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1. Introduction

In this paper, we analyze the impact of noisy high-frequency data on the realized range-based variance

(RRV) (see, e.g., Parkinson (1980), Christensen & Podolskij (2006a, 2006b) or Dijk & Martens (2006)).

We propose a new robust range-based estimator, which is consistent for the integrated variance (IV)

and asymptotically mixed Gaussian in the presence of simple forms of microstructure noise. Moreover, we

show how to optimally divide the high-frequency data such that the conditional variance of the asymptotic

distribution is minimized.

Our paper is motivated by the increasing use of high-frequency data to measure the ex-post variation

of asset price processes in financial economics. It is widely recognized that high-frequency data are con-

taminated by microstructure noise (such as bid-ask spreads, late reporting, price discreteness, rounding

errors or screen fighting), which is a challenge to the estimation and inference at the highest sampling

frequencies. The realized variance (RV) - which is a sum of squared intraday returns - is biased and

inconsistent when the high-frequency data are contaminated with noise. Recent work has therefore pro-

posed a number of modifications of the RV that either reduce or, asymptotically, eliminate the impact of

microstructure noise. Bandi & Russell (2005) derived the optimal sampling frequency of the RV, which

minimizes its mean squared error. Their results show that the rule-of-thumb of using 5-minute returns to

compute the RV tends to slightly understate the optimal sampling frequency for liquid equities. Zhang,

Mykland & Aït-Sahalia (2005) proposed the subsampler, or two time-scales RV (TSRV), as the first con-

sistent estimator of the IV in the presence of noise (for related work, see Kalnina & Linton (2006)). The

TSRV converges at rate N−1/6 and is a bias-corrected version of the RV, where the average of an increas-

ing number of RV estimates across non-overlapping grids is used instead of a simple RV. Zhang (2005)

used a multi-scale RV (MSRV), which has the efficient N−1/4 rate of convergence. Barndorff-Nielsen,

Hansen, Lunde & Shephard (2006a, 2006b) studied kernel-based estimators, where the noise is killed by

incorporating realized autocovariances. Interestingly, the TSRV and MSRV are closely related to realized

kernels. Large (2006) proposed an alternation estimator, which applies to asset markets where the price

moves by a sequence of constant increments.

It has been suggested that the range is somewhat robust to common forms of microstructure noise

(see, e.g., Alizadeh, Brandt & Diebold (2002)). Thus, range-based estimation of the IV is an interesting

alternative in the presence of noise. Dijk & Martens (2006) studied the RRV with simulations and found
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it to be an accurate measure of the IV, which competes well against estimators that are robust to noise.

However, if the RRV and RV are confined to the same sampling frequency, it was also reported that the

RRV is the most biased statistic. Consequently, it is important to develop tools for bias-correcting the

RRV. To our knowledge, no prior research has formally studied the impact of market microstructure noise

on the RRV, and we fill that void here. We derive a theory for bias-correcting the RRV such that, under

suitable conditions on the noise process, our new estimator is consistent for the IV with a mixed Gaussian

central limit theorem (CLT).

The rest of the paper is organized as follows. In the next section, we state the semimartingale model

and review quadratic variation. In section 3, we perturb the true price with microstructure noise and derive

a robust realized range-based estimator of the IV. In section 4, we present some Monte Carlo simulations

to inspect how accurate our estimator and distribution theory is for small sample sizes. In section 5, we

present some empirical results based on high-frequency data of INTC and MSFT. A brief summary and

some directions for future research conclude the paper in section 6.

2. A Brownian semimartingale

To fix ideas, we consider a continuous time log-price p∗ = (p∗t )t≥0 that is defined on a filtered probability

space
(
Ω,F , (Ft)t≥0 ,P

)
and adapted to the filtration (Ft)t≥0. In an arbitrage-free frictionless market, the

theory of financial economics implies that p∗ must be of semimartingale form (see, e.g., Back (1991)). In

this paper, we work with a Brownian semimartingale written as:

p∗t = p∗0 +
∫ t

0
µudu +

∫ t

0
σudWu, t ≥ 0, (2.1)

where µ = (µt)t≥0 is locally bounded and predictable, σ = (σt)t≥0 is a strictly positive process and

W = (Wt)t≥0 a standard Brownian motion. This process is also called a stochastic volatility model with

drift (cf., e.g., Ghysels, Harvey & Renault (1996)).

To prove our CLTs, we will often work under some stronger assumptions on σ.

Assumption (V): σ is everywhere invertible (V1) and satisfies the equation:

σt = σ0 +
∫ t

0
µ′udu +

∫ t

0
σ′udWu +

∫ t

0
v′udB′

u, t ≥ 0, (V2)

where µ′ = (µ′t)t≥0, σ′ = (σ′t)t≥0 and v′ = (v′t)t≥0 are càdlàg, with µ′ also being locally bounded and
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predictable, B′ = (B′
t)t≥0 is a Brownian motion, and W ⊥⊥ B′ (here A ⊥⊥ B means that A and B are

stochastically independent).

This means that σ has its own Brownian semimartingale structure. Note the appearance of W in σ,

which allows for leverage effects. V2 is not necessary, but it simplifies the proofs considerably. A more

general treatment, including the case where σ jumps, can be found in Barndorff-Nielsen, Graversen, Jacod,

Podolskij & Shephard (2006). We rule out these technical details here, as they are not important to our

exposition.

In what follows, we also make use of the concept of stable convergence in law.

Definition 1 A sequence of random variables, (Xn)n∈N, converges stably in law with limit X, defined

on an appropriate extension of
(
Ω,F , (Ft)t≥0 ,P

)
, if and only if for every F-measurable, bounded random

variable Y and any bounded, continuous function g, the convergence limn→∞ E [Y g (Xn)] = E [Y g (X)]

holds. We write Xn
ds→ X, if (Xn)n∈N converges stably in law to X.

Stable convergence implies weak convergence, or convergence in law, which can be defined equivalently

by taking Y = 1 (see, e.g., Rényi (1963) or Aldous & Eagleson (1978) for more details about the properties

of stably converging sequences). The extension of this concept to stable convergence of processes is

discussed in Jacod & Shiryaev (2003, pp. 512-518).

2.1. Quadratic variation

Crucial to the theory of semimartingales is the quadratic variation (QV). The QV is a key concept in

high-frequency volatility and is fundamentally linked to financial risk. QV is defined as:

QV = p-lim
n→∞

n∑

i=1

(
p∗ti − p∗ti−1

)2
, (2.2)

for any sequence of partitions 0 = t0 < t1 < . . . < tn = 1 such that max1≤i≤n {ti − ti−1} → 0 (see, e.g.,

Protter (2004)). In our setting, the QV is equal to the IV:

∫ 1

0
σ2

udu. (2.3)
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3. Market microstructure noise

In practice, p∗ is contaminated with microstructure noise, so there are deviations from the frictionless

semimartingale framework (e.g., whereas changes in p∗ are governed by continuous diffusive sample paths,

the notion of a minimum tick size necessarily restricts changes in the observed price to discrete grids). We

model this as

pt = p∗t + ηt, (3.1)

where p = (pt)t≥0 denotes the observed price and η = (ηt)t≥0 is i.i.d. noise with E (ηt) = 0, E
(
η2

t

)
= ω2

and η ⊥⊥ p∗.

The i.i.d. assumption is not appropriate in continuous time (see, e.g., Kalnina & Linton (2006)), but

Hansen & Lunde (2006) find little empirical evidence against it for liquid equities, when the sampling

interval is above a minute. In our setting, however, the condition must hold down to the tick level, as the

range is a functional of all the data within the sampling interval. Thus, we will view the i.i.d. assumption

as an approximation here and attempt to relax it in future work. We note that the assumption has been

dispensed with in some recent papers (cf., e.g., Aït-Sahalia, Mykland & Zhang (2006), Barndorff-Nielsen,

Hansen, Lunde & Shephard (2006a), or Kalnina & Linton (2006)).

3.1. Realized variance

We assume that high-frequency data of p are recorded at the discrete points i/N for i = 0, 1, . . . , N with

N = mn. The data partition the interval [0, 1], which - for concreteness - is thought of as a trading

day. Given these price data, we construct ultra high-frequency returns ri∆′,∆′ = pi/N − p(i−1)/N , for

i = 1, . . . , N , where ∆′ = 1/N , and define the RV at sampling frequency N by setting

RV N =
N∑

i=1

r2
i∆′,∆′ . (3.2)

Without microstructure noise, it follows that RV N p→ ∫ 1
0 σ2

udu as N → ∞, where we use " p→" to denote

convergence in probability. Moreover, in the parametric setting RV N is the ML estimator. The asymptotic

distribution of the RV was derived in Jacod (1994), Jacod & Protter (1998), and Barndorff-Nielsen &

Shephard (2002), and is given by

N1/2

(
RV N −

∫ 1

0
σ2

udu

)
ds→ MN

(
0, 2

∫ 1

0
σ4

udu

)
, (3.3)
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where ∫ 1

0
σ4

udu (3.4)

is called the integrated quarticity (IQ). Note that the IQ, like the IV, is a latent variable being an integral

of σ. Thus, the distribution theory in Equation (3.3) is infeasible, because it cannot be implemented. A

feasible estimator of the IQ (in absence of noise) is the realized quarticity

RQN =
N

3

N∑

i=1

r4
i∆′,∆′

p→
∫ 1

0
σ4

udu, (3.5)

from which it follows that
N1/2

(
RV N − ∫ 1

0 σ2
udu

)
√

2RQN

d→ N(0, 1), (3.6)

where " d→" denotes convergence in law.

With i.i.d. noise RV N has an bias of 2Nω2 so RV N p→∞ as N →∞. This means that RV N is not an

appropriate estimator, although in general the sign and magnitude of the bias depend on the properties

of η. The most simple solution to this problem is to avoid sampling at too high a frequency, that is to

choose n ¿ N , such that the resulting bias term 2nω2 can be ignored. This defines the sparsely sampled

RV at sampling frequency n:

RV n =
n∑

i=1

r2
i∆,∆, (3.7)

where ri∆,∆ = pi/n − p(i−1)/n and ∆ = 1/n. In practice, the choice of n is often guided by volatility

signatures, which is to calculate the time series average of RV n for different n (cf., e.g., Fang (1996) or

Andersen, Bollerslev, Diebold & Labys (2000)).

[ INSERT TABLE 1 AND 2 ABOUT HERE ]

In Table 1 and 2, we construct volatility signatures for some transaction data of Intel (INTC) and

Microsoft (MSFT) that are further analyzed in our empirical section. The sample period is January 2,

2003 to December 31, 2004. The tables are based on daily estimates of RV n. Note that here, as is

standard in the literature, we use the sampling interval ∆ (measured in minutes) so that n increases as

time between observations decreases. If there was no microstructure noise, we would expect the average

of RV n to be independent of n. This is not what we see. INTC and MSFT trade almost down to the

second, but it is clear that computing the RV every few seconds or so would lead to substantial bias.
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3.2. Realized range-based variance

Christensen & Podolskij (2006a, 2006b) proposed the RRV (see, e.g., Parkinson (1980), Garman & Klass

(1980), Rogers & Satchell (1991), or Dijk & Martens (2006) for related work on range-based volatility).

The main idea of the RRV is to reduce the information loss of RV n by replacing squared returns with

squared ranges. Write

spi∆,∆,m = max
0≤s,t≤m

(
p i−1

n
+ t

N
− p i−1

n
+ s

N

)
, (3.8)

for i = 1, . . . , n and set

RRV n,m =
1

λ2,m

n∑

i=1

s2
pi∆,∆,m, (3.9)

where λr,m = E
[
max0≤s,t≤m

(
Wt/m −Ws/m

)r]. If η = 0, it holds that RRV n,m p→ ∫ 1
0 σ2

udu as n →∞. To

get a mixed normal distribution theory, we require Assumption (V) and the convergence m → c ∈ N∪{∞}
to obtain that

√
n

(
RRV n,m −

∫ 1

0
σ2

udu

)
ds→ MN

(
0, Λc

∫ 1

0
σ4

udu

)
, (3.10)

where Λc = limm→c Λm and Λm =
(
λ4,m − λ2

2,m

)
/λ2

2,m. Λm is decreasing in m and takes values between 2

(m = 1) and about 0.4 (m →∞). Thus, RRV n,m is more efficient than RV n, whenever m > 1. However,

if η = 0 nothing prevents us from constructing RV N , which we know is asymptotically most efficient.

Thus, it only makes sense to use RRV n,m, when there are microstructure frictions.

3.3. Distributional assumption on the noise

In practice, spi∆,∆,m is affected by m + 1 microstructure errors and the impact of the noise is severe. In

Table 1 and 2 we confirm empirically the finding of Dijk & Martens (2006) that using a fixed n, RRV n,m

is much more biased than RV n.

This suggests that a bias-correction can improve upon RRV n,m. It is not possible, however, to develop

consistent, asymptotically mixed normal estimators of the IV, using the RRV, in the presence of a general

i.i.d. microstructure noise. This is because the extreme value theory depends on the distribution of η.

Thus, we need further assumptions on η. Our setup is formulated as Assumption (N).

Assumption (N): ηt has density function

P ηt =
1
2

(δω + δ−ω) , (3.11)
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where δ is the Dirac measure and ω is a positive constant.

This setup is very simple and we discuss various extensions of it to richer families of parametric

densities below. We choose this setup due to its simplicity and because it works extremely well for the

high-frequency data we investigate in our empirical application. Dijk & Martens (2006) have previously

used this assumption in their simulation experiments, and we will loosely think of ω as a "half-spread".

3.4. Estimating the variance of the noise process

Now, we propose a robust RRV estimator of the IV in the presence of microstructure noise. The first step

is to obtain a consistent estimate of ω. It turns out that, whereas RV N is useless for estimating the IV,

it can be useful for estimating the variance of the noise process, ω2.

Lemma 1 Suppose that p∗ satisfies Equation (2.1) and that pt = p∗t +ηt, where η is i.i.d. with E (ηt) = 0,

E
(
η2

t

)
= ω2, and η ⊥⊥ p∗. Then it holds that

ω̂2
N =

RV N

2N

p→ ω2, (3.12)

and

N1/2
(
ω̂2

N − ω2
) d→ N

(
0, ω4

)
. (3.13)

In the setting without drift (µ = 0), the bias of ω̂2
N is

∫ 1
0 σ2

udu/2N , which can be large in practice in

comparison to ω2. Oomen (2005) suggested an alternative estimator based on the negative of the first-

order sample autocovariance of returns.

Lemma 2 Under the assumptions of Lemma 1, we have that

ω̃2
N = − 1

N − 1

N−1∑

i=1

ri∆′,∆′r(i+1)∆′,∆′
p→ ω2, (3.14)

and

N1/2
(
ω̃2

N − ω2
) d→ N

(
0, 5ω4

)
. (3.15)

It is worth pointing out that ω̂2
N and ω̃2

N are consistent estimators of ω2 under general assumptions about

η, and not only the distribution adopted here. In absence of drift, E
(
ri∆′,∆′r(i+1)∆′,∆′

)
= −ω2 and all

higher-order autocovariances are zero, leading to MA(1) dependence. ω̃2
N is therefore unbiased, but its
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asymptotic variance is higher than that of ω̂2
N (this holds in general, see, e.g., Barndorff-Nielsen, Hansen,

Lunde & Shephard (2006a)). In all instances, terms involving drift play a minor role, as the drift is

Op

(
N−1

)
. Here we base our analysis on ω̂2

N , noting that the asymptotic distribution of our bias-corrected

range-statistic is altered, if ω̃2
N is used instead.

Using standard arguments, it holds that

ω̂N
p→ ω, (3.16)

where ω̂N =
√

ω̂2
N .

3.5. Consistent estimation of the integrated variance

We then introduce the new realized range-based estimator of the IV:

RRV n,m
BC =

1
λ̃2,m

n∑

i=1

(
spi∆,∆,m − 2ω̂N

)2
, (3.17)

where

λ̃r,m = E

[∣∣∣∣∣ max
t:η t

m
=ω, s:η s

m
=−ω

(
W t

m
−W s

m

)∣∣∣∣∣
r]

, (3.18)

with 1 ≤ s, t ≤ m.

[ INSERT FIGURE 1 ABOUT HERE ]

In Figure 1, we plot simulated values of λ2,m and λ̃2,m for all m that integer divide 23,400. We do

not know of any analytic formulas with which to express them. We used a counting variable in these

simulations to keep track of the number of times, where the evaluation in Equation (3.18) resulted in the

empty set on one of the indices. This is only relevant for very low m, for the probability of getting no

positive or negative microstructure errors is 0.5m. The figure is based on the average of all non-empty

evaluations. This may call for not selecting m too low in practice to avoid unreliable normalizations. We

use m ≥ 10 in our simulations, which is sufficient to handle this. Note that λ̃2,m is independent of ω and

λ2,m → λ2 and λ̃2,m → λ2 (where, in general, λr = limm→∞ λr,m = limm→∞ λ̃r,m).

Theorem 1 Suppose that the conditions of Lemma 1 and Assumption (N) hold. Then, as m,n →∞

RRV n,m
BC

p→
∫ 1

0
σ2

udu. (3.19)
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Theorem 1 takes the form of a double asymptotics, in which both m and n are required to diverge to

infinity. Intuitively, as m →∞ the observed minus true range (on small intervals) converges in probability

to 2ω. Subtracting a consistent estimator of 2ω gives an asymptotically perfect bias-correction, and letting

n →∞ we get the consistency for the IV, as in Christensen & Podolskij (2006b).

3.6. Asymptotic distribution of RRV n,m
BC

Theorem 2 Assume that the conditions of Theorem 1 are satisfied and that m,n = O
(
N1/2

)
. Set n =

c
√

N and m = c−1
√

N . Moreover, we assume that there exists a Brownian motion B
′′

=
(
B
′′
t

)
t≥0

defined

on
(
Ω,F , (Ft)t≥0 ,P

)
with p∗ ⊥⊥ B

′′ and such that

η i
N

= ω
(
2× 1{√N∆N

i B
′′≥0} − 1

)
, (3.20)

where ∆N
i B

′′
= B

′′
i/N −B

′′
(i−1)/N . Then, the asymptotic distribution of RRV n,m

BC is given by:

N1/4

(
RRV n,m

BC −
∫ 1

0
σ2

udu

)
ds→ MN

(
0, avarRRV n,m

BC

)
, (3.21)

where

avarRRV n,m
BC

=
Λ

∫ 1
0 σ4

udu

c
+

H2
c ω2

4
, (3.22)

Λ = limm→∞ Λ̃m,

Λ̃m =
λ̃4,m − λ̃2

2,m

λ̃2
2,m

, (3.23)

and

Hc = 4
√

c
λ1

λ2

∫ 1

0
σudu, (3.24)

with ∫ 1

0
σudu, (3.25)

being the integrated standard deviation (IS).

Remark 1 The condition (3.20) ensures that both p∗ and η are measurable with respect to the same type

of filtration, which allows us to use existing CLTs for high-frequency data (see, e.g., Jacod & Shiryaev

(2003)). This assumption has previously been used by Gloter & Jacod (2001a, 2001b).

Remark 2 RRV n,m
BC converges to the IV at rate N−1/4, which is the fastest rate of convergence that can

be obtained in this problem.
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Remark 3 In avarRRV n,m
BC

, there should be an additional (covariance) term

λ2κωHc

∫ 1
0 σ2

udu√
c

, (3.26)

where κ = limm→∞ κm with

κm = E




∣∣∣∣∣ max
t:η̃ t

m
=1,s:η̃ s

m
=−1

(
W t

m
−W s

m

)∣∣∣∣∣
2

1√
m

m∑

i=1

(
1
2

(
η̃ i

m
− η̃ i−1

m

)2
− 1

)
 , (3.27)

where 1 ≤ s, t ≤ m and η̃ has density 1
2 (δ1 + δ−1). However, by simple arguments it follows that κ = 0.

Indeed, we have that

κm = E

[
sup

0≤s,t≤1
(Wt −Ws)

2 1√
m

m∑

i=1

(
1
2

(
η̃ i

m
− η̃ i−1

m

)2
− 1

)]
+ op (1) = op (1) . (3.28)

Thus, this term drops out of the asymptotic variance.

While κm → 0 as m → ∞, it is not negligible for small m. We found the finite sample inference to

improve a bit, when we included the additional term containing κm, as the distribution of RRV n,m
BC would

otherwise be slightly overdispersed for the typical levels of m that we tend to select.

Remark 4 The asymptotic conditional variance of RRV n,m
BC is minimized at

c∗ =

√
Λ

∫ 1
0 σ4

udu

2λ1λ
−1
2 ω

∫ 1
0 σudu

, (3.29)

with an optimal conditional variance equal to

avar∗RRV n,m
BC

= 4
λ1

λ2

√
Λω

∫ 1

0
σudu

√∫ 1

0
σ4

udu. (3.30)

If σ is constant, this reduces to:

avar∗RRV n,m
BC

= 4
λ1

λ2

√
Λωσ3 ≈ 1.4972ωσ3. (3.31)

Remark 5 If we replace ω̂N with ω̃N in the definition of RRV n,m
BC the conditional variance becomes

avarRRV n,m
BC

=
Λ

∫ 1
0 σ4

udu

c
+

5H2
c ω2

4
. (3.32)

Consequently, avarRRV n,m
BC

is now minimized at

c∗ =

√
Λ

∫ 1
0 σ4

udu

2
√

5λ1λ
−1
2 ω

∫ 1
0 σudu

, (3.33)
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and is equal to

avar∗RRV n,m
BC

= 4
√

5
λ1

λ2

√
Λω

∫ 1

0
σudu

√∫ 1

0
σ4

udu. (3.34)

When σ is constant we obtain

avar∗RRV n,m
BC

= 4
√

5
λ1

λ2

√
Λωσ3 ≈ 3.3479ωσ3. (3.35)

Note that the direct effect of a higher ω is to increase avarRRV n,m
BC

and lower the optimal sampling frequency

n∗. However, in our setting this is partly compensated by an offsetting increase in m∗.

The conditional variance of RRV n,m
BC is infeasible, as it involves integrals of σ. To make the limit theory

feasible, there are four quantities to estimate from the data. First, we construct noise robust estimates of

the IQ and IS. Second, we must estimate ω and ω2, which was discussed above.

It is quite simple to develop robust estimators of integrated power variation with our setup. We omit

the general details here, but note that immediate corollaries are:

RRQn,m
BC =

n

λ̃4,m

n∑

i=1

(
spi∆,∆,m − 2ω̂N

)4 p→
∫ 1

0
σ4

udu, (3.36)

and

RRSn,m
BC =

1
λ̃1,m

√
n

n∑

i=1

∣∣spi∆,∆,m − 2ω̂N

∣∣ p→
∫ 1

0
σudu, (3.37)

as m, n →∞. The scaling of these estimators with n and n−1/2 is required, since each raw term (spi∆,∆,m−
2ω̂N ) is Op

(
n−1/2

)
. By using the properties of stable convergence in law (e.g., Jacod (1997)), we end up

with a more standard convergence result:

N1/4
(
RRV n,m

BC − ∫ 1
0 σ2

udu
)

√
âvarRRV n,m

BC

d→ N(0, 1), (3.38)

where âvarRRV n,m
BC

is a consistent estimator of avarRRV n,m
BC

. We can use this result to construct feasible

confidence intervals for the IV in the presence of market microstructure noise.

3.7. Extensions of the basic framework

In this section, we will discuss various extensions of our framework.

11



3.7.1. The case with discrete noise

Our methodology also works for other discrete distributions with bounded support. However, we need at

least minimal parametric assumptions on the distribution. For example, suppose that

P ηt =
k∑

i=1

piδxi , (3.39)

for some k and ordered points x1 < . . . < xk (pi > 0 for all i). Since E (ηt) = 0, we immediately get the

two conditions
∑k

i=1 pi = 1 and
∑k

i=1 pixi = 0, which means that we require 2k − 2 further conditions

to identify the parameters p1, . . . , pk, x1, . . . , xk. This can be done by using the method of moments,

i.e. by computing the estimates N−1
∑N

i=1 rq
i∆′,∆′ , for q = 2, . . . , 2k − 1. Of course, if k is large we

will encounter some problems in trying to solve this system of 2k non-linear equations. In addition, the

moment estimators will be very small in practice for large q, which can be an empirical problem. However,

once we have estimated the p’s and x’s, we can proceed as above by using instead spi∆,∆,m − xk + x1.

3.7.2. The case with continuous noise

To analyze the case where the noise is a continuous random variable, we assume that ηt ∼ U [−ν, ν], for

some ν ∈ R+. Here the microstructure noise has a uniform distribution on the interval [−ν, ν]. Now, we

take n = O
(
N2/3−δ

)
and m = O

(
N1/3+δ

)
, for some δ > 0. Note that

ω2 =
ν2

3
, (3.40)

with this model. Thus, we can define the estimator

ν̂N =
√

3ω̂N
p→ ν, (3.41)

as N →∞. We now study the bias-correction

RRV n,m
BC (ν) =

n∑

i=1

(
spi∆,∆,m − 2

m

m + 2
ν̂N

)2

. (3.42)

The term m/ (m + 2) is a small sample correction that disappears as m →∞.

Theorem 3 The stochastic convergence

RRV n,m
BC (ν)

p→ 1
3

∫ 1

0
σ2

udu, (3.43)

holds as N →∞.

12



Remark 6 The convergence in probability can also be extended to (at least) any parametric η, where the

density function has bounded support.

We are not able to derive a CLT in this setting. The main idea of the proof of consistency is to replace

the maximum of the increments of p with those of η plus the corresponding increments of p∗. The order

of the error of this approximation is small for consistency, but blows up when we scale the statistic with
√

n to prove the CLT. Further details are given in Lemma 5 in the Appendix.

3.7.3. The case with round-off errors

The lead example of microstructure noise is price discreteness, or round-off errors. Unfortunately, round-

off errors is also the most difficult case to handle. In this section, we provide an idea of how to use realized

range-based estimators in that situation.

The asymptotic theory for the RV in the presence of round-off errors was derived in Delattre & Jacod

(1997). We follow their notation to call the accuracy of the measurements αN , and note that Delattre

& Jacod (1997) worked in the setting with αN = O
(
N−1/2

)
.1 The observed rounded-off prices, p

(αN )
i−1
N

, is

then equal to kαN for

kαN ≤ p i−1
N

< (k + 1)αN , (3.44)

and k ∈ Z. Alternatively
p
(αN )
i−1
N

= p i−1
N
− αN

{p i−1
N

αN

}
, (3.45)

where {x} is the fractional part of x.

Take N = nm and assume that αN = o
(
n−1/2

)
. In practice, this means that once we are given an

order of the accuracy, we choose m so large that αN = o
(
n−1/2

)
holds.

We then define the realized range-statistic

RRV n,m
RO =

1
λ2,m

n∑

i=1

s2
pi∆,∆,m,αN

, (3.46)

with

spi∆,∆,m,αN = max
0≤s,t≤m

(
p
(αN )
i−1
n

+ t
N

− p
(αN )
i−1
n

+ s
N

)
. (3.47)

1αN = O(N−1/2) is the only interesting case. If αN is of a smaller order it does not influence the consistency, and if it is

of a higher order it becomes very difficult to do anything (at least when n = O(N)). See Delattre & Jacod (1997) for details.
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Theorem 4 It holds that

RRV n,m
RO

p→
∫ 1

0
σ2

udu, (3.48)

as m,n →∞.

The critical step with round-off errors is to choose n and m such that αN is of a small order. Of course,

an equivalent theorem can be stated for RV n. It is not possible to use RV N here, however, so because

RRV n,m
RO exploits all the high-frequency data, we suspect that it works better.

3.7.4. Robust estimation of a jump component

It is of considerable interest in financial economics to know whether econometric models that have con-

tinuous sample paths, such as those governed by Equation (2.1), offer a satisfactory description of the

data from a statistical viewpoint. There is a growing literature that shows how to distinguish between

continuous sample path movements and jumps in asset prices (see, e.g., Barndorff-Nielsen & Shephard

(2004b, 2006), Huang & Tauchen (2005), Jiang & Oomen (2005), or Christensen & Podolskij (2006a)). To

see how our convergence results can be extended in this direction, we now assume that

p∗t = p∗0 +
∫ t

0
µudu +

∫ t

0
σudWu +

Nt∑

i=1

Ji, t ≥ 0, (3.49)

where, in addition to the components defined above, N = (Nt)t≥0 is a finite-activity counting process and

J = (Ji)i=1,...,Nt
represents the jumps in p∗. Then, it holds that

QV =
∫ 1

0
σ2

udu +
Nt∑

i=1

J2
i . (3.50)

It is well-known that the RV estimates the overall QV process and cannot be informative about the IV

in these models. The same problem appears with the RRV (see, e.g., Christensen & Podolskij (2006a)).

Thus, it is an even more ambitious goal to estimate the IV in the stochastic volatility, plus jump and noise

models. We define the robust realized range-based bipower variation as

RBV n,m
BC =

1
λ̃2

1,m

n−1∑

i=1

∣∣spi∆,∆,m − 2ω̂N

∣∣∣∣sp(i+1)∆,∆,m − 2ω̂N

∣∣. (3.51)

The no-noise version of RBV n,m
BC was studied in Christensen & Podolskij (2006a), where it was shown to

be robust to finite-activity jumps.
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We write pt = p∗t + ηt again, where η is given by Assumption (N). Now, the convergences

RBV n,m
BC

p→
∫ 1

0
σ2

udu and RRV n,m
BC

p→
∫ 1

0
σ2

udu +
1
λ2

Nt∑

i=1

J2
i , (3.52)

hold as m,n → ∞. Hence, RBV n,m
BC is a robust estimator of the IV in the presence of both stochastic

volatility, jumps and noise. This type of result has recently been achieved in Podolskij & Vetter (2006).

Here we also have that λ2,m

(
RRV n,m

BC −RBV n,m
BC

) p→ ∑Nt
i=1 J2

i as m,n →∞, and properly armed with an

asymptotic distribution theory under the null hypothesis of no jumps, we should in principle be able to

use this result to draw noise robust inference about the jump process. This topic is left for future research.

4. Simulation study

In this section, we look at the bias-correction with simulated data to evaluate the finite sample accuracy of

RRV n,m
BC . Moreover, we inspect how well the first-order approximation offered by Equation (3.38) works

for the distributions that arise in sample sizes of practical relevance. We simulate the model:

dp∗t = σtdWt,

d lnσ2
t = θ(ξ − ln σ2

t )dt + γdBt,
(4.1)

where W and B are Brownian motions, W ⊥⊥ B, and (θ, ξ, γ) is a parameter vector. Here the log-variance

is a mean reverting Ornstein-Uhlenbeck process with mean ξ, mean reversion θ and volatility γ.

4.1. Simulation design

We create 100,000 repetitions of the bivariate system in Equation (4.1) using an Euler approximation and

N = 100, 200, 300, 450, 600, 900, 1200, 1500. The parameters (θ, ξ, γ) = (0.032,−0.631, 0.115) are taken

from Andersen, Benzoni & Lund (2002). The initial conditions are set at p∗0 = 0 and lnσ2
0 = ξ. We cloak

p∗ with i.i.d. noise, using Assumption (N) and ω2 = 0.002. This is a reasonable level for liquid equities

(see, e.g., the web appendix of Barndorff-Nielsen, Hansen, Lunde & Shephard (2006a)).

To estimate ω2, we use ω̃2
N from Lemma 2. In our initial design, we used ω̂2

N from Lemma 1, but this

estimator has a severe upward bias for most of the sample sizes considered here. We therefore confine our

analysis to ω̃2
N , except when it is negative where we switch to ω̂2

N . The optimal partition of the high-

frequency data is applied under the additional constraint that m ≥ 10. We construct RRV n,m
BC , RRQn,m

BC ,
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and RRSn,m
BC estimates based on the resulting partition. Inspections of the simulations show that when

N is small, the bound on m is almost always hit. Thus, our results might be seen as conservative to the

extent that we are using an estimator with an inoptimal variance.

4.2. Results

[ INSERT TABLE 3 ABOUT HERE ]

In Table 3, we report the finite sample distributions of three asymptotic pivots. Panel A is for the

standardized RRV n,m
BC in the infeasible setting, where the avarRRV n,m

BC
is known a priori. In Panel B, we

estimate the avarRRV n,m
BC

from the simulated data, and Panel C reports on the feasible log-based inference,

using the delta method to conclude that

N1/4

(
lnRRV n,m

BC − ln
∫ 1

0
σ2

udu

)
d→ MN


0,

avarRRV n,m
BC(∫ 1

0 σ2
udu

)2


 . (4.2)

Panel A shows that, although the convergence settles, it takes some time for the asymptotics to kick

in. There is a substantial distortion for small N . In Panel B, we see that replacing the avarRRV n,m
BC

with a consistent estimator makes the approximation a bit worse and changes the skewness. The log-

transformation in Panel C improves upon the raw distribution theory of RRV n,m
BC and is a good description

for the sampling variation of ln RRV n,m
BC already at N = 1, 200 − 1, 500. It is preferable to use the log-

based distribution theory in practice to construct confidence intervals for the IV. This also has the virtue

of imposing non-negativity on the confidence bands.

[ INSERT FIGURE 2 ABOUT HERE ]

To compare RRV n,m
BC to some alternative estimators, Figure 2 reports on the root mean squared error

(RMSE) of RRV n,m
BC , RRV n,m, RV n, RV n∗ , and the TSRV. Here RV n∗ is the RV computed at an optimal

sampling frequency (see, e.g., Bandi & Russell (2005)). RRV n,m and RV n are based on the partition of

RRV n,m
BC . We calculate the TSRV by using regular allocation of the data and an optimal number of

subgrids (K∗) found by use of the automatic selection formula in Zhang et al. (2005), which takes

K∗ =

(
12

ω4

∫ 1
0 σ4

udu

)1/3

N2/3. (4.3)
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We also apply a finite sample correction to the TSRV and denote the resulting statistic by TSRV (K,J)−
aa (to conform with our empirical work).

The plot shows ln(RMSE) to ease the interpretation. Looking at the figure, we note that RRV n,m is

severely affected by microstructure noise and much more than RV n, which is in line with our developments

from above. The RMSE of RRV n,m is higher than the RMSE of RRV n,m
BC by the time N = 200, so the

bias-correction is paramount. An appealing feature is that RRV n,m
BC has the lowest RMSE, and hence is

also more efficient than the subsampler, for N ≥ 300. The RMSE of RRV n,m
BC and TSRV (K, J) − aa

continues to decline in N , reflecting their consistency, but the relative RMSE of TSRV (K, J) − aa to

RRV n,m
BC increases with N , due to the inefficient N−1/6 convergence rate of the TSRV.

5. Bias-correction using empirical data

The bias-corrected range-statistic is applied to some high-frequency data for Intel (INTC) and Microsoft

(MSFT). We extract transaction data from the TAQ database for the sample period January 2, 2003 -

December 31, 2004. The raw data were preprocessed and screened for outliers using standard filtering

algorithms. We compute the RRV n,m
BC , RRV n,m, RV n and TSRV of Aït-Sahalia et al. (2006), the latter

being robust to serial dependence in η. We follow the recommendations in Barndorff-Nielsen, Hansen,

Lunde & Shephard (2006a) to implement the TSRV, subsampling 5-minute returns and doing the area-

adjustment to correct a slight downward biased. In addition, to avoid dependencies in η that show up at

higher frequencies (e.g., Hansen & Lunde (2006)), we estimate ω2 on a day-by-day basis using the average

ω̂2
N from 60 subsampled grids of 1-minute returns.

To implement RRV n,m
BC , we first calculated a volatility signature of RRV n,m

BC and found that series to be

essentially flat down to sampling intervals of about 1 - 2 minutes. Then RRV n,m
BC starts increasing a bit, as

we move below this interval length. This can be due to a number of things, including a misspecified noise

process that can have a bigger impact at higher sampling frequencies or, as already discussed, problems

associated with too small m. In principle, both issues may contribute to rendering our bias-correction

inadequate at the highest frequencies.

Overall, our preliminary analysis suggests that our proposed bias-correction works extremely well in

terms of controlling the impact of noise on the range for sampling intervals above 1 - 2 minutes. In general,

however, for the levels of ω that we observe in the data, the optimal sampling frequency of RRV n,m
BC would
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imply time intervals of about 30 - 45 seconds. In view of this, we therefore decided not to use the optimal

sampling frequency for these equities but instead implement RRV n,m
BC at the 2-minute interval, which is

the highest we feel comfortable using.

In Table 1 and 2, we show some summary statistics for the IV estimators of INTC and MSFT. We

see that RRV n,m
BC (2mn) is around the level of the RV computed at the 5 - 30 minute frequency, which is

what we would expect if the bias-correction works, as the RV should not suffer from a severe upward bias

at these frequencies, in sharp contrast to the behavior of RV (1 tick). It is worth noting that RRV n,m
BC

has a weaker serial dependence than RRV n,m, but that it is still quite persistent. Moreover, the (time

series) standard deviation of RRV n,m
BC is much smaller than those of the alternative estimators reported

here, pointing towards a greater sampling stability.

[ INSERT FIGURE 3 AND 4 ABOUT HERE ]

To illustrate the use of our distribution theory, we extract data for July, 2004 and plot 95% confidence

intervals for
√∫ 1

0 σ2
udu of INTC and MSFT in Figure 3 and 4. Here we focus on a standard deviation-type

of volatility. The limit theory is based on a second application of the delta method, using that

N1/4




√
RRV n,m

BC −
√∫ 1

0
σ2

udu


 d→ MN

(
0,

avarRRV n,m
BC

4
∫ 1
0 σ2

udu

)
, (5.1)

and likewise for
√

RV n. In this plot, RV n is based on 5-minute sampling. We note that the point

estimates of the
√

RV n,
√

TSRV (K, J)− aa and
√

RRV n,m
BC series are often close, whereas

√
RRV n,m

is significantly higher and often lies outside the 95% confidence regions. The confidence intervals tend to

overlap and those based on
√

RRV n,m
BC are most of the times substantially smaller than those of

√
RV n.

A minor caveat here is that it is very difficult to estimate the IQ in the presence of noise. As noted in

Barndorff-Nielsen, Hansen, Lunde & Shephard (2006a) there is no research which has solved this problem.2

We used a conservative sampling interval of 30 minutes for both IQ estimators in these plots to avoid the

worst bite of microstructure noise. This, of course, increases their sampling errors and can lead to larger

swings in the day-to-day confidence intervals, although we do get some compensation here by focusing on

estimation of
√∫ 1

0 σ2
udu due to the natural scaling with the IV in the asymptotic conditional variance.

2Podolskij & Vetter (2006) is a recent paper that has made some progress on this problem.
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6. Conclusions and directions for future work

In this paper, we proposed a realized range-based estimator of the IV that is robust to simple forms of

microstructure noise. We derived a bias-correction to the range-statistic, such that the new estimator

is consistent and asymptotically mixed Gaussian. Moreover, we showed how to optimally divide the

high-frequency data to minimize its asymptotic conditional variance.

The paper highlights the potential that range-based estimation of the IV can exhibit under suitable

conditions on the noise. On the one hand, we had to impose some parametric assumptions on the noise

process to develop our bias-correction. On the other hand, we feel that our empirical results show that

the proposed bias-correction does a good job for the transaction data analyzed here, provided we do not

base our estimation and inference on the highest sampling frequencies.

In future work, we intend to look at realized range-based estimation of the integrated covariation,

which is a key concept in financial economics. The interested reader is referred to, e.g., Barndorff-Nielsen

& Shephard (2004a), Hayashi & Yoshida (2005), Brandt & Diebold (2006), Griffin & Oomen (2006) or

Sheppard (2006) for some recent work in this exciting area.
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A. Appendix

We assume, without loss of generality, that µ, σ, µ′, σ′, and v′ are bounded (see, e.g., Barndorff-Nielsen,

Graversen, Jacod, Podolskij & Shephard (2006)). In the following, we also use the notation

Ii =
{

(t, s) | t =
i− 1

n
+

k

N
with ηt = ω, s =

i− 1
n

+
j

N
with ηs = −ω, 1 ≤ k, j ≤ m

}
.

The next Lemma provides a representation of RRV n,m
BC .

Lemma 3 It holds that

RRV n,m
BC =

1
λ̃2,m

n∑

i=1

(
max

(t,s)∈Ii

(
p∗i−1

n
+ t

N

− p∗i−1
n

+ s
N

)
+ 2 (ω̂N − ω)

)2

+ op

(
n−1/2

)
. (A.1)

Proof

Write

spi∆,∆,m = max
{

s(1)
pi∆,∆,m, s(2)

pi∆,∆,m, s(3)
pi∆,∆,m, s(4)

pi∆,∆,m

}
,

where

s(1)
pi∆,∆,m = max

t:η i−1
n + t

N
=ω, s:η i−1

n + s
N

=−ω

(
p∗i−1

n
+ t

N

− p∗i−1
n

+ s
N

)
+ 2ω,

s(2)
pi∆,∆,m = max

t:η i−1
n + t

N
=−ω, s:η i−1

n + s
N

=ω

(
p∗i−1

n
+ t

N

− p∗i−1
n

+ s
N

)
− 2ω,

s(3)
pi∆,∆,m = max

t:η i−1
n + t

N
=ω, s:η i−1

n + s
N

=ω

(
p∗i−1

n
+ t

N

− p∗i−1
n

+ s
N

)
,

s(4)
pi∆,∆,m = max

t:η i−1
n + t

N
=−ω, s:η i−1

n + s
N

=−ω

(
p∗i−1

n
+ t

N

− p∗i−1
n

+ s
N

)
,

for 1 ≤ s, t ≤ m. It suffices to show that

P
(
s(1)
pi∆,∆,m ≤ s(k)

pi∆,∆,m

)
= o

(
n−3/2

)
,

for k = 2, 3, 4. We prove this result for k = 3 (the rest can be shown analogously). For all p > 0,

Burkholder’s inequality yields:

P
(
s(1)
pi∆,∆,m ≤ s(3)

pi∆,∆,m

)
≤ P

(
sp∗i∆,∆

≥ 2ω
)
≤ C

n−p/2

ωp/2
,

This completes the proof. ¥
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Next, notice that in view of Lemma 3 we get the decomposition

RRV n,m
BC = V n

1 + V n
2 + V n

3 + op

(
n−1/2

)
,

with

V n
1 =

1
λ̃2,m

n∑

i=1

∣∣∣∣ max
(t,s)∈Ii

(p∗t − p∗s)
∣∣∣∣
2

,

V n
2 =

4
λ̃2,m

(ω̂N − ω)
n∑

i=1

max
(t,s)∈Ii

(p∗t − p∗s) ,

V n
3 =

4n

λ̃2,m

(ω̂N − ω)2 .

Using (ω̂N − ω) = Op

(
N−1/2

)
, it follows that

V n
1 = Op (1) ,

V n
2 = Op

(
m−1/2

)
,

V n
3 = Op

(
N−1

)
. (A.2)

This means V n
3 is negligible for the consistency and the CLT, whereas V n

2 is negligible for consistency

only, but it appears in the CLT (recall that n,m = O
(
N1/2

)
).

A.1. Proof of Theorem 1

With these preliminary steps, the decomposition

RRV n,m
BC = V n

1 + op (1) ,

holds. Hence, the convergence

RRV n,m
BC

p→
∫ 1

0
σ2

udu,

is shown as in Christensen & Podolskij (2006b). ¥

A.2. Proof of Theorem 2

In order for us to prove the CLT, we need the following result, which will be shown later.
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Theorem 5 If Assumption (V) and (3.20) are satisfied, then we have


√

n
(
V n

1 − ∫ 1
0 σ2

udu
)

√
N

(
ω̂2

N − ω
)


 ds→

∫ 1

0
Σ1/2

s dB′
s, (A.3)

where B′ is a 2-dimensional Brownian motion defined on an extension of the filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)
and is independent of the σ-field F . The matrix Σ is defined by

Σs =




Λσ4
s 0

0 ω4


 .

With Theorem 5 at hand, we able to prove the CLT. First, observe that the estimations in (A.2) imply

the decomposition

N1/4

(
RRV n,m

BC −
∫ 1

0
σ2

udu

)
= Vn,m (1) + Vn,m (2) + op (1) ,

where

Vn,m (1) =
√

n√
c

(
V n

1 −
∫ 1

0
σ2

udu

)
,

Vn,m (2) =
√

cmV n
2 .

The second term admits the stochastic expansion

Vn,m (2) =
√

NHc,m (ω̂N − ω) + op (1) ,

where

Hc,m = 4
√

c
λ̃1,m

λ̃2,m

∫ 1

0
σudu.

Now the CLT follows from Theorem 5 by an application of the delta method for the function g (x, y) =

x√
c

+ Hc,m
√

y. ¥

Proof of Theorem 5

We prove Theorem 5 in several steps. First, we show the next Lemma.

Lemma 4 Assume that conditions (V) and (3.20) are satisfied. Set

Un,m =
√

n
n∑

i=1

σ2
i−1
n

(
1

λ̃2,m

∣∣∣∣ max
(t,s)∈Ii

(Wt −Ws)
∣∣∣∣
2

− 1
n

)
.
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Then we have that 


Un,m

√
N

(
ω2 − ω̂2

N

)


 ds→

∫ 1

0
Σ1/2

s dB′
s. (A.4)

Proof

We define the quantities

ξn,m
i =

1√
N

m∑

k=1

(
1
2

(
η i−1

n
+ k

N
− η i−1

n
+ k−1

N

)2
− ω2

)
,

ζn,m
i =

√
nσ2

i−1
n

(
1

λ̃2,m

∣∣∣ max
(t,s)∈Ii

(Wt −Ws)
∣∣∣
2
− 1

n

)
,

to obtain

Un,m =
n∑

i=1

ζn,m
i and

√
N

(
ω̂2

N − ω2
)

=
n∑

i=1

ξn,m
i + op (1) .

As the representation (3.20) holds, Theorem IX 7.28 in Jacod & Shiryaev (2003) is applicable for the

vector (
∑n

i=1 ζn,m
i ,

∑n
i=1 ξn,m

i )T (here T means transpose). Note the identities

E
[
ζn,m
i | F i−1

n

]
= 0, E

[
(ζn,m

i )2 | F i−1
n

]
= Λ̃m

1
n

σ4
i−1
n

,

and

E
[
ξn,m
i | F i−1

n

]
= 0, E

[
(ξn,m

i )2 | F i−1
n

]
=

1
n

ω4.

It follows that

n∑

i=1

E
[
(ζn,m

i )2 | F i−1
n

]
p→ Λ

∫ 1

0
σ4

udu,
n∑

i=1

E
[
(ξn,m

i )2 | F i−1
n

]
= ω4.

Note that since W ⊥⊥ B and m →∞, we get

n∑

i=1

E
[
ζn,m
i ξn,m

i | F i−1
n

]
=
√

n
n∑

i=1

1
λ̃2,m

σ2
i−1
n

E

[
ξn,m
i

∣∣∣∣ max
(s,t)∈Ii

(Wt −Ws)
∣∣∣∣
2

| F i−1
n

]

=
√

n
n∑

i=1

1
λ̃2,m

σ2
i−1
n

E

[
ξn,m
i sup

s,t∈[ i−1
n

, i
n ]

(Wt −Ws)
2 | F i−1

n

]
+ op (1)

= op (1) .

Next, let Z = W or Z = B. Since (W,B) d= − (W,B), we get

E
[
ζn,m
i ∆n

i Z | F i−1
n

]
= 0, E

[
ξn,m
i ∆n

i Z | F i−1
n

]
= 0.
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Finally, let N = (Nt)t∈[0,1] be a bounded martingale on
(
Ω,F , {Ft}t∈[0,1],P

)
, which is orthogonal to

W and B (i.e., with quadratic covariation [W,N ]t = [B, N ]t = 0, almost surely). By standard arguments

(see, e.g., Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006)), we obtain the identity

E
[
ζn,m
i ∆n

i N | F i−1
n

]
= 0, E

[
ξn,m
i ∆n

i N | F i−1
n

]
= 0.

Now, the stable convergence in law follows by Theorem IX 7.28 in Jacod & Shiryaev (2003). ¥

We proceed with the proof of Theorem 2. Using the arguments of Christensen & Podolskij (2006b),

Theorem 2 can be deduced from Lemma 4 and the condition

√
n

n∑

i=1

E

[∣∣∣∣ max
(t,s)∈Ii

(p∗t − p∗s)
∣∣∣∣
2

− σ2
i−1
n

∣∣∣∣ max
(t,s)∈Ii

(Wt −Ws)
∣∣∣∣
2

| F i−1
n

]
p→ 0. (A.5)

From Christensen & Podolskij (2006b), we obtain the approximation

√
n

n∑

i=1

E

[∣∣∣∣ max
(t,s)∈Ii

(p∗t − p∗s)
∣∣∣∣
2

− σ2
i−1
n

∣∣∣∣ max
(t,s)∈Ii

(Wt −Ws)
∣∣∣∣
2

| F i−1
n

]

= 2
√

n
n∑

i=1

E
[
σ i−1

n
max

(t,s)∈Ii

(Wt −Ws)
(

max
(t,s)∈Ii

(p∗t − p∗s)− σ i−1
n

max
(t,s)∈Ii

(Wt −Ws)
)
| F i−1

n

]
+ op (1)

= 2
√

n
n∑

i=1

E


σ i−1

n
sup

s,t∈[ i−1
n

, i
n ]

(Wt −Ws)
(

max
(s,t)∈Ii

(p∗t − p∗s)− σ i−1
n

max
(t,s)∈Ii

(Wt −Ws)
)
| F i−1

n


 + op (1)

= Wn,m + op (1) ,

where the second equality follows because m →∞. Next, we define the pair

(t∗i (W,B) , s∗i (W,B)) = arg sup
(t,s)∈Ii

√
n (Wt −Ws) , (A.6)

as a functional of (W,B). It is simple to deduce that

(t∗i (−W,−B) , s∗i (−W,−B)) = (s∗i (W,B) , t∗i (W,B)) . (A.7)

Following Christensen & Podolskij (2006b), we find that

Wn,m =
2√
n

n∑

i=1

E

[
σ i−1

n
sup

s,t∈[ i−1
n

, i
n ]

(Wt −Ws) gi (t∗i (W,B) , s∗i (W,B)) | F i−1
n

]
+ op (1) ,

where the function gi is given by

gi (s, t) = n

∫ t

s
µ′i−1

n

du + n

∫ t

s

{
σ′i−1

n

(
Wu −W i−1

n

)
+ v′i−1

n

(
Vu − V i−1

n

)}
dWu.
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As a consequence of (A.7), gi (t∗i (W,B) , s∗i (W,B)) is an odd functional of (W,B, V ). Moreover, (W,B, V ) d=

− (W,B, V ), which means that

E

[
σ i−1

n
sup

s,t∈[ i−1
n

, i
n ]

(Wt −Ws) gi (t∗i (W,B) , s∗i (W,B)) | F i−1
n

]
= 0,

and the proof is complete. ¥

A.3. Proof of Theorem 3

The next Lemma helps to separate the influence of η and p∗ on spi∆,∆,m. A deterministic version of the

Lemma (including a proof) can be found as Lemma 10 in Christensen & Podolskij (2006a).

Lemma 5 Let s∗/N and t∗/N denote the almost surely unique points in the interval
[

i−1
n , i

n

]
, where

minimum and maximum of the process η are attained. Then

n1/2

(
spi∆,∆,m − max

s
N

, t
N
∈[ i−1

n
, i
n ]

(
η t

N
− η s

N

))
− n1/2

(
p∗t∗

N

− p∗s∗
N

)
= hin,

holds with E [|hin|q] = o (1) for any q > 0, uniformly in i.

Using Lemma 5, we conclude that

RRV n,m
BC (ν) = Zn

1 + Zn
2 + Zn

3 + op (1) ,

with

Zn
1 =

n∑

i=1

((
η t∗

N
− η s∗

N

)
− 2

m

m + 2
ν̂N

)2

,

Zn
2 = 2

n∑
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η t∗

N
− η s∗

N

)
− 2

m

m + 2
ν̂N

)(
p∗t∗

N

− p∗s∗
N

)
,

Zn
3 =

n∑

i=1

(
p∗t∗

N

− p∗s∗
N

)2
.

Now, simple calculations show that

(
η t∗

N
− η s∗

N

)
− 2

m

m + 2
ν = Op

(
m−1

)
.

Moreover, since ν̂N − ν = Op

(
N−1/2

)
, a usage of Burkholder’s inequality yields

Zn
1 = Op

( n

m2

)
= op (1) ,
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Zn
2 = Op

(√
n

m

)
= op (1) ,

Zn
3 = Op (1) .

To show the stochastic convergence

Zn
3

p→ 1
3

∫ 1

0
σ2

udu,

we use the arguments in, e.g., Christensen & Podolskij (2006b) to deduce that

Zn
3 =

n∑

i=1

σ2
i−1
n

E
[(

W t∗
N
−W s∗

N

)2
| F i−1

n

]
+ op (1) .

Because W ⊥⊥ η and the points
(

s∗
N , t∗

N

)
follow a uniform distribution on

{(
s

N
,

t

N

)
: (i− 1)m ≤ j, k ≤ im, j 6= k

}
,

we deduce that
(
W t∗

N
−W s∗

N

)
is still normal distributed with mean zero. The variance of this random

variable can be computed easily and is given by

E
[(

W t∗
N
−W s∗

N

)2
]

=
1
3n

+ o (1) .

This finishes the proof. ¥

A.4. Proof of Theorem 4

By the triangle inequality

∣∣∣spi∆,∆,m,αN − sp∗i∆,∆,m

∣∣∣ ≤ αN max
0≤s,t≤m

({
p∗i−1

n
+ t

N

αN

}
−

{
p∗i−1

n
+ s

N

αN

})
.

Because {
p∗i−1

n
+ t

N

αN

}
< 1

for any t, we deduce that

∣∣∣spi∆,∆,m,αN − sp∗i∆,∆,m

∣∣∣ = O (αN ) = o
(
n−1/2

)
.

Thus,

RRV n,m
RO = RRV n,m + op (1) ,

whose stochastic limit is given after Equation (3.9). ¥
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Table 1: Estimators of the IV of INTC.

Mean Std. ρ(·, RRV n,m
BC ) acf(1) acf(2) acf(5) acf(10)

RV n

1 tick 16.311 9.186 0.820 0.610 0.522 0.519 0.463

1mn 3.506 1.699 0.817 0.678 0.602 0.570 0.459

2mn 3.205 1.617 0.799 0.590 0.528 0.487 0.396

5mn 2.868 1.683 0.755 0.523 0.440 0.379 0.364

10mn 2.597 1.744 0.684 0.490 0.384 0.283 0.289

15mn 2.572 1.827 0.684 0.433 0.371 0.281 0.317

30mn 2.556 2.099 0.611 0.325 0.322 0.188 0.248

RRV n,m

2mn 4.883 2.181 0.904 0.729 0.672 0.642 0.543

5mn 4.240 1.975 0.883 0.696 0.637 0.587 0.513

RRV n,m
BC

2mn 2.311 0.958 1.000 0.456 0.392 0.414 0.352

5mn 2.384 1.084 0.929 0.584 0.509 0.478 0.431

TSRV (K,J)− aa

5mn 2.882 1.667 0.750 0.564 0.464 0.383 0.331

This table presents descriptive statistics for estimators of the IV of INTC. RV n is the standard realized

variance computed at sampling frequencies between 1 tick - 30 minutes, where 1 tick is the RV based on

all data. RRV n,m is the RRV of Christensen & Podolskij (2006b), RRV n,m
BC is the bias-corrected RRV,

and TSRV (K,J)−aa is the subsampler of Aït-Sahalia et al. (2006). ρ(·, RRV n,m
BC ) is the correlation with

RRV n,m
BC (2mn), which is our preferred range-statistic. acf(r) denotes the rth order autocorrelation.
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Table 2: Estimators of the IV of MSFT.

Mean Std. ρ(·, RRV n,m
BC ) acf(1) acf(2) acf(5) acf(10)

RV n

1 tick 12.019 7.615 0.788 0.369 0.330 0.327 0.274

1mn 2.189 1.342 0.739 0.699 0.677 0.569 0.484

2mn 1.946 1.297 0.722 0.701 0.652 0.534 0.460

5mn 1.681 1.309 0.696 0.636 0.580 0.491 0.389

10mn 1.484 1.312 0.625 0.671 0.543 0.417 0.350

15mn 1.437 1.334 0.623 0.579 0.492 0.416 0.349

30mn 1.372 1.305 0.589 0.510 0.554 0.436 0.385

RRV n,m

2mn 3.234 1.694 0.874 0.702 0.655 0.582 0.489

5mn 2.759 1.547 0.841 0.707 0.663 0.594 0.484

RRV n,m
BC

2mn 1.685 0.853 1.000 0.381 0.328 0.301 0.225

5mn 1.624 0.887 0.920 0.569 0.520 0.476 0.349

TSRV (K,J)− aa

5mn 1.684 1.366 0.686 0.668 0.589 0.467 0.376

This table presents descriptive statistics for estimators of the IV of MSFT. RV n is the standard realized

variance computed at sampling frequencies between 1 tick - 30 minutes, where 1 tick is the RV based on

all data. RRV n,m is the RRV of Christensen & Podolskij (2006b), RRV n,m
BC is the bias-corrected RRV,

and TSRV (K,J)−aa is the subsampler of Aït-Sahalia et al. (2006). ρ(·, RRV n,m
BC ) is the correlation with

RRV n,m
BC (2mn), which is our preferred range-statistic. acf(r) denotes the rth order autocorrelation.
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Table 3: Finite sample properties of asymptotic pivots.

Panel A: RRV n,m
BC - Infeasible

No. obs. Mean Std. 0.5% 2.5% 5% 95% 97.5% 99.5%

100 0.346 1.217 0.000 0.003 0.014 0.861 0.899 0.948
200 0.271 1.165 0.000 0.008 0.025 0.880 0.917 0.962
300 0.197 1.117 0.001 0.011 0.030 0.897 0.933 0.972
450 0.138 1.081 0.001 0.014 0.034 0.912 0.945 0.979
600 0.102 1.058 0.001 0.015 0.036 0.921 0.951 0.983
900 0.061 1.038 0.002 0.017 0.040 0.930 0.959 0.987
1200 0.039 1.027 0.002 0.018 0.042 0.934 0.963 0.989
1500 0.031 1.015 0.002 0.018 0.042 0.939 0.966 0.991

Panel B: RRV n,m
BC - Feasible

No. obs. Mean Std. 0.5% 2.5% 5% 95% 97.5% 99.5%

100 -0.061 1.168 0.036 0.067 0.093 0.985 0.999 1.000
200 -0.011 1.105 0.026 0.056 0.081 0.969 0.991 1.000
300 -0.023 1.079 0.021 0.051 0.078 0.965 0.989 1.000
450 -0.033 1.056 0.018 0.047 0.074 0.964 0.987 0.999
600 -0.041 1.040 0.016 0.044 0.070 0.964 0.987 0.999
900 -0.051 1.028 0.013 0.041 0.068 0.963 0.985 0.999
1200 -0.056 1.020 0.012 0.039 0.067 0.963 0.985 0.998
1500 -0.052 1.011 0.011 0.037 0.064 0.963 0.985 0.998

Panel C: lnRRV n,m
BC - Feasible

No. obs. Mean Std. 0.5% 2.5% 5% 95% 97.5% 99.5%

100 0.142 1.071 0.007 0.028 0.051 0.922 0.959 0.992
200 0.133 1.068 0.006 0.026 0.050 0.923 0.958 0.990
300 0.093 1.051 0.006 0.026 0.050 0.931 0.962 0.991
450 0.061 1.035 0.005 0.025 0.050 0.938 0.966 0.993
600 0.041 1.023 0.005 0.024 0.049 0.941 0.969 0.993
900 0.018 1.014 0.005 0.024 0.050 0.945 0.971 0.993
1200 0.006 1.008 0.004 0.024 0.049 0.946 0.972 0.994
1500 0.004 1.000 0.004 0.023 0.048 0.948 0.974 0.994

The table shows the finite sample properties of our asymptotic distribution theory. Panel A reports on the
convergence in law for RRV n,m

BC in the infeasible setting, where avarRRV n,m
BC

is known a priori. In Panel B,
we estimate avarRRV n,m

BC
. Panel C is for the feasible log-based distribution theory. The mean, standard de-

viation and simulated quantiles are shown for the sample sizes N = 100, 200, 300, 450, 600, 900, 1200, 1500.

32



0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0 1 2 3 4 5 10 20 30 100 200 300 1000 2000 10000 20000

λ2

Number of returns (m)

Ex
pe

ct
ed

 v
al

ue

λ2,m ~λ2,m 

Figure 1: λ2,m and λ̃2,m against m on a log-scale. All the estimates are from a simulation with 1,000,000

repetitions. The dashed line is the asymptotic value (as m →∞).
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Figure 2: ln(RMSE) of RRV n,m
BC , RRV n,m, RV n, RV n∗ and TSRV (K,J)− aa. RV n∗ is the RV sampled

at an optimal frequency (n∗) using an MSE criterion. TSRV (K, J)− aa is based on an (asymptotically)

optimal number of subgrids, where we exhaust the data by shifting the initial point at which prices are

recorded. We use the condition m ≥ 10 to implement RRV n,m
BC .
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Figure 3: Confidence intervals for the annualized standard deviation of INTC in July, 2004. We plot

95% confidence intervals for
√∫ 1

0 σ2
udu using the delta method to transform the asymptotic distribution

of RV n and RRV n,m
BC . The box is based on the feasible limit theory of

√
RV n and the line uses that of√

RRV n,m
BC . The point estimates of

√
RRV n,m and

√
TSRV (K,J)− aa are also reported.
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Figure 4: Confidence intervals for the annualized standard deviation of MSFT in July, 2004. We plot

95% confidence intervals for
√∫ 1

0 σ2
udu using the delta method to transform the asymptotic distribution

of RV n and RRV n,m
BC . The box is based on the feasible limit theory of

√
RV n and the line uses that of√

RRV n,m
BC . The point estimates of

√
RRV n,m and

√
TSRV (K,J)− aa are also reported.
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