
The problem is to determine the potential f = u

∣∣
M

at the surface M of the earth. Introducing
the operator K : L2(M) → L2(aM) mapping the solution f to the data g, we can write K∗K in
the form (5.1) with Θ(λ) = Φ(Λ(λ)) and

Φ(t) := c

(
1
2

+ t

)2(3
2

+ t

)2

a−2t, Λ(λ) :=

√
λ+

1
2

(see Hohage [23]). It is easy to show that Φ(t) is decreasing for sufficiently large t and that Λ(λ) is
monotonic increasing for all λ > 0. Obviously, Θ(α) = Λ

(
Φ(α)

)
= Φ(α)2 − 1

2 . The function Φ(α)
cannot be computed explicitly, but we can estimate its asymptotic behavior as α ↘ 0. Writing
t = Φ(α) for α sufficiently small and p(t) := c

(
1
2 + t

)2 ( 3
2 + t

)2 we obtain

Φ(α) = − loga α
t

− loga α
= − loga α

t

− loga (p(t)a−2t)
= − loga α

(
t

− loga(p(t)) + 2t

)
∼ − lnα

2 lna
,

as α↘ 0. Therefore, using (5.3), we get

R(α) = cMΘ(α) ∼
(
− lnα

2 lna

)2

, α↘ 0.

The function S(α) :=
(− lnα

2 lna

)2
satisfies the conditions (3.8) (see (5.5)). Moreover, the smoothness

classes FΛ,1 for logarithmic source conditions (2.7) are unit balls in the Sobolev spaces Hp(M)
w.r.t. equivalent norms (see Hohage [23]). Since the gravitational potential satisfies the Poisson
equation Δu = −φ in R3 and since the mass density φ of the earth E belongs to L2(E), it follows
from elliptic regularity results that u ∈ H2(E), so f = u|M ∈ H3/2(M) in the sense of the trace
operator (see e.g. Taylor [39]). Therefore,

E ‖f̂α,σ − f‖2
L2 = O

(
(− lnσ)−3

)
, σ ↘ 0,

if τ = O(σ) and if we choose α � σ.
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5.3. Operators in Hilbert scales. In the following we show that our assumptions are
satisfied for operators acting in Hilbert scales (see Mair & Ruymgaart [30], Mathé & Pereverzev
[31]). Hence, spectral regularization methods yield optimal rates of convergence for this class of
operators.

Let L : D(L) ⊂ H → H be an unbounded, positive, self-adjoint operator defined on a dense
domain D(L) ⊂ H , and assume the inverse L−1 : H → H is bounded. Then L generates a scale
of Hilbert spaces Hμ, μ ∈ R defined as completion of

⋂
n∈N

D(Ln) under the norm generated by
the inner product 〈f, g〉μ := 〈Lμf, Lμg〉. We have Hμ ⊂ Hλ for μ, λ ∈ R with μ > λ. A prototype
is L =

√
I − Δ with the Laplace operator Δ on a closed manifold M , which leads to the usual

Sobolev spaces on M .
We assume that K is a-times smoothing (a > 0) in (part of) the Hilbert scale (Hμ), i.e. K :

Hμ−a → Hμ is a bounded operator for all μ ∈ [μ, μ] which has a bounded inverse K−1 : Hμ →
Hμ−a. This is equivalent to 1

Cµ
‖f‖μ−a ≤ ‖Kf‖μ ≤ Cμ‖f‖μ−a for all f ∈ Hμ−a and some con-

stants Cμ ≥ 1. Such conditions are satisfied for many boundary integral operators, multiplication
operators, convolution operators and compositions of such operators (see also the discussion after
(5.10)). We do not assume here that K is self-adjoint or that K∗K and L commute, i.e. that they
can be diagonalized by the same unitary operator U .

Usually the nature of the noise dictates the choice H2 = H0, and one is interested in error
bounds for the estimator in positive norm, i.e. H1 = Hμ−a for μ ≥ a. Then the operator equation
Kf = g is ill-posed with K = K0←μ−a considered as an operator from Hμ−a to H0.

To verify Assumptions 2 and 3 with R ∼ S in (3.7) replaced by R � S (see Remark 14), we
assume that L has a complete orthonormal system of eigenvectors with eigenvalues 0 < λ0 ≤ λ1 ≤
λ2 ≤ . . . tending to infinity. Then the embedding operator J : Hμ ↪→ H0 is compact, and its
singular values are given by σj(J) = λ−μj . It follows from the decomposition K0←μ−a = JKμ←μ−a
and the Courant mini-max characterization of the singular values σj = σj(K0←μ−a) (see e.g. Kreß
[28]) that

1
‖K−1‖μ−a←μ λ

−μ
j ≤ σj(K0←μ−a) ≤ ‖K‖μ←μ−aλ−μj , j = 0, 1, . . .

Hence if N(λ) := #{λj : λj ≤ λ} and C := max(‖K‖μ←μ−a, ‖K−1‖μ−a←μ), then R(α) := {σj :
σ2
j ≥ α} satisfies

N
(
(α/C2)−1/2μ

)
≤ R(α) ≤ N

(
(C2α)−1/2μ

)
.

If the counting function has the asymptotic behavior N(λ) � λd for some d > 0, then R(α) �
α−d/2μ. For the case L =

√
I − Δ, d is the space dimension (see (5.2)). A straightforward

computation shows that S(α) := α−d/2μ satisfies (3.8) and (3.12) in Assumption 2 and 3 if and
only if d/(2μ) ∈ (0, 1). Under this condition, it follows from Remark 14 that Theorems 3 and 5
hold true with different constants.

It remains to discuss the Hölder-type source conditions (2.6) in this setting. To do this we
assume for simplicity that H1 = H2 = H0. Let K∗ denote the adjoint of K with respect to the
inner product in H0. It is easy to show that K∗ : H−μ → H−μ+a is bounded and boundedly
invertible for all μ ∈ [μ, μ]. Let l ∈ N such that [−2al + 1, 2al − 1] ⊂ [μ, μ]. Then there exists a
constant γ ≥ 1 such that

γ−1‖L2alf‖H0 ≤ ‖(K∗K)−lf‖H0 ≤ γ‖L2alf‖H0

for all f ∈ H2al. It follows from the Heinz inequality (see et al. [14], Heinz [22]) that

γ−σ‖L2aσlf‖H0 ≤ ‖(K∗K)−σlf‖H0 ≤ γσ‖L2aσlf‖H0

for all σ ∈ [0, 1] and f ∈ H2aσl. Therefore, the source condition f = (K∗K)νw, w ∈ H0 is
equivalent to f ∈ H2aν . Let u := 2aν and f ∈ Hu. Then

E ‖f̂α,σ − f‖2
H0

= O
(
σ

2u
u+a+d/2

)
, σ ↘ 0,

15



for the choice α � σ
2a

u+a+d/2 if τ = O
(
σ

u+a
u+a+d/2

)
and μ0 ≥ u/2a.

5.4. L2-Boosting. Boosting algorithms include a large class of iterative procedures which
improve stagewise the performance of estimators. They have achieved significant interest in the
machine learning context and more recently in statistics (see Freund & Shapire [18] or Friedman
[19] among many others). One of the main challenges is to provide a proper convergence analysis
and proper stopping rules for the iteration depth (see Zhang & Yu [43]). L2-Boosting has been
introduced in the context of regression analysis by Bühlmann & Yu [7] for classification and more
general learning problems. We consider the inverse regression problem described in §4.3 if K is
an embedding operator and X2 is a d-dimensional smooth, compact Riemannian manifold (e.g. a
smooth compact subset of Rd). Consider a weak learner of the form

f̂0,n =
1
n

n∑
j=1

Yik(y,Xj), (5.6)

with a continuous, symmetric kernel k : X2×X2 → R such that the integral operator K̃ : L2(X2) →
L2(X2) with kernel k is compact and strictly positive definite with eigenvalues κ0 ≥ κ1 ≥ . . . and
satisfies

ess supx∈X2
k(x, x) <∞ and #{κj ≥ α} � α−d/(2μ0) as α→ 0, (5.7)

for some μ0 > 0. Further, let Hμ, μ ∈ R be the Hilbert scale generated by the operator L :=
K̃−1/(2μ0) as described in §5.3. If we set H1 := Hμ0 and H2 = H0 = L2(X2), then H1 ⊂ H2, and
the adjoint of the embedding operator K : H1 ↪→ H2 is given by K∗ϕ = K̃ϕ since 〈ϕ, K̃ψ〉H1 =
〈Lμ0ϕ,Lμ0K̃ψ〉L2 = 〈ϕ, ψ〉L2 for all ψ ∈ L2(X2) and all ϕ ∈ H1. By a similar reasoning one can
show that H1 is a reproducing kernel Hilbert space (RKHS) with reproducing kernel k(·, x). A
typical example of a weak learner is a spline smoother which leads to Sobolev spaces Hμ (see [7]).

Note that the weak learner (5.6) can shortly be written as f̂0,n = K∗Y . Boosting this learner
results in a recursive iteration

f̂j+1,n = f̂j,n − βK∗(Y −Kf̂j,n), j = 0, 1, 2, . . . , (5.8)

which is in fact Landweber iteration (see §2.2). Hence, Theorem 3 gives the following bound.
Corollary 10. Assume that k satisfies (5.7) with μ0 > d

2 , let g ∈ Hμ with μ > 0 and
β ∈ (0, ‖KK∗‖2]. Then the MISE is bounded by

E ‖f̂j,n − g‖2
L2(X2)

≤ C
(
(j + 1)−μ/μ0 + n−1(j + 1)d/(2μ0)

)
. (5.9)

For the optimal stopping index j∗(n) � n2μ0/(2μ+d) we obtain the rate E ‖f̂j∗(n),n − f‖2
L2(X2)

≤
Cn−2μ/(2μ+d), which is the well-known minimax rate in the case of Sobolev spaces.

Proof. It follows easily from the definitions that g ∈ Hμ is equivalent to g ∈ FΛ̃,w with
Λ̃(t) = tμ/2μ0 for some w > 0. Since Landweber iteration has infinite qualification (see [14]), Λ̃
satisfies (2.10). Moreover, as the singular values of K are σj(K) =

√
κj , (5.7) implies that R(α) =

#{σj(K)2 ≥ α} � S(α) with S(α) := α−d/2μ0 , and S satisfies (3.8) in Assumption 2 for μ0 >
d
2 .

To verify the assumptions of Prop. 8, we note that tr(K∗K) = − ∫∞
0
α dR(α) < ∞ for μ0 >

d
2

(i.e. K is Hilbert-Schmidt) and that ess supx∈X2
‖k(x, ·)‖H1 = ess supx∈X2

√〈k(x, ·), k(x, ·)〉H1 =
ess supx∈X2

√
k(x, x) <∞. Therefore, Prop. 8 and Remark 9.1 imply that Assumption 1 is satisfied

with σ � n−1/2. Hence (5.9) follows from (3.10) in Theorem 3 with α = (j + 1)−1 and Remark
14.

Corollary 10 immediately applies to all other regularization methods covered by Theorem 3.
In particular, ν-methods require only the square root of the number of Landweber iterations to
achieve the optimal rate, but they seem to be unknown in statistics and machine learning.
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Often a discretized sample variant of the iteration (5.8) is considered. Convergence of this algo-
rithm has been analyzed by Yao et al.[42], but without optimal rates. It is still an open problem
whether this discretized version achieves the minimax rates of Corollary 10 in the general context
of RKHS as it has been shown in [7] for the particular case of spline learning.

5.5. Errors in variable problems. We now further discuss the errors in variable problems
introduced in §4.2. Our aim is to establish rates of convergence of estimators of the density f of
Z ∈ Rd as the sample size n tends to infinity. Therefore, with a slight abuse of notation, we will
write f̂α,n = f̂α,σ(n,g) in this context. It follows from the definition (4.5) of σ and the boundedness
of ‖Λ(K∗K)‖2,2 that

sup
f∈FΛ,w

σ(n,Kf) = sup
‖w‖=w

σ(n,KΛ(K∗K)w) ≤ w√
n

(‖KΛ(K∗K)‖2
2,∞ + ‖KΛ(K∗K)‖2

2,2

)
where the expression in parenthesis is finite under the assumptions of Proposition 7.

We first consider two important special cases

h1(y|z) = w1(y) := exp(−π‖y‖2
2), h2(y|z) = w2(y) := cd exp(−‖y‖2), y, z ∈ R

d

with normalization constant cd := π−d/2Γ(d/2 + 1)/Γ(d + 1) corresponding to an error variable
W independent of Z. Here K is a convolution operator, the canonical unitary transformation
U in the spectral decomposition is the Fourier transform F defined in (4.6), and the multiplier
function is ρj = |Fwj |2, i.e. ρ1(ξ) = exp(−2π‖ξ‖2

2), and ρ2(ξ) = (1 + 4π2‖ξ‖2)−d−1. Hence, the
corresponding functions R are given by

R1(α) = Vd

(
− 1

2π
lnα

)d/2
, R2(α) = Vd(2π)−d

(
α−1/(d+1) − 1

)d/2
, 0 < α < 1,

where Vd denotes the volume of the unit ball in Rd. Hence, Assumption 2 is satisfied for R1 with
S = R1 (see (5.5)) and for R2 with S(α) = Vd(2π)−dα−d/(2d+2). Since the norm of the Sobolev
space Hs(Rd) is defined by ‖f‖Hs(Rd) = (

∫
(1 + |ξ|2)s|Ff(ξ)|2 dξ)1/2, a simple computation shows

that in the first case a logarithmic source condition (2.7) is equivalent to f ∈ H2p(Rd), and in the
second case a Hölder-type source condition (2.6) is equivalent to f ∈ H2(d+1)ν(Rd). Suppose that
f ∈ Hs(Rd). Then we find in the first case for the choice α � n−1/2 the asymptotic rates

E ‖f̂α,n − f‖2
L2 = O

(
(lnn)−s

)
, n→ ∞,

and in the second case the rate

E ‖f̂α,n − f‖2
L2 = O

(
n−

s
s+3d/2+1

)
, n→ ∞

for the choice α � n−
d+1

s+3d/2+1 . This generalizes results in Mair & Ruymgaart [30] for spectral
cut-off to arbitrary regularization methods and to the multivariate setting.

We now consider the case that the random variables Z and W are not stochastically indepen-
dent. We assume that the conditional density h is of the form

h(x− z|z) = w(x − z) + p(x, z) (5.10)

where c(1 + ‖ξ‖2
2)
−a ≤ |Fw(ξ)|2 ≤ c(1 + ‖ξ‖2

2)
−a for some constants a, c, c > 0, and p is C∞-

smooth and decays exponentially as ‖x‖, ‖z‖ → ∞. Then the convolution operator K̃ with kernel
w is bounded and boundedly invertible from Hμ−a(Rd) to Hμ(Rd) for all μ ∈ R, and the integral
operator P with kernel p is compact from Hμ−a(Rd) to Hμ(Rd) for all μ ∈ R. Under our general
assumption thatK = K̃+P is injective, it follows from Riesz theory thatK : Hμ−a(Rd) → Hμ(Rd)
has a bounded inverse. Hence, it follows from the arguments of the previous paragraph that Hölder
source condition (2.6) for K are equivalent to f ∈ H2aν(Rd). If we additionally assume periodicity
of w and p with arbitrary size of the periodicity interval, then it follows from our results on
operators in Hilbert scales that also Assumption 1 and 2 are satisfied.
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6. Appendix: Proofs and auxiliary results. This section contains the proofs of our main
results on the MISE. First, we require some technical lemmas.

Lemma 11. If Assumption 1 holds true and the family of functions {Φα} satisfies (2.9), then

E ‖f̂α,σ − E f̂α,σ‖2 ≤ − (σC3)2

α2

∫ α

0

β dR(β) − (σC2)2
∫ ∞
α

1
β

dR(β), (6.1a)

E ‖Kf̂α,σ − EKf̂α,σ‖2 ≤ (σC2)2R(α) − (σC3)2

α2

∫ α

0

β2 dR(β). (6.1b)

(Recall that R is decreasing, i.e. the right hand sides of the inequalities above are non-negative.)
Proof. Recall the bound (3.5) on E ‖f̂α,σ − E f̂α,σ‖2. We split the integral on the right hand

side of (3.5) of the variance over the “frequency domain” S into low frequency components {ρ ≥ α}
and high frequency components {ρ < α}. The low frequency components are bounded by∫

{ρ≥α}
Φα(ρ)2ρ dΣ ≤ C2

2

∫
{ρ≥α}

1
ρ

dΣ = −C2
2

∫ ∞
α

1
β

dR(β),

where the latter equality holds by a transformation of the integral on the l.h.s. to an integral with
respect to the image measure Σρ, and subsequent reformulation as the Lebesgue-Stieltjes integral
given on the r.h.s. of the equation. Similarly, the high frequency components of the variance can
be estimated by

∫
{ρ<α}

Φα(ρ)2ρ dΣ ≤ C2
3

α2

∫
{ρ<α}

ρ dΣ = −C
2
3

α2

∫ α

0

β dR(β)

using (2.9b). This completes the proof of (6.1a).
In analogy to (3.5) we have E ‖Kf̂α,σ − EKf̂α,σ‖2 ≤ σ2

∫
S
Φα(ρ)2ρ2 dΣ, and the right hand side

of this inequality can be estimated as above to establish the bound (6.1b).

The next lemma shows that for R = S the high frequency components of the variance are
asymptotically bounded by low frequency components and that the relative magnitude of these
components is determined by the constant γS in (3.8d).

Lemma 12. Assume that S ∈ C2((0, ᾱ]) satisfies (3.8), and define κ := γS
2−γS , i.e. 2κ

κ+1 = γS.
Then

− 1
α2

∫ α

0

β dS(β) ≤ −κ
∫ ᾱ

α

1
β

dS(β) − κ+ 1
2

S′(ᾱ), α ∈ (0, ᾱ]. (6.2)

Proof. We rewrite (3.8d) as (κ+ 1)S′′(α) ≤ 2κ−S
′(α)
α . Integrating this inequality from α to ᾱ

yields (κ+ 1)(S′(ᾱ) − S′(α)) ≤ 2κ
∫ ᾱ
α
−S′(β)
β dβ, or equivalently

0 ≤ αS′(α) + καS′(α) + 2κα
∫ ᾱ

α

−S′(β)
β

dβ − α(κ+ 1)S′(ᾱ). (6.3)

It follows that

0 ≤
∫ α

0

β dS(β) − κα2

∫ ᾱ

α

1
β

dS(β) − α2

2
(κ+ 1)S′(ᾱ), α ∈ (0, ᾱ]. (6.4)

To verify this we check that the derivative of the right hand side of eq. (6.4) is the right hand side
of (6.3) and that the limit of the right hand side of (6.4) as α↘ 0 is nonnegative by assumptions
(3.8a) and (3.8b). (6.4) is equivalent to (6.2).

Next we show under an additional assumption that the asymptotic balance between high and
low frequency components of the variance also holds true if R is not smooth.
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Lemma 13. If Assumption 2 holds true, then for j ∈ {1, 2}

− 1
α2

∫ α

0

βj dS(β) ≤ 1
α2

∫ α

0

jβj−1S(β) dβ, (6.5a)∣∣∣∣ 1
α2

∫ α

0

βj d(R− S)(β)
∣∣∣∣ = o

(
1
α2

∫ α

0

jβj−1S(β) dβ
)
, (6.5b)

−
∫ ᾱ

α

1
β

dS(β) ≤ 1
α
S(α), (6.5c)∣∣∣∣

∫ ᾱ

α

1
β

d(R− S)(β)
∣∣∣∣ = o

(
1
α
S(α)

)
(6.5d)

as α↘ 0. If additionally Assumption 3 is satisfied, then

− 1
α2

∫ α

0

βj dR(β) ∼ − 1
α2

∫ α

0

βj dS(β), (6.6a)

−
∫ ᾱ

α

1
β

dR(β) ∼ −
∫ ᾱ

α

1
β

dS(β). (6.6b)

Proof. Using (3.8c), a partial integration yields

−
∫ α

0

βj dT (β) = −αjT (α) +
∫ α

0

jβj−1T (β) dβ for T = S and T = R− S. (6.7)

Due to assumption (3.7) and (3.8b), the left hand side of (6.7), and hence
∫ α
0 jβj−1T (β) dβ is

finite. (6.5a) follows from (6.7) with T = S since R(α), and hence S(α) are positive for small α.
By assumption (3.7), there exists for all ε > 0 a δ = δ(ε) > 0 such that

|R(α) − S(α)| ≤ εS(α) for α < δ. (6.8)

Therefore, using (6.7) with T = S −R,∣∣∣∣
∫ α

0

βj d(S(β) −R(β))
∣∣∣∣ ≤ εαjS(α) + ε

∫ α

0

jβj−1S(β) dβ

for α < δ. As αjS(α) =
∫ α
0
jβj−1S(α) dβ ≤ ∫ α

0
jβj−1S(β) dβ due to (3.8a), we obtain (6.5b).

To prove (6.5c) and (6.5d), again partial integration yields for T = S or T = R− S

−
∫ ᾱ

α

1
β

dT (β) =
1
α
T (α) − 1

ᾱ
T (ᾱ) −

∫ ᾱ

α

1
β2
T (β) dβ. (6.9)

For T = S this yields (6.5c). Let ε > 0 and choose δ1 := δ(ε) according to (6.8) and δ2 := δ1ε.
Then ∣∣∣∣

∫ ᾱ

α

R(β) − S(β)
β2

dβ
∣∣∣∣ ≤ ε

∫ δ1

α

S(β)
β2

dβ +
∫ ᾱ

δ1

S(β)
β2

dβ +
∫ ᾱ

δ1

R(β)
β2

dβ

for α ≤ δ2. Due to the monotonicity of S we have∫ ᾱ

α

S(β)
β2

dβ ≥
∫ δ1

δ2

S(β)
β2

dβ ≥ S(δ1)
∫ δ1

δ2

dβ
β2

= S(δ1)
(

1
δ2

− 1
δ1

)
=

1 − ε

ε

S(δ1)
δ1

,

so ∫ ᾱ

δ1

S(β)
β2

dβ ≤ S(δ1)
∫ ∞
δ1

dβ
β2

=
S(δ1)
δ1

≤ ε

1 − ε

∫ ᾱ

α

S(β)
β2

dβ,

∫ ᾱ

δ1

R(β)
β2

dβ ≤ 1
δ1
R(δ1) ≤ (1 + ε)

S(δ1)
δ1

≤ ε
1 + ε

1 − ε

∫ ᾱ

α

S(β)
β2

dβ.
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Since S(α) > 0 for all α ∈ (0, ᾱ] due to (3.12) we can extend the integrals over [δ2, δ1] and [α, δ1]
to [α, ᾱ] and obtain

∣∣∣∣
∫ ᾱ

α

R(β) − S(β)
β2

dβ
∣∣∣∣ ≤ ε

(
1 +

1
1 − ε

+
1 + ε

1 − ε

)∫ ᾱ

α

S(β)
β2

dβ

for ε < 1 and α ≤ δ2. Since
∫ ᾱ
α
S(β)
β2 dβ ≤ S(α)/α− S(ᾱ)/ᾱ ∼< S(α)/α due to (6.9) and (3.8a), we

obtain (6.5d).
Assume now that Assumption 3 holds true. Written as −αjS′(α) ≥ C4α

j−1S(α) and integrated
from 0 to α, eq. (3.12) yields

−
∫ α

0

βj dS(β) ≥ C4

∫ α

0

βj−1S(β) dβ for α ∈ (0, ᾱ].

Together with (6.5b) this implies (6.6a). Writing (3.12) as −S′(α)/α ≥ C4(S(α)/α2) and adding
C4(−S′(α)/α) on both sides, we obtain

(C4 + 1)
−S′(α)
α

≥ C4

(−S′(α)
α

+
S(α)
α2

)
= C4

d

dα

{
− 1
α
S(α)

}
.

Integrating this inequality from α to ᾱ and multiplying by (C4 + 1)−1 yields

−
∫ ᾱ

α

1
β

dS(β) ≥ C4

C4 + 1

(
1
α
S(α) − 1

ᾱ
S(ᾱ)

)
∼>

C4

C4 + 1
S(α)
α

, α↘ 0.

This together with (6.5d) implies (6.6b).

Remark 14. Assume

R(α) � S(α), α↘ 0, (6.10)

i.e. there exist constants C ≥ 1 and ᾱ > 0 such that (1/C)R(α) ≤ S(α) ≤ CR(α) for 0 < α ≤ ᾱ.
In this case (6.8) holds true with δ = ᾱ and ε = max(C−1, 1−1/C). Proceeding as in the proof of
Lemma 13 and choosing δ1 = δ2 = ᾱ, we find that (6.5) holds true with o (. . .) replaced by O (. . .)
if S satisfies (3.8). If additionally (3.12) holds true, then

− 1
α2

∫ α

0

β dR(β) � 1
α2

∫ α

0

S(β) dβ � − 1
α2

∫ α

0

β dS(β),

−
∫ ᾱ

α

1
β

dR(β) � 1
α
S(α) � −

∫ ᾱ

α

1
β

dS(β).

Therefore similar convergence rate results with different constants can be shown if condition (3.7)
in Assumption 2 is replaced by (6.10).

Proof of Theorem 3. To prove (3.9), we use the bias-variance decomposition (3.1) and the
bound (3.3) of the bias. To bound the variance we start from (6.1a) in Lemma 11. From (6.5a) and
(6.5b) we obtain −α−2

∫ α
0 β dR(β) ∼< α−2

∫ α
0 S(β) dβ. For the second term in (6.1a) the partial

integration (6.9) with T = R and ᾱ > ‖K∗K‖ and (3.7) yield

−
∫ ∞
α

1
β

dR(β) ≤ 1
α
R(α) ∼ 1

α
S(α) α↘ 0.

Using the partial integration (6.7) with T = S and (3.8a) we obtain

1
α
S(α) =

1
α2

∫ α

0

β dS(β) +
1
α2

∫ α

0

S(β) dβ ≤ 1
α2

∫ α

0

S(β) dβ.
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This completes the proof of (3.9). The proof of (3.10) also relies on the bias-variance decomposition
E ‖Kf̂α,σ − g‖2 = B2 + V where the bias term satisfies

B = ‖EKf̂α,σ − g‖ ≤ ‖KΦα(K∗K)K∗g − g‖ + τ‖KΦα(K∗K)Kξ‖
≤ ‖(Φα(KK∗)KK∗ − I)Λ̃(KK∗)w‖ + τ‖(Φα(KK∗)KK∗‖ ≤ γΛ̃Λ̃(α)w + τC2.

The bound on the variance term V = E ‖Kf̂α,σ−EKf̂α,σ‖2 we start from (6.1b) in Lemma 11. By
(6.5a) and (6.5b), the first term on the right hand side satisfies

∫ α
0
β2 dR(β) <∼ 1

α2

∫ α
0
jβj−1S(β) dβ,

and for the second term we obtain R(α) ∼ S(α) = α−2
∫ α
0

2βS(α) dβ ≤ α−2
∫ α
0

2βS(β) dβ due to
(3.8a). This shows that V ≤ (σ/α)2(C2

2 + C2
3 )
∫ α
0 2βS(β) dβ and finishes the proof of (3.10).

Proof of Theorem 5. Using (3.11) we can bound the variance of the spectral cut-off estimator
as follows:

σ−2E ‖f̂SC
α,σ − E f̂SC

α,σ‖2 =
∫

S

ΦSC
α (ρ)2Var (UK∗ε) dΣ ≥ γvar

∫
{ρ≥α}

1
ρ

dΣ = −γvar
∫ ∞
α

1
β

dR(β).

On the other hand, using Lemma 12 and 13 we can bound the first term on the right hand side of
(6.1a) as follows

− 1
α2

∫ α

0

β dR(β) ∼ − 1
α2

∫ α

0

β dS(β) ∼< −κ
∫ ᾱ

α

1
β

dS(β) ∼< −κ
∫ ∞
α

1
β

dR(β).

This yields (3.13). (3.14) follows from (3.1), (3.4), and (3.13).

Proof of Theorem 6. Using the substitution α = γ2(γ1(β)) and Theorem 3, this follows from

inf
α>0

E ‖f̂α,σ − f‖2 ∼< inf
α>0

(
γ2
ΛΛ(α)2w2 + (C2

3 + C2
2 )σ2γ2(α)

)
= inf

β>0

(
γ2
ΛΛ(γ2(γ1(β)))2w2 + (C2

3 + C2
2 )σ2γ1(β)

)
≤ inf

β>0

(
Cγ2

ΛΛ(β)2w2 + (C2
3 + C2

2 )σ2γ1(β)
)
.
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[22] E. Heinz. Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann., 123:425–438, 1951.
[23] T. Hohage. Regularization of exponentially ill-posed problems. Numer. Funct. Anal. Optim., 21:439–464,

2000.
[24] I. M. Johnstone, G. Kerkyacharian, D. Picard, and M. Raimondo. Wavelet deconvolution in a periodic setting.

J. R. Statist. Soc. B, 66:547–573, 2004.
[25] I. M. Johnstone and B. W. Silverman. Speed of estimation in positron emission tomography and related

inverse problems. Ann. Stat., 18:251–280, 1990.
[26] J. P. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems. Springer, New York, 2004.
[27] P. T. Kim and J.-Y. Koo. Optimal spherical deconvolution. J. Multivariate Anal., 80:21–42, 2002.
[28] R. Kreß. Linear Integral Equations. Springer Verlag, Berlin, Heidelberg, New York, 2nd edition, 1999.
[29] B. A. Mair. Tikhonov regularization for finitely and infinitely smoothing operators. SIAM J. Math. Anal.,

25:135–147, 1994.
[30] B. A. Mair and F. Ruymgaart. Statistical inverse estimation in Hilbert scales. SIAM J. Appl. Math., 56:1424–

1444, 1996.
[31] P. Mathé and S. Pereverzev. Optimal discretization of inverse problems in Hilbert scales. regularization and

self-regularization of projection methods. SIAM J. Numer. Anal., 38:1999–2021, 2001.
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