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Abstract

Miniaturized discharges are investigated as a tool for quantitative analysis. In comparison

with larger plasma devices commonly used in analytical spectroscopy, different advantages

can be achieved: portable instruments allowing to bring the laboratory to the sample

instead delivering the sample to the laboratory, lower sample and power consumption,

as well as a higher power density. Basic aspects of miniaturization of discharges are

discussed and all micro-discharges currently developed as laboratory devices for analytical

spectroscopy are enlisted and commented. Two discharges are investigated in detail,

namely the dielectric barrier discharge (DBD) and the micro hollow cathode discharge

(MHCD). Atomic absorption spectroscopy with diode lasers is used for the determination

of plasma parameters, such as spatial distribution of excited species, gas temperature

and electron density. For the DBD, plasma diagnostics reveals that the hot region of the

plasma is constricted close to the temporary cathode for a short time of each discharge

cycle. In this thin layer, the electron density reaches 1015 cm−3 and the gas temperature

is about 1000 K, while the rest of the discharge remains cold. In the case of the MHCD,

it is shown that the gas temperature and electron density at atmospheric pressure in

Ar are in the range of 1500 K and 5 · 1015 cm−3, respectively. Both discharges are

applied for analytical measurements, introducing the sample either continously with gas

mixtures or after separation with a gas chromatograph. Emission, absorption and mass

spectrometry are used as detection techniques. Limits of detection in the order of few pg/s

are obtained for chlorine in halogenated molecules. The analytical figures of merit are

comparable or even better than those of conventional discharges and commercial devices.

The lifetime of these microplasmas are quiet long and they are characterized by robustness

and reproducibility.



Zusammenfassung

Es werden miniaturisierte Entladungen charakterisiert, die in der quantitativen chemi-

schen Analytik eingesetzt werden sollen. Im Vergleich zu bislang eingesetzten größeren

Plasmaquellen bieten Mikroplasmen eine Reihe von Vorteilen: tragbare Instrumente er-

lauben es das Labor zur Probe zu bringen anstatt die Probe in das Labor zu holen,

geringere Probenvolumina und Leistungen zu benutzen und höhere Leistungsdichte zu er-

reichen. Die physikalischen Grundlagen für die Verkleinerung von Plasmaquellen werden

dargestellt und es wird ein kurzer Überblick über die bisher in der analytischen Spek-

troskopie eingesetzten Mikroplasmen gegeben. Zwei miniaturisierte Entladungen werden

näher untersucht, die dielektrisch behinderte Entladung (DBD) und die Mikrohohlkathoden-

Entladung (MHCD). Es wurden Absorptionsmessungen mit Diodenlaser durchgeführt,

um Plasmaparameter, wie räumliche Verteilung angeregter Atome, Gastemperatur und

Elektronendichte, zu bestimmen. Für die DBD wird gezeigt, dass die Plasmaentladung

auf einen engen Bereich nahe der temporären Kathode beschränkt ist und in dieser

Schicht eine Elektronendichte von 1015 cm−3 und eine Gastemperatur von 1000 K er-

reicht wird. In der MHCD beträgt die Gastemperatur ungefähr 1500 K und die Elektro-

nendichte 5 · 1015 cm−3. Beide Entladungen werden für die Messung von halogenierten

Kohlenwasserstoffen eingesetzt, wobei die Probe entweder kontinuierlich mit dem Plas-

magas eingeleitet oder vorher mit dem Gaschromatographen getrennt wird. Emissions-,

Absorptions- und Massenspektroskopie werden als Detektionsverfahren der angeregten

und ionisierten Spezies im Plasma verwendet. Hierbei werden Nachweisgrenzen im Be-

reich von wenigen pg/s erzielt. Diese Werte sind vergleichbar oder sogar besser als jene,

die mit makroskopischen Entladungen oder kommerziellen Detektoren erzielt werden. Die

miniaturisierten Plasmen weisen eine hohe Lebensdauer und Robustheit auf.
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One never notices what has been done;

one can only see what remains to be done.
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Introduction 1

Miniaturization of chemical analysis becomes increasingly important. The aim is to “bring

the lab to the sample” rather than relying on the sample being delivered to the lab. A

conventional analytical process is done by collection of the sample, sending it to the labo-

ratory, processing & analyzing it, and finally providing a feedback to the customer. This

procedure is not only time consuming, but also requires a lot of man power, in some cases

even highly educated personnel, which is quite expensive. Some steps can be automa-

tized, others not. However, all of these steps can be simplified by miniaturization, because

“in-process analytics” becomes doable. As a consequence the production process can be

automatically sampled, analyzed and controlled by applying a feedback-loop that uses the

analytical result. Computers can assist and fasten the process and, additionally, dispense

the pricey personnel. Fast analysis and automation are important factors in industrial

processes and quality control as well as in environmental protection, and they enable

significant progress in the medical genomic research. The aim is to fabricate complete

analytical instruments that would fit in ones palm while having similar capabilities as full

size instruments. This follows the continuous trend to reduce the size of everything, such

as electronics and computers. Therefore, analytical chemistry is not to be left out, as

miniaturization leads to shorter analysis times, lower reagent and sample consumption,

and cost reduction.

Especially in life science and environmental protection, many analytical detection meth-

ods are based on plasma spectroscopy. These methods use an electrical discharge or a

flame as dissociation, excitation and ionization source for mass, emission or absorption

spectroscopy. For instance, techniques like inductively coupled plasma-mass spectrometry

(ICP-MS), -optical emission spectrometry (ICP-OES) or flame absorption spectrometry

(flame AAS) [Mon], are well established. Some of them are based on atomic detection,

which are coupled to separation methods, like gas chromatography (GC) or electrophore-

sis.

The downscaling of the latter devices was already demonstrated in the late 1980s by Terry

et al. [Ter79] who designed a gas chromatograph on a chip. However, for the reason that

the classical detectors were incompatible in size, the development stagnated until Manz

announced the ”lab-on-a-chip” or ”micro-total analysis system” (µTAS) concept [Man90].

1



2 CHAPTER 1. INTRODUCTION

Since then, the interest in such devices has grown and small-sized analytical systems have

become marketable, as shown by Agilent presenting a bioanalyzer based on microfluidic

devices [Agi] or by Caliper Inc., which registered the trademark LabChip�[Cal].

The easiest way of miniaturization is the downscaling of the classical techniques, e.g. the

combination of an electrical discharge with emission or mass spectrometry. For this pro-

cess it is important not only to downscale the plasma itself, but also the side components,

like the high voltage generator, the vacuum pumps, and the detection system. Therefore,

it becomes necessary to use low power plasmas in order to keep both the power supply

and gas consumption small. Nonetheless, it is demanded that the small-sized discharges

are still robust enough for all kinds of sample.

Some similarity laws exist for the miniaturization of electrical discharges, but one still has

to prove the validity of these rules by plasma diagnostics. Such fundamental investigations

will enlighten the basic processes leading to good analytical performance and might help

further development of discharges. Nevertheless, due to the small size of the investigated

discharges, new methods have to be developed and improved. For these small dimensions,

high spatial resolution spectroscopy is essential.

The presented thesis deals with the prospects and limits of miniaturized discharges for

quantitative analysis. First of all, some background information for the miniaturization

of electrical discharges will be given. The so-called “similarity laws” can be used to

characterize the downsizing. However, prediction of these laws has to be corrected as

the laws were developed only for low-pressure discharges, whereas miniaturized systems

mostly consist of atmospheric pressure plasmas. This will also be shown in a chapter

reviewing all documented approaches to miniaturized discharges for analytical science.

An appraisal of the analytical strength of miniaturized discharges can be done by basic

assumptions on particle and energy balances.

Two small-scale plasma sources that might be implemented in µ-total analysis systems

were investigated experimentally. One is the dielectric barrier discharge, which is already

widely used in plasma display panels, and the other is similar to the common hollow cath-

ode discharges, but at a small-scale. Both fundamental plasma parameters and analytical

performance were determined. As already mentioned above, new spectroscopic techniques

had to be developed to achieve this aim. First of all, an arrangement with high spatial

and temporal resolution was developed, which enables the measuring of difficult acces-

sible parameters. Furthermore, the non-invasive diagnostics in high-pressure discharges

require new techniques. The line profile analysis, as it is commonly used, fails in case

of high-pressure discharges due to the incapability of deconvolution. Therefore, a new
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procedure is proposed and tested for the analysis of the micro hollow cathode discharge.

For analytical purposes, different spectroscopic techniques (emission, absorption, mass

spectrometry) were applied to each discharge revealing the most appropriate method. The

samples were introduced either with the gas flow directly or after separation with a GC.

The results concerning atomic detection of volatile and gaseous halogenated compounds

as impurities are compared with other miniaturized devices as well as with the techniques

commonly used in analytical science.
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Miniaturization of discharges 2

2.1 Physical background of miniaturized discharges

Discharges have been operated in laboratories for about 200 years. As a result of practical

reasons, most of them are relatively large devices. Over the last decades, there was a

growing desire to miniaturize all equipment including the discharges. Downscaling of

plasmas is a challenging task due to the different kinds of plasma processes which have

to be taken into account. However, even before the idea of miniaturization appeared,

scientists investigated the main processes in discharges with the aim to obtain a basic

understanding for scaling discharge dimensions. The results were the so-called “similarity

laws”, on which the following chapter will give an overview. Furthermore, an estimation

on the power and energy balance in discharges and the consequences for miniaturization

will be presented.

Similarity laws for discharges

Laboratory discharges are generated in a variety of ways: dc and ac voltages ranging

from a few Hz to microwave frequencies (several GHz) can be applied to the electrodes

in contact with the plasma or coupled inductively and capacitively. Furthermore, the

plasma can be sustained in rare gas, synthetic air, or a mixture etc. with dimensions

varying from a few micrometers to meters. Nevertheless, all discharges can be described

by the same equations and the similarity laws that have been found. By the use of the

similarity laws some characteristics of miniaturized discharges can be predicted. In this

way, one can pass complicated numerical models, which, furthermore, would have to be

carefully adapted to initial and boundary conditions.

Assuming that the discharge is completely governed by linear laws, a set of reduced

quantities can be defined. Linear equations and processes are, for example, Maxwell’s

law, ionization by electron impact, secondary electron emission, drift of charged particles

in an electric field, and diffusion. Two discharge devices of similar shape should behave

identically, if all the reduced quantities are the same for both devices. The most significant

reduced discharge parameters will be presented. Proper scaling of a discharge device

should keep these constant.

5



6 CHAPTER 2. MINIATURIZATION OF DISCHARGES

The most important law was named after Paschen [Pas89] describing the breakdown of a

discharge according to the Townsend-mechanism. Generally, even before the plasma is ig-

nited, few electrons are present in the discharge gap. In addition to background ionization

as a result of cosmic rays, asperities of the electrode surface lead to a strongly enhanced

electrical field and thus to field emission. Those electrons are accelerated towards the

anode by the applied electrical field and ionize other gas atoms by collisions. The posi-

tively charged ions on their part are accelerated towards the cathode and bombard the

surface, which leads to secondary electron emission. In order to achieve a self-sustaining

discharge, the loss and generation of electrons and ions have to be equal. The breakdown

voltage, starting a self-sustaining discharge in a planar geometry, is given by

Vb =
Bpd

ln(Apd)− ln[ln(1 + γ−1)]
. (2.1)

A, B gas dependent parameters

p pressure

d electrode distance

γ number of secondary emitted electrons

Note that the voltage depends only on the product of pressure and electrode gap pd,

which is the first reduced quantity. As a consequence, the operating pressure needs to be

increased when the size of the device is reduced to obtain a similar discharge.

Figure 2.1: Paschen curve for various gases
[Rai97].

A so-called vacuum and high-pressure in-

sulation can be observed in the plot of the

Paschen curve (see figure 2.1). In the case

of small pd-values the gas density is too

small to obtain efficient ionization, while

in the case of high pd-values the mean free

path for ionization is too small in order

to accelerate the electrons. The minimum

voltage is obtained for medium conditions,

in which the mean free path approximates

the electrode distance. As can be seen in

the plot, the general correlation is the same

for all gases, but the absolute values vary.

For further considerations, a definition of similar discharges has to be made; in the com-

mon case, a discharge consists of two planar electrodes facing each other inside a cylindrical

tube. By definition, all linear dimensions in such a discharge are reduced by a factor of

a, this includes the distance between the electrodes d and the tube diameter R. Further-

more, the voltage V is kept constant. Using these basic assumptions, other relations for
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plasma parameters can be derived. The scaling of all linear dimensions include the mean

free path of the particles as well. It is for this reason that the gas density and pressure

are scaled by p1 = p2/a. Knowing that the dimension between the electrodes was changed

by d1 = d2 · a, the product of pressure and electrode distance pd has to be constant. This

is used in the Paschen law, in which the breakdown voltage is only dependent on pd and

not on p or d reclusively.

The demand for identical potentials in both discharges at every point implies that the

surface charge is scaled inversely with the proportional factor. Furthermore, the electrical

field is converted in the same way (E1 = E2/a). If this relationship is combined with the

pressure transformation, E/p has to be kept constant for similar discharges.

In addition to low frequency and dc discharges, these theorems can be extended to plasmas

with extremely high frequency alternating fields, e.g. microwave induced discharges, as

shown by Margenau [Mar48]. Since current and potential measurements are difficult, he

defined two similar discharges in a different way. Thus, supplementary to the scaling of

linear dimensions, the electron energy distribution function (EEDF) should be the same

in both systems. In this case the reduced quantities fd, fR and f/p have to be kept

constant, with f being the frequency of the discharge.

All transformations of plasma parameters for similar discharges are summarized in ta-

ble 2.1. While the basic assumptions are enlisted in the upper third of the table, the

middle one contains the relations which can be directly concluded. On the contrary, the

lower third contains equations which are based on more assumptions than pointed out

before. Some combinations of physical parameters can be obtained which remain constant

by scaling the device. For historical reasons, these quantities are referred to pressure p,

measured in Torr at 273 K, and not to the number density of gas molecules which would

be more appropriate. The main reduced-quantities are given in the right column of the

table 2.1.

If the scaling laws are used to describe downscaled discharges, one has to keep in mind

that the laws were obtained in the late 1930s, when miniaturization of plasmas was not

a major goal. Considering the reduced quantity pd, it is obvious that the pressure has

to be increased by reducing the size. As a consequence that the similarity laws were

developed for the low-pressure case, it is expectable that in high-pressure discharges non-

linear effects and deviations from the simple linear model occur. One strong deviation

from the similarity laws is due to the small volume and the increased loss of particles at

the wall. Furthermore, as the pressure is increased (and d is decreased), the number of

molecular collisions grows leading to unwanted side reactions, in which charged particles

are increasingly lost.
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parameters relationship invariant groups
of parameters de-
rived – similarity
parameters

potential V1 = V2 V , i, T

consequently all
V − i curves

linear dimensions
(electrode distance, d1 = ad2,
tube radius) R1 = aR2

current i1 = i2
gas temperature T1 = T2

mean free path of any particle λ1 = aλ2

E/p, pd, pR

gas density n1 = n2/a
gas pressure p1 = p2/a
electric field E1 = E2/a
wall charge density σ1 = σ2/a
volume charge density ρ+,−

1 = ρ+,−
2 /a2

total mass of gas m1 = a2m2

total charge in vessel q1 = aq2

total and partial current density j o, +, e
1 = j o, +, e

2 /a2

Te, T+

H/p
j/p2, Ne/p

2

and for all
ac discharges
fd, fR, f/p

particle density 1 N1 = N2/a
2

excited states, except resonance N∗
1 = N∗

2 /a3

velocity, energy of charged particles v1 = v2 ε1 = ε2

electron, ion temperature T e,+
1 = T e,+

2

time interval dt1 = adt2
collision frequency ν1 = ν2/a
applied frequency f1 = f2/a
magnetic fields H1 = H2/a
rates of current growth di1/dt = 1/a · di2/dt

Table 2.1: Similarity transformations for discharge parameters [Fra60]. 1 particle density: electrons,
ions, metastable (assuming that they are produced only by direct excitation, and not by electrons falling
from higher levels), fast neutrals (by charge transfer)

Two examples of such processes are (i) the formation of molecular ions by the reaction

He+ + 2 He → He+
2 + He with subsequent dissociative recombination He+

2 + e− →
2 He and (ii) recombination He+ + 2 e− → He + e− [Eij99]. The reaction rate of these

processes is given by the scaling laws for charged particles. Due to the law of mass

action, whereby the reaction rate is proportional to the density of the species, the first

and second reaction scales with p4 and p6, respectively. Diffusion only scales with p3. So

the loss of charged particles might be substantially higher1 than predicted by scaling of

macroscopic discharge. This leads to a higher discharge voltage and electron temperature

than predicted as the extra loss has to be made up by extra ionization. One way to

1For a more detailed examination, the cross sections of the processes have to be taken into account.
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overcome this problem is the use of an adequate material with high secondary electron

emission.

Generally speaking, miniaturized discharges are non-equilibrium plasmas in which the gas

temperature is lower than the electron temperature. The time to equalize both tempera-

tures is given by Kono et al. [Kon01]

τ1 '
M

m

1

σvene

, (2.2)

m,M electron, gas molecule mass

σ momentum transfer cross section

ve average thermal velocity

ne electron density

while the average time for the loss of kinetic energy by collision with the cold wall is

τ2 '
l2

Da

. (2.3)
l representative dimension

Da diffusion constant

Da 0.3 cm2/s

M/m 105

σ 10−15 cm2

v 108 cm/s

Table 2.2: Typical pa-
rameters [Kon01].

Typical values for the parameters are given in table 2.2. For

example, the thermalization time is larger than the cooling time if

the dimension of a plasma is smaller than 500 µm and the electron

density is in the order of 1014 – 1015 cm−3. This means that

the plasma does not reach equilibrium and keeps a high electron

temperature. A higher electron temperature will be beneficial

for the excitation and ionization of an analyte, while a lower gas

temperature will be beneficial for the lifetime of the device.

Nevertheless, if the current and voltage are kept constant, the same power will be dis-

tributed into the discharge. Conclusively, the power density scales with p3. A strong

temperature gradient (proportional to p) between the interior of the plasma and the wall

is the consequence, which results in material stress. Therefore, due to technical reasons,

one has to deviate from the scaling according to the similarity laws. In practice it is

difficult to remove the thermal power from the plasma source in order not to destroy the

device by overheating.

Energy and particle balance of small sized discharges

Many problems occur by downscaling the common plasma sources. In addition to the

scaling laws, it has to take into account that the mean free path of the particles in the

plasma is in the order of the discharge dimensions. Therefore, the loss by diffusion and

collision of the particles with the discharge walls will be dominant and stronger than in

the case of larger plasma sources. Hence, for a more detailed characterization of micro-

plasmas, the particle and energy balance equations of free electrons have to be solved.
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Both equations give information about the particle production and destruction as well

as the energy input and losses. Based on the interesting work of Jonkers [Jon98], who

investigated “Excitation and transport in small scale plasmas”, this section will illustrate

aspects of the different loss and production rates of analytical microdischarges.

The particle balance

If a plasma is in steady state, the number of electrons should stay constant, which is

summarized in the particle balance, whereas the ionization (production of electrons and

ions) should equal the loss due to recombination, convection and diffusion:

nengSCR = nen+αCR +∇(ne~u)−∇ · (Da∇ne). (2.4)

ne, ng and n+ are the electron, gas, and ion density, respectively. The left term repre-

sents the electron production by ionization with the rate coefficient SCR. The first term

on the right side represents the electron – ion recombination loss proportional to the re-

combination coefficient αCR. The last two terms are losses by outward transport, either

determined by the gas flow u or by diffusion with the ambipolar diffusion constant Da

(1st Ficks law). The equation can be simplified by reducing the derivations to

nengSCR = nen+αCR +
neu

l
+

neDa

Λ2
, (2.5)

with l and Λ being the length of the chamber and the gradient length of ne, respectively.

In a first approximation, Λ is given by the size of the chamber. It can be noticed that the

sign of the diffusion term changed: a reasonable density profile for an ionizing plasma and

a zero wall electron density has a negative value for the second derivative. The parameters

SCR(Te), αCR(Te), Da(Tg, Te, ng) are complex functions of electron temperature (Te) and

gas temperature (Tg) as well as electron density (ne), and were obtained by Jonkers et al.

using a collisional radiative (CR) model. They are listed in the appendix.

As can be noticed in equation 2.5, the exact value of the electron density is not important,

since all terms scale with ne. Therefore, each term divided by the electron density can

be regarded as a specific loss rate, which is plotted for different discharge operations in

figure 2.2.

In (a), the rates are given for a classical dc discharge (two plane electrodes faced par-

allel) with a typical value of the gas temperature of 500 K at 10 mbar and a discharge

dimension of 1 cm. At electron temperatures lower than 1 eV (typical for low-pressure dc

discharges), the generation of free electrons and the destruction (by recombination and

outward transport) are in balance. The loss rates due to recombination and diffusion are

similar, while the convection is negligible. In figure 2.2 b the loss rates for a micro hollow
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Figure 2.2: Typical particle generation and loss rates of different argon discharges (layout of each dis-
charge sketched in the upper part); discharge type, pressure and size given.

cathode discharge (MHCD) in static mode (more details in section 5.2) are modelled.

This discharge is generated in the bore of a structure made of an insulator (grey) and

two attached electrodes (black). The discharge with a diameter of 100 µm is operated at

atmospheric pressure and gas temperatures up to 2000 K are expected. It is obvious in

this case that, since dimensions are small, the diffusional loss outweighs all other losses.

Furthermore, the electron temperature has to be higher in order to compensate the losses.

In figure 2.2 c, rate coefficients are given for a micro hollow cathode jet (more details in

section 5.3). In this system, the gas expands through the discharge hole mentioned above

with a high velocity which results in a reduced gas temperature. In this case, the con-

vection loss outranges the others. In general, this loss depends on the specific discharge

geometry, the flow and application used. For miniaturized discharges, the exchange rates,

defined as the ratio of the gas flow to the plasma volume, of 1 – 106/s are observed (see

table 2.13 in the next section). However, most of them are below 105/s. Therefore, it can

be concluded that the diffusional loss is the most dominant in miniaturized discharges

and it is supplemented by convection loss in rare cases. Consequently, for a more detailed

investigation of small-scaled plasmas, equation 2.5 can be simplified neglecting the con-

tribution due to recombination and convection. Furthermore, the plots show that, for a

continuous operation of the discharge, the electron temperature has to be high enough in

order for the ion production to outrange the losses. This is explained in more detail in

figure 2.3. Using only the data on ionization and diffusion, the particle balance equation

can be solved, yielding the electron density as a function of the gradient length Λ with the

gas density as free parameter. Thus, maybe surprisingly, Te is independent on the applied

electrical power, and is set only by the gas type, pressure and discharge dimension. The

red and green curves represent a low and high-pressure discharge with 300 K at 10 mbar

and 2000 K at 1 bar, respectively2.

2It has to be mentioned that gas temperatures of 2000 K are observed rarely in helium discharges and
are normally lower than in argon discharges. Nevertheless, for a facile estimation, the temperature was
assumed to be equal in both gases.
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Figure 2.3: Electron temperature in helium and ar-
gon plasmas as estimated from the particle balance.

As can be seen, when decreasing the

plasma size, the electron temperature has

to increase for a particle balance, in a

low-pressure discharge even more than in

a high-pressure plasma. This is due to

the fact that the diffusion is greater in

small, low-density gases than in large,

high-pressure gases. Additionally, electron

temperatures in helium are approximately

twice as high than in argon plasmas oper-

ated at the same conditions. This differ-

ence is mainly caused by the fact that the

first excited state of helium has a higher excitation potential than that of argon.

Energy balance

A simplified power balance equation of the free electrons is given, assuming that the input

power density ε equals the power per unit of the volume that is lost by the free electrons

in inelastic and elastic collisions:

ε = nengSCR EI + ne [n+〈σm
eiνe〉+ ng〈σm

eaνe〉]
2me

M

3

2
kB(Te − Tg). (2.6)

The first term represents the inelastic electron – atom collision which results in ionization.

This process is determined by the ionization coefficient SCR and the ionization potential

EI . The following two terms describe elastic electron – ion and electron – atom collision,

leading to a momentum transfer. Here, 〈σm
eiνe〉 and 〈σm

eaνe〉 represent the adequate collision

rate coefficients for momentum transfer averaged over the Maxwellian electron energy

distribution function. Values for all coefficients in dependence on electron temperature

and density can be found in [Jon98] and are enlisted in the appendix. It has to be

mentioned that, in this simplified balance, the energy which is required to heat the cold

electrons being produced in the ionization process (5/2kBTe) is neglected.

Figure 2.4 displays the power density for the three discharge cases mentioned above. As

it was already noted, the power density in the dc discharge (a) is much smaller than in

miniaturized discharges because of the larger volume. The main energy loss is caused by

electron – atom collisions, while ionization dominates in the high-pressure micro hollow

cathode discharge (b,c). For this reason the gas temperature for conventional low-pressure

discharges can easily be determined by the heat equation, assuming that the main power
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Figure 2.4: Typical power densities of different argon discharges (gas temperature, pressure, size and
electron density given).

is used for gas heating, while no prediction can be made for miniaturized discharges.

Solving the equation 2.6 and neglecting radiation losses, the electron density as a function

of the power density for a given electron and gas temperature can be obtained. This is

plotted for atmospheric pressure discharges in argon and helium in figure 2.5. In this case,

the electron temperature is determined by the solution of the particle balance equation,

so the electron density is only expressed by the two macroscopic parameters ε and Λ.

For small gradient lengths, the loss of free electrons due to diffusion is relatively high

and almost all the power is consumed in the production of charged particles as can be

seen in the micro hollow cathode discharge. The elastic energy loss can be neglected

which results in an electron density proportional to the power density. In this way, an

electron density for the static mode of the MHCD at atmospheric pressure of more than

1015 cm−3 can be predicted (see also experimental results in section 5.2). Furthermore, it

can be seen that the electron density in an argon discharge will always be higher than in

Figure 2.5: Electron densities (in m3) in atmospheric helium and argon plasmas as obtained from the
simplified energy balance for atmospheric pressure, taken from [Jon98].
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a helium discharge. The region in which this model is applicable is indicated by the gray

line (b1 = 10). This parameter is given as the ratio of the ground state density observed

and the ground state density expected, if the plasma is in equilibrium according to the

Saha equation. For b1 < 10 the plasma is not strongly ionizing anymore and some of the

simplifications applied lose their validity.

In general, it can be concluded that miniaturized discharges are always far from equi-

librium, having an electron temperature much higher than the gas temperature in the

range of more than 1 eV, and an electron density larger than 1014 cm−3. These values

differ strongly from those for a conventional low-pressure discharge, which are formerly

used in analytical spectrochemistry. However, these conditions favor the dissociation and

excitation of analytes and make these plasmas a powerful tool for analytical science.

2.2 Different approaches to micro-plasmas ‡

The development of micro-machining tools and techniques in the last fifty years was the

basis of device shrinking. The plasma devices followed the same trend and, for about

ten years, scientists have been focusing on the miniaturization of discharges. They are

commonly used for a variety of applications, like excimer light sources, for bio-medical

surgery, sterilization, ozone generation, etc. In the following section, a short review

restricted to analytical micro-plasmas will be given [Fra03, Bro02].

Miniaturized direct current plasmas

A molecular emission detector on a glass chip employing a miniaturized direct current

helium plasma for molecular fragmentation and excitation has been presented by Eijkel

et al. [Eij99, Eij00, Bes02]. Figure 2.6 shows a typical schematic chip layout consisting

of a top and bottom plate. The channels and the plasma chamber were produced by

HF-etching. The electrodes were formed by deposition of 50 nm chromium and 250 nm

of gold. Gas inlet and outlet holes of 400 µm diameter were drilled by ultrasonic abra-

sion. The plasma was generated in chambers of different geometrical dimensions, varying

the chamber volume, the electrode distance, the inlet and outlet channel as well as the

equivalent radius of the plasma chamber. In a first experiment, inlet and outlet channels

were chosen to obtain a plasma chamber pressure of about 100 hPa and, in a following

work, they were modified to reach atmospheric pressure.

‡Part of this chapter has been published in slightly different form in Microplasmas for analytical
spectrometry, J. Anal. At. Spectrom. 18(2003) 802 – 807 [Fra03].
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Figure 2.6: Schematic chip layout of the direct cur-
rent discharge used by Eijkel et al. after [Eij99].

The chambers with volumes of 50 – 200 nl

and with flow rates of 5 – 500 nl/s, were

used in order to determine the limit of de-

tection of methane in a helium gas flow by

measuring molecular spectral emission of

CH bands. The limit of detection was in

the range of pg/s (ppb – ppm). Further-

more, the plasma, generated in helium with

an applied power of 9 mW (770 V, 12 µA),

was coupled with a conventional gas chro-

matograph. A number of carbon-compounds were detected in the column effluent record-

ing the CO-emission at 519 nm. For hexane, the detector showed a linear dynamic range

over two decades and a detection limit of 10−12 g/s (800 ppb). The device was operated for

more than 24 h without a significant change in performance. Recently, atomic detection

of bromine and chlorine for this dc plasma was reported [Bes02]. A similar micro-plasma

chip with a chamber size of 2 x 0.07 x 0.07 mm3 and 125 mW power was coupled to the

gas chromatograph. Spectroscopic detection of elements and molecular fragments in the

eluted peaks was demonstrated. Using the 479.5 nm emission line and taking into account

the injected amount of chlorinated compounds, a detection limit of 800 pg/s for chlorine

was found.

Longwitz et al. developed a micro-glow discharge as an ion source for ion mobility spec-

trometry [Lon03]. The device was microstructured on fused silica and pyrex wafers. The

planar electrodes consisted of a 300 nm metal layer on a 10 nm Cr adhesion layer. Pt and

Au were used as the electrode material. The fused silica substrate below the Pt electrode

was dry etched to a depth of 5 to 10 µm in order to obtain freestanding electrode edges.

The substrate next to the Au electrodes was not etched. The devices were placed in a

vacuum system in which gas type and pressure were adjusted. Breakdown was studied

for electrode gaps of 1 to 50 µm. Stable dc glows at atmospheric pressure were obtained

in Ar and in N2 using 1 µm and 3 µm gaps, respectively. Gas voltages of 500 V and dis-

charge currents of a few µA resulted in a power input of several µW. Ion extraction was

only demonstrated for a larger system of 100 µm discharge gap, obtaining ion currents of

100 pA. Current and power were 3 orders of magnitude higher, mA and mW, respectively.

Considering the sputtering of cathode material, the lifetime of the structure was limited

to a few hours.



16 CHAPTER 2. MINIATURIZATION OF DISCHARGES

The use of solution as one of the electrodes

A method named “electrolyte as a cathode discharge” (ELCAD) has been developed by

Cserfalvi et al. to perform continuous monitoring of trace metals dissolved in water via

glow discharge-atomic emission spectrometry (GD-AES) [Cse93]. An open and continu-

ously flowing fountain of the sample solution was used as the cathode in the discharge.

More recently, a very small glow discharge for optical emission spectroscopy (GD-OES)

has been described by Marcus et al. [Dav01, Mar01]. This device, which is called “liquid-

sampling atmospheric-pressure glow discharge” (LS-APGD), has been developed for the

analysis of metals in electrolyte solutions. An abnormal glow discharge was formed be-

tween the electrolyte solution in a capillary and a Cu counter electrode. The liquid in

the capillary either acted as the cathode or the anode of the discharge. Stable discharges

could be realized with flow rates of 0.5 – 1.5 ml/min using hydrogen, sodium or lithium

as the electrolyte species. Discharge currents of 25 – 60 mA and voltages of 300 – 1000 V

were applied. Analytical response curves were generated for the elements Na, Fe, and

Pb, with an absolute limit of detection in the order of 60 ng obtained for 5 µl sample

injections.

Jenkins et al. presented the feasibility of performing AES with liquid samples on a glass

microchip using the ELCAD technique, achieving a thousand fold smaller sample flow

rate [Jen02]. Copper was detected by atomic emission spectroscopy, but an assignment of

detection limits was not possible due to instabilities of the discharge and, consequently,

fluctuating background and signals.

In the same year, Wilson et al. [Wil02] used the same principle with one electrode being

the liquid analyte. The on-chip micro-glow discharge was coupled with a small optical

spectrometer (Ocean Optics). Emission detection limits for sodium, lead, aluminum and

chromium of 10, 5, 5 and 10 ppm, respectively, were obtained. Furthermore, by changing

the polarity of the supplied voltage, they proved that the signals are obtained by positive

gas ions from the discharge sputtering the cathode. It was shown that the dominant

impurity delivery mechanism was sputtering from the cathode as opposed to fluid heating

and vaporization. This is an important feature of the arrangement because it permits

nonvolatile, inorganic impurities to be introduced into the plasma. It eliminates the need

of spraying the water into the plasma, which is the approach used in conventional devices.

Miniaturized pulsed plasma detectors

A low power plasma detector for molecular emission spectrometry has been described by

Jin et al. [Jin01]. This detector consisted of two platinum plate electrodes of 0.04 mm
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thickness and 3 mm width, placed face to face in a 40 mm long Teflon tube (outer diameter

7 mm). The distance between the electrodes was 1.5 mm. The plasma was generated in

He with a homebuilt high voltage pulsed power supply at atmospheric pressure. The

average operational power of the detector was smaller than 0.2 W. Because of the low

power requirement, the detector could be operated with two 1.5 V alkaline batteries for

more than 10 h. The influence of plasma gases, flow rates, and discharge voltages on the

performance of the detector as well as the reproducibility and sensitivity of the detector

to organic vapors were studied using dimethyl sulfoxide. The device was improved by

reducing the diameter of the capillary tube to 1.5 mm [Dua03]. In this case, flow rates

and average power as low as 0.16 ml/min and tens of mW, respectively, were used to

sustain the discharge. Methane, dichloromethane and toluene introduced by chemical

vapor introduction could be detected by emission spectroscopy monitoring the CH-band

(431 nm) down to 2.8, 16 and 2.6 ng/ml, respectively. A pre-separation of analytes was

achieved by a capillary column sampling, using a 0.53 mm capillary. Even after several

months, no deterioration of the device could be observed.

Capacitively coupled microplasmas at 13.56 MHz

A miniaturized, parallel plate capacitively coupled plasma (PP-CCP) at atmospheric

pressure has been investigated for analytical atomic spectrometry applications. The PP-

CCP was sustained by application of radio frequency power to a pair of electrodes that

were separated by a quartz discharge tube, forming a capacitive, transverse discharge.

The plasma was normally operated at 13.56 MHz using He as a plasma gas. However,

other gases and frequencies could be used as well.

parallel plate
electrode

parallel plate
electrode

micromashined
quartz plate

quartz plate

plasma-
region

Figure 2.7: Exploded schematic view of the capac-
itively coupled micro-plasma discharge chamber used
by Bass et al. after [Bas01].

Bass et al. described the implementation

of the PP-CCP on a 0.25 x 0.25 x 5 mm3

micro-machined fused silica chip [Bas01].

The He plasma, schematically shown in fig-

ure 2.7, was operated at atmospheric pres-

sure and was self-igniting. The power was

5 – 25 W and the gas flow was between 17

and 150 ml/min. The authors claimed that

parallel plate capacitive power coupling is

nearly ideal for generating and sustaining a

plasma discharge on a chip since it can be implemented using a very simple electrode struc-

ture and does not require tuned or resonant structures. The quartz torch was mounted

between two copper electrodes. The bottom electrode was contacted to a grounded cop-
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per block, and also served as a cooling element for the plasma torch. The upper electrode

was 1 mm wide. The electrodes could also be made by vapor deposition in order to build

a more compact source and, if necessary, by electrode patterning in order to generate

several plasma discharges on a single wafer. The emission lines of OH, NH, N2, N+
2 and

He were measured applying a 20 W He plasma and a gas flow of 70 ml/min. Although the

PP-CCP has been investigated for application in analytical atomic spectrometry, no ele-

ment selective measurements have been done by Bass et al. with the miniaturized version

so far.

A similar capacitively coupled microplasma, named CCMP source, at atmospheric pres-

sure was described by Yoshiki et al. [Yos01]. It was realized on a quartz chip of 20 x

20 mm2 consisting of two glass plates with a thickness of 500 µm and a spacer between

the plates of 65 – 500 µm. The thickness of the spacer determined the depth of the

capillary. Parallel-plate electrodes of 5 x 5 mm2 were externally attached to the quartz

chip so that the capillary was sandwiched between the electrodes. The He plasma was

generated in channels with cross sections of 65 – 500 x 500 – 5000 µm. The length of

the plasma inside the capillary was the same as the length of the electrodes. The plasma

was operated by a conventional operation frequency of 13.56 MHz and was ignited by

an incident power between 1 and 3 W in the range of 80 hPa to atmospheric pressure.

Various He emission lines and the lines of O and OH were obtained. The He atomic

excitation temperature was estimated to be about 2000 K. The incident power and the

gas flow rate were 5 W and 475 ml/min, respectively. The CCMP was supposed to be of

potential use as an on-chip plasma device, but, so far, only material treatment and no an-

alytical measurements have been performed. Recently, the same generator has been used

to obtain microdischarges similar to CCP and ICP in tubes with an internal diameter

of 1 mm [Tan03]. Even 3-d integrated plasmas were generated by multiple tubes, which

were closely aligned and stacked in a sandwich structure.

Last year, Hauser et al. developed a third kind of miniaturized capacitively coupled plasma

[Guc03] using a much lower frequency. They used a fused capillary and two cylindrically

shaped electrodes around it. The capillary had an inner and outer diameter of 150 µm

and 350 µm, respectively. The discharge was sustained with a voltage and frequency

up to 20 kV and 20 kHz, respectively. The authors mentioned that a comparatively

inexpensive power supply can be realized using a transformer with an input voltage of

12 V. An Ocean Optics spectrometer was applied for emission spectrometry, and Hg, As

and Sb after hydride generation could be detected down to few hundred ppb. The helium

excitation temperature was estimated to 12 000 K. The device consumed 8 W of electrical
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power and worked with gas flows in the range of ml/min. Lately, this microplasma was

coupled with a gas chromatograph in order to separate organic [Guc04b] and inorganic

compounds [Guc04a], obtaining detection limits of pg to ng.

Miniaturized inductively coupled plasmas

A very interesting miniaturized plasma is the downscaled ICP. Whereas large-size ICP’s

are typically operated at a frequency of 13.56 MHz, Hopwood et al. showed that the op-

timum frequency for plasma generation increases up to 460 MHz if the coil diameter is

reduced to 5 mm [Yin99]. It was found that the electron density is about one order of

magnitude lower than in large scale ICP. However, it was also shown that the electron

density increases with the frequency. The miniature ICP (mICP) was fabricated by etch-

ing planar spiral inductors in a copper clad epoxy board. Another paper reported on the

microfabrication and testing of monolithic mICP fabricated on glass wafers using surface

micromachining [Hop00].

aluminum

glass

ICP coil

plasma region

Figure 2.8: Exploded schematic view of the induc-
tively coupled micro-plasma used by Hopwood et al.
after [Min02].

A scheme of the discharge chamber is given

in figure 2.8. The plasma was sustained

coupling a 450 MHz voltage into a low-

pressure gas. Ar as well as air plasmas have

been generated in the range of 0.1 – 13 hPa.

The operational power was 350 mW, al-

though 1.5 W was required to initiate the

discharge. A new single-loop mICP source,

which was three times more efficient than

the former one, has been fabricated [Iza02].

In this case the coil was situated closer to the plasma and was operated with even higher

frequencies up to 818 MHz. Ion densities of 1011 cm−3 in Ar at 0.5 hPa were obtained

with only 1 W of power. Lately, first calibration curves for SO2 were measured in an

Ar mICP by optical emission spectrometry of the sulfur atomic line at 469.5 nm. The

plasma chamber consisted of a cylindrical hole of 6 mm in diameter and 6 mm in length.

The pressure was 7.4 hPa and the plasma power 3.5 W. The limit of detection of SO2 was

about 190 ppbv/v [Min02].

Recently, an atmospheric pressure microplasma jet source was developed by Ichiki et

al. [Ich03], which consisted of an inductively coupled plasma on a ceramic chip with a

discharge tube engraved onto it and a planar metallic antenna with serpentine structures.
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The size of the discharge channel was 1 x 1 x 30 mm3 (h/w/l), and a VHF power of 50 W

was used. The electron density and excitation temperature in argon were determined to

be 1014 cm3 and 4000 K, respectively. A liquid sample of sodium standard solution was

introduced by electrospray injection, and a preliminary detection limit of 5 ppm Na in

emission at 589 nm was obtained.

Microwave induced plasmas based on microstrip technology

Bilgic et al. at the University of Dortmund described a new low-power small-scale 2.45 GHz

microwave plasma source based on microstrip technology which can be operated at atmo-

spheric pressure, and can be used for atomic emission spectrometry [Bil00, Eng00, Sch03].

This MIP is named Micro Strip Plasma (MSP). The MSP was integrated in a quartz wafer

and designed as an element-selective detector for miniaturized analytical applications. The

quartz wafer was a sandwich of two quartz plates shown in figure 2.9. The dimension of

each plate was 1 x 33 x 90 mm3. Both plates were glued together by water-glass and had

a gas channel of either 0.9 or 0.64 mm diameter.

Ar + analyte
Ar

SMA-type
microwave
connection

plasma-
region

groove

quartz plate

copper plate

Figure 2.9: Exploded schematic view of the mi-
crostrip microwave induced plasma chamber used by
Engel et al. after [Bil00].

The wafers were mounted on a copper plate

that works as the ground electrode and as

cooling block. On the upper plate, there

was a copper electrode of 30 µm thick-

ness. This electrode consisted of a small

strip placed over the gas channel, a small

matching device and an electrical contact

to a microwave connector (not shown in

figure 2.9). The MSP operated at a mi-

crowave input power of 1 – 40 W and Ar

gas flows of 50 – 1000 ml/min. It was shown that no homogeneous plasma was formed

if the plasma gas flow was very low. Therefore, all measurements were performed with a

plasma gas flow of 300 ml/min and a forward power of 30 W. Rotational (OH) and excita-

tion (Fe) temperatures were found to be 650 and 8000 K, respectively. Hg was determined

by applying the flow injection cold vapor (FI-CV) technique with a detection limit of 10

pg/ml. Furthermore, diode laser atomic absorption spectroscopy (DLAAS) measurements

of halogenated hydrocarbons introduced in a helium discharge revealed detection limits

of 5 ppb [Kun01]. Recently, the plasma volume was reduced with an equivalent geometry

and similar detection limits [Sch03].



2.2. DIFFERENT APPROACHES TO MICRO-PLASMAS 21

Miniaturized radio frequency plasma at 350 kHz

A radio frequency plasma (RFP) working at 350 kHz was miniaturized by Pedersen-

Bjergaard et al. [PB93, PB94]. A 5 cm long piece of polyimide coating and the stationary

phase were carefully burned off at the end of a fused silica GC column. The last 2 cm

of this uncoated GC capillary served as the plasma tube placed inside a piece of silica

tube for protection. A steel wire placed at the column outlet served as the top electrode

as shown in figure 2.10. The plasma was generated inside the end of the fused silica GC

column between the top electrode and the grounded reducing union by a radio frequency

power supply. Atomic emission was measured side on through the wall of the fused silica

column and the protecting silica tube. The detection limits for bromine and chlorine were

0.9 and 1.1 pg/s, respectively.

top electrode

silica tube

heated
transfer line

reducing union

atomic
emission
spectrometer

plasma region in
GC-column

Figure 2.10: Schematic layout of the radio fre-
quency plasma used by Pedersen-Bjergaard et al. af-
ter [PB94].

A different paper reported on the applica-

tion of this plasma device for mass spec-

trometric detection in capillary gas chro-

matography [Bre98]. The plasma was sus-

tained at low-pressure in the last 35 mm

of a capillary GC column (0.32 mm i.d.),

which was put inside of the ion source

housing of a quadrupole mass spectrom-

eter. This allowed direct introduction of

ions from the plasma into the mass ana-

lyzer using only a repeller and electrostatic

lenses to focus the ions. The plasma was

sustained with a flow of only 25 ml/min

helium, which was accepted by the mass

spectrometer vacuum system. This low gas

flow also served to enhance the energy den-

sity of the discharge and to produce a nar-

row spray of ions toward the mass analyzer.

Due to the miniaturized nature of the plasma, it was operated at a low power level (2 W),

and traces of oxygen were added to avoid deposition of carbon on the capillary wall.

Chlorine was successfully monitored down to the 2.2 pg/s level without interference from

elements such as C, S, P, O, F, or N.
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Dielectric barrier discharge

The dielectric barrier discharge (DBD) is one topic of the thesis and will be discussed in

detail in chapter 4. The discharge chamber (schematically shown in figure 2.11) consisted

of two glass plates covered with aluminium electrodes (length 50 mm, width 1 mm). The

electrodes were covered with a 20 µm thick glass type dielectric layer. The glass spacers in

between the glass plates defined the distance of 1 mm between the electrodes and formed

the plasma channel of 1 x 1 x 50 mm3.

glass plate

glass plate

aluminium electrode

aluminium electrode

glass type
dielectric layer

glass spacer

plasma-
region

Figure 2.11: Exploded schematic view of the dielec-
tric barrier discharge chamber.

The discharge worked at reduced pressures

of 10 – 100 hPa in argon as well as in he-

lium with a gas flow of 10 – 1000 ml/min.

A voltage of 750 Vpp was applied; its time

curve had a rectangular shape and a fre-

quency of 5 – 20 kHz. The mean power

consumption of the discharge was much

smaller than 1 W, but – as will be shown

later – the plasma was restricted for a short

time to a small volume. Measurements of

halogenated hydrocarbons by diode laser

atomic absorption spectrometry revealed detection limits for CCl2F2 in the He DBD of

about 400 pptv/v and 2 ppbv/v using the Cl 837.824 nm and the F 685.792 nm line,

respectively.

Micro hollow cathode discharge

The micro hollow cathode discharge (MHCD), which is the second topic of this thesis, is

a multilayer system consisting of two metallic foils separated by an insulator. It will be

presented in detail in chapter 5 and is schematically shown in figure 2.12.

insulator

metal
electrode

plasma region

Figure 2.12: Exploded schematic view of the micro
hollow cathode discharge

The thickness of the layers was typically

30 – 150 µm. A bore with a diameter of

10 – 500 µm was drilled through the struc-

ture. A plasma was produced inside the

hole between the electrodes in noble gases,

gas mixtures or air using ac or dc current

voltage. Atomic emission spectroscopy of

the MHCD discharge was applied for the

detection of chlorine and fluorine resulting from the decomposition of the halogenated
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molecules (CCl2F2 CHClF2) that were introduced into the He plasma gas. The intensi-

ties were linear over 3 orders of magnitude. The detection limits for CCl2F2 are 20 ppb

v/v using either Cl 912.114 nm or F 739.868 nm. Mass spectrometric measurements of

the same analyte resulted in similar detection limits.

Concluding remarks

The experimental parameters like the dimensions of the discharge, the resulting volume,

the pressure, the input power, the flow rate, the detected analyte, and the limit of de-

tection are presented in figure 2.13 for the different plasmas discussed above. The mean

power density and the exchange rate (ratio of the flow rate to the plasma volume) are

calculated from the experimental data. An important parameter for the development of

miniaturized plasma is the mean power density, which is calculated from the input power

and the volume of each discharge. On the one hand, the mean power density must be high

enough in order to dissociate and to excite molecules, while, on the other hand, it must

not be too high in order to avoid damages by thermal stress. A comparison of the mean

power densities of the two dc discharges shows that for molecular detection (dark shaded

rows), a mean power density of 0.05 kW/cm3 is sufficient to get a low limit of detection

for hexane, whereas a mean power density of 12.5 kW/cm3 is needed for atomic detection.

The application of the RFP and the DBD shows excellent results according to the limit

of detection, although the mean power density is less than 1 kW/cm3. In the case of the

DBD, the excellent dissociation capability is explained by the relatively high peak power

of about 1 kW/cm3, which will be discussed later. Therefore, a mean power density of

1 kW/cm3 should be sufficient for atomic spectrometry, while using a much lower power

density ([Jin01], [Eij99]) results in molecular detection. Some discharges (light shaded

rows) are even suitable for liquid detection, if the sample is introduced by electrospray or

if the water sample is used as cathode. In case of the latter, the power consumption can be

sufficiently small, because the main process of sample evaporation is done by sputtering

[Wil02], while, in the other case, an appropriate miniaturized sample introduction system

and high power are obligatory.

In order to prevent damage to the plasma devices, they should be cooled as mentioned,

for example, by Bass et al. (PP-CCµP) [Bas01], who used a grounded copper block as the

bottom electrode, or Bilgic et al. (MS-MIP) [Bil00], who connected the ground electrode

to a copper socket with an active cooler. An alternative or additional possibility to prevent

damage to the plasma device is to operate the plasma with a high flow rate. A measure

for the quality of cooling by the gas flow is the exchange rate. The dependence of both

parameters for the presented plasmas is plotted in figure 2.14.
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Figure 2.13: Experimental data for different plasmas; dark shaded row: molecular detection, light shaded
row: liquid samples.
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Figure 2.14: Exchange rate and mean power den-
sity for different plasmas; the blue discharges were
investigated during this thesis.

It is obvious that plasmas operated with a

high mean power density also have a high

exchange rate; the values of nearly all plas-

mas are aligned along the bisecting line of

the plot. In the lower part, molecular de-

tection is obtained, while, in the higher

power density range, atomic detection is

achieved. (The DBD is marked twice in

the plot because of the difference in mean

and peak power density.) However, to re-

duce the sample and gas consumption, it is

desirable to develop plasmas, which can be

operated with low flow rates.

2.3 Sample introduction in miniaturized discharges

One important property of analytical systems is the flexibility in analyzing gaseous, liquid

and solid samples. All these samples have somehow to be introduced into the discharge.

This is the main problem apart from the dissociation, excitation or ionization of the

analyte. As discussed in the previous section, most miniaturized plasmas show good

analytical results for gases. No reports are given about solid samples, and many difficulties

are encountered when introducing liquid samples into the discharges. The impact of

sample introduction into miniaturized discharges will be enlightened in this section.

Power balance in the presence of analyte samples

When introducing a sample into the plasma, some of the input power will be used to

heat and dissociate the analyte. This energy is not available for sustaining the discharge

anymore and, therefore, the injected volume should be low. For dissociation, the bonding

energy of the elements has to be delivered by the plasma. For covalent bondings, this value

is in the range of 300 – 1000 kJ/mol, depending on the atoms concerned and the valency

of the bond. Assuming a molecule with a maximum of 10 bonds, up to 10 MJ/mol have

to be raised. The amount of the highest sample concentration with analytical relevance

is commonly in the range of µg/s, equivalent to a maximum of nmol/s. Therefore, the

complete dissociation of a high sample amount would consume 10 mW. This power can

easily be delivered in classical ICPs or MIPs, but as was shown, miniaturized discharges
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are sustained with powers in this range. The introduction of large sample volumes will lead

to non-linear calibration curves, because the energy for dissociation cannot be delivered

by the discharge. Furthermore, no complete dissociation will be achieved in small-scaled

discharges, but equivalent dissociation for different molecules should be aimed at.

By introducing a liquid or damp sample, commonly an aerosol, some of the input power

has to be used, additionally, to vaporize and dissociate the liquid. The loss of this energy

might even lead to a localized quenching of the plasma, because the concentration of

the solvent will be higher by several orders of magnitude than the analyte itself. In the

ICP, local cooling occurs in a 1 – 2 mm sphere around incompletely desolvated droplets,

which deteriorates vaporization and ionization efficiency, thereby causing signal suppres-

sion [Ole89].

For example, the energy consumed by water is composed by the heating from room

temperature to the boiling point, the evaporation enthalpy, the heating of the vapors

to the gas temperature of the discharge and the dissociation enthalpy:

E = m(c liquid
p ∆T1 + c gas

p ∆T2 + qv + qdiss)(2.7)

cliquid,gas
p heat capacity

∆T1,2 difference between water

and gas temperature

qv,diss enthalpy of evaporation,

dissociation

The specific values for the capacities and enthalpies mentioned above are enlisted in

table 2.3.

c liquid
p c gas

p qv qdiss

4.2 J/gK 2 J/gK 2.2 kJ/g 45 kJ/g

Table 2.3: Important data for water.

For example, assuming a water tempera-

ture of 300 K and a gas temperature of the

plasma of 500 K, a power of 5 and 14 mW,

respectively, is used to heat 1 µl/min water.

Additionally, 40 mW are required for com-

plete evaporation and 750 mW for com-

plete dissociation. This sums up to almost 0.8 W which would be the whole power coupled

into microplasmas, or even more. However, taking into account that complete dissociation

is never achieved, a power of 100 mW is sufficient for 10 % dissociation. Therefore, in

order to introduce liquid samples into miniaturized discharges, only low sample flows can

be used. Furthermore, the introduction most probably has to be assisted as will be shown.

However, introducing small liquid flows results in small analyte amounts. Assuming con-

centrations as high as several hundred ppm analyte in the solvent with a flow of 1 µl/min,

the sample amount entering the plasma would be some ng/s. This value is close to the
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general detection limit, which means that introducing even smaller amounts to prevent

the plasma from being purged, results in non-detectable concentrations. Furthermore,

this assumes that the whole sample amount enters the discharge, which is problematic,

as illustrated below.

Injection methods for liquid samples

Suitable methods for liquid sample injection into microplasmas will have to be developed

in order to establish a portable liquid sample analysis system and it is investigated by

several research groups. For example, in the case of conventional ICP-OES systems,

pneumatic or ultrasonic nebulizers are usually adopted for atomizing sample solutions.

The introduction of aerosols derived from aqueous solutions was found to be impossible

with the small-sized plasma sources [Guc03]. The reason for this might be the quenching

due to the energy that is consumed for the evaporation of the water droplets, or the

evaporating water leads to a drastic expansion of the plasma volume, which is constrained

by the discharge walls. Furthermore, the hot plasma has a high viscosity and resists the

introduction of a cold sample. In conventional ICP systems, this effect is worked out by

the application of an outer formed shielding gas around the sample introduction flow.

Nevertheless, this method is not appropriate for small-sized discharges because the gas

consumption is increased unintentionally.

Other possible injection methods are the thermospray and electrospray. In a thermospray,

the sample is pumped through a heated capillary. When the solution reaches the hot

zone, it is vaporized almost instantaneously and leaves the tube as a spray of very small

droplets. In contrary to pneumatic nebulizers, this system already couples some power for

the evaporation of the analyte into the system. Nevertheless, since the viscosity of high

temperature plasmas is high, sample injection just by the gas flow of a pneumatic nebulizer

seems to be quite difficult. In contrast, an injection assisted by a strong electrostatic force

is effective. Therefore, an electrospray can be used in which the flowing liquid sample is

electrosprayed from a sharp pointed tip biased at 1 – 5 kV with respect to the sampling

orifice of the mass spectrometer. Nonetheless, each advantage has a drawback; applying

a voltage of several kV for the electrospray to small size discharges operating at voltages

of several hundreds of Volt will result in further plasmas between the ground and the

electro-tip of the spray. Thus, this method is probably only successful in combination

with high frequency discharges, like it was presented by Ichiki et al. [Ich03].

Another possibility for the detection of metallic species in a liquid sample is hydride

generation. In this method, the sample is mixed with HCl and sodium borohydride, and
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a volatile hydride is formed, which can be separated from the liquid phase. This helps

to avoid contamination of the discharge with water and is commonly used in atomic

absorption spectroscopy. The successful use of this method for miniaturized discharges

was recently presented by [Guc03].

Consequences of analytical detection for miniaturized discharge

According to the considerations mentioned above, miniaturized discharges will always

suffer from a smaller dynamic range than found for conventional sources. The reason is

that high sample amounts cannot be introduced into the plasmas because the low power is

not sufficient, while the detection limit will not be lower than for conventional discharges.

Furthermore, microplasmas are less robust against the load of damp samples, due to

the high power consumed for evaporation and dissociation. Additionally, the plasma

resists the introduction of samples, so the injection is difficult. Other problems might

occur if organic compounds will be analyzed with small-scaled devices. In this case, the

carbon resulting from the decomposition of the analytes will deposit on the discharge

wall, reducing the already small diameter of the chamber. This problem will also appear,

if solid samples are analyzed by laser ablation, for example. The ablated material, which

does not only consist of ions and atoms, but also of clusters, will clog the whole device.

Nevertheless, miniaturized discharges, as they will be presented in the following chapters,

are encouraging devices for the analysis of gaseous samples, but should not be regarded

as all-rounders. They have to be adapted to one special problem and can replace larger

devices in few cases, due to their advantage of low power and sample consumption as well

as the small dimensions.
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The detection of molecular species in miniaturized discharges by atomic spectrometry

demands the use of specific methods and instrumentations adapted to small size devices.

The general scheme of element selective detection is presented in figure 3.1. As can be

seen, different steps are required in the experiment. The first step is the preparation and

introduction of the sample into the analytical apparatus. It is followed by the separation

of the different species by an appropriate chromatographic or electrophoretic technique.

Subsequently, the separated molecules have to be atomized before they can be measured

by absorption, emission, or mass spectrometry. In the following elaboration, the atomizer

will be one of the presented miniaturized discharges. It has to be noted that such schemes

are well established in analytical chemistry, especially with atomic emission detectors

(atomic emission spectrometry applying plasmas – AES) and inductively coupled plasma-

mass spectrometry (ICP-MS).

Figure 3.1: Principal detection scheme of molecu-
lar species by atomic spectrometry [Koc98].

Furthermore, the properties of the minia-

turized discharges have to be determined in

order to obtain information about the ca-

pability of excitation, ionization, and dis-

sociation of the molecular species. It would

be advantageous to be able to measure

the plasma parameters like gas tempera-

ture, electron density, electron tempera-

ture, and the density of excited species.

In this way, a comparison to the classical

plasma sources can be made, and the new

sources can be classified. The most appro-

priate method, covering both analytical and parametrical tasks is optical spectrometry

because it is non-invasive and very sensitive. In this work, diode laser atomic absorption,

emission and mass spectrometry were used for the evaluation of the plasma parameters

as well as for the detection of molecular species. They also fit very well into the diag-

nostics of small-sized discharges. It has to be mentioned that fluorescence spectroscopy

29
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would also be very sensitive, and sampling a small volume, but several problems occur.

First, a high background emission of the plasma sources reduces the possibility to reach

a good detection limit. Second, the light scattering is a major difficulty which can only

be compensated by complex arrangements.

Each of the methods used in this thesis will be described shortly in the following sec-

tions together with some sensitive detection schemes that are capable of increasing the

sensitivity of the method and, thus, the detection of the species.

3.1 Absorption spectroscopy

A classical atomic absorption spectroscopy (AAS) assembly for quantitative analysis con-

sists of a hollow cathode lamp, whose radiation is directed through the absorption volume

and further detected by a photo-detector. Here, laser diodes are used as radiation sources.

They deliver very narrow lines and can be tuned in comparison with hollow cathode lamps.

The tuning capability is e.g. necessary for line profile analysis.

Light sources, Laser diodes

The laser spectroscopy, in particular with laser diodes, offers a lot of advantages compared

to classical AAS. The radiation of the laser beam is monochromatic and can be tuned

over a specific wavelength range avoiding the use of dispersive elements. The spectral

resolution is only limited by the width of the absorption line itself, because the linewidth

of the laser diode is much smaller than that of atomic transitions. Furthermore, the

absorption path can be increased by multi-reflection, because the laser diode radiation

owns a marginal divergence.

The laser diodes used in diode laser atomic absorption spectroscopy (DLAAS) are com-

mercial, etalon type devices of different producers. The heart of the laser diode is the p

and n doped semiconductor that acts as an active medium. Photons are generated by the

recombination of holes of the p-zone and electrons of the n-zone of the chip, whereas the

surfaces of the crystal serve as mirrors for the laser resonator. Due to the high electron

density in the conduction band, a reflectivity of 30 % is sufficient for the lasing threshold.

The inset of a laser diode is presented in figure 3.2. The crystal itself is situated on a

metallic block and is less than one millimeter large. The connection is made by tiny wires

of less than 50 µm in diameter. As can be seen, the size of the semiconductor is small

which makes DLAAS preferable for miniaturized systems.
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Figure 3.2: Picture of laser diode taken with SEM.

Laser diodes can be operated in a free run-

ning mode without external optical stabi-

lization emitting light in the region of 625 –

1600 nm. Recently, also laser diodes in the

blue region (375 – 445 nm) became avail-

able. Individual laser diodes can be typ-

ically tuned over 10 – 20 nm by temper-

ature (-20 ◦C – 50 ◦C) and current, de-

pending on the type. The mode-hop free

range is restricted to several hundred pi-

cometers. Wavelength tuning by tempera-

ture is a slow process, while current tuning can be very fast. Wavelength modulation

frequencies up to 500 kHz can be achieved easily [Fra93]. All etalon type laser diodes

show mode hops and, therefore, mostly wavelength gaps which cannot be covered in a

free running mode. This problem can be overcome by the use of external cavities in which

a grating reflects the first diffraction order of the laser light back into the diode. In this

case, an external resonator is build. Therefore, the mode hop free tuning range is limited

to about 50 GHz, but all wavelengths in the gain profile can be obtained.

Furthermore, a very simple but effective feedback method is the mounting of a glass

plate in front of the diode laser chip [Zyb97]. The wavelength range of laser diodes can

be extended by second harmonic generation (SHG) using non-linear phase-matched or

periodically poled crystals, whereby powers up to about 1 mW can be achieved in the 335

– 430 nm region, depending on the initial laser power and the crystal material applied.

Due to the fact that the wavelength range of laser diodes is still very limited, the number

of elements that can be measured in absorption is restricted. Only a few strong optical

transitions from the ground state of (mainly metallic) elements are in the specific wave-

length windows delivered by laser diodes. Therefore, transitions from excited levels have

to be used for the detection of atoms. In particular, transitions from metastable levels

which are well populated, e.g. in low-pressure discharges, can be used successfully. All

elements measured during the practical work are enlisted in table 3.1 in addition to the

laser diodes used. The absorption line always starts from excited states; metastable and

resonance levels are marked.

Absorption technique

In an absorption measurement, monochromatic light with the wavelength λ is directed

through an absorbing layer. The absorption coefficient of the line is α. The transmitted
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element wavelength laser diode mode
Cl (met) 837.824 nm Hitachi HL8325G fr
F (met) 685.792 nm Mitsubishi ML1012R-01 fr
S (met) 921.539 nm Toptica company ec
I (met) 906.081 nm Toptica company ec

Br (met) 827.472 nm Hitachi HL8325G fr
He (res) 667.999 nm Hitachi HL6714G ec

He (met) 388.975 nm Hitachi HL7851G ec, fd
Ar (met) 772.633 nm Sharp LT027MDO fr

(res) 800.838 nm Sharp LT016MDO fr
RLT 80010MG ec

(met) 801.699 nm Sharp LTO16MDO fr
RLT 80010MG ec

(met) 811.755 nm Toptica company ec
(res) 826.680 nm Hitachi HL8325G fr

Table 3.1: Laser diodes used in the present work. (met: metastable initial level, res: resonance initial
level; fr: free running, ec: external cavity, fd: frequency doubled)

intensity IT is given by the Beer-Lambert law

IT (λ) = Io(λ) · e−α(λ)·L, (3.1)

with Io as the intensity of the incident light and L as the absorption length. The absorption

coefficient α(λ) is given by the difference of absorption and induced emission rate of the

transition:

α(λ) = (Nk −
gk

gi

Ni)σ(λ). (3.2)

Nk,i density in lower and upper level

σ absorption cross section

gk,gi statistical weights of the levels

As low power laser radiation is used, the term of induced emission can be neglected. The

absorption cross section itself can be linked to the Einstein coefficient of absorption Bki

Bki =
c

hλ

∫
σ(λ)dλ. (3.3)

c speed of light

h Planck’s constant

Principally, the integral has to be calculated for all wavelengths from 0 to ∞, but only

the dominant term within the line profile I(λ) contributes, so the calculation can be

restricted to several tens of pm. The Einstein coefficient of absorption Bki is connected

to the Einstein coefficient of spontaneous emission Aik by

Bki = Aik
λ3

8πh
· gi

gk

. (3.4)
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The Einstein coefficients Aik are tabulated in [Kur96], for example.

Knowing the line profile of an absorption line, the density Nk of atoms in the lower level

can be determined. It is given by

N =
8πgkc

λ4giAik

1

L

∫
α(λ)dλ. (3.5)

c speed of light

gk,i statistical weights

Aik Einstein coefficient

L absorption length

Improvement of signal to noise ratio in absorption by use of modulation

Commonly, the absorption technique does not offer a good detection limit. In principle,

absorption of less than 0.1 % cannot be detected. In order to suppress various noise sources

and to discriminate non-specific background signals, different detection techniques apply-

ing modulation of the light intensity, the absorption, and of the diode laser wavelength,

as well as a double beam method, have been developed. One effective technique for base-

line reduction in diode laser spectroscopy is wavelength modulation with detection at the

second harmonic of the modulation frequency [Rei78, Zyb95]. Unfortunately, wavelength

modulation of a laser diode is, as a rule, accompanied by residual amplitude modulation

(RAM). This leads to a background signal at the registration frequency 2f , which is much

smaller than the background signal in the case of 1f detection, but retains the multiplica-

tive noise structure. Because this background signal is proportional to the laser power and

the optical transmittance, the low-frequency noise of the laser radiation at the detector

is mixed with the modulation frequency and included in the detection bandwidth. The

background signal can be eliminated if, additionally, the absorption is modulated and

detection is performed at the difference or sum of the wavelength and absorption modula-

tion frequencies [Zyb95]. If this is the case, it is possible to achieve detection limits only

determined by the laser excess noise, because the background signal is absent. The most

successful detection technique is the so-called double-beam double-modulation procedure

[Lig97, Koc02], which can eliminate the laser excess noise by applying a double-beam

arrangement. In this case, the beam of a laser diode is split into two parts, where one

beam is detected by a photodetector directly, while the other one is absorbed in any

medium (e.g. low-pressure discharge, flame) before detection. Both the absorption and

the wavelength of the laser diode are modulated with different frequencies. The signals

of both photodetectors which are logarithmically subtracted are preamplified, and de-

tected on a mixed frequency with a lock-in amplifier. The signal S in the double-beam

double-modulation technique is given by
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S(L, t) ∝ ln
IS

IR

(3.6)

= ln
aS

aR

+ ln
TS

TR

− α(ν, t)L.(3.7)

aS/aR absorption and reference

beam splitting ratio

TS,R transmittances

α(ν, t) absorption coefficient

L absorption length

The registered signal is proportional to the absorption coefficient αL, implying that the

signal is independent of the applied laser power unless the considered transition is sat-

urated. According to the intentionally accepted 3σ criterion,1 the theoretical detection

limit (DL) is three times the shot noise given by

DL = 3 ·
√

(2e2η∆ωPhν). (3.8)

e elementary charge

η quantum efficiency of the photodetector

h Planck’s constant

∆ω detection bandwidth

P laser power

ν laser frequency

In this way, using a laser diode with 100 nW power (typical for single pass SHG in

non-linear crystals), an experimental absorption of 10−4 AU (absorption units) can be

reached, while the theoretical shot noise limit is 10−5 AU. This result is already one order

of magnitude better than the typical 10−3 AU which is achieved with the well-known

hollow cathode lamp AAS. Increasing the laser power even higher to 2 mW, absorptions

down to 2 · 10−7 AU have been measured [Lig97].

Throughout this work, the use of wavelength modulation was avoided and only absorption

modulation (by plasma modulation) was used. The experiments show that, investigating

small-sized discharges, interferences at windows and walls are becoming dominant which

would be forced, additionally, by wavelength modulation. These interferences imply a

higher background and noise which diminishes the performance. The use of plasma mod-

ulation for the determination of the absolute density of excited states entails one problem,

because the lock-in amplifier delivers at the output the signal of the first or second com-

ponent of a Fourier transform. However, the absorption signal is never a well-defined

periodical sine. This makes the lock-in detection for plasma diagnostics difficult, and

correlations have to be made between the direct and the modulated signal. Therefore, as

far as it was possible, only direct signals were used for the determination of excited atom

density as a Fourier transform could be avoided.

1The detection limit according to the definition of IUPAC (International Union of Pure and Applied
Chemistry) is given when the net signal equals 3 times the standard deviation of the limiting noise.
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3.2 Emission spectroscopy

The analytical method of DLAAS mentioned above offers a very good detection limit,

but it has the disadvantage to be restricted to one element as long as it is not used with

a module of several laser diodes [Gro93].

Emission spectrometry has the benefit of covering several elements in case of using a

spectrometer with a large wavelength range. A classical spectrometer consists of an inlet

slit, a dispersive element (prism, grating) and an array formed detector (diode arrays,

CCD row). In this case the wavelength is separated just in one dimension. However,

due to the limited size of the detector and the number of pixels of the CCD, either a

small wavelength range can be observed with high resolution or a large one with small

resolution.

The idea of an echelle spectrometer is the separation of the wavelength in two dimensions

in order to cover a large wavelength range with a high spectral resolution at the same

time [BR97]. The spectrum is first dispersed into one row of small wavelength ranges

and then separated perpendicularly in order to obtain a quadratic matrix. This can be

achieved by the combination of a grating with a low number of graves/mm and a second

dispersive element like another grating or prism.

An echelle grating is presented on the left hand side of figure 3.3, where N is the grating

normal, d the grating constant, α the incident angle, β the diffracted angle and θB the

blaze angle. The relation between the incident and diffracted light is given by

kλ = d(sin α + sin β). (3.9)
k number of diffraction order

λ wavelength

Figure 3.3: Echelle grating and configuration of an echelle spectrometer taken from [BR97].
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Several combinations for k and λ are possible for a given diffracted angle. The charac-

teristic of the grating of an echelle spectrograph is the large blaze angle; the incident

beam is almost reflected and diffracted perpendicularly. The echelle grating creates a

small stripe in which several orders of different wavelengths are superposed. A second

dispersive element, in this case a prism, separates the light in a second dimension.

The principle arrangement of an echelle spectrometer is presented in the right hand side

of figure 3.3. Here, (1) refers to the entrance slit, (2) to the spherical collimator mirror,

(3) to the prism, (4) to the echelle grating, (5) to the spherical camera mirror, and (6)

to the plane of the echelle spectrum in which the CCD camera is mounted. By using the

diffraction of the prism twice, the resolution can be increased further. The device used

in this thesis was developed and built at ISAS Berlin for the near IR spectral range and

covers the wavelength range of 650 – 950 nm. This spectrometer is already small-scaled

in comparison with classical spectrometers due to the complex arrangement shown in

figure 3.3.

3.3 Line profile measurements

The knowledge of different plasma parameters, like gas temperature and electron density,

can be improved by line profile measurements, either in absorption or emission, because

there is a correlation between these parameters and the widths or shifts of the line profiles.

In this context, linewidth and lineshift are defined as full-width at half-height and the

displacement of the maximum signal with the wavelength, respectively. All transitions

have a natural linewidth determined by the limited lifetime of the level involved, but this

one is much smaller compared to other broadening mechanisms. The three fundamental

broadening processes in a discharge are Doppler-, pressure- and Stark-broadening.

In this regard, homogeneous and inhomogeneous broadening can be distinguished. While

the first one is equal for all atoms, the latter one is only generated by an ensemble of atoms.

Natural broadening as well as pressure and Stark-broadening generate homogenous line

profiles that can be expressed as a so-called Lorentzian profile:

yLorentz(λ) =
2A

π

2

4(λ− λo − β)2 + w2
. (3.10)

A Area below the curve

λo line centre

β shift of line maximum

w full width at half height

The Doppler-broadening is inhomogeneous and can be described by the Gaussian profile:

yGauss(λ) =
A

w
√

π/2
· e−2λ−λo

w2 . (3.11)
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If both kinds of broadening mechanisms occur, the two profiles are folded and a so-called

Voigt profile is obtained:

yV oigt(λ) = A
2 ln 2

π3/2

wl

wg

∫ ∞

−∞

e−t2

ln 2 · ( wl

wg
)2 + (

√
4 ln λ−λo

wg
− t)2

dt (3.12)

The new full-width at half-height wv can be calculated knowing the Lorentzian width wl

and Gaussian width wg [Dra66]

wv =
√

w2
g + w2

l /4 + wl/2, (3.13)

whereas the Lorentzian width is composed additive by the other two Lorentzian widths

∆λStark and ∆λpressure.

Along with line broadening, a shift of the absorption or emission line is present. This shift

has a similar origin as the broadening: pressure and Stark shift due to the interaction

of the particles and Doppler shift owing to a directed velocity of the atoms investigated.

Nevertheless, the detailed physical processes for the shifts mentioned differ. Details on

the evaluation of line shifts and widths will be given in the corresponding chapters.

3.4 Mass spectrometry

Figure 3.4: Picture of
ion lens system.

Mass spectrometry is a highly sensitive technique for the detec-

tion of atomic and molecular species, but it is difficult to apply

it for fundamental investigations of plasma parameters. It can

monitor several masses simultaneously and even separate the dif-

ferent isotopes. The quadrupole mass spectrometer used in this

work consists of a Balzers QMA 400 and a homebuilt ion lens

system. The micro hollow cathode discharge was coupled with

the setup in order to measure positive ions (see section 5.3).

The function of the ion lenses is to focus the charged particles

of the ion source in order to reach the detector, but also to fil-

ter neutral particles and photons which are forced to collide with

the wall. Therefore, they do not reach the detector. The sys-

tem of the ion lenses is shown in figure 3.4. It is composed of 5

circular shaped steel discs with bores in the middle. The discs

are electrically isolated from each other and a specific potential is

applied to each lens. A combination of an accelerating, focusing

force (negative potential), and a slowing down, defocusing force
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(positive potential) has to be chosen carefully. The separation of charged and neutral

particles is obtained by the first ion lens (uppermost one) which is built by a holey cup

and a small plate in the axis. Neutral particles will bounce onto the plate, while charged

ones pass it, following the electrical field around it. The optimal parameters for the five

ion lens voltages can either be found by numerical simulation of the potential or by trial

and error. Due to the fact that initial conditions have to be chosen carefully for the simu-

lation, which implies a good knowledge of the ion energy distributions, the experimental

determination of the voltages was done.

Figure 3.5: Principle of Balzers Quadrupole [Bal].

The arrangement of the Balzers quadrupole

is given in figure 3.5. Ions are focussed and

directed to enter the mass filter, they follow

some trajectories in the low-pressure cham-

ber and are detected either by a secondary

electron multiplier or a Faraday cup. The

mass filter consists of four rods made of

molybdenum, each 200 mm long and 8 mm

in diameter. Seen end-on, the rods are

placed at the corners of a square, and are

electrically connected kitty-corner. Taking

a time cut, two rods are applied with a pos-

itive voltage, while the others are negative.

In this way, the 2-dimensional electrostatic quadrupole field forms a saddle-shaped po-

tential. A charged atom or molecule entering the field is confined in one direction, but

unconstrained in the transverse direction. In order to stabilize the particles in both direc-

tions one simply has to rotate the saddle as the particle starts to leave the saddle point.

This is obtained by a rf potential that rotates the effective field. A special mass/charge

ratio can be selected by the frequency of rotation and the curvature of the saddle (given

by the geometry) which then oscillates around the center. Therefore, the rods are applied

with a potential of U + V cos(ωt), where U is a dc voltage and V cos(ωt) is an ac voltage.

The ac voltage determines the mass/charge ratio which can pass the filter and the reso-

lution results from the dc voltage. This means that the resolution of the mass filter can

be adapted to a specific need quite fast, by changing the amplitude of the voltages only.

The quadrupole analyzer does not actually separate ions like the time-of-flight (TOF) or

a sector field mass analyzer, but filters out the ions required from all ions injected. Other

ions collide with the analyzer rods and are lost, only the selected ions can pass through the
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Figure 3.6: Photo of the Quadrupole setup.

filter successfully. A mass spectrum is obtained by monitoring the ions passing through

the quadrupole filter as the voltages on the rods are varied. There are two methods:

varying ω, and holding U and V constant, or varying U and V (U/V fixed) for a constant

ω. The Balzers quadrupole uses the variation of the amplitude due to technical reasons,

as do most analyzers. The rf-generator generates a voltage with a fixed frequency of

2.25 MHz. The measurable mass range is up to m/q = 511 with a resolution of m/∆m

= 1000.

The ion current is detected with a secondary electron multiplier which is orientated

transversally to the quadrupole. Therefore, the ions have to be deflected by an addi-

tional voltage which is another filter for neutrals and photons. The secondary electron

multiplier consists of a series of biased dynodes that emit secondary electrons, when they

are strucked by an ion. In this way, the ion current is multiplied manifold by 104 – 108.

Furthermore, the signal is preamplified and different detection ranges, changing in orders

of magnitude, can be obtained. Unfortunately, the dynamic range is strongly limited, so
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only highly different signals can only be measured sequentially with varying pre-amplifiers.

The complete arrangement of the mass spectrometer is illustrated in the right hand side

of figure 3.6. The first ion lens is protruding out on the left hand side, while the others

are situated in the aluminum housing. The quadrupole analyzer is adapted on the right

hand. The secondary electron multiplier is situated on the upper part. The pressure

in the system has to be 10−5 – 10−7 mbar in order to obtain a good mass filter and

detection with the SEM. This low-pressure is reached by two pressure stages, one behind

the skimmer and one in the middle of the ion lens chamber, with two turbo molecular

pumps (Leybold TW150, 150 l/s).

The quadrupole could be controlled either by the Balzers control unit or with a self-

written Q-BASIC program on a personal computer. The potentials of the five ion lenses

were applied by a high voltage generator using five variable resistances connected parallel.

Perspective of miniaturization

Commonly, mass spectrometers like the sector field mass spectrometer are supposed to

be huge devices,. However, the ion traps, which are well known already, show that the

research in miniaturization of these devices is growing. A recent review of Badman and

Cooks [Bad00] deals with miniaturized mass analyzers. Downscaling in this case means

developing analyzers that are significantly smaller, like hand-portable devices or even real

micro-mass spectrometers that could be implemented on a chip. The principles of these

micro mass-filters are as different as for the current laboratory-size devices: time-of-flight,

linear quadrupole, quadrupole ion trap etc.

Figure 3.7: Principle of the miniaturized mass
spectrometer of Siebert et al. [Sie98].

A complete miniaturized mass spectrom-

eter has been developed by Siebert et al.

[Sie98]. The principle is shown in fig-

ure 3.7. The whole size of the separation

length is a few millimeters, while the ion-

ization chamber and ion lenses are hun-

dreds of micrometers. A microwave dis-

charge generates the electrons which are

extracted from the chamber by some grids,

and, consequently, ionize the gas in the so-

called ionization chamber. The ion optics consist of an extraction electrode and one

focusing lens. The detector has a resolution at 40 u of m/∆m = 20.
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4.1 Generalities about dielectric barrier discharges

The idea to use miniaturized plasmas in analytical spectrometry implies finding discharges

that fulfill conditions like high electron density, high gas temperatures, less interaction

between analytes and electrodes, robustness, and reproducibility. The dielectric barrier

discharge is one of the discharges which are already miniaturized in some other applica-

tions presented below, and fulfills some of the requirements. Many studies are already

reported about this type of plasma, but there are still open questions. To some of them,

answers will be given in this work performing plasma diagnostics. Furthermore, the ap-

plication in analytical spectrometry will be characterized. This chapter shortly describes

the principle of the dielectric barrier discharge and the applications that are realized up

to now. Interestingly, even though the discharge is 150 years old, new projects can still

be developed.

4.1.1 Principle of dielectric barrier discharge

The dielectric barrier discharge, which is also called silent discharge, was invented 1857

by Werner von Siemens (figure 4.1) for the generation of ozone and, for a long time, this

was the main application. The special feature of this discharge was that the electrodes

were placed outside the gas volume and were not in contact with the plasma. Siemens’

initial arrangement is shown in figure 4.1. The discharge is operated in a cylindrical

gas chamber. The gas in- and outlet are on the left and lower side, respectively. The

electrodes are attached as silver paper in the inside and outside of the cylinder.

Figure 4.1: Historic ozone discharge tube, 1857 [Sie57] (natürl. Größe means natural size) and Werner
von Siemens 1872 [Sie03].

41
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Figure 4.2: Different configurations of DBDs.

During the last 150 years, the discharge

was developed and used mainly for the gen-

eration of ozone, but also for surface treat-

ment, generation of excimer radiation, in

plasma display panels, and waste gas treat-

ment. All configurations of these applica-

tions have at least one dielectric placed in

between two high voltage electrodes. Dif-

ferent configurations are presented in fig-

ure 4.2. Three planar arrangements are

conceivable in which the two electrodes are

parallel to each other, the dielectric being

on one (a) or on both (b) electrode surfaces or in the middle between the electrodes (c).

Furthermore, the electrodes can be formed like a cylinder having one electrode inside the

other, with a dielectric film on the inner side (d). Another possibility is the design with

both electrodes on the same plane (coplanar geometry), while the plasma is burning like

an arc above (e).

voltage for
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ignition voltage
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Figure 4.3: Principle function of DBD.

An alternating voltage in the range from a

few Hz up to hundreds of kHz and an am-

plitude of several hundreds of volts to few

kVs is applied to sustain the plasma. The

breakdown mechanism is presented in fig-

ure 4.3. First, a high ignition voltage for

the ionization of the gas is needed, then the

dielectrics are charged positively and nega-

tively, decreasing the gas voltage to such an

extent that the plasma extinguishes. When

the polarity of the voltage is reversed, the

applied voltage and the memory voltage

due to the polarization of the dielectric are

added, and the discharge ignites again. Therefore, the sustaining voltage for the plasma

is obviously lower than the ignition voltage. Furthermore, the plasma is purged again

automatically as a result of the charged dielectric. In comparison with other electrodeless

discharges operating at high frequencies, the dielectric barrier discharge presents the ad-

vantage of memory voltage formation by charge accumulation on the dielectric layer. The
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memory voltage decreases the breakdown voltage and increases the gas voltage, respec-

tively. At much higher frequencies, specific for MIP, ICP and CCP plasmas, this effect

vanishes and, usually, these discharges require voltages of a significantly higher amplitude.

Glasses, quartz and ceramics are used as dielectrics, having dielectric constants εr of

typically 1.5 to 3000. The distance between the electrodes varies between several hundreds

of micrometers and a few centimeters. The plasma gas consists of either pure noble gases,

mixtures of noble gases with halogens or air (N2, O2, N2/O2).

4.1.2 Applications of dielectric barrier discharges

A recent review deals with the main applications of the dielectric barrier discharges which

are either already industrialized or still under development by several research groups

[Kog03]. A short overview of the main purposes is given in the following passage.

Figure 4.4: Configuration of discharge tubes in a
technical ozone generator (not to scale) [Kog03].

Ozone generation The earliest and still

the most common application is ozone gen-

eration. In this case, oxygen or air are

passed through the discharge reactor and

the conditions in the hot filaments form

O3. This is used for bleaching processes,

water treatment or in medicine. Industrial

ozone generators (see figure 4.4) consist of

a set of discharge tubes with a length and

diameter of 1 – 3 m and 20 – 50 mm, respectively. Each of them is composed of a glass

tube inside a metal pipe. The high voltage is applied by a metal coating inside the glass

and the outer steel tube, while the discharge is ignited in the small gap between both

ducts. The whole setup is cooled in order to achieve a constant temperature necessary for

the ozone production. The ozone generation capacity of such modern devices is around

100 kg per hour.

Lamps, Displays Plasma conditions in the filaments of the dielectric barrier discharge

(high-pressure operation) are ideally suited to induce excimer formation. Choosing an

appropriate gas mixture, consisting of rare gas and halogens, ultraviolet (UV) and vacuum

ultraviolet (VUV) radiation can be obtained.
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Figure 4.5: Fluorescent lamp based on Xe excimers
(USH10) [Kog03].

These lamps (figure 4.5) can be used in-

stead of the mercury lamps e.g. in UV cur-

ing processes on printing machines. Fur-

thermore, the generated high energetic ex-

cimer radiation can be transformed into

visible light via fluorescent layers. Con-

ventionally, large scale lamps consist of a

phosphorus layer which is excited by light

of a mercury discharge (λ = 254 nm), and

with the right composition generates white light. The use of the new excimer lamps can

avoid the presence of the hazardous, toxic mercury. This principle of excimer radiation is

also used for the plasma display panels (PDP) which became very popular during the last

decades. Here, the electrodes are arranged comb-like in a matrix, whereas the discharge

is only burning at the crossing of the electrodes. One pixel of the display is made by three

dots, each of them realized by one discharge with different fluorescent layers (red, green,

blue). Such a display is flat, emits no x-ray radiation, and enables a high contrast.

Surface treatment Surface treatment came into the focus of research in the 1960s,

when affordable plastic foils and other polymer materials became available. It is desired

to change the wettability, the receptivity for printing inks or coatings. The use of the

dielectric barrier discharge offers the advantage, due to the dielectric in the discharge, to

treat metallic foils and other electrically conductive webs as well. Commonly, the surface

is treated by the use of air at atmospheric-pressure, but, depending on the application,

other gas environments, like N, F, Si, etc. are possible as well. Since the discovery of the

atmospheric pressure glow discharge (APGD), the research is focused on that subject due

to the fact that a more homogeneous treatment can be obtained. Large devices can treat

10 m wide foils with a speed of 10 m/s.

Depollution of gas streams First investigations on the destruction of H2S by dielectric

barrier discharges were already carried out in 1876 by Berthelot [Ber76], followed by other

research groups world wide. Later, it was extended to other hazardous gases like volatile

organic compounds (VOCs), chlorofluorocarbons (CFCs) or diesel exhaust gases. The

molecules are generally attacked in the discharge by free radicals, electrons or UV photons

resulting in the decomposition followed by the formation of less hazardous compounds.

Usually, air mixtures are used, because they excite reactive species like N∗
2(A

3Σ+
u ) or O∗

2

(a1∆g).
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Analytical Chemistry Apart from the application of the dielectric barrier discharge as

sensor for analytical chemistry in this thesis, the use of an atmospheric pressure barrier

discharge in helium as optical emission source used for the detection of halogens was

demonstrated by Watanabe et al. [Wat01]. They measured F, Cl, Br and I after the

decomposition of volatile halogenated compounds with detection limits of 0.1 µg.

4.1.3 Diagnostics so far

Depending on the gas pressure, the applied voltage and the used plasma gas, the discharge

can operate in two modes, a filamentary type and a homogenous one. Figure 4.6 shows

the two modes generated between two coplanar electrodes on the upper and lower side

with a distance of 4 mm. A homogeneous discharge is shown in the left hand part; here,

the discharge is burning over the whole electrode area and only one current pulse per

cycle appears. In contrary, several short currents pulses can be observed in the event of

a filamentary discharge (see figure 4.6 (b)). The filaments are only few micrometers in

diameter and randomly distributed on the electrode surface. The micro filaments start as

long as the local field is sufficient for ionization and ends if it is reduced which happens

during a time of 1 – 10 ns, in which space charges are summed up at the dielectric. As

long as the applied voltage is increasing, filaments can be generated at other places, each

of them having a diameter of around 100 µm. Because of the low spatial and temporal

expanse of the filaments, the gas is not heated strongly and the micro-discharges are

distributed randomly on the electrode surface. Once the polarity of the voltage is changed,

new filaments can be formed. Using high frequency, they benefit by the remaining space

charges and appear on the same sites, as they will distribute widely using lower frequency.

Each single filament is like a weakly ionized plasma channel with a high current density.

The space charges in front of the cathode cause a high electrical field, so that field emission

of electrons leads to a second avalanche following the first. Important parameters of such

filaments for a DBD with 1 mm electrode gap and atmospheric pressure is summarized

in table 4.1.

Even though such discharges were used for several decades, plasma diagnostics is not

very well developed. Most investigations were limited to electrical characteristics and

Figure 4.6: Typical 10 ns exposure time photographs of a 4 mm gas gap during: (a) an atmospheric
pressure glow discharge (APGD) (Vmax=11 kV) (b) a filamentary discharge (Vmax = 14 kV) [Ghe00]
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discharge time 1 – 10 ns charge 0.1 – 1 nC
radius of filament 0.1 mm electron density 1014 − 1015 cm−3

current density 100 – 1000 A/cm2 electron energy 1 – 10 eV

Table 4.1: Characteristic values of microfilaments in DBDs.

their evaluation, but are not focused on the measurements of the discharge particles it-

self which is quite arduous due to the small dimensions. To my personal knowledge, no

detailed examination was done to determine densities of electron and excited atoms ex-

perimentally with respect to the size up to the beginning of this project. Only simulations

of plasma display panels were accomplished, but even the process for generating homo-

geneous atmospheric pressure discharges is not fully understood yet. A recent review of

Kogelschatz [Kog03] reveals that, during the last years, no new knowledge on diagnostic

techniques for DBDs was obtained.

4.2 Low-pressure dielectric barrier discharge

4.2.1 Characterization of the discharge

Al electrode

glass type
dielectric

a)

side on

5 cm

1 mm

b)

metallic
contact

Figure 4.7: The dielectric barrier discharge: (a)
electrode arrangement on the glass plate, (b) photos
of the discharge.

The discharge chamber is made of glass

plates (shown in figure 4.7 a) separated

by a distance of 1 mm. Aluminum elec-

trodes (50 mm length, 1 mm width) are

deposited on each of the glass plates and

covered by a glass type dielectric (εr = 6)

layer with a thickness of 20 µm. Gas con-

nections allowing the gas to circulate, are

fixed on the upper plate, and the struc-

ture is surrounded by glass windows. Fig-

ure 4.7 b shows a photo of the plasma in

operation. The discharge works at reduced

pressures (10 – 100 mbar) in argon as well

as in helium. A rotary pump was used to

set the pressure and pass the gas through

the discharge with flow rates between 10 –

1000 ml/min controlled by a mass flow controller. The applied voltage had a rectangular

shape with a frequency of 5 – 20 kHz and a peak to peak amplitude of 0.5 – 1 kV.
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Electrical characteristics

The electrical characteristic of the discharge is presented in figure 4.8. As already de-

scribed, three different voltages have to be distinguished. The applied voltage Vappl (blue)

and the plasma current Ipl (black) can be measured directly. The gas (Vgas, green) and

the memory voltage (Vmem, red) on the dielectric can only be calculated according to

Vgas(t) = Vappl(t)− Vmem(t) (4.1)

Vmem(t) =
1

Cd

∫ t

to

Ipl(t)dt + Vmem(to). (4.2)

Cd capacity of dielectric

Ipl plasma current

Vappl applied voltage

Vmem memory voltage

Vgas gas voltage

Figure 4.8: Current and different voltages in the
dielectric barrier discharge.

The memory voltage Vmem(to) on the di-

electric of the previous cycle was chosen in

such a way that the medium value of Vgas

was zero. The capacity of the dielectric

was determined by the geometrical dimen-

sions to 100 pF (see also [Kun01]). As can

be seen, a small phase difference in applied

and memory voltage is obtained due to the

time constant of the charging process of the

dielectric layer. The calculated gas voltage

has the same trend as the measured plasma

current which approves the simple model.

The medium electrical power input of the discharge operated at 5 kHz can be estimated

by the integral of the current/voltage product, normalized to one discharge period, which

is in the range of 0.05 W. This value increases linearly with the frequency. The mean

power density in the discharge is, therefore, given to 0.01 kW/cm3 for a volume of 1 x 1

x 50 mm3.

Absorption spectroscopy ‡

The present part is devoted to plasma diagnostics of the low-pressure DBD. This is a

challenging task, since the electrode distance of the discharge is very small (1 mm) and

the processes in the ac plasma are highly transient. Although DBDs operated close to

‡This chapter has been published in slightly different form in Diode laser-aided diagnostics of a low-
pressure dielectric barrier discharge applied in element-selective detection of molecular species Spec-
trochim. Acta Part B 57 (2002) 137 – 146 [Kun02].
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atmospheric pressure are widely used, the plasma processes are not yet fully understood.

There are only a few papers on the plasma diagnostics of atmospheric DBDs, but there

are no detailed investigations on low- and medium-pressure DBDs, such as the one used.

Diode laser absorption spectroscopy was used for plasma diagnostics of an argon DBD1.

The measurements were performed with high spatial and temporal resolution (40 µm

and 10 ns, respectively). They provided not only the excited-state distribution of short-

and long-lived Ar atoms and the diffusion of the metastable atoms, but also the gas

temperature and electron density by the analysis of the absorption line profiles.

Experimental arrangement The DBD device was operated in an argon atmosphere

at pressures between 10 and 50 mbar with gas flow-rates between 50 and 500 ml/min. The

discharge was sustained by rectangular ac-voltage of 750 Vpp with a frequency of 5 kHz

and rise times of approximately 2 µs.
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Figure 4.9: Partial energy level diagram of Ar and
the transitions studied.

The half-width of the current pulses was

approximately 10 µs. During the pulses,

the plasma filled apparently the whole

volume between the electrodes. Absorp-

tion measurements were performed with

single-mode laser diodes (line width ap-

prox. 45 fm) tuned to one of the Ar lines

marked in figure 4.9, which shows the en-

ergy diagram of Ar. The investigated

lines start from the first four excited states

of Ar, two of which are metastable and

the remaining two resonance levels. The

metastable levels are 1s5 and 1s3 (Paschen notation2) at 11.55 eV and 11.72 eV above the

1p0 ground state, respectively. The lifetime of the metastable levels is 55.9 s for the 1s5

and 44.9 s for 1s3 [SW75]. The resonance levels are lying close to the metastable levels,

i.e. the 1s4 level at 11.62 eV and the 1s2 level at 11.83 eV. The natural lifetime of the

resonance levels is 7.9 ns and 1.9 ns for 1s4 and 1s2, respectively [Kur96]. The metastable

levels have forbidden dipole transition to the ground state which determines their long

lifetime. The resonance levels can decay to the ground state by radiation emission at

106.666 nm (1s4 - 1p0) and 104.822 nm (1s2 - 1p0). In practice, these resonance states are

1Investigations on a helium discharge will be presented in the next section (4.2.2).
2Paschen notation was an attempt to fit the neon spectra to a hydrogen-like theory before the advent

of quantum mechanics. It is still used in spectroscopy for rare gas atoms.
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also long-lived due to resonance radiation trapping and collision transfer processes with

the near-lying metastable states.

Figure 4.10: Discharge current and absorption sig-
nals obtained for Ar atoms in the resonance state
near to one electrode.

Transitions from all four lowest levels from

1s2 to 1s5 were investigated, but most mea-

surements were restricted for simplicity to

the two levels 1s4 and 1s5, one resonance

and one metastable. The detected absorp-

tion signal provides the time-dependent op-

tical depths K(t) = ln(Io/I(t)), where Io is

the incident and I(t) the transmitted laser

intensity. A typical transient signal I(t)

and the current pulse of the discharge are

shown in figure 4.10. The optical depths

are proportional to the concentrations of

the argon atoms, either in the resonance or the metastable states.

Investigations of the spatial atomic distribution in the small plasma layer between the

electrodes require a spatial resolution of better than 100 µm. For this purpose, an optical

arrangement as shown in figure 4.11 was used. The widened beam of the laser diode3,

directed through the discharge zone parallel to the DBD glass plates and expanded by a

lens (f = 16 cm), fell on a screen with a pinhole (diameter 0.2 mm). The intensity of the

laser light passing through the pinhole was detected by a photo-multiplier (Hamamatsu).

The distance between the lens and screen was 1 m. With this arrangement, it was possible

to measure the absorption of a plasma volume with a diameter of approximately 40 µm

3The experiment was performed 3 times, using the different laser diodes enlisted in table 3.1 for the
different transitions.

lens
f = 16 cm

photomultiplier
l = 1 m

h = 1 mm

plasma

screen with
pinhole
d = 200 µm

x

z
y

Figure 4.11: Experimental arrangement for diode laser absorption measurements of high spatial resolu-
tion.
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parallel to the DBD glass plates. A similar optical arrangement, using a hollow cathode

as a light source, was already presented in [Vad00]. The absorption signals were measured

stepwise by moving the screen with the pinhole in the direction perpendicular (x direction)

and parallel (y direction) to the DBD glass plates. In this way, the time-dependent spatial

absorption distributions K(x, y, t) with a spatial resolution of 40x40 µm in the x–y plane

were obtained. The measurements were performed for two orientations of the DBD with

respect to the observation axis (z-axis). In the first case, the plasma column was orientated

perpendicular to the observation axis (side-on measurements), whereas in the second case,

the plasma column was orientated parallel to the observation axis (end-on measurements).

Time-dependent and spatial distributions of excited plasma atoms In the case

of side-on measurements, the length of the absorbing layer was approximately 1 mm long

and the absorption lines were optically thin with maximum optical depths of approxi-

mately 0.06, and 0.28 for the 800.836 and 801.699 nm lines, respectively. The optical

depths Kr and Km, related to the argon atoms excited to the resonance and metastable

state, respectively, were strongly dependent on the position x between the electrodes,

while they were constant along the plasma column. The optical depths Kr(x, y = 0, t)

and Km(x, y = 0, t) measured for one full discharge cycle at an argon pressure of 20 mbar

are shown in figure 4.12 for all four lowest levels of argon.

In each half-period of the applied voltage, the absorption shows a maximum located at

approximately 200 – 300 µm from one of the electrodes that is identified as the temporary

cathode4. At this position, the highest concentrations of Ar atoms in their resonance and

metastable states appear at approximately 12 and 17 µs, respectively, after the polarity

changes. The different delays are obviously due to different excitation mechanisms for

the 1si states. The resonance states are populated by electron impact, recombination and

relaxation processes, while in particular recombination and relaxation are dominating for

the metastable states. Furthermore, it can be noticed in figure 4.12 that the concentration

of metastable atoms decreases much more slowly than the concentration of atoms in the

resonance states. This is the consequence of the different lifetimes. The natural lifetime

of the Ar resonance states is in the range of ns, while it is seconds for the metastable

states. However, the effective lifetimes greatly vary from the natural lifetimes under the

experimental conditions chosen. Radiation trapping of the argon resonance lines increases

the effective lifetime of the resonance states, while the lifetime of the metastable states is

mainly reduced by collisional quenching processes on the near walls of the discharge. The

4The maximum for 826 and 772 nm is shifted a little compared to 800 and 801 nm, because the
measurements were performed afterwards with slightly different chamber and pressure conditions.
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Figure 4.12: Time dependence of the relative peak absorption of Ar measured side-on (pressure 20 mbar,
gas flow 200 ml/min); left, resonance states; right, metastable states.

lifetime τ of the resonance states can be estimated using the Holstein formula [Hol51]

τo/τ = 1.15 ·
√

λr

3π2d
. (4.3)

λr wavelength of resonance line

d optically active volume

τo natural lifetime.

d represents the size of the optically active volume in the form of a thin slab (here d =

1 mm). The values calculated of τ ' 4 and 1 µs are in agreement with the experimental

data obtained by fitting the transient signals to an exponential decay. The actual lifetime

of the metastable atoms (approx. 0.1 ms) is still significantly larger than that of the res-

onance state. The end-on measurements of Kr(t) for the 800.835 nm line were performed

at various argon pressures and in both vertical (x) and horizontal (y) directions. Figure

4.13 shows Kr(x, y = 0, t) measured at two argon pressures (10 and 50 mbar) between

the electrodes.

The distance between the temporary cathode and the absorption maximum is pressure

dependent. It is approximately 400 and 200 µm for 10 and 50 mbar, respectively. This

behavior is similar to the situation in a glow discharge, where the negative glow is shifted

towards the cathode if the pressure increases. Furthermore, figure 4.13 shows that the

absorption maximum is shifted towards the temporary anode after the discharge current
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Figure 4.13: Time dependence of the optical depth Kr of the 800.836 nm Ar line measured end-on at
10 (left) and 50 mbar (right).

has peaked. This effect should either be due to excitation processes caused by a much

weaker second discharge maximum at 37 µs which is barely evident in figure 4.10 or by a

movement of the excited particles. In order to determine the plasma distribution outside

the region between the electrodes, Kr(xmax, y, t) was measured. As indicated, the data

were taken at the x-position where the highest concentrations were detected at 10 and

50 mbar. The results are displayed in figure 4.14. The concentration of excited atoms

depends on the pressure, and at lower pressure, the distributions are broader (figure 4.13).

However, the excited atoms are mostly confined to the region between the electrodes.

Therefore, the shift of the absorption maximum in the x-direction with time cannot be

caused by the diffusion of atoms. On the other hand, the excited atoms outside the

electrode region indicate the extension of the plasma at lower pressures, i.e. the diffusion

of free electrons in the y-direction.

Figure 4.14: Time dependence of the optical depth Kr of the 800.836 nm Ar line measured end-on at
the positions of the highest population density at 10 (left) and 50 mbar (right).
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Plasma diagnostics The results presented in the previous section show that excited

atoms are mainly generated in a very thin layer near the temporary cathode. Therefore,

the time-dependent and spatially non-homogeneous discharge is a rather challenging sys-

tem for plasma diagnostics of the gas temperature and the electron density. These data

were obtained by analysis of the absorption profile of the Ar 800.836 nm line measured end-

on at the position of highest concentration (xmax). The optical depth Kr(xmax, y = 0, t)

was measured by tuning the laser stepwise in the wavelength region between –15 and

+15 pm around the line center at λo. In this way, a set of data for Kr(t) with the laser

detuning parameter, ∆λ = λo − λ, was measured. Typical results obtained for three

different laser detunings are shown in the left hand side of figure 4.15. Taking into ac-

count the complete data set, the absorption profile Kr(∆λ) at particular times can be

constructed, as shown in the right hand side of figure 4.15. At this point, it should be

noted that the line profiles might be affected by interference effects in the observation

plane if the laser beam is not sufficiently spatially filtered. In this case, the variation of

the refractive index within the line profile may cause asymmetries in the absorption line

measured. Blue, as well as red, asymmetries may be observed. This effect can be very

pronounced if the optical depths in the line centers are greater than 2. The measure-

ments were performed in the line kernel, where the line profile is generally determined

by Doppler and impact broadening and can be analytically described by Gaussian and

Lorentzian functions, respectively [Uns68]. The profiles measured for Kr(∆λ) are of the

Voigt type, i.e. the convolution of Gaussian and Lorentzian profiles. The shape of the

Voigt profile depends on the parameters wg and wl which represent the full-widths at

half-height (half-widths) of the Gaussian and Lorentzian contributions, respectively. The

Figure 4.15: Procedure for the construction of the 800.836 nm Ar line profiles at different times (for
details see text).
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half-width wv of the Voigt profile is related to wl and wg according to equation 3.13. The

half-width wg of a Gaussian profile gives information on the gas temperature Tg by

wg =
2πλ

c
·
√

2RTg ln 2

M
. (4.4)

R universal gas constant

M mass of absorbing atoms

On the other hand, the half-width wl of the Lorentzian profile is given by the sum of

particular broadening contributions. In DBD, the main contributions are due to interac-

tions between the optically active atoms on one side and the ground-state argon atoms

(pressure broadening) and electrons (Stark broadening) on the other. Therefore, the ac-

tual Lorentzian half-width is of the form wpress
l + wstark

l , wpress
l = γaNAr where γa is the

gas temperature-dependent broadening parameter and NAr the argon density. The Stark-

width wstark
l is a complex function of the electron temperature Te and the electron density

Ne . The data for γa and wstark
l can be found in [Tac82] and [Gri64], respectively. In order

to extract wg and wl from the absorption coefficients measured, a standard method which

is based on the fact that the normalized Voigt profiles Pv(∆λ) have Lorentzian wings

Pv(∆λ) ∼ 1

2π

wl

(∆λ)2
, (4.5)

if (∆λ) � wv/2, was used. Then, wl can be derived from the profile measured for Kr(∆λ)

applying:

wl = 2π(∆λ)2 Kr(∆λ)∫
Kr(∆λ)dλ

. (4.6)

Taking into account the experimental wl and wv, the corresponding values for wg were

calculated via equation 3.13. The time-dependent Gaussian half-widths are plotted in

figure 4.16. The data represent the widths measured in the volume of highest population

density (at xmax). Furthermore, the values calculated for the gas temperature are also

displayed.

Gas temperature At the time of maximum excitation, the gas temperature is approx-

imately 1000 K. The gas then cools down to room temperature within 10 µs. During the

remaining time of the discharge cycle, the temperature stays constant within the limits

of experimental uncertainty, even during the period when the polarity has changed and

the second, weaker excitation maximum can be observed. The rapid decreasing of the gas

temperature seems implausible, but will be enlightened in the following lines.
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quantity ρ cp λ η u l′ k
kg/m3 J/kg K W/mK Pa µs m/s mm m2/s

300 K 0.08
520

0.017 22.2
3 1

4.08 · 10−4

1000 K 0.02 0.05 70.8 4.81 · 10−3

Table 4.2: Specific values for argon at 300/1000 K, 50 mbar and 200 ml/min.

Figure 4.16: Time dependence of the Gaussian
half-widths wg (upper graph). The corresponding gas
temperature dependence on time (lower part).

Three different mechanisms have to be

taken into account for cooling by heat

transfer: radiation, convection and con-

duction. The radiation follows the Stefan-

Boltzmann law and is only important for

high temperatures or in the case of low heat

conductivity. This term can be neglected

due to the low gas temperature and the

appropriate values of argon heat conduc-

tivity. Heat convection is heat transfer by

mass motion. In this case a forced con-

vection as a result of the gas flow appears.

The gas flow at 200 ml/min through an orifice of 1 x 1 mm2 is less than 3 m/s. In order

to estimate the role of convection, the type of flow in the chamber has to be evaluated.

In this case, the Reynold number, defined by

Re =
uρl′

η
, (4.7)

u gas velocity

ρ density

l′ characteristic length

η viscosity

divides the region in the laminar flow (Re < 2300), the transient and the turbulent (Re

> 4000) one. With the values given in table 4.2, the Reynold number amounts to 10

which determines a laminar flow in the chamber. Therefore, most probably only the heat

conduction takes part.

This mechanism is defined by means of molecular agitation within the gas without any

motion of the material as a whole. The process can be mathematically described by the

heat conduction equation, here for a simplified 1-dimensional case:

∂T (x, t)

∂t
=

λ

ρcp

∂2T (x, t)

∂x2
. (4.8)

ρ density

cp heat capacity

λ thermal conductivity

x distance between electrodes
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Figure 4.17: left: Experimental measured gas temperatures (as in figure 4.16) and simulated curves;
right: simulated temperature profile for data of 1000 K

The cooling of the gas can be simulated, x again being the direction perpendicular to the

electrodes and h the height of the chamber. The boundary conditions are chosen in such a

way that the walls of the discharge remain at room temperature all the time. This seems

to be a reasonable approximation, because excited particles could only be measured in a

specific distance of the electrodes. Furthermore, the initial condition for the temperature

at time zero can be chosen arbitrary:

T (0, t) = 0, T (h, t) = 0 and T (x, 0) = φ(x). (4.9)

The final solution of this partial differential solution with the above given initial and side

conditions is given by

T (x, t) =
∞∑

n=1

bne
−(nπ

h
)2kt sin(

nπx

h
) with bn =

2

h

∫ h

0

φ(y) sin(
nπy

h
)dy. (4.10)

In this case, k represents the ratio of λ/ρcp. It is in good agreement with the experimental

data to approximate the initial temperature distribution φ(x) by a rectangular function

with 1000 K at a distance of 200 to 400 µm of the cathode and 300 K elsewhere. The

factors of k are not invariable over the time, because the temperature is changing. As can

be seen in table 4.2, the factor varies for the two extreme temperatures by one order of

magnitude. Consequently, the exponential decay is different as plotted in figure 4.17 for

the two temperatures of 300 and 1000 K.

The temperature at later times (100 – 150 µs) corresponds to the equivalent temperature

close to the anode. Consequently, the simulation shows the values obtained for earlier
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times 750 µm far away from the cathode (see right hand side of figure 4.17). As it can be

seen, there is good agreement with the experimental data for this very simple model. For

further investigations one would have to revise the assumption of laminar flow, because

of the strong temperature gradients. Furthermore, a 2-dimensional heat equation could

include the gas flow. Interestingly, the dependence on anode side can be well simulated,

too.

Figure 4.18: Time dependence of the Lorentzian
half-width (near the temporary cathode).

Electron density The time dependence

of the Lorentzian width wl, displayed in

figure 4.18, qualitatively shows similar be-

havior as the Gaussian width. With the

exception of the time of the first discharge

maximum, wl is constant during the whole

discharge cycle (wl ' 1.7 pm). Taking into

account the experimental error bars, this

room-temperature value of wl agrees well

with the values for pressure-broadening

wpress
l derived from [Tac82]. The contri-

bution of pressure broadening to wl for the

‘hot’ discharge period (see figure 4.18) was

calculated taking into account the reduced number density in the discharge volume probed

(application of Dalton’s law) and the typical temperature dependence (∝ T 0.3) of the

pressure-broadening parameter. The difference between the values measured for wl and

the wpress
l data calculated yields the contribution of Stark broadening (wstark

l ) to the mea-

sured half-width wl. The Stark widths wstark
l are plotted in figure 4.19. Outside the ‘hot’

discharge period, the wstark
l data cannot be evaluated, since the experimental error bars

are too large. The calculation of the electron density from wstark
l requires the electron

temperature according to [Gri64]

∆λwidth
Stark = 2(1 + 1.75 · 10−4 4

√
Neα(1− 0.068

6
√

Ne√
Te

) · 10−16wNe (4.11)

and the corresponding values are enlisted in table 4.3.

Unfortunately, the electron temperatures could not be determined within the scope of

the present work. However, taking into account the experimental conditions, the electron

temperature should be in the range of 10 000 – 300 000 K. The lower limit of 10 000 K

corresponds to the excitation temperature of the resonance and the metastable argon
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T 2 500 K 5 000 K 10 000 K 20 000 K 40 000 K 80 000 K
w 3.5 · 10−2 4.38 · 10−2 5.76 · 10−2 7.65 · 10−2 9.43 · 10−2 1.04 · 10−1

d/w 1.768 1.655 1.381 1.032 0.752 0.565
α 0.047 0.040 0.032 0.026 0.022 0.021

Table 4.3: Coefficient for Stark broadening given in Angstrom, λ=800.835 nm [Gri64].

states obtained from the excited to ground-state argon atoms density ratio, while the

upper limit is related to the maximum kinetic energy the electrons can accumulate on

the average free path in the electric field applied. Nevertheless, this large uncertainty

in the experimental electron temperature does not affect the uncertainty of the electron

density to the same extent. Furthermore an electron temperature of around 1 eV can be

determined by the particle balance presented in figure 2.3.

Figure 4.19: Time dependence of the Stark width
obtained from the data shown in figure 4.18. Inset
shows theoretical values of w dependent on electron
density.

The inset of figure 4.19 shows wstark
l in re-

lation to Ne and Te obtained by use of the-

oretical results published in [Gri64]. The

Stark broadening parameters were calcu-

lated for electron temperatures in the range

between 2 500 and 80 000 K. The dashed

blue curve (Te = 320 000 K) in figure 4.19

is an extrapolation of the theoretical re-

sults. Taking into account the experimen-

tal errors and the uncertainty in Te, the

data show that the largest value of wstark
l

corresponds to an electron density in the

range 1·1015 – 3·1015 cm−3.

Taking into account the maximum electron density of 3 · 1015 cm−3 and the Ar number

density of about 1.5·1017 cm−3 at 20 mbar and 1000 K derived from the ideal gas equation,

approximately 1 % of all Ar atoms are ionized. The number density of the Ar atoms N∗
Ar

in the metastable and resonance states can be calculated from equation 3.5, taking into

account the side-on measured optical depths K of the corresponding lines at the time and

position of maximum absorption (see figure 4.12) and the approximate absorption length

for side-on measurements (1 mm). The maximum number density values were found to

be 5 · 1011, 5 · 1011, 2 · 1012 and 1 · 1013 cm−3 for the 1s2, 1s3, 1s4 and 1s5, respectively.

Concluding remarks High spatial-resolution plasma diagnostics of low-pressure DBD

diode-laser absorption spectroscopy gave clear evidence for a thin, short-lived plasma layer
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of approximately 40 µm thickness and 1 mm width near the temporary cathode. In this

layer, plasma atoms are efficiently excited, the gas temperature reaches approximately

1000 K and an electron density of greater than 1015 cm−3 can be found. In all other

areas, the excitation is less efficient, the gas temperature is near room temperature, and

the electron density is below 1014 cm−3. This means that most of the electrical power is

used to heat a very small plasma volume for a short time. The mean power consumption

of the discharge is less than 0.1 W. The discharge volume is given by the electrodes

(50 mm x 1 mm) and the distance between the electrodes (1 mm), resulting in a volume

5 · 10−2 cm3. Therefore, the integral power density is about 1 W/cm3. The peak power

density is 100 times higher, because the highest atom and electron density is strongly

localized in about one tenth of the discharge volume. Furthermore, the half-width of the

current pulse is also only a tenth of the whole plasma cycle. Consequently, the peak power

density of 0.1 kW/cm3 is in the same order of magnitude as the mean power density of an

inductively coupled plasma (ICP). In an ICP with a conical plasma torch length of about

25 mm and a diameter of 25 mm the input power is typically about 1 kW, resulting in

an average power density of about 0.5 kW/cm3.

4.2.2 Analytical application

Absorption measurements – Improvement of the detection limit

During my diploma work [Kun01], the dielectric barrier discharge was already imple-

mented as a detector for analytical purposes, which was also published in [Mic01]. Diode

laser atomic absorption spectroscopy was used to trace halogenated molecules in gases.

A laser beam of 1 mm diameter (distance between electrodes) probed the absorption

along the discharge channel. The absorption signal was measured by a phase sensitive

detector using the ac modulation frequency of the DBD. The different concentrations of

halogenated hydrocarbons were obtained by diluting an initial mixture of 17 ppm (v/v)

CCl2F2, CClF3 or CHClF2 in a rare gas (Ar, He) down to concentrations near the de-

tection limit. The limits of detection (defined by the 3σ-criterion) for all halogenated

hydrocarbons in the Ar DBD were approximately 5 ppb, using the 837.824 nm Cl absorp-

tion line, which probed the metastable Cl atoms. In He, the detection limits were 400 ppt

and 2 ppb for CCl2F2 using the Cl 837.824 nm and the F 685.792 nm line, respectively.

The absorption signals of Cl and F at high analyte concentration values (several ppm)

correspond to the stoichiometric ratios of these elements in the molecules, which prove

equal dissociation of different analytes. The averaged gas temperature obtained by the
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evaluation of the gaussian profile of fluorine absorption was shown to be low (500 K).

This value is in close agreement with an averaged value of the spatially resolved measure-

ments, which would lead to around 400 K. This low medium gas temperature allows the

operation of the DBD over a long period of time (over 500 h of continuous operation).

As was presented in the previous section, the excited atoms in the argon discharge are re-

stricted to a small volume. Therefore, the above-mentioned measurements of halogenated

hydrocarbons by diode-laser absorption spectroscopy of excited chlorine or fluorine can

be improved significantly. In the former experiment, the diode laser beam filled the

whole space between the electrodes. However, the main absorption obviously was only

in the small layers near the temporary cathodes. Hence, the spatial distribution of ex-

cited chlorine atoms in the discharge has to be determined and, finally, the absorption

has to be measured only in a restricted volume. For the following investigations, the

discharge was operated in He or Ar with CCl2F2 admixture. The measurements were

performed at a frequency of 5 kHz and about 700 Vpp applied. The excited Cl atoms

in the metastable level were determined using the high resolution arrangement presented

previously (figure 4.11). The laser diode (Hitachi HL8325G) was tuned to the transition of

the chlorine line at 837.824 nm (4P5/2 – 4Do
7/2). The distribution of the excited Cl atoms

on the metastable (4P5/2) level was measured in Ar with 150 ppm CCl2F2 (total flow

rate 150 ml/min) for pressures between 20 and 50 mbar where the discharge presents a

uniform working regime (glow type discharge). At higher pressures, filaments are formed,

which can be observed easily in the shape of the current pulse. Measurements were also

performed in He in which the discharge is working in a stable mode up to 120 mbar. It

has to be noted that this high CCl2F2 concentration has no analytical relevance. It was

only used in order to obtain direct absorption signals which give the spatial and temporal

distribution.

The relative distributions of the excited Cl atoms for one period of the applied voltage

in Ar as well as in He are presented in figure 4.20 for different pressures. From these

measurements it can be seen that there is a difference between the absorption signal if Ar

or He as carrier gas is used. In Ar the maximum density of excited Cl atoms is close to the

temporary cathode, similar to the results obtained only in the Ar plasma. Furthermore,

increasing the pressure, this maximum is moving closer to the cathode; this proves that

the main part of energy is dissipated in a layer near to the cathode. The distribution

of Cl atoms in He follows a totally different behavior. Most of the excited atoms on

the metastable level are produced between the middle of the discharge and the anode.
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Figure 4.20: Spatial distribution of chlorine atoms on metastable state in a helium (left) and argon
(right) discharge for different pressures.

Only at much higher pressures the maximum is displaced in the direction of the cathode.

Measurements of Ar excited atoms in an Ar/He mixture showed the same distribution

like Cl/He mixtures.

The different distribution of excited Cl atoms in these two carrier gases can be explained

taking into account the mechanisms of production of these excited atoms. The CCl2F2

molecule is dissociated in collision with the energetic electrons (complete dissociation

energy around 16 eV) and Cl negative ions are formed. The electron detachment process

followed by collisions with electrons and neutral atoms lead to the formation of Cl atoms

in the ground and excited states. There are few factors that generate different density
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distribution of the excited atoms between the electrodes. First of all, the electron density

in the He plasma is smaller than in Ar at the same operation conditions. As a consequence,

there is a smaller density of excited Cl atoms in He (3 times smaller as can be seen from

figure 4.20) than in Ar, since the excitation is caused by electrons.

Figure 4.21: Energy diagram of Ar, He and Cl.

The metastable atoms of the buffer gas (see

figure 4.21) have also an important role in

the feeding of the 4P5/2 Cl level because

they are a deposit of energy in the dis-

charge. The first excited levels of Ar are

close (3 eV) to the Cl 4P5/2 level and colli-

sional transfer between these levels result-

ing in the population of Cl level is very

probable. In He the metastable levels are

much higher and Cl atoms cannot be ex-

cited to metastable levels through the same mechanism as in Ar.

The displacement of the maximum density of Cl excited atoms can be explained (i) by

the value of the mean free path of the electrons which is 3 times smaller in Ar than in

He [Eng75] and (ii) the drift velocity of electrons that is in He 3-5 times higher at the

same reduced electric field. Electrons produced close to the cathode are moving further

in a helium discharge than in an Ar discharge. If we assume that Cl atoms are generated

mostly by collisions with electrons then the distribution of these excited atoms between

anode and cathode is much broader in He than in Ar.

The temporal behavior is also different, the absorption signal of Cl excited atoms is

narrower in He than in Ar. The excited atoms are decaying faster from the metastable

level in the case of He. Furthermore, with Ar as buffer gas, the absorption signal of

Cl reaches another maximum at later times (later than 5 µs after the first maximum)

and the formation time of this maximum depends on the position in the discharge. It is

assumed that the second maximum is connected with the time dependent diffusion of the

metastable atoms [McD64] produced in the negative glow of the discharge. This proves

that Ar metastable atoms have a strong influence. Such behavior was not observed in the

He plasma.

According with these results, it is clear that measuring the density of the excited Cl atoms

in Ar spatially resolved will improve the detection limit reported in [Mic01]. No change

is expected in He due to a much broader spatial distribution. It has to be mentioned that

the modulation and detection of the signal must be adapted to the new arrangement.
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Figure 4.22: left:Cl signal dependence in Ar discharge on modulation frequency; right: Calibration curve
of CCl2F2 in Ar measured with and without spatial resolution.

In the earlier case, the detection was performed phase-sensitive on twice the modulation

frequency because the plasma was switched on and off twice during one period of the

applied voltage. A Fourier transform of the absorption contains accordingly only 2-f

components.

If the measurements are resolved spatially (close to the cathode), absorption is only

obtained once in the period of the applied voltage. Consequently, the strongest component

of the Fourier transform is the 1-f signal. Furthermore, because the temporal decrease

of the absorption signal depends not on the modulated voltage, but on the lifetime of

the investigated species, the frequency has to be customized. Different densities in the

discharge, changing by pressure and gas flow, result in different lifetimes of the species.

Figure 4.22 shows the signal dependence on the modulation frequency for 1- and 2-f

detection. The signal for the 2-f modulation was obtained spatially resolved in the middle

of the discharge. This corresponds to the previous measurement without spatial resolution

because on each two half period the signals are equal. The 1-f signal was measured close to

the cathode with only one signal for one period. The 2-f modulation reveals a maximum

at 10 kHz as it was already reported earlier [Mic01]. In contrary, using 1-f detection the

frequency has to be twice as large, which can be explained by the same exponential decay

of the excited species.

From the calibration curve shown in the right hand side of figure 4.22, it can be seen that

the Cl absorption measured in Ar as carrier gas is one order of magnitude higher if the

measurements are performed only in the effective plasma volume located 100 µm from

the cathode. Accordingly, using a low noise detector the former detection limit of 5 ppb

CCl2F2 in an argon discharge can be improved by one order of magnitude, resulting in

the same limit of detection as in a helium discharge.
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The dielectric barrier discharge as a detector for gas chromatography ‡

The results presented above showed that the dielectric barrier discharge is as powerful

plasma for the detection of halogenated gases. However, in routine analysis, when different

molecular species have to be analyzed, a separation before the detection is required (see

figure 3.1). Therefore, the capability of the DBD as a detector for gas chromatography

was tested.

Experimental arrangement The experimental arrangement is shown in figure 4.23.

modulator

tangential
gas flow

diode driver

lock-in (2f)

photo diode

high voltage
generator

GC

sample injection

He

PC

Figure 4.23: Experimental arrangement of DLAAS
in the DBD coupled with a GC.

Absorption measurements were performed

by passing the collimated beam of a laser

diode through the plasma volume with-

out filtering spatially. The transmitted

laser radiation was measured by a photo-

diode. In contrast to the previous mea-

surements [Mic01], the discharge volume

was restricted by two additional glass spac-

ers forming a small plasma channel to re-

duce the dead volume. Most of the mea-

surements were performed in helium and,

therefore, it was not necessary to collimate

the laser beam to the size of the plasma which only results in an improvement in the de-

tection limits if DLAAS in Ar DBD’s is performed (see section 4.2.2). Beam collimation

would complicate the arrangement, too, and makes it less robust, in particular if more

than one diode laser is used. The separation of the species was performed by a gas chro-

matograph (Shimadzu GC-14A), using a fused silica capillary column (FS-SE-54-CB-1).

The end of the column was connected to the DBD-chip perpendicular to the plasma gas

flow and very close to the plasma volume.

The molecular species in the test samples are enlisted in table 4.4. The initial sample

contained 20 µl/ml of each component and was diluted six times by a factor of four. The

carrier gas of the gas chromatograph was helium, while helium as well as argon was applied

as plasma gas. The temperature program was set as follows: 60 ◦C initial temperature,

0 min start time, 25 ◦C/min heating rate, 200 ◦C final temperature, 200 ◦C temperature

at injection port. Samples of 1 µl were injected manually with a syringe into the split-less

‡This chapter has been published in slightly different form in The dielectric barrier discharge as a
detector for gas chromatography Spectrochimica Acta Part B 58 (2003) 1435 – 1443 [Kun03].



4.2. LOW-PRESSURE DIELECTRIC BARRIER DISCHARGE 65

injector of the gas chromatograph.

fluorobenzene (C6H5F)

1,2-dichloropropane (C3H6Cl2)

1-bromobutane (C4H9Br)

1-chloropentane (C5H11Cl)

1-iodobutane (C4H9I)

2,5-dimethylthiophene (C6H8S)

1-bromo-4-chlorobutane (C4H8BrCl)

hexane (C6H14) as solvent

Table 4.4: Samples used for the gas chro-
matograph.

For the measurements of the chlorinated hydro-

carbons the laser diode that was mentioned be-

fore was used (section 4.2.2). The absorption

signals were determined as in the previous ex-

periment [Mic01] with a phase-sensitive lock-in

amplifier (Stanford Research SR810 DSP) using

the double modulation frequency of the plasma

generator as reference. The signal was acquired

by a personal computer and the data evaluation

was done off-line. Two other laser diodes were

used in this experiment, a Mitsubishi ML 1012R-

01 laser diode for the detection of the fluorinated

hydrocarbons (F line at 685.792 nm) and a commercial external cavity diode laser (ECDL,

Toptica, Germany) for the detection of sulfur (S line at 921.539 nm) as well as iodine con-

taining species (I line at 906.081 nm). The measurements of C4H9Br and C4H8BrCl by

the 827.472 nm Br line could be performed with the same diode as for chlorine. All three

diodes were aligned collinear for simultaneous detection, and attenuated with a neutral

filter to about 500 µW in order to avoid optical saturation.

Optimization of parameters The dielectric barrier discharge is a very powerful plasma

despite the fact that the mean power consumption is relatively low. Therefore, the plasma

should be very robust against loading by eluates coming from the gas chromatograph. It

was observed that the plasma in helium was only quenched for a short time, when the

solvent was released from the column, but it was self-reignited without an auxiliary spark

shortly after. In argon the plasma was not extinguished at all, but filamentation of the

plasma could be noted when the solvent hexane arrived in the DBD. In order to protect

the discharge chamber and to improve the lifetime of the chip, the plasma was manually

switched off during the residence time of the solvent and it was switched on after it had

passed the discharge chamber. The time between the reignition of the plasma and the

first eluate was approximately 15 s. Chromatograms of the test sample detecting F, Cl,

Br, I and S are presented in figure 4.24.

The four halogens as well as sulfur were measured sequentially. All responses were nor-

malized for better visualization. The relative absorptions of S, F, Br and I compared

with Cl were smaller by factors of about 5, 10, 20 and 100, respectively. There are weak
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Figure 4.24: Normalized chromatograms of the substances enlisted in table 4.4 in hexane monitoring
the different elemental absorption lines. The concentration of each species is 300 nl/ml.

absorption signals in the iodine chromatogram at the retention times of the species that

do not contain iodine. These signals are non-specific for iodine. They are a result of

changes in background absorption at the position of the I-line affected by the respective

species. Furthermore, there is a broadening of the Cl signals that will be discussed later.

Although all elements could be detected, the measurements were mainly restricted to the

detection of chlorine. The test sample with all species was used to study the influence

of different species on the signals analyzed. An influence of one substance on the detec-

tion of the other is also called matrix-effect in analytical spectroscopy. The detector was

optimized for Ar and He by varying the flow and pressure of the plasma gas, as well as

the discharge voltage. The time constant of the lock-in was chosen in such a way that

both the peak shape and noise were acceptable. While the noise is reduced with higher

time constant, the shape of the absorption signal was affected by time constants higher

than 300 ms. Therefore, 300 ms was used for all measurements. The DBD can be oper-

ated at voltages less than 500 V but atomic absorption is not measurable. An increase

in the voltage improves the signal until it reaches a constant value. Here, an efficient

dissociation of the species is assumed. However, the voltage which is necessary for com-

plete dissociation depends on the concentration of the analyte. It should increase with
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Figure 4.25: Upper part: chromatograms obtained in helium and argon discharges by DLAAS of the Cl
837 nm line; lower part: Cl absorption measured with 1-bromo-4-chlorobutane (C4H8BrCl) dependent on
pressure and gas flow, normalized to the best obtained conditions.

increasing concentration. On the other hand, at high voltages (1 kV) plasma filaments

can be observed and the lifetime of the discharge is reduced. Consequently, the peak to

peak voltage was kept constant for the measurements at 800 V. It should be noted that

an increase in signal dependent on the voltage could partly be due to an expansion of

the constricted plasma volume (see section 4.2.2). However, this was not investigated.

The dielectric barrier discharge can be sustained with small gas flows. The flow through

the GC-column (about 5 ml/min) is sufficient to operate stable plasma. Anyhow, it was

noted that the signal shapes in the chromatograms are very broad. Additionally, the

background was not constant over the whole chromatogram, because the pressure, as well

as the viscosity of the gas, changes as a result of the temperature ramp generated by

the GC. Therefore, the use of an additional gas flow is advisable as was also reported by

[PB96]. Figure 4.25 (upper part) shows a Cl chromatogram taken with argon and helium

as buffer gases. In the lower part the relative absorption of 1-bromo-4-chlorobutane (the

third peak) dependent on pressure and gas flow is plotted for each gas.

With respect to the absorption in the argon plasma a strong dependence of the signal

on both the pressure and the flow was observed. In contrast, the signal in helium is
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less dependent on the flow, as long as there is an additional flow, since the contour lines

are almost parallel to the x-axis. In argon the flow has to be low (50 ml/min) and the

pressure as high as possible to obtain the best signal. In helium the pressure has to be

lower, about 50 mbar. This dependency on flow and pressure is due to changes in the

plasma conditions. The strong pressure dependent increase of the signal in argon could

be explained by the transition from a homogenous plasma to a filamentary one. The

latter plasma mode shortens the lifetime of the plasma chip significantly; consequently,

pressures lower than 100 mbar should be used.

Analytical results The stoichiometry of the three chlorine containing substances

C3H6Cl2, C5H11Cl and C4H8BrCl, has a ratio of 2 : 1 : 1. However, experimental ratios

calculated from the signal heights as well as from the integrated signals were 2 : 0.97 :

1.67 for Ar and 2 : 0.89 : 1.44 for the He DBD as can be seen in figure 4.25. While the

measured ratio of the first two components is similar to the theoretical ratio, the third

component is too large. It could be possible that the plasma is still affected by the solvent

at the retention times of the first two components. The time between the arrival of the

solvent and the first eluates has to be increased in order to improve the stoichiometry, e.g.

by application of a solvent with a lower boiling point. Another possibility is the use of

a bypass line for the solvent. In commercial devices this problem is solved by a reversed

flow, whereby the gas flow is inverted for the time of the solvent preventing it to pass the

chamber.

Figure 4.26: Calibration curve for 1-bromo-4-
chlorobutane (C4H8BrCl) in hexane obtained by
DLAAS of the Cl 837 nm line.

A calibration of 1-bromo-4-chlorobutane

for the helium discharge is shown in fig-

ure 4.26. The amplitude of the peaks (open

circles) is linear over 3 orders of magnitude,

while at high concentrations the calibra-

tion curve flattens. If the signal areas of the

chromatograms are taken into account (full

circles) a similar calibration curve and de-

tection limit is obtained. At high concen-

trations (more than 1 µl/ml) the plasma

conditions are greatly affected which can

even be seen directly, i.e. the color of the

discharge changes during the elution time

of each substance. A 3σ detection limit of 200 pl/ml was found for C4H8BrCl. Taking
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into account the injected volumes of 1 µl this corresponds to detection limits of 300 pg

for C4H8BrCl and 60 pg for Cl. The half-width of the peaks is about 10 s and therefore,

the chlorine flow at the limit of detection is about 6 pg/s. Although the plasma is still

slightly affected by the solvent, the first two species in the chromatogram (C3H6Cl2 and

C5H11Cl) have linear calibration curves and detection limits in the same order as found

for C4H8BrCl. With the measurements summarized in the first part of this section a

detection limit of 400 ppt for freon (CCl2F2) was reported using DLAAS for Cl at a gas

flow of 500 ml/min in a helium discharge. This amounts to a chlorine flow of 10 pg/s at

the limit of detection, which is in the same order of magnitude compared to the actual

experiment. The detection limit in the argon discharge was a factor of 10 higher, which

can be seen in the GC measurements as well. While the absorption signal is almost the

same, the noise is one order of magnitude higher than in helium. Therefore, a calibration

leads to a detection limit of 300 pg chlorine.

Improvement of selectivity It is remarkable that the width of the chromatographic

peak in argon is much narrower than that in the helium discharge (see figure 4.25). Ac-

cordingly, the chlorine flow at the limit of detection is comparatively higher with 150 pg/s.

The reason for the different peak shapes in different buffer gases is unknown. There could

be several reasons for this phenomenon. First of all, the discharge parameters are dif-

ferent, even at the same flow, pressure and voltage. The electron density in a helium

discharge is known to be one order of magnitude lower than in an argon discharge, while

the electron temperature is higher. Secondly, the masses of the plasma gas atoms are

different, this results in the energy transfer collisions in an argon discharge being more

effective than in a helium discharge. Furthermore, the adsorption and desorption of ana-

lytes from the walls is probably different for the two plasma gases since the temperatures

at the wall are not the same. In an argon discharge the constricted zone of high excitation

is closer to the temporary cathode and with this to the discharge wall. This results in

higher temperature and less desorption process, than in a helium discharge. The broad

peaks are a major problem in the helium discharge because two neighboring peaks can

overlap. A reduction of the width is desirable since the detection limits in helium are

much better than in argon, and it is the same gas that is used in the GC. The Ar DBD

has the problem of an unspecific absorption, already reported in an earlier publication

[Mic01], that gives rise to higher noise and detection limits. If the peak tailing in helium

is due to the deposition of carbon on the discharge wall, the addition of oxygen (so called

scavenger gas) to the plasma gas should keep the carbon volatile and, therefore, prevent

carbon deposition. As a result, the resolution should improve. However, the addition
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Figure 4.27: left: Signal widths and height of C4H8BrCl on the oxygen concentration; right: Cl chro-
matogram in pure helium and He with an addition of 650 ppm O2.

of oxygen could lead to collisional quenching of the excited states and, therefore, to a

decrease of sensitivity for the halogens [Dal77]. The dependence of the DLAAS signal

height and width on the amount of oxygen in a helium discharge is shown in figure 4.27.

The amount of scavenger gas was decreased starting at 1 percent. By adding oxygen,

the peak not only narrows and, therefore, increases the resolution but also increases the

sensitivity in a small range. A concentration of about 600 ppm increases the signal height

by a factor of 2 to 3, while the width is reduced by approximately the same amount (right

hand side of figure 4.27). With 600 ppm oxygen a detection limit of 60 pl/ml was found

for C4H8BrCl which was three times better than without the scavenger gas. Addition of

oxygen to the Ar DBD had no influence on the shape of the signal, but decreased the

amplitude of the DLAAS absorption signal, mainly by quenching of the excited states. To

my knowledge an increase of signal amplitude in chromatograms by the addition of oxy-

gen was not reported so far, while an increase in selectivity is well known. It is assumed

that the carbon deposition on the wall is reduced by the formation of CO. Therefore, the

adsorption of halogen atoms on the walls of the discharge is lower and pronounced peak

tailing is avoided. Furthermore, the absorption signal is higher because atoms stay in the

plasma.

Comparison with other GC detectors Similar GC experiments with DLAAS de-

tection were performed a few years ago using non-miniaturized plasmas [Zyb95]. The

detection limits by double-modulation DLAAS were 0.12 pg/s and 0.25 pg/s in a mi-

crowave induced plasma and in a DC discharge, respectively. Recent atomic emission

measurements using a microwave plasma and a miniaturized Echelle spectrometer gave

detection limits of 95 pg/s chlorine in helium [Koc04]. A detection limit of 13 pg/s for

chlorine has been reported for the commercial atomic emission detector (AED) G2350A
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built by Agilent [Qui96]. Lately, Bessoth et al. published a Cl detection limit of 800 pg/s

after applying their DC plasma on a chip and a conventional GC instrument [Bes02].

They also report on strong peak broadening. The detection limits obtained with the sys-

tem reported are in the same order of magnitude or even better than those listed above.

Therefore, the DBD can be regarded as a powerful and promising device for integration

in µTAS. However, some problems still remain to be solved, such as improvements in the

peak tailing and the stoichiometry.

Emission measurements

DLAAS is a sensitive detection method employed in analytical spectroscopy, but it is lim-

ited to one or a few elements because the experimental setup becomes more complicated

by using different laser diodes simultaneously. Nevertheless, this has been demonstrated

by [Gro93]. Contrary, emission spectrometry is a powerful method for multi-element anal-

ysis, and coupling of a plasma source with such a detection is a much simpler arrangement.

Following this idea, the dielectric barrier discharge was coupled with the echelle spectrom-

eter described in section 3.2. Normally, the plasma is imaged with a lens onto the slit or

the fiber of the spectrometer. However, it was observed that this does not result in an

improvement of the detected light intensity compared to a setup with a fibre as close as

possible to the channel. Probably the optical depth of the imaging cannot be larger than

it is by direct measurements due to the aperture formed by the glass spacers on the side.

Two echelle spectra of the dielectric barrier discharge operated in argon and helium with

an admixture of CCl2F2 as analyte are presented in figure 4.28. The exposure time was 4 s

in both cases and 10 spectra were averaged. The strongest emission lines of the rare gas

and the detected chlorine and fluorine lines are marked. It is obvious that fluorine is not

detectable in an argon discharge because the excited fluorine levels are higher than the first

excited argon level. This was already noticed during the laser absorption measurements.

Additionally, impurities like oxygen, nitrogen and hydrogen are excited. Furthermore, the

gradient of the diffraction orders of the echelle grating is visible by some saturated lines.

It follows a slightly bended curve starting on the lower left going to the upper right hand

side. Some lines are observable in two diffraction orders of the echelle grating, such as the

helium 667.815 nm or argon 751.465 nm line. In order to obtain low detection limits for

one element, the lines diffracted in different orders, as well as different transitions can be

summed up. A further improvement is achieved by a binning of several pixels of the CCD

during the read-out time of the detector. In this case, a specific amount of neighboring

pixels is read-out at once, which increases the sensitivity since the read-out noise appears

only once. Additionally, the dead time of the detector is reduced which is important for
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Figure 4.28: Emission spectrum of a DBD discharge burning in helium and argon with an admixture of
17.5 ppm and 190 ppb CCl2F2 respectively.
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fast measurements, like the coupling with a GC shown in section 4.3.
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Figure 4.29: Emission signal of chlorine line.

The chlorine emission signal for 500 ppb

CCl2F2 in helium is shown in figure 4.29.

A calibration curve results in a 3σ detec-

tion limit of 150 ppb. At first glance, this is

not consistent with the signal-to-noise ra-

tio at 500 ppb, but one has to take into

account the nonlinearity of the calibration

curve. The detection of fluorine was im-

pacted by a contamination of the discharge

wall. The detection limit in emission is

obviously worse than for absorption spec-

troscopy, even though the time constant was higher. This can be explained by the fact

that the discharge has a low emission efficiency, which can be overcome in absorption by

a long absorption length. Furthermore, the emission volume is small.

4.3 High-pressure dielectric barrier discharge

For more simplified analytical devices, high-pressure operation is preferred because the

vacuum system can be economized. Furthermore, high-pressure discharges have a higher

density and, therefore, a higher excited state and electron density, and also a higher gas

temperature. This would lead in turn to a more efficient dissociation and excitation.

However, the disadvantage of high-pressure operation is a higher sputtering rate at the

discharge electrodes, which makes it necessary to improve the design of the discharge. The

dielectric barrier discharge presented operates in a streamer-like mode at atmospheric

pressure, which strictly limits the lifetime of the thin dielectric layer. Therefore, the

dielectric thickness has to be increased and, according to the similarity laws, the electrode

distance has to be decreased. A very simple but, at the same time, successful design has

been developed. The main idea was the use of a chromatographic column (inner diameter

of several hundred micrometer) and two metal electrodes which are externally attached

parallel to the capillary, each a few cm long. The most challenging task was the positioning

of the electrodes without generating sparks on the outer part of the column, but igniting

the discharge only inside the capillary. The thicker dielectric requires a higher voltage

than can be obtained with the generator used previously. Therefore, a commercial high

voltage supply for UV lamps was adapted to the experimental setup. The generator of
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the Hansen-Neon company used in this setting offers a high voltage of 3 000 V and a

current up to 20 mA with a frequency of 16 – 20 kHz, depending on the electrical circuit.

Lower voltages are obtained by a potential divider, while the current is limited by a series

resistance. The rare gases Ar and He were used as plasma gases. This discharge can

be used for analytical spectroscopy, either as a source for emission spectroscopy or as a

primary ion source for chemical ionization in combination with mass spectrometry.

4.3.1 Emission spectroscopy

The discharge was coupled with the echelle spectrometer described in section 3.2. The

device was first tested with gas mixtures as in the case of absorption spectroscopy in the

low-pressure DBD. Thereby the signal depends strongly on the applied voltage and the

inlet pressure used, both changing the plasma conditions. The capillary was connected

directly to the gas supply and the gas was flowing through the discharge into open air.

This means that increasing the pressure in the discharge will increase the flow of the gas.

Therefore, the increase of the signal with higher pressure is expected, as higher gas flow

leads to higher particle density as well as less contamination and quenching.

The design of the discharge is suitable to use the plasma as an emission detector for gas

chromatography. The discharge can be mounted directly at the end of a GC column,

while it can be sustained only by the gas flow of the gas chromatograph. This makes

the device easy to handle. Nevertheless, the small gas flow of the chromatograph deals

also with the disadvantage of air diffusing into the discharge, leading to quenching and,

therefore, lower detection capability.

Figure 4.30: Calibration curve for the halogens in
a He discharge.

Figure 4.31 shows a series of echelle spec-

tra, taken at different eluent times using

the same samples as in table 4.4. The

lower part shows the signals of the dif-

ferent atomic emission lines. As it can

be seen, the molecule can be well deter-

mined from the different elemental compo-

nents. Peak broadening, as it was observed

in the low-pressure dielectric barrier dis-

charge (see section 4.2.2), was not noticed.

This might be due to the presence of air

and, consequently, quenching of the excited

molecules. A calibration curve, plotted in
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Figure 4.31: Chromatograms obtained on the five element lines Cl, F, Br, S and I (lower part) and the
corresponding echelle spectra of a He discharge.
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figure 4.30, is linear over almost three orders of magnitudes (at least for Br and Cl), re-

sulting in absolute detection limits of several ng. Despite the higher applied voltage these

values are much worse than those obtained with DLAAS in the low-pressure discharge and

also not comparable with the emission measurements in the same discharge. Probably,

the discharge is too weak, because the coupling of the electrical power is not optimized

and power is lost on the outside by additional sparking.

4.3.2 Ionization source

First attempts to use the high-pressure dielectric barrier discharge as ionization source

for atmospheric pressure chemical ionization (APCI) were also performed. Commonly, a

corona discharge is used as primary ionization source, whose gas ions ionize subsequently

the analyte of interest. In this case, the ionization is weak which means that almost no

fragments are observed. Normally, the configuration consists of a needle-plate geometry,

having a distance of a few cm and applying a voltage of several kV with a current of

µA between the corona needle and the inlet of a mass spectrometer, which is used as a

detector. The APCI is a versatile arrangement for detection of gases, aerosols or molecules

produced by laser desorption. The high-pressure dielectric barrier discharge seems to fulfill

the requirements for an APCI, since it is very flexible. The capillary can be pointed more

precisely than the corona discharge at the position of analyte investigated. Preliminary

measurements were performed with the same setup comparing a commonly used corona

discharge and the DBD. In this case, the total ion current of both ionization sources were

similar, but in the case of the DBD more fragments were observed. Nevertheless, the

detection power does not differ too much, which provides the DBD as another source for

APCI. This topic is subject to further investigations.



The micro
hollow cathode discharge

5

5.1 Generalities about micro hollow cathode discharges

5.1.1 Principle of the (micro) hollow cathode discharge

A hollow cathode discharge consists of a hollow structured cathode and an arbitrarily

shaped anode (see figure 5.1). Commonly, the cathode is made up of a hole, while the

anode is shaped cylindrically; both are separated by a dielectric spacer. The cathode can

be a cavity in a solid metal block, but in the present study it will be a bore, which is

possible as well.

For a specific value of pD, the product of pressure p and diameter D, different modes

of the discharge can be observed in the current-voltage characteristic. At low currents

(figure 5.1, I1), a kind of glow discharge can be observed with a cathode fall outside the

cathode structure. An axial electrical field between cathode and anode is generated.

cathode

anode

D

d

cathode layer

I1 I2 I3<<

positive column

Figure 5.1: Space charges and electrical field in the
hollow cathode discharge for different currents.

By increasing the current (I2), the the pos-

itive column moves closer to the cathode

until it enters the hole. In this case (I3),

the positive space charges in the middle of

the bore can be regarded as a virtual an-

ode. The direction of the electrical field is

changing from a transversal into a radial

one. This leads to an oscillatory motion

of the negatively charged particles. Elec-

trons generated at the cathode are acceler-

ated towards the virtual anode in the mid-

dle and repelled at the opposite cathode fall. Then the process is repeated by acceleration

and repelling again. In this way, electrons are kept in the discharge for a long time and

can ionize and excite various times. This “pendulum effect” causes a decrease in the volt-

age at an increasing current, which results in a negative differential resistance. With a

further increase of the current, a normal glow regime is obtained with a constant voltage.

77
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Finally, if the whole cathode surface is covered by the cathode layer, a further increase of

the current results in an increase of the voltage.

Figure 5.2: I-U-characteristic [Kur03].

The negative resistance can be observed

in the current-voltage characteristic plot-

ted in figure 5.2. Even if all the plasma

modes mentioned can be observed in a hol-

low designed geometry, usually, the term

“hollow cathode discharge” is used only for

the mode of pendulum electrons, case in

which resistance is negative.

This effect occurs for a specific range of

pD1 values. Hollow cathode discharges fol-

low a similarity law called after Allis and

White [Whi59, Stu64], whereas the voltage

is a function of pD. A lower limit of pD is given by the fact that the mean free path for

ionization should not exceed the hole diameter. For rare gases, this value is around 0.04

mbar·cm [Kur03]. The upper limit is determined by the condition that the sum of the

two cathode falls and the glow region should be larger than the distance between the two

opposite cathode surfaces. The limit obtained empirically of 14 mbar·cm is by a factor of

10 higher than the theoretical one. One possible explanation for this discrepancy could

be that the theoretical calculation was based on a wrong assumption with respect to the

amplitude of the pendulum motion. This motion can be observed even before the two

negative glows merge.

This reflection implies that an atmospheric pressure hollow cathode discharge needs hole

diameters of about 10 µm. Nevertheless, stable operation at bore sizes of 250 µm could be

observed as well. This indicates that other mechanisms, apart from the pendulum motion

of the electrons, have to be considered for a more detailed model.

The distance d between anode and cathode does not contribute to the considerations

mentioned above, but this distance determines the breakdown voltage according to the

Paschen law. Empirically, it is given for rare gases as 200 – 400 V for reduced pd values

of 1 – 10 Torr·cm.

The secondary electron emission at the cathode surface, the Penning ionization and mul-

tistep processes are other mechanisms contributing to the high ionization efficiency in

1Note: D is the diameter of the hole, not the distance d between the electrodes as in Paschen law
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hollow cathode discharges. The plane discharge geometries that are usually used lead

to losses of non-charged particles due to collision with the walls and the anode. In the

hollow cathode configuration, they will more probably strike the cathode resulting in a

higher secondary electron emission. At the same time, the configuration and the higher

current density lead to an increase of the sputtering rate, so Penning ionization of noble

gas atoms and sputtered electrode material occurs. Ultimately, the high plasma density

favors stepwise ionization, which also contributes to the rise of ionization efficiency.

Design of discharge

metal

dielectric

metal

d D

Figure 5.3: Schematic outline of the MHCD.

The design of the micro hollow cathode

discharge (as it was also investigated in

the current work) is sketched in figure 5.3.

Cathode and anode are made by metal; fre-

quently used materials are Cu, Ni, Pt or W,

whereas the insulator is made of Kapton,

Mica or ceramic. The thickness of the elec-

trodes and the dielectric d is 20 – 150 µm and 10 – 500 µm, respectively. It is common

to chose the same thickness for the anode and the cathode, although it is not necessary.

The bore D in the structure is 100 – 300 µm wide.

This structure can either be fabricated by mechanical pressing, bonding of the different

materials or by depositing the metal by galvanization or thick film technology onto the

insulator. The preparation of the bore depends on the hardness of the materials and

it can either be made mechanically, by using carbide metal and diamond drillers, or by

lasers ablation.

By using an ac or dc current, a plasma is produced inside the hole between the electrodes

in noble gases, rare gas-halide mixtures or air.

5.1.2 Applications of hollow cathode discharges

Micro hollow cathode discharges allow easy parallel operation, which makes them suitable

for discharge arrays (see figure 5.4). In this way, larger areas can be illuminated or treated.

A discharge array is produced in the same manner as a single discharge, but instead of

one hole, several are drilled in the structure. Two modes are possible: (i) the voltage

can be applied to the entire electrode; (ii) the discharges can be isolated electrically and

each one driven by its own individual ballast. The strong inhomogeneous conditions in

the micro hollow cathode discharge enable the emission of excimer radiation.
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Figure 5.4: Parallel operated micro-discharges in
argon at 200 mbar without resistive decoupling. Sta-
ble operation at low current [Pen02].

First, the electron energy distribution

needs to contain a sufficient concentration

of electrons with energies larger than the

excitation energy of the excimer gas sys-

tem. Second, since the formation of ex-

cimers is a three-body process, the pres-

sure needs to be in the order of one atmo-

sphere or higher [Sch00]. Hence, several re-

search groups worldwide are investigating

and developing this discharge as excimer

lamp successfully.

The other potential application area of hol-

low cathode discharges is the surface treat-

ment. As it was shown by Penache et

al. [Pen01], micro hollow cathode discharge

arrays can be used to change the wettability of a surface, for example.

5.1.3 Diagnostics so far

Up to now, intrinsic parameters of the micro hollow cathode discharge are not very well

known due to the small dimension of the device and the lack of appropriate diagnostic

methods. Nevertheless, several research groups applied different techniques during the

last few years.

Penache [Pen02] investigated a micro hollow cathode discharge that is similar to the one

used in this thesis. Excitation temperatures were determined by Boltzmann plots of

emission lines in the range of 1 eV for the high-pressure MHCD in argon. The value was

independent of the power that was applied.

Leipold et al. [Lei00] investigated a MHCD made of 100 µm thin molybdenum foils as

electrodes, and a cathode hole size of 100 µm. The dielectric between the electrodes was

alumina of 250 µm thickness. Infrared heterodyne interferometry revealed an electron

density of 1013 cm−3 for direct current, atmospheric pressure discharges in air.

Hsu and Graves [Hsu03] used a design with a small hole (200 µm diameter) perforating

two thin metallic foils (100 µm thickness) separated by a dielectric of 250 µm. They

estimated peak electron densities in the order of 1012 – 1013 cm−3, by using an ion flux

probe outside the discharge for gas pressures in the order of several hundred mbar and
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for applied powers of 1 – 10 W. Furthermore, the gas temperature was sized up by N2

rotational bands to 2000 K for a NH3 atmosphere.

Lately, Schönbach et al. [Mos03] measured electron densities in an atmospheric pressure

argon discharge. The electrode material consisted of 100 µm molybdenum foils separated

by a 250 µm alumina layer. A plasma operated either with pulsed or dc voltage was ignited

in the hole with a diameter of 130 µm. For DC operation, electron densities of 1015 cm−3

were measured by evaluating the Stark broadening of the Hβ line. The electron density

increased to values beyond 1016 cm−3 for nanosecond pulsed operation. This increase in

electron density and excimer emission intensity was explained by pulsed electron heating,

an effect that has raised the mean electron energy from 1 eV, for DC operation, to 2.25 eV

in the pulsed mode.

These findings show that the measured quantities vary strongly; they are dependent on

the design of the discharge, the gas and pressure applied as well as on the determination

method. Many measurements were performed indirectly, and the rotational, vibrational

and excitation temperatures can only give a rough upper limit of the gas temperature.

Only in LTE discharges these values will be identical. Furthermore, the electron density

is often determined by indirect parameters, too, like current, assuming Ohm’s law and a

uniform electric field, or probe measurements outside the discharge volume. In this way,

values as different as 1013 to 1015 cm−3 are obtained. Therefore, the knowledge of the

intrinsic discharge parameters of the MHCD is still uncertain and contributes to a better

understanding of the discharge mechanisms.

5.2 High-pressure micro hollow cathode discharge

5.2.1 Characterization of the discharge

The principal design of the discharge was already presented in figures 2.12 and 5.3. An

insulator of several hundred micrometer thickness is sandwiched between two metallic

electrodes and a hole is drilled through the setup.

During this work three different structures with different materials and fabrication pro-

cesses were used. Both structures shown in figure 5.5 use some kinds of Al2O3 as insulator.

The type on the left hand side was fabricated by CeramTec and has an overall thickness

of 650 µm, the insulator being 250 µm thick and the Cu electrodes 200 µm each. The

thickness of the copper electrodes was reached by deposition followed by galvanization.

Finally, the copper was coated with a 5 µm thick Ni film for passivation. The holes were
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laser-drilled by the Laserzentrum Hannover using a high intensity ultra short pulsed laser.

The diameter of the holes was chosen to be about 100 µm and, usually, their shape is

single-conical with about 15 – 20 % difference between the entrance and the exit side of

the laser beam. The lifetime of this structure is limited by the high sputtering rate of

copper. Better electrode materials, like tantalum, tungsten, molybdenum or platinum are

more resistant against sputtering processes or high temperature.

1 cm

Figure 5.5: Photos of MHCD structures.

The MHCD structure on the right hand

side of figure 5.5 is a combination of plat-

inum and alumina layers. It was provided

by the IKF Frankfurt and it is produced

by another technique, using the so-called

“green ceramics”. The non-sintered ce-

ramic substrate is covered by the metal

paste desired (here 20 µm Pt) using the

so-called screen-printing method. In this stage of the process, the product is still flexible

and the holes can be drilled mechanically. Afterwards, the composite sheet is sintered

at a temperature of about 1800 K, in which the polymer binder is burned out and the

ceramic itself sintered. Both the maximum thickness of the electrodes and the minimum

thickness of the insulator are limited by the manufacturing procedure to about 25 µm and

100 µm, respectively. A third method is based on thick-film-technology and was offered

by the Transferzentrum Mikroelektronik in Göppingen. With this technique a layer of

20 µm can be deposited at once on the alumina structure and the process is repeated as

many times until the desired thickness is reached. In this way, different thicknesses of the

platinum can be obtained in the same working process. Taking into account the hardness

of the material, the holes had to be drilled by laser drilling. The optimization process for

the right laser conditions was developed and performed by Laserzentrum Hannover, too.

Some pictures taken with SEM of the holes are presented in figure 5.6. The two holes on

the left (a,b) and right (c,d) hand side were both supposed to be 200 µm and 100 µm,

(a) (b) (c) (d)

Figure 5.6: Pictures taken by SEM for different laser conditions; a,b: 200 µm hole, c,d: 100 µm hole
[Kam04], scale of 90 µm is marked.
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respectively. The holes (b) and (d) show a cylindrical hole. On the contrary, inferior

conditions for laser drilling results in conical holes as shown in (a) and (c). Different

diameters in the two different materials, dielectric and platinum, are observed. All kinds

of laser drilling deal with this disadvantage that the holes never have the same diameter

at inlet and outlet of the laser beam. In some cases the difference in diameter is 30 %.

Optical measurements

-400 -300 -200 -100 0 100 200 300 400

Position [µm]

p = 400 mbar

p = 100 mbar

Figure 5.7: End-on and side-on CCD recorded im-
ages of the cathode side of an Ar MHCD at different
pressures, bore diameter 300 µm.

The optical appearance of a MHCD with

relatively large diameter of 300 µm at

medium pressures is shown in figure 5.7.

In the low-pressure case, the discharge is

widely expanded like a sphere at the cath-

ode side of the hole. This is due to the fact

that the cathode surface has to be larger

than the inner surface in order to sustain

the discharge. At high-pressure, the dis-

charge is constricted in the hole, which is

also visible by the dip on the end-on view.

The cathode fall and the negative glow are

very small (in the µm range) and, conse-

quently, the production of electrons and

excited atoms is closer to the walls of the

structure.

Electrical characteristics

The breakdown voltage of the micro hollow cathode discharge is, in accordance with the

Paschen law, between 200 and 250 V. The current is limited by a 100 kΩ load resistor,

placed in series with the discharge. The gas voltage was measured with a conventional

multimeter. The current-voltage characteristic of the discharge is given in figure 5.8. It can

be seen that the gas voltage is almost constant by variation of the current. This means that

the discharge is not working in the so-called hollow-cathode regime anymore. Furthermore,

the voltage increases with the pressure. The sustaining voltage in an argon discharge is

slightly higher than in a helium discharge, which is in agreement with the Paschen law

(figure 2.1). The gas voltage is constant and does not exceed 250 V at atmospheric

pressure. For the given geometric parameters and a current of 6 mA, the current density
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Figure 5.8: Current-Voltage characteristic for different gases and pressures.

and the input power density are about 60 A/cm2 and 1 MW/cm3, respectively. Note that

the power density of a MHCD is 3 orders of magnitude higher than that of an ICP (see

section 4.2.1).

Determination of gas temperature and electron density by laser spectroscopy

Principle of measurement for low-pressure The determination of plasma parame-

ters should always be non-invasive, like it was shown for the dielectric barrier discharge.

The laser diode beam interacts with the discharge but does not disturb it.

Figure 5.9: Picture of
the Ar MHCD.

However, high spatial resolution measurements in the micro hol-

low cathode discharge are nearly impossible considering the very

small dimensions (see also photo 5.9). Therefore, this investiga-

tion will be restricted to the determination of plasma parameters

in the hole itself. It has to be kept in mind that the obtained

values are averaged over the distribution of the excited species,

which is shown in figure 5.7. As was shown at high-pressure, the

hot region of the plasma is close to the outer diameter of the

bore (see figure 5.7), whereas at low-pressure the highest concen-

tration is located in the middle of the bore. As for the dielectric barrier discharge, the

plasma parameters can be measured by line profile analysis investigating the width of the

spectral lines. This was performed in the low-pressure range from 50 to 400 mbar, where

line broadening determination is still feasible.

The measurements were performed with the same laser diodes as in section 4.2.1, probing

the argon lines 801.699 nm (1s5 – 2p8), 826.680 nm (1s2 – 2p2) and 800.838 nm (1s4

– 2p6). The beam of one laser diode was adjusted through the hole of the structure as
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lock-in

amplifier

PDBS

NF

DL
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MHCD

oscilloscope
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generator

current
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generator

diode laser
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Figure 5.10: Experimental arrangement for plasma diagnostics.

shown in figure 5.10, and the absorption signal was detected by a photodiode. The current

through the discharge was modulated with several hundred Hz in order to increase the

detection sensitivity by phase selective detection. A beam-splitter (BS) and a neutral

density filter (NF) were used to pass a part of the beam to a wavemeter and Fabry-Perot

interferometer (free spectral range of 2 GHz) in order to determine the wavelength, and to

generate a frequency standard for precise measurements of the absorption linewidths. For

the present experiment at low-pressure, structures with 130 µm and 50 µm thick copper

electrodes and Kapton insulator, respectively, have been used. The diameter of the holes

was 300 µm.

The absolute number density of the excited atoms was determined by the integral ab-

sorption. The evaluation is rather difficult, because the absorption length cannot be

determined precisely and the plasma is inhomogeneous. As it can be seen from figure 5.7,

the excited atoms are not uniformly distributed in the discharge. Furthermore, the opti-

cal appearance of the microdischarge changes with the pressure, i.e. at 50 mbar the light

emission shows a maximum on the discharge axis, while at 400 mbar it shows a minimum.

As absorption occurs inside the MHCD hole and above the cathode as well, a minimum

and a maximum absorption length were considered.

For calculating the absolute number density, the maximum value for the total absorption

length was taken as the sum of the length of the bore and the plasma length outside the

hole. The plasma length outside the hole was evaluated from spatially resolved absorption
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measurements above the cathode. It was taken as the distance from the cathode surface to

the point where the absorption signal decreases to approximately 10 % from its maximum

value. The minimum absorption length was taken as the sum between a third of the

hole length and the distance from the cathode to the point where the light intensity

diminishes to 20 % from its maximum value. As an example, at 50 mbar the maximum

and the minimum absorption length considered were 1100 µm and 600 µm, respectively.

At 400 mbar the maximum is 300 µm and the minimum 50 µm. Furthermore, if only

an effective absorption area is considered, the absolute number density is increasing by

a factor of two. Under these conditions, the errors in determining the absolute number

density are in the range of about ± 50 %.

Figure 5.11: Absolute number density of the 1s2,
1s3 and 1s4 excited levels of Ar in the MHCD for
the pressure range 50 – 400 mbar.

Figure 5.11 presents the variation of the

absolute number density with the pressure

for three of the first four excited levels of

Ar. In the pressure range 50 – 400 mbar the

absolute number density values are varying

from 1.9 · 1014 to 6.3 · 1014 cm−3 for the

lowest 1s5 level and from 4.8 · 1012 to 8.8 ·
1012 cm−3 for the highest 1s2 level. Within

this relatively high uncertainty it can be

seen that the density is slightly increasing

with the pressure mostly due to the rise in

the density.

It should be stressed that inside the hole of

the MHCD both the production and the destruction of excited states are very efficient.

Owing to the high current density, a large number of excited atoms is produced, especially

in the negative glow adjacent to the cathode. Since the geometrical dimension of the hole

is small, diffusion becomes important in the destruction of the excited species in spite of

the high-pressure. The excited atoms can easily reach the walls of the hole where they

are strongly quenched. Other processes that are responsible for the depopulation of the

excited levels are the two- and three-body collisions, whose importance rises with the

pressure. In the region outside the hole, the density of charged particles is lower than

inside the hole, and it is expected that only a small fraction of excited atoms is produced by

electron impact. The plasma volume above the cathode surface can be considered a spatial

afterglow. In this case, the excited atoms are mostly created in recombination processes

and by photo-excitation or absorption of the resonance radiation escaping from the hole.



5.2. HIGH-PRESSURE MHCD 87

The destruction mechanisms above the cathode are partially different: the depopulation of

the excited levels occurs mostly by volume processes, like two- and three-body collisions

and quenching due to impurities. Indeed, by measuring without gas flow through the

chamber it was observed that the density of excited atoms is strongly decreasing in time.

The line profiles were evaluated with the same technique as presented in section 4.2.1.

This evaluation reveals the gas temperature and the electron density. First, the Lorentzian

part of the linewidth was determined for the wing of the line. Then, the Gaussian width

was calculated according to equation 3.13. This evaluation was restricted to the two lines

at 800 and 801 nm, since all lines starting from the 1s2 level are too broad to tune the

line profile completely with the present laser diodes.

Figure 5.12: Gas temperature in the microdis-
charge derived from the 1s5 - 2p8 and 1s4 - 2p6 tran-
sitions as a function of pressure at constant current.

As seen in figure 5.12, the gas tempera-

ture obtained from the Gaussian width in-

creases almost linearly with the pressure

up to 1100 K at 400 mbar. It can be ob-

served that there is a good agreement be-

tween the data obtained from the two tran-

sitions, which gives confidence in the accu-

racy of the results. By increasing the pres-

sure, the electron mean free path reduces,

the electrons gain less energy between col-

lisions and are transferring more energy to

the gas. As the power input in the dis-

charge is constant and the plasma volume is decreasing with the pressure, it results in a

higher current density and, consequently, to a more pronounced heating of the gas. Note

that the gas temperature corresponds to the plasma region with the highest population

density. Thus, for pressures higher than about 200 mbar these measurements represents

the gas temperature of the discharge confined inside the hole of the MHCD.

The Lorentzian width consists of pressure- and Stark-broadening components. The width

induced by collisions can be calculated by the values found in the literature, e.g. [Cop76b],

taking into account the gas temperature. For both transitions under investigation a

significant difference between the total Lorentz width and the collision broadening width

was observed. This difference is assigned to the quadratic Stark effect and can be described

by equation 4.11.

As expected, the central wavelength of the transition from the metastable 1s5 level is

additionally shifted. This shift increases with the pressure, due to interaction with neutral
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(collisional) and charged (Stark) particles. In the case of the transition from the resonance

1s4 level, the line shift is very small (less than 1 pm at 50 mbar) and it does not depend

on the pressure.

Subtracting the collision contribution from the total Lorentz width and shift, the electron

density was estimated from 4.11 and

∆λshift
Stark = (d/w + 2 · 10−4 4

√
Neα(1− 0.068

6
√

Ne√
Te

) · 10−16wNe, (5.1)

using the Stark broadening parameters listed in table 4.3 and 5.1.

T 5 000 K 10 000 K 20 000 K

w 0.037 0.049 0.065

d/w 1.630 1.340 0.990

α 0.038 0.031 0.025

Table 5.1: Coefficient for Stark broadening given in
Angstrom, λ=801.699 nm[Gri64].

The electron temperature was assumed to

be about 1 – 2 eV taking into account

the results presented in [Mos03] and sec-

tion 2.1. A small variation of this value has

no significant influence on the calculated

electron density. The electron number den-

sity cannot be given very accurate because

different values of the collision width and

shift could be found in literature (see table 7.2 in the appendix).

Figure 5.13: Electron number density in the mi-
crodischarge derived from the 1s5 - 2p8 and 1s4 -
2p6 transitions as a function of pressure at constant
current.

The range of electron density is pre-

sented in figure 5.13, whereas the values

of the collision broadening parameters were

taken from different publications (open and

closed data points). It can be seen that the

electron number density is increasing by a

factor of 5 in the pressure range between

50 – 400 mbar. The present measurements

refer to the electron number density in the

discharge area, i.e. inside the MHCD hole.

Taking into account the density of neutral

atoms and the electron density, it can be

concluded that the degree of ionization in

the MHCD is about 10−3. The variation of these values depend strongly on the uncer-

tainty of the broadening coefficients for impact broadening and the discrepancy between

different authors.
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Principle of measurement for high-pressure Unfortunately, the method presented

is not adaptable to high-pressure discharges. First of all, the line profiles are 10 – 20

times broader because of the linear increase of the line broadening with the pressure.

This implies that laser diodes with a large tuning range (100 pm) has to be used. In order

to determine the line width, the tuning should be few times the widths. Free running

laser diodes might be sufficient, but owing to the limited wavelength disposability, external

feedback diodes has to be used that are not tuneable in such a wide range. Secondly, the

deconvolution of the line profiles is difficult because the Gaussian width is much smaller

than the Lorentzian one.

Therefore, sticking to laser absorption spectrometry one has to switch to line shift mea-

surements. As was already shown above, the line shift reveals also the information on

electron density and gas temperature. It is obvious that for the determination of two un-

known quantities two measured values for the same plasma conditions have to be obtained.

This task is fulfilled by measuring the line shift for different transitions.

In principle the line shift is given by the sum of pressure and Stark shift:

∆λ = ∆λAr + ∆λStark (5.2)

= βAr−ArNAr + ∆λStark (5.3)

βAr−Ar shift coefficient

NAr Ar density

Figure 5.14: Collisional induced shift for 1 bar.

While the second term depends only

slightly on the three investigated transi-

tions (10 % variation), the first one varies

strongly with the chosen transition. There-

fore, in a first approximation the difference

between two line shifts will be the differ-

ence of the corresponding collision shifts.

This results in the gas density, and accord-

ing to the ideal gas law in the gas tempera-

ture. Considering the possibility of obtain-

ing different wavelengths with the ECDLs,

a few transitions were used for this mea-

surement. The figure 5.14 shows for a constant pressure the collision induced shift depend

on the gas temperature. While only a small difference occurs for the shift between the

two lines of the metastable states, a significant variance is visible between one transition

starting from a metastable level and the one starting from the resonance level (800 nm).
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Knowing the gas temperature one can estimate the electron density by subtracting the

pressure shift corresponding to the obtained gas temperature from the experimental shift.

This is a recursive procedure. Indeed, there exists a small deviation in Stark shift for

the two lines that has to be taken into account in the following approximation. Knowing

the difference for the specific electron density, a second loop can be started, determining

again gas temperature and electron density. In principle after two iterations the correct

values should be obtained.

This procedure is appropriate for gas mixtures, too. Discharges in He are normally better

for analytical spectroscopy, but plasma diagnostics is more difficult. In the visible or

infrared region only few lines are achieved by laser diodes. In the case of gas mixtures

the pressure broadening is the sum of the foreign and self-broadening, but the principal

evaluation is the same:

∆λ = βAr−ArNAr + βAr−HeNHe + ∆λStark(5.4)
βAr−Ar/He shift coefficients

NAr/He density

The accuracy of this method is given by the experimental error of the shifts measured

as well as the spreading of the shift coefficients in the literature. Those for argon are

given in the appendix (table 7.2) measured by different authors. It is obvious that the

procedure contains large errors as a result of the variance of the data. According to

the Lindholm-Foley theory, based on the assumption of a Van-der-Waals interaction of

the particles, the coefficients have to be scaled with T 0.3. This is in close agreement

with the scaling law obtained by comparing the data of the different authors. Therefore,

this temperature dependence is used, even though the assumption of pure Van-der-Waals

interaction might be insufficient. It has to be mentioned that this procedure gives larger

errors than for the one presented in the first part of this section and section 4.2.1. There,

the gas temperature was determined by the Doppler broadening and the correction of the

broadening coefficients only affected the electron density.

The experimental arrangement is the same as sketched in figure 5.10. The calibration of

the wavelength was either performed by the fringes of a 2 GHz Fabry-Perot interferom-

eter or directly with a high-resolution wavemeter (resolution 0.1 pm); both devices were

inserted in the experiment by the use of beamsplitters. A comparative measurement was

always done in a dc discharge for the detection of the unshifted wavelength. It is known

that in such a low-pressure discharge the shift is negligible because of the low electron

and gas density. The structures used for this experiments were made of platinum and had

a bore diameter of 100 µm.
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Figure 5.15: Measured line shifts for 800, 801 and 811 nm as well as calculated shifts (a) for the plasma
conditions plotted in (b).

Measurements in Argon

The shifts obtained experimentally for an argon discharge are plotted in figure 5.15 (a).

As one may see, all three lines reveal a linear dependence of the shift on the pressure.

Furthermore, the shift of the 800 nm line, starting from a resonance level, is always

much smaller than for the two transitions starting from a metastable level, as it is also

expected by the shift coefficient enlisted in table 7.2. The error of the shifts, given by

the uncertainty of the determination of the central wavelength, is large. This is due to

the fact that only a part of the profile is obtained with the laser diodes used and the

evaluation of the profile is unprecise. However, for the proposed method an error in the

line shifts of less than 0.3 pm would be required. Therefore, as can be seen in figure 5.15,

a wide range of values for gas temperature and electron density fulfills the shifts obtained

experimentally. Figure 5.15 (a) displays the measured line shifts as well as the calculated

shifts (shaded) and (b) the corresponding plasma parameters.

The exact evaluation of the gas temperature with this data set is impossible. Nevertheless,

the electron density can be estimated to be in the range of 1 – 5 ·1015 cm−3. Interestingly,

this is in close agreement with the measurements in the low-pressure region (figure 5.13),

although two different structures were used. The one for lower pressure consists of copper

electrodes and has a hole diameter of 300 µm optimized for low-pressure, whereas the

other one is made of platinum and has a diameter of 100 µm .

Measurements in Argon and Argon-Helium mixtures

The method could also be used for the investigation of gas mixtures. In this way, the

electron density and gas temperature could be determined in a helium discharge, without

using helium lines, because helium offers only few lines for plasma diagnostics.
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line β [10−20 cm−1 cm3]

801 nm 0.79

811 nm 0.37

Table 5.2: Blue shift coefficient for
different transitions in Ar/He mix-
tures [Cop76a].

The shift coefficients (all lines are blue shifted in con-

trary to the red shift of the Ar self-broadening investi-

gated) are enlisted in table 5.2. Unfortunately, only the

data for the two lines 801 and 811 nm could be found in

the literature.

The line shifts are presented in figure 5.16 for different

admixtures of He to an Ar discharge. Again, large errors

occur by the determination of the central wavelength.

Figure 5.16: Measured line shifts for 800 and
801 nm line for different Ar/He mixtures.

Since the difference between the shifts of

the two transitions which start from the

metastable level is small, the relative error

is much larger than in the case of the mea-

surements discussed before. Therefore, no

reliable conclusion can be drawn from these

measurements. It can be estimated that

the gas temperature and electron density

will decrease by a factor of 2 and 10, respec-

tively, by increasing the amount of helium

in the discharge up to pure helium plasma.

Nevertheless, absolute numbers are too un-

certain to be presented. These results are

in agreement with figure 2.5, showing that the electron density in a helium discharge is

one order of magnitude lower than in an argon discharge.

Measurements in Helium

Finally, the results obtained above for gas mixtures (showing the decrease of electron

density with addition of helium) could be verified in a pure Helium plasma. For this case,

the 667.999 nm line obtained by a Toshiba diode with external feedback was used. The

advantage of this line is the absence of a collision-induced shift [Cop76b]. Therefore, the

electron density could be determined directly with the help of the Stark coefficients given

in [Mij95]. On the other hand, the gas temperature is not achievable by this method.

Line shifts in the helium MHCD were measured several times. It was observed that the

shifts depend linearly on the pressure. Again, a large error occurs due to the small part

of the line profile measured by the laser diodes and, consequently, sophisticated shift

determination. However, the absolute values of the shifts varied strongly by several pm

depending on the alignment of the laser diode through the discharge. The corresponding

values for the electron density are in the range between 5·1014 and 1015 cm3 for atmospheric
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pressure. These values are slightly higher than it is expected from the measurements in an

argon discharge, as the values in the helium discharge should be one order of magnitude

smaller. This discrepancy might be explicable by a systematic error in the determination

of the line shifts in helium. As long as the laser diode passes such a small bore as in the

MHCD, diffraction and refraction will appear. This may influence the line profiles and

subsequently the determination of the shift. Surprisingly, the lines of the argon transitions

were symmetric and well reproducible, while helium lines showed distortion.

This discrepancy could be checked applying emission spectroscopy with a high-resolution

spectrometer. If so, the emission inside the hole could be detected without problems of

diffraction. Additionally, line width can be determined by the measurements of the whole

line profile. Hence, the unknown quantities, gas temperature and electron density, could

not only be determined by comparison of the line shifts, but also from the line widths of

different lines. Furthermore, the combination of the line width and shift of one transition

should be consistent. In such a way the ambiguity of the broadening coefficients could

also be compressed.

Nevertheless, the results obtained so far are in agreement with the simulations made by

Kothnur et al. [Kot03] plotted in figure 5.17. A closed micro hollow cathode discharge

was used with dimensions of 200 µm and 100 µm as the bore diameter and the cath-

ode/dielectric thickness, respectively. They obtained an electron density of 3 · 1014 cm3,

and a gas temperature of more than 1500 K at atmospheric helium pressure. However,

as was shown by Schönbach et al. [Mos03], modulated discharges also used in the present

setup owns a higher electron density.
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Figure 5.17: Simulation of a closed helium micro hollow cathode discharge [Kot03], Vgas = 180 V, p =
896 Torr, D = 200 µm , Ipl = 3.95 mA.
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5.2.2 Analytical applications ‡

As presented above, the micro hollow cathode discharge is a powerful plasma with rela-

tively high gas temperatures and electron densities. Therefore, it is applicable for analyt-

ical spectroscopy. Considering the small absorption length in the device bore, emission

spectroscopy is preferred.

Atomic emission spectroscopy with an echelle spectrometer (see section 3.2) was applied

for the detection of chlorine and fluorine resulting from the decomposition of the molecules.

The light emitted by the plasma was imaged 1:1 on the 20 µm x 200 µm spectrometer en-

trance slit through an optical fibre. The entire spectral range was recorded simultaneously

with an exposure time of 50 ms.

Element λ [nm]

Cl 894.802

F 739.868

He 728.134

H 656.358

N 868.028

O 844.675

Ar 811.531

C 965.843

Table 5.3: Emission lines
measured in MHCD.

The emission lines measured, belonging to the investigated halo-

gens and the buffer gas, are summarized in table 5.3. The mea-

surements were performed mainly in He because both Cl and F

atomic lines can be recorded while in Ar fluorine could not be

measured. This is due to the fact that the excited fluorine levels

are higher than those of Ar [Mic01].

Figure 5.18 shows one order of the echelle spectrum in which the

chlorine emission line at 894 nm appears for different amounts

of freon. As can be seen, the lines are well separated and no

spectral interferences occur. The intensity of different atomic

lines is plotted in dependence on the CHClF2 concentration in

He at 1 bar and 4 mA in figure 5.19. For this purpose, the

halogenated hydrocarbons were pre-mixed with He before the

gas was introduced into the plasma. The measurements started always from an initial

mixture of He with 17 ppm halogenated molecules and this mixture was diluted down to

a concentration at which the signal was 3 times the noise. The intensities of the emitted

lines of the buffer gas are independent on the molecule concentration. This indicates the

robustness of the discharge, as the excitation process is not disturbed by the analytes. The

intensities of the Cl and F lines are linearly dependent on the amount of freon. Assuming

the complete dissociation and atomization of the introduced molecules, it is expected that

the H and C signals depend linearly on the CHClF2 concentration as well. However, this

is not the case. The reasons might be a contamination of the plasma gas by H2O and the

formation of parasitic species, such as CO or CO2 in the discharge.

‡This section has been published partially in Plasmas for lab-on-the-chip applications, Spectrochim.
Acta, Part B 57 (2002) 1585 – 1592 [Mic02].



5.2. HIGH-PRESSURE MHCD 95
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Figure 5.18: 84th order of the echelle spectra for
different concentration of freon.

Figure 5.19 presents calibration curves for

Cl and F for different freon gases in He.

The calibration curves are linear over al-

most 3 orders of magnitude, but at small

concentrations it can be noticed that the

calibration curves of the F line flattens ow-

ing to a memory effect of the discharge

walls by fluorine. Nevertheless, CCl2F2 de-

tection limits of 20 ppb in He were found

using the Cl 912.114 nm as well as the F

739.868 nm line. This was also obtained

with other halogenated hydrocarbons. The

detection limits with Ar as a buffer gas

were in the same order of magnitude.

In order to study the capability of complete dissociation, the Cl and F line intensities

with CCl2F2 and CHClF2 in the He MHCD discharge were measured by varying the

species concentrations. On the right hand side of figure 5.19 it can be seen that the F

line intensities are independent on the species within the experimental errors. On the

other hand the Cl line intensities obtained with CCl2F2 is a factor of two higher than

with CHClF2 as it is expected from the stoichiometry. This does not prove complete,

but similar dissociation of the molecules. The complete structure of the molecule can be

obtained by measuring all atomic lines of interest.

Figure 5.19: Evolution of the emitted lines with the halogenated molecule concentration in He with an
admixture of CHClF2and calibration curves for different freon gases concerning the chlorine and fluorine
line (parameters: p = 1 bar, Ipl = 4 mA).
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It is advantageous that the complete analyte is forced to pass the bore by this setup of

the discharge. However, it was observed that the same analyte signals were obtained, if

the gas mixtures were flushed around the discharge. If a vacuum tight connection for

the structure is used, so that the gas is flowing only through the hole of the structure,

the discharge chamber can be abandoned. The micro hollow cathode discharge can be

directly mounted onto the rare gas supply and it is burning with a slightly higher pressure

than atmosphere also in an air environment. A signal decrease of less than a factor two

was observed.

5.3 Micro hollow cathode plasma jet

As shown in the previous section, the micro hollow cathode discharge at atmospheric

pressure is well suited for trace analysis. The detection limits in emission show a good

dissociation and, furthermore, the electron density is high. Therefore, the MHCD should

be an efficient ion source for mass spectrometry. However, the high-pressure discharge has

to be coupled with a low-pressure detection system (see section 3.4). In order to obtain

this low-pressure, pressure stages have to be used. In common mass spectrometry (e.g.

ICP-MS), so-called sampler and skimmer with an opening diameter of several hundred

micrometers are used. The sampler cares for the first separation stage and the skimmer

is the entrance orifice to the mass spectrometer. In the sampler-skimmer interface an

adiabatically expansion of the gas occurs.

The MHCD can be operated in two modes: the static mode, in which at both sides of

the structure is the same pressure, and the jet mode when a pressure difference is estab-

lished between the anode and the cathode side [Pen02]. The gas temperature, the electron

density and the electron energy distribution function are changing by varying these pa-

rameters. As lower the pressure on cathode side, as lower the values are. Therefore, at the

first glance, the static mode of the discharge is more suitable for mass spectrometry. The

gas temperature and electron density in the discharge are higher, and, therefore, better

dissociation and ionization take place. Furthermore, the residence time of the particles in

the discharge is much higher than in a jet, where the particle pass the hole of the structure

in microseconds. On the other hand the atmospheric pressure results in a mean free path

of a few micrometer for the ions. Even though no charge transfer is observed in helium

because of its ionization potential, the ions are lost because they do not reach the sampler.

In order to increase the number of ions passing the sampler, the distance has to be very
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small and the diameter large. However, a small distance results in turbulent flows and

electrical disturbances, while a large diameter prevents the small pressure demanded in

the quadrupole. Additionally, on the basis of the small flow a large time constant might

appear for transient analyte signals. On the contrary, a plasma jet has a residence time of

a few microseconds leading to no delay in transient analyte signal and offers a much more

feasible arrangement because the structure is fulfilling the function of the ion source and

the sampler simultaneously. The adiabatic expansion of the jet leads to highly directed

ion velocities, wherefore more ions are reaching the skimmer than in the static case.

In the following experiments, the investigations were constricted on helium discharges:

first, the sputtering rate in an argon discharge is higher than in a helium discharge leading

to shorter lifetimes of the structure. Secondly, the charge transfer in a helium discharge

is prevented because of the ionization potential. On that basis, analyte molecules and

atoms, once ionized will stay ionized, while in an argon discharge the charge transfer leads

to de-ionization of the analyte.

This plasma jet was invented by the group of Prof. Schmidt-Böcking at IKF Frankfurt,

who investigated the metastable helium atoms [Hoh02]. In cooperation with them, the

first measurements of coupling the MHCD with a mass spectrometer were performed.

5.3.1 Adiabatic expansion

If a gas is flowing through a small orifice applying a pressure gradient, an adiabatic expan-

sion can occur. On the high-pressure side, the gas can be described by the macroscopic

state variables like the pressure po and the temperature To. The gas is in a thermal equi-

librium and no direction of velocity is favored. As long as the pressure in the low-pressure

region is small compared to the stagnation pressure, but higher than a critical value, an

effusive expansion is present, in which the particles still have a broad but Maxwellian

distribution. In order to reach an even narrower velocity distribution the pressure has to

be reduced further, and a supersonic jet is formed. In the case of

p ≤ po

(
γ + 1

2

) γ
γ−1

. (5.5)
γ cp/cv

cp,v specific heat capacity at constant p,v

the velocity of the particles at the end of the narrow orifice equals the sound velocity,

and the pressure the upper limit of equation 5.5. In the case of an ideal mono-atomic

gas like helium, γ is 5/3 and the critical pressure almost half the stagnation pressure

po. As the pressure of the nozzle exceeds the background pressure of the vessel pb, the
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flow is “underexpanded” and subsequent expansion occurs. In this case, the temperature

decreases, while the velocity increases. The atoms and molecules reach velocities that

can be much higher than the sound velocity (cs =
√

γkT/m). The ratio between both

velocities (Mach number M) is equal to one in the nozzle, while in the low-pressure

chamber much higher values are obtained.

The maximum achieved velocity can be calculated assuming the change in energy for a

mono-atomic gas (like helium) given by

dh =
v2

2
(5.6)

= cp dT. (5.7)

h mass-specific enthalpy

v velocity

cp
γ

γ−1
k/m

This equation can be solved for the velocity supposing that the specific heat capacity cp

is constant in a range of To – Tjet and that the gas is drastically cooled, so Tjet � To

vjet =
√

2cpTo = cs

√
2

γ − 1
. (5.8)

cs velocity of sound

γ cp/cv

This maximum achievable velocity corresponds to the total conversion of thermal energy

into kinetic one.2

A schematic jet is shown in figure 5.20. The background pressure given by the finite

pumping power, results in the generation of shock waves. These are areas of high density

in which the particles of the beam are slowed down due to collisions. They can be

ostensively explained assuming that the gas expands with a Mach number larger than

one but the information propagates only with sound velocity. Therefore, the jet does

not sense the background pressure; nevertheless, it has to adjust with this incident. The

solution of this dilemma is in the occurrence of shock waves. The most important one is

the so-called “Mach disc” which is in the line of the flow. The distance of the Mach disc

from the nozzle is given by the empirical formula [Mil88]

xm

D
= 0.67

√
po

pb

. (5.9)

xm mach disc

D diameter of nozzle

po pressure before nozzle

pb background pressure

2This simple model assumes a zero velocity at the beginning of the nozzle. If the gas is already flowing
into the source before it starts to expand, the factor 2 has to be replaced with γ + 1. So in the plasma
jet vjet amounts to cs

√
γ+1
γ−1 .[Mil88]
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Concluding, in the case of an adiabatic expansion the undirected velocity of the particles

is transferred into a directed motion of the particles. They are slowed down again at the

Mach disc. The skimmer of the pressure stage has to be placed inside the Mach disc in

order to extract the ions without the disturbance of the background pressure.

Figure 5.20: Continuous free-jet expansion
[Mil88].

Two types of jet – skimmer configura-

tions are known, the Fenn- and Cam-

pargue setup. In the Fenn configuration

the background pressure is chosen to be

smaller than 5 · 10−3 mbar which necessi-

tate strong pumping systems like diffusion

pumps. Considering the long Mach disc

spacing, the adjustment of the skimmer is

less critical. In contrary, the Campargue

type was developed in earlier days, when

less strong pumps were available. Typi-

cally, the pressure in the chamber is higher

than 5 · 10−2 mbar. In this case, the shockwaves are more pronounced and help to shield

the jet from the background gas. Due to the different geometry of the two skimmer types,

the angle of the skimmer is in the first 30◦ and in the second case 50◦.

5.3.2 Plasma diagnostics

electrical connections

gas inlet
atmospheric

MHCD
structure

vacuum
chamber

cathode anode

Figure 5.21: Picture of the MHCD jet configura-
tion for the pressure drop.

The optical appearance of the discharge,

the electrical characteristics and the de-

termination of excited atom density were

performed in two arrangements, one con-

nected to the mass spectrometer and one

in a bigger chamber without interface. For

the plasma jet configuration the struc-

ture of the micro hollow cathode discharge

had to be mounted between to separated

chambers, allowing the gas to expand only

through the bore. A picture of the mount-

ing is shown in figure 5.21. The MHCD

structure is mounted on the left side. A
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vacuum tight connection between the vacuum chamber and the high-pressure gas inlet

was either performed with an O-ring or, in the case of the copper structures, using a crimp

connection. The low-pressure on the cathode side was generated mainly by a rotary pump.

Using atmospheric pressure on anode side and with a hole diameter of 100 µm, pressures

down to 0.5 mbar could be obtained. Lower pressures can only be achieved by using a

stronger pump, like a small turbo pump (50 l/s). Nevertheless, for a continuous operation

of the turbo pump the pressure and gas flow in the chamber are too high. Therefore, the

investigations were restricted to pressures in the range of 1 mbar. It was also observed

that the analyte signals are increasing with the pressure on cathode side (see next section).

Optical measurements

The transition of the micro hollow cathode discharge from high to low-pressure is clearly

visible by naked eye. While the discharge at high-pressures at both anode and cathode

sides is constricted in the plasma hole and on the cathode surface, the discharge expands

outside the hole if the pressure at cathode side is reduced. At a pressure ratio of 2 a

thin discharge needle is vacating the structure hole. Snapshots for different cathode side

pressures and fixed anode side pressure of 1 bar are shown in figure 5.23.

Figure 5.22: Length of Mach disc in dependence on
pressure.

As can be seen, the background color of the

discharge changes from dark blue to cyan

lowering the pressure, which means a shift

of the emitted line region from 450 to al-

most 500 nm. This displacement is based

on different excitation and de-excitation

mechanisms, which has to be investigated

further in emission spectroscopy. One can

further observe on the pictures the size of

the plasma jet and the formation of a Mach

disc. It is possible to measure the size of

the Mach disc at different pressures using

the distance of the screws (dimly visible at

0.2 mbar below and above the jet) as a reference and determining the extent of the light

ball. The result for the measured length and horizontal diameter is plotted in figure 5.22.

They are in good agreement with the data calculated from equation 5.9.
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0.2 mbar 0.1 mbar 0.08 mbar

Figure 5.23: Photos of the plasma jet at different cathode side pressures, anode 1 bar.

Electrical characteristics

The transition of the high-pressure discharge to a plasma jet is also visible in the current-

voltage characteristic plotted in figure 5.24. Compared to a static discharge (see fig-

ure 5.8), the gas voltage is higher and clearly decreasing with the current. The need of

higher gas voltage in the jet configuration can be explained by the energy removal due

to the high gas flow that has to be compensated. In the configuration with the skimmer

it was observed that the presence of the skimmer changes the plasma potential in such a

way that the gas voltage is decreased or increased depending on wether the skimmer is

grounded or floating.

Figure 5.24: Current-voltage characteristic.

For stable plasma the grounded configu-

ration was chosen, otherwise the skimmer

was charged up to 200 V, depending on the

voltage and the current applied. It has to

be mentioned that the short distance of the

skimmer to the micro hollow cathode dis-

charge leads to an additional current flow

over the skimmer. This can be measured

using a 50 Ω resistance and its value is up

to 1 mA. This is almost a third of the power

at the 3 mA current commonly used.
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Laser absorption

Spatially resolved measurements of excited atoms The spatial distribution of the

excited helium atoms was investigated with a similar arrangement as shown in section

5.2.1. The collimated beam of the laser diode was either adjusted through the hole of

the structure or it was passed parallel to the cathode surface in a specific distance; the

plasma was modulated with several hundreds Hz in order to improve the signal to noise

ratio.

Figure 5.25: Abel-inverted spatial distribution of
the helium atoms in resonance state, 1000 →
0.7 mbar, 3 mA, 250 V.

The spatial distribution of the relative ab-

sorption of the excited helium atoms in the

resonance state is shown in figure 5.25. The

absorption was probed side-on with a step

width of 500 µm and 1 mm in z- and y-

direction, respectively.

Firstly, the absorption measured perpen-

dicular to the plasma jet is averaged over

different radial positions. However, the

cylindrical symmetry of the plasma jet en-

able the deconvolution of the image by the

Abel inversion. The measured values I(y),

which are the transmitted laser intensities

integrated along the x-direction, at various

points along the y-axis. They can be converted to the spectral radial distribution ε(r).

The measured intensity is given by

I(y) ∼
∫ x2

x1

ε(
√

x2 + y2)dx =

∫ R

y

2rε(r)√
r2 − y2

dr, (5.10)

while the inversion of this expression yields the desired quantity

ε(r) = − 1

π

∫ R

r

dI(y)

dy

dy√
y2 − r2

. (5.11)

R is the radius of the cylindrical shape. This conversion can be done by a discrete method,

described and tabulated in [LH68]. In this measurement, 8 positions in y direction were

used for each distance in z-direction.

Excited atoms can be observed even several mm outside the hole. The expansion of the

particles in the Mach disc is so close to the bore that the distribution is not resolvable.
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The density of excited atoms can be calculated according to equation 3.5. As can be

seen, the absorption length L has to be known very well, but it can only be estimated in

the current experiment by evaluation of figure 5.25. A medium value for the absorption

length close to the hole of the structure is assumed to be 3 mm. In this case the density

of excited He atoms in resonance and metastable state is 3 · 1010 cm3 and 1.5 · 1012 cm3

probing the transition at 667 and 388 nm, respectively. An error of 30 % has to be kept

in mind for the uncertainty of the absorption length. In addition this value is only valid

close to the hot region of the structure; the spatial decrease is according to figure 5.25,

and the maximum value inside the hole is unknown.

Line profile measurement It was shown that the electron density in the atmospheric

pressure helium MHCD might be 1015 cm3 which is reduced by decreasing the pressure.

The measured absorption line shift of the 667 nm line by reducing the pressure on cathode

side is shown in figure 5.26. The laser beam passed the hole in the direction of the flow

and opposite to it. The difference between both directions is clearly seen and given by

the Doppler-shift of the lines. Furthermore, an increase of the line shift for pressures of

several hundreds of mbar is visible. This phenomenon has not been explained yet, but

the determination of the shift is very critical in this regime, because the line profiles are

broad and begin to be distorted due to the transition to a non-Lorentzian line shape.

Therefore, in the following plot the evaluation is limited to the low and medium pressure

range in which the line shift could be measured within a reasonable error. Furthermore,

it was proved that these line shifts do not depend on the alignment.

As can be seen for pressures below 100 mbar, a constant shift, negative in forward direction

and positive in opposite direction, is obtained. Both have the same amount, but different
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Figure 5.26: Line shift measurements in the micro hollow cathode jet and determined velocities therein.
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signs. This indicates that the electron density does not contribute anymore to the shift,

because it is smaller than 1014 cm−3 and is not detectable by this method. The shift

obtained is identified as the Doppler shift, which is directly connected to the velocity

of the particles. This is plotted in the right hand side of figure 5.26. It has to be

mentioned that the line profile at reduced pressure is not anymore symmetrically because

of the favored directed motion of the particles and consequently, no Gaussian profile is

obtained. The value of the first order Doppler shift is given by

∆λ = λo
v

c
. (5.12)

v velocity of the atoms

c velocity of light

At the lowest pressure directed velocities of almost 1800 m/s are approached. If this

is the maximum velocity of the jet, this equals – according to equation 5.8 – to a gas

temperature of 315 K in the hole. It has to be mentioned that this value implies that

particles in the bore have a Maxwellian distribution. However, such an assumption cannot

be proved.

5.3.3 The MHCD as ion source
for analytical mass spectrometry‡

Experimental setup The experimental arrangement is presented schematically in fig-

ure 5.27. The MHCD was mounted in front of the quadrupole mass filter as already

described in section 3.4. The discharge could be mounted at different distances from the

skimmer. The distance plasma skimmer was calculated according to the theory of free

flow (equation 5.9) in order to collect the ions from the free jet centerline. The skimmer

cone with a diameter of 0.8 mm was installed mostly around 3 mm away from the plasma,

which was in agreement with the size of the Mach disc at the pressures used. The skim-

mer produced a perturbation of the plasma potential because of the small distance to the

structure, and was grounded to obtain stable conditions. For each experimental operation

condition, the five ion lenses behind the skimmer were adjusted to get optimum signals.

The gas was flowing from the anode side, where the positive high voltage was applied, to

the cathode side, which was grounded.

The analyte samples passed the plasma with the main gas stream. The samples were (1)

mixed with the plasma gas, (2) introduced from a calibrated permeation source to the

gas flow, or (3) separated by a gas chromatograph and then introduced into the main gas

‡Part of this chapter is accepted for publication in J. Anal. At. Spectrom. [Mic04]
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Figure 5.27: Experimental arrangement consisting of: different sample introduction systems ((1) gas
mixture, (2) permeation source, (3) gas chromatograph), plasma jet source and mass spectrometer.

stream. The used samples are summarized in table 5.4. In the case of gas mixtures (1), the

analyte was pre-mixed with He in a gas bottle, obtaining an initial concentration of a few

ppm. The bottle was connected at the anode side and the gas mixture passed through

the plasma. For smaller concentrations, the initial mixture was diluted with He and

reconnected to the system. In the second case (2), the permeation source (a small glass

vial sealed with a 0.1 mm Teflon membrane and filled with the volatile analyte) was placed

in a small chamber directly in the He gas flow providing the plasma. After a few minutes,

equilibrium between the permeating gas and the He gas was established, and this stayed

constant during the measurements. For the gas chromatography coupling (3), the column

of the gas chromatograph (Shimadzu GC-14A, column FS-SE-54-CB-1) was placed at a

distance of a few mm in front of the anode and an additional gas flow was inserted in

front of the structure for an additional supply with helium. The gas flow from the gas

chromatograph alone (less than 4 ml/min) was not enough to sustain a stable plasma

jet. The plasma was switched off for the time when the solvent was eluted, because high

concentration of organic compounds could not be tolerated. The reason is that significant

amounts of carbon deposited in the hole would destroy the microstructure. The constant

addition of small amounts of oxygen (less than 2 %) that was added to the gas flow helped
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Gas mixtures Freon-12 CCl2F2

Freon-22 CHClF2

Permeation source carbon tetrachloride CCl4
chloroform CHCl3
dichloromethane CCl2H2

Gas chromatograph fluorobenzene C6H5F
1,2-dichloropropane C3H6Cl2
1-bromobutane C4H9Br
1-chloropentane C5H11Cl
1-iodobutane C4H9I
2,5-dimethylthiophene C6H8S
1-bromo-4-chlorobutane C4H8BrCl

solvent pentane C5H12

Table 5.4: Samples used for mass spectrometric measurements.

to prevent deposition of carbon without influencing the ion signals. The lifetime of the

device was not shortened by the addition of oxygen, while it was considerably decreased

by the presence of high amounts of reactive species or carbon.

Figure 5.28: Variation of signal for different elec-
tron multiplier voltages.

The variation of the signal on the electron

multiplier voltage is shown in figure 5.28

for the two ion channels corresponding to

carbon and helium. As can be seen, an am-

plification of almost 3 orders of magnitude

can be obtained by changing the applied

voltage. Most of the measurements were

carried out at moderate voltages of 2500 V.

Mass spectra and generated ions A

sample mass spectrum of a mixture of he-

lium with CCl2F2 is shown in figure 5.29.

The three plotted spectra are measured

with three different preamplifications so as

to determine all ions, which would be either saturated or not detectable just by a fixed

amplification factor. The strongest signals are those of the buffer gas helium (4 u) and

impurities as nitrogen (14 u), hydrogen (1 u), oxygen (16 u) or water (18 u). These

impurities can either be introduced in the system by the buffer gas itself (the used He

4.9 contains several ppm of different impurities) or by a small leak in the whole system.

The analytical signals by decomposition of CCl2F2 are two orders of magnitude smaller.
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Figure 5.29: Mass spectra for a mixture of 17 ppm CCl2F2 in helium, structure made of Cu/Ni.

The strongest signals belong to the atomic ions of chlorine, fluorine and carbon. It has

to be mentioned that the carbon signal is not only obtained from the analyte of interest,

but could also be due to contamination with CO2 or CO. These gases are present in the

order of several ppm in the He gas. Chlorine has two isotopes with a mass of 35 and

37 u, having a natural ratio of 3 : 1. This fraction can be found in the plot, too. In the

following plots, the discussion will be restricted to the 35Cl mass for simplicity reasons3.

Furthermore, molecular fragments resulting from the decomposition of CCl2F2 are de-

tected. In any case, it has to be noted that the whole molecule (mass 120 u, not plotted)

cannot be measured, which is in accordance with mass spectra obtained by electron impact

published by NIST [NISov]. This is caused by the smaller (at least 2 orders of magnitude)

partial electron ionization cross section of the CCl2F2 molecule compared with the other

fragments [Lei88]. It has to be mentioned that only sputtered metal ions (copper, nickel)

were measured but no molecules formed with the analytes or plasma gas impurities.

The appearance of many protonated ions, like FH+, ClH+ or CClH+ is very conspicuous,

3The isotope ratio complicates the spectrum, starting to have 2 or more chlorine atoms in a compound,
because the fraction is overlapped with the statistical probability 1:2:1 to form molecules with two different
atoms.
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even though they are no fragments of the introduced molecule. This is because of the

strong proton affinity of products in the discharge.

Optimization of the operational parameters The power coupled into the plasma

and the pressure in the interface are the only parameters that can be optimized as long

as the pressure at the anode side is in the atmospheric pressure range. The gas flow

through the plasma depends only on the pressure in front of the anode, the hole diameter

and the source gas kinetic temperature. For this system with a 100 µm hole diameter,

the gas flow varied between 100 ml/min and 200 ml/min for a pressure of 1000 mbar

and a gas temperature between 400 and 1000 K. For such flow rates, the transit time of

gas particles through the hole is about 1 µs, which is still 3 orders of magnitude higher

than the mean time between collisions. At such reduced transit times, it is expected

that a weak dissociation takes place, which can be seen in the measured mass spectra

showing atomic ions and ions of molecular fragments. It has to be mentioned that the

incomplete dissociation can be used to indicate the chemical structure of the analytes

that can be configured from the signals of the fragments. The optimization of the plasma

operating conditions was performed by drastically changing the pressure at the cathode

side in order to analyze its effect on the measured mass spectra. The distance plasma –

skimmer was always adjusted so that the skimmer was placed in the Mach disk to avoid

ion recombination and reactions which, additionally, change the mass spectra.

In figure 5.30 the mass spectra of CCl2F2 in He are shown after the subtraction of the

background gas spectrum. Figure 5.30a displays a spectrum measured at a pressure of

Figure 5.30: Mass spectra of the MHCD in He + 3 ppm CCl2F2 after subtraction of the background for
different operational conditions: a) W structure, D = 110 µm , p = 840 mbar / 7·10−4 mbar, Vgas =
260 V, Ipl = 2 mA; b) Pt structure, D = 100 µm , p = 840 mbar / 4·10−1 mbar, Vgas = 192 V, Ipl =
2 mA.
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pc = 7 · 10−4 mbar. A higher pressure (pc = 4 · 10−1 mbar) has a significant impact on

the spectrum as shown in figure 5.30b. There are more fragment ions if the pressure is

lower (note also the difference in scale in the figures). A possible explanation is that

the electron energy and the gas temperature are decreased at lower pressure leading to

a reduced dissociation and ionization. Furthermore, it can be seen that the relative

concentration of atomic ions (here 35Cl+) is increasing with pressure. This simplifies the

whole experimental arrangement because only one fore pump has to be used.

Figure 5.31: Dependence of the ion signals on the
cathode side pressure pc.

Plasma gas as well as analyte ion signals

depend on the pressure at the cathode

side of the MHCD. For example, the an-

alyte signals are increasing one order of

magnitude while the He ion signal is de-

creasing less than one order of magnitude

if the pressure pc was varied from 0.6 to

1.5 mbar at constant pressure on the an-

ode side (750 mbar). Higher pressure give

rise to better dissociation in the bore while

the decrease of the He signal should be due

to a faster recombination at higher electron density.

The different behavior of analyte and buffer gas ions can be explained by the charge

transfer collisions and ionization processes, too. If the pressure is increasing the collision

rate is growing and therefore, more charge can be transferred from helium to the analytes.

Hence, the number of helium ions decreases proportionally as the number of analyte ions

is increasing.

Figure 5.32: Dependence of the ion signals on the
discharge current for 7.5 ppm CHClF2 in He, pa =
1000 mbar / pc = 0.8 mbar.

The influence of the discharge current was

examined for atmospheric pressure on the

anode side and 0.8 mbar on the cathode

side. A significant increase of the ion sig-

nals by two orders of magnitude and a

slight improvement of the dissociation were

observed, if the current was changed, e.g.,

from 2 to 4 mA. This can be extracted from

figure 5.32 that shows the relative signals of

all ions measured with CHClF2 as analyte

molecule in He at three different discharge

currents.
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Analytical results The analysis of molecules such as the halogenated hydrocarbons

and their detection limits are of specific interest in environmental science. In the following

passage, the analytical performances of the plasma jet coupled to a mass spectrometer

will be presented.

Figure 5.33: Calibration curves for CCl2F2 and
CHClF2 detection Cl+ at pa = 800 mbar / pc =
0.6 mbar, I = 3 mA.

First of all, mixtures of freon with the

plasma gas were introduced into the instru-

ment and Cl ions were measured. Differ-

ent freon concentrations were obtained by

diluting standard gas mixtures. Calibra-

tion curves are presented in figure 5.33 for

two freon molecules (CHClF2 and CCl2F2).

They are linear over 3 orders of magnitude.

The detection limits are 5 and 8 ppb for

CCl2F2 and CHClF2, respectively. These

values correspond to about 20 and 32 pg/s.

The detection limit for CCl2F2 by MHCD-

MS can be directly compared with the data

obtained by MHCD-optical emission spectrometry (see section 5.2.2) which was of the

same order. From figure 5.33 it can be immediately noticed that the Cl+ signal ratio

of both species is two, which reflects the Cl ratio in the analytes. This is also in ac-

cordance with the previous results, applying the MHCD as a source for optical emission

spectrometry.

In a second experiment the volatile compounds CCl4, CH2Cl2 and CHCl3 were filled

separately in glass vials and capped with a Teflon PTFE membrane of 100 µm. These

permeation sources were gravimetrically calibrated over a few weeks in order to measure

the permeation rate. At room temperature, the flow rates of these hydrocarbons are

in the range of a few ng/s (CH2Cl2) to hundreds of pg/s (CCl4, CHCl3). The sources

were introduced one after the other in the He flow and the mass spectra were recorded.

Unfortunately, it was not possible to obtain calibration curves, because no facility to vary

their concentration by changing the flow rates of the He gas stream was present. However,

the detection limits could be estimated from the signal to noise ratio according to the 3σ

criterion.

In figure 5.34 (a – c) the mass spectra of CCl4, CH2Cl2 and CHCl3 are shown to give an

idea of the Cl+ signal relative to the decomposition products. Note that the Cl+ ratio

from figure 5.34 is in agreement with the ratio of the mass flow rates taking into account
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Figure 5.34: Mass spectra of volatile organic compounds (a: CCl4, b: CH2Cl2, c: CHCl3) introduced
from a permeation source. Experimental conditions: pa = 800 mbar / pc = 0.6 mbar, Ipl = 3 mA.

the Cl masses in all three species and the total masses of the molecules. The detection

limit for Cl ions found in this experiment was comparable to the one obtained in the gas

mixtures.

In a third experiment the discharge was coupled with a gas chromatograph for the intro-

duction of volatile halogenated molecules. In this case the halogenated molecules were

measured by element-selective detection (see section 3). Figure 5.35 displays the chro-

matographic signals of C+, F+, Cl+, Br+, I+ for the samples given in table 5.4. The

concentrations of the different species were in the order of several µl/ml. The He+ signal

was independent of time for analyte concentrations lower than several hundred nl/min

proving that the plasma was sufficiently robust. Considering its high reactivity, fluorine

contaminated the walls of the hole and a background was visible in the measured F+

signal. Another reason for this background can be the interference with the H3O
+ ions

present at the m/z = 19. The detection limits (see figure 5.35) for F+, Cl+, Br+ and I+

were found to be 300 pg/s, 40 pg/s, 150 pg/s and 40 pg/s, respectively. These results are

in the same order of magnitude as found without the gas chromatograph. An influence

Figure 5.35: Chromatograms of C+, F+, Cl+, Br+, I+; sample concentration of 5 µl/ml of the analytes,
pa = 800 mbar / pc = 0.5 mbar, Ipl = 3 mA; Calibration curve.
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on the discharge operation was observed when the solvent was entering the plasma as a

result of carbon deposition in the bore. This effect was reduced by switching the plasma

off in between measurements or by adding oxygen to the plasma gas. It was found that

oxygen flow rates lower than 1 ml/min removed the carbon deposition from the walls of

the MHCD. This procedure improved the chromatographic resolution but had no influence

on the detection limit.

The detection limits obtained are comparable with those found in the DBD and the others

listed in section 4.2.2. Additionally, compared with the optical spectrometry, the MHCD-

MS detector offers the possibility to determine the stoichiometric structure of molecules

by the detection of the fragments.
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Two miniaturized discharges for quantitative analysis were investigated, the dielectric

barrier discharge (DBD) and the micro hollow cathode discharge (MHCD). Both were

examined concerning some important plasma parameters, like electron density and gas

temperature. For the diagnostics of both discharges, two spectroscopic techniques were

improved, based on diode laser atomic absorption spectrometry or emission spectroscopy.

In the case of the DBD, a spatial resolution of 50 µm was achieved in order to determine

the distribution and density of excited species responsible for dissociation and excitation.

This was not studied before and the results obtained are an important contribution to the

theory of dielectric barrier discharges. That completes and confirm the theoretical models

predicted for the plasma. For the MHCD, a method for determining electron density and

gas temperature by line shift measurements was applied. This second method was not

successful so far due to the large uncertainties in the experimental data as well as the

pressure broadening coefficients. This could be overcame by emission measurements with

high spatial resolution; it could verified wether the proposed line shifts measurements at

high-pressure are appropriate for plasma diagnostics.

For the DBD, plasma diagnostics revealed that the hot region of the plasma is constricted

close to the temporary cathode for a short time of each discharge cycle. In this thin layer,

the electron density reaches 1015 cm−3 and the gas temperature is about 1000 K, while

the rest of the discharge remains cold. The mean power consumption of the discharge is

much smaller than 1 W. Nevertheless, the peak power density of 1 kW/cm3 is in the same

order of magnitude as the mean power density of an inductively coupled plasma.

In the case of the MHCD, it could be shown that the gas temperature and electron density

at atmospheric pressure in Ar are in the range of 1500 K and 5 · 1015 cm−3, respectively.

The power density of this discharge is in the order of 1 MW/cm3 and, therefore, even 3

orders of magnitude higher than in an ICP.

The high power density qualifies both discharges as a powerful tool. Additionally, it

was proven that they are also long-living devices. Analytical measurements applying

absorption, emission or mass spectrometry manifest the versatility of each discharge for

the detection of halogenated hydrocarbons in gaseous and liquid state. Detection limits

of several ppb or pg/s were obtained for atomic detection. The stoichiometric ratio of the

113
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elements, present in the investigated substances, was close to the theoretical calculation

which allows to determine the molecular structure of the substance. In the case of the

coupling of the MHCD with the mass spectrometer, the spectra offer even the possibility

of obtaining information on the fragments that were generated.

It was shown that the DBD is an adequate discharge for absorption spectroscopy as the

excited state density is quite high and the absorption path relatively long. On the contrary,

the MHCD is well adapted for emission spectroscopy. Furthermore, it was observed that

mass spectroscopy with a MHCD jet does not reveal lower detection limits than optical

spectroscopy. Certainly, the coupling of the discharge to the mass spectrometer has to be

improved. However, it is not clear how much the performance is degraded by reducing the

pressure on the cathode side in order to form a plasma jet. The electron density is quite low

(< 1014 cm−3), as long as it is not measurable with the proposed methods. Additionally,

the gas temperature in the bore was determined to a value near room temperature. Such

conditions are probably not enough for an efficient dissociation, excitation and ionization

of analytes.

A problem of small-scaled discharges is the sample introduction system, because it has to

be as small as the discharge itself and the injected sample volume has to be adapted. Sev-

eral research groups are investigating downscaled sprays and gas chromatographs which

have a potential use as sampler for the micro-discharges. Only in combination with these,

a powerful detector can be developed. Nevertheless, one has to keep in mind that micro-

plasmas can never be all-rounders, but only substitute other analytical instruments in

specific areas.

It was discussed that sample introduction of liquid or solid samples into miniaturized

discharges is difficult. Therefore, one should also regard a laser induced plasma also as

micro-discharge for future analysis. The power densities obtained in LIBS (laser induced

breakdown spectroscopy) are much larger than those obtained with electrical discharges.

Focusing a ns-pulse of a laser with an energy of some mJ into a volume of 10−9 cm3,

results in power densities of 1015 W/cm−3. This is more than sufficient to evaporate

any wet aerosol in the sample sprayed by a common nebulizer. Such measurements were

already performed [Mar00, MN00] and are under way in our laboratory.

In the next few years, it will become clear whether miniaturized discharges are capable

for analytical purposes in series production or not. Some spin-off companies already an-

nounced to have market-able products within the next two years. Choosing one of the

two discharges investigated, only the MHCD seems to be powerful enough for routine

analysis. It could be successfully coupled with a gas chromatograph in order to obtain a
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new GC-AED (atomic emission detector). Compared to the standard Agilent device (the

only one on the market at this moment), both the discharge as well as the spectrometer

should be replaced. The MHCD deals with the advantage of a simple sample introduction,

as any material has to pass the hole of the structure and, therefore, the plasma volume.

As was shown, efficient excitation took place. Furthermore, the spectrometer used cur-

rently offers only a small wavelength range, limiting the analysis to one or a few elements

simultaneously. This spectrometer could be replaced by an Echelle spectrometer, as it

was developed at ISAS Berlin providing a spectrum of 300 nm for detection of several

elements simultaneously. Especially organic compounds consisting of halogen, sulphur

and phosphor in addition to C, H and O could be detected.

Furthermore, the MHCD could be coupled with the miniaturized mass spectrometer pre-

sented in section 3.4, too. The size and gas flows of both systems are well adapted and

with this a complete miniaturized system could be built. A cooperation within this field

is envisaged for the near future.

Other potential applications for miniaturized discharges in analytical devices could be the

implementation in robotic devices, which will be utilized in situations where man could

not be present. If the plasmas are able to work in ambient atmosphere and, additionally,

offer good capabilities they could be versatile tools even for missions to other planets.
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Appendix 7

7.1 Coefficients for particle and energy balance

The calculations concerning the particle and energy balance were done with the parame-

ters enlisted in the following tables. All of them are based on a collisional radiative model

presented in [Jon98].

Diffusion

The ambipolar diffusion coefficient is given by

Da =
3kb

8ngMΩ(Tg)
(Tg + Te) (7.1)

with the ion-atom collision integral Ω for argon and helium given by

ΩAr(Tg) = (3.03 + 6.82 · 10−4Tg − 3.7 · 10−8T 2
g + 9.15 · 10−13T 3

g ) · 10−16[m3s−1] (7.2)

ΩHe(Tg) = (1.72 + 8.26 · 10−4Tg − 5.2 · 10−8T 2
g ) · 10−16[m3s−1]. (7.3)

Ion production

The ionization coefficients can be represented by the following fits

SHe
CR = 3.15 · 10−15

√
Tee

−19.38/Te [m3s−1] (7.4)

SAr
CR = 7.34 · 10−15

√
Tee

−12.06/Te [m3s−1], (7.5)

in which Te is the electron temperature in eV.
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ne m−3 ao a1 a2 a3 a4

1019 -16.004 -4.115 -2.043 3.023 -0.851
1020 -11.443 -23.219 23.278 -11.401 2.170
1021 -10.996 -23.431 24.004 -11.891 2.280
1022 -10.096 -23.369 23.992 -11.896 2.282

Table 7.1: Fit coefficients ai for recombination term αCR for different ne values

Recombination

The recombination coefficient αCR is implemented using a fourth order polynomial ex-

pression:

αCR = 10F (Te)

4∑
l=0

alT
l
e, (7.6)

using the coefficients given in table 7.1.
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7.2 Coefficients for pressure broadening

Line width and shift for pressure broadened lines are given by 2γN and βN , respectively.

While N is the gas density according to the ideal gas law, the coefficients 2γ and β

are given in table 7.2 for different authors. The values for the transitions starting on

metastable states (801 and 811 nm) have to be scaled according to the Lindholm-Foley

theory with T 0.3. The value for the line starting from a resonance level (800 nm) has to be

scaled with a slightly smaller exponent, because the temperature independent resonant

broadening also partakes.

The parameters in the table are given in the original unit measured by the authors and

transformed to the consistent unit of pm/cm3.

width 800 nm 801 nm 811 nm unit T [K]
Moussounda 6.71± 0.26 7.44± 0.45 10−9 rad/s cm3 2250

[Mou87] 22.9 26.0 10−19 pm/cm3

Aeschliman 2.27± 0.25 10−20 Å/cm3 300
[Aes76] 22.7 10−19 pm/cm3

Copley 4.1± 0.2 2.9± 0.3 10−20 cm−1/cm3 1130
[Cop76b] 26.2 18.6 10−19 pm/cm3

Vallee 2.8± 0.3 2.9± 0.3 10−20 cm−1/cm3 3900
[Val77] 18.0 19.1 10−19 pm/cm3

Tachibana 1.42± 0.14 10−20cm−1/cm3 300
[Tac82] 9.3 10−19 pm/cm3

Lee 1.9± 0.2 10−20cm−1/cm3 300
[Lee75] 12.5 10−19 pm/cm3

shift 800 nm 801 nm 811 nm unit T [K]
Moussounda 2.24± 0.15 3.00± 0.17 2.88± 0.17 10−9 rad/s cm3 2250

[Mou87] 7.5 10.2 10.1 10−19 pm/cm3

Aeschliman 2.37± 0.12 5.11± 0.25 4.73± 0.25 10−21 Å/cm3 300
[Aes76] 2.37 5.11 4.73 10−19 pm/cm3

Copley 1.51± 0.07 1.22± 0.07 10−20 cm−1/cm3 1130
[Cop76b] 9.7 8.0 10−19 pm/cm3

Vallee 9.6± 0.5 8.5± 0.5 10−21 cm−1/cm3 3900
[Val77] 5.5 6.3 10−19 pm/cm3

Tachibana 4.4± 0.4 10−21cm−1/cm3 300
[Tac82] 2.9 10−19 pm/cm3

Table 7.2: Width and shift coefficient for different Ar transitions.
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[Zyb95] A. Zybin, C. Schnürer-Patschan, and K. Niemax, Wavelength modulation diode

laser atomic absorption spectrometry in modulated low-pressure Helium plasmas

for element-selective detection in gas chromatography, Journal of Analytical

atomic Spectrometry 10, (1995) 563–567.



130 BIBLIOGRAPHY

[Zyb97] A. Zybin and K. Niemax, Improvement of the wavelength tunablity of etalon-type

laser diodes and mode recognition and stabilization in diode laser spectrometers,

Spectrochim. Acta Part B 52, (1997) 1215 – 1221.



BIBLIOGRAPHY 131

So far, the present work has resulted in several conference contributions and the following

publications:

1. K. Kunze Ein Plasma für die Miniaturisierung von Analysensystemen - Die dielek-

trisch behinderte Entladung Diplomarbeit / Universität Dortmund (2001) – [Kun01]

2. M. Miclea, K. Kunze, G. Musa, J. Franzke, K. Niemax. The dielectric barrier

discharge - a powerful microchip plasma for diode laser spectrometry Spectrochimica

Acta, Part B 56 (2001) 37–43 – [Mic01]

3. M. Miclea, K. Kunze, J. Franzke, C. Vadla, K. Niemax. Spatial and temporal dis-

tribution of excited Cl atoms in a linear dielectric barrier discharge submitted to

Romanian Reports in Physics (2001)

4. K. Kunze, M. Miclea, G. Musa, J. Franzke, C. Vadla, K. Niemax. Diode-laser aided

diagnostics of a low-pressure dielectric barrier discharge applied in element selective

detection of molecular species Spectrochimica Acta, Part B 57 (2002) 137–146 –

[Kun02]

5. M. Miclea, K. Kunze, J. Franzke, K. Niemax Plasmas for lab-on-the-chip applica-

tions Spectrochimica Acta, Part B 57 (2002) 1585–1592 – [Mic02]

6. J. Franzke, K. Kunze, M. Miclea, K. Niemax Technologie von Plasmabildschirmen

und CD-Spielern: Optimiert für den Einsatz in analytischen Systemen Nachrichten

aus der Chemie 50 (2002) 1247-1249

7. J. Franzke, K. Kunze, M. Miclea, K. Niemax Microplasmas for analytical spectrom-

etry J. Anal. At. Spectrom. 18 (2003) 802–807 – [Fra03]

8. K. Kunze , M. Miclea, J. Franzke, K. Niemax The dielectric barrier discharge as a

detector for gas chromatography Spectrochimica Acta, Part B 58 (2003) 1435—1443

– [Kun03]

9. K. Kunze, A. Zybin, J. Koch, J. Franzke, M. Miclea, K. Niemax Element selective

detection of molecular species applying chromatographic techniques and diode laser

atomic absorption spectrometry in print in Spectrochimica Acta, Part A (2004)

10. M. Miclea, K. Kunze, J. Franzke, K. Niemax Microplasma jet mass spectrometry of

halogenated organic compounds accepted for publication in J. Anal. At. Spectrom.

(2004)



132 BIBLIOGRAPHY



Acknowledgments

Last but not least I’d like to thank all people who made this thesis possible. The present

work was performed at the former Institute of Spectrochemistry and Applied Spectroscopy

(now Institute for Analytical Sciences) in Dortmund and was partially funded by the

Deutsche Forschungsgemeinschaft.

To my supervisor, Prof. Dr. Niemax, I am thankful for many suggestions and fruitful

discussions, especially during the writing of my thesis.

My very special thanks are addressed to Prof. Dr. Bayer for spontaneously accepting to

review my work.

I’m much obliged to Dr. Miclea. Without her help, mental and scientific support this

thesis wouldn’t have been possible. Thanks for the last 4.5 years. Let’s hope we will meet

again in the future doing some strange experiments.

Many thanks are directed to PD Dr. Franzke for his continuous support and friendliness

during my time at ISAS. His suggestions after proofreading my thesis were very helpful.

The preliminary measurements of the MHCD-MS coupling were done at IKF in Frankfurt.
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