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Abstract

A common and important goal in cancer research is the identification of genetic

markers such as genes or genetic variations that enable to determine if a person

has a particular type of cancer, or lead to a higher risk of developing cancer.

In recent years, many biotechnologies for measuring these markers have been

developed. The most prominent examples are microarrays that can be used to,

e.g, measure the expression levels of tens of thousands of genes simultaneously.

The most widely used type of microarrays is the Affymetrix GeneChip on

which each gene is represented by eleven pairs of probes. The corresponding

probe intensities have to be preprocessed, i.e. summarized to one expression

value per gene, before variable selection and classification methods can be ap-

plied to the gene expression data.

This thesis is based on two projects: The goals of the first project are to iden-

tify the preprocessing method for Affymetrix microarrays that leads to the most

efficient data reduction, and to provide a software enabling to apply this pro-

cedure to the data from studies comprising hundreds of Affymetrix GeneChips.

The results of this project are presented in this thesis.

The second project is concerned with SNPs (Single Nucleotide Polymor-

phisms), i.e. variations at a single base-pair position in the genome. While a

vast number of papers on the analysis of gene expression data have been pub-

lished, only a few variable selection and classification methods dealing with the

specific needs of the analysis of SNP data have been proposed. One of the ex-

ceptions is logic regression. In this thesis, it is shown how approaches for the

analysis of gene expression data can be adapted to SNP data, and a procedure

based on a bagging version of logic regression is proposed that enables the de-

tection of SNP interactions explanatory for a higher cancer risk. Furthermore,

two measures for quantifying the importance of each of these interactions for

prediction are presented, and compared with existing measures.
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PART I

Background Information



Chapter 1

Introduction

Advances in biotechnology have enabled the usage of genetic markers such as

genes and genetic variations in studies concerned with the detection of causes for

complex diseases. In particular in cancer research, these markers are employed

to identify, on the one hand, genes allowing to determine if a person has a

particular (sub-)type of cancer, and on the other hand, genetic variations such

as single nucleotide polymorphisms (SNPs) leading to a higher risk of developing

cancer.

A SNP is a single base-pair position in the DNA sequence at which (typically

two) different base alternatives exist that each occur in at least 1% of a popula-

tion. Since the human genome is diploid, i.e. consists of pairs of chromosomes,

each SNP is explained by two bases – one from each chromosome. Thus, each

SNP can take three values/genotypes: A SNP is of the homozygous reference

(or the homozygous variant) genotype if both chromosomes show the more (or

the less) frequent base. If one of the bases is the less, and the other the more

frequent variant, then the SNP is of the heterozygous variant genotype.

SNPs and the expression levels of genes can be measured in a similar way

using one of several biotechnologies. The two most prominent types of such

methods are microarrays (e.g., Brown and Botstein, 1999, Lipshutz et al., 1999)

and polymerase chain reaction (PCR; see, e.g., Strachan and Read, 2005). While

the latter enables to determine the expression level of a gene – which is a mea-

2
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FIGURE 1.1. Role of Statistics in Affymetrix Microarray Experiments.

surement of the activity of this gene – or the genotype of a SNP accurately, mi-

croarrays can be employed to quantify the expression levels of tens of thousands

of genes, or the genotypes of hundreds of thousands of SNPs simultaneously.

The most widely used type of DNA microarrays is the Affymetrix GeneChip

on which each gene is represented by typically eleven pairs of oligonucleotide

probes, i.e. short mRNA sequences consisting of 25 bases. Before procedures

for high level analyses such as variable selection and classification can be ap-

plied to the expression values, these signals thus have to be generated from the

probe intensities provided by the microarrays (see Figure 1.1 for a diagram of

this proceeding). Since these intensities are a result of a trade-off of quality for

quantity, they are perturbed by noise arising from, e.g., the way of measuring.

Hence, procedures are needed that are able, on the one hand, to remove not

only this noise but also technical effects such as laboratory or operator effects,

and on the other hand, to reduce the 22 probe intensities per gene and sam-

ple/microarray to one expression value such that the results of the subsequent

high level analyses are still meaningful.

Typically, procedures for this preprocessing or low level analysis consist of

three steps: In the first step, the probe intensities are corrected for global back-
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ground noise. In the second step, the probe intensities are normalized – which

should remove technical effects. Finally, the background-corrected and norma-

lized intensities are summarized to one signal per gene and sample.

Not all preprocessing methods follow exactly this scheme. For example, in

MAS 5.0 (MicroArray Suite 5.0; Affymetrix, 2002), the standard Affymetrix

algorithms until July 2004, the normalization is performed after the summariza-

tion such that not the probe intensities but the expression values are normalized.

A study of Roche Diagnostics, Penzberg, is concerned with the comparison of

MAS 5.0 with, on the one hand, in-house modifications of the current standard

Affymetrix algorithm PLIER (Probe Logarithmic Intensity ERror estimation;

Affymetrix, 2005) that are called PLA and PLA+ (Plier Like Algorithm; Liu,

2004) throughout this thesis, and on the other hand, RMA (Robust Multi-array

Average; Irizarry et al., 2003), the most popular academic alternative to the

Affymetrix algorithms, and PLM (Probe Level Model; Bolstad, 2004) that only

differs from RMA in the summarization step. The main goal of this study is the

identification of the algorithm leading to the best data reduction, and hence, the

specification of a procedure that will be employed as the standard preprocessing

method in upcoming Affymetrix microarray projects of Roche Diagnostics.

All but the internal Roche methods can be applied to the probe data genera-

ted in a DNA microarray experiment using functions freely available at the web

page of BioConductor (http://www.bioconductor.org; Gentleman et al., 2004),

an open source and open development project for the analysis of genetic data in

the statistical software environment R (Ihaka and Gentleman, 1996).

A drawback of R is that one runs quickly into massive memory problems if

the data set is high-dimensional. For example, generating the RMA signals in

a study comprising several ten Affymetrix HG-U133 Plus 2 chips, the most

widely used type of Affymetrix DNA microarrays, is only possible with a large

amount of RAM. Employing the standard BioConductor functions, other more

memory-intensive procedures such as PLM cannot be applied in such a study.

However, in a project of Roche Diagnostic concerned with colorectal cancer

http://www.bioconductor.org
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(CRCA), more than 400 HG-U133 Plus 2 chips have to be preprocessed using

a machine with 4 GB of RAM on which Windows XP is installed. Therefore, a

second goal of this study is to develop a strategy for preprocessing such a huge

number of Affymetrix microarrays on this computer using R.

The results of this study are presented in Part II of this thesis. The set

of preprocessing procedures considered in the comparison is, however, extended

by adding, on the one hand, PLIER with and without normalization, and on

the other hand, versions of RMA and PLM in with the standard background

correction approach is replaced by a method that takes the base composition of

the probe sequences into account which is assumed to improve the estimation

of the RMA and PLM signals (cf. Wu et al., 2004).

While Part II is concerned with low level analysis of gene expression data,

Part III addresses high level analysis of SNP data and is based on the project

“Statistical Complexity Reduction in Molecular Epidemiology” of the Collab-

orative Research Center 475 at the University of Dortmund. The major goal

of this project is the development of methods for the identification of polymor-

phisms, interactions of polymorphisms, and interactions of polymorphisms and

epidemiological variables that lead to a higher risk of developing cancer. Since

in this project the analysis of the data set from the GENICA (interdisciplinary

study group on Gene ENvironment Interaction and breast CAncer in Germany)

study is of particular interest, it serves as the main example in the applications

presented in Part III. (For more details on the GENICA study, see Appendix

A.2, or http://www.genica.de.)

In this thesis, we focus on the most common type of polymorphisms, i.e. on

SNPs. We are thus interested in the detection of SNPs and SNP interactions

showing a distribution that substantially differs between several groups, and the

construction of a classification rule based on such features.

While in recent years a huge number of papers on high level analyses of gene

expression data have been published, only a few variable selection and classifi-

cation methods have been proposed for the analysis of SNP data (e.g., Cordell

http://www.genica.de
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and Clayton, 2002, Ritchie et al., 2001, Ruczinski et al., 2003; for an overview

of procedures that might be applied to SNP data for variable selection, see Hei-

dema et al., 2006). However, many of the procedures for analyzing continuous

gene expression data can be adapted to categorical SNP data. To exemplify

this, we show in this thesis how three popular methods particularly developed

for the analysis of DNA microarray data can be modified for SNPs.

Since missing values are a common problem in association studies such as

the GENICA study (Dai et al., 2006), a method proposed by Troyanskaya et

al. (2003) for imputing missing expression values based on k Nearest Neighbors

(kNN; Fix and Hodges, 1951) is considered as a first example. Afterwards, it is

shown how the Significance Analysis of Microarrays (SAM; Tusher et al., 2001),

a multiple testing procedure that utilizes a QQ plot to adjust for multiplicity,

can be applied to SNP data. Finally, a discrimination method called Prediction

Analysis of Microarrays (PAM; Tibshirani et al., 2002) that can cope with a

vast number of continuous variables is adapted to categorical data.

A problem in the analysis of high-dimensional data is that, e.g., the dis-

tances between tens of thousands of pairs of observations or variables have to

be computed (when, e.g., using kNN), or several thousand test statistics have

to be calculated several hundred times (when employing a permutation method

such as SAM). This can lead to very long run times in R, in particular, if these

statistics are determined one by one.

A solution to this problem is to parallelize the computation by, e.g., em-

ploying matrix algebra. Therefore, for each of the three examples, an algorithm

is presented that makes essential use of matrix calculations, and reduces the run

time substantially.

Since not individual SNPs but interactions of SNPs are assumed to be respon-

sible for complex diseases such as sporadic breast cancer (Garte, 2001, Culver-

house et al., 2002), SAM and PAM are not only applied to the SNPs themselves,

but it is also shown how they can be used to analyze interactions of SNPs.

One of the major goals in the analysis of genotype data is the construction
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of classification rules such as

“If SNP S1 is of the heterozygous variant genotype AND

SNP S2 is of the homozygous variant genotype OR both SNP

S3 AND S4 are NOT of the homozygous reference genotype,

then a person has (a higher risk to develop) a particular disease.”

A procedure developed for solving exactly this type of problems is logic

regression proposed by Ruczinski et al. (2003). This adaptive regression and

classification methodology attempts to identify Boolean combinations of binary

variables for predicting, e.g., the case-control status of an observation.

Other discrimination methods such as CART (Breiman et al., 1984), bag-

ging (Breiman, 1996), Random Forests (Breiman, 2001), and Support Vector

Machines (SVMs; Vapnik, 2000) can also be applied to SNP data (Schwender

et al., 2004). But in comparisons, on the one hand, with CART and Random

Forests (Ruczinski et al., 2004), and on the other hand, with other regression

procedures (Kooperberg et al., 2001, Witte and Fijal, 2001), logic regression has

shown a good performance in the application to SNP data.

We therefore consider logic regression more closely. As a starting point, it

is determined if logic regression also outperforms PAM and the other above-

mentioned discrimination methods when applied to the genotype data sets exa-

mined in this thesis (see Appendix A).

Afterwards, a procedure based on a bagging version of logic regression is

introduced that enables the identification of SNPs and SNP interactions asso-

ciated with the covariate of interest. Furthermore, two measures for quanti-

fying the importance of each of the interactions detected by this approach called

logicFS are proposed. The advantage of these approaches over existing quanti-

ties such as the variable importance measures of CART and Random Forests,

or the squared weights used in RFE-SVM (Recursive Feature Elimination us-

ing Support Vector Machines; Guyon et al., 2002) is that the importances of

not only the variables themselves but also the interactions can be determined
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without including the interactions as variables in the discrimination procedure.

The main parts of this thesis, Part II and Part III, are based on two different

projects: One project on the low level analysis of Affymetrix DNA microarray

data, and the other on high level analysis of SNP data. However, gene expression

data can, of course, also be employed to, e.g., construct a classification rule. As

mentioned above, this is, in fact, the actual goal of many of the microarray expe-

riments. Contrariwise, SNPs can be genotyped using microarrays. Therefore, we

shortly explain, on the one hand, how gene expression data might be employed

for variable selection and discrimination (Chapter 6; in particular, Section 6.1),

and on the other hand, how genotypes of SNPs can be measured (Section 2.2.2)

and preprocessed (Section 3.7) using Affymetrix microarrays.

This thesis is organized as follows: In Chapter 2, background information

on genetics and on the biotechnologies used to generate the real gene expression

and genotype data described in Appendix A is given. While the preprocessing

methods summarized in Chapter 3 are compared in Chapter 4, it is shown in

Chapter 5 how PLM can be applied to data from experiments comprising a

huge number of microarrays. In Chapter 6, the adaption of the three DNA

microarray methods to SNP data is presented, whereas Chapter 7 contains the

comparison of logic regression with other discrimination procedures. In Chapter

8, logicFS and the two importance measures are introduced and compared with

a similar approach based on logic regression. Furthermore, a method required by

logicFS for converting a logic expression into a disjunctive normal form, i.e. an

OR-combination of AND-combinations, is presented. Finally, the results of the

analyses are summarized and discussed in Chapter 9. In the Appendix, detailed

information on the data sets used in the analyses are given, supplementary

plots and tables are displayed, R packages containing functions for procedures

introduced in this thesis are presented, and statistical methods mainly employed

in Part II are shortly described.



Chapter 2

Genetic and Biotechnological

Background

2.1 Genetic Background

What is gene expression? And what are SNPs? In this section which is a mo-

dified excerpt from Schwender et al. (2006b), these and other important genetic

terminologies and concepts are explained.

A more detailed introduction to genetics is given, e.g., by Alberts et al.

(2005), or by Gonick and Wheelis (1991).

2.1.1 The Human Genome

Everybody is composed of zillions of cells. Virtually any of these cells comprises

the complete human genome in its nucleus. The human genome consisting of

23 pairs of chromosomes is the blueprint for all cellular structures and activities

in the human body. In each of these pairs, one chromosome comes from the

mother, and the other from the father. Each chromosome is a huge chain of two

intertwined strands of deoxyribonucleic acid (DNA), the double-helix. As shown

in Figure 2.1, each DNA strand is a long sequence of nucleotides, where each

nucleotide is a molecule consisting of a phosphate group, a deoxyribose sugar,

9
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FIGURE 2.1. The DNA.

and one of the four bases adenine (A), thymine (T ), cytosine (C ) and guanine

(G).

Even though there are two strands, one sequence consisting of the letters A,

T, C and G suffices to describe the DNA because of the complementary base-

pairing : A on one of the strand is always connected via hydrogen bounds to T

on the other strand, whereas C is always paired with its complement G. Thus,

if we know the sequence of one of the strands, we also know the sequence of the

other strand. The leading end of each of these strands is called 5’ end, and the

tail end 3’ end. Since they are complementary, one strand runs from 5’ to 3’,

and the other from 3’ to 5’.

Only small segments of the DNA, namely the genes, contain construction

information for proteins. Since proteins are responsible for the structure and

the activity of a cell, and hence, for virtually everything that happens in an

organism, it is important to understand how genes are translated into proteins.

The Central Dogma of Molecular Biology displayed in Figure 2.2 gives an answer

to this question:

Starting at the 5’ end, the information in the genes is first transcribed into

single-stranded messenger ribonucleic acid (mRNA) by a process based on the

abovementioned complementary base-pairing. RNA is similar to DNA, but car-
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FIGURE 2.2. Central Dogma of the Molecular Biology.

ries a different sugar molecule (ribose instead of deoxyribose) and a different

base (uracil (U ) instead of thymine).

After the transcription, the mRNA leaves the nucleus of the cell. Starting

again at the 5’ end of the mRNA, each codon, i.e. each triplet of nucleotides,

is translated into one of twenty amino acids. (Note that some of the triplets

code for the same amino acid, since there are actually 43 = 64 possible triplets.)

Finally, all amino acids corresponding to one mRNA sequence form a chain that

folds into a protein.

The relation between the codons and the amino acids is known as the genetic

code. While gene expression actually denotes the process of converting the DNA

sequence of a gene into a protein, in the analysis of microarrays the abundance

of specific mRNA in a sample is referred to as (gene) expression level.

A gene, however, does not always code for the same protein. Since only small

parts of a gene, namely exons, are needed in the translation step, introns, i.e.

non-coding regions of a gene, are removed in the translation step by a process

called RNA-splicing. Since not always the same exons are retained, different

combinations of exons can be spliced to produce different mRNA isoforms of a

gene that can lead to different proteins. It is assumed that about 60% of the

genes are affected by this alternative splicing.
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But this is not the only reason that a gene does not always code for the

same protein. DNA itself varies between humans. Even though humans share

far more than 99% of their DNA, there are still millions of base pair positions

at which the DNA can differ. Such variations in the DNA sequence of a gene

might also lead to different proteins.

2.1.2 Genetic Variations

There are several forms of genetic variation, ranging from deletions or substi-

tutions of single or multiple bases over translocations of large segments of a

chromosome to changes in the number of chromosomes.

Such mutations cannot only affect the physical appearance of an individual

but also the development of a (complex) disease. If a change in just one of

the two chromosomes building a pair is sufficient to alter the phenotype, i.e. an

observable characteristic of an organism, then the mutation is called dominant.

If both chromosomes must be affected by this variation to change the phenotype,

it is called recessive.

Each of several forms a DNA sequence can take is called allele. If a specific

locus in the DNA sequence is considered, then the allele that occurs less often in

the population of interest is referred to as minor allele. If the frequency of this

allele is larger than 1%, the variation is called polymorphism. (This condition is

necessary to distinguish inherited variations from spontaneous mutations.)

The most common type of polymorphisms are SNPs (Single Nucleotide

Polymorphisms) that are characterized by the possibility of different bases at a

specific base-pair position. Furthermore, a deletion or insertion at a particular

locus is also referred to as SNP.

Since the human genome is diploid, i.e. consists of pairs of chromosomes,

not just one DNA sequence but both chromosomes are typically considered in

association studies. Thus, the genotype, i.e. the combination of the two alleles –

one from each chromosome – is analyzed in such studies.
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Since typically two sequence alternatives exist at a specific base-pair position,

a SNP can take three genotypes: The SNP is of the homozygous reference (or the

homozygous variant) genotype, if both bases are the more (or the less) frequent

variant. The SNP is of the heterozygous variant genotype, if one of the bases

is the less frequent, and the other is the more frequent variant, where it is not

possible to specify which chromosome shows which of the two bases.

2.2 Biotechnological Background

Now we know what gene expression and SNPs are. But how can these genetic

variables be measured? In this section, an answer to this question is given. In

Section 2.2.1, the idea behind the Affymetrix GeneChip is explained, and it is

described how this biotechnology can be employed to measure expression levels.

Since the SNPs from the GENICA study have been genotyped using a com-

bination of PCR (Polymerase Chain Reaction) and MALDI-TOF-MS (Matrix

Assisted Laser Desorption/Ionization – Time Of Flight – Mass Spectrometry),

Section 2.2.2 focusses on these two biotechnologies, and contains only a short

description of how Affymetrix microarrays can be used to measure SNPs.

While full details on the Affymetrix GeneChip technology can be found in

Affymetrix (2001, 2003), Kennedy et al. (2003) describe how this biotechnology

can be employed to genotype SNPs. Introductions to other types of microarrays

such as cDNA chips or BeadArrays are given, e.g, by Brown and Botstein (1999)

or by Kuhn et al. (2004), respectively. PCR is explained in more details, e.g.,

by Strachan and Read (2005), whereas MALDI-TOF-MS is described by Pusch

et al. (2002).

2.2.1 Measuring Gene Expression Data

Proteins are responsible for virtually anything that happens in an organism –

e.g., the development of cancer. It would therefore be interesting to measure

the abundance of proteins in cancer cells, and to compare them with normal,



2.2 Biotechnological Background 14

i.e. non-cancer, cells. Even though methods for monitoring protein expressions

such as 2D gels (Klose and Kobalz, 1995) and protein microarrays (Sydor and

Nock, 2003) already exist, it remains very complex to measure a large number

of proteins simultaneously.

Following the Central Dogma of Molecular Biology, the function of cells can,

however, also be investigated by monitoring mRNA levels if the assumption that

most of the mRNA is translated into proteins holds.

Tens of thousands of such mRNA levels can be measured simultaneously

using DNA microarrays such as the Affymetrix GeneChip that consists of a 1.28

cm x 1.28 cm glass slide, or array, comprising hundreds of thousands of probe

cells, i.e. locations, on the slide. For example, the Affymetrix HG-U133 Plus

2 chip is composed of 1, 164 × 1, 164 = 1, 354, 896 probe cells. Virtually any

of these cells contains millions of copies of a specific oligonucleotide probe (or

short: oligo), i.e. an mRNA sequence consisting of 25 bases.

Each gene is represented by at least one probe set typically composed of

eleven Perfect Match (PM ) and eleven Mismatch (MM ) oligos. But not any

probe set corresponds to a gene. The Affymetrix HG-U133 Plus 2 chip, e.g.,

comprises 54,675 probe sets which either represent one of about 38,000 genes,

or are employed for quality control (for more information on control probe sets,

see Section 4.3).

As illustrated by Figure 2.3, a PM oligo is a 25mer complementary to a part

of the mRNA sequence of interest that should be unique for the target gene, i.e.

the mRNA sequence of none of the other genes should contain this sequence.

FIGURE 2.3. Perfect Match and Mismatch. (Source: Schwender and Belousov,

2006)
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If single-stranded RNA is hybridized, i.e. joined, to the probes on the chip by

the process described below, the RNA of a gene represented by a particular PM

is assumed to bind to this PM. However, not only the RNA of interest will in

general hybridize to the intended PM, but also RNA that is not supposed to

join with this PM. To adjust for this non-specific binding and for background

noise caused by the way the arrays are prepared and measured, each chip also

contains a mismatch oligo for each PM. As shown in Figure 2.3, the sequence

of a MM – that builds a probe pair with the corresponding PM – is identical

to sequence of this PM except for the 13th base which is complementary to the

13th base of the PM.

If the expression levels of the genes in a tissue sample should be measured

total RNA, i.e. a mixture of mRNA and two other types of RNA (ribosomal RNA

and transfer RNA) that do not code for proteins, is isolated from this tissue,

and then reverse-transcribed to produce double-stranded complementary DNA

(cDNA). This cDNA serves as a template in the subsequent in vitro transcrip-

tion (IVT ) reaction in which (single-stranded) complementary RNA (cRNA) is

multiplied using PCR (see Section 2.2.2) and labeled with fluorescent dye. This

cRNA is fragmented into pieces typically consisting of 25-200 bases and given

onto the chip. After 16 hours of hybridization, the non-binding cRNA is removed

from the chip, and the array is scanned to measure the amount of fluorescence

at each probe cell by a 16-bit image, where the amount of fluorescence in a par-

ticular probe cell is assumed to be proportional to the abundance of the specific

mRNA.

Depending on the used Affymetrix GeneChip technology, each probe cell is

represented by up to 8×8 = 64 pixel values, where each of these pixels can take

a value between 0 and 216 − 1 (since a 16-bit image is used). These values are

summarized to one intensity per probe cell by removing the border pixels and

computing the 75% quantile of the remaining inner pixels. For each microarray,

the resulting probe intensities are stored in a CEL file, the starting point of the

methods presented in Chapter 3.
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2.2.2 Genotyping SNPs

Affymetrix GeneChips can also be employed to genotype SNPs. As Figure 2.4

shows, each SNP is not represented by a set of probe pairs, but by a set composed

of typically ten probe quartets each consisting of one PM and one MM for each

sequence alternative.

FIGURE 2.4. Probe quartet representing the SNP marked by the red background.

(The gray background marks the 13th base which differs between PM and MM.)

In association studies such as the GENICA study in which several tens of

SNPs are considered, SNPs are typically genotyped using a combination of PCR

with another molecular-biological technique such as MALDI-TOF-MS.

PCR which has enabled the boom in molecular genetics since the early 1980s

is a technology to amplify, i.e. multiply, a specific DNA sequence to get enough

genetic material such that it can be analyzed with standard biochemical proce-

dures. In each of the typically 20-30 cycles of a PCR process, the amount of

DNA is doubled such that the original amount of the DNA sequence is amplified

by a factor of 220-230. Each cycle consists of the following three steps:

1. Denaturation: The DNA double strand is separated by heating it to a

temperature of 94◦-96◦ C.

2. Annealing : The temperature is lowered slowly to 50◦-60◦ C so that two

specific primers, i.e. short oligos matching the beginning of the two single-

stranded DNA sequences produced during the denaturation, are able to

anneal to the respective single-stranded DNA sequence, and thus to mark

the beginning of the DNA target sequence.

3. Extension: The four types of nucleotides and a DNA polymerase – a special
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enzyme that catalyzes the synthesis of DNA – are added to the mixture.

This reagent is heated to 72◦ C enabling the synthesis of two copies of the

target sequence.

After amplifying the DNA region of interest, a short primer is annealed to

this sequence, where the 3’ end of the primer is located directly before the

base-pair position of the SNP that should be genotyped. This primer is then

extended allele-specificly by one or two bases. Since the molecular masses of the

four nucleotides are known, the allele-specific products generated in the primer

extension reaction can be determined in MALDI-TOF-MS by measuring their

mass, and the genotype of the SNP of interest can be specified by the abundance

of these products.

For this genotyping, the analyte comprising the extension products is embed-

ded into a matrix consisting of crystallized molecules. Afterwards, this solution

is placed into a mass spectronometer. A pulsed laser is used to evaporate both

the matrix and the analyte, where the major fraction of the laser energy is ab-

sorbed by the matrix such that the analyte is transferred gently into the gas

phase. Furthermore, the molecules of the analyte are ionized by a proton trans-

fer from the matrix. (This soft ionization method called MALDI is required

by the MS procedure, since otherwise the molecules of the analyte would decay

immediately during the ionization/desorption.) These ions are accelerated by

an electric field, and enter the field-free flight tube of the mass spectronometer.

Depending on their mass, the molecules reach the detector at the other end

of the mass spectronometer to different time points. Therefore, the time of flight

t from the evaporation to the arrival at the detector can be used as a measure

for their molecular mass. Based on this time of flight, the mass-to-charge ratio

m

z
=

2 · e · U
s2

· t2

is computed, where e = 1.602 · 10−19 coulomb is the elementary charge, U is the

acceleration voltage, and s is the length of the flight tube.
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FIGURE 2.5. Mass spectrum of the multiplex reaction of 6 SNPs. Lines labeled

by “Primer” specify the m/z-ratio of the non-extended primers. (Slightly modified

version of a figure provided by Christina Justenhoven, IkP Stuttgart.)

The detector of the mass spectronometer not only identifies the extension

products by their molecular mass, but also determines the abundances of the

ions with the respective m/z-ratio. Finally, the genotype of the SNP is specified

depending on the abundances of the allele-specific products.

In Figure 2.5, the mass spectrum of the simultaneous analysis of six SNPs is

displayed. Since for the SNP marked by the light-green lines (on the left-hand

side of Figure 2.5), only the A allele is abundant, and for the SNP represented by

red lines, just the G allele shows a large intensity, both SNPs are homozygous,

and exhibit an A or a G, respectively, at the corresponding base-pair positions.

By contrast, the SNP marked by black lines is heterozygous, as both alleles are

abundant.

2.3 Gene Expression vs. SNP Data

There are two major differences between gene expression and SNP data that

have to be considered when analyzing these types of data. Firstly, expression
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values are continuous, whereas SNPs are categorical variables with typically

three categories. Secondly, while the expression of a gene depends, e.g., on the

cell type and can change over time, the genotype of a SNP is always the same.

Therefore, a time series analysis of SNPs does not make sense, whereas in DNA

microarray experiments, it is a highly interesting topic (e.g., Wichert et al., 2004)

which is, however, not part of this thesis. Another consequence of the constant

nature of SNPs is that a person who does not show a particular cancer during

an association study concerned with this type of cancer but formerly suffered

from it should not be included as control in this study.
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Chapter 3

Preprocessing Methods

3.1 Introduction

An immediate goal in a study concerned with Affymetrix microarrays is to pre-

process the probe data comprised by this study, i.e. to reduce the intensities of

the typically eleven probe pairs per probe set to one expression value such that

the results of further analyses such as feature selection and classification can

still be meaningful.

As mentioned in Section 2.2.1, the PMs measure both the relative abundance

of the respective gene and the amount of non-specific binding and background

noise, whereas the MMs are intended to measure non-specific binding and back-

ground noise. Therefore, a first idea for computing the expression value of a gene

would be to subtract the MM intensities from the corresponding PM values, and

to average over the differences of the probe pairs representing this gene.

This approach, however, only works in an ideal Affymetrix world. As noted

by Irizarry et al. (2003), in reality about 30% of the MMs are larger than the

corresponding PMs.

A solution to this MM > PM riddle is given by Naef and Magnasco (2003).

In an experiment comprising 86 Affymetrix HG-U95A arrays, they observe that

the 13th base of the PM sequences of 95% of the probe pairs in which the

MM is larger than the PM is a purine, i.e. either A or G. Following Naef and

21
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FIGURE 3.1. Left Panel: Box plot of the percentage of probe pairs consisting

of a PM showing a smaller intensity than the corresponding MM for each of the 38

Affymetrix HG-U133 Plus 2 chips (see Appendix A.1). Right Panel: Scatter plot of

the probe pairs of two of these microarrays. If the 13th base of the PM is a purine,

the pair is shown in red. Otherwise, it is displayed in blue.

Magnasco (2003), this behavior is based on the labeling process in which only

the pyrimidines, i.e. C and U, are labeled with fluorescent dye, and on the fact

that purines are larger molecules than pyrimidines.

Figure 3.1 reveals that in the analysis of the 38 Affymetrix HG-U133 Plus

2 arrays used in the comparison presented in Chapter 4 also about 28% of the

MMs are larger than the corresponding PMs. However, only 62.8% of these

PMs exhibit a purine as 13th base. (Note that more than 60% of the probe pairs

showing log2-transformed intensities less than 7.) Thus, there seem to be other

factors that also cause the MMs to be larger than the PMs.

In Section 3.4.2, a preprocessing method based on the findings of Naef and

Magnasco (2003) is presented. Other solutions to the MM > PM problem are,

e.g., to totally ignore the MMs, or to compute idealized MMs that are always

smaller than the corresponding PMs.

Many procedures have been developed that try to combat this and other

problems of preprocessing. Usually, these methods consist of three steps: First,

the probe intensities are corrected for global background noise, then they are
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normalized, and finally summarized gene-wisely to expression values.

In the following sections, the former and the current standard algorithm of

Affymetrix, MAS 5.0 and PLIER, the most popular academic alternative to

these approaches, RMA, and some of its modifications, and two internal Roche

Diagnostics methods called PLA and PLA+ are introduced. Afterwards, it is

briefly described how RMA can be adapted to SNP microarrays.

In these sections, the PM and the MM belonging to the hth probe pair,

h = 1, . . . , Hi, of the ith probe set, i = 1, . . . ,m, on the jth chip, j = 1, . . . , n,

are denoted by PM
(i)
hj and MM

(i)
hj , respectively, where typically Hi = 11, m is

in the tens of thousands, and n is in the tens. If all probe intensities comprised

by a microarray are considered together, then the probe intensity at coordinate

(x, y) of the chip, x, y = 1, . . . ,
√
nchip, are denoted by pxy, where nchip is the

number of probe cells on the array. We, however, abstain from using different

notations for PMs and MMs (or in general probe intensities) that are in different

stages of the preprocessing, since, on the one hand, the described approaches can

be applied to the PMs and MMs no matter whether they have previously been

background corrected and/or normalized, and on the other hand, adding another

superscript to the PMs and MMs does not contribute to a better understanding

of the preprocessing methods.

3.2 MicroArray Suite 5.0

After recognizing that their method of just taking the average over the probe

pair differences to compute the expression values has several drawbacks (e.g.,

negative expression values, very noisy for low intensities), Affymetrix (2002)

proposed a new algorithm called MAS 5.0 (MicroArray Suite 5.0).

In MAS 5.0, each probe intensity is background corrected by dividing the

microarray into typically 16 zones (see Figure 3.2), and subtracting a probe spe-

cific background value depending on a weighted average over the 16 zone specific

background values from the probe intensity. More details on this approach are
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FIGURE 3.2. Schematic representation of the background correction procedure of

MAS 5.0. (Source: Affymetrix, 2002, p. 4, slightly modified)

given in Algorithm 3.1.

Algorithm 3.1 (Background Correction of MAS 5.0)

1. Divide the array into 16 squares, and compute for each square k, k =

1, . . . , 16, the region specific background value bk and the zone specific

noise sk by the mean and the standard deviation, respectively, of the 2%

lowest probe intensities in this square.

2. For each probe intensity pxy, x, y = 1, . . . ,
√
nchip,

(a) compute the weights w−1
k (x, y) = (x− xk)

2+(y − yk)
2+100, where xk

and yk are the coordinates of the centroid of region k, k = 1, . . . , 16,

(b) determine the probe specific background value and noise by

bxy = w−1(x, y)
16∑

k=1

wk(x, y)bk and sxy = w−1(x, y)
16∑

k=1

wk(x, y)sk,

where w(x, y) =
∑16

k=1wk(x, y),

(c) background correct pxy by setting them to

pnew
xy = max

{
max

{
pxy, 0.5

}
− bxy, 0.5sxy

}
.
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Afterwards, the background corrected PMs and MMs of probe set i, i =

1, . . . ,m, and sample j, j = 1, . . . , n, are summarized to one expression value

xij by firstly generating the ideal mismatches

IM
(i)
hj =


MM

(i)
hj , if MM

(i)
hj < PM

(i)
hj

PM
(i)
hj · 2−SBij , if MM

(i)
hj ≥ PM

(i)
hj and SBij > 0.03

PM
(i)
hj · 2−0.03/(1+(0.03−SBij)/10), if MM

(i)
hj ≥ PM

(i)
hj and SBij ≤ 0.03

,

h = 1, . . . , Hi, where the probe set specific background SBij is determined by

Tukey’s one step biweight estimate TB (Tukey, 1977) of the mean of log2 PM
(i)
hj −

log2MM
(i)
hj , h = 1, . . . , Hi (see Algorithm 3.2 with υ = 5 and ε = 0.0001).

Secondly, xij is computed by

xij = TB

(
log2

(
PM

(i)
hj − IM

(i)
hj

)
, h = 1, . . . , Hi

)
.

Since the IMs are always smaller than the corresponding PMs, all expression

values are strictly positive.

Algorithm 3.2 (Tukey’s One-Step Biweight Estimate)

Let {z1, . . . , zH} be a set of H observations, and υ and ε be given constant.

1. Denote the median and the MAD of z1, . . . , zH by M and D.

2. For h = 1, . . . , H, compute

uh =
zh −M

υD + ε
and w(uh) =

(
1− u2

h

)2

· I
(∣∣uh

∣∣ ≤ 1
)
.

3. Robustly estimate the mean of z1, . . . , zH by

TB

(
zh, h = 1, . . . , H

)
=

∑H
h=1w(uh)zh∑H

h=1w(uh)
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Finally, the expression values are normalized by scaling them array-wise such

that the 2% trimmed mean of the values from each chip is 500. The expression

values x1j, . . . , xmj of sample j, j = 1, . . . , n, are thus normalized by setting

them to

xnew
ij =

500 · q0.96∑m+1−q0.02

i=q0.02
x(i)j

xij, (3.1)

where x(i)j are the sorted expression values such that x(1)j ≤ x(2)j ≤ . . . ≤ x(m)j,

and qα = bαmc+ 1 is the largest integer smaller than or equal to αm+ 1.

3.3 Robust Multi-Array Average

Since MMs not only measure non-specific binding and background noise, but

also contain information about the gene abundance intendedly probed by PMs,

they actually should be considered in preprocessing methods. Irizarry et al.

(2003), however, decided not to include MMs in their preprocessing procedure

called RMA (Robust Multi-array Analysis), since when developing RMA they

did not know how to extract this information.

Motivated by noticing that the density of the observed PM intensities typi-

cally look like the ones displayed in Figure 3.3, Irizarry et al. (2003) model the

observed PM values of each sample j, j = 1, . . . , n, as a sum of the specific

FIGURE 3.3. Density of the PM intensities of four of the 38 Affymetrix HG-U133

Plus 2 chips described in Appendix A.1.
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signals S ∼ Exp(γj) and the background noise N ∼ N
(
νj, σ

2
j

)
, where S and N

are assumed to be independent, and N is truncated at zero to avoid negative

background corrected PM intensities.

Starting from this model, each PM intensity is background corrected by

setting it to the expected signal E
(
S
∣∣∣O = PM

(i)
hj

)
, where

E
(
S
∣∣O = o

)
= aj + σj

φ
(

aj

σj

)
− φ

(
o−aj

σj

)
Φ
(

aj

σj

)
+ Φ

(
o−aj

σj

)
− 1

(3.2)

with aj = o − νj − σ2
jγj, and φ and Φ being the density and the distribution

function, respectively, of the standard normal distribution (for a derivation of

(3.2), see Bolstad, 2004).

In the actual implementation of RMA in the R function rma, Φ
(

o−aj

σj

)
−1 and

φ
(

o−aj

σj

)
are omitted, since following Bolstad (2004) the latter value is negligible

and Φ
(

o−aj

σj

)
≈ 1 in most microarray experiments. The parameters νj, γj and

σj, j = 1, . . . , n, are estimated by ad-hoc approaches: For each sample j, νj is

estimated by the mode of the density of the PM intensities, σj is determined

by the variability in the probe intensities less than ν̂j, and γj is estimated by

the reciprocal of the mode of the density of the strictly positive
(
PM

(i)
hj − ν̂j

)
values.

In a comparison of several normalization methods, Bolstad et al. (2003)

identify quantile normalization described in Algorithm 3.3 as the approach that

shows the best performance in terms of variance and bias reduction. Further-

more, the run time of quantile normalization is extremely short in comparison

to the run times of other complete data methods, i.e. approaches that combine

information from all arrays for normalization, that otherwise work almost as

well as quantile normalization. The MA plots (see Appendix D.1) in Figure

3.4 reveal another important advantage of quantile normalization. Contrary to

scaling, see (3.1), it can effectively combat non-linearities between arrays that

are frequently observed in microarray experiments.

Therefore, the background corrected PMs are quantile normalized in the
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FIGURE 3.4. Scaling vs. Quantile Normalization. For a subset of the (log2-

transformed) probe intensities of two of the 38 HG-U133 Plus 2 chips (see Appendix

A.1), MA plots before normalization (left) and after normalization using scaling (midd-

le) and quantile normalization (right) are shown. The solid lines are loess curves fitted

through the data points. (Source: Schwender and Belousov, 2006)

normalization step of RMA by constructing a
∑m

i=1Hi×n matrix in which each

row corresponds to one of the nPM =
∑m

i=1Hi PMs, and each row to one of the

n arrays, and by applying Algorithm 3.3 to this matrix.

Algorithm 3.3 (Quantile Normalization)

Let Z be a K × n matrix.

1. Construct a K × n matrix Zsort with elements zsort
kj = z(k)j, k = 1, . . . , K,

j = 1, . . . , n.

2. Construct a K × n matrix Zrank with entries zrank
kj =

 1

|Tkj|
∑

`∈Tkj

`

 with

Tkj =
{
` : zsort

`j = zkj

}
.

3. Set q = n−1Zsort1n, where 1n is a vector of length n containing only ones.

4. Normalize the columns of Z by setting Z to Znew with elements

znew
kj = qzrank

kj
, k = 1, . . . , K, j = 1, . . . , n.
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FIGURE 3.5. Profiles of the probe sets with Affymetrix-ID 242059 at (left panel)

and 1563090 at (right panel) for the 18 colorectal (red) and the 20 breast (blue)

cancer samples (see Appendix A.1).

As exemplified by the profiles of the probe sets displayed in Figure 3.5, the

variability of a single probe across several chips is typically smaller than the

variation in a probe set from a single array. The summarization of the intensities

of a probe set might thus benefit from considering all samples in one model. In

fact, Bolstad (2004) shows that fitting such a multi-chip model outperforms

methods that examine each array separately by, e.g., computing the expression

value of each probe set by a (robust) mean over the corresponding intensities (as

in Section 3.2). As the right panel of Figure 3.5 reveals, occasionally occurring

outliers are a problem for the summarization step. Since tens of thousands of

multi-chip models should be fitted, a well-suited summarization method should

therefore be able to deal with such outliers automatically. Assuming that the

probe and the chip effects are multiplicative on the original scale, Irizarry et al.

(2003) hence employ median polish (Tukey, 1977) described in Algorithm 3.4 to

robustly fit a multi-chip model

log2 PM
(i)
hj = µ(i) + α

(i)
h + β

(i)
j + ε

(i)
hj

for each probe set i, i = 1, . . . ,m, where µ(i) is the intercept, α
(i)
h is the effect of

probe h, h = 1, . . . , Hi, and β
(i)
j is the effect of chip j, j = 1, . . . , n.
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Algorithm 3.4 (Median Polish)

Let yhj, h = 1, . . . , H, j = 1, . . . , n be a set of observations, and τ be the

tolerance for convergence.

1. Construct a H × n matrix E with initial entry ehj = yhj, and set sold = 0.

2. Compute the vector r consisting of the row-wise medians of E, and sweep

E by setting its elements ehj to enew
hj = ehj − rh.

3. Generate the vector c consisting of the column-wise medians of E, and

update E by setting its entries ehj to enew
hj = ehj − cj.

4. Set snew =
∑

h,j |ehj|. If snew > 0, or |sold − snew| ≥ τsnew, set sold = snew,

and repeat Steps 2-4.

5. Let Ŷ be a H × n matrix consisting of the elements ŷhj = yhj − ehj.

6. Estimate the parameters of the model yhj = µ+ αh + βj + εhj by

(a) computing the medians r1 and c1 of the values in the first row and

the first column of Ŷ, respectively,

(b) and setting

α̂h = ŷh1 − c1, β̂j = ŷ1j − r1, and µ̂ = ŷ11 − α̂1 − β̂1.

The expression value xij of probe set i and sample j is then given by

xij = µ̂(i) + β̂
(i)
j .

Note that the RMA signals are already log2-scaled, whereas the outcomes of

MAS 5.0 are expression values on original scale.
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3.4 Modifications of RMA

Drawbacks of median polish are that this procedure, on the one hand, does

not provide estimates for the standard errors, and on the other hand, is only

applicable to a probe set i, i = 1, . . . ,m, if none of the probe intensities

PM
(i)
hj , h = 1, . . . , Hi, j = 1, . . . , n, is missing. In Section 3.4.1, a summarization

method is described that does not have these drawbacks.

In Section 3.4.2, a background correction method alternatively to the convo-

lution model used in RMA is presented that employs the MMs to estimate the

non-specific binding affecting the PMs.

3.4.1 Probe Level Model

Instead of median polish, robust regression using M-estimators (Huber, 1981)

can be employed to fit the probe level model (PLM)

log2 PM
(i)
hj = α

(i)
h + β

(i)
j + ε

(i)
hj , (3.3)

for each probe set i, i = 1, . . . ,m, where

– the probe effects α
(i)
h , h = 1, . . . , Hi, are constrained by

Hi∑
h

α
(i)
h = 0,

– the expression values xij are given by the chip effects β
(i)
j , j = 1, . . . , n,

– the errors ε
(i)
hj are assumed to be independently and identically distributed.

Fitting such a model can be considered as a weighted linear regression in

which the observations are iteratively reweighted based on their standardized

residuals (see Algorithm 3.5). The larger the absolute values of the standardized

residuals, the smaller are the weights such that outliers have (almost) none in-

fluence on the estimation of the parameters β =
[
α1 . . . αHi

β1 . . . βm

]′
.

(For a short introduction to M-estimation and its connection to weighted linear

regression, see Appendix D.2.)
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Algorithm 3.5 (Robust Linear Regression)

Given a response vector y of q observations, a q×p design matrix Z, a weighting

function w, a maximum number Kiter of iterations, and the tolerance τ for

convergence, the parameter vector β of the linear model y = Zβ + ε is robustly

estimated as follows.

1. Initially, estimate β by β̂(0) = (Z′Z)−1 Z′y, and set ε̂(0) = y − Zβ̂(0).

2. For k = 1, 2, . . .,

(a) compute the standardized residuals û(k−1) = ε̂(k−1)
/
ŝ(k−1) with sca-

ling parameter ŝ(k−1) = 1.4826 ·median
∣∣ε̂(k−1)

∣∣,
(b) construct the q × q diagonal weight matrix W(k−1) with diagonal

elements w
(k−1)
`` = w

(
û

(k−1)
`

)
,

(c) update the estimate for β by β̂(k) =
(
Z′W(k−1)Z

)−1
Z′W(k−1)y,

(d) set ε̂(k) = y − Zβ̂(k),

(e) stop if k = Kiter, or if(
ε̂(k−1) − ε̂(k)

)′(
ε̂(k−1) − ε̂(k)

)
max

{
10−16,

(
ε̂(k−1)

)′
ε̂(k−1)

} ≤ τ.

The results of a comparison of Huber’s weighting function

wH(u) = I
(
|u| ≤ 1.345

)
+

1.345

|u|
· I
(
|u| > 1.345

)
(3.4)

with the Geman-McClure function wGM(u) = (1 + u2)
−2

and Tukey’s biweight

function wTB(u) =
(
1 − (u/4.6851)2

)2 · I (|u| ≤ 4.6851) carried out by Bolstad

(2004) indicate that all three approaches fit the models almost equally well. To

be in concordance with the standard R function rlm for fitting robust linear

models, Bolstad (2004) thus uses (3.4) as default in the R function fitPLM for

fitting the probe level models (3.3).
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3.4.2 Base Composition Based Background Correction

Each base at any position in a PM sequence affects the intensity of this probe

(Wu et al., 2004). On the one hand, the higher the GC-content, i.e. the number

of the bases G and C in the sequence, the stronger is the hybridization, since

G and C are connected via three hydrogen bonds, while A and T are joined by

two hydrogen bonds (see Figure 2.1 on page 10). On the other hand, only the

pyrimidines C and U are labeled with fluorescent dye which might either impede

hybridization if too many bases are labeled, or prevent the shining of sequences

that strongly bind if too few bases are labeled (Naef and Magnasco, 2003).

To investigate the effect of the base composition on the probe intensities,

Naef and Magnasco (2003) model the PM intensities by a sum over the position-

dependent base effects θk`, k ∈ {A, T, C,G}, ` = 1, . . . , 25. The resulting least

square estimates θ̂k` are shown in Figure 3.6.

Based on this idea and the results of a few other microarray experiments,

Wu et al. (2004) propose an alternative background correction step for RMA.

In this modified approach called GCRMA, they assume for any probe pair that

PM
(i)
hj = OPM

j +NPM
hij + Shij and MM

(i)
hj = OMM

j +NMM
hij + ϕhijShij,

FIGURE 3.6. Position-dependent effects of the four bases A, T, C and G on the

probe intensities. (Source: Naef and Magnasco, 2003, Figure 3)
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where the optical noise Oj, j = 1, . . . , n, follows a lognormal distribution, lnNPM
hij

lnNMM
hij

 ∼ N

νPM
hij

νMM
hij

 , σ2
j

 1 0.7

0.7 1

 (3.5)

is the noise based on non-specific binding, Shij is the signal of interest, and

0 < ϕhij < 1 takes into account that MMs can also measure specific binding.

For each chip j, j = 1, . . . , n, Wu et al. (2004) estimate the parameters

by ad-hoc approaches: ϕ is set to zero, since following Wu et al. (2004) this

has only a small impact on the results of the approach. The optical noise is

assumed to be constant (since the variance of Oj is almost zero), and calculated

by Ôj = min
i, h

{
PM

(i)
hj ,MM

(i)
hj

}
− 1. The parameters in (3.5) are estimated by

firstly fitting a loess curve fj (Cleveland and Devlin, 1988) through the scatter

plot of ln
(
MM

(i)
hj − Ôj

)
vs. λ̂MM

hi , where the probe affinities λ̂ are determined

by summing over the base effects θ̂k` corresponding to the respective probe

sequence. (These base effects slightly differ from the θ̂k` shown in Figure 3.6,

since the model Wu et al., 2004, use differs slightly from the model of Naef

and Magnasco, 2003). Secondly, σj is set to the MAD of the negative residuals

resulting from this regression, and the means are estimated by ν̂PM
hij = fj

(
λ̂PM

hi

)
and ν̂MM

hij = fj

(
λ̂MM

hi

)
.

The background corrected intensity of each PM is then computed by a trun-

cated maximum likelihood estimator for Shij given by

Ŝhij =

PM
(i)
hj − Ôj − N̂PM

hij , if PM
(i)
hj − Ôj − N̂PM

hij > τ

τ, if PM
(i)
hj − Ôj − N̂PM

hij ≤ τ

, (3.6)

where N̂PM
hij = exp

(
0.7 · ln

(
MM

(i)
hj − Ôj

)
+ νPM

hij − 0.7 · νMM
hij − (1− 0.72)σ2

j

)
,

and τ is the minimum value allowed for Shij. In the R function gcrma, this value

is set by default to τ = 6.

In this implementation of GCRMA, two further corrections are made that

are not mentioned in Wu et al. (2004). First, the linear model

log2 PM
(i)
hj = γ0 + γ1λ̂

PM
hi + ε

(i)
hj
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is fitted for a randomly chosen subset of the PM intensities. For each chip

j, j = 1, . . . , n, the PM intensities background corrected by (3.6) are then

additionally adjusted by setting log2 PM
(i)
hj to

shij = log2 PM
(i)
hj − γ̂1λ̂

PM
hi + n−1

PM

m∑
k=1

Hi∑
`=1

γ̂1λ̂
PM
k` .

Afterwards, the final background corrected PM values are determined by setting

PM
(i)
hj to

Snew
hij = exp

{
n−1

PM

∑
k, `

lnPM
(`)
kj + 1.15

(
lnPM

(i)
hj − n−1

PM

∑
k, `

lnPM
(`)
kj

)}
.

3.5 Probe Logarithmic Intensity Error Estima-

tion

In July 2004, MAS 5.0 was replaced by PLIER (Probe Logarithmic Intensity

ERror estimation) as standard Affymetrix preprocessing algorithm (Affymetrix,

2005). Even though Affymetrix (2005) recommends to normalize either the

probe intensities or the expression values, PLIER just consists of a summariza-

tion step in which the multi-chip model

εPM
hij PM

(i)
hj − εMM

hij MM
(i)
hj = α

(i)
h β

(i)
j (3.7)

is fitted for each probe set i, i = 1, . . . ,m, where α
(i)
h ≥ 0 and β

(i)
j ≥ 0 are

the probe and chip effects, respectively, and εPM
hij > 0 and εMM

hij > 0 are the

multiplicative errors of the PMs and MMs, respectively.

To simplify computation, (3.7) is fitted under the constraint that

ln
(
εPM

hij

)
= − ln

(
εMM

hij

)
(3.8)

leading to

εPM
hij =

α
(i)
h β

(i)
j +

√(
α

(i)
h β

(i)
j

)2

+ 4PM
(i)
hj MM

(i)
hj

2PM
(i)
hj

. (3.9)
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Using (3.9), estimates for the probe and the chip effects of probe set i are

computed by

arg min
α, β

n∑
j=1

Hi∑
h=1

ρGM

(
ln
(
εPM

hij

)
, η
)
, (3.10)

where ρGM(z, η) = z2/(1 + z2/η) is the ρ function of Geman-McClure (see Ap-

pendix D.2) with η being a tuning constant that bounds ρGM(z, η) to be smaller

than η for any z. In the R wrapper justPlier for the PLIER code of Affymetrix,

η is by default set to 0.15.

As in Section 3.4.1, the expression value xij of probe set i and sample j is

then given by β̂
(i)
j . However, contrary to Section 3.4.1, xij is not on log2-scale.

3.6 PLIER Like Algorithms

Since the assumption (3.8) can lead to suboptimal solutions of (3.10), Wei-Min

Liu, Roche Molecular Systems, Alameda, CA, USA, decided to implement his

own version of PLIER called PLA (Plier Like Algorithm; Liu, 2004) through-

out this thesis. Instead of using this constraint, Liu (2004) assumes that the

multiplicative errors εPM
hij and εMM

hij are typically almost 1, and that thus

ln
(
εPM

hij

)
≈ εPM

hij − 1 and ln
(
εMM

hij

)
≈ εMM

hij − 1. (3.11)

Using (3.7) and (3.11), Liu (2004) derives the two equations

ln
(
εPM

hij

)
=
M

(i)
hj − 1 + α

(i)
h β

(i)
j /PM

(i)
hj

1 +
(
M

(i)
hj

)2 and ln
(
εMM

hij

)
= −M (i)

hj ln
(
ePM

hij

)

with M
(i)
hj = MM

(i)
hj /PM

(i)
hj , and computes the estimates for the probe and the

chip effects by

arg min
α, β

n∑
j=1

Hi∑
h=1

(
ρGM

(
ln
(
εPM

hij

)
, η
)

+ ρGM

(
ln
(
εMM

hij

)
, η
))

(3.12)

under the constraint that
∑Hi

h=1 α
(i)
h = Hi. The unnormalized expression values
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for probe set i, i = 1, . . . ,m, are then given by

xij =

log2 β̂
(i)
j , if β̂

(i)
j ≥ 1(

β̂
(i)
j − 1

)
/ log(2), if 0 ≤ β̂

(i)
j < 1

(3.13)

which are afterwards quantile normalized (see Algorithm 3.3) to obtain the PLA

signal.

In a second approach presented in Algorithm 3.6, Liu (2004) additionally

adjusts for high probe effects.

Algorithm 3.6 (PLIER Like Algorithm+)

Let β̂
(i)
j , i = 1, . . . ,m, j = 1, . . . , n be the solutions of (3.12).

1. For each probe set i and chip j, compute the median υij of PM
(i)
hj , h =

1, . . . , Hi.

2. For each chip j, determine the 95% quantile q
(j)
0.95 and the 98% quantile

q
(j)
0.98 of the medians υij, i = 1, . . . ,m.

3. Set β̂
(i)
j to

β̂
(i)new
j =


β̂

(i)
j , if υij ≤ q

(j)
0.95

υij, if υij ≥ q
(j)
0.98

β̂
(i)
j + ωij

(
υij − β̂

(i)
j

)
otherwise

,

where ωij =
(
υij − q

(j)
0.95

)
/
(
q
(j)
0.98 − q

(j)
0.95

)
if q

(j)
0.98 6= q

(j)
0.95, and otherwise

ωij = 0.5,

4. determine the unnormalized expression values by (3.13), and quantile nor-

malize them to generate the PLA+ signals.
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3.7 Preprocessing of SNP Microarrays

On Affymetrix genotype arrays, each allele of a SNP is represented by ten probe

pairs (see Section 2.2.2). Therefore, Rabbee and Speed (2006) propose a proce-

dure called RLMM (Robust Linear Model with Mahalanobis distance) in which

two allele-specific RMA signals βA and βB (see Section 3.3) are computed for

each SNP, where the background correction step of RMA is omitted. To geno-

type a SNP with RMA signal vector β =
[
βA βB

]′
, a training set is used to

determine the mean vector µc of the two RMA signals and the corresponding

covariance matrix Sc for each genotype c. Afterwards, the squared Mahalanobis

distances

d2
c = (β − µc)

′ S−1
c (β − µc)

between β and the center µc of each of the three genotype groups is computed,

and the genotype of the SNP is specified by arg minc

{
d2

c

}
.

The latest Affymetrix genotype calling algorithm referred to as BRLMM

(Bayesian RLMM; Affymetrix, 2006) is a modification of RLMM in which an

ad-hoc Bayesian approach is employed to derive posterior estimates of the group

means and covariances.

Another refinement of RLMM is proposed by Carvalho et al. (2006). In this

procedure called CRLMM (Corrected Robust Linear Model with Maximum

likelihood based distance classifier), the PM intensities are corrected for sequence

effects, and the SNPs are afterwards genotyped using maximum likelihood based

approaches.



Chapter 4

Comparison of Preprocessing

Methods

4.1 Introduction

Since preprocessing is an important step in the analysis of Affymetrix microarray

data, originally Cope et al. (2004), and in its latest version Irizarry et al. (2006)

provide a webtool based on the R package affycomp that enables the comparison

of preprocessing procedures in their application to the probe data from two

microarray experiments. Some of the probe sets composing these two data sets

available at http://affycomp.biostat.jhsph.edu consist of probes that have been

spiked-in at known concentrations such that it is, e.g., known which probe sets

are differentially expressed. After having applied the preprocessing method of

interest to these data sets, the resulting expression values can be uploaded to

this web page at which several statistics for assessing the quality of the signals

are computed automatically and presented in a table currently containing the

results of the applications of more than 30 preprocessing methods – many of

them in several versions.

Employing the same data sets as Cope et al. (2004), Bolstad (2004) compares

not only a subset of these preprocessing procedures as a whole, but also the

39
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different steps of these methods separately.

The goal of a study of Roche Diagnostics, Penzberg, is the identification

of the preprocessing method among a set of procedures consisting of the in-

house algorithms PLA and PLA+, the Affymetrix approach MAS 5.0, and the

academic alternatives RMA and PLM that leads to the best data reduction.

This approach will therefore be used as the standard preprocessing procedure in

upcoming projects of Roche Diagnostics concerned with Affymetrix microarrays.

For this study, a data set containing the probe intensities of 38 Affymetrix HG-

U133 Plus 2 chips is available, where 18 of these samples come from a CRCA

(colorectal cancer) project, and 20 from a BRCA (breast cancer) project (for

more details on the data, see Appendix A.1). Each of the five preprocessing

methods is applied in its default setting to this data set, and the procedure

are compared using the prespecified criteria visual comparison, linearity and

correlation of control probe sets, signal-to-noise ratio, differential expression,

and multivariate analysis. These five criteria also build the structure of this

chapter.

In Schwender and Belousov (2006), not PLA and PLA+, but PLIER and

a version of PLIER called qPLIER throughout this thesis in which PLIER is

applied to the quantile normalized probe intensities are compared with the other

preprocessing methods. In this thesis, we therefore also examine the performance

of the latter two algorithms. Since the background correction method proposed

by Wu et al. (2004) should improve the estimation of the RMA signals, we also

consider versions of RMA and PLM in this thesis in which this approach is

employed in the background correction step. To be in concordance with the

study of Roche Diagnostics, these four additional preprocessing procedures are

examined only in their respective default setting. All preprocessing methods

used in the comparisons presented in the following sections are summarized in

Table 4.1.

For the RMA approaches, the expression values of the 38 samples are gene-

rated using the R function just.rmaplm (see Appendix C.3). The PLIER and
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qPLIER signals are computed by employing justPLIER (see Appendix C.3),

whereas MAS 5.0, PLA and PLA+ are applied to the 38 array using the internal

Roche software GX.

While the signals of the RMA and the PLIER-like approaches are already on

log2-scale, the expression values of MAS 5.0, PLIER and qPLIER are addition-

ally log2-transformed. (For PLIER and qPLIER, this is done by justPLIER.)

4.2 Visual Comparison

As a first visual comparison, the Euclidean distance between the expression va-

lues for any pair of preprocessing methods is computed, and a hierarchical clus-

ter analysis using complete linkage is performed on these dissimilarities. The

resulting dendrogram displayed in Figure 4.1 reveals that there are four pairs of

procedures that are each very close to each other: PLIER and qPLIER, PLA and

PLA+, RMA and PLM, and GCRMA and GCPLM. The latter two pairs indi-

cate that – at least when using the RMA approaches – the background correction

step has a higher impact on the expression values than the summarization step.

This has also been noted by Irizarry et al. (2006).

FIGURE 4.1. Dendrogram of the distances between different preprocessing me-

thods generated by hierarchical clustering using the Euclidean distance and complete

linkage.
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FIGURE 4.2. Pairwise smoothed scatter (lower triangle) and MA (upper triangle)

plots of the expression values of five of the preprocessing methods. The darker the

color, the higher is the density at this point. The 500 signals with the lowest density

are marked by black dots.

Moreover, this dendrogram shows that the three groups of algorithms, i.e.

the RMA approaches, the PLIER and PLIER-like methods, and MAS 5.0, are

clearly separated from each other. In particular, MAS 5.0 shows a very large

distance to the other methods.

In Figure 4.2, a reason for this separation is revealed by the smoothed scatter

and MA plots, i.e. plots of y vs. x, and m = y− x vs. a = 0.5 (y + x) in which

not the data points themselves, but the two-dimensional density at each point is

shown (Wand and Jones, 1995). Most of the MAS 5.0 signals are larger than the

corresponding expression values resulting from any of the other preprocessing
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methods which is due to the high target signal used in the normalization step

of MAS 5.0. In this step, the 2% trimmed mean of the (not log2-transformed)

expression values of each chip is set to a target signal of 500 (cf. Section 3.2)

which is almost tenfold larger than the 2% trimmed mean of the expression values

of any of the other methods ranging from 51.12 (PLM) to 67.05 (PLA+), and

more than tenfold larger than 45.52, the 2% trimmed mean of the unnormalized

MAS 5.0 signals.

For a better visual representation, only the expression values of one of the

procedures from each of the above-mentioned pairs is shown in Figure 4.2.

(Smoothed scatter and MA plots of the four RMA approaches and the four

PLIER methods are displayed in Figure B.1 and B.2, respectively.) This figure

additionally reveals that none of the log2-scaled signals of any of RMA proce-

dure is smaller than zero, whereas about 5% of the expression values of each

of the PLIER approaches are negative. These plots also show the effect of the

truncation (3.13) in the low intensity region that is applied to the PLA and

PLA+ signals, but not used in PLIER and qPLIER.

4.3 Linearity and Correlation of Controls and

Housekeeping Genes

Not all probe sets represent a gene. Some of them are employed for quality

control. Examples for such controls are, on the one hand, BioB, BioC, BioD,

and cre that are used to monitor the hybridization process, and on the other

hand, the poly-A probe sets lys, phe, thr, and dap utilized to control the labeling

and the hybridization (cf. Section 2.2.1). For each of these controls originated

from non-human DNA – BioB, BioC, and BioD come from an E. coli bacterium,

and the poly-A probes from a B. subtilis bacterium – at least two probe sets

exist: One composed of probes from near the 5’ end, and the other containing

probes from near the 3’ end. (For some of the controls, additionally a set of
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probes from the middle region of the DNA sequence is available.)

Since these controls are spiked in at a known concentration (for details, see

Affymetrix, 2003), their actual concentration can be compared with their signals

estimated by the preprocessing methods to identify the procedure showing the

best linear relationship between these values. Thus, the mean of the original

scaled, i.e. not log2-transformed, expression values is method-wise computed

for each of the control probe sets. Two linear regressions – one with BioB,

BioC, BioD, and cre, and one with the poly-A controls – of the means vs.

the concentrations are conducted for each of the preprocessing methods, and

the resulting R2-statistics are employed as a measure for the linearity of the

relationship (see Table 4.2).

Another control typically used in the standard Affymetrix quality check is

GAPDH. For both GAPDH and BioB, the signals of the set of probes from near

the 5’ end should be correlated with the expression values of the set of probes

from near the 3’ end. Therefore, the R2-statistic of the 5’ vs. the 3’ probe set

TABLE 4.2. Method-wise computed R2-statistics as a measure for the linearity and

the correlation of the signals of the control probe sets and housekeeping genes.

Linearity Correlation

BioB, C, D, cre Poly-A Housekeepers BioB GAPDH

RMA 0.9940 0.9341 0.9375 0.9515 0.7474

PLM 0.9981 0.9346 0.9311 0.9547 0.7532

GCRMA 0.9869 0.9171 0.9379 0.9518 0.7416

GCPLM 0.9878 0.9463 0.9321 0.9525 0.7507

MAS 5.0 0.9861 0.9543 0.9330 0.8475 0.7772

PLIER 0.9923 0.9478 0.9236 0.7912 0.8673

qPLIER 0.9916 0.9483 0.9236 0.9090 0.7759

PLA 0.9908 0.9481 0.9153 0.8513 0.6743

PLA+ 0.9974 0.9350 0.9175 0.7429 0.7147
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is method-wise computed for both controls as measure of their correlation (see

Table 4.2).

GAPDH is one of the 100 human genes on the HG-U133 Plus 2 chip spe-

cified by Affymetrix as a housekeeping gene, i.e. as a gene involved in the main-

tenance of cells. Such genes are always expressed and assumed to be not af-

fected by experimental conditions. If thus the mean of the housekeeping genes

is calculated project-wise, then the averages from the CRCA project should be

correlated with the means from the BRCA project. Again, the R2-statistic is

determined for each of the preprocessing procedures to measure this correlation.

In Table 4.2, the R2-statistics of all comparisons are summarized. This table

shows that the preprocessing methods perform almost equally well in terms of

the linearity of both the poly-A controls and BioB, BioC, BioD, and cre. Only

the R2-statistic of the poly-A signals estimated by GCRMA is a little smaller

than the R2-statistics of the other methods, but with 0.917 still relatively high.

Large differences between preprocessing methods can only be observed in the

correlation of the 3’ and 5’ probe sets of BioB. For this control, the R2-statistics

of the RMA approaches are substantially higher than the R2-statistics of the

other procedure. While PLIER exhibits the second lowest correlation of the

BioB probe sets, it outperforms the other methods by far when considering the

GAPDH probe sets. In all three correlation comparisons, PLA and PLA+ show

the worst performance.

4.4 Signal-to-Noise Ratio

The Signal-to-Noise (S/N) ratio

SNR(z) =
median(z)

0.741 · IQR(z)

of a vector z of observations can serve as an overall measure of the quality of a

signal affected by noise, where 0.741·IQR is a consistent estimate of the standard

deviation at the normal distribution.
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FIGURE 4.3. Loess curves method-wise fitted through the Signal-to-Noise Ratios

vs. the median signals of 2,982 potentially interesting cancer-related probe sets. Left

Panel: Arrays from the CRCA project. Right Panel: Chips from the BRCA project.

To get an impression of which preprocessing method leads to the least per-

turbed expression values, the S/N ratio is computed project-wise for each of

2,982 potentially interesting cancer-related probe sets specified prior to this com-

parison. (This list is based on van’t Veer et al., 2002, Eschrich et al., 2005, Wang

et al., 2004, and the genes from the Affymetrix Human Cancer G110 array, and

has been provided by Anton Belousov, Roche Diagnostics, Penzberg.) These

S/N ratios are plotted against the corresponding median signals, and a loess

curve (Cleveland and Devlin, 1988) is fitted through the data points. For each

of the nine preprocessing procedures, this fitted curve is displayed in Figure 4.3.

This figure reveals that – in particular, in the CRCA project – model-based

multi-chip approaches achieve a better precision than the single-chip approach

MAS 5.0 when either the probe intensities or the expression values are norma-

lized. PLIER, the only method in which no normalization is done, shows the by

far worst precision. The RMA approaches have about the same linear region, i.e.

the same region in which the noise is constant, whereas this region is extended

(towards the origin) a little by PLA and PLA+.

In the low intensity region, the curves for GCRMA and GCPLM show an

abnormal behavior, as the S/N ratio is expected to decrease when the signal
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decreases. The reason for this behavior of the S/N ratio of GCRMA and GC-

PLM is the truncation in (3.6) in which all background corrected PM intensities

smaller than τ = 6 (on original scale) are set to τ . The intensities of 23.8% of the

PMs from the cancer-related probe sets are affected by this truncation leading

to very small IQRs in the low intensity region. In fact, the only reason why none

of the probe sets shows a zero IQR is that further background adjustments are

made in the R function gcrma that are not mentioned by Wu et al. (2004) (cf.

Section 3.4.2) such that the intensities of the truncated PMs range from 1.46 to

17.90.

If probe sets exhibiting more than 20% (GCRMA) or 30% (GCPLM) trun-

cated background corrected PMs, respectively, are excluded from the computa-

tion of the S/N ratio, the fitted curves for GCRMA and GCPLM will behave as

expected (cf. Figure B.3 and B.4 in Appendix B.1).

4.5 Differential Expression

The goal of preprocessing is to effectively reduce the 22 probe intensities repre-

senting a gene to one expression value. This summarization should be performed

for each of tens of thousands of probe sets on tens or even hundreds of microar-

rays. This immense data reduction leads to a loss of information that in turn

results in a reduced number of genes with convincingly large test statistic when

testing for differential expression (Efron et al., 2001). The number of identified

genes, i.e. the number of rejected null hypotheses, can thus serve as a criterion

for which preprocessing method leads to the best data reduction. Moreover, the

clearer the separation between the considered groups, the easier is the identifi-

cation of genuinely affected genes.

Since in the two class case typically a t-statistic is calculated, it furthermore

would be preferable if the assumptions for the t-test are fulfilled such that a

time-consuming estimation of the null distribution can be avoided.

For the comparisons in this section, only the “best” probe sets are used, i.e.
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the genes that meet the following two conditions:

• To ensure that the probes in the probe set belong to the gene of interest, the

probe set must represent at least one verified RefSeq sequence. (RefSeq,

http://www.ncbi.nlm.nih.gov/RefSeq, is the public repository that provides

the best non-redundant and comprehensive set of (mRNA) sequences.)

• Since RNA degrades from the 5’ to the 3’ end, the probe set has to consist

of oligos that are less than 600 base pairs away from the 3’ end to safeguard

against potential degradation problems.

(Note that this list of 13,674 probe sets has been generated in 2004 such that

the used information might be outdated, and a more recent list might contain

more probe sets.)

For each probe set i, i = 1, . . . , 13,674, Welch’s t-statistic ti is computed to

test if the mean signal of the BRCA samples differ from the mean expression

value of the CRCA samples. The group labels are permuted 10,000 times, and

the permuted t-statistics tib, b = 1, . . . , 10,000, are calculated. Afterwards, the

already Bonferroni adjusted p-value of probe set i is determined by

pi =
1

10, 000

13,674∑
k=1

10,000∑
b=1

I
(
|ti| ≤ |tkb|

)
(see Appendix D.3.1 for a short discussion of this p-value). In Table 4.3, the

numbers of probe sets

– for which pi ≤ 0.05,

– identified when using the signals from the respective preprocessing method,

but not when employing the MAS 5.0 signals,

– for which the minimum value in one of the groups is larger than the ma-

ximum signal in the other group,

– exhibiting a p-value of the Fligner-Killeen test for equal group variances

that is smaller than or equal to 0.01,

http://www.ncbi.nlm.nih.gov/RefSeq
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– for which at least one of the two groups shows a p-value of the Shapiro-Wilk

test for normality smaller than or equal to 0.025

are summarized (for a description of the Fligner-Killeen and the Shapiro-Wilk

test, see Appendix D.3.2 and D.3.3, respectively).

PLM and PLA identify the most differentially expressed genes closely fol-

lowed by PLA+, whereas MAS 5.0 and PLIER detect the smallest numbers of

probe sets. The base composition based background correction reduces not only

the number of identified genes, but also the number of probe sets with perfectly

separated groups. While PLA leads to the most genes with perfectly separated

groups, MAS 5.0 and PLIER also show the worst performance in this compari-

son. The only advantage of these two methods seems to be that they exhibit the

least heterogeneity problems. Considering non-normality, RMA and PLM lead

to a much smaller number of genes showing problems with this assumption of

TABLE 4.3. Numbers of differentially expressed genes, of probe sets identified by

the respective preprocessing method but not by MAS 5.0, of genes leading to perfectly

separated groups, and of genes with homogeneity or normality problems, respectively,

for each of the preprocessing procedures.

Identified Not Identified Perfectly Non- Non-
Genes by Mas5.0 Separated Homogeneity Normality

RMA 4,691 1,200 2,570 1,796 1,640

PLM 5,107 1,548 2,884 2,128 1,415

GCRMA 3,973 639 2,427 2,696 8,185

GCPLM 4,703 1,154 2,750 1,961 3,124

MAS 5.0 3,734 − 2,010 1,494 4,847

PLIER 3,264 651 1,299 757 5,252

qPLIER 4,830 1,477 2,731 2,231 5,913

PLA 5,106 1,585 2,920 2,185 4,337

PLA+ 5,073 1,574 2,864 2,150 4,335
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the parametric t-test than any of the other methods. The number of probe sets

for which the normality assumption is justifiable increases substantially when

the base composition based background correction procedure is used instead of

the convolution model – in particular, if additionally median polish is employed

for summarization.

4.6 Principle Component Analysis

To reduce the high-dimensionality of gene expression data, a principle compo-

nent analysis (PCA) can be applied to these data (Johnson and Wichern, 1998).

The goal of a PCA is to identify linear combinations of genes that best explain

the variability in the data set. The smaller the number of such principle com-

ponents required to capture most of this variability, the more parsimonious is

the PCA representation.

For each preprocessing method, PCA is thus applied, on the one hand, to

the signals themselves, and on the other hand, to the signals that are project-

wise mean-centered such that the mean expression value of probe set i, i =

1, . . . , 54,675, is zero for both the BRCA and the CRCA samples.

FIGURE 4.4. Scree plots of the first 18 principle components computed for both the

signals themselves (left panel) and the project-wise mean-centered expression values

(right panel) for each of the preprocessing methods.
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The scree plots in Figure 4.4 reveal that in the applications to the signals

themselves, MAS 5.0, qPLIER and PLIER need many more principle compo-

nents to explain the same proportion of variability in the data than PLA and

PLA+ which in turn require many more components than the RMA methods. If

the project effect is removed the distance between PLA(+) and the Affymetrix

approaches will shrink almost to zero, whereas the RMA procedures still show

the most parsimonious PCA representation. In this second application, the RMA

approaches in which probe level models have been fitted slightly outperform the

methods in which median polish has been used for summarization.

4.7 Conclusions

In this chapter, we have compared nine preprocessing procedures to identify the

approach that provides the best reduction of the typically eleven pairs of probe

intensities per gene and sample to one expression value.

The single-chip method MAS 5.0 and the multi-chip approach PLIER in

which the normalization step is avoided show the worst performance in almost

any of the comparisons: They lead to the lowest S/N ratios, they allow to identify

the smallest number of differentially expressed genes, and they need many more

principle components than the other procedures to explain the same proportion

of variation. Applying PLIER to quantile normalized probe intensities seems to

compensate the former two problems, and makes qPLIER a serious competitor

for the other preprocessing methods.

From the two groups of procedures, PLM seems to be the best RMA ap-

proach, and PLA the best PLIER and PLIER-like method, since they both

outperform – at least slightly – the other approaches.

In a comparison of these two methods, PLM requires less principle compo-

nents to capture the same proportion of variation and shows a slightly larger S/N

ratio, whereas PLA identifies virtually the same number of genes and exhibits

a larger number of perfectly separated groups. PLA, however, also shows larger
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FIGURE 4.5. The base effects used in GCRMA and GCPLM (left panel), and

estimated using the 38 Affymetrix HG-U133 Plus 2 chips (right panel).

normality problems and the smallest correlations of both the housekeeping genes

and the GAPDH probe sets.

Therefore, the result of the study for Roche Diagnostics (cf. Section 4.1)

to choose PLM as standard preprocessing algorithm still holds if the set of

considered methods is extended by adding other (popular) approaches.

Since the base component based background method should actually improve

RMA, it is a little bit surprising that GCRMA and GCPLM result in worse

data reductions than RMA and PLM, respectively. This particularly leads to

smaller numbers of genes detected as differentially expressed. A reason for this

might be that the position-dependent base effects θ (see Section 3.4.2) have been

computed by Wu et al. (2004) once on a set of Affymetrix HG-U133A chips, and

are used as standard in any application of this background method – no matter

which type of Affymetrix microarray is analyzed.

To check whether the base effects in our data set are similar to the base

effects of Wu et al. (2004), these effects are computed as described by Wu et

al. (2004). As Figure 4.5 reveals, the base effects estimated by the Affymetrix

HG-U133 Plus 2 data show a similar pattern as the base effects used in the

background correction, but are much smaller.

Using the base effects displayed in the right panel of Figure 4.5 and an

empirical Bayes approach also proposed by Wu et al. (2004) as an alternative
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to the maximum likelihood estimator (3.6) might improve the performance of

GCRMA and GCPLM.

Finally, we would like to remark that even though the comparisons presented

in Bolstad (2004) and in this thesis show that it is advantageous to borrow

strength from the whole set of chips by fitting multi-chip models, this only

applies to experiments in which more than just a few microarrays are available.

If one analyses just three or four chips, a single-chip approach might be better.

The same applies to quantile normalization: It works pretty fast, even for a

large set of arrays, and seems to provide a good normalization. But it should

not be employed in an experiment consisting of three or four chips. In this case,

other normalization approaches such as cyclic loess (Bolstad et al., 2003) are to

prefer.



Chapter 5

Preprocessing of a Huge Number

of Microarrays Using R

5.1 Introduction

The BioConductor project (http://www.bioconductor.org) provides a large num-

ber of packages for the analysis of genomic data. For example, functions are

available for all but the internal Roche preprocessing methods.

Typically, the gene expression values are computed by first reading the CEL

files of interest into an AffyBatch object, say ab, by

> library(affy)

> cels <- list.celfiles(path, full = TRUE)

> ab <- read.affybatch(filenames = cels)

where path is the name of the directory in which the CEL files are stored, and

cels is a character vector naming the CEL files with their full directory path.

Afterwards, the probe intensities stored in ab are preprocessed by calling the

corresponding R function. The PLM signals, e.g., can be generated using either

the function threestep or by

> library(affyPLM)

> out <- fitPLM(ab)

> signal.plm <- pset2eset(out)

55

http://www.bioconductor.org
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TABLE 5.1. Run times in seconds for the applications of, on the one hand, ReadAffy

and fitPLM, and on the other hand, just.rmaplm to different numbers of Affymetrix

HG-U133 Plus 2 chips on an AMD Athlon XP 3000+ machine with 1 GB of RAM.

10 20 25 30 50 70 90 100

ReadAffy/fitPLM 166 348 Error Error – – – –

just.rmaplm 130 226 251 318 530 779 1,133 Error

As Table 5.1 shows, this approach works only for a small number of microar-

rays, since the construction of an AffyBatch object is very memory-consuming.

In a CRCA project of Roche Diagnostics, however, the PLM signals of more

than 400 Affymetrix HG-U133 Plus 2 chips have to be computed under Win-

dows XP on a machine with 4 GB of RAM. Since this thesis is written on an

AMD Athlon XP 3000+ machine with 1 GB of RAM, this task is extended to

generating the PLM signals of 500 HG-U133 Plus 2 chips on this computer in

a reasonable amount of time.

5.2 just-Versions of Preprocessing Algorithms

A first solution to this problem is to avoid the construction of an AffyBatch

object that contains the intensities of all of the probes, and to read just the

PM intensities required for the computation of the signals into a matrix. Such

just-versions already exist for RMA and GCRMA. For example, RMA signals

can be generated by

> signal.rma <- just.rma(filenames = cels)

which requires much less RAM than

> ab <- read.affybatch(filenames = cels)

> signal.rma <- rma(ab)
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In just.rma, the function read.probematrix is called to build an nPM×n ma-

trix comprising all nPM PM intensities of each of the n samples. Furthermore, an

empty AffyBatch object is constructed. Even though this object does not con-

tain any data, it can be employed to obtain required array-specific information

such as the total number of probe sets and the names of the probes that assign

the PMs to the probe sets. Given both the PM matrix and this information,

the RMA signals can be computed using the C-code included in rma.

We adopt this approach to modify fitPLM, and combine this just-version of

fitPLM with just.gcrma to just.rmaplm (see Appendix C.3).

As Table 5.1 reveals, the just-version of fitPLM enables us to preprocess

many more chips than the original version. It is, however, still not possible to

determine the PLM signals in a study comprising hundreds of microarrays.

5.3 Preprocessing in Huge Microarray Experi-

ments

The basic idea behind our approach for the joint preprocessing of hundreds of

microarrays is not to consider the whole PM matrix at once, but subsets of

the data in each of the steps of PLM. Since R cannot keep all the subsets in

memory, they are repeatedly stored in files and read into R. In the following,

this procedure implemented in the R function startPLM with arguments

> args(startPLM)

function (filenames, folder = dirname(filenames)[1], mat.xy = NULL,

batch.size = 1, chunk.size = 100, type.save = c("probeset",

"both"), qn.save = 5, digits = 12, max.its = 20, asExprs = TRUE,

save.combine = 100, printDate = TRUE)

(see also Appendix C.3) is explained in detail.

Given a vector containing the filenames of the CEL files and a folder in

which temporary files and the final output is stored, the directory specified by

folder itself (if it does not already exist) and subfolders of folder are created.
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The CEL files are divided into batches of size batch.size, and the probe sets

are split into nchunk subsets/chunks each (except for the last one) consisting

of chunk.size probe sets. A list L containing nchunk vectors is constructed,

where each of the vectors comprises the indices and the names of the rows of

the PM matrix corresponding to the probe sets in the respective chunk. All this

information along with both the values of the arguments of startPLM and the

names of the files in which, on the one hand, the background corrected PMs,

and on the other hand, the chunks are stored is exported as RData files, i.e. as

R workspaces, into the subfolder utility.

After this preparation step, the actual computation of the PLM signals starts

by calling read.probematrix to read in and process the CEL files batch-wise.

Each column of the current PM matrix is background corrected and then ex-

ported as an RData file into the subfolder bg. The nPM background corrected

PM intensities of this column are sorted, and added to the corresponding values

of the vector q, where q initially consists of nPM zeros and is saved in the sub-

folder utility after background correcting qn.save, 2 · qn.save, 3 · qn.save, . . .

batches.

Subsequent to background correcting the PMs of any of the n CEL files, q

is divided by n to obtain the prototype vector q for quantile normalization.

In the next step, each vector of background corrected PM intensities is im-

ported individually and quantile normalized as described in Step 2 and 4 of

Algorithm 3.3 (with m = 1). Afterwards, these PM intensities are split into

subsets as predetermined by L, and stored chunk-wise in txt files in the sub-

folder chunks, where the respective PM intensities of all samples are saved in

the same txt file. Denoting the kth entry of L by Lk, k = 1, . . . , nchunk, the

elements (j − 1) |Lk|+ 1, . . . , j |Lk| of the vector stored in the kth chunk file are

thus the background corrected and normalized PM intensities of the jth sample,

j = 1, . . . , n, in the kth subset.

(For historical reasons, the PM intensities can also be exported chip-wise to

the subfolder bgnorm by setting type.save="both" in startPLM.)
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For the summarization step, each of the chunk files is imported and pro-

cessed separately using the approach described in Section 5.2: A PM matrix is

constructed based on probe intensities stored in the currently considered chunk

file, the names of the probes in this matrix are obtained from L, and the PLM

signals are computed for the probe sets represented in the PM matrix. To en-

sure that these expression values do not have to be calculated again, if startPLM

stops because of, e.g., memory problems, they are stored chunk-wise as RData

files in the subdirectory exprsChunks.

After having summarized all probe sets, the chunk files containing the expres-

sion values are successively read in and combined with each other to construct

an m × n matrix X comprising the signals of all m probe sets and n samples.

To safeguard against memory problems, the combined matrix is exported after

combining save.combine, 2 · save.combine, . . . chunks.

Finally, the gene expression matrix, and if asExprs = TRUE in startPLM

an exprSet object containing this matrix are stored in the subfolder output,

where an exprSet object is the typical output of preprocessing functions such

as rma or just.rma. (Note that the class exprSet will be replaced by the class

ExpressionSet in BioConductor 2.0 that will be released in April, 2007, such

that the output of startPLM will then be an ExpressionSet object.)

If the preprocessing unexpectedly fails because of memory (or other) pro-

blems, the procedure can be restarted using the function restartPLM which

only has one argument, namely folder. Employing the information stored in

folder, restartPLM performs the same analysis as startPLM starting (virtually)

at the same point at which the preprocessing has been interrupted.

5.4 Application of startPLM

Using an AMD Athlon XP 3000+ machine with 1 GB of RAM, startPLM is

applied to 500 Affymetrix HG-U133 Plus 2 chips. The whole computation

takes less than 10 hours, where the background correction and normalization
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requires about 2 hours 43 minutes, the fitting of the PLMs 6 hours 53 minutes,

and the fusion of the chunks 19 minutes. During this procedure, about 5.13 GB

of files are stored in the directory specified by folder, where the final output of

startPLM, i.e. the exprSet object, exhibits a size of 195 MB.

Except for folder, the default settings of the arguments of startPLM are

used in this computation. This in particular means that each chunk file contains

at least 11 · 100 · 500 = 550, 000 intensities, since by default chunk.size = 100

probe sets are considered at once. Lowering chunk.size would, on the one hand,

increase the number of chunks, but on the other hand, decrease the number of

intensities saved in the txt files which might reduce the run time and would

make it possible to apply startPLM to many more than 500 microarrays.



PART III

High Level Analysis of

SNP Data



Chapter 6

Adapting DNA Microarray

Methods to SNP Data

6.1 Introduction

An important goal of microarray studies is the construction of a diagnostic chip,

i.e. a microarray composed of a small number of genes, enabling to determine

if a person has cancer, or which (sub-)type of cancer this patient exhibits. In

more statistical terms, this means that a rule for predicting the cancer status of

a person based on as few variables as possible should be constructed.

Since the result of the preprocessing is an m × n matrix X comprising

the expression values of m genes (or more exactly, m probe sets) and n sam-

ples/patients, where m is typically in the tens of thousands, the number of genes

has to be reduced dramatically. This reduction can, e.g., be done in the follo-

wing two steps: Firstly, several ten to a few hundred genes are selected using,

e.g., multiple testing (see Section 6.3). Secondly, a discrimination method, often

Support Vector Machines or Random Forests (see Section 7.3), is applied to this

set of variables to further reduce the number of genes using, e.g., a backward

elimination approach (e.g., Guyon et al., 2002), or a stepwise selection proce-

dure such as SFFS (Sequentially Floating Forward Selection; Pudil et al., 1994,

62
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Somol et al., 1999), and to construct a classification rule.

This is, of course, a very simplified description of the way from the output of

a preprocessing method to a classification rule. In the actual analysis, one also

has to consider approaches such as (inner and outer) cross-validation to avoid

selection bias. Furthermore, there are other reasonable strategies. For detailed

descriptions on how gene expression data might be analyzed, see Gentleman et

al. (2005), and for feature extraction in a more general setting, see, e.g., Guyon

et al. (2006).

While a large number of papers concerned with high level analyses of gene

expression data have been published in recent years, only a few methods dealing

with the specific needs of the analysis of SNP data have been proposed. Two of

these exceptions are the Multifactor-Dimensionality Reduction (MDR; Ritchie et

al., 2001) and logic regression (Ruczinski et al., 2003). In a comparison of these

procedures, Rabe (2004) shows that logic regression has several advantages over

MDR. Logic regression is, e.g., faster, can handle a larger number of variables,

uses a better search strategy, and leads to classification rules that are easier to

interpret. Furthermore, in MDR, a new observation can only be classified if this

person exhibits a combination of genotypes that has also been observed in the

training set. We therefore exclude MDR from our analyses, and take a closer

look on logic regression in Chapter 7 and 8.

Since the goals of the analysis of gene expression and genotype data are

similar (e.g., identifying genes/SNPs associated with the covariate of interest,

classifying patients using genetic markers), one solution to the problem of how

to analyze SNP data is to adapt methods developed particularly for the analysis

of DNA microarrays to genotype data. These modified approaches can then not

only be applied to genotype array data, but also to SNP data measured with,

e.g., MALDI-TOF-MS.

In the following sections, this is exemplified by modifying three popular DNA

microarray procedures: A method for imputing missing values (Section 6.2), a

multiple testing approach (Section 6.3), and a discrimination procedure (Sec-
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tion 6.4). The latter two are improved versions of the methods presented in

Schwender (2005).

In each of these sections, we propose an algorithm based on matrix algebra

that enables the simultaneous computation of all statistics employed by the

respective method. These procedures reduce the run time in R substantially in

comparison to approaches in which the statistics are determined individually.

Since in these algorithms element-wise matrix calculation is used, notations for

these computations are introduced in the following definition.

Definition 6.1 (Element-wise Matrix Calculation)

Let M and N be two R× C matrices, and n be a numerical value. Then,

(a) M∗N is a R×C matrix with elements mrc ·nrc, r = 1, . . . , R, c = 1, . . . , C,

(b)
M

N
is a R× C matrix with entries

mrc

nrc

,

(c) M− n is a R× C matrix with elements mrc − n.

6.2 Imputation of Missing Values

6.2.1 Missing Values in the GENICA Data Set

Since missing values are a common problem in association studies (Dai et al.,

2006), the imputation of missing genotypes is considered as a first example.

In the SNP data set of the GENICA study, e.g, about 1.3% of the values are

missing (after removing a few women with more than three missing values, see

Appendix A.2). A solution to this problem is to only use complete observations,

i.e. persons without missing values. This, however, would mean that data of just

63.3% of the women are considered. Moreover, this approach might add bias to

the results of the analysis (Greenland and Finkle, 1995).

Therefore, the missing genotypes of the GENICA data set are replaced using

the method that performs best in a comparison of already existing approaches

for imputing categorical data with a modification of KNNimpute (Troyanskaya
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et al., 2003) introduced in Section 6.2.4. Since only 1.3% of the genotypes are

missing, we do not consider multiple imputation methods (Little and Rubin,

1987). Since we do not have information on haplotypes, i.e. on blocks of SNPs

that are inherited together, and thus, are highly correlated, haplotype-based

imputation methods such as the one proposed by Dai et al. (2006) are also not

included in the comparison.

6.2.2 KNNimpute

Missing expression values should not be a problem anymore when employing

Affymetrix microarrays, since nowadays the probe pairs representing a particu-

lar gene are distributed over the complete array such that most of the probe

intensities can still be used to compute the expression value of the gene even if a

whole region of the chip is manually flagged, and thus excluded from subsequent

low level analyses because of bad quality. On the first Affymetrix GeneChips,

however, all probe pairs composing a probe set were located right beside each

other. Therefore, Troyanskaya et al. (2003) have proposed a method called

KNNimpute for imputing missing expression values based on weighted k Nearest

Neighbors (kNN; Fix and Hodges, 1951).

Let’s assume that the expression value xij of gene i and sample j is missing,

and that Lk is a set comprising the k genes showing the smallest Euclidean dis-

tance to gene i and having a value present for the jth sample. Using KNNimpute,

xij is computed by

xij =
∑
`∈Lk

wi`x`j

/ ∑
`∈Lk

wi`, (6.1)

where the weight wi` is determined by the reciprocal of the Euclidean distance

between gene i and gene `.

For a comparison of the Euclidean distance with other distance measures,

and of the weighted mean (6.1) with other estimates of average in the context

of KNNimpute, and an application of KNNimpute to protein expression data,

see Jung (2006).
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6.2.3 Simultaneous Computation of χ2-Statistics

If k nearest neighbors should be applied to categorical data, a distance measure

has to be employed that can cope with this type of data. Such measures are

typically based on an R×C contingency table in which the joint distribution of

two variables, say Y and Z, with observation vectors y and z each of length n

is represented by the numbers

nrc =
n∑

j=1

I (yj = r) I (zj = c)

of observations showing the rth level at Y , r = 1, . . . , R, and the cth level at Z,

c = 1, . . . , C.

An example for such a distance measure is

dCont

(
y, z
)

=
√

1− Cont2
(
y, z
)
, (6.2)

where Pearson’s corrected contingency coefficient

Cont
(
y, z
)

=

√
min

{
R,C

}
min

{
R,C

}
− 1

· χ2

χ2 + n
(6.3)

is based on Pearson’s χ2-statistic

χ2 =
R∑

r=1

C∑
c=1

(nrc − ñrc)
2

ñrc

=
R∑

r=1

C∑
c=1

n2
rc

ñrc

− n (6.4)

for testing the null hypothesis that the two variables are independent by com-

paring nrc with the numbers

ñrc =
1

n

C∑
c=1

nrc

R∑
r=1

nrc

expected under the null hypothesis.

As in the analysis of gene expression data, we suppose that X is an m × n

matrix in which each row represents one of the m variables, i.e. SNPs, and each

column one of the n observations. In Algorithm 6.1, it is described how (6.2) can

be determined for all m(m− 1)/2 pairs of the m variables simultaneously under

the assumptions that, on the one hand, C = R, i.e. all variables exhibit the

same number of levels, and on the other hand, none of the values are missing.
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Algorithm 6.1 (Pair-wise Contingency Coefficient Based Distances)

Let X be an m× n matrix consisting of the values 1, . . . , R.

1. Let X(r) denote an m× n matrix, r = 1, . . . , R, with elements

x
(r)
ij =

1, if xij = r

0 otherwise

.

2. For r, c = 1, . . . , R, compute N(rc) = X(r)X(c)′ and

Ñ(rc) =
1

n
X(r)1n1

′
nX

(c)′. (6.5)

3. Calculate

Q =
R∑

r=1

R∑
c=1

N(rc) ∗N(rc)

Ñ(rc)
− n. (6.6)

4. The squared distance (6.2) between the ith and the `th variable, i, ` =

1, . . . ,m, represented by the ith and `th row of X is determined by the(
ith, `th

)
element of

D2
Cont = 1m,m − R

R− 1
· Q

Q + n
, (6.7)

where 1m,m is a m×m matrix composed of only ones.

Algorithm 6.1 can be extended to the case C 6= R by setting each element

ñ
(rc)
k` of Ñ(rc) to max

{
1, ñ

(rc)
k`

}
, and by replacing R in (6.7) by a matrix containing

the respective values of min
{
R,C

}
. In the next section, it is shown how this

algorithm can be modified for data with missing values.

The matrices N(rc) containing the numbers nrc for all m(m − 1)/2 pairs of

variables can also be used to compute other similarity measures such as the

simple or the flexible matching coefficient (Selinski and Ickstadt, 2005). In this

thesis, however, only Pearson’s corrected contingency coefficient is considered,

since this measure seems to be better suited for identifying groups of (highly)

correlated SNPs (cf. Müller et al., 2005).
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6.2.4 KNNimpute for Categorical Data

Even though Algorithm 6.1 will still work if there are missing values, the resul-

ting distances will not be correct, since the number of observations showing no

missing value at a particular variable might differ from the total number n of

observations. To solve this problem, let XNA be an m× n matrix with

xNA
ij =

1, if xij is not missing

0, if xij is missing

,

and replace n in (6.5) – (6.7) by the m×m matrix N = XNA
(
XNA

)′
.

Since the row-wise sums of X(r) in (6.5) only take individual but not pair-

wise missing values, i.e. missing values appearing in either of the two considered

variables, into account, it is additionally necessary to replace them by Z(r) =

X(r)
(
XNA

)′
such that (6.5) becomes

Ñ(rc) =
Z(r) ∗

(
Z(c)

)′
N

.

The so modified Algorithm 6.1 can also be applied to a matrix X in which

some of the values are missing. In Table 6.1, the run time of Algorithm 6.1

in R is compared with the time required to compute the distances individually.

TABLE 6.1. Comparison of the run times (in seconds) of Algorithm 6.1 and the

individual calculation of the distance dCont for each pair of m categorical variables,

where each variable exhibits c = 3 levels, and the number of observations is n = 1, 000.

m Algorithm 6.1 Individual

10 0.01 0.15

50 0.07 4.25

100 0.33 17.32

200 1.22 70.06

500 7.79 474.22
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This table shows that Algorithm 6.1 is substantially faster, in particular, if the

number of variables is large.

After computing the pair-wise distances between the variables using the mo-

dified Algorithm 6.1, a missing value xij can be imputed similar to the original

version of KNNimpute by identifying the set Lk comprising the k variables

showing the smallest distances dCont to variable i and having a value present for

the jth observation, and by determining xij by weighted majority voting, i.e. by

xij = arg max
r=1,...,R

∑
`∈Lk

d−1
Cont

(
x`·,xi·

)
I
(
x`j = r

)
, (6.8)

where x`· =
[
x`1 . . . x`n

]′
and xi· =

[
xi1 . . . xin

]′
. (In (6.8), the normali-

zation factor
∑

`∈Lk
d−1

Cont(x`·,xi·) is omitted, since (6.8) is not affected by this

constant.)

6.2.5 Imputing Missing Values of the GENICA Data Set

Contrary to the discrimination approach of k Nearest Neighbors (cf., e.g., Ripley,

1996) in which the k nearest observations are employed to predict the class of

a new observation, Troyanskaya et al. (2003) borrow strength from the huge

number of genes by imputing the missing values based on the k nearest genes.

In the GENICA data set, however, the number of observations is much larger

than the number of SNPs. The approach proposed in Section 6.2.4 is therefore

not only applied to X, but also to X′ to figure out which of these approaches

works better for the GENICA data. Furthermore, it is examined if the weighted

majority voting (6.8) performs better than an unweighted voting.

In these comparisons, only the genotypes of the 759 women with no missing

value are employed. After removing 1%, 2%, 5%, or 10% of the genotypes

randomly, the missing values are replaced using KNNimpute for categorical data,

and the imputed values are compared with the real genotypes.

In Figure 6.1, the fractions of falsely imputed genotypes for different values

of k are displayed. (Since the plots of all four cases look similar, only the figures
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FIGURE 6.1. Fractions of falsely imputed values if (weighted) k nearest neighbors

is applied to either the observations or the SNPs to impute the 1% (left panel) or 2%

(right panel) artificially generated missing values in the GENICA data set.

for the imputation of 1% and 2% missing values are shown. The other two cases

are displayed in Figure B.5 in Appendix B.1.) Figure 6.1 reveals that considering

the k nearest observations results in a lower fraction of falsely imputed values

than employing the k nearest SNPs. Only for k < 3, the latter approach shows a

smaller error rate which might be due to the fact that in this case mostly SNPs

from the same gene are used to impute the missing genotypes (cf. Müller et al.,

2005).

Even though weighting the votes of the k nearest observations does not im-

prove the imputation, (6.8) is used in a comparison of KNNimpute with other

approaches. In this comparison, the removed genotypes of the complete obser-

vations from the GENICA data set are imputed by the SNP-wise mode, i.e.

typically by the homozygous reference genotype, by a random draw from the

distribution of the respective SNP, or by a random draw from the conditional

distribution of the SNP given the case-control status. Besides those three ad-hoc

approaches, two more sophisticated imputation methods are also applied to the

data sets.

In the first procedure, the missing values are initially replaced by the mode of
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the respective variable. Afterwards, Random Forests is applied to this data set

(for a description of Random Forests, see Section 7.3.3), and the proximity, i.e.

the fraction of trees containing two particular observations in the same terminal

node, is computed for each pair of observations. The missing genotypes are

then recalculated by weighted majority voting, where the votes resulting from

the trees are weighted by the proximities. This procedure is repeated several

times, and the values determined in the final iteration are the estimates of the

missing genotypes.

The second approach proposed by Dai et al. (2006) is based on a combination

of Gibbs sampling (see, e.g., Gelman et al., 2003) and CART (cf. Section 7.3.2).

Gibbs sampling is used to iteratively sample from the conditional distribution of

the missing data of the jth observation given the values computed for the missing

genotypes of the other observations in the previous steps of Gibbs sampling and

the complete data of all observations, whereas CART is employed to model this

full conditional distribution (for more details, see Dai et al., 2006).

FIGURE 6.2. Fractions of falsely imputed genotypes when replacing the 1% (left

panel) or 2% (right panel) missing values by the mode, by a draw from the SNP-wise

distribution, by a draw from the conditional distribution of the SNP given the case-

control status, by the Random Forests based method (5 Iterations, 500 trees with 6

SNPs at each node), by the procedure of Dai et al. (2006) with one iteration, and by

KNNimpute for categorical data (k = 50).
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For the comparison, these two methods and KNNimpute are optimized by

considering different values for their parameters. In KNNimpute, the number

of observations is set to k = 1, . . . , 60; in the CART based approach, 1, 2, 5, 10

(recommended by Dai et al., 2006), 15 and 20 iterations are used; and in the

Random Forests based method, on the one hand, one to six iterations, and on

the other hand, 500, 1000 and 2000 trees with b
√

39c = 6, 3, 12 and 39 randomly

selected SNPs at each node are considered.

In Figure 6.2, the fractions of falsely imputed genotypes of the applications

of these procedures with optimized parameters are displayed. (Again, only the

cases with 1% and 2% removed genotypes are presented, whereas both the 5%

and the 10% case are displayed in Figure B.6.) This figure reveals that KNNim-

pute leads to a slightly lower error rate than the approach of Dai et al. (2006)

and the imputations based on the mode which in turn exhibit lower error rates

than the other procedures.

Therefore, the 1.3% missing genotypes in the GENICA data set are imputed

using KNNimpute with k = 50 nearest observations, where this approach is im-

plemented in the function replace.by.wknn (see Appendix C.3). The resulting

data set is considered in the applications of the following sections.

6.3 Significance Analysis of Microarrays

6.3.1 Multiple Testing

An important task in DNA microarray experiments is the identification of dif-

ferentially expressed genes, i.e. of genes showing expression values that differ

substantially between several groups or under several conditions. Detecting such

genes requires methods that can cope with this huge multiple testing problem

in which tens of thousands of hypotheses are tested simultaneously.

Naturally, the value of a statistic appropriate for testing if the expression

values are associated with the covariate of interest and the corresponding p-value
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are computed for each gene. Afterwards, these raw p-values are adjusted for

multiplicity such that a Type I error rate is strongly controlled at a prespecified

level of significance α. (Alternatively, the level of significance can be adjusted

for multiplicity, and the raw p-values are compared with this adjusted level.)

The classical example for a Type I error rate is the family-wise error rate

FWER = Prob(V ≥ 1),

where V is the number of false positives, i.e. the number of rejected null hy-

potheses that are actually true (or in biological terms, the number of genes

called differentially expressed by the procedure that are actually not differen-

tially expressed). This error rate is strongly controlled at the level α so that

Prob(V ≥ 1) ≤ α by approaches such as the Bonferroni correction or the proce-

dures of Westfall and Young (1993). An overview on such methods is given by

Shaffer (1995). Dudoit et al. (2003) compare procedures for controlling this and

other error rates in their application to DNA microarray data.

In the classical multiple testing situation in which rarely more than 20 hy-

potheses are tested simultaneously, it is reasonable to keep down the probability

of one or more false positives. In the analysis of microarray data, however, thou-

sands of genes are considered simultaneously. Moreover, a few false positives are

acceptable in such experiments as long as their number is small in proportion

to the total number R of identified genes, i.e. rejected null hypothesis. In this

situation, the FWER might be too conservative. Hence, another error rate,

namely the false discovery rate

FDR =

E (V/R) , if R > 0

0, if R = 0

proposed by Benjamini and Hochberg (1995), has become popular in the analysis

of microarray data. For a given rejection region Γ, the FDR can be estimated

by

F̂DR(Γ) = π0

EH0

(
#{Di ∈ Γ}

)
max

{
#{di ∈ Γ}, 1

} ,
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where di is the value of a test statistic for gene i, i = 1, . . . ,m, EH0

(
#{Di ∈ Γ}

)
is the under the null hypothesis expected number of test statistics falling into

Γ, and π0 is the prior probability that a gene is not differentially expressed (cf.

Storey, 2002, and Schwender, 2003). In the following sections, π0 is estimated

by the procedure of Storey and Tibshirani (2003b) presented in Algorithm 6.2.

Algorithm 6.2 (Estimation of π0)

Let pi be the raw p-value of gene i, i = 1, . . . ,m.

1. For υ = 0, 0.01, 0.02, . . . , 0.95, compute π̂0(υ) = #
{
pi > υ

}
/
(
(1− υ)m

)
.

2. Fit a natural cubic spline ncs with three degrees of freedom through the

data points
(
υ, π̂0(υ)

)
.

3. Estimate π0 by π̂0 = min
{
ncs(1), 1

}
.

It, however, can be shown that the FDR is actually too liberal (see the dis-

cussion of Ge et al., 2003). Another drawback of the FDR is that this error rate

controls the proportion V/R of false positives among the rejected null hypothesis

only on average. Therefore, Genovese and Wasserman (2002) consider the tail

probability for the proportion of false positives

TPPFP(γ) = Prob
(
V/R ≤ γ

)
for a prespecified fraction 0 < γ < 1. An overview on procedures controlling

the TPPFP is given by van der Laan et al. (2004), whereas van der Laan et al.

(2005) introduce a new controlling method based on bootstrap and an empirical

Bayes approach, and show that this procedure outperforms other approaches for

controlling the TPPFP.

Apart from adjusting p-values, there also exist other approaches based on,

e.g., QQ plots or the empirical Bayes framework that can be used to adjust for

multiplicity (for the latter, see Efron et al., 2001). If the observed test statistics
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are plotted against the under the null hypothesis expected values most of these

points will approximately lie on the diagonal. The points that differ substantially

from this line correspond to genes that are most likely differentially expressed.

The Significance Analysis of Microarrays (SAM; Tusher et al., 2001) described in

the following section can be used to specify what “differs substantially” means.

6.3.2 SAM Procedure

For each gene i, i = 1, . . . ,m, Tusher et al. (2001) compute the moderated test

statistic

di =
ri

si + s0

, (6.9)

where the fudge factor s0 is added to the denominator of an ordinary statistic

ti = ri/si appropriate for testing if the expression values are associated with

the response to prevent that genes with very low expression values dominate

the results of the analysis (for details on s0, see Tusher et al., 2001, and for its

computation, Schwender, 2003). For example, in the two-class case, ti is the

ordinary t-statistic.

In their empirical Bayes approach, Efron et al. (2001) also use (6.9), but

compute the value of s0 in a different way, whereas Smyth (2004) proposes

a different moderated t-statistic based on a hierarchical model suggested by

Lönnstedt and Speed (2002).

Since the null distribution of (6.9) is typically unknown, it is estimated by

a permutation based approach. In Schwender (2003), we show how the SAM

procedure can be modified if the null distribution is known. In Algorithm 6.3,

the Significance Analysis of Microarrays is outlined for both cases.

Algorithm 6.3 (Significance Analysis of Microarrays)

Let X be an m × n matrix comprising the expression values of m genes and n

observations, y be the response vector of length n, B be the number of permu-

tations, and D be a set of strictly positive thresholds ∆.
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1. For each gene i, i = 1, . . . ,m, compute the value di of a statistic appro-

priate for testing if its expression values are associated with the response.

2. If the null distribution is known, determine the expected test scores d0
(i)

by the (i − 0.5)/m quantile of this distribution. Otherwise, assess d0
(i)

by computing the m permuted d-statistics dib for each permutation b, b =

1, . . . , B, of the n values of the response, and by setting d0
(i) =

∑B
b=1 d(i)b/B.

3. For ∆ in D

(a) compute

cutup(∆) =


d(i1), if i1 = min

i≥i0

{
i : d(i) − d0

(i) ≥ ∆
}

exists

∞ otherwise

,

where i0 =
m∑

i=1

I
(
d0

(i) < 0
)

+ 1, and

cutlow(∆) =


d(i2), if i2 = max

i<i0

{
i : d(i) − d0

(i) ≤ −∆
}

exists

−∞ otherwise

,

(b) let S∆ =
{
i : di 6∈ ΓC

∆ =
(
cutlow(∆), cutup(∆)

)}
be the set of genes

called differentially expressed,

(c) estimate the FDR for S∆ by

F̂DR(∆) =
π0am

max
{∣∣S∆

∣∣, 1} , (6.10)

where

a =


1−

∫ cutup(∆)

cutlow(∆)

f0(z) dz if the null density f0 is known

1

mB

B∑
b=1

m∑
i=1

I
(
dib 6∈ ΓC

∆

)
otherwise

.
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In this algorithm implemented in the BioConductor package siggenes (see

Appendix C.1, and Schwender et al., 2006a), several values for the threshold

∆ are considered. Afterwards, the value of ∆ is chosen that provides the best

balance between the number of identified genes and the estimated FDR, i.e.

that allows to simultaneously achieve the two competing goals “As many genes

as possible” and “As low FDR as possible” as well as possible (see Section 6.3.4

for an example of how ∆ can be chosen).

6.3.3 SAM for Categorical Data

A statistic appropriate for testing if the distribution of a categorical variable

with C levels differs between R groups is Pearson’s χ2-statistic (6.4). Since the

small denominator problem does not show up in this case, it is not necessary

to add the fudge factor s0 to (6.4). Therefore, SAM can be applied to SNPs –

and to any other type of categorical data (cf. Stange et al., 2006) – by setting

di = χ2
i , i = 1, . . . ,m. Since in SAM it is assumed that all variables follow the

same null distribution, the number of levels the variable can take must be same

for each of the m variables.

Similar to Section 6.2.3, (6.4) has to be computed for tens of thousands of

SNPs. In Algorithm 6.4, a procedure based on matrix calculation is presented

enabling the simultaneous determination of a huge number of χ2-statistics which

reduces the run time of individual computations substantially (see Table B.1).

Algorithm 6.4 (Row-wise Pearson’s χ2-Statistic)

Let X be an m×n matrix in which each row corresponds to a categorical varia-

ble exhibiting the values 1, . . . , C, and y be a vector comprising the class labels

1, . . . , R of the n observations represented by the columns of X.

1. Let X(c) denote an m × n matrix with elements x
(c)
ij = I

(
xij = c

)
, c =

1, . . . , C, and Y an n×R matrix with entries yjr = I
(
yj = r

)
.
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2. For c = 1, . . . , C, set Y(c) = X(c)Y and Ỹ(c) = n−1X(c)1n1
′
nY.

3. The vector d comprising Pearson’s χ2-statistics for testing each variable

represented in X if its distribution differs between the groups specified by

y is given by

d =
C∑

c=1

Y(c) ∗Y(c)

Ỹ(c)
1R − n. (6.11)

After calculating the observed d-values, the expected d0
(i)-values can be deter-

mined by the (i− 0.5)/m quantiles of the χ2
(R−1)(C−1)-distribution, i = 1, . . . ,m.

However, if the assumptions for the approximation to the χ2-distribution are not

met (see, e.g., Büning and Trenkler, 1994, p. 224), d0
(i) is computed by averaging

over d(i)b, b = 1, . . . , B, where all mB dib-values can be assessed simultaneously

by considering the B × n matrix L in which each row corresponds to one of

the B permutations of the class labels comprised by y. If L(r), r = 1, . . . , R, is

defined analogous to X(c), then the matrix DPerm =
{
dib

}
can be determined by

DPerm =
C∑

c=1

R∑
r=1

(
X(c)L(r)′

)
∗
(
X(c)L(r)′

)
ỹ

(c)
r ⊗ 1′B

− n,

where ỹ
(c)
r is the rth column of Ỹ(c), and ⊗ is the symbol for the Kronecker

product. Finally, the vector d0 containing the m d0
(i)-values is given by

d0 = Dsort1B,

where the elements of Dsort are dsort
ib = d(i)b.

6.3.4 Application to SNP Data

To identify the SNPs of the HapMap data set (see Appendix A.3) showing a

distribution that differs substantially between the 45 Han Chinese from Beijing

and the 45 Japanese from Tokio, SAM for categorical data can be applied to

these genotype data set using the R function sam (see Appendix C.1). The ana-

lysis of the m = 121, 774 SNPs requires a run time of 14.81 seconds (from which
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about 8 seconds are due to checking for, e.g., incorrect data) if the d0
(i)-values

are computed by the quantiles of the χ2
2-distribution, whereas it takes about 183

seconds if these expected scores are determined using B = 100 permutations.

By default, sam computes the number of identified SNPs and the estimated

FDR for ten values of ∆ equidistantly spaced between 0.1 and maxi

∣∣d(i) − d0
(i)

∣∣.
The output of the permutation based SAM analysis of the HapMap data set

hapmap is thus given by

> cl <- rep(1:2, 45) # class labels

> sam.out <- sam(hapmap, cl, method = cat.stat)

> sam.out

SAM Analysis for Categorical Data

Delta p0 False Called FDR

1 0.1 0.787 105189.85 108582 0.7626

2 0.9 0.787 15476.45 25028 0.4868

3 1.6 0.787 3006.52 7312 0.3237

4 2.4 0.787 639.51 2413 0.2086

5 3.2 0.787 127.96 764 0.1318

6 3.9 0.787 23.2 211 0.0866

7 4.7 0.787 4.05 61 0.0523

8 5.5 0.787 0.82 19 0.0340

9 6.2 0.787 0.23 14 0.0129

10 7.0 0.787 0 1 0

where p0 is the natural cubic spline based estimate for π0 (see Algorithm 6.2),

False = am, cf. (6.10), Called is the number of identified SNPs, and FDR = p0

· False / Called is the estimated FDR.

These statistics can be obtained for other values of ∆ using the R function

print. Let’s say we aim to identify about 200 SNPs, and to control the FDR at

a level of about 5%. In this case, we would take a closer look on the ∆-values

between 3.9 and 4.7.

> print(sam.out, seq(3.9, 4.7, 0.2))

SAM Analysis for Categorical Data
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Delta p0 False Called FDR

1 3.9 0.787 23.20 211 0.0866

2 4.1 0.787 19.62 189 0.0817

3 4.3 0.787 13.85 157 0.0694

4 4.5 0.787 10.34 127 0.0641

5 4.7 0.787 4.05 61 0.0523

Having selected a reasonable value of ∆, say ∆ = 4.3, the SAM plot, i.e. the

plot of d(i) vs. d0
(i), i = 1, . . . ,m, can be generated using the function plot (see

Figure 6.3), and information on the identified SNPs such as their names, their

d-values, and their q-values (see Storey and Tibshirani, 2003b) can be obtained

by employing the function summary, or stored in an html file using sam2html

(for more details on the features of sam, see Schwender et al., 2006a). Since the

output of both summary and sam2html is too long to be displayed here it can be

found at http://www.statistik.uni-dortmund.de/de/content/einrichtungen/lehrstue

hle/personen/holgers/sam.hapmap.html. Contrary to the output of a SAM ana-

lysis of gene expression data, this html file, however, does not contain links to

FIGURE 6.3. SAM plot for the HapMap data. Large solid dots mark the identified

SNPs, whereas SNPs not detected as significant are represented by small solid dots.

While the two dashed diagonal lines have a distance of ∆ to the 45◦-degree line, the

cutup(∆)-value is represented by the dashed horizontal line.

http://www.statistik.uni-dortmund.de/de/content/einrichtungen/lehrstuehle/personen/holgers/sam.hapmap.html
http://www.statistik.uni-dortmund.de/de/content/einrichtungen/lehrstuehle/personen/holgers/sam.hapmap.html
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public repositories such as dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP)

that provide biological information on the identified SNPs.

In the applications presented in Chapter 7 and 8, this reduced set of 157

SNPs with an estimated FDR of 6.94% is considered.

Even though SAM has actually been developed for the analysis of high-

dimensional data, it can also be applied to data from association studies such

as the GENICA study consisting of the genotypes of “only” a few ten SNPs. In

the left panel of Figure 6.4, the SAM plot for the analysis of the GENICA data

set is shown. This plot reveals that only the distribution of one SNP, namely

ERCC2 6540 (refSNP ID: rs1799793), substantially differs between the cases

and the controls.

SAM cannot only be used to test individual SNPs, but also to detect intere-

sting interactions of SNPs by considering these interactions as variables. How-

ever, only interactions can be analyzed in the same application of SAM that

show data for the same number of levels (cf. Section 6.3.3). For example, 552

of the 741 two-way interactions of the SNPs from the GENICA study have data

available for each of the nine possible combinations of genotypes. The SAM plot

of the analysis of these 552 two-way interactions is displayed in the right panel of

FIGURE 6.4. SAM plots of the analyses of both the individual SNPs (left panel) and

the two-way SNP interactions (right panel) from the GENICA data set. The names

of the most relevant features are included in the plot using the function identify.

http://www.ncbi.nlm.nih.gov/projects/SNP
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Figure 6.4. Each of the 34 identified features is an interaction of ERCC2 6540

with another SNP, where the combination with a second SNP from the gene

ERCC2 (Excision Repair Cross-Complementing group 2), namely ERCC2

18880 (refSNP ID: rs1052559), that exhibits the seventh largest d-value in the

SAM analysis of the individual SNPs shows the largest difference between cases

and controls. These results support the findings of Justenhoven et al. (2004).

6.4 Prediction Analysis of Microarrays

6.4.1 Procedure

As a third example, we consider a discrimination method called PAM (Pre-

diction Analysis of Microarrays; Tibshirani et al., 2002) that can cope with

high-dimensional classification problems. Contrary to other discrimination ap-

proaches, it is thus not necessary to reduce the set of genes before applying PAM

outlined in Algorithm 6.5 to gene expression data.

Algorithm 6.5 (Prediction Analysis of Microarrays)

Let X be an m × n matrix containing the expression data of m genes and

n observations, y be a vector with elements yj ∈ {1, . . . , R}, j = 1, . . . , n,

comprising the classes of the n samples, and D be a set of strictly positive

values.

1. For each gene i, i = 1, . . . ,m, compute

(a) the average expression value x̄ir =
∑

j: yj=r

xij/nr for each class r, r =

1, . . . , R, where nr is the number of observations in class r,

(b) the overall centroid x̄i =
1

n

R∑
r=1

nrx̄ir,

(c) and the test scores

dir =
(
n−1

r + n−1
)−0.5 · x̄ir − x̄i

si + s0

, r = 1, . . . , R,
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where s2
i =

1

n−R

R∑
r=1

∑
j: yj=r

(xij − x̄ir)
2 is the pooled within-class

variance of gene i, and the fudge factor s0 is estimated by the median

over the m standard deviations si.

2. For each Θ ∈ D, determine

dΘ
ir = sign

(
dir

)(
|dir| −Θ

)
+
, i = 1, . . . ,m, r = 1, . . . , R,

where z+ = z · I
(
z > 0) and sign(z) = (−1)I(z<0), and calculate the

shrunken centroids

x̄Θ
ir = x̄i +

√
(n−1

r + n−1) · (si + s0) · dΘ
ir. (6.12)

Considering an increasing set of values of the shrinkage parameter Θ succes-

sively shrinks the dir-values towards zero. If dir = 0 for all R scores of gene i,

then this gene can be removed from the set SΘ of genes used in the classification

of a new observation, as it will not contribute anymore to the prediction of the

class. Hence, PAM cannot only be employed for discrimination, but also for

variable selection.

Let’s assume we have identified the value of Θ that minimizes the misclassi-

fication error estimated by ten-fold cross validation. Then, the predicted class

r̂ of a new observation with expression values x∗ =
[
x∗1 . . . x∗m

]′
is given by

the group r with the nearest shrunken centroid, i.e. by the class r, r = 1, . . . , R,

with the minimum discrimination score

δr (x∗) =
∑
i∈SΘ

(
x∗i − x̄Θ

ir

)2(
si + s0

)2 − 2 log π̂r,

where π̂r = nr/n is an estimate of the prior probability πr of class r. Alter-

natively, r̂ can be determined by the class r with the largest class probability

pr (x∗) estimated by

p̂r (x∗) =
exp
{
−0.5δr (x∗)

}∑R
`=1 exp

{
−0.5δ` (x∗)

} . (6.13)
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6.4.2 Prediction Analysis of Categorical Data

Contrary to SAM in which just the test statistic has to be changed, PAM can-

not directly be adapted to categorical data, since there is no direct counterpart

to the average group expression value that can be shrunken towards the over-

all centroid. Instead of computing a moderated t-statistic, we compare the

group-wise distributions of a categorical variable i, i = 1, . . . ,m, with its overall

distribution, i.e. n
(i)
rc with n

(i)
· c , c = 1, . . . , C, for each group r, r = 1, . . . , R (see

Table 6.2). To make these numbers comparable, n
(i)
· c has to be multiplied by

nr·/n. Since ñcr = n
(i)
· c nr·/n, an appropriate score for this situation is Pearson’s

goodness-of-fit test statistic

χ2
ir =

C∑
c=1

(
n

(i)
rc − ñ

(i)
rc

)2

ñ
(i)
rc

=
C∑

c=1

n
(i)
rc n

(i)
rc

ñ
(i)
rc

− nr·

(cf. Büning and Trenkler, 1994, Chapter 4.2.2). Therefore, PAM can be modified

for categorical data by setting dir = χ2
ir, and by successively lowering dir towards

zero by computing

dΘ
ir =

(
dir −Θ

)
+

for a set of increasing values of 0 < Θ < max
i,r

{
dir

}
.

The next step would be to shrink the class distribution towards the overall

distribution. This, however, is not as simple as in (6.12), since not a single class

prototype is shrunken towards the overall centroid, but C numbers n
(i)
rc should

TABLE 6.2. Contingency table showing the allocation of n observations into R

groups and C levels of a categorical variable i, i = 1, . . . ,m.

1 . . . C
∑

Group 1 n
(i)
11 · · · n

(i)
1C n1·

...
...

. . .
...

...

Group R n
(i)
R1 · · · n

(i)
RC nR·∑

n
(i)
· 1 . . . n

(i)
·C n
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be shrunken towards the respective ñ
(i)
rc , c = 1, . . . , C. A solution to this problem

is to lower all C distances
∣∣ñ(i)

rc − n
(i)
rc

∣∣ by the same amount, i.e. to compute υir

such that

n(i)Θ
rc = ñ(i)

rc + υir

(
n(i)

rc − ñ(i)
rc

)
(6.14)

for all c = 1, . . . , C, and that

dΘ
ir =

C∑
c=1

n
(i)Θ
rc n

(i)Θ
rc

ñ
(i)
rc

− nr·
(6.14)
=

C∑
c=1

(
ñ

(i)
rc + υir

(
n

(i)
rc − ñ

(i)
rc

))2

ñ
(i)
rc

− nr·

=
C∑

c=1

ñ
(i)2
rc

ñ
(i)
rc

+ υ2
ir

C∑
c=1

(
n

(i)
rc − ñ

(i)
rc

)2

ñ
(i)
rc

− 2υir

C∑
c=1

(
n

(i)
rc − ñ

(i)
rc

)
ñ

(i)
rc

ñ
(i)
rc

− nr·

= nr· + υ2
ir · dir − 2υir · 0− nr· = υ2

irdir.

Thus, υir is given by υir =
√
dΘ

ir/dir, and

C∑
c=1

n(i)Θ
rc =

C∑
c=1

ñ(i)
rc + υir

C∑
c=1

(
n(i)

rc − ñ(i)
rc

)
= nr· + υir · 0 = nr·.

Having chosen a value for the shrinkage parameter Θ and specified the set SΘ

of categorical variables with at least one non-zero dΘ
ir-value, the class of a new

observations is predicted by the group r that maximizes the posterior probability

pr (x∗
Θ) =

πrp (x∗
Θ | r)∑R

`=1 π`p (x∗
Θ | `)

,

where x∗
Θ denotes the vector comprising the values xi ∈ {1, . . . , C} of the varia-

bles i ∈ SΘ for the new observation. In analogy to (6.13), p (x∗
Θ | r) is estimated

by

p̂ (x∗
Θ | r) =

∏
i∈SΘ

p̂ (xi | r) =
∏
i∈SΘ

n
(i)Θ
rxi

nr·
.

Again, all mR dir-values can be computed simultaneously using matrix al-

gebra. This can be done in almost the same way as the row-wise Pearson’s
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χ2-statistics are calculated in Algorithm 6.4. Only (6.11) has to be replaced by

the m×R matrix

DPAM =
C∑

c=1

(
Y(c) − Ỹ(c)

)
∗
(
Y(c) − Ỹ(c)

)
Ỹ(c)

.

6.4.3 Application to SNP Data

Using the R function pamTheta (see Appendix C.3), the Prediction Analysis of

categorical data is applied to both the HapMap data set comprising all 121,774

SNPs, and the 157 SNPs of this data set preselected by SAM (see Section 6.3.4).

In both cases, the misclassification rate (MCR) is estimated for different values

of the shrinkage parameter Θ by nine-fold cross-validation, where each of the

nine data sets contain five Han Chinese and five Japanese. As shown in the

left panel of Figure 6.5, the former application leads to a minimum MCR of

15.6% at Θ = 7. Accepting a little higher MCR, i.e. an MCR of 16.7% (at

Θ = 8.5), can reduce the number of SNPs used in the prediction from 362 to

97. Applying PAM just to the preselected SNPs decreases the MCR to 3.3%.

A reason for this is that SNPs showing dir-values larger than Θ, but actually

exhibiting group-wise distributions that do not differ substantially from each

other, and thus, perturbing the correct classification have been filtered by SAM.

FIGURE 6.5. Misclassification rates for several values of the shrinkage parameter

Θ in the application of PAM to the HapMap data (left panel), and to both the SNPs

(middle panel) and the two-way interactions (right panel) of the GENICA data set.
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If several values of Θ lead to the same MCR, typically the largest value of Θ

will be chosen, since this results in the smallest numbers of variables. However,

in the analysis of the 157 SNPs, all features are employed in the prediction no

matter which value of the shrinkage parameter Θ leading to a MCR of 3.3% is

selected. (In- or decreasing the ∆ in SAM, and therefore, the number of SNPs

will not lead to a smaller MCR.)

As expected from the results of the SAM analyses of the GENICA data

set in Section 6.3.4, employing only ERCC2 6540 for class prediction leads

to the smallest MCR (42.3%) in the application of PAM to this data set (cf.

middle panel of Figure 6.5). This misclassification error estimated by ten-fold

cross-validation can be reduced to 39.9% if two-way interactions are analyzed

(cf. right panel of Figure 6.5). In this application, again, only the 552 SNP

interactions also used in Section 6.3.4 can be considered, since a requirement of

PAM is that all categorical variables exhibit the same number of levels. The

classification rule leading to the MCR of 39.9% is based on just one interaction,

namely the interaction of ERCC2 6540 with ERCC2 18880.



Chapter 7

Comparison of Discrimination

Methods Applied to SNP Data

7.1 Introduction

One of the major goals in association studies is the construction of classification

rules such as

IF SNP S1 is of the homozygous reference genotype AND SNP

S2 is of the homozygous variant genotype OR both SNP S3

AND S4 are NOT of the homozygous reference genotype,

THEN a person has (a higher risk to develop) a particular disease.

A procedure developed for solving exactly this type of problems is logic

regression proposed by Ruczinski et al. (2003). In comparison to other discri-

mination or regression approaches, this method has shown a good performance

in its application to SNP data (Kooperberg et al., 2001; Ruczinski et al., 2003,

2004; Witte and Fijal, 2001). In this chapter, we examine if this is also true when

considering our data sets. Therefore, logic regression and other discrimination

procedures such as Support Vector Machines and Random Forests are applied,

on the one hand, to the data from both the HapMap and the GENICA study,

88
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and on the other hand, to the simulated data sets of Simulation 2 (see Appendix

A.4). While the other discrimination methods are described briefly in Section

7.3, logic regression is introduced in more details in Section 7.2. The performance

of these approaches is then compared in Section 7.4.

7.2 Logic Regression

Logic regression is an adaptive methodology for predicting the outcome in dis-

crimination and regression problems based on Boolean combinations of variables

such as

Si1 : “SNP Si is not of the homozygous reference genotype”,

Si2 : “SNP Si is of the homozygous variant genotype”,

i.e. of binary variables that are either true or false. These variables can be

negated by the operator C (e.g., SC
i2 means “SNP Si is NOT of the homozygous

variant genotype”), and combined by the operators ∧ (AND) and ∨ (OR) to

form a logic expression L that in turn is also either true or false.

In logic regression, such logic expressions are represented by logic trees. For

example, the logic tree in the center of Figure 7.1 displays the logic expression

L = S11 ∧ SC
21 ∨ S32, where the nodes of the tree consist of the operators AND

and OR, the terminal nodes or leaves show the variables, and the complement

of a variable S, i.e. SC , is marked by white letters on a black background. For

example, in a case-control study in which L is used as a predictor, an individual

would be classified as case if L is true, i.e. if either both S11 and S21 are true, or

S32 is true, or both S11∧S21 and S32 are true. Otherwise, this person is classified

as control.

However, logic trees cannot only be employed as a nice graphical represen-

tation of a logic expression, but also to generate new logic trees in the search

for the best logic regression model. In Figure 7.1, the permissible moves in this

tree-growing process are shown. These moves are
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FIGURE 7.1. Move set of logic regression. (Source: Ickstadt et al., 2006b, modified

version of Figure 4.)

Alternate a leaf: A literal, i.e. a variable or its complement, is replaced by

another literal. In the logic tree in the center of Figure 7.1, e.g., SC
21 can

be replaced by any literal except for S11 and SC
11, as these two literals

would generate a tautology in the tree.

Alternate an operator: An AND is replaced by an OR, or vice versa.

Grow a branch: At each node (except for the terminal nodes), a new branch

can be grown by cutting the subtree starting at this node, adding a new

operator to this node, and adding the subtree to the right branch and a

leaf to the left branch of this new node.

Prune a branch: This is the countermove to growing a branch in which a

branch is removed from the tree.

Split a leaf: Each leaf can be split by replacing it by a subtree consisting of

an operator/node, the split leaf and another leaf.

Delete a leaf: This is the countermove to splitting a leaf in which a leaf is

removed from the tree.
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How a move is selected (e.g., randomly or by optimization), and whether the

new tree resulting from this move is accepted depends on the algorithm used

in the search for the best model. Since in logic regression simulated annea-

ling introduced by Kirkpatrick et al. (1983) and presented in Algorithm 7.1 is

employed as the default search algorithm, it is used in all the applications in this

and the following chapter. Note that each move has its countermove, and that

using this move set each logic tree can be reached from any other tree in a finite

number of moves such that the assumptions of simulated annealing based on the

underlying Markov chain theory are met (for details, see Ruczinski, 2000).

Algorithm 7.1 (Simulated Annealing Based Logic Regression)

Given a training set, a cooling scheme, and the number niter of iterations, a logic

regression model is adaptively constructed as follows.

1. Initially, specify L by randomly drawing a logic tree consisting of one leaf.

2. Propose a new tree by randomly selecting a move.

3. Accept the new tree with probability

min

{
1, exp

{
(MCRL −MCRnew) /t

}}
,

where MCRL and MCRnew are the training set errors of L and the new

tree, respectively, and the temperature t is specified by the cooling scheme.

4. Repeat Step 2 and 3 niter times.

In logic regression, a typical cooling scheme would start at t = 10zstart , zstart ∈

N, and lower the temperature to t = 10−zend , zend ∈ N, in equal decrements on

log10-scale such that in the beginning many different logic regression models are

visited, and in the end almost no new tree is accepted if its MCR is larger than

the MCR of the current tree L.
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Apart from growing a single tree, logic regression provides also the possibility

to adaptively grow and combine several logic expressions Lk, k = 1, . . . , p, by a

generalized linear model

g
(
E(Y )

)
= γ0 +

p∑
k=1

γkLk (7.1)

with response Y , parameters γk, k = 0, . . . , p, and link function g. Since our

interest centers on binary responses, we assume g to be the logit function. In the

following, we refer to the former as single tree approach and to (7.1) as multiple

tree approach. (Note that correct notations for these types of logic regression

would actually be classification and glm approach, respectively, since p = 1 is a

possible choice for the number of trees in (7.1). We, however, do not consider

this case throughout this thesis.)

In the multiple tree case, a new logic regression model is proposed by ran-

domly picking a move for one of the p trees. Afterwards, this model is fitted

and compared with the current model using the deviance

−2
m∑

j=1

(
yi ln (π̂i) + (1− yi) ln (1− π̂i)

)
with πi = E(Yi) instead of the MCR (cf. Neter et al., 1996).

In this thesis, we focus on the original version of logic regression that employs

the move set displayed in Figure 7.1. Hence, other procedures originated by logic

regression such as the full Bayesian logic regression proposed by Fritsch (2006),

or the genetic programming based method introduced by Ickstadt et al. (2006a)

are not considered.

7.3 Further Discrimination Methods

In this section, the competitors of logic regression in the comparison presented

in Section 7.4 are briefly described. A more detailed introduction to most of

these methods (all but Random Forests) is provided by Hastie et al. (2001).

In Schwender et al. (2004), these discrimination procedures are compared with

each other in an application to a first GENICA data set composed of 25 SNPs.
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7.3.1 Support Vector Machines

The basic idea of Support Vector Machines (SVM; Vapnik, 2000) is to construct

an optimal separating hyperplane between two groups of observations (e.g., cases

vs. controls), where optimal means that the distance of the hyperplane to the

closest observations from either class, and thus, the margin between these two

groups is maximized (cf. Figure 7.2).

In the left panel of Figure 7.2, the two classes are perfectly separated. In this

case, the margin and the optimal separating hyperplane bisecting the margin are

specified by the observations represented by the solid circles and the solid square

lying on the boundary of the margin. These three points are called the support

vectors, since only these observations are required to construct the hyperplane,

and hence, the classification rule.

If the groups are not perfectly separable, then the data points will be allowed

to lie on the wrong side of the margin. In the example displayed in the right

panel of Figure 7.2, some of the observations represented by circles can thus

be on the right of the left boundary of the margin, and individuals marked

FIGURE 7.2. Support vector classifier for the perfectly separated (left panel) and

the non-separable (right panel) case. Circles and squares mark the observations of the

two groups. If these symbols are solid, then they represent support vectors. While

the separating hyperplane is displayed by the solid line, the shaded region marks the

margin. (Source: Schwender et al., 2004, modified version of Figure 2.)



7.3 Further Discrimination Methods 94

by squares can be on the left of the right boundary. Since such data points

prevent that a optimal separating hyperplane can be found, they add costs to

the discrimination problem. Therefore, these observations are also required to

construct the classification rule, and hence, also support vectors.

More formally, we are looking for the hyperplane
{
x : x′w + w0 = 0

}
that

provides the solution to the optimization problem

min
w,w0

{
0.5 ||w||2 + η

n∑
j=1

ξj

}

subject to ξj ≥ 0, yj

(
x′

jw + w0

)
≥ 1− ξj, j = 1, . . . , n,

(7.2)

where yj ∈
{
−1, 1

}
and xj ∈ Rm are the response and the vector containing

the values of the m explanatory variables for the jth observation, j = 1, . . . , n,

||w||2 =
∑m

i=1w
2
i

(
= C−2, see Figure 7.2

)
, ξj = 0 if the jth observation is on

the correct side of the margin, otherwise, ξj > 0 is computed as shown in Figure

7.2, and η is the tuning or cost parameter which has to be optimized separately

using, e.g., cross-validation.

So far we have only considered linear hyperplanes. However, two groups

might be better separated by a non-linear hyperplane that can be constructed

by employing the kernel trick: The data are mapped into a feature space S that

is of a higher dimension than the original input space Rm using a kernel function

K (xj,x`) = 〈h (xj) ,h (x`)〉,

where h : Rm → S is the actual mapping function, and 〈a,b〉 =
∑

k akbk. In this

feature space, a linear hyperplane is constructed as explained above. Afterwards,

the data are mapped back into the original input space in which the hyperplane

is not linear anymore.

Two popular examples for kernel functions are the pth degree polynomial

kernel

Kpoly (xj,x`) =
(
1 + 〈xj,x`〉

)p
and the radial kernel

Kradial (xj,x`) = exp
{
−γ ||xj − x`||2

}
, γ > 0.
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7.3.2 Classification and Regression Trees

As implied by its name, CART (Classification And Regression Trees; Breiman

et al., 1984) can be applied to both classification and regression problems. Here,

we focus on classification trees that are constructed by recursively partitioning

the data into subsets. Starting with the whole training set at the first node of a

CART tree, the variable is identified that best splits the data into two subset.

This means that the split υ is detected that leads to the largest decrease in

impurity

∆ i(υ, τ) = i(τ)− p1 · i (τ1)− p2 · i (τ2) , (7.3)

where i(τ) is the impurity of node τ , and p1 and p2 are the proportion of obser-

vations going into the two descendant nodes τ1 and τ2, i.e. into the two subsets.

Typically, the Gini index

iGini(τ) =
R∑

r=1

pτ (r)
(
1− pτ (r)

)
(7.4)

with pτ (r) being the proportion of observations at node τ belonging to class r,

r = 1, . . . , R, is used as the measure for the node impurity. In the two-class

case, (7.4) becomes iGini(τ) = 2pτ (1)
(
1− pτ (1)

)
.

Having divided the data into two subset, the corresponding nodes are consi-

FIGURE 7.3. Two-dimensional feature space partitioned by CART, and the corre-

sponding CART tree. Solid dots represents the observations from group 1, and crosses

the individuals from group 2.
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dered separately to identify the variable that best splits the data at the respective

node into two subsets. This procedure is repeated as long as the number of

observations in the subgroups is larger than a prespecified minimum, or the

decrease of impurity (7.3) is larger than a prespecified threshold. In Figure 7.3,

an example of a recursively partitioned two-dimensional feature space and the

corresponding CART tree is displayed.

When an explanatory variable is categorical, all 2C−1 − 1 possible partitions

of the C levels of this variable into two subsets have to be considered in the

search for the best split. However, if the response is binary this number of

partitions can be reduced to C by ordering the classes c, c = 1, . . . , C, of the

predictor by the proportion of observations falling into the first response class,

and by treating this predictor as an ordinal variable (cf. Breiman et al., 1984,

Chapter 4.2.2).

Usually, the constructed tree T0 is too large, i.e. too specific for the training

set. To avoid overfitting, T0 is pruned using cost-complexity pruning: Let T ⊂ T0

be any subtree of T0, and |T | be the number of terminal nodes in T . Then, for

each value of the tuning parameter ζ, the subtree Tζ ⊆ T0 is identified that

minimizes the cost complexity criterion

Cζ(T ) =

|T |∑
τ=1

nτ iT (τ) + ζ |T | ,

where nτ is the number of observations at the terminal node τ . Afterwards, the

final tree Tζ̂ is determined by detecting the value ζ̂ of the tuning parameter ζ

that minimizes the misclassification rate estimated by cross-validation (cf. Hastie

et al., 2001, p. 270).

7.3.3 Bagging and Random Forests

A major problem of CART trees is their instability: A small change in data

can lead to a very different classification rule, and hence, to different predictions

for new observations. A solution to this problem is to stabilize this classifier by
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employing ensemble methods such as bagging (Breiman, 1996), boosting (Freund

and Shapire, 1996; Friedman et al., 2000), or Random Forests (Breiman, 2001).

In bagging outlined in Algorithm 7.2, many CART trees are grown on diffe-

rent subsets of the training data, and a new observation is classified by averaging

over the predictions of the individual trees. This is typically done by majority

voting, i.e. by assigning the new observation to the class predicted by the ma-

jority of the trees.

Algorithm 7.2 (Bagging)

Let n be the number of observations in the training set, and B be the number

of iterations.

1. Draw a bootstrap sample of size n from the n observations.

2. Construct a CART tree based on this bootstrap sample.

3. Repeat Step 1 and 2 B times to generate B classification rules.

Even though in Algorithm 7.2 bagging is explicitly applied to CART trees,

other discrimination methods can also be used as base classifier in this algorithm.

Since CART and logic trees are related – each logic tree can be converted into

a CART tree, and vice versa (cf. Appendix A of Ruczinski et al., 2003) – logic

trees are also instable classifiers. In Section 7.4, we therefore apply bagging not

only to CART, but also to logic regression. To distinguish between these two

approaches, the bagging version using logic regression as base learner is called

logic bagging in the following.

The last competitor in the comparison presented in the following section is

Random Forests which is a further development of bagging. In Random Forests,

not only bootstrap samples of the observations are used to construct a large

number of CART trees, but also a random subset of variables is considered at

each node to identify the best split among this subset, where the subset can

differ from node to node.
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7.4 Comparison

Since logic regression searches for Boolean combinations of binary variables, each

SNP has to be coded by two dummy variables. A biologically meaningful way

to do this is to split each SNP Si into the variables

Si1 : “At least one of the bases explaining Si is the less frequent variant”,

Si2 : “Both bases explaining Si are the less frequent variant”,

as Si1 codes for a dominant variation, and Si2 for a recessive mutation. Since

SVM also cannot handle categorical data, the same splitting is used in its ap-

plication to the three data sets. However, the outcomes of Si` are not coded by

0 and 1 (or more exactly, false or true), but by -1 and 1.

Both modifications can lead to variables mainly consisting of one value.

Thus, all variables showing the same value for more than 97% (95%) of the

observations are removed from the GENICA (HapMap) data set leading to 68

(282) binary variables. All other discrimination methods are based on CART,

and can therefore be applied to the SNPs themselves.

In the analyses of the data sets, several parameter settings are considered for

each of the discrimination procedure except for CART and logic bagging (see

Table B.2). In Table 7.2, the misclassification rates (MCRs) of these methods

with the optimized parameters summarized in Table 7.1 are displayed. For

the reduced HapMap data set consisting of the 157 SNPs preselected by SAM

(cf. Section 6.3.4) and the GENICA data set, these misclassification rates are

estimated by cross-validation employing the same subsets as in Section 6.4.3,

whereas in the applications to the 50 data sets of Simulation 2 that imitate data

from real genetic association studies (see Appendix A.4), they are determined

by constructing a classification rule on each data set, and applying this rule to

another data set such that each data set is used once as training set, and once

as test set.

Table 7.2, however, does not contain the MCR of the application of PAM

to the two-way SNP interactions of the GENICA data set, since we are here
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TABLE 7.1. R packages and optimized parameter used in the applications of the

discrimination methods to the three data sets leading to the misclassification rates

displayed in Table 7.2. (mt: Number of randomly selected variables at each node.)

Method R package Parameter HapMap GENICA Simulation 2

Kernel Radial Linear Radial

SVM e1071 η 0.2 10 2

γ 10−3 – 10−3

PAM c7Tools Θ 4.5 11 1

CART rpart – – – –

Bagging ipred B 200 100 100

Random random B 500 1,000 1,000

Forests Forest mt 12 12 14

Logic LogicReg Approach Single Single Single

Regression nleaves 32 8 8

Logic logicFS – Single tree approach with

Bagging nleaves = 8, and B = 100

interested in a comparison of methods in which individual variables are used

as inputs. Otherwise, PAM – or more precisely, predicting the class of a new

observation based on the joint distribution of ERCC2 6540 and ERCC2 18880

– would have shown the smallest MCR. (Similar to PAM, employing also two-

way interactions in the analysis would decrease the MCR of CART and Bagging

slightly.)

For both the simulated data and the GENICA data set, logic regression

exhibits the lowest MCR, where in the former case it comes close to the actual

MCR of 32.6%. Using ensemble methods neither reduces the MCR of logic

regression nor of CART.

In the analysis of the HapMap data, most of the other discrimination proce-

dures outperform logic regression. This might be due to the fact that in contrast
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TABLE 7.2. Misclassification rates for the applications of the discrimination me-

thods to the three data sets with the parameter settings summarized in Table 7.1.

Random Logic Logic
SVM PAM CART Bagging Forests Regression Bagging

HapMap 0 0.033 0.356 0.022 0.011 0.144 0.011

GENICA 0.419 0.423 0.421 0.433 0.428 0.402 0.404

Simulation 2 0.419 0.481 0.371 0.383 0.381 0.342 0.341

to the other two data sets in which five (Simulation 2) or two (GENICA) SNPs

have an effect on the case-control status, many SNPs are required to distinguish

between the Han Chinese and the Japanese (cf. Section 8.4.2, in particular the

left panel of Figure 8.5). However, none of the logic trees contains more than

ten variables even if we allow to grow much larger trees. Logic bagging can

compensate this problem by considering not just a single logic regression model,

but a large number of models each containing a different set of variables. The

same applies to CART that performs even worse than logic regression.

Overall, the results of our analyses are similar to the one of, e.g., Kooperberg

et al. (2001): Logic regression works well in comparison to other discrimination

methods if a few SNP interactions are explanatory for the response (which is

also the data situation in Kooperberg et al., 2001). Otherwise, SVM or ensemble

methods such as bagging and Random Forests are to be preferred.



Chapter 8

Detection of SNP Interactions

Using Logic Regression

8.1 Introduction

Two of the most popular discrimination methods in the analysis of DNA mi-

croarrays, SVM (Vapnik, 2000) and Random Forests (Breiman, 2001), cannot

only be employed for the classification, but also for variable selection. In RFE-

SVM (Guyon et al., 2006), e.g., the squared weights w2
i , i = 1, . . . ,m, cf. (7.2),

are used to recursively eliminate features from the set of variables, and to choose

the subset leading to the smallest MCR. In Random Forests, the importance of

a variable is specified by averaging over the differences between the tree-wise

numbers of correctly classified oob (out-of-bag) observations, i.e. observations

that are not in the respective bootstrap sample, when the original or permuted

values of this variable are used. Breiman (2001) suggests to apply Random

Forests once to the whole data set to select the most important variables, and

once to the chosen features to construct the classification rule, whereas Diaz-

Uriate and Alvarez de Andres (2006) propose a feature elimination procedure

similar to the approach of Guyon et al. (2006).

In Figure 8.1, the values of the importance measure resulting from an appli-

101
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FIGURE 8.1. Importances of the variables of Simulation 1 quantified by Random

Forests, where Si is denoted by SNPi.

cation of Random Forests to the data set of Simulation 1 (see Appendix A.4) are

displayed. This figure shows that the eight variables S1, . . . , S8 explanatory for

the cases are identified as the most important ones, and that all other variables

are unimportant. However, Random Forests identifies neither the interactions

of interest nor the genotypes explaining the cases. This can be considered as

drawbacks for the analysis of data from genetic association studies, as not indi-

vidual SNPs, but SNP interactions are assumed to be responsible for complex

diseases (Garte, 2001; Culverhouse et al., 2002). In Section 8.3, we introduce a

procedure called logicFS (logic Feature Selection) based on logic regression that

enables the identification of such interactions and the quantification of their im-

portance. In Section 8.4, logicFS is applied to all genotype data sets described

in Appendix A.

There already exists an approach based on logic regression for detecting

interesting interactions: In MC (Monte Carlo) logic regression, Kooperberg and

Ruczinski (2005) run an MCMC (Markov Chain Monte Carlo) search on the

whole training set, and employ the models visited after the burn-in to identify

interactions that frequently occur jointly in these models. In Section 8.5, we

compare logicFS with this method, and show the advantages of our approach

over MC logic regression. As Section 8.3 and 8.4, this section is a modified

version of Schwender and Ickstadt (2007).
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Finally, we describe in Section 8.6 how the most important interactions can

be selected. Since this is work in progress, only first ideas are presented.

This chapter, however, starts with the introduction of a new procedure

required by logicFS for converting a logic expression into a disjunctive nor-

mal form, i.e. an OR-combination (disjunction) of AND-combinations (conjunc-

tions).

8.2 Detecting all Prime Implicants of a Logic

Expression

Let’s assume that the logic expression L = X1 ∧XC
2 ∨ (X3 ∨X4) ∧XC

5 is part

of a logic regression model. Even though this logic expression is relatively easy

to interpret, a representation of L that reveals the interacting variables directly

would be preferable. Moreover, it becomes more complicated to interpret such

a logic expression, the more variables it contains. Therefore, we propose to

convert each logic expression into a disjunctive normal form (DNF). For the

above example, the DNF is given by

L =
(
X1 ∧XC

2

)
∨
(
X3 ∧XC

5

)
∨
(
X4 ∧XC

5

)
.

The advantage of this representation of L is that the interactions are directly

identifiable, since they are given by the conjunctions X1 ∧ XC
2 , X3 ∧ XC

5 , and

X4 ∧XC
5 . If at least one of these conjunctions is true, then L will also be true.

To avoid redundancy, the DNF should only consist of prime implicants, i.e.

minimal conjunctions. If, e.g., both X1 ∧X2 ∧X3 and X1 ∧X2 ∧XC
3 are part

of a logic expression L, then X3 will be redundant, since the outcome of L does

not depend on the outcome of X3. Thus, the two conjunctions can be combined

to the prime implicant X1 ∧X2.

The classical way to convert a logic expression into a (minimum) disjunc-

tive normal form is the Quine-McCluskey algorithm (Quine, 1952; McCluskey,
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X1 X2 X3

(1) 0 0 1

(4) 1 0 0

(3) 0 1 1

(5) 1 0 1

(7) 1 1 1

−→

X1 X2 X3

(1, 3) 0 − 1

(1, 5) − 0 1

?(4, 5) 1 0 −

(3, 7) − 1 1

(5, 7) 1 − 1

−→

X1 X2 X3

?(1, 3, 5, 7) − − 1

?(1, 5, 3, 7) − − 1

FIGURE 8.2. Quine-McCluskey algorithm. The identified prime implicants X1∧XC
2

and X3 are marked by a star. The numbers in the brackets are the decimal numbers

corresponding to the binary numbers composed by the entries of the (combined) rows.

1956) consisting of two steps: Firstly, all prime implicants belonging to a logic

expression are identified. Secondly, the set of prime implicants is minimized.

Since we are interested in all prime implicants, we only consider the first step

in which the minterms for which the logic expression of interest is true are recur-

sively combined, where a minterm is one of the 2m conjunctions of length/order

m composed of the values of the m binary variables comprised by the logic

expression. In Figure 8.2, an example for this procedure is given. The Quine-

McCluskey algorithm starts with the rightmost table called T in Algorithm 8.1

that contains all minterms for which the logic expression of interest is true. For

example, the first row of this table represents the minterm XC
1 ∧XC

2 ∧X3, and

is combined with the third row, i.e. with XC
1 ∧X2∧X3, to XC

1 ∧X3 shown in the

first row of the table in the middle of Figure 8.2. After obtaining all conjunctions

of order m−1
here
= 2 that can be generated by merging two of the minterms in T

that differ only in one position, it is determined which of these new conjunctions

can be combined with each other, and so on. The algorithm stops at the leftmost

table of Figure 8.2, since no further combinations are possible (for more details,

see, e.g., Schwender, 2007).

Since implementing the Quine-McCluskey algorithm in R has led to an un-

satisfactory run time, we have implemented our own procedure presented in

Algorithm 8.1 that has been developed particularly for solving our problem, i.e.
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for converting a logic expression consisting of up to 16 literals/variables into a

DNF composed of all prime implicants that typically exhibit an order not larger

than 4. (A detailed description of this algorithm with examples is given by

Schwender, 2007.)

Algorithm 8.1 (Identification of Prime Implicants)

Let T be an nT × m matrix in which each row corresponds to one of the nT

minterms for which the logic expression L of interest is true, and each column

corresponds to one of the m variables Xi, i = 1, . . . ,m, composing L.

1. Replace each zero in T by -1, and set q = 1.

2. Let A(q) be a 2q

(
m

q

)
×m matrix comprising each of the 2q

(
m

q

)
conjunc-

tions of order q, where

a
(q)
ki =


1, if Xi is part of the kth conjunction

−1, if XC
i is part of the kth conjunction

0 otherwise

. (8.1)

3. Set E(q) = A(q)T′, and compute h(q) = I
(
E(q) = q

)
1nT

, where the output

of I
(
E(q) = q

)
is a 2q

(
m

q

)
× nT matrix with elements ik` = I

(
e
(q)
k` = q

)
.

4. Set Hq =
{
k : h

(q)
k = 2m−q

}
. If Hq = ∅, set q to q + 1, and repeat Steps

2-6. Otherwise, update A(q) by removing all rows k 6∈ Hq from A(q) such

that A(q) becomes a |Hq| ×m matrix.

5. Denote the set of identified prime implicants P1, . . . , PGq each of order q or

lower by Lq, where L0 = ∅. If Lq−1 = ∅, add the conjunctions represented

by the (remaining) rows of A(q) to Lq−1 to generate Lq. Otherwise,

(a) let Mq−1 denote a Gq−1 ×m matrix in which each row represents –

analogous to (8.1) – one of the Gq−1 prime implicants of an order

lower than q,
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(b) set v(q−1) = diag
(
Mq−1M

′
q−1

)
, i.e. let v(q−1) be the vector containing

the Gq−1 diagonal elements of Mq−1M
′
q−1, and U(q−1) = Mq−1A

(q)′,

(c) update A(q) by removing any row of A(q) corresponding to a non-zero

entry in

1′Gq−1
I
(
U(q−1) = v(q−1)

)
,

where I
(
U(q−1) = v(q−1)

)
is a Gq−1 × |Hq| matrix with elements

ik` = I
(
u

(q−1)
k` = v

(q−1)
k

)
,

(d) and add the conjunctions corresponding to the remaining rows of A(q)

to Lq−1 to generate Lq.

6. Stop if all elements of 1′Gq
I
(
MqT

′ = v(q)
)

are non-zero. Otherwise, set q

to q + 1, and repeat Steps 2-6.

This algorithm implemented in the R package logicFS (see Appendix C.2)

is based on the fact that following the Quine-McCluskey algorithm we have to

recursively combine m − q times two rows of T to obtain a prime implicant of

order q. Thus, 2m−q of the rows of T must contain a 1 or a -1 in each of the

columns corresponding to one of the variables or the complements of variables,

respectively, composing a prime implicant of order q.

A problem of this idea is that if, e.g., Xi is a prime implicant, then not

only 2m−1 rows of T will contain a 1 in the ith column, but also 2m−2 rows

will comprise both a 1 in the ith column and a 1 (or a -1) in the kth column,

k = 1, . . . ,m, k 6= i, such that Xi ∧ Xk

(
or Xi ∧ XC

k

)
will also be identified

as prime implicant. To avoid this, such conjugations are removed in Step 5 of

Algorithm 8.1.

The essential difference between Algorithm 8.1 and the Quine-McCluskey

approach is that Algorithm 8.1 starts at q = 1 and successively increases q,

whereas the Quine-McCluskey algorithm starts at q = m and goes downwards.

The former proceeding is an advantage if the orders of the prime implicants are
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relatively small – as, e.g., in the logic regression models in which we typically

observe interactions of a maximum order of 4 (or rarely 5).

8.3 Identification of Interesting Interaction

While Kooperberg and Ruczinski (2005) run MC logic regression once on the

whole data set, we propose a procedure called logicFS (see Algorithm 8.2) in

which the default search algorithm of logic expression, i.e. simulated annealing,

is repeatedly applied to subsets of the data to identify variables and interactions

associated with the response.

Algorithm 8.2 (logicFS – Identification of Interesting Interactions)

Given: Data of m binary variables for n observations, and the number B of

iterations.

1. Draw a bootstrap sample of size n from the n observations.

2. Build a logic regression model based on this bootstrap sample.

3. Convert each logic expression comprised by the logic regression model into

a disjunctive normal form consisting of prime implicants.

4. Repeat Steps 1-3 B times.

5. For each of the identified prime implicants, compute the value of an ap-

propriate importance measure.

Some of the detected prime implicants are very important for prediction,

whereas other interactions are not important at all, or might even be obstructive

for a good prediction. It is therefore necessary to quantify the importances of

the identified interactions.
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A naive importance measure that can be computed in any classification or

regression problem is the proportion of models containing the prime implicant

of interest Pg, g = 1, . . . , G, i.e.

VIMAdhoc(Pg) =
1

B

B∑
b=1

I
(
Pg ∈ Lb

)
, (8.2)

where Lb is the set of identified prime implicants in iteration b, b = 1, . . . , B.

In MC logic regression, a measure similar to (8.2) is determined to quantify

the importances of variables and combinations of variables. In this approach,

the models visited after the burn-in are employed to compute for each variable,

each pair and each triplet of variables the proportion of models in which the

respective variables appear jointly (but not necessarily combined by an ∧) in

the same logic tree. The combinations of variables occurring most frequently

are then assumed to be the most important interactions.

However, some SNP interactions are explanatory only for a small subset of

patients. Such interactions will hardly be found, and it is likely that they appear

only in very few of the models. They would therefore be called unimportant by

(8.2), even though they are actually very important for the correct prediction of

some of the patients. Moreover, in a discrimination problem, a suitable measure

should quantify how much a particular interaction improves the classification.

This improvement should not be computed on the same data set on which the

classification rule has been trained, but on an independent data set consisting

of new observations.

Since in logicFS logic regression models are constructed based on subsets

of the data, the respective oob observations can be employed to estimate the

importance of each of the identified interactions.

If in logicFS the single tree approach is applied to a discrimination problem,

we therefore propose to quantify the importance of a prime implicant Pg, g =

1, . . . , G, by

VIMSingle(Pg) =
1

B

 ∑
b: Pg∈Lb

(
Nb −N

(−g)
b

)
+

∑
b: Pg 6∈Lb

(
N

(+g)
b −Nb

) , (8.3)
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where

Nb is the number of oob observations in the bth iteration that are

correctly classified by the logic regression model constructed in

the bth iteration,

N
(−g)
b /N

(+g)
b is the number of oob observations correctly classified by the bth

model after Pg has been removed from / added to the model.

We thus compare how well the logic regression models perform when Pg is

part of the logic expressions and when it is not, to get a measurement of the

influence of Pg on the correct classification.

In the multiple tree case, it is not possible to unambiguously add an interac-

tion to one of the logic trees, since it is not clear to which of the logic expressions

it should be appended. The prime implicant Pg, g = 1, . . . , G, is therefore only

removed from (and not added to) the models, and the multiple tree measure is

given by

VIMMultiple(Pg) =
1

B

∑
b: Pg∈Lb

(
Nb −N

(−g)
b

)
. (8.4)

This multiple tree measure is similar to the variable importance measure of

Random Forests. The only difference is that Breiman (2001) permutes the values

of the considered variable Xi once, and computes N
(−i)
b based on the permuted

values. By contrast, we remove the prime implicant Pg, and calculate N
(−g)
b

based on the model without this variable/interaction, since a prime implicant

can be removed from a logic tree in disjunctive normal form without destroying

the structure of the remaining tree.

For a particular interaction, a large value of both (8.3) and (8.4) corresponds

to a high importance of this prime implicant, whereas a value of about zero

leads to the assumption that the interaction has no importance for classification.

A prime implicant showing a negative importance is obstructive for a good

classification, as the number of misclassifications will increase if this interaction

is added to the model.
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8.4 Application to SNP Data

8.4.1 Simulated Data

To investigate if logicFS is able to identify the influential interactions in case-

control studies, we employ two simulations: In the first simulation, we are par-

ticularly interested in the stability of the results of logicFS, and in a comparison

of VIMAdhoc with VIMSingle and VIMMultiple. The goal of the second simulation

is to determine if our procedure can cope with real association studies in which

single interactions might have moderate effects and a relatively high percentage

of the cases cannot be classified by the measured SNPs.

Simulation 1. To examine the former issue, we consider the data set of Si-

mulation 1 (see Appendix A.4) in which each of the 500 cases but none of the

500 controls is explained by one of four interactions of different order (see Table

8.1). Using B = 100 bootstrap samples and allowing a maximum of 20 variables

in each of the logic regression models, logicFS is applied to this data set twice –

once with the single tree approach, and once with the multiple tree method al-

lowing three logic trees to grow. Afterwards, the three importance measures are

computed for each of the identified prime implicants in the respective approach.

TABLE 8.1. VIMSingle, VIMMultiple, and VIMAdhoc – each averaged over 50 applica-

tions of logicFS to the data set of Simulation 1 – for the interactions explaining the

specified number of cases.

Single Tree Multiple Trees

Cases VIMSingle VIMAdhoc VIMMultiple VIMAdhoc

S12 50 15.48 0.88 10.57 0.86

SC
21 ∧ S32 100 25.48 0.74 20.10 0.70

SC
41 ∧ SC

51 ∧ SC
61 200 54.51 0.34 26.56 0.41

S72 ∧ S82 150 35.94 0.82 31.78 0.72



8.4 Application to SNP Data 111

This procedure is repeated 50 times leading to the median importances of the

four explanatory interactions displayed in Table 8.1.

This table reveals that VIMSingle identifies these four interactions in the cor-

rect order of their importance for classification (and as the four most important

prime implicants as Figure 8.3 shows). By contrast, in both the single and

the multiple tree approach, VIMAdhoc also detects the single variable S12 and

the two two-way interactions SC
21 ∧ S32 and S72 ∧ S82 as important prime im-

plicants, but in a wrong order. Furthermore, the most important interaction

SC
41 ∧ SC

51 ∧ SC
61 shows only a moderate importance. VIMAdhoc is thus affected

by the number of variables composing the interaction. VIMMultiple is also able

to identify the explanatory interactions in almost the correct order. Only the

importance of SC
41∧SC

51∧SC
61 is underestimated which is partly due to the depen-

dence of VIMMultiple from the fraction of models containing the considered prime

implicant. Another reason is shown in the right panel of Figure 8.3. Not only

SC
41 ∧ SC

51 ∧ SC
61 shows up as important, but also the three two-way interactions

composed of SC
41, S

C
51 and SC

61 which reduces VIMMultiple

(
SC

41 ∧ SC
51 ∧ SC

61

)
.

FIGURE 8.3. VIMSingle (left panel) and VIMMultiple (right panel) for the prime

implicants identified in all 50 iterations of the application of logicFS to the data set

of Simulation 1. For each of the six or twelve interactions, the solid dot represents

the median, and the bold line the IQR of the 50 values of VIMSingle or VIMMultiple,

respectively. “!” denotes the complement of a variable, and “&” is synonymous to ∧.
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In Figure 8.3, only the importances of the prime implicants detected in all

50 applications of logicFS are displayed. None of the other 528 (single tree)

or 7,657 (multiple tree) prime implicants found in at least one but not all of

the 50 repeats shows a value of VIMSingle or VIMMultiple that is larger than the

importances of the four explanatory interactions in the respective iteration.

Figure 8.3 also reveals that VIMSingle provides stable estimates for the im-

portances of the interactions, whereas in the multiple tree case the variation in

VIMMultiple increases with the number of variables composing the prime impli-

cant. This is, again, mostly due to its dependence from the fraction of models

containing this interaction.

Simulation 2. As a second simulation, the SNP data of Simulation 2 are

considered that are more realistic for a genetic association study. This simulation

– explained in more details in Appendix A.4 – consists of 50 data sets each

containing data of 1,000 observations and 50 SNPs. The case-control status of

each observation is specified by a random draw from a Bernoulli distribution,

where the probability for being a case depends on the presence of the two logic

expressions S61 ∧ SC
71 and SC

31 ∧ SC
91 ∧ SC

10,1. This probability is 0.378 even if an

observation exhibits none of these interactions intended to be influential for the

risk of developing the disease of interest. A reason for this might be that there

are other genetic (or environmental) factors that have not been surveyed in this

association study, but also have an impact on the disease risk.

Both the single tree approach with a maximum of six variables and the

multiple tree method with two trees and a maximum of eight variables are

applied to each of these 50 data sets using B = 50 iterations.

Table 8.2 reveals that both S61 ∧ SC
71 and SC

31 ∧ SC
91 ∧ SC

10,1 are detected in

all 50 data sets. Moreover, they are identified as the two most important logic

expressions in almost any of these data sets, where S61 ∧ SC
71 mostly ranks first

with a mean importance of 18.88 in the single and 15.19 in the multiple tree

approach, and SC
31 ∧ SC

91 ∧ SC
10,1 ranks second with a mean importance of 12.21
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TABLE 8.2. Ranks of the two SNP interactions intended to be influential for the

case-control status in the applications of both the single and the multiple tree approach

to each of the 50 data sets from Simulation 2.

S61 ∧ SC
71 SC

31 ∧ SC
91 ∧ SC

10,1

Rank Single Multiple Single Multiple

1 45 42 5 6

2 4 6 42 32

3 1 2 3 10

4 0 0 0 2

and 6.44, respectively. If one of these interactions ranks third (or lower), then

the logic expressions identified to be more important will typically contain this

or the other influential interaction plus another variable.

8.4.2 GENICA and HapMap Data

Using B = 200 iterations, logicFS is applied to the GENICA data set twice –

once growing a single tree with a maximum of ten leaves, and once allowing

three trees to grow with a maximum of 16 variables in all three trees combined.

In the single tree case, this leads to the detection of 1,052 potentially in-

teresting SNPs and SNP interactions, whereas in the multiple tree application,

1,589 SNPs and SNP interactions are identified. However, as shown in Figure

8.4, just one interaction, namely !X18 & X20, or decoded

ERCC2 6540C
1 ∧ ERCC2 188801,

consisting of the two SNPs from the ERCC2 gene also identified in Section 6.3.4

and 6.4.3 seems to be associated with the case-control status. If thus ERCC2

6540 is of the homozygous reference genotype, and ERCC2 18880 is not of this

genotype, then a women will have a little higher risk of developing breast cancer.
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FIGURE 8.4. VIMSingle (left panel) and VIMMultiple (right panel) of the most

important interactions detected in the analysis of the GENICA data set. Since the

SNP names are too long for graphical representation, they are coded.

If the application of logicFS is repeated, ERCC2 6540C
1 ∧ ERCC2 188801

will still be found as the most important interaction. But all the other interac-

tions will typically be replaced by other prime implicants that typically contain

ERCC2 6540C
1 . This and VIMMultiple

(
ERCC2 6540C

1

)
displayed in the right

panel of Figure 8.4 indicate that ERCC2 6540 itself has a slight effect on the

breast cancer risk (cf. also Section 6.3.4 and 6.4.3).

Using several parameter settings, we have applied logicFS several times to

the reduced HapMap data set consisting of the 157 SNPs preselected by SAM

(see Section 6.3.4), but have not found consistent results in these applications.

While in the single tree approach at least the first 100 interactions typically

show importances between 1.4 and 2.6, none of the prime implicants identified

in the multiple tree approach exhibits an importance larger than 0.12. A reason

for this is shown in the left panel of Figure 8.5: At least 68 binary variables –

each belonging to a different SNP – are required to classify all 45 Han Chinese

and all 45 Japanese correctly. Thus, not a few interactions, but a large number

of SNPs are needed for solving this classification problem.

In such a case, an approach in which the importances of single variables is

quantified might be better suited than logicFS. However, the application of the

importance measure of Random Forests to the HapMap data also does not lead
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FIGURE 8.5. Left panel: Application of RFE-SVM to the reduced HapMap data

set, where in each step of RFE-SVM the 10% least important variables are shaved

off. Right panel: The ten most important SNPs found in an application of Random

Forests to the HapMap data set using 5,000 trees and 12 randomly selected variables

at each node.

to very consistent results. Only the first two SNPs shown in the right panel of

Figure 8.5 are constantly detected under the top 15 SNPs (but only seldom as

the two most important variables).

8.5 Comparison with MC Logic Regression

To compare logicFS with MC logic regression, the latter is applied to the simu-

lated data sets considered in Section 8.4.1 using the same parameter settings of

logic regression as in Section 8.4.1 and 500,000 iterations in the MCMC algo-

rithm. The last 400,000 models are kept in memory to compute the importance

measures. For each variable, each pair and triplet of variables, the output of

MC logic regression provides the number of models containing this variable or

set of variables as measure of importance, where it is ignored, on the one hand,

whether the variable itself or its complement is in the model, and on the other

hand, whether the variables are combined by ∧ or by ∨. Since specific conjunc-

tions are not considered by this importance measure, we additionally compute

the value of VIMAdhoc for each of the prime implicants obtained by converting

each of the logic trees comprised by the visited models into a DNF using Algo-
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rithm 8.1. (We, however, do not calculate VIMSingle and VIMMultiple, since, on

the one hand, all models are built during the same run of MC logic regression on

the whole data set – and not in different applications to different subsets of this

data set – and on the other hand, the determination of these measures would

be done on the same test data for each of the iterations.)

A drawback of the measure used in MC logic regression is that interactions

of different orders have to be considered separately, since each subset of the

variables contained in the set of interest is in at least as many models as the set

itself such that each subset is at least as important as the set of interest. By

contrast, both VIMSingle and VIMMultiple enable the comparison of interactions

of different orders.

In Figure 8.6, the results of ten applications of MC logic regression to the

data set of Simulation 1 are displayed. This figure reveals two problems of this

procedure: If in the single tree case the set of interacting SNPs is detected, then

it will typically be in virtually any of the models, and in almost any case, as the

FIGURE 8.6. Fraction of models (marked by solid dots) containing particular sets

of variables, and VIMAdhoc (marked by crosses) for specific interactions computed

from the models visited during ten applications of both the single (left panel) and

the multiple (right panel) tree approach of MC logic regression to the data set of

Simulation 1.
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intended interaction. However, even the single variable S12 is not found in any

of the applications, and the triplet
{
S41, S51, S61

}
is only identified in 50% of

the analyses. Even though in the multiple tree case the sets of interacting SNPs

are found in almost any of the applications, the SNP interactions explaining the

cases are rarely detected. For example, S12 is in virtually any of the models,

but mostly in interaction with another variable. Moreover, not only
{
S21, S32

}
and

{
S72, S82

}
, but also, e.g.,

{
S32, S72

}
or
{
S21, S82

}
frequently appear jointly

in more than 99% of the models, and would therefore be considered to be of

a similar importance when using the proportion as importance measure. By

contrast, none of the two-way interactions composed of either the pair
{
S32, S72

}
or of

{
S21, S82

}
exhibits a large value of VIMSingle or VIMMultiple (cf. Section 8.4.1,

in particular Figure 8.3).

The applications of MC logic regression to the 50 data sets of Simulation 2

lead to similar results: S61 ∧SC
71 is always identified by the single tree approach,

but in only about 40% of the applications of the multiple tree approach, whereas

SC
31 ∧ SC

91 ∧ SC
10,1 is found in 90% of the single tree applications, and in about

60% of the analyses with multiple trees. By contrast, logicFS always identifies

both S61∧SC
71 and SC

31∧SC
91∧SC

10,1. (These results differ a little from the results

presented in Schwender and Ickstadt, 2007. A reason for this might be that

in Schwender and Ickstadt, 2007, we have split each of the 50 data sets into

63.2% training and 36.8% test data such that the distribution of the explained

cases and controls remains unchanged in the split data sets. Because of this

disagreement, we have repeated the above analysis a few times, where each of

these analyses has led to similar results.)

These two simulations show the advantage of logicFS over MC logic regres-

sion: In MC logic regression, SNP interactions are identified by applying a search

algorithm once to the whole data set. If an interaction explanatory for the case-

control status is detected once, i.e. is in one of the models visited during this

search, then it is very likely that it will be identified to be important. However,

if the variables composing this interaction do not jointly occur in any of these
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models, or are in the model but in conjunction with other variables, the actual

explanatory interaction will not be detected.

By contrast, in logicFS a search algorithm is applied several times to different

subsets of the data such that an interesting interaction is not lost even if it is not

identified in some of the runs. Hence, logicFS stabilizes the search for interesting

variables and interactions.

8.6 Selecting SNP Interactions

Currently, we follow an approach similar to the one proposed by Breiman (2001)

for Random Forests: logicFS is applied to the SNP data to identify the most im-

portant interactions by taking a look on VIMSingle and VIMMultiple. Afterwards,

these selected interactions are used in logic regression, in logistic regression, or in

any other discrimination method as binary variables to construct a classification

rule.

Instead of subjectively deciding which prime implicants are important, a

more objective criterion might be preferred. An example for such an importance

measure is a statistic for testing if the importance of a prime implicant is larger

than some prespecified value µ0, where µ0 ≥ 0 can be chosen based on, e.g.,

biological knowledge, or the number of observations that should be explained

by an interaction to be considered as important. In the single tree case, we thus

compute the t-statistic

tg =
√
B

VIMSingle

(
Pg

)
− µ0

sg

(8.5)

for each prime implicant Pg, g = 1, . . . , G, where sg is the sample standard

deviation of the improvements

Impb

(
Pg

)
=

Nb −N
(−g)
b , if Pg ∈ Lb

N
(+g)
b −Nb, if Pg 6∈ Lb

in the bth logic regression model, b = 1, . . . , B, due to prime implicant Pg (cf.

Section 8.3). For the multiple tree case, the t-score can be defined analogously.
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FIGURE 8.7. VIMNorm (left panel) and VIMPerm (right panel) for the six most

important prime implicants detected in the application of the single tree approach

to the GENICA data set using µ0 = 5. The dashed vertical lines are at the (1 −

0.05/1052)-quantile of the t199-distribution, i.e. at 3.98, and at 0.95, respectively.

If tg is larger than a prespecified threshold, e.g., the
(
1 − 0.05/G

)
-quantile of

the tB−1-distribution, then Pg will be called important. Instead of the p-value,

we employ the t-statistic as importance measure – and call it VIMNorm – since

the selection criterion should be “The larger, the more important.”

To avoid the independence and the normality assumption, a permutation

method might be employed to test the importances of the prime implicants.

A simple procedure would be to randomly permute the sign of Impb − µ0, b =

1, . . . , B, i.e. to use either Impb−µ0, or µ0−Impb, and to compute the permuted

t-statistics tga, a = 1, . . . , A, where A is the number of permutations. In this

case, an appropriate measure of importance for Pg, g = 1, . . . , G, is

VIMPerm(Pg) = 1−min

{
1,
G

A

A∑
a=1

I
(
tg ≤ tga

)}
. (8.6)

In Figure 8.7, the results of a first applications of both (8.5) and (8.6) using

A = 50, 000 permutations to the GENICA data set are displayed. As expected,

only the interaction ERCC2 6540C
1 ∧ ERCC2 188801 will be selected if these

measures are employed for choosing interactions.
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Chapter 9

Summary and Discussion

Preprocessing is an important step in the analysis of Affymetrix microarrays,

since the results of this low level analysis can influence the results of high level

analyses such as variable selection and classification substantially. This step is,

however, often ignored, since the Affymetrix software also provides estimates for

the expression values of the genes. Using these signals might not be the best

idea, as our comparison of the preprocessing algorithms of Affymetrix, i.e. MAS

5.0 and PLIER, with, on the one hand, Roche in-house modifications of the

latter approach, and on the other hand, the most popular academic alternative

to these algorithms, i.e. RMA, and modifications of RMA reveals.

In this comparison, PLM that differs from RMA only in the summarization

step shows overall the best performance. Fitting probe level models (PLMs)

particularly leads to the identification of the most differentially expressed genes,

and to the most parsimonious PCA representation (for a more detailed summary

of the comparison, see the conclusions in Section 4.7).

Contrary to other comparisons (e.g., Wu et al., 2004), GCRMA (and GC-

PLM) in which the convolution model based background correction of RMA is

replaced by an approach that takes the base composition of the probe sequences

into account does not improve the estimation of the gene expression values. This

might be due to the use of another type of microarrays. For the R function of

GCRMA, the base effects have been estimated by employing the Affymetrix

121
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HG-U133A chips that are also considered in Wu et al. (2004). In our compari-

son, however, we have analyzed data from Affymetrix HG-U133 Plus 2 arrays.

Using estimates for the base effects that are more appropriate for this type of

chip and an empirical Bayes approach also proposed by Wu et al. (2004) as an

alternative to the maximum likelihood estimate employed in the default version

of GCRMA might improve the performance of GCRMA (and GCPLM).

Having identified PLM as the best preprocessing method in our comparison

does not mean that PLM is the ultimative solution to this problem. For example,

Hekstra et al. (2003) show that there is a saturation effect at high mRNA levels

that exactly follows an adsorption model. Since the assumption behind all the

considered preprocessing procedures that there is a linear relationship between

the measured intensities and the mRNA concentrations is hence inaccurate, a

preprocessing method accounting for this saturation effect might improve the

detection of genuinely affected genes.

However, even the best preprocessing procedure cannot lead to good esti-

mates of the expression values if the annotations of the genes, i.e. the information

on which probe sequences belongs to which gene, is wrong. It is a well-known

problem of the Affymetrix cdf environment, i.e. the file containing information

on which cells on the chip comprise the probes that represent a specific gene,

is based on outdated knowledge. A solution to this problem is to replace this

file by an alternative cdf environment that takes the latest knowledge on the se-

quences of the genes available at public repositories such as RefSeq into account

(cf. Dai et al., 2005).

Another problem – in particular, when using R – is the high-dimensionality

of the data. For each Affymetrix HG-U133 Plus 2 chip, e.g., the intensities of

more than 600,000 probe pairs have to be reduced to 54,675 expression values –

one value for each probe set on this chip. If multi-chip methods such as PLM or

PLIER are applied to studies comprising several tens of chips using the standard

R functions and a computer with a moderate amount of RAM, this computation

will fail because of massive memory problems.
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In this thesis, we have proposed a strategy based on repeatedly in- and

outputting the probe intensities that makes it possible to apply PLM to se-

veral hundred Affymetrix HG-U133 Plus 2 chips. This approach can easily

be modified for the other multi-chip methods also considered in this thesis.

Furthermore, this procedure is not restricted to DNA microarrays, but can also

be used to preprocess Affymetrix chips measuring the genotypes of hundreds of

thousands of SNPs. In this application, however, not only the probe sets have

to be split into several chunks, but also the data from one chip should be stored

in different files.

Having determined the expression values of the genes or the genotypes of the

SNPs, variable selection and classification methods can be applied to these data.

Since many approaches for such high level analyses of gene expression data have

been proposed in recent years, and the goals in these analyses are similar to

the aims in studies concerned with genotype data, we have shown how methods

that can cope with the high-dimensionality of DNA microarrays can be adapted

to SNP data. These modified procedures can then not only be applied to SNP

microarray data, but also to the genotypes of the (few ten) SNPs considered in

an association study.

As a first example, a procedure called kNNimpute for imputing missing values

based on k nearest neighbors has been adapted to SNP data and compared with

other imputation methods in their application to the GENICA data set. Since

KNNimpute leads to the lowest fraction of falsely imputed values, the missing

values of the GENICA data set have been replaced by this approach.

Afterwards, the Significance Analysis of Microarrays (SAM) has been adapted

to categorical data by replacing a moderated t-statistic and its null distribution

by Pearson’s χ2-statistic and its null distribution. This method has then been

applied to the HapMap data to reduce the number of SNPs from 121,774 to 157,

where this subset of SNPs exhibits an estimated FDR of 6.94%. In the analysis

of the GENICA data set, SAM reveals that the SNP ERCC2 6540 (ref SNP

ID: rs1799793) has a slight effect on the breast cancer risk which is increased
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if this SNP is considered in interaction with ERCC2 18880 (rs1052559). This

result supports the findings of Justenhoven et al. (2004).

As a third example, we have adopted the ideas of the Prediction Analysis of

Microarrays (PAM) to develop a discrimination method for SNP data, and have

applied this procedure to both the GENICA and the HapMap data. The results

of the analysis of the former data set are similar to the results of SAM: If indivi-

dual SNPs are considered, only ERCC2 6540 will be required for classification.

If two-way interactions are taken into account, then the interaction of the two

SNPs from the gene ERCC2 will form the classification rule. The application

of PAM to the HapMap data shows that it can be an advantage to reduce

the set of SNPs first, and then construct the classification rule based on the

resulting subset, as the classifier based on the 157 SNPs preselected by SAM

decreases the misclassification rate of the rule built by considering all 121,774

SNPs substantially.

A drawback of the Prediction Analysis of Categorical Data is the class predic-

tion. In the original version of PAM, the class of a new observation is predicted

by the group showing the smallest distance between its (shrunken) centroid and

the expression values of this observation. Since in genotype data such a distance

cannot be computed, and in PAM the genes are considered individually, the Pre-

diction Analysis of Categorical Data employs a naive Bayes classifier. Reducing

the set of SNPs by shrinking the group-wise test statistics successively towards

zero, and predicting the class of a new observation by, e.g., a kNN classifier

using this subset of SNPs might improve the class prediction.

A problem of all three adapted procedures is that tens or even hundreds of

thousands of statistics have to be determined in each of the applications. Since

calculating each of these scores individually can be very time-consuming in R,

we have shown how matrix algebra can be employed to compute all the statistics

simultaneously which reduces the computation time substantially.

Only a small number of variable selection and discrimination methods have

been developed particularly for the analysis of genotype data. One of the few
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exceptions is logic regression that has shown a good performance in comparisons

with other discrimination and regression procedures in their application to SNP

data. To investigate if this is also true for our real and simulated data, we

have applied logic regression and other discrimination methods such as SVM

and Random Forests to these data sets.

The results of this comparison show that logic regression will lead to a lower

misclassification rate than other procedures, if a few interactions are explanatory

for the case-control status. If, however, many SNPs are required to construct

a good classification rule, then other discrimination methods outperform logic

regression. In such a case, applying bagging to logic regression can stabilize this

approach, and thus, reduce its misclassification rate.

However, not only bagging, but also other ensemble methods such as boosting

(e.g., Freund and Shapire, 1996) can be employed to stabilize logic regression.

Furthermore, it would be interesting to investigate, if – contrary to bagging –

boosting is able to reduce the misclassification rate of logic regression in the

analysis of the GENICA data set, or of similar data sets from other association

studies.

As in the other analyses, the comparison of the discrimination methods shows

that the only two SNPs of the GENICA study that might have an effect on the

breast cancer risk are ERCC2 6540 and ERCC2 18880, since the best classifier

would be to predict the class of a new observation based on the joint distribution

of these two SNPs.

Logic regression cannot only be used for classification, but also for the iden-

tification of interesting interactions of binary variables. This is particularly

important in the analysis of SNP data, since not individual SNPs, but high-

order interactions of SNPs are assumed to be responsible for a higher risk of

developing a complex disease such as cancer.

In this thesis, we have introduced, on the one hand, a procedure called

logicFS that enables the detection of such interactions using a bagging ver-

sion of logic regression, and on the other hand, two measures, VIMSingle and
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VIMMultiple, for quantifying the importance of each of the identified interactions

for classification in case-control studies.

In the applications of logicFS to the simulated SNP data sets, all logic expres-

sions / interactions intended to be explanatory for the case-control status of the

observations are always found, where they show the largest values of VIMSingle

and VIMMultiple in virtually any of these applications.

In the analysis of the GENICA data set, ERCC2 6540C
1 ∧ ERCC2 188801

is detected as the only interaction that has a slight influence on the breast

cancer risk. If thus ERCC2 6540 is of the homozygous reference genotype, and

ERCC2 18880 is not of this genotype, then a women will have a little higher

risk of developing breast cancer.

The applications of logicFS to the HapMap data do not lead to consistent

results. This might be due to the large number of SNPs required for the dis-

tinction between the Han Chinese and the Japanese, and shows a limitation

of logicFS: If a few interactions are explanatory for the covariate of interest –

which is the data situation for which logicFS has been developed – then logicFS

is well-suited for the analysis of this data. If, however, a large number of single

variables are needed for the construction of a good classification rule, then other

methods might be more appropriate.

Advantages of logicFS over other approaches such as the importance mea-

sure of Random Forests are, on the one hand, that it allows to compute the

importances of interactions without using these interactions as input variables,

and on the other hand, that the genotypes responsible for the higher disease risk

are revealed directly by the prime implicants identified by logicFS.

An advantage of logicFS over MC logic regression (Kooperberg and Ruczin-

ski, 2005) is that the search for explanatory interactions is stabilized by running

a search algorithm several times on several subsets of the data. Contrary to

using the fraction of models containing a particular set of variables as impor-

tance measure, VIMSingle and VIMMultiple can, on the one hand, quantify the

importance of a specific interaction / prime implicant for classification – and
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not just for a set of variables – and on the other hand, be employed for the

comparison of interactions of different orders. The latter is not directly possible

when considering fractions, as each subset of variables contained in the set of

interest will show at least the same importance as this set of variables.

A major goal in case-control studies is the construction of a classification rule

based on as few variables as possible. Having identified variables and interactions

of variables, and quantified their importance, the most important features can be

selected for building such a rule. This set of variables/interactions might either

be chosen subjectively by taking a look on the importances, or more objectively

by, e.g., testing these importances. In this thesis, we have presented first ideas

based on a parametric and a permutation based t-test for selecting the most

important interactions, and applied these selection approaches to the GENICA

data set leading to the identification of ERCC2 6540C
1 ∧ERCC2 188801 as the

only important interaction. This, however, is work in progress, and we will take

a closer look on these and other procedures in the near future.

Since we are mainly interested in case-control studies, we have only proposed

variable importance measures for the analysis of data with a binary response.

However, logicFS is not restricted to this type of analysis. It can also be applied

to other types of studies such as QTL (Quantitative Trait Loci) studies in

which SNPs are employed as predictors for quantitative responses. In this case,

an appropriate importance measure might, e.g., be based on the sums of squares

that would replace the numbers of correctly classified observations in (8.3) and

(8.4). This, however, would make it additionally necessary to change the signs

of the differences in (8.3) and (8.4).

Moreover, logic regression and thus logicFS are not restricted to the use

of simulated annealing as search algorithm. Other approaches such as genetic

programming or a greedy search can also be employed in the search for the best

logic regression model. Using, e.g., a greedy search would reduce the run time

of logicFS considerably.

Logic regression can handle quantitative responses. However, continuous
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explanatory variables cannot be included in the logic trees, unless they are di-

chotomized before they are used in logic regression. Approaches how such a

dichotomization can be done are considered by Schmitt (2005). It, however,

might be a better idea to split the variables within the algorithm – as, e.g., in

CART – since splits that work best on the whole data set might be suboptimal

dichotomizations when subsets of these data are considered. We therefore plan

to extend logic regression to enable the inclusion of categorical and continuous

variables into the logic trees such that, e.g., interactions between SNPs and con-

tinuous environmental variables can be detected. A first step in this direction

has already been done: The genetic programming based logic regression intro-

duced by Ickstadt et al. (2006a) allows the inclusion of the SNPs themselves

by employing multi-valued logic such that the splitting of each SNP into two

dummy variables is not necessary anymore.

All approaches introduced in this thesis are implemented in R packages (see

Appendix C). While the R packages siggenes and logicFS containing func-

tions for the SAM analysis of categorical data and for logicFS, respectively,

can be downloaded from the web page of the BioConductor project, all other

methods are available in the R package c7Tools that will also be published at

http://www.bioconductor.org in the near future, and will be extended by func-

tions for other procedures for the analysis of genotype data developed at the

Collaborative Research Center 475 of the University of Dortmund.

http://www.bioconductor.org
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Data Sets

A.1 Affymetrix HG-U133 Plus 2 Chips

(This section is a modified excerpt from Schwender and Belousov, 2006.)

The 38 Affymetrix HG-U133 Plus 2 chips used in the comparison of pre-

processing procedures presented in Chapter 4 are originally from two projects –

a breast (BRCA; 20 arrays) and a colorectal cancer (CRCA; 18 arrays) project.

The measurements of the human tissue material have been performed ac-

cording to the standard Affymetrix workflow. Replicate measurements of each

tissue sample have been done to access the technical (workflow) variability. At

each of the steps of the Affymetrix workflow (see Table A.1), complete rando-

mization has been performed to avoid possible confounding and biases.

TABLE A.1. Steps of the Affymetrix workflow, and the different protocols/specifi-

cations used at each of these steps.

RNA Extraction Amplification total-RNA IVT time Labeling
Project Protocol Protocol [µg] [h] Protocol

CRCA Qiagen Affy 1-cycle 1, 5, 10 4, 16 ENZO

BRCA Qiagen, Qiagen LT, Affy 1-cycle 2, 5, 10 16 Invitrogen

TriPure

129
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A.2 GENICA

The GENICA study is carried out by the Interdisciplinary Study Group on Gene

ENvironment Interaction and Breast CAncer in Germany, a joint initiative of

researchers dedicated to the identification of genetic and environmental factors

associated with sporadic breast cancer. This age-matched and population-based

case-control study has been initially launched within the activities of the Ger-

man Human Genome Project (DHGP, http://www.dhgp.de), and continues until

present (for details, see http://www.genica.de).

Even though exogenous factors such as reproduction variables, hormone va-

riables, and life style factors have also been assessed, the focus in this thesis

is on a subset of the genotype data from the GENICA study. More precisely,

data of 1,234 women (609 cases and 625 controls) and 39 SNPs belonging to the

estrogen, the DNA repair, or the control of cell cycle pathway are available for

the analyses.

Since a few of the women show a large number of missing genotypes, all

observations with more than three missing values are removed from the analysis

leading to a total of 1,199 women (592 cases and 607 controls).

Note that the data set used in this thesis is from the latest version of the

GENICA data set that will be used in upcoming publications of the GENICA

project (e.g., in Justenhoven et al., 2006). In other publications, other versions

of this data set have been used: In Schwender et al. (2004), a first data set

comprising the genotypes of 25 SNPs is considered. Ickstadt et al. (2006b)

analyze a former version of the GENICA data set consisting of 77 SNPs from

which 40 are employed in Schwender and Ickstadt (2007).

A.3 HapMap

The International HapMap Project (http://www.hapmap.org; The International

HapMap Consortium, 2003) is a collaboration of several scientific groups from

http://www.dhgp.de
http://www.genica.de
http://www.hapmap.org
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different countries. The goals of this project are the development of a haplotype

map of the human genome and the comparison of genetic variations of indivi-

duals from different populations. To achieve this goal, millions of SNPs have

been genotyped for each of 270 people from four different populations.

In this thesis, the SNP data of 45 unrelated Han Chinese from Beijing

and 45 unrelated Japanese from Tokyo measured by employing the Affymetrix

GeneChip Mapping 500K Array Set are considered.

This array set consists of two chips (the Nsp and the Sty array named after

the restriction enzymes used on these chips) each enabling the genotyping of

about 250,000 SNPs. In this thesis, we focus on the BRLMM genotypes (see

Section 3.7) of the 262,264 SNPs from the Nsp array that can be downloaded

from http://www.affymetrix.com/support/datasets.affx.

All SNPs showing one or more missing genotype (54,400 SNPs), for which

not all three genotypes are observed (75,481 SNPs), or that have a minor allele

frequency less than or equal to 0.1 (10,609 SNPs) are excluded in this order from

the analysis leading to a data set composed of the genotypes of 121,774 SNPs

and 90 individuals.

A.4 Simulation

Simulation 1. In the first simulation, data of 1,000 observations (500 cases and

500 controls) and 50 SNPs are simulated using the R function simulateSNPs (see

Appendix C.3). An observation is classified as case, if one of the following logic

expressions is true:

–
{
S1 = 2

}
= S12 (explains 50 cases),

–
{
S2 = 0

}
∧
{
S3 = 2

}
= SC

21 ∧ S32 (100 cases),

–
{
S4 = 0

}
∧
{
S5 = 0

}
∧
{
S6 = 0

}
= SC

41 ∧ SC
51 ∧ SC

61 (200 cases),

–
{
S7 = 2

}
∧
{
S8 = 2

}
= S72 ∧ S82 (150 cases),

http://www.affymetrix.com/support/datasets.affx
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where Si = 0, if Si is of the homozygous reference genotype, and Si = 2, if it is

of the homozygous variant genotype.

Apart from the SNPs explaining the cases, the genotypes are randomly drawn

such that the minor allele frequency of each SNP lies between 0.2 and 0.4.

Simulation2. As a second simulation, SNP data of 1,000 observations and 50

SNPs are generated using the function simulateSNPfblr (see Appendix C.3),

where each SNP exhibits a minor allele frequency of 0.25. The case-control

status y of each observation is randomly drawn from a Bernoulli distribution

with mean Prob(Y = 1), where

logit
(
Prob(Y = 1)

)
= −0.5 + 1.5L1 + 1.5L2

with

L1 =
{
S6 6= 0

}
∧
{
S7 = 0

}
= S61 ∧ SC

71

L2 =
{
S3 = 0

}
∧
{
S9 = 0

}
∧
{
S10 = 0

}
= SC

31 ∧ SC
91 ∧ SC

10,1.

This procedure is repeated 50 times such that 50 data sets are generated. For

each of the different probabilities for being a case, the mean numbers of cases

and controls over these data sets are summarized in Table A.2.

TABLE A.2. Probabilities for being a case when showing none, one, or both of the

influential interactions, and the mean numbers of cases and controls over the 50 data

sets of Simulation 2.

Interactions Probability Cases Controls

0 0.378 232 388

1 0.731 245 91

2 0.924 40 3
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Supplementary Material

B.1 Supplementary Plots

FIGURE B.1. Pairwise smoothed scatter (lower triangle) and MA (upper triangle)

plots of the expression values of the four RMA approaches. The darker the color,

the higher is the density at this point. The 500 signals with the lowest densities are

marked by a black dot.
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FIGURE B.2. Pairwise smoothed scatter (lower triangle) and MA (upper triangle)

plots of the expression values of the PLIER and PLIER-like algorithms. The darker

the color, the higher is the density at this point. The 500 signals with the lowest

densities are marked by a black dot.
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FIGURE B.3. Signal-to-Noise Ratio of GCRMA when probe sets exhibiting more

than a particular percentage of truncated background corrected PM intensities are

excluded from the comparison in Section 4.4.

FIGURE B.4. Signal-to-Noise Ratio of GCPLM when probe sets showing more

than a particular percentage of truncated background corrected PM intensities are

excluded from the comparison in Section 4.4.



B Supplementary Material 136

FIGURE B.5. Fractions of falsely imputed values if (weighted) k nearest neighbors

is applied to either the observations or the SNPs to impute the 5% (left panel) or 10%

(right panel) artificially generated missing values in the GENICA data set.

FIGURE B.6. Fractions of falsely imputed genotypes when replacing 5% (left panel)

or 10% (right panel) missing values by the mode, by a draw from the SNP-wise

distribution, by a draw from the conditional distribution of the SNP given the case-

control status, by the Random Forests based method (5 Iterations, 500 trees with 6

SNPs at each node), by the procedure of Dai et al. (2006) with one iteration, and by

KNNimpute for categorical data (k = 50).
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B.2 Supplementary Tables

TABLE B.1. Comparison of the run times of Algorithm 6.4 and the individual

calculation of Pearson’s χ2-statistics for differing values of the number m of variables

and the number n of observations. Each variable can take C = 3 levels, and each

observation belongs to one of R = 2 classes.

Algorithm 6.4 Individual

m n = 200 n = 1, 000 n = 200 n = 1, 000

50 < 0.01 0.01 0.13 0.16

100 < 0.01 0.02 0.26 0.32

1,000 0.05 0.40 2.64 3.35

10,000 0.63 2.39 26.74 34.42

100,000 6.16 – 274.96 –

TABLE B.2. Parameter values over which the respective discrimination method is

optimized in its applications to the data sets used in the comparison of Section 7.4.

Method Parameter Values

Kernel Linear, Radial, Polynomial

SVM Costs η 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 100

Degree p 2, 3, 4, 5

− log10(γ) 5, 4, 3, 2, 1, 0, -0.30103

PAM Θ 0.5, 1, 1.5, . . ., 12

Bagging # Iterations (B) 50, 100, 200

Random Forests # Iterations (B) 500, 1000, 2000, 5000

# Variables at each Node b
√

mc ∗
[
0.5 1 2

]′
Approach Single, Multiple

Logic Regression Max. # Leaves 8, 10, 12, 16, 32

Max. # Trees 2, 3, 4, 5
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R Packages

In the following, the R packages containing functions for the procedure intro-

duced in this thesis are presented.

C.1 siggenes

The Significance Analysis of Microarrays (SAM) is implemented in the R package

siggenes that can be installed in R by

> source("http://www.bioconductor.org/getBioC.R"’)

> getBioC("siggenes")

Note that this will install the current release version of siggenes, For Bio-

Conductor 1.9 released on October 4th, 2006, this is siggenes version 1.8.0

which also contains a function called sam.snp for analyzing categorical data

with SAM. The method used in this function is, however, much slower than

the approach presented in Section 6.3.3. This new procedure is implemented in

siggenes version 1.9.1 and later that can be downloaded from

http://bioconductor.org/packages/2.0/bioc/html/siggenes.html

and will be part of BioConductor 2.0 that will be released in April 2007.

In the following, the help files for the latest version of the function sam.snp,

and for the wrapper function sam are shown.

138
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sam Significance Analysis of Microarray

Description

Performs a Significance Analysis of Microarrays (SAM). It is possible to perform
one and two class analyses using either a modified t-statistic or a (standardized)
Wilcoxon rank statistic, and a multi-class analysis using a modified F -statistic.
Moreover, this function provides a SAM procedure for categorical data such as
SNP data.

Usage

sam(data, cl, method = "d.stat", delta = NULL, n.delta = 10,

p0 = NA, lambda = seq(0, 0.95, 0.05), ncs.value = "max",

ncs.weights = NULL, gene.names = dimnames(data)[[1]],

q.version = 1, ...)

Arguments

data a matrix, a data frame, an exprSet, or an ExpressionSet object.
Each row of data (or exprs(data), respectively) must correspond
to a gene, and each column to a sample.

cl a vector of length ncol(data) containing the class labels of the
samples. In the two class paired case, cl can also be a matrix
with ncol(data) rows and 2 columns. If data is an exprSet or
ExpressionSet object, cl can also be a character string naming
the column of pData(data) that contains the class labels of the
samples.

In the one-class case, cl should be a vector of 1’s.

In the two class unpaired case, cl should be a vector containing
0’s (specifying the samples of, e.g., the control group) and 1’s
(specifying, e.g., the case group).

In the two class paired case, cl can be either a numeric vector
or a numeric matrix. If it is a vector, then cl has to consist of
the integers between -1 and −n/2 (e.g., before treatment group)
and between 1 and n/2 (e.g., after treatment group), where n is
the length of cl and k is paired with −k, k = 1, . . . , n/2. If cl is
a matrix, one column should contain -1’s and 1’s specifying, e.g.,
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the before and the after treatment samples, respectively, and the
other column should contain integer between 1 and n/2 specifying
the n/2 pairs of observations.

In the multiclass case and if method="cat.stat", cl should be a
vector containing integers between 1 and g, where g is the number
of groups.

For examples of how cl can be specified, see the manual of siggenes.

method a character string specifying the method that should be used in the
computation of the expression scores d. If method = "d.stat", a
modified t-statistic or F -statistic, respectively, will be computed
as proposed by Tusher et al. (2001). If method = "wilc.stat",
a Wilcoxon rank sum statistic or Wilcoxon signed rank statistic
will be used as expression score. For an analysis of categorical
data such as SNP data, method can be set to "cat.stat". In this
case, Pearson’s Chi-squared statistic is computed for each row.
It is also possible to use a user-written function to compute the
expression scores.

delta a numeric vector specifying a set of values for the threshold ∆
that should be used. If NULL, n.delta ∆-values will be computed
automatically.

n.delta a numeric value specifying the number of ∆ values that will be
computed over the range of all possible values for ∆ if delta is
not specified.

p0 a numeric value specifying the prior probability π0 that a gene
is not differentially expressed. If NA, p0 will be computed by the
function pi0.est.

lambda a numeric vector or value specifying the λ values used in the
estimation of the prior probability. For details, see ?pi0.est.

ncs.value a character string. Only used if lambda is a vector. Either "max"
or "paper". For details, see ?pi0.est.

ncs.weights a numeric vector of the same length as lambda containing the
weights used in the estimation of π0. By default, no weights are
used. For details, see ?pi0.est.

gene.names a character vector of length nrow(data) containing the names of
the genes. By default the row names of data are used.

q.version a numeric value indicating which version of the q-value should be
computed. If q.version=2, the original version of the q-value, i.e.
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min{pFDR}, will be computed. If q.version=1, min{FDR} will
be used in the calculation of the q-value. Otherwise, the q-value
is not computed. For details, see ?qvalue.cal.

... further arguments of the specific SAM methods. If method =

"d.stat", see the help of sam.dstat, if method = "wilc.stat",
see the help of sam.wilc, and if method = "cat.stat", see the
help of sam.snp for these arguments.

Value

an object of class SAM

Note

SAM was developed by Tusher et al. (2001).

There is a patent pending for the SAM technology at Stanford University.

Author(s)

Holger Schwender

References

Schwender, H., Krause, A., and Ickstadt, K. (2006). Identifying Interesting Genes
with siggenes. RNews, 6(5), 45–50.

Schwender, H., Krause, A., and Ickstadt, K. (2003). Comparison of the Empirical
Bayes and the Significance Analysis of Microarrays. Technical Report, SFB 475,
University of Dortmund, Germany.

Tusher, V.G., Tibshirani, R., and Chu, G. (2001). Significance Analysis of Mi-
croarrays Applied to the Ionizing Radiation Response. PNAS, 98, 5116-5121.

sam.snp SAM Analysis for Categorical Data

Description

Performs a SAM (Significance Analysis of Microarrays) analysis for categorical
data such a SNP data.
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Usage

sam.snp(data, cl, B = 100, approx = FALSE, delta = NULL,

n.delta = 10, p0 = NA, lambda = seq(0, 0.95, 0.05),

ncs.value = "max", ncs.weights = NULL,

gene.names = dimnames(data)[[1]], q.version = 1,

check.levels = TRUE, check.for.NN = FALSE, lev = NULL,

B.more = 0.1, B.max = 50000, n.subset = 10, rand = NA)

Arguments

data a matrix or data frame. Each row must correspond to a varia-
ble/SNP, and each column to a sample.

cl a numeric vector of length ncol(data) indicating to which class
a sample belongs. Must consist of the integers between 1 and C,
where C is the number of different groups.

B the number of permutations used in the estimation of the null
distribution, and hence, in the computation of the expected d-
values. Ignored if approx=TRUE.

approx should the null distribution be approximated by the χ2-distribu-
tion?

delta a numeric vector specifying a set of values for the threshold ∆
that should be used. If NULL, n.delta ∆ values will be computed
automatically

n.delta a numeric value specifying the number of ∆ values that will be
computed over the range of possible values of ∆ if delta is not
specified.

p0 a numeric value specifying the prior probability π0 that a SNP
is not differentially expressed. If NA, p0 will be computed by the
function pi0.est.

lambda a numeric vector or value specifying the λ values used in the
estimation of the prior probability. For details, see the help of
pi0.est.

ncs.value a character string. Only used if lambda is a vector. Either "max"
or "paper". For details, see the help of pi0.est.

ncs.weights a numeric vector of the same length as lambda containing the
weights used in the estimation of π0. By default, no weights are
used. For details, see the help of pi0.est.
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gene.names a character vector of length nrow(data) containing the names of
the SNPs. By default, the row names of data are used.

q.version a numeric value indicating which version of the q-value should be
computed. If q.version=2, the original version of the q-value, i.e.
min{pFDR}, will be computed. If q.version=1, min{FDR} will
be used in the calculation of the q-value. Otherwise, the q-value
is not computed. For details, see ?qvalue.cal

check.levels if TRUE, it will be checked if all variables/SNPs have the same
number of levels/categories.

check.for.NN if TRUE, it will be checked if any of the genotypes is equal to
”NN”. Can be very time-consuming when the data set is high-
dimensional.

lev numeric or character vector specifying the codings of the levels of
the variables/SNPs. Must only be specified if the variables are
not coded by the integers between 1 and the number of levels.

B.more a numeric value. If the number of all possible permutations is
smaller than or equal to (1+B.more)*B, full permutation will be
done. Otherwise, B permutations are used.

B.max a numeric value. If the number of all possible permutations is
smaller than or equal to B.max, B randomly selected permuta-
tions will be used in the computation of the null distribution.
Otherwise, B random draws of the group labels are used.

n.subset a numeric value indicating how many permutations are considered
simultaneously when computing the expected d-values.

rand numeric value. If specified, i.e. not NA, the random number gene-
rator will be set into a reproducible state.

Details

For each SNP, Pearson’s Chi-Square statistic is computed to test if the distribution
of the SNP differs between several groups. Since only one null distribution is
estimated for all SNPs as proposed in the original SAM procedure of Tusher et al.
(2001), all SNPs must have the same number of levels/categories.

Value

an object of class SAM



C.1 siggenes 144

Warning

This procedure will only work correctly if all SNPs/variables have the same number
of levels/categories.

Note

SAM was developed by Tusher et al. (2001).

There is a patent pending for the SAM technology at Stanford University.

Author(s)

Holger Schwender

References

Schwender, H. (2007). Statistical Analysis of Genotype and Gene Expression Data.
Dissertation, Department of Statistics, University of Dortmund.

Tusher, V.G., Tibshirani, R., and Chu, G. (2001). Significance Analysis of Mi-
croarrays Applied to the Ionizing Radiation Response. PNAS, 98, 5116-5121.
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C.2 logicFS

The package logicFS that can be installed in R by

> source("http://www.bioconductor.org/getBioC.R")

> getBioC("logicFS")

comprises the following functions for the procedures introduced in Chapter 8.

logic.fs logicFS

Description

A first basic bagging version of logic regression, and logicFS, a procedure for
identifying important interactions of binary variables based on this bagged logic
regression. Currently only the classification and the logistic regression approach
of logreg are available.

Usage

logic.bagging(data, cl, B = 100, ntrees = 1, nleaves = 8,

glm.if.1tree = FALSE, anneal.control = logreg.anneal.control(),

oob = TRUE, prob.case = 0.5, importance = TRUE, rand = NULL)

logic.fs(data, cl, B = 100, ntrees = 1, nleaves = 8,

glm.if.1tree = FALSE, anneal.control = logreg.anneal.control(),

prob.case = 0.5, rand = NULL)

Arguments

data a matrix consisting of 0’s and 1’s. Each column must corre-
spond to a binary variable, and each row to an observation.

cl a vector of 0’s and 1’s containing the class labels of the obser-
vations.

B an integer specifying the number of iterations.

ntrees an integer indicating how many trees should be used. If ntrees
is larger than 1, the logistic regression approach of logic re-
greesion will be used. If ntrees is 1, then by default the
classification approach of logic regression will be used (see
glm.if.1tree).
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nleaves a numeric value specifying the maximum number of leaves used
in all trees combined. See the help page of the function logreg

of the package LogicReg for details.

glm.if.1tree if ntrees is 1 and glm.if.1tree is TRUE the logistic regres-
sion approach of logic regression is used instead of the classifi-
cation approach. Ignored if ntrees is not 1.

anneal.control a list containing the parameters for simulated annealing. See
?logreg.anneal.control of the LogicReg package.

oob should the out-of-bag error rate be computed?

prob.case a numeric value between 0 and 1. If the outcome of the logistic
regression, i.e. the predicted probability, for an observation is
larger than prob.case this observations will be classified as
case (or 1).

importance should the measure of importance be computed?

rand numeric value. If specified, the random number generator will
be set into a reproducible state.

Value

logic.bagging returns an object of class logicBagg containing

logreg.model a list containing the B logic regression models

inbagg a list specifying the B Bootstrap samples

vim an object of class logicFS (if importance = TRUE)

oob.error the out-of-bag error (if oob = TRUE)

... further parameters of the logic regression

logic.fs returns an object of class logicFS containing

primes the prime implicants

vim the importances of the prime implicants

prop the proportions of logic regression models that contain the prime
implicants

type the type of model (1: classification, 3: logistic regression)

param further parameters

Author(s)

Holger Schwender
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References

Ruczinski, I., Kooperberg, C., and LeBlanc M.L. (2003). Logic Regression. Jour-
nal of Computational and Graphical Statistics, 12, 475-511.

Schwender, H., Ickstadt, and K. (2006). Identification of SNP Interactions Using
Logic Regression. To appear in Biostatistics.

logic.vim Variable Importance Measure

Description

logic.pimp computes the prime implicants of an object of class logicBagg.

logic.vim additionally computes the importances of the prime implicants.

logic.oob computes the out-of-bag error of a logicBagg object.

Usage

logic.pimp(log.out)

logic.oob(log.out, prob.case = 0.5)

logic.vim(log.out, prob.case = 0.5, addInfo = FALSE)

Arguments

log.out an object of class logicBagg.

prob.case a numeric value between 0 and 1. If the outcome of the logi-
stic regression, i.e. the predicted probability, for an observation is
larger than prob.case this observations will be classified as case
(or 1).

addInfo should further information on the logic regression models be added
to the object?

Details

Since we are interested in all potentially interested SNP interactions and not in
a minimum set of them, both logic.pimp and logic.vim return all prime impli-
cants and not a minimum number of them.
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Value

logic.pimp returns a list consisting of the prime implicants for each of the B logic
regression models of log.out.

logic.oob returns the out-of-bag error.

logic.vim returns an object of class logicFS containing

primes the prime implicants

vim the importances of the prime implicants

prop the proportion of logic regression models that contain the prime
implicants

type the type of model (1: classification, 3: logistic regression)

param further parameters (if addInfo = TRUE).

Author(s)

Holger Schwender

make.snp.dummy SNPs to Dummy Variables

Description

Transforms SNPs into binary dummy variables

Usage

make.snp.dummy(data)

Arguments

data a matrix containing only 1’s, 2’s, and 3’s (see details). Each col-
umn of data corresponds to a SNP, and each row to an observa-
tion.

Details

make.snp.dummy assumes that the homozygous reference genotype is coded by 1,
the heterozygous genotype by 2, and the homozygous variant genotype by 3. For
each SNP, two dummy variables are generated:

SNP1 At least one of the bases explaining the SNP is the less frequent variant.

SNP2 Both bases are the less frequent variant.
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Value

A matrix with 2*ncol(data) columns containing two dummy variables for each
SNP.

Author(s)

Holger Schwender

minDNF Minimum Disjunctive Normal Form

Description

Computes the prime implicants or the minimal disjuntive form, respectively, of a
given truth table.

Usage

prime.implicants(mat)

minDNF(mat)

Arguments

mat a matrix containing only 0’s and 1’s. Each column of mat corre-
sponds to a binary variable and each row to a combination of the
variables for which the logic expression is TRUE.

Details

minDNF is a fast implementation of the Quine-McCluskey algorithm using matrix
algebra.

Value

Either an object of class minDNF or of class primeImp. Both contain a vector
of (a minimum number of) prime implicants. The primeImp object additionally
contains the prime implicant table.

Author(s)

Holger Schwender
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plot.logicFS Variable Importance Plot

Description

Generates a dotchart of the importances of the most important interactions for
an object of class logicFS or logicBagg.

Usage

## S3 method for class ’logicFS’:

plot(x, topX = 15, cex = 0.9, pch = 16, col = 1, v0.col = "grey35",

show.prop = FALSE, force.topX = FALSE, include0 = TRUE,

coded = TRUE, ...)

## S3 method for class ’logicBagg’:

plot(x, topX = 15, cex = 0.9, pch = 16, col = 1, v0.col = "grey35",

show.prop = FALSE, force.topX = FALSE, include0 = TRUE,

coded = TRUE, ...)

Arguments

x an object of either class logicFS or logicBagg.

topX integer specifying how many interactions should be shown. If
topX is larger than the number of interactions contained in x all
the interactions are shown. For more details, see force.topX.

cex a numeric value specifying the relative size of the text and sym-
bols.

pch specifies the used symbol. See ?par for details.

col the color of the text and the symbols. See ?par for how colors
can be specified.

v0.col the color of the vertical line at x = 0. See ?par for how colors
can be specified.

show.prop if TRUE the proportions of models that contain the interactions
of interest are shown. If FALSE (default) the importances of the
interactions are shown.
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force.topX if TRUE exactly topX interactions are shown. If FALSE (default) all
interactions up to the topXth most important one and all interac-
tions having the same importance as the topXth most important
one are displayed.

include0 should x = 0 be included in the plot regardless whether the im-
portances of the shown interactions are much higher than 0?

coded should the coded variable names be displayed? Might be useful
if the actual variable names are pretty long. The coded variable
name of the yth variable is ”Xy”.

... Ignored.

Author(s)

Holger Schwender
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C.3 c7Tools

The package c7Tools contains functions used in this thesis that are not included

(at least not in this form) in any other R package.

Since some of the functions are modifications of already existing functions,

it is planned to publish them in the respective package. Moreover, c7Tools will

be contributed to the BioConductor project.

As long as it is not published at http://www.bioconductor.org, c7Tools can

be installed by

> url <- "http://www.statistik.uni-dortmund.de/de/content/

+ einrichtungen/lehrstuehle/personen/holgers"

> install.packages("c7Tools",contriburl=url)

In the following, the help files of the functions contained in c7Tools are

presented.

just.rmaplm Preprocessing with RMA Methods

Description

Computes the signals of RMA and modifications of RMA directly from the CEL
files.

Allows to specify if the RMA convolution model or the base composition based
methods should be used in the background step, and to select between using
median polish or fitting probe level models in the summarization step.

By default, the GCRMA signals are computed.

Usage

just.rmaplm(filenames, gc = TRUE, plm = FALSE,

phenoData = new("phenoData"), description = NULL, notes = "",

compress = getOption("BioC")$affy$compress.cel,

affinity.info = NULL, stretch = 1.15 * fast + 1 * (1 - fast),

type = c("fullmodel", "affinities", "mm", "constant"),

k = 6 * fast + 0.5 * (1 - fast), correction = 1, rho = 0.7,

http://www.bioconductor.org
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optical.correct = TRUE, verbose = TRUE, fast = TRUE,

minimum = 1, optimize.by = c("speed", "memory"),

model.param = list(), normalize = TRUE, max.its = 20)

Arguments

filenames a character vector specifying the names of the CEL files (with
path).

gc should the base composition based background method be em-
ployed?

plm should robust linear models be fitted in the summarization
step?

phenoData a phenoData object.

description a MIAME object. If NULL, a MIAME object will be created.

notes character string consisting of notes.

compress are the CEL files compressed?

affinity.info a list consisting of the three components apm, amm and index.
If NULL, this list will be computed. For details, see the help of
gcrma.

stretch a tuning parameter.

type a character string naming the type of background correction
that should be done if gc=TRUE. For details, see the help of
gcrma.

k a tuning parameter.

correction see help of gcrma.

rho correlation coefficient of the log background intensities in a
pair of pm/mm probes.

optical.correct should the PMs be corrected for optical noise?

verbose should messages about the progress of the function be printed?

fast should a faster ad hoc algorithm be used? If TRUE maximum
likelihood estimation, otherwise an empirical Bayes approach
is used in the background correction step.

minimum see help of just.gcrma.

optimize.by if "speed", a faster algorithm will be used that requires more
RAM. If "memory", a slower algorithm will be used that re-
quires less RAM.
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model.param a list of parameters controlling the model procedure.

normalize should the probe intensities be quantile normalized?

max.its the number of iterations used in the fit of the probe level model.

Value

An exprSet object containing the expression values.

Note

This function might be replaced by the function just3steps in future versions of
this package.

Author(s)

Holger Schwender. Based on just.gcrma implemented by James W. MacDonald,
and on fitPLM by Ben Bolstad.

startPLM Fitting PLMs for Large Microarray Experiments

Description

These functions enable to fit probe level models in experiments comprising hun-
dreds of Affymetrix microarrays.

startPLM performs all three steps of the preprocessing procedure PLM. Instead
of startPLM, bgnormPLM can be used to background correct and normalize the
probe intensities, and fitLargePLM to summarize these intensities. If startPLM
(or one of the other functions) stops because of memory problems, restartPLM
can be employed to restart the analysis at the point at which it stopped.

Usage

startPLM(filenames, folder = dirname(filenames)[1], mat.xy = NULL,

batch.size = 1, chunk.size = 100, qn.save = 5, asExprs = TRUE,

type.save = c("probeset", "both"), digits = 12, max.its = 20,

save.combine = 100, printDate = TRUE)

bgnormPLM(filenames = NULL, folder = dirname(filenames)[1],

mat.xy = NULL, batch.size = 1, chunk.size = 100,
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type.save = c("probeset", "both"), qn.save = 5, digits = 12,

restart = FALSE)

fitLargePLM(folder, max.its = 20, asExprs = TRUE,

save.combine = 100, restart = FALSE)

restartPLM(folder)

Arguments

filenames a character vector containing the names of the CEL files (with
path).

folder a character string naming the folder in which the (temporary)
outputs should be stored.

mat.xy a matrix consisting of two columns specifying the x and y coor-
dinates (name of the columns must be x and y) of the probes
that should be contained in the respective probe sets specified by
the row names of mat.xy. If mat.xy = NULL, the cdf environ-
ment corresponding to filenames will be used. mat.xy can be
employed to use an alternative cdf environment – not specified by
altcdfenvs but by a matrix containing the probe set names and
the coordinates.

batch.size the number of CEL files read in by read.probematrix at once.
Recommended: batch.size = 1.

chunk.size a numeric value specifying the number of probe sets that are sum-
marized at once. Each chunk of data is saved in one file.

qn.save a numeric value specifying the number of batches after which the
vector of the sums of the sorted probe intensities required by
quantile normalization is stored in a file. By default, this vector
is stored after 5, 10, 15, 20, ... batches of CEL files have been
background corrected.

asExprs should the output of startPLM, restartPLM, or fitLargePLM be
an exprSet object? If FALSE, a matrix will be returned.

type.save a character string specifying how the probe intensities are saved.
If type.save = "probeset", the probe intensities will be saved
in chunks consisting of the intensities from a set of probe sets for
all samples. If type.save = "both", the probe intensities will
also be stored chip-wisely (in the subfolder bgnorm). Default is
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"probeset" which is needed to fit the PLMs specified by mat.xy

or the cdf environment.

digits a numeric value specifying the number of digits used when sto-
ring the chunks of probe intensities. The larger digits, the larger
are the chunk files. The smaller digits, the larger are the dif-
ferences between the PLM signals obtained by startPLM and by
fitPLM, where these differences are based on the rounding done
when saving the chunks.

max.its a numeric value specifying the maximum number of iterations
used when fitting the probe level models.

save.combine a numeric value specifying the number of chunks that are com-
bined without storing the combined data set. By default, this
data set is stored after combining 100, 200, 300, ... chunks.

printDate should the date when the analysis is started, when, on the one
hand, the background correction and the normalization, and on
the other hand, the summarization and combining is finished be
printed in the R window?

restart instead of using the function restartPLM, the analysis can also
be restarted by setting restart=TRUE in either bgnormPLM or
fitLargePLM.

Value

Output of startPLM, restartPLM and fitLargePLM is a matrix or an exprSet

object depending on the specification of asExprs.

Output of bgnormPLM is folder.

Note

Based on the function fitPLM of the package affyPLM by Ben Bolstad.

Author(s)

Holger Schwender
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pairs2 Pairwise Scatter and MA Plots

Description

Pairwise Scatter and MA Plots with the same ranges for the x and the y axes in
each of the plots in either the upper or lower triangle.

pairs2 generates pairwise scatter plots in the upper triangle, whereas mva.pairs2
and smooth.pairs2 generate (smoothed) MA plots in the upper and (smoothed)
scatter plots in the lower triangle.

Usage

pairs2(x, labels = colnames(x), pch = ".", text.cex = 1.2,

header = "Scatter Plot", ...)

mva.pairs2(x, labels = colnames(x), span = 2/3,

family.loess = "gaussian", main = NULL, text.cex = 1.2,

pch = ".", add.scatter = FALSE, skip.loess = FALSE,

ab.args = list(col = 3, lwd = 1.5, lty = 1),

m.args = list(col = 4, lwd = 1.5, lty = 1),

loess.args = list(col = 2, lwd = 1.5, lty = 1), ...)

smooth.pairs2(x, labels = colnames(x), span = 2/3,

family.loess = "gaussian", main = NULL, text.cex = 1.2,

pch = ".", add.scatter = FALSE, skip.loess = FALSE,

ab.args = list(col = 3, lwd = 1.5, lty = 1),

m.args = list(col = 4, lwd = 1.5, lty = 1),

loess.args = list(col = 2, lwd = 1.5, lty = 1), nrpoints = 500,

colramp = colorRampPalette(c("white",

RColorBrewer:::brewer.pal(9, "Greys")[-1])))

Arguments

x a matrix. The columns of x are plotted against each other.

labels a character vector specifying the names for the columns used in
the plot.

pch the plotting symbol. For details, see the help for points.
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text.cex the relative size of the plotted text, i.e. of labels.

header a character string specifying the title of the plot.

span the parameter alpha used in the loess fit to control the degree of
smoothing.

family.loess either "gaussian" or "symmetric". For details, see help of loess.

main a character string specifying the title of the plot. If NULL, a title
will be generated automatically.

add.scatter should scatter plots be added in the lower triangle?

skip.loess should the loess fit be skipped?

ab.args list of graphical arguments for the diagonal in the scatter plots.

m.args list of graphical arguments for the horizontal line at M = 0 in the
MA plots.

loess.args list of graphical arguments for the loess curves.

nrpoints numeric value specifying the number of points that should be
superimposed on the density image.

colramp a function specifying the colors used in the density image.

... further arguments of plot.

Note

Modifications of the functions pairs and mva.pairs.

Author(s)

Holger Schwender

justPLIER Compute PLIER Signals Directly from CEL Files

Description

These functions generate the unnormalized or quantile normalized PLIER signals
directly from the CEL files.
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Usage

justPLIER(filenames, n.subset = 6,

compress = getOption("BioC")$affy$compress.cel,

phenoData = NULL, notes = "", description = NULL,

replicate = 1:length(filenames), get.affinities = FALSE,

normalize = FALSE, norm.type = "together",

samplenames = NULL, ...)

normalize.no.plier(filenames, save.file)

normalize.quantiles.plier(filenames, save.file)

justPLIER2(save.file, n.subset = 6,

compress = getOption("BioC")$affy$compress.cel,

phenoData = NULL, notes = "", description = NULL,

rm.savefile = TRUE, replicate = NULL, get.affinities = FALSE,

samplenames = NULL, ...)

Arguments

filenames a character vector containing the names of the CEL files (with
path).

n.subset a numeric value specifying the number of subsets in which the
whole set of probe sets should be divided. By default, n.subset
= 6. This means that if there are, e.g., 60,000 probe sets, 10,000
of them will be processed at once.

compress are the CEL files compressed?

phenoData a phenoData object. If NULL, a phenoData object will be crea-
ted.

notes character string consisting of notes.

description a MIAME object.

save.file a character string ending with .RData and naming the file
in which the unnormalized or normalized PMs and MMs are
stored.

rm.savefile should the file specified by save.file be removed after the
PLIER signals have been computed?

replicate a factor containing the replicate structure to use for grouping
samples.
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get.affinities if TRUE, then the affinities are returned in the preprocessing slot
of the exprSet object.

normalize should the PMs and MMs be quantile normalized?

norm.type character string specifying how the PMs and MMs are quantile
normalized. Currently, only together possible.

samplenames a character string of the same length as filenames specifying
the names that should be used for the samples in the exprSet

object. If NULL, sample names will be generated from the names
of the CEL files.

... further model parameters. See the help of justPlier.

Details

justPLIER should require much less RAM than the conventional method of gene-
rating the PLIER signals by first creating an AffyBatch object, and then running
justPlier on this object.

If there are still memory problems, then normalize.quantiles.plier can be
used first to generate a file containing the quantile normalized PMs and MMs,
and then justPLIER2 can be employed to compute the PLIER signals based on
this file.

Thus, justPLIER(filenames, normalize = TRUE) returns the same expression
values as a combination of out <- normalize.quantiles.plier(filenames,

save.file) and justPLIER2(out).

The same applies to the results of justPLIER(filenames, normalize = FALSE)

and of justPLIER2(normalize.no.plier(filenames, save.file)).

Please note that the resulting PLIER signals are already on log2 scale.

Value

For justPLIER and justPLIER2: An exprSet object containing the PLIER sig-
nals.

For normalize.quantiles.plier and normalize.no.plier: save.file.

Author(s)

Holger Schwender. Based on the wrapper justPlier by Crispin J. Miller, and the
C code of Earl Hubbell.
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pamTheta Prediction Analysis of Categorical Data

Description

Adaption of the Prediction Analysis of Microarrays (PAM) to categorical data
such as SNPs. Computes the number of variables showing at least one non-zero
group-wise shrunken test statistic and the misclassification rate for a set of values
for the shrinkage parameter Θ.

Usage

pamTheta(data, cl, theta = NULL, n.theta = 10, prep.out = NULL,

newdata = NULL, check.levels = TRUE, check.for.NN = FALSE)

pamStats(data, cl, check.levels = TRUE, check.for.NN = FALSE)

Arguments

data a matrix. Each row must correspond to a variable/SNP, and each
column to a sample.

cl a numeric vector of length ncol(data) indicating to which class
a sample belongs. Must consist of the integers between 1 and C,
where C is the number of different groups.

theta a numeric vector consisting of different values for the shrinkage
parameter Θ. If NULL, n.theta values between the minimum and
the maximum value of the test statistics are chosen.

n.theta integer specifying the number of considered values of the shrinkage
parameter. Ignored if theta is specified.

prep.out output of pamStats. If NULL, pamStats will be called automati-
cally.

newdata the data set used to compute the misclassification rate. If NULL,
data will be used.

check.levels if TRUE, it will be checked if all variables/SNPs have the same
number of levels/categories.

check.for.NN if TRUE, it will be checked if any of the genotypes is equal to
”NN”. Can be very time-consuming when the data set is high-
dimensional.
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Author(s)

Holger Schwender

References

Schwender, H. (2007). Statistical Analysis of Genotype and Gene Expression Data.
Dissertation, Department of Statistics, University of Dortmund.

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2002). Diagnosis of
Multiple Cancer Types by Shrunken Centroids of Gene Expression. Proceedings
of the National Academy of Sciences, 99, 6567–6572.

replace.by.wknn Imputing missing categorical data

Description

Imputes missing categorical data by a procedure based on (weighted) k Nearest
Neighbors.

Usage

replace.by.wknn(x, dist, nn = 3, samp = FALSE, weights = TRUE)

Arguments

x a matrix. Each row must correspond to one of m categorical va-
riables/SNPs, and each column to one of n samples. All variables
must have the same number of levels.

dist an m × m distance matrix. If not specified, the distances are
computed based on Pearson’s corrected contingency coefficient.

nn integer specifying the number of nearest neighbors considered for
the imputation of the missing values.

samp if FALSE, then the missing values will be imputed using (weighted)
majority voting. If TRUE, the (weighted) votes are used as weights
for the different levels when drawing the imputed values.

weights should weights based on the distance between the variables be
used when imputing the missing values?
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Details

Adaption of KNNimpute proposed by Troyanskaya et al. (2001).

Author(s)

Holger Schwender

References

Schwender, H. (2007). Statistical Analysis of Genotype and Gene Expression Data.
Dissertation, Department of Statistics, University of Dortmund.

Troyanskaya, O.G., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani,
R., Botstein, D., and Altman, R.B. (2001). Missing Value Estimation Methods
for DNA Microarrays. Bioinformatics, 17, 520–525.

rowChisqStat Rowwise Pearson’s Chi-Square Statistic

Description

Computes Pearson’s Chi-Square Statistic either for testing each pair of rows of a
data set if these rows are independent from each other, or for testing each row
if the distribution of the variable represented by this row is the same across all
groups of observations.

Usage

rowChisqStat(data, cl, check = TRUE, asMatrix = TRUE)

Arguments

data a matrix or data frame. Each row must correspond to a varia-
ble/SNP, and each column to a sample.

cl a numeric vector of length ncol(data) indicating to which class
a sample belongs. Must consist of the integers between 1 and C,
where C is the number of different groups. If specified, each row
will be tested if its distribution is the same across all groups of
observations specified by cl. If not specified, then each pair of
rows will be tested if these rows are independent from each other.

check should the data be checked for correctness?
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asMatrix if the independence test is done, should the test statistics be re-
turned as m×m matrix, where m is the number of rows? If FALSE
the lower triangle of this matrix will be returned as vector.

Author(s)

Holger Schwender

simulateSNPs Simulation of SNP data

Description

Simulates SNP data, where a specified proportion of cases and controls is explained
by a specified set of SNP interactions.

Usage

simulateSNPs(n.obs, n.snp, vec.ia, prop.explain = 1,

list.ia.val = NULL, vec.ia.num = NULL, maf = c(0.02, 0.3),

prob.val = rep(1/3, 3), list.equal = NULL, prob.equal = 0.8,

rm.redundancy = TRUE, shuffle = FALSE, nosy = TRUE,

shuffle.obs = FALSE, rand = NA)

Arguments

n.obs either an integer specifying the total number of observations,
or a vector of length 2 specifying the number of cases and the
number of controls. If the former, then the number of both cases
and controls is ceiling(n.obs/2).

n.snp integer specifying the number of SNPs.

vec.ia a vector of integers specifying the orders of the interactions that
explain the cases. c(3, 1, 2, 3), e.g., means that a three-
way, a one-way (i.e. just a SNP), a two-way, and a three-way
interaction explain the cases.

prop.explain either an integer or a vector of length(vec.ia) specifying the
proportion of cases explained by the interaction of interest among
all observation having the interaction of interest. Must be larger
than 0.5. E.g., prop.explain = 1 means that only cases have
the interactions specified by vec.ia (and list.ia.val). vec.ia



C.3 c7Tools 165

= c(3, 2) and prop.explain = c(1, 0.8) means that only
cases have the three-way interaction of interest, while 80% of
the observations having the two-way interaction of interest are
cases, and 20% are controls.

list.ia.val a list of length(vec.ia) specifying the exact interactions. The
objects in this list must be vectors of length(vec.ia[i]), and
consist of the values 0 (for homozygous reference), 1 (heterozy-
gous), or 2 (homozygous variant). E.g., vec.ia = c(3, 2)

and list.ia.val = list(c(2, 0, 1), c(0, 2)) means that
the interactions of interest are SNP1==2 & SNP2==0 &
SNP3==1, and SNP4==0 & SNP5==2.

vec.ia.num a vector of length(vec.ia) specifying the number of cases (not
observations) explained by the interactions in vec.ia. If NULL,
all the cases are divided into length(vec.ia) groups of about
the same size. sum(vec.ia.num) must be smaller than or equal
to the total number of cases. Each entry of vec.ia.num must
currently be larger than or equal to 10.

maf either an integer, or a vector of length 2 or n.snp specifying the
the minor allele frequency. If an integer, all the SNPs will have
the same minor allele frequency. If a vector of length n.snp,
each SNP will have the minor allele frequency specified in the
corresponding entry of maf. If length 2, then maf is interpreted
as the range of the minor allele frequencies, and for each SNP, a
minor allele frequency will be randomly drawn from a uniform
distribution with the range given by maf. Note: If a SNP belongs
to an explanatory interaction, then maf will only be considered
when drawing the genotypes of the observations not explained
by this interaction.

prob.val a vector consisting of the probabilities for drawing a 0, 1, or 2,
if list.ia.val = NULL, i.e. if the values of the SNPs explain-
ing the case-control status are randomly drawn. By default,
prob.val = rep(1/3, 3).

list.equal list of same structure as list.ia.val containing only ones and
zeros, where a 1 specifies the equality to the corresponding value
in list.ia.val, and a 0 specifies the non-equality. If NULL, this
list will be generated automatically using prob.equal.

prob.equal a numeric value specifying the probability that a 1 is drawn when
generating list.equal. prob.equal is thus the probability for
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an equal sign.

rm.redundancy should redundant SNPs be removed from the explaining interac-
tions? It is possible that one specify an explaining i-way inter-
action, but an interaction between (i− 1) of the variables in the
i-way interaction already explains the cases (and controls) that
the i-way interaction should explain. In this case the redundant
SNP is removed, if rm.redundancy = TRUE.

shuffle logical. Usually, the first sum(vec.ia) columns of the generated
data set contain the explanatory SNPs in the order specified by
vec.ia and list.ia.val. If TRUE, this order will be shuffled.

nosy logical. If TRUE, the explanatory interactions will be displayed
(and stored in an object). If FALSE, they will only be stored.

shuffle.obs should the observations be shuffled?

rand integer. Sets the random number generator in a reproducible
state.

Author(s)

Holger Schwender

simulateSNPfblr Simulation of SNP interactions

Description

Simulates SNPs, and randomly draws the case-control status of the observation
from a Bernoulli distribution with mean Prob(Y=1), where

logit(Prob(Y = 1)) = beta0 + beta * L1 + beta * L2

with L1 = X11 AND XC
13, L2 = XC

5 AND XC
17 AND XC

19.

Usage

simulateSNPfblr(n.obs = 1000, n.snp = 50, n.cor = 5, beta0 = -1,

beta = 0.4, sample.y = TRUE, p.cutoff = 0.5)
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Arguments

n.obs number of observations.

n.snp number of SNPs.

n.cor number of SNPs that should show a correlation structure.

beta0 numeric value for the parameter β0 of the logistic regression.

beta numeric value for the parameter βi of the logistic regression.

sample.y should the case-control status be sampled? If FALSE, each obser-
vation with Prob(Y=1) > p.cutoff will be called a case.

p.cutoff proportion, i.e. value between 0 and 1. For details, see sample.y.

Author(s)

Holger Schwender. Based on code of Arno Fritsch.



Appendix D

Statistical Methods

D.1 MA plot

(This section is an modified excerpt from Schwender and Belousov, 2006.)

Alternatively to a scatter plot, a MA plot also known as Bland-Altman plot

(Bland and Altman, 1986) can be used to compare, e.g., the signals of two sam-

ples or two preprocessing methods. Instead of plotting the (log2-transformed)

expression values directly against each other (as in a scatter plot), the diffe-

rences of the pairs of (log2-transformed) values (Minus) are plotted against the

FIGURE D.1. Scatter Plot vs. MA Plot. A subset of the probe intensities of two

of the 38 HG-U133 Plus 2 microarrays (cf. Appendix A.1) are plotted against each

other using a scatter plot (right panel) and an MA plot (left panel). In both plots, a

loess curve (solid line) is fitted through the data points.

168
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averages of these pairs (Add).

Figure D.1 shows the advantages of the MA plot: Non-linearities and overall

variability are more clearly visualized than in a scatter plot.

D.2 M-Estimation

Given a vector y of N observations, an N × p design matrix Z, and a parameter

vector θ of length p, the linear model y = Zθ+ε is usually fitted by minimizing

the sums of squares of the residuals ri, i = 1, . . . , N , where r = y − Zθ̂.

Huber (1981) generalizes this approach by estimating θ by the M-estimator

(Maximum likelihood type estimator)

θ̂M = min
θ

N∑
i=1

ρ
(ri

s

)
(D.1)

for a suitable non-negative function ρ and the scaling parameter s that, e.g., can

be estimated by the median absolute deviation (MAD) of the absolute values of

the residuals, or by the method of Huber (1981, p. 179ff.).

Since the linear model should be fitted robustly, the deviation from the ty-

pical behavior of the observations should be penalized. Therefore, ρ should

increase, if the absolute values of the standardized residuals ui = ri/s increase.

Minimizing (D.1) leads to solving the p equations

N∑
i=1

ψ(ui)zik = 0, k = 1, . . . , p, (D.2)

where ψ is the derivative of ρ. If the weights wi, i = 1, . . . , N , are defined by

wi = ψ(ui)/ui, then (D.2) becomes

N∑
i=1

wiuizik = 0, k = 1, . . . , p,

which in turn is equivalent to the weighted least squares problem

min
N∑

i=1

wiu
2
i .
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The parameter vector θ can hence be estimated by

θ̂M = (Z′WZ)
−1

Z′Wy, (D.3)

where W is a N × N diagonal matrix in which the diagonal consists of the

weights wi, i = 1, . . . , N (see, e.g., Staudte and Sheather, 1990).

To stabilize the estimation of the regression coefficient, (D.3) is not just

computed once using, e.g., the residuals of the ordinary least squares regression

in the calculation of the weights, but iteratively updated by the IRLS (Iteratively

Reweighted Least Squares) procedure described in Algorithm 3.5.

D.3 Statistical Tests

D.3.1 Welch’s t-Test

The Welch t-statistic

t =
z̄2 − z̄1√
s2
1

n1

+
s2
2

n2

(D.4)

can be used to test the null hypothesis of equal means in two independent groups

of independent observations with unequal variances. Under the assumption of

normality, this test statistic is t-distributed with(
s2
1

n1

+
s2
2

n2

)2

1

n1 − 1

(
s2
1

n1

)2

+
1

n2 − 1

(
s2
2

n2

)2

degrees of freedom.

If any assumption of Welch’s t-test is not justifiable, the null distribution of

(D.4) can be estimated by a permutation method in which the group labels are

repeatedly permuted, and (D.4) is recalculated for each of these permutations.

If the above null hypothesis is tested for m variables, then the p-value of the

ith test, i = 1, . . . ,m, based on B permutations of the group labels will normally
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be determined by

pi =
1

B

B∑
b=1

I
(
|ti| ≤

∣∣tbi ∣∣), (D.5)

where ti is the observed and tbi , b = 1, . . . , B, are the permuted statistics of the

ith test.

A drawback of (D.5) is that for B ≤ m, e.g., the Bonferroni adjusted p-values

are given by

padj
i = min {mpi, 1} =

0, if pi = 0

1 otherwise

.

Thus, B should actually be a multiple of m which is impractical if m is huge –

as in microarray experiments – or even impossible if m is larger than the total

number of permutations.

Storey and Tibshirani (2003a) propose a solution to this problem: Instead

of considering each variable/gene individually as in (D.5), they suggest to bor-

row strength across the genes by assuming that all genes follow the same null

distribution, and hence, to compute the ith p-value, i = 1, . . . ,m, by

pi =
1

mB

m∑
k=1

B∑
b=1

I
(
|ti| ≤

∣∣tbk∣∣).
In Section 4.5, we follow this approach also employed by SAM (see Section 6.3).

D.3.2 Fligner-Killeen Test

The Fligner-Killeen Test can be applied to test the null hypothesis of equal

variances in K groups (Conover et al., 1981). The test statistic is computed by

setting the jth observation zkj, j = 1, . . . , nk, in the kth group, k = 1, . . . , K, to

z̃kj = zkj −mediank zkj, calculating the rank rkj of z̃kj in the sample consisting

of all n =
∑

k nk observation, and assigning the normal scores

an(i) = Φ−1

(
i

2(n+ 1)
+ 0.5

)
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to the n observations, where Φ is the standard normal distribution function.

The test statistic is then given by

χ2 = V −2

K∑
k=1

nk

(
Āk − ān

)2
,

where ān is the mean over an(i), i = 1, . . . , n,

V 2 =
1

n− 1

n∑
i=1

(an(i)− ān) , and Āk =
1

nk

nk∑
j=1

an (rkj) .

This test statistic is asymptotically χ2-distributed withK−1 degrees of freedom.

D.3.3 Shapiro-Wilk Test

Shapiro and Wilk (1965) propose a test for normality based on the vector µ of

length n consisting of the expected values of standard normal order statistics

for a sample of size n, and the corresponding n × n covariance matrix V. The

Shapiro-Wilk statistic is defined as

W =

(∑n
i=1 aix(i)

)2∑n
i=1 (xi − x̄i)

2 ,

where x(1) ≤ . . . ≤ x(n) are the n (ordered) observations, and

a =
(
µ′V−1V−1µ

)−0.5
µ′V−1.

The p-value is computed by an approximation to the standard normal distribu-

tion (for details, see Royston, 1992).
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Notations

In the following, the notations are summarized that are used in the same mea-

ning throughout Part II and Part III of this thesis.

General

Xi, Si, . . . Variables

n, xij , PM
(i)
hj , . . . Numeric Values

q, . . . Vectors

X, Z, . . . Matrices

I(·), w(·), . . . Functions

L, S, . . . Sets containing, e.g., variables

R, fitPLM, . . . R related objects such as functions, packages, and calls

utility, . . . Directories

http://. . . Links to webpages

Variables

L Logic expression

Pg Prime implicant

Si SNP

Si1, Si2 Dummy variables for SNP Si

Xi Explanatory variable

Y Response
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Indices and Numbers

b Index for permutations

B Number of permutations

c Index for columns of a contingency table

C Number of columns of a contingency table

g Index of prime implicants

G Number of prime implicants

h Index for probes within a probe set

Hi Number of probes in the ith probe set

i Index for variables, i.e. probe sets, genes, SNPs

m Number of variables

j Index for observations, i.e. samples, microarrays

n Number of observations

r Index for rows of a contingency table

R Number of rows of a contingency table

x, y The x and the y coordinate of the location of a probe cell on the
chip

Nb Number of correctly classified oob observations in the bth iteration
of logicFS

N
(+g)
b Number of correctly classified oob observations in the bth iteration

of logicFS after adding Pg to the bth logic regression model

N
(−g)
b Number of correctly classified oob observations in the bth iteration

of logicFS after removing Pg from the bth logic regression model

nleaves Number of leaves

nPM Total number of PMs

nrc Observed number of observations showing level r at the first va-
riable and level c at the second variable of a contingency table
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ñrc Under the null hypothesis expected number of observations with
level r at the first variable and level c at the second variable of a
contingency table

nr · Sum over the rth row of a contingency table

n·c Sum over the cth column of a contingency table

nT Number of minterms for which the logic expression of interest is
true

R Number of identified genes / rejected null hypotheses

V Number of false positives

Statistics, Parameter, Probabilities

di Value of the test statistic for variable i

d0
(i) Under the null hypothesis expected value of the ith smallest test

statistic

dib Value of the test statistic for variable i in permutation b

dir Value of the test statistic for variable i in class r

dΘ
ir Value of dir shrunken by Θ

IM
(i)
hj Intensity of the ideal mismatch corresponding to MM

(i)
hj

MM
(i)
hj Intensity of the hth MM in the ith probe set for the jth sample

pxy Intensity of the probe at location (x, y) on the chip

PM
(i)
hj Intensity of the hth PM in the ith probe set for the jth sample

Shij Intensity of the signal of interest measured by the hth probe in the
ith probe set for the jth sample

s0 Fudge factor

si Standard deviation of variable i

ti Value of the t-statistic for the ith variable

xij Expression value of the ith probe set and the jth sample

x(i)j Column-wisely sorted values such that x(1)j ≤ x(2)j ≤ . . . ≤ x(n)j

for each j
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yj Value of the response for the jth observation

α
(i)
h Effect of the hth probe in the ith probe set

β
(i)
j Effect of the jth sample for the ith probe set

∆ Threshold in the Significance Analysis of Microarrays

ε
(i)
hj Additive error of the hth PM in the ith probe set for the jth sample

when computing the signals for the RMA approaches

εPM
hij , εMM

hij Multiplicative error of the hth PM/MM in the ith probe set for the
jth sample when computing the signals for PLIER and PLA(+)

Θ Shrinkage parameter in the Prediction Analysis of Microarrays

θkl Effect of base k ∈
{
A, T, C, G

}
at the `th position of the probe

sequence

λPM, λMM Affinity of the PM/MM probe

µ(i) Intercept in the ith multi-chip model

π0 Prior probability that a gene is not differentially expressed

πr Prior probability for class r, r = 1, . . . , R

χ2
i Pearson’s χ2-statistic for the ith variable

χ2
ir Pearson’s χ2-statistic for the ith variable in the rth group

Vectors

1n Vector of length n containing only ones

d Vector consisting of the m di-values

d0 Vector comprising the m d0
(i)-values

q Prototype vector for quantile normalization

y Vector of length n containing the values of the response for the n

observations

xi · Vector of length n consisting of the ith row of X

xj Vector of length m comprising the jth column of X
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Matrices

1m,m m×m matrix composed of ones

D2
Cont m × m matrix containing the squared distance dCont for each of

the m(m− 1)/2 pairs of variables

DPAM m×R matrix comprising the gene- and group-wise dir-values

DPerm m×B matrix consisting of the mB permuted dib-values

L B × n matrix containing B permutations of the response y

L(r) B × n indicator matrix with elements l
(r)
bi = I (lbi = r)

N(rc) m×m matrix containing the number nrc of observations for each
of the m(m− 1)/2 pairs of variables

Ñ(rc) m×m matrix comprising the under the null hypothesis expected
number ñrc of observations for each of the m(m − 1)/2 pairs of
variables

T nT×m matrix in which each row represents one of the nT minterms
for which the logic expression of interest is true

X m× n matrix composed of the values of m variables and n obser-
vations

X(r) m× n indicator matrix with elements x
(r)
ij = I (xij = r)

Y m×R matrix in which the rth column indicates if yj = r

Y(c) m × R matrix in which the ith row contains the numbers nrc of
observations showing class label r and the cth level of the ith va-
riable

Ỹ(c) m×R matrix in which the ith row contains the under the null hy-
pothesis expected numbers ñrc of observations showing class label
r and level c at the ith variable

Functions

Cont(· , ·) Pearson’s corrected contingency coefficient

cutlow(·) Lower bound for the rejection region Γ

cutup(·) Upper bound for the rejection region Γ
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d·(· , ·) Distance function

dCont(· , ·) Distance function based on Pearson’s corrected contingency coeffi-
cient

i(·) Impurity function

I(·) Indicator function

K(· , ·) Kernel function

SNR(·) Signal-to-noise ratio

TB(·) Tukey’s one-step biweight estimate of the mean

VIM·(·) Variable importance measure

w(·) Weighting function

∆ i(· , ·) Decrease in impurity

Φ(·) Standard normal distribution function

φ(·) Standard normal density function

Miscellaneous

Z′ Transpose of Z

znew Updated, i.e. background corrected or normalized, value of z

bzc Largest integer smaller than or equal to z

Γ Rejection region

N Set of natural numbers

ZC Complement of Z

∧ AND-combination/conjunction

∨ OR-combination/disjunction
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