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Chapter 1

Introduction

1.1 Non-equilibrium Dynamics in QFT

Non-equilibrium dynamics have become a very active �eld of research in the last few years

in nearly all parts of physics. In condensed matter physics for example the description

of the dynamics of non-equilibrium phase transitions plays an important role [1]. Such

phase transitions occur in ferromagnets, super
uids, and liquid crystals to name only a

few. They are subjects of intensive studies, both theoretical and experimental.

Also in cosmology some phenomena require the use of non-equilibrium technics. One

example is the electroweak phase transition which took place 10�12 seconds after the Big

Bang. If the electroweak phase transition is a phase transition of �rst order then it leads

to a possibility to explain the observed asymmetry between matter and anti-matter. The

mechanism which is responsible for the asymmetry is called baryogenesis. It can only occur

if the so-called Sakharov conditions [2] are ful�lled. They are non-conservation of baryon

number, C and CP violation and a system out of thermal equilibrium. This problem is

investigated by several groups, e.g., [3, 4], using non-equilibrium methods.

Another phenomenon in cosmology where non-equilibrium dynamics are important is

the in
ationary phase of the early universe which is studied intensively by di�erent groups

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In
ation refers to an epoch during the evolution of

the universe in which it underwent an accelerated expansion phase. This would resolve

some of the short comings of the Standard hot Big Bang model, e.g., the 
atness problem,

concerning the energy density of the universe and the horizon problem, related by the

large scale smoothness of the universe, indicated by the Cosmic Microwave Background

Radiation (CMBR). For a general introduction to in
ation, see e.g. [15, 16].

At lower energies heavy ion collisions are under consideration as non-equilibrium pro-

cesses [17, 18, 19, 20, 21, 22]. In such heavy ion collisions a new state of matter could

be reached if the short range impulsive forces between nucleons could be overcome and if

squeezed nucleons would merge into each other. This new state should be a Quark Gluon

Plasma (QGP), in which quarks and gluons, the fundamental constituents of matter, are

no longer con�ned, but free to move around over a volume in which a high enough tempera-

ture and/or density reveals. Heavy ion collisions are studied experimentally at current and
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CHAPTER 1. INTRODUCTION

forthcoming accelerators, the Relativistic Heavy Ion Collider RHIC at Brookhaven and the

Large Hadron Collider LHC at CERN. The occurring Quantum Chromodynamic (QCD)

phase transition in these processes could be out of equilibrium and lead to formations of

coherent condensates of low energy pions, so called Disoriented Chiral Condensates (DCC).

Recent results reported from CERN-SPS [23] seem to indicate a strong evidence for the

existence of a QGP in Pb-Pb collisions.

The described systems cannot be analyzed in equilibrium because of their extreme

environments. For example a rapid decrease of temperature as it occurs in the early

universe does not allow an equilibrium description. In the last years many e�orts have been

made in developing a formalism which allows a description of systems out of equilibrium. It

is based on the CTP formalism developed by Schwinger [24] and independently by Keldysh

[25]. This is only a perturbative approach and in the last decades di�erent nonperturbative

approximation schemes were developed and improved. Classical approximations were used

for example by Khlebnikov and Tkachev [26] to study the non-equilibrium evolution during

in
ation and reheating. In this approach the classical equations of motions are directly

solved on a computer. Since the theories contain an in�nite number of degrees of freedom

the regularization is performed on a lattice in space. Questions about the dependence of the

results on the lattice space and if a classical description of the physics in the early universe

leads to the right predictions were studied by Smit and Aarts [27]. Beyond the classical

approximation there are several di�erent methods, semiclassical, large N , and mean �eld

methods, under investigation. The Hartree approximation as a mean �eld method was

extensively analyzed for example by Boyanovsky et al. [28]. They have also worked on the

large N approximation [28, 29] beside other groups as for example Cooper et al. [21]. We

have concentrated ourselves on the semiclassical one loop approximation and the large N

expansion and study them in this work in detail.

We are especially interested in the quantum �eld theoretical aspects of non-equilibrium

dynamics. In our previous works we have developed a method which allows a clean sep-

aration between divergent and �nite parts of the equations and thus makes a numerical

implementation rather simple. The method is based on [30, 31, 32] and we have extended

it to di�erent models and approximations. The simplest model we have analyzed is the

�4 theory in the one loop approximation [33]. This paper constitute the basic for all our

further studies. Here, we extend the approximation to the large N model. The �4 theory

o�ers, as a simple toy model, the possibility to study di�erent approximation schemes and

analyze the behavior of the system in detail without leading to further problems induced

by the complexity of the model, as is, for example, the case in gauge theories. We are

especially interested in the e�ects caused by spontaneous symmetry breaking. For the

unbroken case we have published our results in [34] and here we show only some special

examples of the numerical results. Furthermore, we investigate �nite temperature e�ects.

Due to the spontaneous symmetry breaking the possibility for a phase transition occurs.

Such a phase transition is important for many physical phenomena and the non-equilibrium

description is necessary for systems as diverse as formation and evolution of defects in 4He

after a rapid quench, or the e�ciency of baryogenesis in the electroweak phase transition

as mentioned above.
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CHAPTER 1. INTRODUCTION

As for models discussed in the context of the electroweak phase transition gauge �elds

and fermions are of importance, we discuss, beside the �4 theory, gauge theories in detail.

The inclusion of fermion �elds is studied in [35]. It is not part of this thesis. Gauge theories

form the basis for all modern elementary particle theories. An unalterable requirement of

such theories is that they are renormalizable. The renormalization of the parameters of a

theory is necessary to �nd a relation between the computed and the measured observables.

Important for the success of gauge theories is the fact, that they can be always renormalized

if the gauge bosons are massless. This was shown in the fundamental works of 't Hooft

and Veltman [36] and Lee and Zinn-Justin. Herewith, their important role as models

describing interactions was founded. Due to the various degrees of freedom they o�er a

wide range for numerical experiments. We are interested in two di�erent aspects: the �rst

one concerns gauge invariance. We investigate the dependence of the e�ective action of

the gauge parameter � for general R�-gauges. We start with the analysis of the gauge

invariance of the e�ective action for the static case of bubble nucleation. Motivated by the

result that the exact one loop correction to the nucleation rate is gauge independent we

then study the 
uctuation operator for a system out of equilibrium for general R�-gauges.

We �nd after a suitable transformation a new 
uctuation operator equivalent to that of

the Coulomb gauge. Therefore, we investigate the non-equilibrium system in the Coulomb

gauge and in a gauge invariant formalism also leading to the same operator. Our second

purpose concerns the in
uence of the di�erent degrees of freedom on the behavior of a

system out of equilibrium. Hence, we carry out some numerics for di�erent parameter sets

for the Coulomb gauge and as a special case of R�-gauges the 't Hooft-Feynman background

gauge.

1.2 Content of the Thesis

This work is organized as follows. In chapter 2 we analyze the �4 theory in the large N

approximation. We describe the model and the approximation in section 2.2 and carry out

the renormalization in section 2.3 and 2.4 in order to implement the model numerically.

We are especially interested in the in
uence of spontaneous symmetry breaking on the

development of the system. Hence, we study in section 2.5 numerically the broken and

unbroken symmetry case and analyze the di�erent e�ects which occur. We dicuss the phase

structure of the system as a function of temperature and initial conditions. Furthermore,

we generalize some predictions which were made in [29] for the long time behavior of the

system to �nite temperature.

In chapter 3 we investigate gauge theories under di�erent aspects. Our interest concerns

the dynamical evolution of gauge theories as well as the problem of gauge invariance, which

is discussed in section 3.1. We describe the model under consideration in section 3.2. We

calculate the gauge and the gauge �xing mode and explain their role for the search of a

gauge invariant description of the e�ective action of the Higgs �eld in the SU(2) Higgs

model. Then in section 3.3, an explicit example for the computation of the e�ective action

independently of the gauge �xing parameter � is given. We discuss the bubble nucleation
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CHAPTER 1. INTRODUCTION

as a time independent, metastable, and radially symmetric con�guration. As a second

example we study in section 3.4 the SU(2)-Higgs model in the non-equilibrium context.

We derive the mode functions for arbitrary � and create a new 
uctuation operator whose

diagonal elements are independent of the gauge �xing parameter.

Another approach we investigate in the next chapter is based on the gauge invariant

description of the e�ective potential developed by Boyanovsky et al. [37]. We extend their

method to the non-equilibrium case and show which problems arise in this context. Then

we study the Coulomb gauge, which is very similar to the gauge invariant description in the

one loop approximation. After a renormalization procedure, we carry out some numerical

simulations and analyze the behavior of the system for di�erent masses and couplings. We

compare the results with those we have found in our previous work [38] where we have

used a 't Hooft-Feynman-background gauge in order to investigate the in
uence of di�erent

gauges in non-equilibrium systems.

Finally, we present in the last chapter our conclusions and give an outlook.
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Chapter 2

�4 Theory in the Large N

Approximation

2.1 Introduction

The time evolution of a system out of equilibrium is described in the Heisenberg picture by

the Heisenberg equation of motion. After specifying an initial density matrix the dynamics

of the system can be in principle described. The problem which arises is that in general the

equations of motion cannot be solved exactly. Therefore, approximation schemes have to be

developed. Perturbative expansions are only useful if the identi�cation of a small parameter

is possible. For a non-equilibrium system this identi�cation is very di�cult because, even

for a small coupling constant, the �eld amplitudes can become nonperturbativly large and

the expansion breaks down. Di�erent nonperturbative approximation schemes have been

developed recently in a non-equilibrium context. They include the quantum 
uctuations

explictly in the e�ective equations of motion. The simplest nonperturbative approximation

is the one loop approximation where the e�ective mass of the mode functions includes the

second derivative of the classical potential and not just m2. Extensions of this approxi-

mation are, e.g., the large N approximation and the Hartree approximation since in these

approximations also the 
uctuation terms are included in the e�ective mass. Here, we

study the one loop approximation and the large N approximation in order to investigate

the behavior of a non-equilibrium system under the di�erent approximations schemes. We

discuss the main properties of these two schemes and their main di�erences. We analyze

numerically both of them and show for which setting the one loop approximation is not

reliable anymore. For this purpose we choose the simplest model for the description of a

phase transition, the �4 theory with spontaneous symmetry breaking. The results can be

used to make predictions for the development of extended models, like the SU(2) Higgs

model which is studied in the next chapter.

In the one loop approximation we deal with a single �eld theory. We expand the �eld

� about its mean value and include only the one loop self energy diagram of the form
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CHAPTER 2. �4 THEORY IN THE LARGE N APPROXIMATION

without further resummation. This leads to an e�ective mass in the mode functions which

contains only the second derivative of the classical potential and no 
uctuation terms.

This approximation is also often referred to as one loop resummed approximation. As

we will see this kind of resummation leads to problems in a spontaneously broken theory

for the complex part of the e�ective potential. During the evolution of the zero mode in

the complex part of the e�ective potential instabilities arise. They lead to an exponential

growth of the modes and therefore, the approximation breaks down.

Better results can be obtained with mean �eld approximations. Two of them are

discussed extensively in the literature for non-equilibrium processes, the Hartree and the

large N approximation. They are closely related to each other. Both are based on graphs

of the form

whereby the propagators corresponding to the lines di�er for the two approximations. For

both approximations the second derivative of the classical potential for the mass term of

the mode functions in the one loop approximation is replaced by its Gaussian mean value.

This leads to self consistent equations. The explicit structure of the e�ective mass is of

course di�erent in the two approximations, see e.g. [21]. Since the Hartree approximation

is only a variational ansatz and not a consistent expansion in any small parameter the

renormalization procedure is not clear.

In the large N approximation the scalar �eld � is replicated in i components � !
�i; i = 1; :::; N which leads to the possibility for a systematic power series in the param-

eter 1=N . The leading order in the large N corresponds to a self-consistent mean �eld

approximation. We are especially interested in the e�ects of the spontaneous breakdown

of the global O(N) symmetry which leads to the existence of N � 1 massless Goldstone

bosons. They dominate the dynamics in the large N limit and lead to an e�cient mech-

anism for the mean �eld to continously transfer its kinetic energy to the massless modes

over time. It is important to notice that mean �eld approximations contain no mode-mode

collision terms which means that the particles interact with each other only through the

mean �eld. Since the large N approximation is a well de�ned expansion in powers of N

it has two advantages over the Hartree approximation: the renormalization can be done

in a consistent way as we will show in the following section, and furthermore, it leads to
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CHAPTER 2. �4 THEORY IN THE LARGE N APPROXIMATION

the possibility to improve the approximation in a systematic way by retaining higher order

terms in the series. A detailed description and comparison of the di�erent approximation

schemes can be found e.g. in [21].

In the following section we consider the �4 theory in di�erent approximation schemes.

We investigate in detail the model with spontaneous symmetry breaking at �nite tempera-

ture in the large N approximation with special emphasis on the renormalization procedure.

We carry out numerical studies for the one loop approximation at T = 0 and show in which

regime it fails. In order to study the e�ects of the symmetry breaking we compare for T = 0

numerical results for the unbroken and the broken symmetry case in the large N limit. We

discuss the e�ects induced by �nite temperature and calculate the critical temperature for

a phase transition.

2.2 The Model

We consider the O(N) model with the Lagrangian

L =
1

2
@��

i@��i � �

4N

h�
�i�i

�
�Nv2

i2
; (2.1)

where �i; i = 1; ::; N are N real scalar �elds. The non-equilibrium state of the system is

characterized by a classical expectation value which we take in the direction of �N . We

split the �eld into its expectation value � and the quantum 
uctuations  via

�i(~x; t) = �iN
p
N�(t) +  i(~x; t) : (2.2)

In the largeN limit all terms which are not for the order N are neglected in the Lagrangian.

In particular terms containing the 
uctuation  N of the component �N are at most of orderp
N and are therefore dropped. This is in contrast to the Hartree approximation where the


uctuations of �N are included. The 
uctuations of the other components are identical,

their summation produces factors N � 1 = N(1 + O(1=N)). Identifying all the �elds

 1; :: N�1 as  the leading order term in the Lagrangian then takes the form

L = N (L� + L + LI) ; (2.3)

with

L� =
1

2
@��@

��� �

4

�
�2 � v2

�2
; (2.4)

L =
1

2
@� @

� +
�

2
v2 2 � �

4
( 2)2 ; (2.5)

LI = ��
2
 2�2 ; (2.6)

where  2 is to be identi�ed with
P
 i i=N .

9



CHAPTER 2. �4 THEORY IN THE LARGE N APPROXIMATION

We decompose the 
uctuating �eld into momentum eigenfunctions via

 (~x; t) =

Z
d3k

(2�)3
1

2!k0

h
akUk(t)e

i~k�~x + a
y

kU
�

k (t)e
�i~k�~x

i
; (2.7)

with !2
k0 = m2

0+k
2. The mass m0 will be speci�ed below. This �eld decomposition de�nes

a vacuum state as being annihilated by the operators ak.

The equations of motion for the �eld �(t) and of the 
uctuations Uk(t) have been derived

in this formalism by various authors [21, 22, 39]. In addition to the large N Lagrangian

(2.3, 2.4) we use, on averaging over the quantum 
uctuations, rules like

( 2)2 ) h 2i2 ; (2.8)

@( 2)2

@ 
) 4 h 2i ; or (2.9)

@2( 2)2

@ 2
) 4h 2i ; (2.10)

which follow at large N from the identi�cation  2 ' P
 i i=N .

We include in the following the counter terms that we will need later in order to write

the renormalized equations. Then the equation of motion for the �eld � becomes

��(t) + ��
h
�2(t)� v2

i
+ ���3(t) + �m2�(t) + (�+ ��)�(t)F(t; T ) = 0 : (2.11)

Here F(t; T ) is the divergent 
uctuation integral, it is given by the average of the 
uctuation
�elds de�ned by the initial density matrix. For a thermal initial state of quanta with energy

!k0 it reads

F(t; T ) = h 2(~x; t)i =
Z

d3k

(2�)3
1

2!k0
coth

�!k0

2
jUk(t)j2 : (2.12)

The mode functions satisfy the equation"
d2

dt2
+ !2

k(t)

#
Uk(t) = 0 ; (2.13)

and the initial conditions

Uk(0) = 1 ; _Uk(0) = �i!k0 : (2.14)

The time dependent frequency !k(t) is given by

!2
k(t) = k2 +M2(t) ; (2.15)

with the time dependent mass

M2(t) = �(�2 � v2) + ���2 + �m2 + (�+ ��)F(t) : (2.16)

We rewrite the mode equation in the form"
d2

dt2
+ !2

k0

#
Uk(t) = �V(t)Uk(t) ; (2.17)
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CHAPTER 2. �4 THEORY IN THE LARGE N APPROXIMATION

whereby we have de�ned the time dependent potential V(t) =M2(t)�M2(0). We further

identify m0 =M(0) as the initial mass. The equation of motion for the expectation value

can also be rewritten as
��(t) +M2(t)�(t) = 0 ; (2.18)

which is of the same form as (2.13) with k = 0. The expectation value is also referred to

as zero mode, average �eld or mean �eld. The average of energy with respect to the initial

density matrix is given by

E =
1

2
_�2(t) +

1

4
�
�
�2 � v2

�2
+ ��+

1

2
�m2�2 +

1

4
���4

+

Z
d3k

(2�)3
1

2!k0
coth

�!k0

2

�
1

2
j _Uk(t)j2 +

1

2
!2
k(t)jUk(t)j2

�
(2.19)

��+ ��

4
F2(t; T ) :

Note that twice the last term, with positive sign, is included in the 
uctuation energy,

since !2
k(t) contains F(t; T ). It is easy to check, using the equations of motion (2.18)

and (2.13), that the energy is conserved. The energy density is the 00 component of the

energy-momentum tensor. The average of the energy momentum tensor for our system is

diagonal, its space-space components de�ne the pressure which is given by

p = _�2(t)� E + A
d2

dt2

h
�2(t) + F(t; T )

i
(2.20)

+

Z
d3k

(2�)3
1

2!k0
coth

�!k0

2

 
!2
k0 +

k2

3

!
jUk(t)j2 :

The term proportional to A as introduced by Callan et al. [40] is the space-space component

of the improvement term A(g��@
2�@�@�)�2 for the energy momentum tensor. Here it serves

as a renormalization counter term. The determination of the pressure is essentially for the

consideration of a system in expanding space time, since there the covariant conservation

of the energy includes the energy itself as well as the pressure.

2.3 Perturbative Expansion

In order to prepare the renormalized version of the equations we introduce a suitable

expansion of the mode functions. We have used this method exhaustively in our previous

publications for the in
aton �eld coupled to itself [33] and to gauge bosons [38, 41] in

Minkowski-space and for the in
aton �eld coupled to itself in a spatially 
at FRW-universe

[42]. All these calculations have been done for T = 0. The renormalization procedure does

not change for T 6= 0. Therefore, we give here only a brief review of the perturbative

expansion. For details the reader is referred to our previous work.

The mode functions can be written as"
d2

dt2
+ !2

k0

#
Uk(t) = �V(t)Uk(t) ; (2.21)
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with

V(t) = M2(t)�M2(0) ; (2.22)

!2
k0 = ~k2 +M2(0) : (2.23)

The mode functions satisfy the equivalent integral equation

Uk(t) = e�i!k0t +

1Z
0

dt0�k;ret(t� t0)V(t0)Uk(t0) ; (2.24)

with

�k;ret(t� t0) = � 1

!k0
�(t� t0) sin [!k0(t� t0)] : (2.25)

For Uk(t) we choose the following ansatz

Uk(t) = e�i!k0t [1 + fk(t)] ; (2.26)

to separate Uk(t) into the trivial part corresponding to the case V(t) = 0 and a function

fk(t) which represents the reaction to the potential. fk(t) satis�es the di�erential equation

�fk(t)� 2i!k0 _fk(t) = �V(t) [1 + fk(t)] ; (2.27)

with the initial conditions fk(0) = _fk(0) = 0 or the equivalent integral equation

fk(t) =

1Z
0

dt0�k;ret(t� t0)V(t0)[1 + fk(t
0)]ei!k0(t�t

0) : (2.28)

We now expand fk(t) with respect to orders in V(t) by writing

fk(t) = f
(1)
k (t) + f

(2)
k (t) + f

(3)
k (t) + � � � (2.29)

= f
(1)
k (t) + f

(2)
k (t) ; (2.30)

where f
(n)
k (t) is of nth order in V(t) and f (n)k (t) is the sum over all orders beginning with

the nth one:

f
(n)
k (t) =

1X
l=n

f
(n)
k (t) : (2.31)

The function f
(1)
k (t) is identical to the function fk(t) itself which is obtained by solving

(2.27). The function f
(2)
k (t) can be computed by using the di�erential equation, via

�f
(2)
k (t)� 2i!k0 _f

(2)
k (t) = �V(t)f (1)k (t) ; (2.32)

or by iteration via

f
(2)
k (t) =

1Z
0

dt0�k;ret(t� t0)V(t0)f (1)k (t0)ei!k0(t�t
0) : (2.33)

12
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This iteration has the advantage for the numerical computation that it avoids comput-

ing f
(2)
k via the small di�erence f

(1)
k � f

(1)
k . However, the integral equations are used as

well in order to derive the asymptotic behavior as !k0 !1 and to separate divergent and

�nite contributions. The leading orders of fk(t) are discussed in detail in [33, 42, 38] and

we do not want to repeat them here. Some more details can be found in section 3.5.4.

In this chapter we are more interested in the e�ects of the �nite contributions at �nite

temperature and in the self consistent solving of the large N limit.

2.4 Renormalization

2.4.1 Equation of Motion

We use the expansion and the de�nition introduced in the previous section in order to

single out the divergent terms from the 
uctuation integral. We have

M2(t) = �(�2 � v2) + �m2 + ���2 + (�+ ��) fI�1(m0; T ) (2.34)

�I�3(m0; T )
h
M2(t)�M2(0)

i
+ F�n(t; T )

o
;

where the �nite part of F(t; T ) can be written as

F�n(t; T ) =

Z
d3k

(2�)3
1

4!3
k0

tZ
0

dt0 cos [2!k0(t� t0)] _V(t0) coth �!k0
2

+

Z
d3k

(2�)3
1

2!k0

�
2Ref

(2)
k (t) + jf (1)k (t)j2

�
coth

�!k0

2
; (2.35)

and where the divergent integrals are de�ned as

I�1(m0; T ) =

Z
d3k

(2�)3
1

2!k0

�
1 +

2

e�!0 � 1

�
= I�1(m0) + ��1(m0; T ) ; (2.36)

I�3(m0; T ) =

Z
d3k

(2�)3
1

4!3
k0

�
1 +

2

e�!0 � 1

�
= I�3(m0) + ��3(m0; T ) : (2.37)

The integrals I�k(m0) are those which occur in the renormalization at T = 0. Their

dimensionally regularized form will be given below. The additional temperature dependent

terms ��k(m0; T ) are �nite. They are de�ned as

��1(m0; T ) =

Z
d3k

(2�)3
1

!k0 (e�!k0 � 1)
; (2.38)

��3(m0; T ) =

Z
d3k

(2�)3
1

2!3
k0 (e

�!k0 � 1)
: (2.39)

We derive some useful explicit expressions for these integrals in Appendix A.

13
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It is convenient to include these �nite terms into the de�nition of F�n(t; T ). Then the

time dependent mass takes the form

M2(t) = �(�2�v2)+���2+�m2+(�+��)
h
I�1(m0)� I�3(m0)V(t) + ~F�n(t; T )

i
; (2.40)

with
~F�n(t; T ) = ��1(m0; T )� V(t)��3(m0; T ) + F�n(t; T ) : (2.41)

The time dependent mass (2.40) contains both renormalization constants �m and ��. Fur-

thermore, its de�nition by this equation is implicit,M2(t) appears also on the right hand

side of (2.40) in V(t).
We now have to �x the renormalization counter terms in such a way that the relation

between the time dependent mass and �(t) becomes �nite. An additional constraint derives

from the requirement that the renormalization counter terms should not depend on the

initial condition but only on the parameters appearing in the Lagrangian, i.e., � and m.

For the simpler case of the one loop equations this has been achieved [33].

We �rst determine �� by considering the di�erence

V(t) = M2(t)�M2(0) (2.42)

= (�+ ��)
h
�2(t)� �2(0)� I�3(m0)V(t) + ~F�n(t; T )� ~F�n(0; T )

i
:

The divergent parts depend on the initial mass m0. We have to replace this by a renor-

malization scale independent of the initial conditions. In [34] we chose the scale m, where

m was the mass parameter appearing in the Lagrangian. Here the analogous mass squared

would be m2 = ��v2 and therefore, m would be imaginary. In order to circumvent this

problem we introduce another scale m1 which we do not specify here. In the numerical

computations we have used the physical mass m2
1 = m2

h = 2�v2. We rewrite the implicit

equation for V(t) as

V(t) [1 + (�+ ��)I�3(m1)] = (�+ ��)
n
�2(t)� �2(0)� [I�3(m0)� I�3(m1)]V(t)

+ ~F�n(t; T )� ~F�n(0; T )
o
: (2.43)

We now require
�+ ��

1 + (�+ ��)I�3(m1)
= � : (2.44)

Solving with respect to �� we �nd

�� =
�2I�3(m1)

1� �I�3(m1)
: (2.45)

Inserting this relation into (2.43) we have

V(t) = �
n
�2(t)� �2(0)� [I�3(m0)� I�3(m1)]V(t) + ~F�n(t; T )� ~F�n(0; T )

o
(2.46)

14
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or

V(t) = �

1 + � [I�3(m0)� I�3(m1)]

h
�2(t)� �2(0) + ~F�n(t; T )� ~F�n(0; T )

i
: (2.47)

This is a �nite relation for the potential V(t) since the di�erence [I�3(m0) � I�3(m1)] is

�nite. Using dimensional regularization (for some more details see Appendix C)

I�3(m0) =

(Z
d3k

(2�)3
1

4!3
k0

)
reg

=
1

16�2

(
2

�
+ ln

4��2

m2
0

� 


)
; (2.48)

we �nd

I�3(m0)� I�3(m1) =
1

16�2
ln
m2

1

m2
0

: (2.49)

We now go back to equation (2.34) which we take at the initial time t = 0:

m2
0 �M2(0) = �[�2(0)� v2] + ���2(0) + �m2 + (�+ ��)

h
I�1(m0) + ~F�n(0; T )

i
: (2.50)

This is an implicit relation between m0 and �(0) which, however, contains still the in�nite

quantities ��, �m and I�1(m0). In order to proceed we note the following explicit relation

between I�1 and I�3 which follows from the dimensionally regularized expressions for these

quantities

I�1(m0) =

(Z
d3k

(2�)3
1

2!k0

)
reg

= � m2
0

16�2

(
2

�
+ ln

4��2

m2
0

� 
 + 1

)

= �m2
0I�3(m0)�

m2
0

16�2
: (2.51)

Therefore, we can rewrite (2.50) as

m2
0 =

�
��v2 + �m2

�
+ (�+ ��)

"
�2(0)�m2

0I�3(m0)�
m2

0

16�2
+ ~F�n(0; T )

#
: (2.52)

As renormalization condition we require m0 = 0 for T = 0 at the minimum of the potential

� = v so that the e�ective potential and the tree level potential have the same value at

their minimum. For T = 0 we have ~F�n(t = 0; T = 0) = ��1(m0; T = 0) = 0. Setting

m0 = 0 and �(0) = 0 in (2.52) we �nd

�m2 = ���v2 = � �2v2I�3(m1)

1� �I�3(m1)
: (2.53)

Inserted into (2.52) we obtain the renormalized gap equation

m2
0 = �C

"
�2(0)� v2 � m2

0

16�2
+ ��1(m0; T )

#
; (2.54)
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with

C =
 
1 +

�

16�2
ln
m2

1

m2
0

!
�1

: (2.55)

The gap equation (2.54) and the renormalized de�nition of the potential (2.47) constitute,

along with the equations of motion the basic renormalized equations for the self consistent

large N dynamics.

The gap equation has to be solved at t = 0 and determines the relation between m0

and �(0). For later times we have

M2(t) = m2
0 + V(t)

= m2
0 + C�

h
�2(t)� �2(0) + ~F�n(t; T )� ~F�n(0; T )

i
: (2.56)

Since the gap equation can be cast into di�erent forms we can obtain several equivalent

forms of this equation. Solving the gap equation for �2(0) we �nd

�C�2(0) = m2
0 + �C

"
v2 +

m2
0

16�2
� ��1(m0; T )

#
; (2.57)

or equivalent

�2(0) =
m2

0

�
+ v2 +

m2
0

16�2

 
1 + ln

m2
1

m2
0

!
� ��1(m0; T ) ; (2.58)

so that

M2(t) = �C
"
�2(t)� v2 � m2

0

16�2
+ ~F�n(t; T )

#
: (2.59)

Having obtained a �nite relation between �(t) and M(t) the equations of motion for the

zero mode �(t) and for the modes Uk(t) are well de�ned and �nite.

Here we have included the corrections of leading order, proportional to ��1(m0; T ), into

the �nite part of the 
uctuation integral. These terms are important at high temperature.

They appear in the gap equation via ~F�n(0; T ) = ��1(m0; T ) ' T 2=12. Omitting terms of

order �=16�2 the gap equation (2.54) becomes

m2
0 ' ��v2 + ��2(0) +

�

12
T 2 : (2.60)

Therefore, at high temperature the mass circulating in the loop is dominated by the hard

�T 2 term. In the following we need the 
uctuation integral F(t; T ) which is and will remain
divergent. We need an expression in which these divergences appear explictly. Using

F(t; T ) = I�1(m0)� I�3(m0)
h
M2(t)�M2(0)

i
+ ~F�n(t; T ) (2.61)

and inserting the expression for M2(t) we have just derived, we obtain

F(t; T ) = � m2
0

16�2
� C�I�3(m0)�

2(t) + �v2CI�3(m0) + �C m2
0

16�2
I�3(m0)

+C �

16�2
I�3(m0)(m0 + �v2) + C [1� �I�3(m1)] ~F�n(t; T ) : (2.62)
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While we have found here the gap equation as a self-consistency condition, it can also be

derived [12, 43] from a potential (free energy) which here takes the form

V (m2
0; �

2; T ) =
m2

0

2

(
�2 � v2 � m2

0

2�
+

m2
0

32�2

"
ln

 
m2

0

m2
1

!
� 3

2

#)

+

Z
d3k

(2�)3
1

�
ln [1� exp(��!0)] : (2.63)

Then the gap equation follows from the condition

@V (m2
0; �

2; T )

@m2
0

= 0 : (2.64)

2.4.2 Energy and Pressure

The unrenormalized expressions for the energy density and for the pressure have been given

in section 2.2. Apart from the counter terms which we have already �xed in renormalizing

the equation of motion, two new counter terms appear, the cosmological constant term ��

in the energy density and the improvement term Ad2(�2+ h 2i)=dt2 in the pressure. These
terms must su�ce for rendering the expressions for energy density and pressure �nite.

We start with the expression (2.19) for the energy which we rewrite as

E =
1

2
_�2(t) +

1

4
(�+ ��)

�
�2 � v2

�2
+E
(t; T )�

�+ ��

4
F2(t; T ) + �� ; (2.65)

with

E
(t; T ) =
Z

d3k

(2�)3
1

2!k0
coth

�!k0

2

�
1

2
j _Uk(t)j2 +

1

2
!2
k(t)jUk(t)j2

�
: (2.66)

Here we have used already the relation �m2 = ���v2, and part of the cosmological constant
counter term �� is included in ��v4=4. We split the Bose factor as before

coth
�!k0

2
= 1 +

2

e�!k0 � 1
: (2.67)

The integrations involving the second term are �nite. We de�ne

�E
(t; T ) =
Z

d3k

(2�)3
1

2!k0

2

e�!k0 � 1

�
1

2
j _Uk(t)j2 +

1

2
!2
k(t)jUk(t)j2

�
: (2.68)

The integrations involving the �rst term have been discussed in [33]. Following this dis-

cussion we can decompose the integral via

E
(t; 0) = I1(m0) +
1

2
V(t)I�1(m0)�

1

4
V2(t)I�3(m0) + E
;�n(t; 0) ; (2.69)
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with

E
;�n(t; 0) =

Z
d3k

(2�)3
1

2!k0

(
1

2
j _f (1)k j2 + V(t)

2

�
2Ref

(1)
k + jf (1)k j2

�
+
V2(t)

8!2
k0

)
; (2.70)

I1(m0) =

(Z
d3k

(2�)3
!k0

2

)
reg

= � m4
0

64�2

(
2

�
+ ln

4��2

m2
0

� 
 +
3

2

)

= �m
4
0

4
I�3(m0)�

3m4
0

128�2
: (2.71)

We denote the sum of both �nite contributions as E
;�n(t; T ). The expression for the energy
now takes the form

E =
1

2
_�2 +

� + ��

4

�
�2 � v2

�2
+ E
;�n(t; T ) + I1(m0) +

1

2
V(t)I�1(m0)�

1

4
V2(t)I�3(m0)

��+ ��

4
F2(t; T ) + �� : (2.72)

In addition to the divergences arising from E
(t; T ) we have to take into consideration

those of F2(t; T ) which we have analyzed above. If all divergences and the renormalization

constant �� are inserted, the expression turns out to be �nite, i.e., the remaining counter

term �� is needed only for a �nite renormalization. We require the energy to vanish at

T = 0 for �(t) � v, which implies m0 = 0. Then �� = 0. There remains a �nite constant

depending on the initial condition

�� =
m4

0

128�2

 
1 +

2�C
16�2

!
: (2.73)

Then the energy is given by

E =
1

2
_�2 +

�

4
C(�2 � v2)2 +

1

2
�m2(�2 � v2) (2.74)

+E
;�n(t; T )�
�

4
C ~F2

�n(t; T ) + �� ;

with

�m2 = ��C m2
0

16�2
: (2.75)

Finally, we have to give a �nite expression for the pressure, using our last free counter

term. We write the pressure in the form

p = _�2(t)� E + p
(t; T ) + A
d2

dt2

h
�2(t) + F(t; T )

i
: (2.76)

Here we have anticipated a special form of the counter term, indeed for the expression

in brackets it is possible choose a priori an arbitrary Lorentz scalar, the additional piece

of the energy momentum tensor being trivially conserved on account of its tensor struc-

ture @�@� � g��@
2. Of course it has to be suited for the renormalization procedure. The
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uctuation part of the pressure consists again of three parts, a divergent one, a �nite one

independent of the temperature and a �nite integral involving the thermal distribution

function 1=[exp(!k0=T )� 1]. The analysis for T = 0 has been performed in [33]. Following

the discussion there we can write p
 as

p
(t; T ) = p
;�n(t; 0) + �p;
(t; T )�
m4

0

96�2
� m2

0

48�2
V(t)� 1

6

�
I�3(m0) +

1

48�2

�
�V(t) : (2.77)

�p;
(t; T ) is given by

�p;
(t; T ) =
Z

d3k

(2�)3
1

2!k0

2

e�!k0 � 1

 
!2
k0 +

k2

3

!
jUk(t)j2 ; (2.78)

the �nite part for T = 0 by

p
;�n(t; 0) =

Z
d3k

(2�)3
1

2!k0

( 
!2
k0 +

k2

3

!�
2Ref

(2)
k (t) + jf (1)k (t)j2

�

+

 
1

6!2
k0

� m2
0

24!4
k0

! tZ
0

dt0 cos 2!k0(t� t0)
:::

V (t0)

+

 
1

12!2
k0

+
m2

0

24!4
k0

!
cos(2!k0t)�V(0)

+j _f (1)k (t)j2 � 2Re

�
i!k0 _f

(1)
k (t) + i!k0f

(1)
k (t)f

(1)�
k (t)

��
: (2.79)

We call the sum of both �nite 
uctuation integrals p
;�n(t; T ). Now we have to consider

the divergent terms. We observe that �V(t) is given by

�V(t) = �C d
2

dt2

h
�2(t) + ~F�n(t; T )

i
: (2.80)

On the other hand, using (2.62) we have

d2

dt2
F(t; T ) = d2

dt2

h
��CI�3(m0)�

2(t) + C(1� �I�3(m1)) ~F�n(t; T )
i

(2.81)

and therefore

A
d2

dt2

h
�2(t) + F(t; T )

i
= A

d2

dt2
C [1� �I�3(m1)]

h
�2(t) + ~F�n(t; T )

i
: (2.82)

As apparent from (2.80), this matches in form with the divergent term I�3(m0)�V(t)=6.
Insisting again in choosing the counter term independent of the initial condition we �x

A =
�I�3(m1)

6[1� �I�3(m1)]
(2.83)
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and retain a �nite term

� 1

96�2

"
ln

 
m2

1

m2
0

!
+ 2

#
�V(t) : (2.84)

The �nal result for the pressure reads

p = _�2(t)� E + p
;�n(t; T )�
m4

0

96�2
� m2

0

48�2
V(t)� 1

96�2

"
ln

 
m2

1

m2
0

!
+ 2

#
�V(t) : (2.85)

A further important quantity is the particle number density. The production of particles

is of interest primarily in connection with in
ationary cosmology. By the end of in
ation

only a scalar �eld remains in the universe, and the density of all other forms of matter is

exponentially small. Matter is produced again as a result of coherent oscillations of the

�eld �(t). The amplitude of the �eld decreases as a result of the transfer of the energy

to the produced particles. This epoch is called preheating in the literature, introduced in

[44]. The particles created during this stage are far from equilibrium, thermalization and

equilibration will be achieved via collision relaxation. This stage is called reheating. In

the approximation, we study, collisions are absent and therefore, we can not describe the

reheating process. Nevertheless, e.g. in [12] an estimate for the reheating temperature is

made under some reasonable assumptions based on the analysis of the particle spectrum.

Therefore, it is important that our approach leads to a possibility to determine the particle

number in an easy way. Since we are mainly interested in the technical details for a

suitable implementation of the large N approximation we do not give an interpretation of

the particle number in the cosmological context. The expression for the particle number

takes a rather simple form expressed by the truncated mode functions:

N(t) =

Z
d3k

(2�)3
1

2!k0
coth

�!k0

2

(
1

4

"
jUk(t)j2 +

1

!2
k0

j _Uk(t)j2
#
� 1

2

)

=

Z
d3k

(2�)3
1

8!3
k0

coth
�!k0

2
j _f (1)k (t)j2 : (2.86)

Since the particle number is �nite, we do not have to renormalize it.

2.5 Numerics

We have carried out di�erent numerical calculations. First, we discuss the �4 theory with

spontaneous symmetry breaking in the large N limit at T = 0 and T 6= 0 [45]. Then we

investigate the one loop approximation and compare it with the large N approximation.

We choose for these considerations the coupling � = 1 and also the squared of the vacuum

expectation value (vev) v2 = 1. At the end we show some results for the unbroken theory

[34].

2.5.1 The Broken Symmetry Case

The dynamical evolution of the non-equilibrium system depends on two parameters, the

temperature T and the initial value of the zero mode �(0) = �0 which in analogy with
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Figure 2.1: Classical potential

thermal equilibrium systems can be considered as an external parameter. We have plot-

ted in Fig. 2.1 a typical classical potential with four di�erent initial values for the zero

mode. Clearly, this picture simpli�es the situation too much. Since we consider quantum


uctuations in our analysis the e�ective potential would describe the system in a more

realistic way. In 1987 Weinberg and Wu [46] discussed the e�ective potential for a spon-

taneously broken theory. They investigated the complex region of the e�ective potential

which leads to unstable states. In the non-equilibrium context this region of instabilities

for homogenous con�gurations is known as the spinodal region and is discussed widely in

recent papers in di�erent contexts, e.g. [47, 48, 49, 50]. But also the e�ective potential

leads to wrong predictions for a system out of equilibrium. The e�ective potential gives a

static description of the physical setting and cannot describe, e.g., the dynamics of a phase

transition. It can be used to determine the nature of a phase transition and the description

of static quantities like critical temperatures. It corresponds to the equilibrium free energy

as a function of order parameters. The use of the e�ective potential for the description

of the dynamics of a phase transition has been criticized by many authors [39, 51, 52].

Fig. 2.1 has to give only a basic impression about the physical setting.

We begin our analysis by discussing the special features of the di�erent starting points

and two related phase diagrams displayed in Fig. 2.2 and Fig. 2.3. These phase diagrams,

plotted in the �0 � T plane and in the m0 � T plane, show di�erent regions in which the

system can evolve. We explain the boundaries for these regions below. The �rst region,
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Figure 2.2: Phase diagram in the �0 � T plane

labeled by I, corresponds to a negative initial mass squared. In this case the gap equation

has no real solution and the initial value becomes complex. In Fig. 2.1 an example for

such an initial value is labeled by a). In the second region, called II, m2
0 is positive. The

initial mass for the zero mode is chosen smaller than V [�(0)] in the real part of the e�ective

potential. A possible choice is displayed in Fig. 2.1 at starting point b). In this case the

zero mode has not enough energy to reach the maximum of the potential and we �nd

a �nal state for which the symmetry is spontaneously broken. The third region in the

phase diagrams corresponds to the initial values c) and d). Here we �nd a �nal state with

restored symmetry. In the following we will characterize the regions in detail, evaluate the

boundaries explictly and describe the dynamical evolution of the system. In [29, 53] some

analysis of the expected long time behavior were carried out, which we generalize here to

�nite temperature.

Region I: m2
0 < 0

The initial value �0 and the initial mass m0 are connected via the gap equation (2.54). It

requires m2
0 to be positive for T = 0 in order to �nd a real initial value �0. The point

where m0 vanishes marks an initial value that leads to a solution � =const. For T = 0 this

stationary amplitude is given by � = v. For T > 0 we can �nd this amplitude as well. For
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Figure 2.3: Phase diagram in the m2
0 � T plane

m0 = 0 the thermal integral ��1(m0; T ) is given by its value for massless quanta, i.e.,

��1(0; T ) =
T 2

12
; (2.87)

and therefore

�21(T ) = �20jm0=0 = v2 � T 2

12
: (2.88)

The region below this boundary (2.88) we call region I.

In our considerations it is not possible to start the �eld in the unstable region I. For

�(0) = 0 the initial frequency for the 
uctuation �eld is complex for low momenta because

F(0) = 0. In order to circumvent this problem it is possible to prepare the initial state in

a di�erent way

!2
k0 = k2 �m2

0 for k2 >
���m2

0

��� ; (2.89)

!2
k0 = k2 +m2

0 for k2 �
���m2

0

��� : (2.90)

This choice corresponds to the ground state of an upright harmonic oscillator and to a

quench type of situation in which the initial state is evolved in an inverted parabolic

potential (for early time t > 0) as explained e.g. in [12]. We do not consider this possibility

here.
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Region II: m2
0 > 0, M2

1
= 0

Now we choose the initial value above the boundary condition (2.88) but lower than V [�(0)]

as displayed in b) in Fig. 2.1. The initial value leads to the possibility of entering the

unstable region. The quantum 
uctuations begin to grow exponentially and lead to an

e�ective damping of the �eld which starts to oscillate in the minimum as it is shown in

Fig. 2.4. Since the 
uctuations F(t) are growing, the e�ective mass

M2(t) = �[�2(t)� v2] + F(t) (2.91)

becomes positive (we do not care about the renormalization here, because we are at the

moment only interested in qualitative features) and the exponential growth of the 
uc-

tuations stops. Therefore, the development of the �eld stabilizes and �1 reaches a �nite

constant value. If the initial amplitude �(0) is su�ciently small, the back reaction leads

M2(t), which is plotted in Fig. 2.5, to settle down at zero. In contrast to the dissipative

e�ects via parametric ampli�cation this e�ect is induced by spinodal instabilities. Here

the asymptotic mass vanishes and the zero mode reaches a �nite value. Another e�ect

missing in the unbroken theory which strengthens the damping was already explained in

the introduction. The existence of massless Goldstone bosons leads to the possibility of

the mean �eld transferring its kinetic energy. Another physical quantity of interest is the

particle number density shown in Fig. 2.6. It increases at the beginning until it also ends

up at a constant value. The numerical results for T = 2:5 are shown in Figs. 2.7, 2.8. The

e�ects are stronger than for T = 0 but the qualitative features are the same.

In the one loop approximation, where we do not take the 
uctuations in the mass term

for the mode functions into account, M2(t) can become negative, instabilities arise and

the approximation breaks down. We will describe this phenomenon in section 2.5.2.

Now we consider some empirical relations describing the long time behavior of the

system which were developed in [29]. We extend their results to �nite temperature [45].

At T = 0 the �nal value of �1 was found to be related to the initial value �0 by an

empirical relation

�4
1
= �20(2v

2 � �20); T = 0 : (2.92)

The generalization of this relation to �nite temperature is not obvious. In [29] it was

remarked that the relation depends only on the initial zero mode part of the energy, which

is given by E = �(�2 � v2)2=4. It satis�es the constraints that �2
1
= v2 if �20 = v2, and

that �1 = 0 if classically the system can reach the maximum of the potential, which

happens if �20 = �22(T = 0) = 2v2. We further observe that the classical turning point is at

�
2
= 2v2 � �20 so that we may write (2.92) as the geometric mean

�2
1
=

q
�20�

2

0 : (2.93)

This form turns out to lead to the correct generalization for �nite temperature. Obviously,

the relation is characterized by the motion at early times when the quantum 
uctuations

have not yet evolved. When discussing renormalization we have made an expansion with

respect to the potential V(t) which vanishes at t = 0. The same expansion can be used
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to study the early time behavior. In the expression for the energy the coe�cients of the

terms of �rst and second order in V have been absorbed into renormalization constants.

However, the thermal 
uctuations are not absorbed in this way and will add to the zero

mode terms in an early time expansion. These appear in the energy, see (2.72), via

�E
(t; T ) = �1(m0; T ) +
1

2
V(t)��1(m0; T )�

1

4
V2(t)��3(m0; T ) +O(V3) ; (2.94)

as a part of E
;�n(t; T ) and via (2.41) in ~F�n(t; T ). Taking these expansions into account

the energy can be written in the form

E ' �

4
C
h
a�4 + ~a�40 + b�2 +~b�20 + c�2�20

i
+ const: ; (2.95)

up to terms of order V3. We need the coe�cients

a = 1� �CT��3(m0; T ) ; (2.96)

b = �2
h
v2 � ��1(m0; T )

i
; (2.97)

c = �CCT��3(m0; T ) ; (2.98)

where we have introduced

CT =

"
1 +

�

16�2
ln
m2

1

m2
0

+ ���3(m0; T )

#
�1

: (2.99)

This enables us to shorten the expression for the potential in the following way

V(t) = �CT
h
�2(t)� �2(0) + F�n(t; T )

i
: (2.100)

The classical turning point is given by

��20 = �b + (a+ c)�20
a

=
2v2 � ��1(m0; T )� [1 + �CT��3(m0; T )]�

2
0

1� �CT��3(m0; T )
; (2.101)

so that we are led to suppose

�2
1
(T ) =

s
1

1� �CT��3(m0; T )

q
�20 f2v2 � 2��1(m0; T )� [1 + �CT��3(m0; T )]�

2
0g :
(2.102)

We �nd that this relation is very well ful�lled numerically. We show in Figs. 2.9-2.11 the

results for di�erent temperatures. According to this formula the region II is limited by

the requirement that the expression in the square root has to be positive. This leads to a

boundary between region II and new region III of the form

�22 = 2
v2 � ��1(m0; T )

1 + �CT��3(m0; T )
: (2.103)

We note that the relation is implicit, the value of m0 that appears on the right hand side

is related to �22 on the left hand side by the gap equation.
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Figure 2.4: Zero mode versus t for T = 0, m0 = 0:1, and �(0) = 1:005
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Figure 2.5: Mass squared versus t for T = 0, m0 = 0:1, and �(0) = 1:005
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Figure 2.6: Particle number versus t for T = 0, m0 = 0:1, and �(0) = 1:005
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Figure 2.7: Zero mode versus t for T = 2:5, m0 = 0:4, and �(0) = 1:845
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Figure 2.8: Mass squared versus t for T = 2:5, m0 = 0:4, and �(0) = 1:845
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Figure 2.9: Late time amplitude �1 versus �0 for T = 1
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Figure 2.10: Late time amplitude �1 versus �0 for T = 2:5

0.5 1.0 1.5
φ0

−0.1

0.1

0.3

0.5

0.7

φ ∞

Figure 2.11: Late time amplitude �1 versus �0 for T = 3
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Region III: �1 = 0, M2
1
> 0

If we choose now an initial value for the zero mode high above the maximum of the

potential, this point is considered in Fig. 2.1 in c), the zero mode has enough energy to

cross the maximum, begins to oscillate around zero and a stable situation occurs. The

region of initial values �0 leading to this behavior is called region III. We have simulated

this case by choosing T = 0 and m0 = 3 which leads to the initial value �(0) = 3:185 for

the zero mode. The behavior of the zero mode is shown in Fig. 2.12. The �eld reaches a

stationary oscillation around zero. In Fig. 2.13 we have displayed the corresponding mass

squared which also reaches a stable �nite value. This behavior coincides with the behavior

in the unbroken theory that we will show in subsection 2.5.3. The zero mode is damped via

parametric ampli�cation. This phenomenon occurs if the mass reaches a �nite stationary

state and the zero mode oscillates around zero. It is discussed e.g. in [28]. In order to

check our numerical calculations we have also investigated energy conservation (Fig. 2.14).

The zero mode part of the energy decreases whereas the 
uctuation energy increases. The

solid line shows the total energy which is conserved. Since we have computed some �nite

corrections �m2, �� and �� which we have handled as a contribution to the zero mode

part of the energy, this part of the energy can become negative. As a second cross check we

have computed the pressure. The total pressure shown in Fig. 2.15 reaches an asymptotic

value of nearly E=3 typical for an ultra relativistic gas.

The fourth initial value, in Fig. 2.1 labeled with b), is taken only a little bit higher than

the maximum. The behavior of the zero mode is shown in Fig. 2.16. At the beginning

it is e�ciently damped but then it oscillates around zero. The mass squared plotted in

Fig. 2.17 very quickly reaches nearly zero. This behavior can be understood as follows. The

mass term in the mode function is given by (2.91). We have prepared the initial conditions

in such a way that m2
0 is positive. Evolving in time �(t) decreases and vanishes at the

maximum. The �rst term in (2.91) becomes negative. On the other hand the 
uctuations

F(t) increase and lead therefore to a positive value forM2(t). Since the asymptotic value

of M2 is only slightly larger than zero as one can see in Fig. 2.18 the oscillation period of

the �eld is very large.

There are two phenomena that characterize the transition to region III. On the one

hand, the stabilization of the system is taken over by the phenomenon of parametric

resonance. On the other hand the system has enough energy so that �(t) can move over the

maximum of the potential at � = 0, and indeed will oscillate around � = 0. Accordingly,

the threshold value of �0 at which these two phenomena set in can be characterized by two

- a priori unrelated - criteria. Both rely on plausible assumptions, which at T = 0 lead to

the same prediction for the critical value of �0.

The criterion based on the energy consideration has been presented in the previous

subsection, we now describe the criterion supplied by the phenomenon of parametric reso-

nance. For the case of unbroken symmetry it was found at zero [53] and �nite temperature

[34], that the late time behavior is described by an empirical sum rule which relates M2
1

to the initial amplitude. We show some results for the unbroken case in subsection 2.5.3.

For T = 0 an analogous sum rule was found to hold for the case of spontaneously broken
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symmetry as well [29]. It is given by

�2
1
= �1 + �20

2
: (2.104)

Here � and � are normalized in such a way that the classical equation of motion at early

times, i.e. in the parametric resonance regime without back reaction, reads

�00 � � + �3 = 0 ; (2.105)

where the prime denotes a derivative with respect to � = �t and where � = ��, also

� =M=�. With �(�) a solution of (2.105) the mode equation becomes a Lam�e equation.

The sum rule implies [53], that the frequencies !2
k(t) =M2(t) + k2 are shifted outside the

parametric resonance band of the Lam�e equation. Although there is no rigorous derivation

for the sum rule, it accordingly seems related to the parametric resonance phenomenon.

As the shift of the frequencies outside the parametric resonance region must have hap-

pened at the end of the phase where the evolution of the system is described by parametric

resonance, we will again consider the initial classical evolution. Again, in addition to the

zero mode terms we have to take into account the terms due to the thermal 
uctuations.

In terms of the parameters introduced in the previous section the equation of motion is

given by

��+ �Ca�3 + �

2
C(b + c�20)� = 0 : (2.106)

Comparing to the normalized equation (2.105) we determine the factors � and � to be

� =

s
�C
2

q
b + c�20 ; (2.107)

� =

s
� 2a

b + c�20
; (2.108)

so that the asymptotic mass is given by

M2
1

= �2

�
�1 + 1

2
�2�20

�
(2.109)

= �C
�
�v2 + ��1(m0; T ) +

1

2
[1 + �CT��3(m0; T )]�

2
0

�
:

Again �0 and m0 are related by the gap equation. At the transition from region II to region

III the asymptotic mass vanishes. It is easily seen that this criterion leads to an identical

equation for the boundary, i.e., (2.103).

The �eld amplitude decreases to zero at late times, in this regime. So the symmetry is

restored dynamically at high excitation characterized by a high value of �0.

At the critical temperature TC =
p
12v both boundaries �1(T ) and �2(T ) become zero.

Above TC the behavior of the system is the same as for region III, for all initial values
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of �0. While at the border between region I and II there was a lowest value for �0 for

obtaining real solutions of the gap equation, now there is a lowest value of m0, the one

for which �0 = 0. It is obtained by solving the gap equation for �0 = 0 and agrees with

the thermodynamical equilibrium value m� at that temperature, as de�ned, e.g., in (3.38)

in a paper by Dolan and Jackiw [54]. Of course with �0 = 0 the system remains static.

The sum rule for the asymptotic value (2.109) is compared to the data in Fig. 2.19. The

agreement is excellent.
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Figure 2.12: Zero mode versus t for T = 0, m0 = 3, and �(0) = 3:185
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Figure 2.13: Mass squared versus t for T = 0, m0 = 3, and �(0) = 3:185
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Figure 2.14: Mode energies and their sum versus t for T = 0, m0 = 3, and �(0) = 3:185
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Figure 2.15: Pressure versus t for T = 0, m0 = 3, and �(0) = 3:185
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Figure 2.16: Zero mode versus t for T = 0, m0 = 1, and �(0) = 1:415

34



CHAPTER 2. �4 THEORY IN THE LARGE N APPROXIMATION

0 100 200 300
t

−1.0

−0.5

0.0

0.5

1.0

M
2 (t

)

Figure 2.17: Mass squared versus t for T = 0, m0 = 1, and �(0) = 1:415

0 100 200 300
t

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

M
2 (t

)

Figure 2.18: The same as in Fig. 2.17 with another y-range
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Figure 2.19: Asymptotic sum rule for M2. The data for T = 1:5 (diamonds), T = 2:5

(asterics) and T = 4 (triangles) are compared to (2.109) (solid line)

2.5.2 Comparison with the One Loop Approximation

In this section we compare the large N approximation with one loop calculations by setting

N = 1. For the unbroken case we have discussed the renormalization and numerics in

[33]. Since we are here only interested in a qualitative comparison we only review the

unrenormalized equations. The renormalization is straightforward along the line in [33].

The equation of motion for the zero mode reads in the one loop approximation for T = 0

��(t) + ��(t)
h
�2(t)� v2

i
+ 3��(t)F(t) = 0 ; (2.110)

with

F(t) =
Z

d3k

(2�)3
jUk(t)j2
2!k0

: (2.111)

Ignoring the counter terms this equation is similar to (2.11) up to a factor 3 in the 
uctu-

ation integral. The mode function ful�lls the second order di�erential equation

(
d2

dt2
+ k2 +m2

h + 3�
h
�2(t)� v2

i)
Uk(t) = 0 : (2.112)
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The di�erence to the large N approximation now becomes obvious, we do not include the


uctuation integral in the time dependent mass for the modes and therefore, we neglect

the back reaction. Another point is that we deal only with a theory of a single �eld.

We now consider numerically the two cases b) and c) in Fig. 2.1. Starting point d) is

analogous to the unbroken symmetry case and not very interesting. The initial value a)

leads also in this case to a complex initial frequency and is therefore not considered. For

the evolution of the �eld in the minimum (Fig. 2.20), where we have chosen the initial value

for the zero mode as low that the �eld does not reach the unstable part of the e�ective

potential we �nd that the damping is much less e�cient than in the large N approximation.

Since the zero mode does not enter the spinodal region this e�ect has to be expected. Only

dissipation via parametric ampli�cation occurs. Also the possibility of the decay of the

mean �eld is absent because we have no Goldstone bosons in the theory. We will see

in the case of the gauge �elds, where we have various degrees of freedom, that the e�ect

induced by the decay of the zero mode leads even in the one loop approximation to e�cient

damping. We have also plotted the 
uctuation integral in Fig. 2.21. It increases in time,

reaches a stationary state and oscillates forever.

In the second case we let the �eld evolve in the unstable region. As already mentioned in

the discussion for the large N approximation the frequency for the modes becomes complex

for low momenta and near the origin. Therefore, the modes blow up exponentially as it is

shown in Fig. 2.23. In the large N approximation the contribution of the 
uctuations in

the e�ective mass leads during the development of the system to a positive e�ective mass

and stops the exponential growth of the modes. The zero mode settles down to a constant

value. In the one loop approximation the e�ective mass is given by

M2(t) = �m
2
h

2
+ 3��2(t) : (2.113)

Since the mean �eld decreases the e�ective mass becomes complex if �2(t) < m2
h=6� and

stays complex. The exponential growth of the modes is not stopped, the oscillations of

the zero mode get a very high frequency and after a while the approximation breaks down

(Fig. 2.22). For our choice of parameters (� = 1, m2
h = 2�v2 = 2) this happens for

�(t) < �
q

1
3
displayed by the dashed line in Fig. 2.22. The zero mode reaches this value

at t � 21, the e�ective mass squared, which is shown in Fig. 2.23 by the dashed line,

becomes negative and the 
uctuation integral growth exponentially as explained above.

This indicates that the one loop approximation is not reliable in the unstable region. For

our considerations concerning the gauge �elds in the next chapter we consider only the

one loop approximation. For gauge theories already this approximation becomes rather

complicated and it is not clear yet how to improve it in a systematic way. Therefore, we

only study numerically stable con�gurations and initial conditions.
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Figure 2.20: Zero mode versus t for m0 = 0:96 and �(0) = 0:8
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Figure 2.21: Fluctuation integral versus t for m0 = 0:96 and �(0) = 0:8
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Figure 2.22: Zero mode versus t for m0 = 6:86 and �(0) = 4
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Figure 2.23: Fluctuation integral (solid line) and mass squared (dashed line) versus t for

m0 = 6:86 and �(0) = 4
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2.5.3 Comparison with the Unbroken Theory

In this section we consider numerical studies of the unbroken theory in the large N ex-

pansion at T = 0 and T 6= 0. We have published a detailed analysis of the corresponding

equations and the renormalization for �nite temperature in [34]. We present here only the

results. We have analyzed the behavior of the system for two parameter sets at T = 0,

where we have varied the coupling constant � and �xed m2
h and m0 which leads to di�erent

initial values because m0 and �0 are connected via the gap equation. We have also chosen

one parameter set for T 6= 0.

� T m2 m0 �(0) M2(1) right hand side

Parameter set 1 1 0 1 3 2.82 5.0 4.98

Parameter set 2 5 0 1 3 1.24 4.95 4.90

Parameter set 3 1 10 1 3 1.25 8.24 8.25

Table 2.1: Parameter sets for the unbroken theory

In Fig. 2.24 we have plotted the zero mode for parameter set 1. The damping of the

�eld is not very e�cient and the �eld reaches a stable state after a short time. The e�ective

mass squared is displayed in Fig. 2.25. It ends up in an asymptotic average of 5 with small

oscillations. The sum rule for the unbroken theory adapted to our notation and de�nitions

in [34] is given at �nite temperature by 1

M2
1
= C

(
m2 � �

16�2
(m2

0 �m2) + ���1(m0; T ) +
1

2
[1 + �CT��3(m0; T )]�

2
0

)
: (2.114)

The additional term �(m2
0 �m2)=(16�2) in comparison to (2.109) is due to another choice

of the renormalization point. We have veri�ed this sum rule for our parameter sets, the left

and right hand sides of the sum rule are compared in Table 2.1, the agreement is excellent.

As cross check for our numerics we have also plotted energy conservation in Fig. 2.26 and

the pressure in Fig. 2.27. The zero mode part of the energy decreases and the 
uctuation

energy increases like in the case of spontaneous symmetry breaking. The production of


uctuation energy leads to an increase of the particle number shown in Fig. 2.28.

We have considered a second parameter set with a larger coupling constant �. This

leads to a smaller initial value for the mean �eld. The behavior of the zero mode shown

in Fig. 2.29 is qualitative the same as for the �rst parameter set. In order to check the

sum rule we have also plotted the mass squaredM2(t) in Fig. 2.30. The agreement is very

good for this parameter choice, too.

The behavior of the zero mode in the unbroken theory is the same as for the broken

theory in region III as to be expected. In Figs. 2.31-2.33 we have displayed the behavior

of the system for �nite temperature.

1In [34] we have not considered the contribution from �
�3(m0; T ).
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Figure 2.24: Zero mode versus t for parameter set 1
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Figure 2.25: Mass squared versus t for parameter set 1
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Figure 2.26: Mode energies and their sum versus t for parameter set 1
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Figure 2.27: Pressure versus t for parameter set 1
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Figure 2.28: Particle number versus t for parameter set 1
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Figure 2.29: Zero mode versus t for parameter set 2
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Figure 2.30: Mass squared versus t for parameter set 2
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Figure 2.31: Zero mode versus t for parameter set 3
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Figure 2.32: Mass squared versus t for parameter set 3
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Figure 2.33: Particle number versus t for parameter set 3
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Chapter 3

Gauge Theories

3.1 Introduction

In the last few decades gauge �eld theories have become an important part of elementary

particle physics and cosmology. They successfully describe the strong interactions of quarks

and the weak forces of quarks and leptons. The development and progress in this �eld since

the fundamental work of Yang and Mills [55] in 1954 have been manifold. We provide some

comments on gauge theories with emphasis on the aspect of gauge invariance.

First, we recall some of the key works describing the evolution of the �eld. In 1954,

Yang and Mills generalized the principle of local gauge invariance to a non-Abelian gauge

group. This generalization made it possible to build a model in quantum �eld theory of

interacting elementary particles.

The quantization and the perturbative renormalization of such a theory was unclear for

a long time until 1967 when Faddeev and Popov [56] and de Witt [57, 58, 59] constructed

a scheme for the quantization of massless Yang-Mills theories. In the same year Weinberg

[60] and Salam [61] independently proposed a uni�ed model of weak and electromagnetic

interactions. It was based on the Higgs-mechanism [62] which generates masses for vector

bosons by spontaneous symmetry breaking.

In 1971, G. 't Hooft showed [63] that it is possible to construct a self consistent quantum

theory of massive vector �elds by generalization of the quantization of massless Yang-Mills

�elds including spontaneous symmetry breaking.

In 1972, by analyzing the perturbative behavior of the theory, the frame work for a

quantum �eld theory of gauge �elds was completed. In papers by 't Hooft and Veltmann

[36], Lee and Zinn-Justin [64], Slavnov [65] and Taylor [66], di�erent methods of regular-

ization were developed, renormalization in a perturbative approach was discussed and the

Ward identities were derived.

Since then, the quantum theory of gauge �elds has developed rather fast. In 1973 [67]

QCD was constructed as a gauge �eld theory and in 1974 [68], the �rst attempts for the

uni�cation of the strong, the weak and the electromagnetic interaction in the so-called

Grand Uni�ed Theories were successful. The development of supergravity theories began

in 1976 [69], and for the uni�cation of all interactions superstring-theories [70] are very
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important.

The fast development of elementary particle physics also in
uenced the forthcoming in

cosmology. We are interested in this work on gauge �eld theories with special regard to the

early stage of the universe. Many processes in cosmology can be described by using gauge

�eld theories. They o�er the possibility of the description of phase transitions which have

occurred in the early universe. We consider the SU(2)-Higgs model as it is the simplest

non-Abelian gauge theory. This model is suitable, for example, to describe the electroweak

phase transition which plays an important role in the explanation of baryogenesis. It can

also be used as a starting point for more complex models to investigate an even earlier epoch

of the universe the so-called in
ationary phase. For comparison we have considered the

Abelian Higgs model, too. Our considerations have the aim of examining gauge invariance.

Furthermore, we investigate the in
uence of di�erent quantization schemes by considering

the Abelian Higgs model in a gauge invariant formulation and compare it with gauge �xed

results for the SU(2) Higgs model. This comparison is possible because we choose the

Higgs �eld as a background �eld and no classical gauge �eld. The di�erence between these

two models then results only in degeneracy factors.

3.1.1 Gauge Invariance

In general, there exist two kinds of symmetry: symmetry under translation and rotation

and internal symmetries. Noether's theorem states that for every symmetry of the La-

grangian there exists a conserved quantity. In gauge theories the internal symmetries are

of special interest. First, we consider the global gauge invariance or invariance of the �rst

kind. As a simple example we investigate the conservation of the electric charge. We de�ne

a �nite gauge transformation

�(x)! �0(x) = e�iq�(x) ; (3.1)

where q is the electronic charge belonging to the �eld �. In a Lagrangian with m �elds

�i(x), the sum over the charges vanishes
P
i qi = 0 and therefore, L is invariant under

the gauge transformation. This implies that the Lagrangian is electrically neutral and all

interactions conserve the charge. The symmetry group of these unitary transformations

is the U(1) group in one dimension. In Quantum Electrodynamics (QED), the uncharged

photon has q = 0 while the electric �eld and its conjugate transform respectively according

to

 !  0 = e�iq� ; � ! � 0 = eiq� � : (3.2)

� is constant, and therefore the gauge transformation has to be equal at all points in space-

time. Thus, it is a global invariance. If we consider � as an arbitrary function depending

on x, we �nd that L is invariant under a much larger group of transformations, the local

gauge transformations

 !  0 = e�i�(x) ; (3.3)

A� ! A0� = A� +
1

e
@��(x) : (3.4)
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If we apply these transformation to a simple Lagrangian like

L =
nX
i

�
� i


�@� i �m � i i
�
; (3.5)

we �nd that L due to the derivative @� which now also acts on �(x), is not locally gauge

invariant. One has to introduce a new derivative

D� = @� + ieqiA�(x) ; (3.6)

which is called covariant derivative. One can also show that the �eld strength tensor

F��(x) = @�A�(x) � @�A�(x) is locally gauge invariant. Therefore, the gauge invariant

Lagrangian of QED takes the form

L = � (iD/�m) � 1

4
F 2
�� : (3.7)

The local gauge group is the group U(1). The photon mass term m2A�A
� is not locally

gauge invariant. Therefore, local gauge invariance physically corresponds to the fact that

the photon is massless. These considerations can be extended to non-Abelian gauge the-

ories. The simplest one is the SU(2) gauge group. Clearly, the form of the covariant

derivative and of the �eld strength tensor depends on the underlying gauge group. Some

problems arise in the quantization of gauge theories. For example the electromagnetic �eld

has, as usual for a massless �eld, only two independent components, but is described by a

4-vector A�. Therefore, we have to introduce a gauge �xing. If we choose two components

as the physical ones, manifest covariance is lost. In order to preserve covariance, one is left

with two redundant degrees of freedom. These choices correspond to two types of gauge

�xings: the physical gauges like Coulomb or Lorentz gauge, and the covariant gauges like

R�-gauge, with the special cases for � = 1 which is called Feynman-gauge and � = 0 known

as Landau-gauge. We investigate in this work as a physical gauge the Coulomb gauge and

a closely related gauge invariant formalism. In order to compare them with a covariant

gauge we also study R�-gauges. We analyze the di�erent degrees of freedom in order to

show how the di�erent approaches are connected.

Another problem arises by the derivation of the gauge �eld propagator. In the gener-

ating functional

Z =

Z
DA�ei

R
Ldx ; (3.8)

where L is invariant under local gauge transformations, one integrates over all A� including

those only related by simple gauge transformations. This leads to an in�nite contribution

to Z and thus to the Green functions. We need a gauge �xing so that the integral does

not extent over values simply related by gauge transformations. The quantization of gauge

�eld theories has been unclear for a long time because of the freedom to make gauge trans-

formations. In 1962, Feynman [71] showed that the naive quantization of the theory was

not unitary. In order to cancel the nonunitary terms from the theory, Feynman postulated

the existence of a term that did not emerge from the standard quantization procedure.
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Faddeev and Popov [56] gave a derivation of this term which is today known as Faddeev-

Popov term. Since then, di�erent methods for the quantization of gauge �eld theories have

been developed. We have summarized some of them with a closer look to their special

features concerning gauge theories.

� Canonical quantization

This is the most direct method for quantizing a �eld theory. It is closely related to

the development of quantum mechanics. Time is singled out as a special coordinate

and Lorentz invariance is lost. The advantage of the method is that only physical

states are quantized and thus, unitarity is guaranteed. For simple �eld theories it is a

convenient way to quantize the system but for more complex systems like non-Abelian

gauge theories it becomes rather complicated.

� Gupta-Bleuler quantization

The Gupta-Bleuler method is closely related to canonical quantization but it has the

advantage of maintaining full Lorentz invariance. The disadvantage of this quantiza-

tion is the appearance of propagating ghosts or unphysical states. They have to be

eliminated by constraints.

� Path integral method

A very powerful method has been developed by Feynman and Hibbs [72] and is known

as the path integral formalism. The great advantage of quantizing gauge �eld theories

using this method is the freedom to choose or change the gauge �xing in a simple

way. In the canonical formalism the gauge has to be �xed from the beginning. In

the path integral the gauge �xing is performed by introducing certain delta functions

and the gauge can be changed simply by replacing these factors. The path integral

formalism for gauge �elds was developed by Faddeev and Popov [56]. A disadvantage

of the path integral formulation is that the functional integration is mathematically

not well de�ned.

� Dirac quantization with constraints

Dirac quantization [73, 74] is based on a Hamiltonian description of the system. The

advantage of this method is that it exhibits gauge invariant states and operators.

It begins by recognizing the �rst class constraints. Then, these constraints become

operators in the quantum theory and are imposed onto the physical states, thus

de�ning the physical subspace of the Hilbert space and gauge invariant operators.

In Dirac's formulation, the projection onto the gauge invariant subspace of the full

Hilbert space is achieved by imposing the �rst class constraints onto the states.

Physical operators are those which commute with the �rst class constraints. The �rst

class constraints are the generators of gauge transformations. In [37], this approach

is used to formulate a gauge invariant description of the Abelian Higgs model. It is

not clear yet whether one can extend their formalism to non-Abelian gauge theories.

We will discuss some details of this procedure in section 3.5.1.
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� BRST quantization

This approach developed by Becchi, Rouet, and Stora [75], and independently by

Tyutin [76], is a convenient method for quantizing gauge �eld theories. As in the

Gupta-Bleuler quantization, ghosts and unphysical states are allowed to propagate.

They are eliminated by the BRST condition. This condition can be derived as follows.

After �xing the gauge, the theory has lost its local gauge invariance. But one can

prove that the gauge �xed Lagrangian of the general form

L = �1

2
(F a

��)
2 � 1

2�
(@ � A)2 � ��a@�D��

a (3.9)

is gauge invariant under a new global symmetry

�Aa� = �1

g
(D��

a)� ; (3.10)

��a = �1

2
fabc�b�c� ; (3.11)

���a = � 1

�g
(@�Aa�)� ; (3.12)

where � and �a are both Grassmann variables and � is constant. Using Noether's

theorem it is possible to construct a current J� belonging to the BRST variation and

also a BRST charge QBRST. One can show [77] that the condition for physical states

is given by

QBRSTj	i = 0 : (3.13)

Thus, this method leads to a compact and elegant statement of the physical state

condition.

It is clear that one cannot distinguish cleanly between the di�erent methods. For example

the BRST quantization is compatible with the path integral formulation as well as with the

canonical quantization; and into the Dirac quantization one can implement a gauge �xing

which leads to the usual gauge-�xed path integral representation in terms of Faddeev-

Popov determinants and ghosts. Here we have given only a short overview of the common

methods and their advantages and disadvantages. In the �rst part of our work, we use

the path integral method and a general R�-gauge which leads to a description with ghost

�elds. We investigate the �-dependence of the one loop e�ective action in the SU(2) Higgs

model. In the second part, we use the gauge invariant description obtained by Dirac's

quantization in the Abelian Higgs model and compare the results with those found in our

previous work [38], where we have used a 't Hooft-Feynman background gauge in order to

give some statements about the in
uence of the gauge in the non-equilibrium case. We

also discuss the Coulomb gauge which is strongly related to the gauge invariant approach.

It has the advantage that the approximation to one loop order is more transparent than

in the gauge invariant approach.
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3.1.2 The E�ective Potential

The problem of the gauge invariance of the e�ective potential is widely discussed in liter-

ature. Since the e�ective potential is closely related to the e�ective action we give some

remarks on this problem.

The e�ective potential is the sum of one particle irreducible (1-PI) Green functions

at zero external momentum. In a gauge theory with massive scalars, these are o�-shell

quantities, and thus, in general, gauge dependent. The question arises how to extract

physical quantities from a gauge dependent e�ective potential. Shortly after the paper by

Coleman and Weinberg [78] showing that radiative corrections could induce spontaneous

symmetry breaking, the gauge dependence of the e�ective potential V [ ��] was pointed out

by Jackiw [79]. This gave rise to a long controversy. Dolan and Jackiw [54] found that

the critical temperature extracted from the e�ective potential is gauge independent. They

analyzed di�erent gauges, e.g. Lorentz gauge, R�-gauges and unitary gauge, and claimed

that the unitary gauge is the relevant one because it is a physical gauge. Fukuda and Kugo

[80] showed that the value of the e�ective potential is gauge invariant at any stationary

point. A solution of the problem how to �nd gauge independent quantities from a gauge

dependent potential was found by Nielsen [81]. He derived a set of identities (the so-called

Nielsen identities) which give a functional connection between the generating functional

and the gauge parameter �. For the e�ective potential this connection is of the form

@V [ ��]

@�
+
@ ��

@�

@V [ ��]

@ ��
= 0 : (3.14)

This means that the total derivative of the e�ective potential with respect to the gauge

parameter vanishes when the corresponding shift in the expectation value of the quantum

�eld is taken into account. In other words the e�ective potential is gauge invariant at

the classical extrema. This implies that spontaneous symmetry breaking through radia-

tive corrections is a gauge independent phenomenon derived from a gauge �xed e�ective

potential. With these identities it is also possible to derive physical quantities like masses,

couplings, etc. in the correct form. There was a lot of progress made in this �eld; e.g.,

Aitchison and Fraser [82] explicitly computed the Nielsen identities for Scalar QED in R�-

gauge. Metaxas and Weinberg [83] veri�ed, using the gradient expansion for the leading

orders in the coupling, the gauge independence of the quantum corrections to the bubble

nucleation rate.

There are many attempts to �nd an alternative way to derive of a gauge invariant

e�ective potential. Buchm�uller, Fodor, and Hebecker [84] developed a method for calculat-

ing the e�ective potential by introducing so-called composite operators �y�. They are, in

contrast to �, gauge invariant. A group in Pittsburgh worked on the problem of the Higgs

mass bound in the Abelian Higgs model. In a �rst paper, Loinaz and Willey [85] considered

the e�ective potential in the R�-gauge and found a �-dependent Higgs mass bound. They

also veri�ed that the e�ective potential is gauge invariant in the minimum of the classical

potential. In a second paper by Duncan, Loinaz, and Willey [86], the problem of the gauge

dependence was solved by using the Coulomb gauge and a description in terms of gauge
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invariant composite operators. The last publication on this �eld by Boyanovsky, Loinaz,

and Willey [87] was based on [37]. In [37], a concept for a gauge invariant e�ective poten-

tial was developed. They used the canonical formulation to �nd gauge invariant states and

operators. For quantizing the theory they applied Dirac's method of quantization (see e.g.

[74]). After selecting the gauge invariant states, namely, those that are annihilated by the

�rst class constraints they were able to �x gauge invariant order parameters. This enabled

them to construct the e�ective potential for the order parameter without involving any

gauge �xing. They discussed some non-equilibrium features of their e�ective potential and

compared it with gauge �xed results. They also made some statements about higher-loop

resummation and gauge invariance and found that also in these higher orders no gauge in-

variance can be found. Since we extend their approach in this work for the non-equilibrium

case in order to compare it with our results [38] for the 't Hooft-Feynman-gauge we give

a more detailed description of the method in section 3.5.1. In [87], the Higgs-mass bound

in this approach is discussed. They also compared the e�ective potential with gauge-�xed

results. They found by numerical computations that the di�erences between the various

descriptions are very small. But they stated that in the one loop approximation only small

coupling constants were chosen and, therefore, the e�ect is negligible.

There are many other papers concerning the problem of gauge invariance of the e�ective

potential and the e�ective action. We have only stressed a few of them. For our purpose

the Hamiltonian approach seems to be very interesting for comparison with our results and

therefore, we analyze and extend it in detail.

Our investigations concerning the e�ective action [88] are based on Nielsen's theorem.

We substantiate the general statement that gauge invariance is expected if the classical

background �eld is an extremum of the classical action, as computed by mode functions. We

make a general analysis of the modes in the gauge-Higgs sector in order to �nd modes that

cancel the unphysical ghosts. We apply this method to the computation of the 
uctuation

determinant for bubble nucleation in the SU(2)-Higgs model in the 't Hooft-background

gauge with general gauge parameter �, and for the same model in the non-equilibrium

context.

3.1.3 Systems under Consideration

As a �rst example, we investigate the SU(2)-Higgs model with an isoscalar Higgs back-

ground �eld stationary in time and inhomogeneous in space. Such a con�guration plays an

important role in the discussion of the electroweak phase transition. If the Higgs mass is not

too large a phase transition of �rst order occurs via bubble nucleation [89, 90, 91, 92, 93].

This scenario yields the possibility of explaining baryogenesis within the minimal standard

model [94]. Since we are interested in a gauge invariant formulation of the 
uctuation op-

erator and do not want to give physical results, we do not go into the details of the physics

of bubble nucleation. We give a short introduction about the assumptions we make for the

model in section 3.3. For a general overview about bubble nucleation, see e.g. [95].

The second system we consider is the SU(2)-Higgs model in the non-equilibrium context.

The purpose of the investigation is twofold: In the �rst part we are only interested in a
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gauge invariant description of the 
uctuation operator. At this point we are not considering

the problem of renormalization. In the second part we use a gauge invariant approach

developed by Boyanovsky et al. [37] and apply it to non-equilibrium dynamics in the

Abelian Higgs model. Here, we use our formalism for renormalization. We �nd some

problems in the infrared region. They are due to higher loop e�ects. In order to �nd

a well de�ned approximation, we investigate the Coulomb gauge. We will show that a

linearized form of the gauge invariant approach, where we neglect all contributions higher

than one loop, is equivalent to the Coulomb gauge. After renormalization, we implement

the equations numerically. We compare the results with the 't Hooft-Feynman gauge �xed

theory.

3.2 The Model

First of all, we give a general description of the model we consider in the R�-gauge. We

choose the simplest non-Abelian gauge theory the SU(2) Higgs model. We analyze the

model in a general 't Hooft-R� gauge where we use the Higgs �eld as the background �eld.

We do not consider the gauge �eld as a background �eld.

3.2.1 The Lagrangian

The Lagrangian of the SU(2) Higgs model reads

L = �1

4
F a
��F

a�� +
1

2
(D��)

y(D��)� V (�y�) ; (3.15)

with the �eld strength tensor

F a
�� = @�A

a
� � @�A

a
� + g�abcAb�A

c
� ; (3.16)

and the covariant derivative

D� � @� � i
g

2
Aa��

a : (3.17)

The potential has the form

V (�y�) =
�

4
(�y�� v2)2 : (3.18)

In the following we will assume a classical �eld (condensate)

�(x) = �(x)

 
0

1

!
: (3.19)

Its space-time dependence is not further speci�ed here. A time independent, metastable,

radially symmetric con�guration will be relevant for bubble nucleation; a spatially homoge-

nous time dependent �eld describes a non-equilibrium situation, as considered in [38, 41].

The 
uctuations around this space-time dependent condensate are parameterized as

�(x) = [�(x) + h(x) + i�a'a(x)]

 
0

1

!
; (3.20)
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with the isoscalar Higgs mode h(x) and the would-be Goldstone �elds 'a(x), a = 1 : : : 3.

This generates the would-be Goldstone which has the mass of an isoscalar Higgs �eld in

the case of v = 0, i.e., in the symmetric case, and in the case of broken symmetry it has

the mass of a gauge �eld in the minimum v = �. Since there is no classical gauge �eld, we

have

A�a(x) = a�a(x) : (3.21)

Inserting the �eld expansions leads to

L = �1

4

�
@�a

a
� � @�a

a
� + g�abcab�a

c
�

� �
@�a�a � @�a�a + g�abca�ba�c

�

+
1

2

��
@� � i

g

2
�aaa�

�
�

�
y
��
@� � i

g

2
�aa�a

�
�

�

��
4

�
�y�� v2

�2
= �1

2

�
@�a

a
�@

�a�a � @�a
a
�@

�a�a

+2g�abcab�a
c
�@

�a�a +
g2

2
�abcab�a

c
��
adea�dae�

!

+
1

2
(@��@

��+ 2@��@
�h+ @�h@

�h+ @�'
a@�'a)

+
g

2

�
(@��)a

�a'a + (@�h)a
�a'a

��(@�'a)a�a � h(@�'
a)a�a + �abc(@�'

a)a�b'c
i

+
g2

8

h
�2a�aaa� + 2�ha�aaa� + h2a�aaa� + a�aaa�'

b'b
i

��
4
�4 � �h�3 � 3

2
�h2�2 � �

2
�2'a'a � �h3�

��h�'a'a � �

4
h4 � �

2
h2'a'a � �

4
'a'a'b'b

+
�

2
v2�2 + �v2h� +

�

2
v2h2 +

�

2
'a'av2 � �

4
v4 : (3.22)

The Lagrangian can be split into a classical part

Lcl(x) =
1

2

"
@��@

��� �

4
(�2 � v2)2

#
; (3.23)

and a 
uctuation Lagrangian. The part of �rst order in the 
uctuating �eld vanishes, if

the classical equation of motion

2�+ �(�2 � v2)� = 0 ; (3.24)

is ful�lled. The part of second order in the 
uctuations reads

L(2) =
1

2
f�@�aa�@�a�a + @�a

a
�@

�a�a
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+
g2

4
�2aa�a

�
a + @�'a@

�'a + g@��a
�
a'a � g�a�@

�'a (3.25)

��
�
�2 � v2

�
'a'a + @�h@

�h� �(3�2 � v2)h2
o
:

In the one loop approximation we do not have to consider higher order terms, but for the

leading Feynman graphs up to second order, also 
uctuations of the third order are of

interest. They are discussed in the non-equilibrium context.

The gauge-�xing term, in the 't Hooft background gauge is given by

Lgf = � 1

2�
FaFa ; (3.26)

with the gauge conditions

Fa = @�a
�
a +

1

2
�g (�+ h)'a ; (3.27)

which leads to

Lgf = � 1

2�
@�a

�a@�a
�a +

g

2
�a�a@�'

a +
g

2
ha�a@�'

a

+
g

2
a�a'a@��+

g

2
a�a'a@�h�

g2

8
��2'a'a

�g
2

8
�h2'a'a � g2

4
��h'a'a : (3.28)

The background �eld method has the advantage that it is gauge invariant under in�nites-

imal gauge transformation which was shown by Abbott [96]. Normally, explicit gauge

invariance is lost when quantum corrections are included. The background �eld method

allows the �xing of a gauge without losing explicit gauge invariance. This gauge invariance

does not lead to an independence of the gauge �xing parameter �. In the following we use

the terminology gauge invariance for the independence of � and not for invariance under

in�nitesimal gauge transformation. If one is only interested in the 
uctuations up to second

order, the gauge �xing term reduces to

Fa = @�a
�
a +

1

2
�g�'a : (3.29)

The corresponding Faddeev-Popov Lagrangian which is relevant for our calculations is

LFP =

(
@��

y

a@
��a � �

g2

4
�2�ya�a

)
: (3.30)

The whole Lagrangian then reads

L0 = �1

2
@�a

a
�@

�a�a +
1

2

 
1� 1

�

!
@�a

�a@�a
�a +

g2

8
v2aa�a

�a

+
1

2
@��@

��� �

4
(�2 � v2)2
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+
1

2
@�h@

�h� �v2h2

+
1

2
@�'

a@�'a � g2�

8
v2'a'a

+@��
ya@��a � g2�

4
v2�ya�a ; (3.31)

LI = �g�abcab�ac�@�a�a �
g2

4
�abcab�a

c
��
adea�da�e

+@��@
�h+ g(@��)a

�a'a + g(@�h)a
�a'a +

g

2
�abc(@�'

a)a�b'c

+
g2

8
(�2 � v2)a�aaa� +

g2

4
�ha�aaa� +

g2

8
h2a�aaa� +

g2

8
a�aaa�'

b'b

��h�3 � 3

2
�h2(�2 � v2)� �

2
(�2 � v2)'a'a � �h3�

��h�'a'a � �

4
h4 � �

2
h2'a'a � �

4
'a'a'b'b + �v2h�

�g
2�

8
(�2 � v2)'a'a � g2�

8
h2'a'a � g2�

4
�h'a'a

�g
2�

4
�ya(�2 � v2)�a : (3.32)

The separation into a free and an interacting part makes it more convenient to read o� the

Feynman rules. As already mentioned for the one loop calculations, we are only interested

in the part of second order in the Lagrangian, but for the Feynman-graphs we also need

some vertices up to third order. The fourth order terms are irrelevant and they are only

given for completeness.

3.2.2 Gauge Mode and Gauge-�xing Mode

Before we discuss the 
uctuation operator for a speci�c physical setting we specify here

the unphysical degrees of freedom in the gauge �eld and would-be Goldstone sector whose

cancellation against the Faddeev-Popov modes will lead to a gauge invariant 
uctuation

determinant. The 
uctuation operator of the isoscalar Higgs mode h(x) is gauge invariant

from the outset.

We arrange the gauge �eld 
uctuations a�a and the would-be Goldstone �elds 'a in a

(4 + 1) column vector

 a =

(
a�a
'a

)
: (3.33)

We start with the equations of motion obtained without the gauge-�xing term. The di�er-

ential operator (
uctuation operator) governing the mode evolution then takes the form

M =

(
�(2 + g2

4
�2)��� + @�@� �g

2
@��+ g

2
�@�

�g@��� g
2
�@� 2+ �(�2 � v2)

)
: (3.34)

56



CHAPTER 3. GAUGE THEORIES

The mode equations are the same for all a = 1; 2; 3:

M a = 0 : (3.35)

An in�nitesimal gauge transformation is given by

 ga(x) =

(
@�

g
2
�(x)

)
fa(x) : (3.36)

These modes satisfy the mode equation (3.35) if �(x) satis�es the classical �eld equation

(3.24). The latter condition is crucial. It arises from the mode equation for 'a; the one for

the vector potentials is ful�lled trivially.

If the gauge mode is substituted into the gauge condition we �nd

(Fa)g =
"
2 + �

g2

4
�2(x)

#
fa ; (3.37)

where the di�erential operator on the right hand side is just the Faddeev-Popov operator.

So, if the gauge mode is inserted into the Lagrangian, the gauge-�xing term contains the

Faddeev-Popov operator squared. It is very suggestive that the contribution of this squared

operator to the e�ective action, i.e., to the log det of the 
uctuation operator, is cancelled

by twice the log det of the Faddeev-Popov operator.

If the gauge-�xing term is included, the 
uctuation operator takes the form

Mf =

8<
: �(2 + g2

4
�2)��� +

�
1� 1

�

�
@�@� �g@��

�g@�� 2 + �(�2 � v2) + g2

4
��2

9=
; : (3.38)

If we apply the 
uctuation operator to the gauge mode and use the classical equation of

motion, we obtain

Mf 
g
a(x) =

(
�1
�
@�

g
2
�(x)

)"
2 + �

g2

4
�2(x)

#
fa(x) =

(
�1
�
@�

g
2
�(x)

)
MFPfa(x) : (3.39)

The di�erential operator appearing on the right hand side is just the Faddeev-Popov op-

erator

MFP = 2 + �
g2

4
�2(x) : (3.40)

If fa is an eigenfunction of the Faddeev-Popov operator,MFPfa = !2
FPfa, then the associ-

ated gauge mode satis�es (
�� 0

0 1

)
Mf 

g
a = !2

FP 
g
a : (3.41)

The factor � in the matrix multiplies the four gauge �eld components. So the 
uctuation

operator modi�ed by multiplication with a constant matrix, has a class of eigenfunctions

with the same eigenvalues as the Faddeev-Popov operator. In the e�ective action, the

modi�cation by the constant matrix is irrelevant, as one computes the ratio between the
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uctuation determinants in the background �eld and in a standard vacuum con�guration,

to which the same arguments apply.

Now consider the gauge condition Fa. We introduce the covector

u� =

�
@�; �

g

2
�(x)

�
; (3.42)

so that

Fa = u� a : (3.43)

Consider an arbitrary mode  a. We then �nd, using again the classical equation of motion,

u�

(
�� 0

0 1

)
Mf a =

"
2+ �

g2

2
�2(x)

#
u� a =MFPFa : (3.44)

Let  �a now be an eigenmode of the modi�ed 
uctuation operator with eigenvalue !2
�. Then

this equation entails

u�!
2
� 

�
a = (!�a )

2F�
a =MFPF�

a : (3.45)

So if the projection on the vector u� is di�erent from zero, the eigenvalue is simultaneously

an eigenvalue of MFP. We thereby have a second class of modes on which the 
uctuation

operator of the gauge-Higgs system has the same spectrum as the Faddeev-Popov operator.

We call them gauge-�xing modes. We have to make sure that this class of modes, obtained

by a projection, is not empty, and not identical with the gauge modes.

Obviously, the modes on which the projector u� yields zero are those which satisfy the

gauge condition; these are the physical modes. We know that out of the �ve components

of the gauge-Higgs modes  only three are physical; they represent the spatial components

of the massive gauge �eld.

We next consider the action of the projector on the gauge eigenmodes. It is convenient

to introduce a vector v that generates the gauge modes via

 ga = vfa =

8<
:

@�
g

2
�(x)

9=
; fa : (3.46)

We note that

u�v = 2+ �
g2

4
�2 : (3.47)

This implies that the gauge-�xing mode obtained by projection of a gauge mode satis�es

Fa = u� 
g
a = u�vfa =

"
2 + �

g2

4
�2(x)

#
fa : (3.48)

So if fa is an eigenfunction of the Faddeev-Popov operator, then the gauge-�xing mode

generated from it does not represent a new, independent mode. However, the gauge modes

and the physical modes do not exhaust the Hilbert space that is based on �ve �eld degrees

of freedom, and we are sure that the projector does not give zero on the remaining subspace.
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We have shown up to now, that for a background �eld satisfying the classical equation

of motion there are two classes of modes whose contribution to the e�ective action will be

cancelled by the one from the Faddeev-Popov sector. We have not shown, thereby, that the

remaining physical part of the gauge-Higgs sector becomes independent of �. Furthermore,

the way in which the modes are eliminated is a technical matter; it depends on the structure

of the background �eld, and on the problem under consideration. So if we want to illustrate

the application of these general results we have to consider speci�c models.

We will here analyze the modes introduced above, and the cancellation of their contri-

bution to the 
uctuation determinant, for the case of bubble nucleation in the SU(2) Higgs

model and as a second example for a system out of equilibrium.

3.3 Bubble Nucleation

Bubble nucleation occurs in the SU(2) Higgs model if the phase transition from the sym-

metric high temperature phase to the broken symmetry phase at low temperature is �rst

order. It has been considered as providing a possible mechanism for baryogenesis, a possi-

bility ruled out by the present lower limit for the Higgs mass. Still the model is of interest;

in particular, it can be studied in lattice simulations for su�ciently low Higgs masses. The

phase transition is described (see, e.g., [97]), by the 3-dimensional high-temperature action

Sht =
1

g3(T )2

Z
d3x

�
1

4
FijFij +

1

2
(Di�)

y(Di�) + Vht(�
y�)

+
1

2
A0

�
�DiDi +

1

4
�y�

�
A0

�
: (3.49)

Here, the coordinates and �elds have been rescaled as [98]

~x! ~x

gv(T )
; �! v(T )�; A! v(T )A : (3.50)

The vacuum expectation value v(T ) is de�ned as

v2(T ) =
2D

�T
(T 2

0 � T 2) : (3.51)

T0 is the temperature at which the extremum at � = 0 of the high-temperature potential

Vht changes from a minimum for T > T0 to a maximum for T < T0. The temperature

dependent coupling of the three-dimensional theory is de�ned as

g23(T ) =
gT

v(T )
: (3.52)

We use the standard parameters

D = (3m2
W + 2m2

t )=8v
2
0 ; (3.53)
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E = 3g3=32� ; (3.54)

B = 3(3m4
W � 4m4

t )=64�
2v40 ; (3.55)

T 2
0 = (m4

H � 8v20B)=4D ; (3.56)

�T = �� 3

 
3m4

W ln
m2
W

aBT 2
� 4m4

t ln
m2
t

aFT 2

!
=16�2v40 : (3.57)

We use in the following a di�erent rescaling, introduced in [99, 100], based on the secondary

minimum of the high-temperature potential which occurs at

~v(T ) =
3ET

2�
+

s�
3ET

2�

�2
+ v2(T ) : (3.58)

The high-temperature potential then takes the form

Vht(�
y�) =

�T

4g2

�
(�y�)2 � �(T )(�y�)3=2 +

�
3

2
�(T )� 2

�
�y�

�
; (3.59)

with

�(T ) =
4

3

 
1� v(T )2

~v(T )2

!
: (3.60)

The standard formula [101, 102, 103, 104, 105, 106] for the bubble nucleation rate is

given by

�=V =
!�

2�

 
~S

2�

!3=2

exp(� ~S) J �1=2 : (3.61)

Here ~S is the high-temperature action, (3.49), minimized by a classical minimal bubble

con�guration (see below), while J is the 
uctuation determinant which describes the next-

to-leading part of the semiclassical approach and which will be de�ned below; its logarithm

is related to the one loop e�ective action by

S1�l
e� =

1

2
lnJ : (3.62)

Finally, !� is the absolute value of the unstable mode frequency.

The classical bubble con�guration is described by a vanishing gauge �eld and a real

spherically symmetric Higgs �eld �(r) = j�j(r), which is a solution of the Euler-Lagrange

equation

��00(r)� 2

r
�0(r) +

dVht

d�(r)
= 0 ; (3.63)

with the boundary conditions

lim
r!1

�(r) = 0 and �0(0) = 0 : (3.64)

We expand the gauge and Higgs �elds around this classical con�guration via

Aa�(~x) = aa�(~x) ;

�(~x) = [�(r) + h(~x) + �a'a(~x)]

 
0

1

!
; (3.65)
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where aa�; h and 'a are the 
uctuating �elds, denoted collectively by 'i.

If the action is expanded with respect to the 
uctuating �elds, the �rst order term

vanishes if �(r) satis�es the classical equation of motion (3.63). The second order part

de�nes the 
uctuation operator via

S(2) =
1

~g23(T )

Z
d3x

1

2
'mMmn'n : (3.66)

The 
uctuation determinant J appearing in the rate formula is de�ned by 1

J =
detM
detM0

; (3.67)

where M0 is the 
uctuation operator obtained by expanding around a spatially homoge-

nous classical �eld that is a minimum of e�ective potential. The gauge conditions for the

3-dimensional theory read

Fa = @�a
�
a +

�

2
�'a = 0 : (3.68)

The total gauge-�xed action St is obtained from the high-temperature action by adding to

it the gauge-�xing action

Sgf =
1

~g23(T )

Z
d3x

1

2�
FaFa : (3.69)

The corresponding Faddeev-Popov action reads

SFP =
1

~g23(T )

Z
d3x�y

"
��+ �

�2(r)

4

#
� : (3.70)

The 
uctuation operator is obtained from the total action St = Sht + Sgf + SFP. The


uctuation operator, and along with it the 
uctuation determinant, decomposes under

partial wave expansion into 
uctuation operators for �xed angular momentum. We will

consider this in the following.

The background �eld is isoscalar, so the isospin index a just results in multiplicity

factors, we will omit it in the following. The scalar �elds h(~x); 'a(~x); �(~x), and a0(~x) are

expanded with respect to spherical harmonics Y m
` (~̂x), the partial wave mode functions are

denoted by f `h(r); f
`
'(r); f

`
�(r), and f

`
0(r). The vector spherical harmonics ~̂xY

m
` ; rrY m

` , and

~LY m
` are used for expanding the space components of the gauge �elds via

a(~x) =
X
`m

2
4 f `a(r)q

`(`+ 1)
rrY m

` + f `b (r)~̂xY
m
` +

f `c (r)q
`(`+ 1)

~x�rY m
`

3
5 : (3.71)

The 
uctuation operator is block-diagonal. In the following we consider just one partial

wave and omit the superscript `. We denote the partial wave reduction of the 
uctuation

1We omit some sophistications related to zero and unstable modes.
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operatorM by M`; we omit the superscript, however. The components fh(r); f�(r); fc(r),

and f0(r) are decoupled, the operator has the form

Mnn = � d2

dr2
� 2

r

d

dr
+
`(`+ 1)

r2
+m2

n + Vn(r) : (3.72)

The masses are m� = m0 = mc = 0 and mh = mH with the Higgs mass

m2
H =

�T

4g2
(3�� 4) : (3.73)

The potentials are V0(r) = Vc(r) = �2(r)=4, V�(r) = ��2(r)=4 and

Vh(r) =
�T

4g2

h
12�2(r)� 6��(r)

i
: (3.74)

The Faddeev-Popov 
uctuations are fermionic and two-fold degenerate, as usual.

The modes fa; fb and f' are coupled. The non-vanishing components are

Maa(r) = � d2

dr2
� 2

r

d

dr
+
`(`+ 1)

�r2
+
�2(r)

4
; (3.75)

Mbb(r) = �1

�

 
d2

dr2
+
2

r

d

dr

!
+
`(`+ 1) + 2=�

r2
+
�2(r)

4
; (3.76)

M''(r) = � d2

dr2
� 2

r

d

dr
+
`(`+ 1)

r2
+ �

�2(r)

4
(3.77)

+m2
� +

�

g2

�
�2(r)� 3

4
��(r)

�
;

Mab(r) = �
q
`(`+ 1)

�r2

"
2 + (1� �)r

d

dr

#
; (3.78)

Mba(r) = �
q
`(`+ 1)

�r2

"
1 + � � (1� �)r

d

dr

#
; (3.79)

Mb'(r) = M'b(r) = ��0(r) : (3.80)

The 
uctuation operator of this coupled system is hermitean, as it should be, because it

arises from the variation of a Lagrangian. The asymmetry suggested by the explicit form

arises from integrations by parts.

The gauge parameter � only occurs in the coupled system and for the Faddeev-Popov

modes. The cancellation of the � dependence will have to occur between these two sectors.

They will be analyzed in the next section.

3.3.1 Analysis of the Fluctuation Operator

In analyzing the gauge dependence we have to consider the coupled system of the modes

fa; fb, and f', i.e., the radial mode functions for angular momentum `. In analogy to
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section 3.2.2 we consider the 
uctuation operator multiplied from the left by a constant

matrix diag(�; �; 1). The eigenvalue problem for the 
uctuation operator then takes the

form of the three di�erential equations for the radial mode functions for angular momentum

`:

�f 00a �
2

r
f 0a +

`(`+ 1)

�r2
fa +

�2(r)

4
fa (3.81)

�
q
`(`+ 1)

�r2
[2fb + (1� �)rf 0b] =

!2

�
fa ;

�1

�

�
f 00b +

2

r
f 0b

�
+
`(`+ 1) + 2=�

r2
fb +

�2(r)

4
fb (3.82)

�
q
`(`+ 1)

�r2
[(1 + �)fa � (1� �)rf 0a]� �0(r)f' =

!2

�
fb ;

�f 00' �
2

r
f 0' +

`(`+ 1)

r2
f' +m2

Hf' + �
�2(r)

4
f' (3.83)

+
�

g2

�
�2(r)� 3

4
��(r)

�
f' � �0(r)fb = !2f' :

In view of the general arguments of section 3.2.2, we now should identify the gauge and

the gauge-�xing modes. A general gauge transformation is parameterized by a function

�(~x). It can be expanded into partial waves with respect to spherical harmonics; the radial

mode function is denoted by f�(r). The gauge mode then takes the form

f ga (r) =
q
`(`+ 1)f�(r) ;

f gb (r) = f 0�(r) ; (3.84)

f g'(r) = ��(r)
2
f�(r) :

The partial wave amplitude of the gauge-�xing mode F is obtained from the general

de�nition

F(~x) = ra(~x) + �
�(r)

2
'(~x) : (3.85)

This equation is expanded into partial waves. The radial mode function of the mode F
then reads

fF(r) = f 0b(r) +
2

r
fb(r)�

q
`(`+ 1)

r
fa(r) + �

�(r)

2
f'(r) : (3.86)

It can be checked, using the basic di�erential equations (3.81)-(3.83) and the di�erential

equation for the background �eld (3.63), that the mode fF satis�es the di�erential equation

for the Faddeev-Popov modes

�f 00FP �
2

r
f 0FP +

`(`+ 1)

r2
fFP + �

�2(r)

4
fFP = !2fFP : (3.87)
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Likewise, if the gauge function f�(r) satis�es this di�erential equation then the mode

functions f gn generated from it via (3.84) satisfy the basic di�erential equations (3.81)-

(3.83). This is as to be expected from the general arguments.

We now try to separate the system of di�erential equations by introducing a suitable

set of new mode functions. We �rst eliminate the mode fa(r) in favor of fF (r),

fa(r) = �rfF(r) + f 0b(r) + 2fb(r)� (�=2)�(r)f'(r)q
`(`+ 1)

: (3.88)

As mentioned above, fF(r) satis�es

�f 00
F
� 2

r
f 0
F
+
`(`+ 1)

r2
fF + �

�2(r)

4
fF = !2fF : (3.89)

Having eliminated fa(r) in this way it cannot be used anymore as a gauge mode, for which

now fb(r) is a possible candidate. However, it is not possible to use a simple algebraic

substitution. We introduce the new mode function fg(r), analogous to �(r), and eliminate

fb(r) with the substitution

fb(r) =
d

dr
fg(r) : (3.90)

We make the two other amplitudes gauge invariant by de�ning

~f'(r) = f'(r) +
�(r)

2
fg(r) ; (3.91)

~fF(r) = fF(r) + !2fg(r) : (3.92)

The latter equation follows from the general relation (3.48). We now have to �nd the

equation of motion for the amplitude fg(r). In view of its close relation to the gauge

function �(r) we make the ansatz

�f 00g �
2

r
f 0g +

`(`+ 1)

r2
fg + �

�2(r)

4
fg = !2fg +R(r) : (3.93)

We insert the substitutions into the di�erential equations (3.82), (3.83), and (3.89) for the

amplitudes fb(r); f'(r), and fF(r), respectively. We �nd, after some algebra, the equation

1

r

d

dr
r2R(r) =

1

2r

d

dr
r2
h
��(r) ~f'(r)� ~fF(r)

i
(3.94)

+
1

2

"
d

dr
�(r) ~f'(r)� �(r)

d

dr
~f'(r)

#
+
1

�

d

dr
~fF (r)

as a consistency condition for R. It can be solved readily

R(r) =
�

2
�(r) ~f'(r)� ~fF(r) (3.95)

+
1

2r2

Z r

0
dr0r02

"
�0(r0) ~f'(r

0)� �(r0) ~f 0�(r
0) +

2

�
~f 0
F
(r0)

#
:
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This �xes the right hand side of equation (3.93) for fg(r), which is one of the basic ones

for the new amplitudes. The equations for the other amplitudes become

� ~f 00' �
2

r
~f 0' +

`(`+ 1)

r2
~f' +

(
m2
H +

�

g2

�
�2(r)� 3

4
��(r)

�)
~f' (3.96)

= !2 ~f' �
1

2
�(r) ~fF +

�(r)

4r2

Z r

0
dr0r02

"
�0(r0) ~f'(r

0)� �(r0) ~f 0'(r
0) +

2

�
~f 0
F
(r0)

#
;

� ~f 00
F
� 2

r
~f 0
F
+
`(`+ 1)

r2
~fF + �

�2(r)

4
~fF (3.97)

= !2

(
���(r)

2
~f' �

1

2r2

Z r

0
dr0r02

"
�0(r0) ~f'(r

0)� �(r0) ~f 0'(r
0) +

2

�
~f 0
F
(r0)

#)
:

Obviously, we have not succeeded in separating the system. However, in this form the

gauge and gauge-�xing modes are easy to identify. We see that with the choice ~f' = 0 and
~fF = 0 the functionR(r) vanishes and the di�erential equation for fg becomes the Faddeev-
Popov equation again, with a corresponding energy spectrum. Likewise, the combination

fF = ~fF +!2fg still satis�es (3.89) and has a Faddeev-Popov eigenvalue spectrum as well.

However, we do not �nd another linearly independent combination of amplitudes involving

the amplitude ~f' that would satisfy a di�erential equation independent of �. So that

part of the energy spectrum that is not compensated by the Faddeev-Popov contributions

apparently still depends on the choice of �.

Matters are di�erent, however, if we evaluate the e�ective action. This can be done

using the 
uctuation modes at ! = 0, using a general theorem on 
uctuation determi-

nants [107], generalized to coupled systems, that has been used, e.g., for computing the


uctuation corrections to bubble nucleation [91]. It is based on the equation 2

J (�) � det(M + �2)

det(M0 + �2)
= lim

r!1

det f(�; r)

det f0(�; r)
: (3.98)

Here, M is the partial wave 
uctuation operator as de�ned previously, and the matrix

f(�; r) is an (n � n) matrix formed by a fundamental system of n linearly independent

n-tuples of solutions for a given �, regular at r = 0. The operator M0 and the solutions

f0 refer to a trivial background �eld con�guration, in the present case to the symmetric

vacuum state characterized by �(r) � 0. It is understood, that both systems f and f0
are started at r = 0 with identical initial conditions. Finally, the desired 
uctuation

determinant is given by J � J (0).
If we apply the theorem we only need the coupled system of di�erential equations

for ! = i� = 0, and then it decouples in a triangular way. The right hand side of the

equation for ~fF vanishes entirely, the right hand side of the di�erential equation for ~f'
only depends on ~fF , while both ~f' and ~fF appear on the right hand side of the equation

for fg. Furthermore, for ~fF = 0, the di�erential equation for ~f' becomes independent of �.

We can choose the following set of linearly independent solutions:

2For a short proof along the lines of [107] see [108].
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(i) a gauge mode solution f gn with ~f
g
F
� 0 and ~f g' � 0, for which f gg evolves in the same

way as a pure Faddeev-Popov mode;

(ii) a physical solution f'n with ~f
'
F
� 0; then ~f'' evolves independently; it appears on

the right hand side of the di�erential equation for f'g , which can be obtained by using the

Green function of the homogenous equation, and �nally

(iii) a gauge-�xing mode solution fFn , where
~fF
F
is di�erent from zero. For � = 0 the

right hand side of (3.97) vanishes and ~fF evolves like a Faddeev-Popov mode. Both other

amplitudes are di�erent from zero in this case. Note that the second type of solution is

determined only modulo an arbitrary multiple of the �rst one, and the third one only

modulo arbitrary multiples of both other ones. This does not a�ect the determinant

det f(0; r), however.

The structure of the matrix f(0; r) now is triangular and its determinant is obtained

from the diagonal elements as

det f(0; r) = f gg (0; r)
~fF
F
(0; r) ~f'' (0; r) = f 2FP(0; r)

~f'' (0; r) : (3.99)

The same structure holds for the free solutions which have to be started at r = 0 with

identical initial conditions, i.e. with the same coe�cients of the lowest powers of r, as

determined by the centrifugal barriers. We have considered the behavior at r = 0 in detail

and have veri�ed that an appropriate choice is possible.

The e�ective action is obtained by adding the logarithms of the various 
uctuation

determinants for all independent systems, and for all partial waves. The only � depen-

dence occurs in the gauge and gauge-�xing modes of the coupled system, and for the

two Faddeev-Popov modes. Since these compensate each other the total e�ective action

becomes independent of �.

For the practical computation this means that for the coupled system we just have to

solve the integro-di�erential equation for ~f' with ~fF = 0, i.e.,

� ~f 00' �
2

r
~f 0' +

`(`+ 1)

r2
~f' +

(
m2
H +

�

g2

�
�2(r)� 3

4
��(r)

�)
~f' (3.100)

=
�(r)

4r2

Z r

0
dr0r02

h
�0(r0) ~f'(r

0)� �(r0) ~f 0'(r
0)
i
:

From this derivation and discussion it is clear that the gauge independence only holds

for the e�ective action, and not for other physical quantities. The non-diagonal parts of

the mode solutions still depend on �, so other expectation values are a�ected by the gauge

parameter �.

3.4 Non-equilibrium Dynamics: R�-gauges

3.4.1 Perturbative Expansion: The Leading Feynman-Diagrams

In this section we consider the R�-gauges in the context of non-equilibrium dynamics. First

of all, we want to get a deeper insight into the relevant degrees of freedom for our model.
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Therefore, it is useful to analyze the leading Feynman-graphs. It allows us to extract

the UV divergences and to investigate the �-dependence of the counter terms. Since the

counter terms are unphysical quantities they are not gauge invariant and contain the gauge

parameter �. We derive the relevant propagators and vertices and calculate the leading

diagrams with the CTP-formalism which was developed for systems out of equilibrium

by Schwinger [24] and Keldysh [25]. It allows the description of the time development of

quantum �elds with given initial conditions. In recent works it is implemented to the use

of functional technics. Usually the in-out-formalism is used to calculate the generating

functional W and the e�ective action �. The CTP-formalism is a generalization of the in-

out-formalism. It is based on the sum over paths �rst going forward in time in the presence

of one external source from an in vacuum to a state de�ned on a hypersurface of constant

time in the future, and then backwards in time in the presence of a di�erent source to the

same in vacuum. Therefore, it is also called in-in-formalism. It yields a real and causal

e�ective action, �eld equations, and expectation values. The number of Green function

and propagators is doubled, they are labeled with G++, G��, G+�, and G�+. They are

also causal. A detailed discussion of the formalism can be found e.g. in [109, 110].

We also want to make some comparison with [37]. We use the method which they have

developed in the next section in order to compare di�erent gauges. Here, we identify the

degrees of freedom in the R�-gauge with their degrees of freedom. From the kinetic part

of the Lagrangian (3.31), we get the following free propagators. 3

1. The gauge boson propagator is :

i�ab
�� = � i�ab

k2�m2

W
+i�

�
g�� +

@�@�
m2

W

�
+ i�ab

k2��m2

W
+i�

@�@�
m2

W

;

with m2
W = e2v2 :

(3.101)

2. The propagator for the isoscalar Higgs �eld is given by:

i�h = i 1
k2�m2

h
+i�

;

with m2
h = 2�v2:

(3.102)

3. The propagator for the isovector Higgs �eld is given by:

i�ab
' = i �ab

k2��m2

W
+i�

: (3.103)

4. The propagator for the ghost �eld is given by:

i�ab
� = i �ab

k2��m2

W
+i�

: (3.104)

3For a simpler comparison with [37], we have replaced the gauge coupling g by 2e.
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The connection between the free propagators and the propagators developed from the

CTP-formalism is discussed in [111] great detail. There, the discussion is limited to the

Feynman gauge, i.e. to the choice � = 1. Since the proceeding is straightforward and can

simply be expanded to general � by introducing the new propagators, we do not repeat

the whole formalism here. For the perturbative expansion, we also need the vertices read

o� from (3.32). We have listed only the relevant ones, which are:

V1)

�

�Φ

Φ

V2)

Φ

Φ ϕ�

ϕ�

i� = �i3
2
� [�2(t)� v2] i� = �i

�
�
2
+ � e

2

2

�
�ab [�2(t)� v2]

V3)

��Φ

Φ

µ

��ν

V4)

Φ

Φ η�

η�

i� = i e
2

2
�abg�� [�

2(t)� v2] i� = �i�e2�ab [�2(t)� v2]

V5)

�

�

�

Φ

V6)

�

Φ ϕ�

ϕ�

i� = �i��(t) i� = �i�ab�(t) (�+ �e2)
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V7)

�

��Φ
µ

��ν

V8)

�

Φ η�

η�

i� = ie2�abg���(t) i� = �2ie�ab�(t)

V9)

�

��µ

ϕ�

�

V10)

��

Φ

µ

ϕ�

�

i� = ie2�abcq��(t) i� = 2ie�abq��(t)

In zeroth order in the 
uctuation, we obtain the classical equation of motion. The

corresponding Feynman graph has the following form:

(3.105)

The plus signs at the propagator indicate the use of propagators in the CTP-formalism.

The related equation of motion then reads

��+ ��(�2 � v2) = 0 : (3.106)

In the �rst order we get tadpole-graphs which lead to quadratic divergences. They have

to be removed in a mass counter term. Graphically, the following Feynman diagrams

contribute:

� �

�

�

� �
�

�
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The equation of motion in this order is given by

��+ �(�2 � v2) + 3��

Z
d3k

(2�)3
1

2!h

+ 3
�
�+ �e2

�
�
Z

d3k

(2�)3
1

2!'

+ 9e2�
Z

d3k

(2�)3
1

2!a
+ 3�e2�

Z
d3k

(2�)3
1

2!�

� 6�e2�
Z

d3k

(2�)3
1

2!�
= 0 ; (3.107)

with

!2
h = k2 +m2

h ; (3.108)

!2
' = !2

� = k2 + �m2
W ; (3.109)

!2
a = k2 +m2

W : (3.110)

The �rst momentum integral is due to the isoscalar Higgs �eld. It is gauge invariant

from the outset and clearly independent of �. In [37], this �eld is denoted with �. The

second 
uctuation �eld is the Goldstone boson. It depends on � and is therefore a gauge

dependent �eld. In Landau gauge, i.e., � = 0 this �eld belongs to the Goldstone mode

in [37]. But they have compared their results with the Landau gauge and found that the

e�ective potential in Landau gauge is not equivalent to their gauge invariant approach.

The third and the fourth integral represent the gauge sector. They contain two transversal

degrees of freedom, a longitudinal and a temporal one. The two transversal �elds are the

physical ones and they are gauge invariant. They are the same as in [37]. The other two

degrees of freedom do not exist in [37] because they only have taken physical �elds into

account. In the next order, �ve additional graphs contribute:

��

��

� �

�

�

���

���

� �
�

�

���

��� ��

��

� �

� �

� ���

��

= �(t)

tZ
�1

dt0
h
�2(t0)� v2

i Z d3k

(2�)3

(
� 9�2

2!h
sin(2!h�t)�

3(�+ �e2)2

2!'
sin(2!'�t)
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+
6�2g4

2!�
sin(2!��t)� 6e4

" 
k2

m4
W

+
3

4!2
a

!
sin(2!a�t)

� k2

2m4
W!a!�

(!a + !�)
2
sin [(!a + !�)�t] +

 
k2

m4
W

+
�2

4!2
a

!
sin(2!��t)

#)

�12e2
tZ

�1

dt0 _�(t0)

Z
d3k

(2�)3

(
!a + !'

2!a!'
cos [(!a + !')�t]

+
!a(!a + !')

2!'m
2
W

cos [(!a + !')�t]�
!�(!a + !')

2!'m
2
W

cos [(!� + !')�t]

)
(3.111)

= �(t)
h
�2(t)� v2

i Z d3k

(2�)3

(
� 9�2

4!3
h

� 3(�+ �e2)2

4!3
'

� 9e4

4!3
a

� 3�2e4

4!2
a!�

+
6�2e4

4!3
�

)

�12e2 ��(t)
Z

d3k

(2�)3

(
1

2!a!�(!a + !')
+

!a

2!'m
2
W (!a + !')

� !�

2!'m
2
W (!� + !')

)

+O(!�4) ; �t = t� t0 :

The �rst four graphs lead to coupling constant renormalization and the �fth one to

wave function renormalization. This graph is due to the coupled channel of the Goldstone-

gauge-sector. The counter terms are given by

�m2
h = 3�m2

hI�3(mh) + 3(�+ �e2)m2
hI�3(mh) ; (3.112)

�� = 9�2I�3(mh) + 3(�+ �e2)2I�3(mh) + 9e4I�3(mW )� 3�2e4I�3(mW ) ;(3.113)

�Z = �12e2
�
5

4
� 1

4
�

�
I�3 ; (3.114)

where we have used(Z
d3k

(2�)3
1

2!

)
reg

= � m2

16�2

(
2

�
+ ln

4��2

m2
� 
 + 1

)
= �m2I�3(m)� m2

16�2
;(3.115)

(Z
d3k

(2�)3
1

4!3

)
reg

=
1

16�2

(
2

�
+ ln

4��2

m2
� 


)
= I�3(m) ; (3.116)

I�3(m) =
1

16�2

(
2

�
+ ln

4��2

m2
� 


)
: (3.117)

For non-equilibrium systems, the perturbative expansion is not useful to get information

about the development of the zero mode under in
uence of quantum 
uctuations. In order

to go beyond the early time regime, we have to include the full back reaction and, therefore,

we have to use nonperturbative methods. Nevertheless, the analysis of the leading terms

and divergences in the equation of motion leads to some interesting results. First of all, we

have been able to make some comments on the arising degrees of freedom and their gauge

dependence. The graphs are also instructive to get an insight into the renormalization.

The isoscalar and the isovector �elds contribute to both the mass counter term and to

the coupling constant. The gauge �eld and ghost �eld only lead to a coupling constant
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renormalization. This corresponds to the gauge invariant results. The explicit form of the

counter terms is of course di�erent, because they are unphysical. The coupled channel be-

tween the gauge �eld a and the isovector �eld ' leads to the wave function renormalization.

The counter terms we have obtained are the same as we would get if we were to consider

the full nonperturbative equations in the R�-gauge. The �-dependent counter term must

be proportional to the classical equation of motion because the e�ective action is gauge

independent if the classical equation of motion is ful�lled. From the functional derivative

of the counter terms in the e�ective action

�S =

Z
d4x

1

4
�
�
�2�Z ��+ �m2

h�
2 � ���3

�
; (3.118)

we expect for the �-dependent parts of the counter terms the following relation

��� = ��m
2
h=v

2 = 2���Z = 6�e2�v2 ; (3.119)

which is obviously ful�lled. Therefore, the gauge dependence of the counter terms vanishes

if the classical equation of motion is ful�lled.

3.4.2 The Fluctuation Operator for Non-equilibrium Dynamics

In this section we extend our considerations from section 3.2.2 to non-equilibrium dynamics.

We derive the 
uctuation operator in the one loop approximation and investigate the

di�erent modes in order to construct an analogous e�ective action as in section 3.3 for

the bubble nucleation. In our discussion of non-equilibrium dynamics, the �eld �(x) is

assumed to depend on time only. Then, in the presence of spatial translation invariance,

it is appropriate to perform a spatial Fourier transform. We introduce a vector of mode

functions Un, where n denotes the various components h;?; 0; L; '; � for the isoscalar Higgs
mode, the transverse, time and longitudinal components of the gauge �elds, the would-

be Goldstone �elds, and the two Faddeev-Popov 
uctuations, respectively. We omit the

isospin indices entirely, as they will lead to combinatorial factors only. The �eld 
uctuations

then takes the form

 n(x) = Un(k; t) exp(i~k � ~x) : (3.120)

The functions Un only depend on k = j~kj.
The isoscalar Higgs mode, the transverse gauge �eld modes and the Faddeev-Popov

modes are decoupled; their 
uctuation operators are diagonal elements given by

Mnn =
d2

dt2
+ !2

n(t) ; (3.121)

with

!2
h(t) = k2 +m2

h + 3�
h
�2(t)� v2

i
; (3.122)

!2
?
(t) = k2 + e2�2(t) ; (3.123)

!2
�(t) = k2 + �e2�2(t) : (3.124)
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The isoscalar Higgs and the transverse gauge �eld modes are clearly gauge independent.

The 
uctuation operator of the remaining components 0; '; L is given by the 3 � 3

matrix

M� =

0
BB@
� d2

dt2
� �!2

a(t) �2�e _� (� � 1)ik d
dt

�2e _� d2

dt2
+ !2

�e�(t) 0

ik(1� ��1) d
dt

0 d2

dt2
+ ��1!2

� (t)

1
CCA ; (3.125)

where !2
a(t) = !2

?
(t), !2

� (t) = !2
�(t), and

!2
�e�(t) = k2 + �e2�2(t) + �

h
�2(t)� v2

i
: (3.126)

The gauge mode introduced previously in section 3.2.2 is

U
g
0 (k; t) = _f(k; t) ; (3.127)

Ug
L(k; t) = �ikf(k; t) ; (3.128)

Ug
'(k; t) = e�(t)f(k; t) ; (3.129)

and the gauge �xing mode becomes

UF(k; t) = _U0(k; t) + ikUL(k; t) + �e�(t)U'(k; t) : (3.130)

Using the di�erential equation for the modes and for the zero mode �(t), we �nd

�UF (k; t) +
h
k2 + �e2�2(t)

i
UF(k; t) = 0 ; (3.131)

�f(k; t) +
h
k2 + �e2�2(t)

i
f(k; t) = 0 : (3.132)

We now de�ne two mode functions that are independent of gauge transformations via

~U0(k; t) = U0(k; t)�
i

k
_UL(k; t) ; (3.133)

~U'(k; t) = U'(k; t)�
i

k
e�(t)UL(k; t) : (3.134)

In terms of these functions we �nd

�UL(k; t) + !2
� (t)UL(k; t) = (1� �)ik

_~U0(k; t) : (3.135)

Furthermore, the new functions satisfy

�~U 0(k; t) + !2
a(t)

~U0(k; t) = �2e _�(t) ~U'(k; t) ; (3.136)

�~U'(k; t) + !2
�e�(t)

~U'(k; t) = 2e _�(t) ~U0(k; t) + e�(t)(1� �)
_~U0(k; t) : (3.137)

Note that now UL does not appear anymore on the right hand sides of the equation for ~U0

and ~U'.
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We �nd furthermore, that the gauge �xing mode UF can be expressed entirely in terms

of the functions ~U0 and ~U':

UF (k; t) = �[e� ~U'(k; t) +
_~U0(k; t)] = � ~UF(k; t) : (3.138)

Inserting the di�erential equation for the new modes we �nd

�~UF(k; t) +
h
k2 + �e2�2(t)

i
~UF (k; t) =

�~UF (k; t) + !2
�(t)

~UF (k; t) = 0 : (3.139)

We now use (3.139) to eliminate ~U0 in favor of ~UF . We can rewrite the di�erential equation

for ~U0 in the form

!2
a(t)

~U0(k; t) = � _~UF(k; t) + e�(t)
_~U'(k; t)� e _�(t) ~U'(k; t) ; (3.140)

so that ~U0 becomes a dependent variable, expressed in terms of the modes ~UF and ~U'.

The 
uctuation operator for the modes ~F , ~' and L now takes the triangular form

~M� =

0
BB@

d2

dt2
+ !2

� (t) 0 0

(� � 1)e�(t) + 2e _�(t)

!2a(t)
d
dt

M'' 0

(� � 1)ik (1� �)ike�(t) d2

dt2
+ !2

� (t)

1
CCA ; (3.141)

with

M'' =
d2

dt2
+ k2 + e2�2(t) + �

h
�2(t)� v2

i
� 2e2 _�(t)

!2
a(t)

"
�(t)

d

dt
� _�(t)

#
: (3.142)

Since !2
� (t) = !2

�(t), the diagonal elementsMLL andMFF are equal to the Faddeev-Popov


uctuation operator. The diagonal element M'' is independent of �.

We thereby have reduced the 
uctuation operator to a triangular form. We can choose

the following set of linearly independent solutions in the same way as for the case of bubble

nucleation:

(i) a gauge mode solution UL
n , with

~UL
F
� 0 and ~UL

' � 0, for which UL
L evolves in the

same way as a pure Faddeev-Popov mode;

(ii) a physical solution ~U'
n with ~U'

F
� 0; then ~U'

' evolves independently, and is indepen-

dent of the gauge parameter; it appears on the right hand side of the di�erential equation

for U'
L , which can be obtained by using the Green function of the homogenous equation;

and �nally

(iii) a gauge �xing mode solution UF

n , where
~UF

F
is di�erent from zero and ~UF evolves

like a Faddeev-Popov mode. Both other amplitudes are di�erent from zero in this case.

This structure indicates that the e�ective action, i.e., the 
uctuation determinant, will

be independent of �, after cancellation of the FP modes. This will now be demonstrated

explicitly.
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3.4.3 Gauge Independence of the E�ective Action

The one loop e�ective action is given by

Se� =
i

2
ln detM (3.143)

=
i

2
(ln detMh + 2 lndetM? + lndetM� � 2 ln detM�) :

We will now relate the 
uctuation operatorM� to the triangular operator ~M� introduced

in the previous section.

The various substitutions leading to the new mode functions ~UF(k; t), ~U'(k; t) and
~UL(k; t) can be represented by the relation

N

8><
>:

~UF
~U'
UL

9>=
>; =

8><
>:
U0

U'
UL

9>=
>; ; (3.144)

where the matrix N is given by

N =

0
BB@
� 1
!2a(t)

@t � e
!2a(t)

h
_�(t)� �(t)@t

i
i
k
@t

0 1 i
k
e�(t)

0 0 1

1
CCA : (3.145)

At the same time, in order to obtain the triangular form of the operator ~M we have formed

various linear combinations of the basic di�erential equations for U0(t), U'(t) and UL(t).

The relation between M and ~M can therefore be written as

MN = U ~M : (3.146)

The matrix U is found to be given by

U =

0
BB@

@t
1

!2a(t)
�e@t �(t)!2a(t)

� i
k
@t

0 1 i
k
e�(t)

ik
!2a(t)

(��1 � 1) � ik
!2a(t)

e�(t) (��1 � 1) ��1

1
CCA : (3.147)

Therefore, in (3.143), we have to substitute M by U ~MN�1. This leads to

ln detM� = lndetU + lndet ~M� � ln detN : (3.148)

We can factorize N and U in the following way

N = N1N2 (3.149)

=

0
B@

1
!2a(t)

0 0

0 1 0

0 0 1

1
CA
0
BB@
�@t �e

h
_�(t)� �(t)@t

i
i
k
!2
a(t)@t

0 1 i
k
e�(t)

0 0 1

1
CCA ;
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and

U = U1U2U3 (3.150)

=

0
B@ @t 0 0

0 1 0

0 0 1

1
CA
0
BB@

1 �e�(t) �i!2a(t)
k

0 1 i
k
e�(t)

ik(��1
�1)

!2a(t)
� ik(��1

�1)e�(t)

!2a(t)
��1

1
CCA
0
B@

1
!2a(t)

0 0

0 1 0

0 0 1

1
CA :

In the same way as in (3.148), the ln det of the products can be decomposed into a sum of

terms for the single factors. The contributions of N1 and U3 are identical, so they cancel

in the di�erence ln detU � ln detN . The same is true for the contributions of N2 and U1,
the former one being triangular. Finally, U2 is a c-number matrix; its determinant turns
out to be one, so ln detU2 = 0. Therefore, we obtain

ln detM� = lndet ~M� (3.151)

= ln detM'' + 2 lndetM� ;

using the triangular form of ~M�. The contributions of M� cancel against the Faddeev-

Popov contributions as expected, and ln det ~M� is independent of the gauge parameter �.

The remaining contributions of the isoscalar Higgs and the transverse modes are indepen-

dent of � as well.

We have shown so far that the one loop e�ective action for the SU(2) Higgs model, and

for its Abelian counterpart, are independent of the gauge parameter �, if evaluated for a

classical background �eld that satis�es the classical equation of motion. At the minimum

of the e�ective potential � = v we �nd M'' = m? as expected for a massive gauge �eld.

In general it can be shown that the 
uctuation operatorM'' is identical to the 
uctuation

operator of the Goldstone mode in the Coulomb gauge. This will be done in section 3.7.

For the calculation of the equation of motion we have to compute the �rst derivative of

the e�ective action. Unfortunately, if we evaluate this derivative for the classical minimum

�(t) = v we �nd a ��dependent result.
Considering a general variation of the background �eld, H(t) + �H(t), will not, in

general, satisfy the equation of motion. In order to allow such general variation we should

not use the equation of motion when computing the e�ective action. (3.146) then gets

replaced by

M�N = U ~M� +� : (3.152)

� vanishes if H(t) is a solution of the classical equation of motion. Otherwise it can be

found to have the form

� =

0
BB@

0 e
!2a(t)

@t 0

0 0 � i
k
e

0 i k
!2a(t)

(��1 � 1) 0

1
CCA h��+ �(�2 � v2)�

i
; (3.153)

displaying explicitly the classical equation of motion.
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We have in general the relation

�Se� =
i

2
� ln detM =

i

2
TrM�1�M : (3.154)

Using

M� = U ~M�N�1 +�N�1 ; (3.155)

and the vanishing of � along the classical path, we �nd

TrM�1
�
�M� = TrN ~M�1

�
U�1

h
�(U ~M�N�1) + ��N�1

i
= Tr ~M�1

�
� ~M� + TrU�1�U � TrN�1�N + Tr�� ~M�1

�
U�1 : (3.156)

We now use the factorization of the matrices N and U , as in (3.149), (3.150). In the same

way as in (3.156) the trace over the products can be decomposed into a sum of traces.

The functional derivative of N2 and U1 vanishes and, therefore, also the contributions

TrN�1
1 �N1 and TrU�11 �U1. The contributions from N1 and U3 are the same. As they are

subtracted in (3.156), they cancel. Next consider the contribution of U2. The inverse is

given by

U�12 =

0
BBB@

��1
!2
�
(t)

!2a(t)
eH(t) ik

eH(t)(1���1)

!2a(t)
1 � i

k
eH(t)

ik(1���1)

!2a(t)
0 1

1
CCCA ; (3.157)

and the functional derivative reads

�U2 =

0
BB@

0 �e �2 i
k
e2H(t)

0 0 e i
k

2ike2H(t)(1���1)

!4a(t)

ike(1���1)

!2a(t)

h
1� 2e2H(t)

!2a(t)

i
0

1
CCA : (3.158)

It is easy to see that the trace of the product of the two matrices vanishes. For the

calculation of the equation of motion we are left with

TrM�1
�
�M� = Tr ~M�1

�
� ~M� + Tr�� ~M�1

�
U�1 : (3.159)

The last term is explicit �-dependent. It seems not possible in the non-equilibrium case

to formulate a gauge parameter independent equation of motion. Nevertheless, we have

formulated a 
uctuation operator whose diagonal element M'' coincides with the Gold-

stone mode in the Coulomb gauge. This result indicates the importance of this mode and a

detailed analysis of it is worthwhile. We will investigateM'' in subsection 3.6.2 in detail.

3.5 Non-equilibrium Dynamics: Gauge Invariant

Approach

In this section we consider the Abelian Higgs model in a gauge invariant formulation in

order to compare it with our previous results found for the Feynman-gauge [38]. There, we
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investigated the SU(2)-Higgs model. Since we have chosen the isoscalar �eld as background

�eld, the only di�erence between the models arises in some multiplicity factors. Another

choice for the background �eld would not allow a comparison of the two approaches. As

it is common for the Abelian Higgs model, we choose the gauge coupling e in contrast to

our paper where we used the coupling constant g = 2e.

3.5.1 The Formalism

We study the Abelian Higgs model in a gauge invariant formulation. The basic ideas for this

description are developed in [37, 87]. We give here a short overview about the derivation

of the Hamiltonian. For details the reader is referred to the two papers mentioned above.

The Lagrangian density for the Abelian Higgs model reads

L = �1

4
F ��F�� +D��

yD��� �

4
(�y�� v2)2 ; (3.160)

D� = @� + ieA�� : (3.161)

We want to formulate a gauge invariant Hamiltonian. Therefore, we use as in [37, 87] the

canonical formulation. We have to identify the canonical �eld variables and constrains.

The canonical momenta conjugate to the scalar and vector �elds are given by

�0 = 0 ; (3.162)

�i = _Ai +riA0 = �Ei ; (3.163)

�y = _�+ ieA0� ; (3.164)

� = _�y � ieA0�y : (3.165)

Therefore, the Hamiltonian reads

H =

Z
d3x

�
1

2
~� � ~�y + �y� + (~r�� ie ~A�) � (~r�y) + 1

2
(~r� ~A)2

+
�

4
(�y�� v2)2 + A0

h
~r � ~�� ie(��� �y�y)

i)
: (3.166)

We will quantize this system with Dirac's method [74]. Therefore, we have to recognize the

�rst class constraints (mutually vanishing Poisson brackets). Then the constraints become

operators in the quantum theory and are imposed onto the physical states, thus de�ning

the physical subspace of the Hilbert space and gauge invariant operators. We have two

�rst class constrains

�0 =
�L
�A0

= 0 ; (3.167)

and Gauss' law

G(~x; t) = ri�i � � = 0 ; (3.168)

� = ie
�
�� � �y�y

�
; (3.169)
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with � being the matter �eld charge density. We can now quantize the system by imposing

the canonical equal time commutation relations

[�0(~x; t); A0(~y; t)] = �i�(~x� ~y) ; (3.170)

[�i(~x; t); Aj(~y; t)] = �i�ij�(~x� ~y) ; (3.171)

[�y(~x; t); �y(~y; t)] = �i�(~x� ~y) ; (3.172)

[�(~x; t); �(~y; t)] = �i�(~x� ~y) : (3.173)

In Dirac's formulation, physical operators are those that commute with the �rst class con-

straints. Since �0(~x; t) and G(~x; t) are generators of local gauge transformations, operators
that commute with the �rst class constraints are gauge invariant [37, 87]. As shown in [37]

the �elds and the conjugate momenta can be written in the following form

�(~x) = �(~x) exp

�
ie
Z
d3y ~A(~y) � ~ryG(~y � ~x)

�
; (3.174)

�(~x) = �(~x) exp

�
�ie2

Z
d3y ~A(~y) � ~ryG(~y � ~x)

�
; (3.175)

with G(~y � ~x) the Coulomb Green's function that satis�es

4G(~y � ~x) = �3(~y � ~x) : (3.176)

They are invariant under gauge transformations [37]. The gauge �eld can be separated

into transverse and longitudinal components

~A(~x) = ~AL(~x) + ~AT (~x) ; (3.177)

~r� ~AL(~x) = 0 ; (3.178)

~r � ~AT (~x) = 0 : (3.179)

(3.180)

Since the �elds ~AT and � and their canonical momenta commute with the constraints,

they are gauge invariant. It is also possible to write the momentum canonical to the gauge

�eld in longitudinal and transverse components

~�(~x) = ~�L(~x) + ~�T (~x) ; (3.181)

where both components are gauge invariant. In [37], it is mentioned that in all matrix

elements between gauge invariant states the longitudinal component can be replaced by

the charge density
~�L(~x)! ie

h
�(~y)�(~y)� �y(~y)�y(~y)

i
= � : (3.182)

Finally, the Hamiltonian becomes

H =

Z
d3x

�
1

2
~�T � ~�T +�y� + (~r�� ie ~AT�) � (~r�y + ie ~AT�

y) +
1

2
(~r� ~AT )

2

+
�

4
(�y�� v2)2 +

1

2

Z
d3x

Z
d3y �(~x)G(~x� ~y)�(~y)

�
: (3.183)
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The features of this Hamiltonian are discussed at length in [37, 87]. One of the striking

points is the equivalence with the Hamiltonian in the Coulomb gauge. This similarity

is not uncommon because, in the Coulomb gauge, only the physical degrees of freedom

are taken into account. We do not want to go deeper into the discussion of the gauge

invariance of the Hamiltonian. We focus our interest on the non-equilibrium aspects of the

theory. In [37, 87], the e�ective potential was derived and Some aspects of non-equilibrium

dynamics were discussed. But as they explain and we have explained in our discussion

of the �4 theory, the e�ective potential is not suitable for non-equilibrium dynamics. We

derive here the full non-equilibrium equations. We include not only the terms which are

quadratic in the zero mode, but all terms up to second order which are relevant for the one

loop approximation. We consider the derivate terms of the zero mode and its conjugate

momentum. This yields the wave function renormalization which is not considered in

[37, 87] or has to be introduced by hand. We will also see that the formalism does not give

a clear statement about the loop order which is included. A linearization of the equations

leads to the Coulomb gauge, which we consider in detail in chapter 3.6. There, we show

the correspondence of the Hamiltonian approach and the Coulomb gauge. As we will show,

the inclusion of higher loop terms in the Hamiltonian approach leads to problems in the

IR-region. First of all, we derive the equation of motion for the �elds. Therefore, we

separate the expectation value of � and of its canonical momentum into a mean value and

a 
uctuation part

�(~x; t) = �(t) + '(~x; t) ; (3.184)

�(~x; t) = �(t) + �(~x; t) : (3.185)

We also introduce real �elds and canonical momenta as follows

' =
1p
2
(h+ i') ; (3.186)

� =
1p
2
(�h � i�') : (3.187)

Therefore, we �nd as a gauge invariant Hamiltonian

H = 


�
1

2
�2 + U(�2)

�

+

Z
d3x

�
1

2
~�2
?
� 1

2
(~r� ~a?)2 +

1

2
e2a2

?
�2 +

1

2
�2h +

1

2
�2'

+
1

2
(~rh)2 + 1

2
(~r')2 + �

2
(�2 � v2)(h2 + '2) + ��2h2

#

+

Z
d3x

Z
d3y

e2

2
[��'(~x)� �'(~x)]G(~x� ~y) [��'(~y)� �)'(~y)] ; (3.188)

with the following commutation relations:

[�;�] =
i



; (3.189)
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[a?i(~x); �?j(~y)] = i

 
�ij �

rirj

4

!
�3(~x� ~y) ; (3.190)

['(~x); �(~y)] = i�3(~x� ~y) : (3.191)

3.5.2 Equation of Motion

We are now able to �nd the equations of motion for the zero mode and the 
uctuation

�elds. In the Hamiltonian formalism we �nd the equation of motion by calculating the

commutator between the Hamiltonian and the �eld

_f = i[H; f ] : (3.192)

We get for the zero mode �

_� = i[H; �]

= �

"
1 +

e2




Z
d3x

Z
d3y '(~x)G(~x� ~y)'(~y)

#

� e2

2

�
Z
d3x

Z
d3y ['(~x)G(~x� ~y)�'(~y) + �'(~x)G(~x� ~y)'(~y)] ; (3.193)

and for the canonical momentum

_� = i[H;�]

= �U 0(�)� �




Z
d3x

h
e2~a2

?
+ �(h2 + '2) + 2�h2

i

�e
2



�
Z
d3x

Z
d3y �'(~x)G(~x� ~y)�'(~y)

+
e2

2

�

Z
d3x

Z
d3y [�'(~x)G(~x� ~y)'(~y) + '(~x)G(~x� ~y)�'(~y)] : (3.194)

We also need the equations of motion for the three di�erent quantum 
uctuations. The

�rst one is the transverse gauge �eld. We �nd an equation for the �eld a?i itself and for its

canonical momentum. We can combine these two expressions to a second order di�erential

equation for the gauge �eld:

_a?i = �?i ; _�?i = (4� e2�2)a?i

) �a?i = (4� e2�2)a?i : (3.195)

In the same way, we get the equation of motion for the real component of the Higgs


uctuation
�h =

h
4� �(3�2 � v2)

i
h : (3.196)

More di�culties arise for the Goldstone sector ' because the �eld and its canonical mo-

mentum are coupled via Green functions. We �nd for the �eld itself

_' = �' +
e2

2

Z
d3x [�Gxy(��' � �') + (��' � �')Gxy�] ; (3.197)
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and for the momentum

_�' = 4'� �'(�2 � v2)� e2

2

Z
d3x

h
�2Gxy'� (��+ ��)Gxy�'

i
: (3.198)

Now we transform the equations of motion into Fourier space. Therefore, we expand the


uctuation �elds in the following way (see also (2.7))

'(~x; t) =
Z

d3k

(2�)3
1

2!0

n
akU(k; t)e

i~k�~x�i!t + a
y

kU
�(k; t)e�i

~k�~x+i!t
o
; (3.199)

with the usual commutator relations for the annihilation and creation operators ak; a
y

k:

[ak; a
y

k0] = (2�)32!0�
3(~k � ~k0) : (3.200)

The U(k; t) are the mode functions for the 
uctuations depending on k. For convenience

we omit this dependence in the following. The Fourier transform for the Green function

leads to a factor 1=k2. With these expansions, the equation of motion for the zero mode

reads

_�(t) = �(t)

"
1 + e2

Z
d3k

(2�)3
1

2!p0k2
jU'(t)j2

#

�e
2

2
�(t)

Z
d3k

(2�)3
1

2!p0k2

h
U'(t)U

�

�'
(t) + U�'(t)U

�

'(t)
i
; (3.201)

and for the canonical momentum

_�(t) = �U 0[�(t)]

��(t)
Z

d3k

(2�)3

"
e2

!a0
jU?(t)j2 +

3�

2!h0
jUh(t)j2 +

�

2!p0
jU'(t)j2 +

e2

2!p0k2
jU�'(t)j2

#

+�(t)
Z

d3k

(2�)3
e2

4!p0k2

h
U�'(t)U

�

'(t) + U�

�'
(t)U'(t)

i
; (3.202)

where we have introduced the following frequencies

!2
p0 =

h
~k2 + �(�20 � v2)

i
(~k2 + e2�20)=k

2 = !2
'0!

2
a0=k

2 ; (3.203)

!2
'0 = ~k2 + �(�20 � v2) ; (3.204)

!2
a0 = ~k2 +m2

W + e2(�20 � v2) ; (3.205)

!2
h0 = ~k2 +m2

h + 3�(�20 � v2) ; (3.206)

m2
h = 2�v2 ; m2

W = e2v2 : (3.207)

The index 0 indicates the choice of t = 0. Notice, that we have included a factor two for

the two transverse gauge freedoms in the equation of motion for _�. The choice of !p0 will

become more transparent in the next section. By comparing these results with the zero

82



CHAPTER 3. GAUGE THEORIES

mode equation in the gauge �xed theory we �nd some analogies in the 
uctuation integrals.

The transverse gauge �eld and the Higgs �eld component h lead to the same contribution

in both theories. The Goldstone channel ' ful�lls a coupled di�erential equation. In the

gauge invariant description we have a coupling between the �eld itself and its canonical

momentum. In the R�-gauge, it couples to the time and longitudinal component of the

gauge �eld. These components do not appear in the new description because they are

unphysical.

In the same way we have found the zero mode equation, we can derive the mode

functions for the 
uctuation �elds. We �nd

"
d2

dt2
+ !2

a(t)

#
Ua(t) = 0 ; (3.208)

"
d2

dt2
+ !2

h(t)

#
Uh(t) = 0 ; (3.209)

"
d

dt
+
e2

k2
�(t)�(t)

#
U'(t)�

!2
a(t)

k2
U�'(t) = 0 ; (3.210)

"
d

dt
� e2

k2
�(t)�(t)

#
U�'(t) +

"
!2
'(t) +

e2

k2
�2(t)

#
U'(t) = 0 : (3.211)

In the mode equations for U' and U�' , a problem in the IR region arises for the �rst

time. The denominator with k2 will lead to problems as we will see later on. During the

discussion of the comparison of the di�erent approaches in chapter 3.7, it will become clear

that this IR-instability is caused by higher loop e�ects. It is possible by combining the

di�erential equation for the �eld (3.210) and its conjugate momentum (3.211) to �nd an

IR-stable mode equation by neglecting all terms of higher order than one loop.

3.5.3 Energy Density

The energy density can easily be calculated from the Hamiltonian. We have to insert the

expansion of the �elds in dependence of the mode functions with the corresponding creators

and annihilators. Then we have to take the expectation value in the ground state. The

�eld expansion is analogous to the one for the equation of motion (3.199). We �nd for the

energy density in the Fourier space

E =
1

2
�2(t) + U [�(t)]

+

Z
d3k

(2�)3
1

2!a0

h
j _U?(t)j2 + !2

a(t)jU?(t)j2
i

+

Z
d3k

(2�)3
1

4!h0

h
j _Uh(t)j2 + !2

h(t)jUh(t)j2
i

+

Z
d3k

(2�)3
1

4!p0

h
jU�'(t)j2 + !2

'(t)jU'(t)j2
i

83



CHAPTER 3. GAUGE THEORIES

+

Z
d3k

(2�)3
e2

4!p0k2

n
�2(t)jU�'(t)j2 +�2(t)jU'(t)j2

��(t)�(t)
h
U�

�'
(t)U'(t) + U�'(t)U

�

'(t)
io

: (3.212)

It is easy to check the conservation of the energy by determining the time derivative. With

the equations of motion we can show that it vanishes.

3.5.4 Perturbative Expansion

We are interested in the behavior of the zero mode under the in
uence of the quantum


uctuation. Therefore, we need well de�ned, �nite relations, and we have to renormalize

the equation of motion and the energy density. In the di�erential equation for �(t) and �(t)

we have some momentum integrals over the quantum 
uctuations. For the analysis of the

behavior of these integrals we make a perturbative expansion of the mode functions. Then

we are able to �x the leading terms of the integrals in powers of ! and to regularize and

renormalize them. For the single channels a? and h, the mode functions are the same as in

the R�-gauge and we have already analyzed them in [38]. Nevertheless, for completeness

we give a short review for these two �elds.

The Single Channels

The perturbative expansion of a single mode is already explained in section 2.3. For

completeness we review the general results with special emphasis on the leading behavior of

the mode functions for a? and h. For the transverse gauge �eld a? and the real component

of the Higgs �eld h, the mode functions read"
d2

dt2
+ !2

j0

#
Uj(t) = �Vj(t)Uj(t) ; (3.213)

with j = a; h. Here we have introduced the potentials

Va(t) = e2[�2(t)� �20] ; (3.214)

Vh(t) = 3�
h
�2(t)� �20

i
: (3.215)

We separate Uj(t) into a trivial part corresponding to the case V (t) = 0 and a function

fj(t) which represents the reaction to the potential by making the ansatz

Uj(t) = e�i!j0t [1 + fj(t)] : (3.216)

Then fj(t) satis�es the di�erential equation

�fj(t)� 2i!j0 _fj(t) = �Vj(t)[1 + fj(t)] ; (3.217)

with the initial conditions fj(0) = _fj(0) = 0. Expanding now fj(t) with respect to orders

in the potential by writing

fj(t) = f
(1)
j + f

(2)
j + f

(3)
j + � � � ; (3.218)
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we can extract the leading behavior for fj(t):

f
(1)
j (t) = � i

2!j0

tZ
0

dt0 Vj(t
0)� Vj(t)

4!2
j0

+
1

4!2
j0

tZ
0

dt0 e2i!j0�t _Vj(t
0) +O(!�3j0 ) ; (3.219)

f
(2)
j (t) = � 1

4!2
j0

tZ
0

dt0
t0Z
0

dt00 Vj(t
0)Vj(t

00) +O(!�3j0 ) ; (3.220)

with �t = t� t0. A more detailed analysis can be found e.g. in [33, 38].

The Goldstone Channel

For the Goldstone mode, the equation of motion is a little bit more complicated due to the

system of the coupled di�erential equations. We can write the system in matrix form

 
_U'(t)
_U�'(t)

!
= �A(t)

 
U'(t)

U�'(t)

!
; (3.221)

with

A(t) =

 
� e2

k2
�(t)�(t) !2a(t)

k2

�!2
'(t)� e2

k2
�2(t) e2

k2
�(t)�(t)

!
: (3.222)

In order to get an equivalent di�erential equation as for the single channels, we add A(0)

on both sides and take the time derivative of the equation. Thus, we get a second order

di�erential equation system of the following form

 
�U'(t)
�U�'(t)

!
�A2(0)

 
U'(t)

U�'(t)

!
=
h
A2(t)�A2(0)� _A(t)

i  U'(t)

U�'(t)

!
; (3.223)

where A2(0) is a diagonal matrix with the elements

A2
11(0) = A2

22(0) = �
!2
a0!

2
'0

k2
= �!2

p0 ; (3.224)

A2
12(0) = A2

21(0) = 0 : (3.225)

Now it is obvious why we have chosen !p0 in the �eld expansion for the Goldstone �eld.

It is a kind of plasma frequency. It is useful in the 
uctuation integrals for �' and '

because our ansatz for the mode functions in the Goldstone sector will contain the plasma

frequency. Cancellations are possible then. Now we have to compute the pre-factor on the

right hand side of the di�erential equation system (3.223). We �nd

A2(t)�A2(0)� _A(t) =M(t) ; (3.226)
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with

M11 = �(� + e2)(�2 � �20)

� e
2

k2

h
��2(�2 � v2)� ��20(�

2
0 � v2) + �2 � � _�� _��

i
; (3.227)

M12 = �2 e
2

k2
� _� ; (3.228)

M21 = 2(�� _�+
e2

k2
� _�) ; (3.229)

M22 = �(� + e2)(�2 � �20)

� e
2

k2

h
��2(�2 � v2)� ��20(�

2
0 � v2) + �2 +� _�+ _��

i
: (3.230)

From now on we omit the time dependence where it is obvious. A general solution for the

di�erential equation system is given by

U' = U'(0) +

tZ
0

dt0
1

!p0
sin(!p0�t)(M11U' +M12U�') ; (3.231)

U�' = U�'(0) +

tZ
0

dt0
1

!p0
sin(!p0�t)(M21U' +M22U�') : (3.232)

Now we have to �x the initial values for the mode functions U' and U�' . It is easy to

verify that U'U
�

�'
� U�

'U�' is constant for all times by showing that the time derivative

vanishes. With the di�erential equation for mode functions this is obvious. We require the

constant to be �2i!p0. A second claim is a well de�ned behavior of the mode functions for

the initial time. We choose the ansatz

U'(0) = Ae�i!p0t ; (3.233)

U�'(0) = Be�i!p0t : (3.234)

(3.235)

By inserting this in the di�erential equations and by utilizing the �rst requirement we can

determine the pre-factors A and B:

A =
!a0

k
; B = i

!p0k

!a0
= i!'0 : (3.236)

Therefore, an e�cient ansatz for the mode functions seems to be

U'(t) =
!a0

k
[1 + f'(t)] e

�i!p0t ; (3.237)

U�'(t) = i!'0
h
1 + f�'(t)

i
e�i!p0t : (3.238)
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We get new truncated mode functions

f' = �
tZ

0

dt0
i

2!p0

�
e2i!p0�t � 1

� "
M11(1 + f') +

i!p0k
2

!2
a0

M12(1 + f�')

#
; (3.239)

f�' = �
tZ

0

dt0
i

2!p0

�
e2i!p0�t � 1

� " !2
a0

i!p0k2
M21(1 + f') +M22(1 + f�')

#
: (3.240)

The analysis of the leading behavior of these two functions is a straightforward but rather

long calculation. We have given the details in appendix B. There, the reader can also �nd

the di�erential equations which have to be solved in order to �nd f
(1)
j , f

(2)
j , and f

(1)
j with

j = '; �'. The main results are

f (1)' = � i

!p0

tZ
0

dt0 (�+ e2)(�2 + �20) +
Va

2!2
a0

� �+ e2

4!2
p0

(�2 � �20) +O(!�3) ; (3.241)

f (1)�'
= � i

!p0

tZ
0

dt0 (�+ e2)(�2 + �20) +
V'

2!2
p0

� �+ e2

4!2
p0

(�2 � �20) +O(!�3) ; (3.242)

with V' = �(�2��20). We have also calculated the truncated mode functions in the second

order of the potential. The results are rather long and therefore, we show them only in the

appendix.

3.5.5 Renormalization

With the knowledge of the leading behavior for the mode functions, we are now able to

renormalize the equation of motion for the zero mode, the canonical momentum, and the

energy.

Equation of Motion

In the �rst order di�erential equations for _� (3.201) and _� (3.202), we have to deal with

several momentum integrals. The integrals with mixed mode functions are �nite. This can

be seen by inserting the ansatz (3.237) for the mode functions

U'U
�

�'
+ U�

'U�' = �i!p0(1 + f')(1 + f ��') + i!p0(1 + f �')(1 + f�')

= �2!p0(Imf�' � Imf' +Ref'Imf�' � Imf'Ref�') : (3.243)

As shown in appendix B the leading order of Imf�' (B.18) and Imf' (B.9) cancels each

other. We are left with

� 1

2!p0

�
U'U

�

�'
+ U�

'U�'

�
= KI

�(!)�KI
�(!) + Imf (2)�'

� Imf (2)'

+Ref'Imf�' � Imf'Ref�' / O(!�3) ; (3.244)
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and therefore, the k-integrals are �nite. The other integral in (3.201) leads to the wave

function renormalization, the integrals in (3.202) to the mass and coupling constant renor-

malization. First, we �x the wave function renormalization �Z. Therefore, we have to deal

with the integral

e2�
Z

d3k

(2�)3
jU'j2
2!p0k2

= e2�
Z

d3k

(2�)3
1

2!p0k2

 
1 +

m2
W0

k2

!�
1 + 2Ref' + jf'j2

�
; (3.245)

because this integral is proportional to �(t). On the right hand side we already have

inserted the ansatz for the mode function. The only divergent part of this integral is given

by the one. Therefore, we have to regularize the integral

(Z
d3k

(2�)3
1

2!p0k2

)
reg

= 2I�3(mh) + 2C ; (3.246)

with

C =
1

16�2
ln

m2
h

m2
'0

: (3.247)

A detailed analysis of the regularization of this integral is given in appendix C. The wave

function renormalization takes the form

�Z = 2e2I�3(mh) : (3.248)

We also get a �nite contribution

�Z = 2e2C : (3.249)

The next step is to �nd the mass and coupling constant renormalization. Therefore, we

have to analyze the �rst momentum integral in (3.202). The transverse gauge �eld mode

a? and the Higgs �eld component h give the same contribution as in the Feynman-gauge-

�xed theory. We give only the results; for details the reader is referred to [38]. For the

gauge �eld we get

�2e2�
Z

d3k

(2�)3
jU?j2
2!a0

= �2e2�
Z

d3k

(2�)3
1

2!a0
+ 2e2�

Z
d3k

(2�)3
V?

4!3
a0

+ F�n
?

= 2e4�3I�3(mW )���?�
3 +

1

2
�m?�+ F�n

?
; (3.250)

with

��? = � e4

8�2
ln
m2
W

m2
W0

; �m? =
e2

4�2
m2
W0 ; (3.251)

F�n
?

= �2e2�
Z

d3k

(2�)3
1

8!3
a0

tZ
0

dt0 cos(2!a0�t) _V?(t
0)

�2e2�
Z

d3k

(2�)3
1

2!a0

�
2Ref

(2)
?

+ jf (1)
?
j2
�
: (3.252)
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The divergence I�3(mW ) contributes to the coupling constant renormalization. For the

Higgs �eld component h we �nd

�3��
Z

d3k

(2�)3
jUhj2
2!h0

= �3��
Z

d3k

(2�)3
1

2!h0
+ 3��

Z
d3k

(2�)3
Vh

4!3
h0

+ F�n
h

= �3

2
m2
h��I�3(mh) + 9�2�3I�3(mh)

���h�3 +
1

2
�mh�+ F�n

h ; (3.253)

with

��h = � 9�2

16�2
ln
m2
h

m2
h0

; �mh = � 3�

16�2
m2
h ln

m2
h

m2
h0

+
3

8�2
�m2

h0 ; (3.254)

F�n
h = �3��

Z
d3k

(2�)3
1

8!3
h0

tZ
0

dt0 cos(2!h0�t) _Vh(t
0)

�3��
Z

d3k

(2�)3
1

2!h0

�
2Ref

(2)
h + jf (1)h j2

�
: (3.255)

The �rst integral I�3(mh) contributes to the mass renormalization, the second to the

coupling constant renormalization. The last integral we have to deal with is due to the

Goldstone mode. This integral di�ers from the Feynman-gauge-�xed theory. In the Feyn-

man gauge we have taken unphysical degrees of freedom like the time component of the

gauge �eld into account which was coupled to the Goldstone boson. The physical degrees

of freedom are the same in both descriptions. Here we have only physical degrees of free-

dom and thus the di�erence between the two calculations is to be expected. We have to

analyze

��
Z

d3k

(2�)3
1

2!p0

"
�jU'j2 +

e2

k2
jU�'j2

#

= ��
Z

d3k

(2�)3
1

2!p0

(
�
!2
a0

k2

"
1� 1

2!2
p0

(�+ e2)(�� �20) +
Va

!2
a0

#

+e2
!2
'0

k2

"
1� 1

2!2
p0

(�+ e2)(�2 � �20) +
V'

!2
p0

#)
+ F�n1

' ; (3.256)

with

F�n1
' = ��

Z
d3k

(2�)3
1

2!p0

"
�
!2
a0

k2

�
2KR

' (!) + 2Ref (2)' + jf (1)' j2
�

+e2
!2
'0

k2

�
2KR

� (!) + 2Ref (2)�'
+ jf (1)�'

j2
�#

: (3.257)

Here we have used the ansatz (3.237) and the expansion of the truncated mode functions

(B.7), (B.16) from appendix B. We can replace !p0 in order to get integrals which we can
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regularize dimensionally in the following way:

!2
p0 = !2

a0 +m2
'0

 
1 +

m2
W0

k2

!
; (3.258)

and we �nd for the divergent part of (3.256)

��
Z

d3k

(2�)3
1

2!p0

"�
�+ e2

�
� 1

2!2
p0

�
�+ e2

�2 �
�2 � �20

�
+
e2�

k2

�
2�20 � v2

�#

��
Z

d3k

(2�)3
e2

2!3
p0k

2
V'm

2
'0

= �m
2
h

2

�
�� e2

�
�I�3(mh) + (�� e2)2�3I�3(mh)

+
1

2
�m'����'�

3 + F�n2
' ; (3.259)

with

�m' = �m2
h(�� e2)C +

�+ e2

8�2
(m2

'0 +m2
W0) ; (3.260)

��' = �(�� e2)2C ; (3.261)

F�n2
' = ��

Z
d3k

(2�)3
e2

2!3
p0k

2
V'm

2
'0 : (3.262)

Therefore, we have found divergences independent of the initial condition. After analyz-

ing all in�nities in the momentum integrals we can �x the counter terms and the �nite

contributions to the 
uctuation integral. The counter terms are

�mh = m2
h(4�� e2)I�3(mh) ; (3.263)

�� =
h
(�� e2)2 + 9�2

i
I�3(mh) + 2e4I�3(mW ) ; (3.264)

�Z = 2e2I�3(mh) ; (3.265)

where we have chosen as the classical potential Vcl =
�
4
(�2 � v2)2. The �nite equations of

motion read now

_� = �(1 + �Z) + �F�n
� ; (3.266)

_� =
1

2
(m2

h +�m2
h)�� (�+��)�3 +�F�n

� ; (3.267)

with

�Z = 2e2C ; (3.268)

�m2
h = �m? +�mh +�m' ; (3.269)

�� = ��? +��h +��' ; (3.270)
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�F�n
� = e2�

Z
d3k

(2�)3
1

2!p0k2

"
2Ref (1)' + jf (1)' j2 + m2

W0

k2

�
1 + 2Ref (1)' + jf (1)' j2

�#

+
e2

2
�
Z

d3k

(2�)3
1

k2

h
KI
�(!)�KI

�(!) + Ref'Imf�' � Imf'Ref�'

i
; (3.271)

�F�n
� = F�n

?
+ F�n

h + F�n1
' + F�n2

'

�e
2

2
�

Z
d3k

(2�)3
1

k2

h
Imf�' � Imf' +Ref'Imf�' � Imf'Ref�'

i
: (3.272)

In the �rst integral in �F�n
� (3.271) the IR-problem appears explicitly. We �nd a factor k4

in the denominator which can be reduced to a 1=k by writing the integral measure and !p0
in powers of k. In the �rst order also the integrand Ref (1)' does not �x the problem but

at this stage it is not clear if the resummation of all one loop graphs leads to a IR-stable


uctuation integral. We will see later on that this problem also occurs in the Coulomb

gauge if we want to take higher loops into account. In the pure one loop approximation

the integrals and mode functions are well de�ned. At this point the disadvantage of the

formalism used for calculations which do not only concern the e�ective potential becomes

obvious. We are not able to make a clear statement of the order of the approximation. By

using the �elds and their momenta we loose the opportunity of symbolizing the equations

by Feynman graphs even in the lowest order. We will see later on that by replacing

the relation _� = � with _� = � + �F we consider back reactions in a not well de�ned

nor controllable manner. These higher loop terms lead to the IR-inconsistency. In the

Coulomb gauge we are able to show this more explictly. Nevertheless, we carry out also

the renormalization of the energy density in order to show that the formalism leads to

consistent equations and that the UV-regularization can be carried out in the usual way.

Energy Density

For the renormalization of the energy, we have to show that it contains the same divergences

and, therefore, leads to the same counter terms as the equation of motion. In addition,

we get a cosmological constant from a quartic divergence. The procedure for the single

channels is the same as in the Feynman gauge �xed theory [38]. We give here only a short

review. The Goldstone channel is a little bit more complicated but straightforward. We

have given some details in appendix B. We will discuss the renormalization channel by

channel and at the end we will collect the counter terms and formulate a �nite energy

density.

The Gauge Field

For the gauge �eld we have to analyzeZ
d3k

(2�)3
1

2!a0

h
j _U?j2 + !2

a(t)jU?j2
i
: (3.273)

With the ansatz (3.216), the expansion of the truncated mode functions (3.219), and the

relations

2!a0Ref
(1)
?

= Re
�
i!a0 _f

(1)�
?

�
; (3.274)
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!2
a0

�
2Ref

(1)
?

+ jf (1)
?
j2
�

= Re

�
i!a0

�
_f
(1)�
?

+ f
(1)
?

_f
(1)�
?

��
; (3.275)

which we have already used in [42] we �nd

(3:273) =

Z
d3k

(2�)3
!a0 +

Z
d3k

(2�)3
V?

2!a0
�
Z

d3k

(2�)3
V 2
?

8!3
a0

+ E�n
?

= �1

2
e4�4I�3(mW ) +

1

4
��?�

4 � 1

4
�m?�

2 +��0
?
+ E�n

?
; (3.276)

with

E�n
?

=

Z
d3k

(2�)3
1

2!a0

�
j _f (2)
?
j2 + 2Re( _f

(1)
?

_f
(2)�
?

) + Va

�
2Ref

(2)
?

+ jf (1)
?
j2
�

+
1

4!2
a0

tZ
0

dt0
tZ

0

dt00 e�2i!a0(t
0
�t00) _V?(t

0) _V?(t
00)

9=
; ; (3.277)

��0
?

=
e4

64�2
�40 : (3.278)

As in the equation of motion, the gauge �eld contributes only to the coupling constant

renormalization. The divergence is still independent of the initial conditions.

The Higgs Field

Since the mode function for the gauge �eld and the Higgs �eld are the same we only have

to change the notation for the potential, frequencies, and the truncated mode function.

Therefore, we get the following contribution for the energy from the Higgs mode:

Z
d3k

(2�)3
1

4!h0

h
j _Uhj2 + !2

h(t)jUhj2
i

=

Z
d3k

(2�)3
!h0

2
+

Z
d3k

(2�)3
Vh

4!h0
�
Z

d3k

(2�)3
V 2
h0

16!3
h0

+ E�nh (3.279)

= �1

4

 
9�2�4 � 3�m2

h�
2 +

m4
h

4

!
I�3(mh) +

1

4
��h �

1

4
�mh +��h +��0h ;

with

E�nh =

Z
d3k

(2�)3
1

4!h0

�
j _f (2)h j2 + 2Re( _f

(1)
h

_f
(2)�
h ) + Vh

�
2Ref

(2)
h + jf (1)h j2

�

+
1

4!2
h0

tZ
0

dt0
tZ

0

dt00 e�2i!h0(t
0
�t00) _Vh(t

0) _Vh(t
00)

9=
; ; (3.280)

��h = � m4
h

256�2
ln
m2
h

m2
h0

; (3.281)

��0h = � 3m4
h0

128�2
+

3

32�2
�m2

h0�
2
0 : (3.282)
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The term/ �4I�3 contributes to the coupling constant renormalization ��, the one / �2I�3
to mass renormalization �m, and the term / m4

hI�3 leads to the cosmological constant ��.

The Goldstone Field

Finally, we have to investigate the Goldstone mode. It contains two integrals

Z
d3k

(2�)3
1

4!p0

h
jU�'j2 + !2

'(t)jU'j2
i

+

Z
d3k

(2�)3
e2

4!p0k2

h
�2jU�' j2 +�2jU'j2 � ��

�
U�'U

�

' + U�

�'
U'
�i

: (3.283)

With the identi�cation f�' � _f', the structure of the �rst integral corresponds to the

single channels. Therefore, it should lead to the mass counter term, coupling constant

renormalization, and the cosmological constant. The second integral contains a part /
�2. This looks like the wave function renormalization. In addition, the �rst term is

logarithmically divergent and could provide a part of the coupling constant counter term.

As in the equation of motion the term with the mixed mode functions is already �nite. The

next step is the insertion of (3.237) in (3.283) and the analysis of the divergence structure.

Since we have a factor !2(t) in the nominator we �nd many more in�nite contributions

than in the equation of motion. The terms of the form KR
'+KR

� as well as 2Ref
(2)
j +f

(1)
j f

(1)�
j

which were �nite in the equation of motion are now taken into account for renormalization.

In particular, we �nd for (3.283), depending on the truncated mode functions:

Z
d3k

(2�)3
1

4!p0

"
!2
'0

�
1 + 2Ref�' + jf�'j2

�
+
�
!2
'0 + V'

� !2
a0

k2

�
1 + 2Ref' + jf'j2

�#

+

Z
d3k

(2�)3
e2

4!p0k2

"
�2!2

p0

�
1 + 2Ref�' + jf�'j2

�
+�2!

2
a0

k2

�
1 + 2Ref' + jf'j2

�#

+
e2

2
��

Z
d3k

(2�)3
1

k2

�
Imf�' � Imf' +Ref'Imf�' � Imf'Ref�'

�

=

Z
d3k

(2�)3
!2
'0

2!p0
(3.284)

+

Z
d3k

(2�)3
1

4!p0

"
V' + e2

!2
p0

k2

�
�2 + �20

�
+ e2

!2
'0

!2
p0

 
!2
p0

!2
a0

� 1

!�
�2 � �20

�#
(3.285)

+

Z
d3k

(2�)3
1

4!p0

(
e2

k2
�2 + V'

 
e2

!2
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� �+ e2

2!2
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!�
�2 � �20

�
+
e2
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+
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+E�n�' ; (3.287)

with
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: (3.288)

At this point, we are able to analyze the divergences. (3.284) is quartically divergent,

(3.285) quadratically, and (3.286) contains logarithmic divergences. In the last integral, an

IR-divergence appears analogous to the 
uctuation integral. Also, here it is not obvious

whether there is a cancellation of these divergences in higher order.

The Quartic Divergence in the Goldstone Channel

The �rst integral we have to consider is (3.284)

Z
d3k

(2�)3
!2
'0

2!p0
=

1

4

h
4m4

W0 � (m2
W0 +m2

')
2
i
I�3(mh)

+
1

4

�
3

8�2
+ C

� h
4m2

W0 � (m2
W0 +m2

'0)
2
i
: (3.289)

Details for the regularization of such an integral are given in appendix C. The result still

contains in�nities depending on the initial conditions. But as we will see later on, they are

cancelled with divergences from the other integrals.

The Quadratic Divergences in the Goldstone Channel

The next integral which has to be analyzed is the quadratically divergent one (3.285)

Z
d3k

(2�)3
1
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"
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�40
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� � 1
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� h
V' + e2
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�2 � �20

�i
+ 2e2m2

'0C�
2 ; (3.290)

where we have used the relation (3.258) between !a0 and !p0. Again we have in�nite parts

which depend on the initial conditions. We can also see that the divergence / �2 in this
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form does not lead to the mass counter term. Furthermore, we are not able to identify

�m' until now. At this point it is obvious that the evaluation which was su�cient for the

equation of motion is insu�cient here. Here we have to go deeper into the expansion of

the truncated mode functions. As we will see in the next paragraph we �nd the necessary

in�nities and can show that the dependence of the initial conditions dropped out.

The Logarithmic Divergences in the Goldstone Channel

The �rst integral we compute leads to the wave function renormalization

e2�2
Z

d3k

(2�)3
1

4!p0k2
= e2�2I�3(mh) + e2�2C =

1

2
�2�Z +

1

2
�2�Z : (3.291)

It is useful to split the rest of the integral (3.286) into three parts. The �rst one is the one

which we have usually considered in our previous works:
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�40
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The second part leads in the equation of motion to a �nite contribution. Here we �nd

Z
d3k

(2�)3
!2
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2!p0

h
KR
' (!) +KR

� (!)
i

= e2
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2
� ��2

!�
�2 � �20

�
[I�3(mh) + C] +O(!�5) : (3.293)

The integrand of the last part is analyzed in appendix B. With the result (B.28) we �nd

Z
d3k

(2�)3
!2
'0

4!p0

h
2Ref (2)�'

+ f (1)�'
f (1)��'

+ 2Ref (2)' + f (1)' f (1)�'

i

=
1

4

�
�+ e2

�2 �
�2 � �20

�2
[I�3(mh) + C] +O(!�5) : (3.294)

The Counter Terms

We now collect all divergences and show that they lead to the same counter terms as in

the equation of motion. We also demonstrate that all divergences depending on the initial
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conditions are cancelled. Finally, we calculate the �nite contribution to the cosmological

constant. From (3.289), (3.290), (3.292), (3.293), and (3.294) we �nd

Ediv�' = �m
4
h

16
I�3(mh) +

m2
h

4
(�� e2)�2I�3(mh)�

1

4
(�� e2)2�4I�3(mh)

�1

4
�m' +

1

4
��' +��' +��0' ; (3.295)

with

��' =
m4
h

16
C ; (3.296)
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�2�

+
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128�2
(�� e2)(m2

W0 +m2
'0)�

2
0 : (3.297)

The divergences are independent of the initial conditions and, with the contributions of

the gauge and the Higgs �eld, we get the mass, coupling constant, and wave function

renormalization �m2
h (3.263), �� (3.264), and �Z (3.265). Additionally, we �nd

�� =
m4
h

8
I�3(mh) ; (3.298)

and as �nite contributions

�� = ��h +��' ; (3.299)

��0 = ��0
?
+��0h +��0' : (3.300)

The counter term �� is up to a factor two the same as in the Feynman gauge �xed theory.

The di�erence is due to the fact that we have in the SU(2) Higgs model a vector meson

with isospin degeneracy three and here only a scalar particle. As a �nite expression for the

energy we have now

E =
1

2
(1 + �Z)�2 � 1

4

�
m2
h +�m2

h

�
�2 +

1

4
(�+��)�4 +��+��0 + E�n ; (3.301)

with

E�n = E�n
?

+ E�nh + E�n�' +O(!�5) : (3.302)

The part / O(!�5) comes from the subleading terms in the logarithmically divergent

contribution of the energy and can be handled numerically via subtractions.

In this section we have shown, that it is possible to extend the formalism developed

in [37] for the e�ective potential to the full non-equilibrium equations of motion. We

derived the equation of motion for the zero mode and the energy density and showed that

a consistent UV-renormalization for both quantities is possible. We found counter terms

independent of the initial condition. By taking into account all terms up to second order
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and not only the quadratic ones like in [37], we found in addition to the mass and coupling

constant counter term also the wave function counter term. Since we have worked in the

Hamiltonian formalism and, therefore, with the �eld and its canonical momentum and not

with the �eld and its derivative as it is usual in the Euler-Lagrange formalism we gave up

the possibility of a well de�ned one loop approximation. By reducing the system of classical

equations in (3.210) and (3.211), one can easily see that after taking the time derivative of

(3.210) and inserting (3.211), the equation of motion for � contains a 
uctuation integral

higher than one loop order. These higher loop terms lead to IR-instabilities. A better

analysis of the appearance is possible in the Coulomb gauge. There, we will localize the

1=k poles as contributions from the two loop order.

3.6 Non-equilibrium Dynamics: Coulomb Gauge

3.6.1 The Fluctuation Operator in the Coulomb Gauge

Our starting point again is the Lagrangian (3.15). As discussed, e.g. in [37], and in the

last section it is possible to �nd a gauge invariant description of the Abelian Higgs model

by quantizing the theory with Dirac's method. It is developed from the corresponding

Hamiltonian to L. First, one has to �nd gauge invariant observables that commute with

�rst class constraints which are Gauss' law and vanishing canonical momentum for A0.

Then the Hamiltonian has to be written in these gauge invariant quantities. An equivalent

way is to choose the Coulomb gauge condition ~r � ~A = 0. One gets a Hamiltonian written

in terms of transverse components and including the instantenous Coulomb interaction.

This Coulomb interaction can be traded with a Lagrange multiplier �eld linearly coupled

to the charge density. This leads to the Lagrangian in the Coulomb gauge

L =
1

2
@��

y@�� +
1

2
@� ~AT@

� ~AT � e ~AT �~jT � e2 ~AT � ~AT�y�

+
1

2
(rA0)

2 + e2A2
0�

y�� ieA0�� V (�y�) ;

~jT = i(�y~rT�� ~rT�
y�) ; � = �i(� _�y � �y _�) ; (3.303)

where AT is the transverse component of the gauge �eld. The �eld A0 is a gauge invariant

Lagrange multiplier whose equation of motion is algebraic:

r2A0(~x; t) = �(~x; t) : (3.304)

Using the usual decomposition of � into an expectation value and a 
uctuation part, and

splitting the 
uctuations into a real part h and an imaginary part ', one �nds for the

Lagrangian in the Fourier space

L =
1

2
( _�+ _h)2 +

1

2
_'2 � 1

2
k2(�+ h)2 � 1

2
k2'2

+
1

2
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� 1

2

h
k2 + e2(�+ h)2

i
a2
?
� 1

2
�2'2 (3.305)

��
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h
(�+ h)2 + '2
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+
1

2
(k2 + e2�2)a20 + ea0(' _�� � _') ;
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with �2 = ��v2. The physical degrees of freedom - the transversal gauge mode and the

Higgs mode h - are the same as in the R� gauge up to a factor three. This factor is the

degeneracy factor of the non-Abelian model. Since we are analyzing the model with an

isoscalar Higgs background, this is the only di�erence between the two models. We now

investigate the remaining degrees of freedom, the Higgs �eld component ' and the Lagrange

multiplier a0. As already mentioned, the equation that �xes a0 is purely algebraic. The

�eld equation reads

!2
a(t)a0(t) = e

h
_'(t)�(t)� '(t) _�(t)

i
: (3.306)

This corresponds to our choice of ~U0 in (3.140) as a dependent variable. For the Goldstone

�eld we �nd

�'(t) +
h
k2 + �2 + ��2(t)

i
'(t) = e _a0(t)�(t) + 2ea0(t) _�(t) : (3.307)

It is possible as in the R�-gauge to eliminate the mode function for the Lagrange multiplier

a0 in (3.307). By using the di�erential equation for ' and the classical equation of motion

(3.24) it is easy to show that the time derivative of a0 is given by

_a0(t) =
e

!2
a(t)

h
�(t) �'(t)� '(t)��(t)� 2e�(t) _�(t)a0(t)

i
= �e�(t)'(t) : (3.308)

Inserting (3.306) and (3.308) in (3.307) leads to

M''(t)'(t) = 0 ; (3.309)

where M'' is given by (3.142). Thus we have found the same 
uctuation operator for

the Goldstone mode as in the transformed R�-equations. a0 is a dependent mode and

the physical modes are the two transversal gauge �elds a? and the scalar Higgs mode h.

Therefore, the equation of motion for the mode functions in the Coulomb gauge is the

same as we found in the previous section for the R�-gauge. From the Lagrangian (3.305),

we can also derive the equation of motion for the zero mode �. We �nd

��+ ��(�2 � v2) + 3��hh2i+ 2e2�ha2
?
i+ ��h'2i

�e2�ha20i+ 2eha0 _'i+ eh _a0'i = 0 ; (3.310)

where the expectation values for the �elds and their normalization are not speci�ed yet.

Now we eliminate the �eld a0 without using the classical equation of motion. We set ��

equal to
�� = ���(�2 � v2) +R(t) ; (3.311)

where R(t) contains the 
uctuations. The �eld equations are then given by

a0 =
e

!2
a

(� _'� _�') ; (3.312)

_a0 = �e�' +
e

k2
'R ; (3.313)

�' = �!2
e�'+

2e2 _�

!2
a

(� _'� _�') +
e2

k2
�R' ; (3.314)
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with

!2
e� = k2 + e2�2 + �(�2 � v2) : (3.315)

By taking the 
uctuation integral R(t) into account, we receive a mode function which is

of order higher than one loop. In this case we are dealing with the back reaction of the

quantum 
uctuations a0 and '. Obviously, these higher loop terms contain a factor e2=k2

as in the Hamiltonian approach which lead to the IR-instabilities. By choosing R(t) = 0

we consider only one loop e�ects and (3.314) is identical with (3.309) We will discuss this

case in detail at the end of this section. Using (3.312) and (3.313), we �nd for the zero

mode the equation of motion in terms of the quantum 
uctuations

��+ ��(�2 � v2) + 3��hh2i+ 2e2�ha2
?
i

+
�
�� e2

�
�h'2i � e4� _�2h'

2
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2
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!4
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_'2i

� 2e2 _�2hk
2

!4
a

' _'i+ e2Rh'
2

k2
i = 0 : (3.316)

Again we see here the appearance of a higher loop contribution which is IR-divergent. We

can also compute the energy density in the Coulomb gauge. It is given by

E =
1

2
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h
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hh
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h
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h
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''
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� 1

2
h!2

aa
2
0i : (3.317)

The component ha20i has a negative sign because of the inde�nite metric of the time com-

ponent of the gauge �eld. By inserting (3.312) into the last term of the energy, E can be

written similar to the equation of motion in the form

E =
1

2
_�2 +

�

4

�
�2 � v2

�2
+

1

2

h
h _h2i+ h!2

hh
2i
i

+
h
h _a2
?
i+ h!2
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2
?
i
i

+ h k
2

2!2
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_'2i+ 1

2
h
 
!2
' �

e2 _�2

!2
a

!
'2i

+ e2� _�h '
!2
a

_'i : (3.318)

With (3.311), (3.314) and the equations of motion for h and a?, it is straightforward to

show that the time derivative of E vanishes. Now we have to decide whether we neglect
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R(t) or not. For a well de�ned one loop approximation which we have considered in the 't

Hooft-Feynman gauge in [38] we have to take it to be zero. Numerically, this leads to some

problems for the energy conservation. In order to show the energy conservation, we have to

compute the time derivative of E . In the energy density terms proportional _� appear, and,

after performing the time derivative, it is necessary to insert the equation of motion for the

zero mode. Since we have takenR(t) = 0, we have to insert �� = ���(�2�v2). Analytically,
this is no problem, but numerically this equation is only solved at the initial time. By

solving the equation of motion for the zero mode numerically we automatically take the


uctuation integral into account. Therefore, we cannot expect exact energy conservation.

On the other hand this is a good cross check for the quality of the one loop approximation.

For small coupling constant e2 the numerical energy conservation has to be acceptable.

3.6.2 Perturbative Expansion

In order to renormalize the equation of motion and the energy density, we have to inves-

tigate the Coulomb mode function in more detail. The isoscalar Higgs �eld h and the

transversal gauge �eld component a? are gauge invariant from the outset. Therefore, their

mode functions are independent of the chosen gauge and of the taken formalism. They are

the same in the R�-gauge, in the Hamiltonian approach, and of course also in the Coulomb

gauge, and so we can use the results found in section 3.5.4 for the perturbative expansion

of these �elds. The equation for the Goldstone �eld has a di�erent structure. Since we

are only interested in the one loop approximation, we have to choose R = 0 in (3.314).

Therefore, we have to investigate the following equation for the Goldstone �eld '

�'+ !2
e�(t)' +

2e2 _�

!2
a

h
� _'� _�'

i
= 0 : (3.319)

First of all, we have to quantize the �eld ' and we have to introduce the mode represen-

tation. In order to quantize the �eld we have to �nd the conjugate momentum. We can

read it of from the Lagrangian (3.305):

�' = _'� ea0� = _'
k2

!2
a

� e2� _�

!2
a

' : (3.320)

The commutation relation for the �eld and its momentum is given by

[';�'] = i�(~x� ~x0) : (3.321)

By computation of the commutator for the �eld and its time derivative, we �nd that it is

multiplied by a factor

['; _']
k2

!2
a

= i�(~x� ~x0) : (3.322)

Now we can expand the �eld in terms of the mode functions and the corresponding anni-

hilation and creation operators

' =

Z
d3k

(2�)3
1

2!

�
akU'(t)e

i~k�~x + a
y

kU
�

'(t)e
�i~k�~x

�
: (3.323)
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In order to satisfy the commutator for ' and _', the commutator for ak and a
y

k di�ers from

its common form

[ak; a
y

k] = 2i(2�)3�3(~k � ~k0) 1
k2

: (3.324)

The expectation value for the �eld is then given by

h''i =
Z

d3k

(2�)3
jU'j2
2!k2

: (3.325)

The mode function satis�es the di�erential equation

�U' + !2
e�U' +

2e2 _�

!2
a

�
� _U' � _�U'

�
= 0 : (3.326)

The frequency in the expectation value has to be �xed by the determination of the Wron-

skian which belongs to the mode equation. Since the form of the di�erential equation is

not standard due to the �rst derivative of U', the following transformation is e�cient

U' = !a ~U' : (3.327)

The _U'-terms are cancelled and we �nd a new mode equation of the form

�~U' +

 
!2
e� +

3e2 _�2k2

!4
a

+
e2���

!2
a

!
~U' = 0 : (3.328)

Now we rede�ne the frequency !2
e� in order to �nd a suitable Wronskian. We choose

~!2
e� = !2

e� +
3e2 _�2k2

!4
a

+
e2���

!2
a

; (3.329)

and get the mode function
�~U' + ~!2

e�
~U' = 0 : (3.330)

The Wronskian then has the well known form

_~U' ~U
�

' � ~U'
_~U
�

' = C : (3.331)

Since ~U' behaves like e�i~!e�0t we can �x the constant to be C = �2i~!e�0. For the initial
time _� and the 
uctuation integral vanish so that ~!2

e�0 simpli�es to

~!2
e�0 = k2 + e2�20 + �(�20 � v2)� e2�

!2
a0

�20

�
�20 � v2

�
: (3.332)

For high momenta, which are important for the UV-divergences, the last term is negligible.

We discuss this point in more detail within the renormalization. By introducing ~!2
�e0 on

the left hand side of the mode equation, we �nd

�~U' + ~!2
e�0

~U' = �Ve� ~U' �
3e2 _�2k2

!4
a

~U' �
e2���

!2
a

~U' �
e2�

!2
a0

�20(�
2
0 � v2) ; (3.333)
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with

Ve� =
�
e2 + �

� �
�2 � �20

�
: (3.334)

As for the h- and a?-channel in (3.216) we choose the following ansatz

~U'(t) = e�i~!e�0t [1 + f'(t)] ; (3.335)

and we �nd for the new truncated mode function the di�erential equation

�f' � 2i~!e�0 _f' = �
"
Ve� +

3e2 _�2k2

!4
a

+
e2���

!2
a

+
e2��20
!2
a0

�
�20 � v2

�#
(1 + f') : (3.336)

In the leading order we �nd

�f (1)' � 2i~!e�0 _f
(1)
' = �V(�t) ; (3.337)

or the equivalent integral representation for the function itself and its derivative

f (1)' = �
tZ

0

dt0
1

2i~!e�0

�
e2i~!e�0�t � 1

�
V(�t0) ; (3.338)

_f (1)' = �
tZ

0

dt0 e2i~!e�0�tV(�t0) ; (3.339)

with

V(�t) = Ve�(t) +
3e2 _�(t)2k2

!4
a(t)

+
e2�(t)��(t)

!2
a(t)

+
e2��20(�

2
0 � v2)

!2
a0

: (3.340)

Integration by parts allows us to extract the leading behavior of the truncated mode

functions. We �nd

Ref (1)' = �V(�t0)
4~!2

e�0

+

tZ
0

dt0
1

4~!2
e�0

cos(2~!e�0�t) _V(�t0) ; (3.341)

Imf (1)' = �
tZ

0

dt0
V(�t0)
2~!e�0

+

tZ
0

dt0
1

2~!e�0
cos(2~!e�0�t)V(�t0) ; (3.342)

Re _f (1)' = �
_V(�t0)
4~!2

e�0

+

tZ
0

dt0
1

4~!e�0
cos(2~!e�0�t)�V(�t0) ; (3.343)

Im _f (1)' = �V(�t0)
2~!e�0

+

tZ
0

dt0
1

2~!e�0
cos(2~!e�0�t) _V(�t0) : (3.344)

Now we can start to analyze the divergences in the 
uctuation integrals and perform the

renormalization.

102



CHAPTER 3. GAUGE THEORIES

3.6.3 Renormalization

In order to get a well de�ned equation of motion and energy density, we have to extract

the divergences and introduce counter terms. As already mentioned, the isoscalar Higgs

�eld h and the transversal gauge �eld component a? ful�ll the same mode equations as in

the gauge invariant approach. Also, the structure of the 
uctuation integrals are the same.

Therefore, we can take the results from section 3.5.5.

Equation of Motion

The 
uctuation integral for the transversal gauge mode is analyzed in detail in (3.250)-

(3.252). The results for the isoscalar Higgs �eld are given in (3.253)-(3.255). The Goldstone

channel looks slightly di�erent from the gauge invariant approach, where we have worked

with the �eld itself and its canonical momentum. Since we started in this section from the

Lagrangian and not from the Hamiltonian we have only introduced the �eld. We have to

consider the following part of the 
uctuation integral

F' = (�� e2)�h'2i � e4� _�2h'
2

!4
a

i+ e2�h2k
2 + e2�2

!4
a

_'2i

�2e2 _�hk
2

!4
a

' _'i : (3.345)

By introducing the mode functions ~U', and rewriting the expectation values as momentum

integrals we �nd

F' = (�� e2)�
Z

d3k

(2�)3
!2
a

2k2~!e�0
j ~U'j2 � e4� _�2

Z
d3k

(2�)3
j ~U'j2

2k2~!e�0!2
a

+e2�
Z

d3k

(2�)3
2k2 + e2�2

2k2~!e�0!4
a

"
e4�2 _�2

!2
a

j ~U'j2 + !2
aj _~U'j2 + e2� _�

�
~U'

_~U
�

' +
~U�

'
_~U'

�#

�e2 _�
Z

d3k

(2�)3
1

2~!e�0!4
a

�
2e2� _�j ~U'j2 + !2

a

�
~U'

_~U
�

' +
~U�

'
_~U'

��

= (�� e2)�
Z

d3k

(2�)3
!2
a

2k2~!e�0
j ~U'j2 + e2�

Z
d3k

(2�)3
2k2 + e2�2

2k2~!e�0!2
a

j _~U'j2 (3.346)

�e4� _�2
Z

d3k

(2�)3
2!2

a + k2

2!6
a~!e�0

j ~U'j2 + e2 _�

Z
d3k

(2�)3
e2�2!2

a � k4

2k2~!e�0!4
a

�
~U'

_~U
�

' +
~U�

'
_~U'

�
:

The �rst and the second integral contain divergences while the rest of the expression is

convergent and can be treated numerically. We can rewrite the integral in the following

way

F' = (�� e2)�
Z

d3k

(2�)3

 
1

2~!e�0
+

e2�2

2k2~!e�0
� Ve�

4~!3
e�0

!

+e2�
Z

d3k

(2�)3

 
~!e�0

k2
� e2�2

2k2~!e�0
+

Ve�

2k2~!e�0

!
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+�nite terms

= ��
Z

d3k

(2�)3
1

2~!e�0

 
1 +

e2�2

k2
� Ve�

2~!2
e�0

!

+e2�
Z

d3k

(2�)3
1

2~!e�0

 
1 +

2m2
'

k2
� Ve�

2~!2
e�0

!

+F�n
' ; (3.347)

with

F�n
' = e2�

Z
d3k

(2�)3
m2
W (m2

W � ~m2
e�0)

2k2!2
a~!e�0

� e2�
Z

d3k

(2�)3
Ve� ~m

2
e�0

2k2~!3
e�0

� e2�
Z

d3k

(2�)3
m2
W0m

2
'0

k2!2
a0~!e�0

+(�� e2)�
Z

d3k

(2�)3
1

2~!e�0

"
!2
a

k2

�
2Ref (1)' + jf (1)' j2

�
+

Ve�

2~!2
e�0

#

+e2�

Z
d3k

(2�)3
1

2k2!2
a~!e�0

n�
2k2 + e2�2

� h
j _f (1)' j2 � ~!2

e�0

�
2Ref (1)' + jf (1)' j2

�i
� !2

aVe�
o

�e4� _�2
Z

d3k

(2�)3
2!2

a + k2

2!6
a~!e�0

j ~U'j2

+e2 _�2
Z

d3k

(2�)3
e2�2!2

a � k4

2k2~!e�0!4
a

�
~U'

_~U
�

' +
~U�

'
_~U'

�
: (3.348)

In order to regularize the divergent integrals we have to consider the frequency ~!e�0 again.

First, we �nd a quadratic divergence of the form

Z
d3k

(2�)3
1

2~!e�0
=

Z
d3k

(2�)3
1

2!e�0

1r
1� e2��2

0

!2
e�0

!2a0
(�20 � v2)

: (3.349)

For vanishing momentum, the second term in the root simpli�es to

e2��20
!2
e�0!

2
a0

�
�20 � v2

�
k=0
=

�(�20 � v2)

e2�20 + �(�20 � v2)
< 1 ; (3.350)

and for k > 0 it is obvious that the term is less than one. Therefore, we can expand the

root

Z
d3k

(2�)3
1

2~!e�0
=

Z
d3k

(2�)3
1

2!e�0

"
1 +

e2��20
2!2

e�0!
2
a0

�
�20 � v2

�
+O(!�8)

#
: (3.351)

The �rst term can be regularized in the usual way. The second term is already �nite.

For the numerical calculations of the �nite contributions it is simplest just to subtract the

divergence from the integral in the form

Z
d3k

(2�)3
1

2

�
1

~!e�0
� 1

!e�0

�
= �nite : (3.352)
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In the same way we can treat the logarithmic divergences. Here we �nd

Z
d3k

(2�)3
1

2k2~!e�0
=

Z
d3k

(2�)3
1

2k2!e�0

"
1 +

e2��20
2!2

e�0!
2
a0

(�20 � v2) +O
�
!�8

�#
; (3.353)

Z
d3k

(2�)3
1

4~!3
e�0

=

Z
d3k

(2�)3
1

4!3
e�0

"
1 +

3e2��20
2!2

e�0!
2
a0

(�20 � v2) +O
�
!�8

�#
: (3.354)

After regularizing the divergent integrals, the 
uctuation integral reads

F' = �(e2 � �)2�3I�3(me�) +
m2
h

2
(�� e2)�I�3(me�)� 2e2 ��I�3(me�)

+��'�
3 � 1

2
�m'�+�Z + F�n

' + ~F�n
' ; (3.355)

with

�Z = 2e2C ; (3.356)

�m' = �m2
h(�� e2)C + (e2 + �)

m2
e�0

8�2
; (3.357)

��' = �(e2 � �)2C ; (3.358)

~F�n
' (t) = ��(t)

Z
d3k

(2�)3
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1

2~!e�0
� 1

2!e�0

�
!2
a(t)

k2
� Ve�(t)

4

 
1

~!3
e�0

� 1

!3
e�0

!#

+e2�(t)
Z

d3k

(2�)3

"�
1

2~!e�0
� 1

2!e�0

� 
1 +

2m2
'(t)

k2

!

� Ve�(t)

4

 
1

~!3
e�0

� 1

!3
e�0

!#
: (3.359)

The mass parameter in the divergent part I�3(me�) is in this case not a time dependent

mass but independent of time and initial condition, i.e. m2
e� = m2

h +m2
W = 2�v2 + e2v2.

The �nite corrections to the wave function, the mass and the coupling constant are the

same as in the gauge invariant approach as it should be. Also, the counter terms are

exactly the same. This is clear since the UV divergences are due to the �rst two orders

in the expansion of the one loop graphs. In the Hamiltonian approach, the problems in

the IR region are caused by higher loop terms but in the one loop order we have taken

the same parts in the Hamiltonian approach and in the Coulomb gauge. Therefore, the

UV divergences must be equivalent in both approaches. For completeness, we give the full

renormalized equation of motion with all 
uctuation integrals

(1 + �Z)��� 1

2
(m2

h +�m2
h)�+ (�+��)�3 + F�n

?
+ F�n

h + F�n
' + ~F�n

' = 0 : (3.360)

Energy Density

As in the equation of motion, the channel for the isoscalar Higgs �eld and for the transversal

gauge �eld component have completely the same structure in the energy density as in
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the gauge invariant approach since they are independent of the gauge �xing. Therefore,

also here we need only to investigate the Goldstone channel. We have to show that the

divergences of the energy are the same as those we have found in the equation of motion.

We have to consider the following part of the 
uctuation energy

E' = h k
2

2!2
a

_'2i+ 1

2
h!''2i � e2 _�2h '

2

2!2
a

i+ e2� _�h' _'

!2
a

i : (3.361)

Now we have again to introduce the modi�ed mode function ~U'. The energy density then

becomes

E' =

Z
d3k

(2�)3
1

4~!e�0!2
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"
e4�2 _�2

!2
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a
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(3.362)
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�
~U'

_~U
�

' +
~U�

'
_~U'

�
:

As in the 
uctuation integral in the equation of motion also here the two �rst integrals are

divergent. By inserting the expansion for the mode function we can extract the divergences

explictly. We �nd in detail

E' = �e2 _�2
Z

d3k

(2�)3
1

4k2~!e�0
(3.363)
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+e2� _�

Z
d3k

(2�)3
2k2 + e2�2

4k2~!e�0!2
a

�
~U'

_~U
�

' +
~U�

'
_~U'

�
: (3.364)

Now we have in addition to the quadratic and logarithmic divergences a quartic one. As

for the divergent integrals in the equation of motion we can expand the frequency ~!e�0 in

order to get the standard form of the integral for the regularization. We �nd

Z
d3k

(2�)3
~!e�0

2
=

Z
d3k

(2�)3
!e�0

2

"
1� e2��20

!2
a0!

2
e�0

�
�20 � v2

�
+O

�
!�8

�#
: (3.365)

The �rst term which is quartically divergent has to be regularized and to be absorbed in

the cosmological constant. The second term is logarithmically divergent and, therefore, it

must cancel with another contribution in the energy 
uctuation integral. The last term

in the second momentum integral in (3.363) has the same form with opposite sign. This

term arose by introducing ~!e�0 for !e�0. After expanding ~!e�0 in the denominator, the

divergent part has the right form to cancel the upper divergences and we only get a �nite

contribution from the higher order expansion terms. Finally, the energy density for the

Goldstone part becomes

E' = �e2 _�2I�3(me�)�
m4
h

4
I�3(me�)

�1

4

�
�� e2

�2
�4I�3(me�) +
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4

�
�� e2

�
�2I�3(me�)

+
1

2
�Z +

1

4
��'�

4 � 1

4
�mh�

2 +��' +��0' + E�n' + ~E�n' ; (3.366)

with

��' =
m4
h

16
C ; (3.367)
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128�2
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W0 +m2
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2 ; (3.368)
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� 1
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2
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16

 
1

~!3
e�0

� 1

!3
e�0

!#
: (3.369)

The second divergence in (3.363) leads together with a contribution from the isoscalar

Higgs �eld to the cosmological constant

�� =
m4
h

8
I�3(mh) : (3.370)

The results for the divergences of the energy density are in agreement with the counter

terms we have found for the equation of motion as well as the �nite terms. The �nite
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contribution to the cosmological constant is the same as in the gauge invariant approach,

only the part which depends on the initial condition �0' looks slightly di�erent. This is due

to the changing in the perturbative expansion and the di�erent structure of the frequencies

in the quartic divergence. Since the mode functions are not the same this is no surprise.

3.7 Comparison of the Di�erent Approaches

At this point we can summarize the comparison of the di�erent gauges and approaches.

In the R�-gauges we have found, by a suitable transformation of the mode function, the

Coulomb mode (3.142). It is exactly the same as we have found in the Coulomb gauge after

eliminating the �eld a0 and by neglecting all terms higher than one loop order (3.319). In

the gauge invariant approach the Goldstone channel was described by a combination of

two �rst order di�erential equations for the �eld itself (3.210) and its canonical momentum

(3.211). Now we show that this approach also leads in the one loop order to the same

equations as in the Coulomb gauge. If we di�erentiate (3.210) with respect to t and use

the classical equation of motion _� = �, we �nd a second order di�erential equation of the

form

�U' +
e2

k2

�
_�2 + ���

�
U' +

e2

k2
� _� _U' �

2e2� _�

k2
U�' �

!2
a

k2
_U�' = 0 : (3.371)

With the relations for U�' and _U�'

U�' =
k2

!2
a

_U' +
e2� _�

!2
a

U' ; (3.372)

_U�' =
e2� _�

!2
a

_U' +
e4�2 _�2

k2!2
a

U' � !2
'U' �

e2

k2
_�2U' ; (3.373)

and again with the classical equation of motion now in the form �� = ���(�2 � v2), it is

straightforward to show

M''U' = 0 ; (3.374)

where M'' is given by (3.142). By inserting the classical equation of motion without

the 
uctuation part, we suppress the higher loop terms and therefore get rid of the IR

problem. Therefore, we have shown that if the classical equation of motion is ful�lled, the

Goldstone mode in the R�-gauge, in the Coulomb gauge, and in the Hamiltonian approach

has the same 
uctuation operator. We also want to compare the equation of motion for the

zero mode � in the Coulomb gauge and in the Hamiltonian approach. In order to shorten

the notation and make a comparison easier we also write here the 
uctuation integrals

as expectation values and do not worry about the normalization. By taking the time

derivative of the zero mode equation (3.201), we �nd:

�� = _� + _�e2h'
2

k2
i+ 2e2�h' _'

k2
i � e2 _�h'�'

k2
i � e2�

�
h _'�'
k2
i+ h' _�'

k2
i
�
: (3.375)
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Now we insert the di�erential equation for the conjugate momentum _� (3.202). Since

we are only interested in the one loop order we can use the classical equation of motion
_� = � without 
uctuations and neglect terms of higher orders arising from the product of


uctuation integrals. Then the linearized �eld equation reads as a second order di�erential

equation

�� = �U 0(�) � �

"
2e2ha2

?
i+ 3�hh2i+ �h'2i+ e2h

�2'
k2
i
#

� e2U 0(�)h'2k2i+ 2e2 _�h' _'

k2
i � e2�

"
h _'�'i
k2

+ h' _�'k2i
#
: (3.376)

By using (3.372) and (3.373) for the conjugate momentum of the 
uctuation �eld ', we

get the same result as in (3.316) if we choose R(t) = 0.

3.8 Numerics

In order to investigate the in
uence of the gauge �eld sector on the zero mode in a system

out of equilibrium, we have carried out some numerical examples. We are interested in

two di�erent aspects: �rst we investigate the in
uence of the di�erent gauges. Therefore,

we choose � = 1 in the R�-gauge which leads to the 't Hooft-Feynman background gauge

and we compare the results with those we �nd in the Coulomb gauge. Secondly, we

investigate the e�ect of the '-mode in the Coulomb gauge and the e�ect of the a0'-

channel in the 't Hooft-Feynman gauge. For this purpose we consider also the case where

only the transversal gauge components and the isoscalar Higgs �eld act on the zero mode.

For the 't Hooft-Feynman gauge we summarize the results for the equation of motion, the

mode functions, and the energy density which we have published in [38]. For more details,

especially in view of the renormalization, the reader is referred to our paper.

3.8.1 The 't Hooft-Feynman Gauge

Starting point for our considerations is the Lagrangian (3.31), (3.32) with the choice � = 1.

We can derive the equation of motion for the zero mode as

��+ ��(�2 � v2) + 3��hh2i+ 3

4
g2�ha2

?
i

+ 3

 
�+

g2

4

!
�h'2i � 3

4
g2�ha20i �

3

2
g@tha0'i = 0 : (3.377)

In this notation we have not taken care of the normalization and the renormalization or

the di�erent solutions for the mode functions of the coupled channel. We only want to

give an overview of the equations and the connections of the �elds and do not go into

technical details. As already mentioned, the mode functions for the isoscalar Higgs �eld

and the transversal gauge �eld are the same as in the Coulomb gauge (3.208), (3.209). For
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the coupled sector a0', they are given by the 
uctuation operator (3.125). Obviously, the

structure of the operator simpli�es for � = 1. The longitudinal gauge component decouples

from the system, and we have to consider only a 2� 2 system of the form

(
�@2t � !2

a(t) g _�(t)

g _�(t) @2t + !2
e�(t)

)(
a0(t)

'(t)

)
= 0 : (3.378)

The operator has two interesting features which distinguishes it from the single modes.

The inde�nite metric of the time component of the gauge �eld, and the time derivative of

the zero mode in the o� diagonal elements which connect the two �elds. We �nd analogous

properties in the Coulomb gauge; the 
uctuation part for a0 contributes with a negative

sign to the 
uctuation integral (3.310), and we �nd time derivatives of the zero mode in

the equation of motion for the zero mode (3.316) as well as in the mode function for '

(3.319).

In the Feynman gauge, the mode functions for the transversal gauge �eld, for the

longitudinal gauge �eld, and for the ghost �elds are the same. Two of the three gauge

components are cancelled by the ghost �elds and only one degree of freedom is left in

contrast to the Coulomb gauge where we have two transverse gauge components. The factor

three in front of the 
uctuation integrals for a?, a0 and ' re
ects the degeneracy factor

which is due to the non-Abelian structure of the model. The energy density can be derived

by integration of the equation of motion for the zero mode or from the corresponding

Hamiltonian of the system. It reads (see also [38])
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h _a20i+ h!2

aa
2
0i
i
: (3.379)

This expression looks very similar to the Coulomb energy (3.317) despite the fact that a0
is dynamical and contributes with a derivate part. Again the degeneracy factors appear.

3.8.2 Results

For our numerical calculations, we have chosen four di�erent sets of parameters listed in

Table 3.1. The initial value for the zero mode � and the Higgs mass mh are the same for

all sets. They are chosen in such a way that the zero mode evolves in the right minimum

of the potential. With this choice of initial conditions, the zero mode can not evolve

into the complex part of the e�ective potential. In this region, the instabilities increase

dramatically and the one loop approximation breaks down as explained for the �4 theory

in subsection 2.5.2.
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In order to give an impression of the potential we have plotted in Fig. 3.1 for the

Coulomb gauge and Fig. 3.2 for the Feynman gauge the potential energy versus the zero

mode as the shape of the �gures (solid lines) and also the zero mode part of the energy

versus � (dashed lines). The �eld begins to roll down the potential but the energy is not

high enough for the �eld to reach the maximum at zero. Therefore, it starts to oscillate in

the minimum. The prediction of these two plots in the context of non-equilibrium dynamics

is not clear. The shape of the potential is more or less equivalent to the e�ective potential

because we have taken the �nite terms concerning from the renormalization into account,

but the e�ective potential is an equilibrium quantity, because the expectation value of the

scalar �eld, that serves as order parameter, is space time independent. Nevertheless, they

are instructive to get an idea of the potential by which the zero mode is in
uenced.

For our numerical considerations we have only varied the coupling constants � and e

(or g) and therefore the masses of the di�erent �elds. We have also given the initial masses

of the three di�erent �elds in Table 3.1.

For the �rst parameter set, we have chosen the same coupling constant for the Higgs

�eld and the gauge �eld. The initial masses for the �elds are all small but not zero. Since

we have taken the initial value for the zero mode to be small, the e�ect of the quantum


uctuations is negligible. The behavior of the zero mode is the same in the Coulomb

gauge, in the 't Hooft-Feynman gauge, and for the a?h-system. We have displayed it in

Fig. 3.3{Fig.3.5.

The situation changes drastically, if we choose a smaller gauge coupling and therefore

a nearly vanishing Goldstone mass. We have plotted the zero mode in Fig. 3.6 for the

Coulomb gauge and in Fig. 3.7 for the 't Hooft-Feynman gauge. The �eld is strongly

damped and settles down to the minimum. Since this e�ect does not occur for the pure

a?h-system, it is obvious that it is induced by the Goldstone sector. The e�ect is stronger

in the non-Abelian model which is caused by the additional factors three in front of the


uctuation integrals. In Figs. 3.9 and 3.10 we have displayed the 
uctuation integrals

for the di�erent components for both gauges. The Goldstone 
uctuation is obviously the

dominant one.

In the third parameter set we have chosen a nearly vanishing mass for the isoscalar

Higgs-�eld component. The �eld is damped also in this case for all three systems Fig. 3.11{

Fig. 3.13, but not as strong as for the second parameter set. In the last case we have

considered vanishing initial masses for all �elds. The results are very similar to those

found for the third parameter set, the �eld is damped but it oscillates forever as shown in

Fig. 3.14{Fig. 3.16.

In order to check our numerics we have plotted the energy density for the Coulomb

gauge in Fig. 3.17, 3.19 and the 't Hooft Feynman gauge in Fig. 3.18, 3.20 for the �rst and

the second parameter set. The upper line displays the 
uctuation energy which increases

and the lower line the zero mode part of the energy which decreases. The solid line shows

the total energy. For convenience we have added in all cases a constant to the zero mode

part of the energy. Otherwise the curves are only straight lines due to their distance.

For the �rst parameter set, the energy conservation is excellent in both cases. Since the

energy transfer is negligible this result is to be expected. We have also chosen the second
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� e = g
2

m2
h �0 m2

a0 m2
h0 m2

e�0

Parameter set 1 1 1 0.5 0.51 0.26 0.53 0.27

Parameter set 2 1 0.1 0.5 0.51 2.6�10�3 0.78 0.01

Parameter set 3 0.33 1.3 0.5 0.51 0.44 7.5�10�3 0.28

Parameter set 4 0.33 0.8 0.5 0.51 0.17 7.5�10�3 2.3�10�3

Table 3.1: Parameter sets for the gauge theories

parameter set because the behavior of the �eld is in this case more extraordinary than

in the others. For the Coulomb gauge the total energy oscillates at the beginning a little

bit. We have already explained in section 3.6.1 that we do not have to expect a perfect

result because we cannot insert the classical equation of motion numerically, which we have

done when we have shown energy conservation by taking the time derivative of the energy

density.

Summarizing the results, we have found that the damping e�ect is strongest for a nearly

massless Goldstone �eld and a massive isoscalar Higgs �eld. In this case the isoscalar Higgs

�eld has the possibility to decay into the other �elds. We have found an analogous behavior

in the �4 theory in the large N limit. There, the damping of zero mode was due to the

massless Goldstone bosons. In gauge theories a special feature of the Goldstone mode is the

occurrence of the time derivative of the zero mode. We �nd such a time derivative as well

in the vertex which couples the Goldstone mode to the other �elds as in the mode function

itself in both gauges. We found a similar phenomenon in the �4 theory with fermionic


uctuations [35]. There, we noticed a catalyzing e�ect of the fermions to a scalar �eld.

The fermionic �eld alone has not in
uenced the zero mode very much and also the scalar

�eld alone has not shown a remarkable e�ect. But the two �elds together have damped the

zero mode enormously. In this model, we have chosen a massless fermion and the mode

function of the fermion contains a derivative term of the zero mode.

We have also found that the behavior for the di�erent gauges is qualitatively the same

and that the Goldstone channel plays an important role.
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Figure 3.1: Potential versus � in the Coulomb gauge for parameter set 2
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Figure 3.2: Potential versus � in the 't Hooft-Feynman gauge for parameter set 2
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Figure 3.3: Zero mode versus t in the Coulomb gauge for parameter set 1
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Figure 3.4: Zero mode versus t in the 't Hooft-Feynman gauge for parameter set 1
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Figure 3.5: Zero mode versus t under in
uence of the h and a? for parameter set 1
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Figure 3.6: Zero mode versus t in the Coulomb gauge for parameter set 2
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Figure 3.7: Zero mode versus t in the 't Hooft-Feynman gauge for parameter set 2
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Figure 3.8: Zero mode versus t under in
uence of the h and a? for parameter set 2
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Figure 3.9: Fluctuation integrals versus t in the Coulomb gauge for parameter set 2, solid

line: a? 
uctuations, dashed line: h 
uctuations, dotted line: ' 
uctuations
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Figure 3.10: Same as in Fig. 3.9 in the 't Hooft-Feynman gauge
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Figure 3.11: Zero mode versus t in the Coulomb gauge for parameter set 3
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Figure 3.12: Zero mode versus t in the 't Hooft-Feynman gauge for parameter set 3
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Figure 3.13: Zero mode versus t under in
uence of the h and a? for parameter set 3
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Figure 3.14: Zero mode versus t in the Coulomb gauge for parameter set 4
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Figure 3.15: Zero mode versus t in the 't Hooft-Feynman gauge for parameter set 4
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Figure 3.16: Zero mode versus t under in
uence of the h and a? for parameter set 4
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Figure 3.17: Mode energies and their sum versus t in the Coulomb gauge for parameter

set 1
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Figure 3.18: Mode energies and their sum versus t in the 't Hooft-Feynman gauge for

parameter set 1
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Figure 3.19: Mode energies and their sum versus t in the Coulomb gauge for parameter

set 2
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Figure 3.20: Mode energies and their sum versus t in the 't Hooft-Feynman gauge for

parameter set 2
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Chapter 4

Conclusion and Outlook

In this work we have studied the non-equilibrium dynamics of di�erent models with dif-

ferent approximation schemes under various aspects. Thereto, we have used a scheme for

the renormalization which we have developed in [33] for a system out of equilibrium. It

is based on a perturbative expansion of the mode functions and allows a clean separation

between divergent and �nite parts. The advantages of this approach are manifold. Since

we have extract explicit expressions for the divergent parts we were able to regularize them

with di�erent regularization schemes, such as dimensional or Pauli-Villars regularization.

The identi�cation of the divergences with the common Feynman graphs was possible and

therefore, we have found the standard counter terms for the renormalization. This was

cross check for our analytical considerations. The �nite parts were treated numerically. As

we have shown this scheme works for di�erent approximations and models.

Our investigations have started with the analysis of the �4 theory with spontaneous

symmetry breaking. We have studied a large N model at �nite temperature and car-

ried out the renormalization. After formulating �nite and well de�ned equations we have

implemented them numerically. By investigation of the evolution of the system we �nd,

depending on the initial conditions, �nal states with restored O(N) symmetry and �nal

states for which the symmetry is spontaneously broken. The resulting phase diagrams re-

semble typical phase diagrams of thermodynamical systems with the temperature and an

external parameter, the initial value �0, as parameters. We have generalized two empirical

formulae found by Boyanovsky et al. [29] to �nite temperature, which relate the initial and

asymptotic value of the �eld and the time dependent mass squared. We have also shown

some numerical examples for the unbroken theory and investigated the behavior of various

physical quantities like the particle number and the pressure which are important in con-

nection with in
ationary cosmology. The particle number leads for example to predictions

concerning the reheating temperature and the computation of the pressure is necessary if

we want to analyse a model in expanding space time. Furthermore, we studied the one

loop approximation in order to compare the results with the large N approximation. For

very low initial values of the zero mode which lead to a development in the minimum of

the e�ective potential we have found an analogous behavior of the �eld as in the case of

unbroken symmetry but for initial values lower than the maximum of the potential with the
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possibility to reach the unstable region of the potential the approximation breaks down,

because the mode functions grow exponentially. This is due to the lack of quantum back

reaction onto the 
uctuations. The fact that we have found such a behavior may, however,

indicate the correct physics and is not necessarily a consequence of an inadequate approx-

imation. It is known that the system is indeed unstable for spatially constant static �elds,

it is an instability with respect to the formation of domains [46]. For space dependent �elds

like minimal bubble con�gurations the one loop approximation for the e�ective action does

not show any unplausible features [91, 93, 100], though the e�ective potential is complex

in the unstable region. Hence, it is not clear if the large N approximation necessarily

improves the understanding of the physics.

In the second part we have extensively studied gauge theories out of equilibrium. Here,

the aim of the work was twofold. We have investigated di�erent aspects of gauge invariance

and furthermore, studied the behavior of gauge systems out of equilibrium numerically. We

started our considerations with an analysis of the R�-gauges. As a �rst example we have

examined a time independent problem, the bubble nucleation. We have found a way to

transform the 
uctuation operator in a triangular form whereas two diagonal elements were

the same as the Faddeev Popov 
uctuation operator and one was �-independent, which led

to a gauge parameter independent e�ective action. The �nal conclusion of our consideration

was that the exact one loop correction to the nucleation rate is gauge independent. This

goes beyond the results of Weinberg and Metaxas [83], where a similar statement was

derived for the leading orders in the gauge coupling, using the gradient expansion. In the

non-equilibrium case we have also shown that with an equivalent analysis for the mode

functions as for the bubble nucleation it is possible to construct a 
uctuation operator

in a triangular form. Two of the diagonal elements are cancelled by the Faddeev-Popov

ghosts and the third one is independent of �. We found that this mode is equivalent to

the Goldstone mode in the Coulomb gauge. Furthermore, we have examined the structure

of the divergences in the R�-gauge by computing the leading Feynman diagrams with the

CTP-formalism. The gauge dependence of the counter terms we have found vanishes if the

classical equation of motion is ful�lled.

Another approach we have studied is a gauge invariant formulation of the Abelian

Higgs model developed by Boyanovsky et al. [37]. We have extended their calculation

to a complete set of equations, which describes the evolution of the zero mode under the

in
uence of gauge and Higgs 
uctuations. We have performed the renormalization and

found some problems induced by the inclusion of terms higher than one loop order. Since

these terms were included in an uncontrollable manner, we have computed a linearized

form of the equations. They are equivalent to the Coulomb gauge �xed theory in the

one loop approximation. In order to implement these equations numerically, we have also

renormalized the Coulomb gauge �xed theory.

The numerical simulations have shown that the behavior of the zero mode in the

Coulomb gauge is similar to the 't Hooft-Feynman gauge as a special case of the R�-

gauges. We have found that the Goldstone channel for small Goldstone masses led to an

e�cient damping of the zero mode. This e�ect is due to the possibility that the Higgs �eld

can decay into the Goldstone �eld. As in the one loop approximation in the �4 theory, the
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evolution of the zero mode in the unstable region was impossible.

We have analyzed di�erent technical issues of quantum �eld theories out of equilibrium.

It is certainly very important to develop new approaches to the evolution of quantum

systems for theories with spontaneously broken symmetry. There are indications in a large

N quantum mechanical system [112] that the large N limit may be misleading, as the next

to leading corrections become large especially at late times. It is not clear, what the impact

of these results on quantum �eld theory will be. Therefore, it is necessary to develop new

methods and approximation schemes going beyond mean �eld methods. This would also

lead to a possibility to include the e�ects of the rescattering of the produced particles.

Beside these technical considerations, the implementation of our results for the gauge

�elds in a cosmological context would be very interesting. Together with our studies

on fermionic systems out of equilibrium we now have built the foundation to examine

more realistic models to describe the physics of the early universe. The recent success in

detecting neutrino masses has revived the idea of grand uni�cation. An implementation of

our method in Grand Uni�ed Theories could lead to new and interesting results. Also the

implementation of Friedman-Robertson-Walker cosmology in the model we have considered

is interesting in order to get a more suitable model for describing the in
ationary scenario.

Furthermore, supersymmetric models are expected to play a fundamental role at the

early stages of the evolution of the universe. The special form of the potential which is

important for in
ation can be described very well by supersymmetric models. Further

studies on these models are important for a better understanding of cosmology.
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Appendix A

Some Thermal Integrals

In this Appendix we give some explicit expressions for the thermal integrals as we have

used them in the numerical computations. In deriving these relations we have relied on

the integral tables of Prudnikov, Brychkov and Marichev [113].

The �nite temperature part of the tadpole graph, which constitutes a correction to the

mass, is given by the integral
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Z

d3k
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where Tnm stands for nm0=T . For large values of Tnm (this means for small T ) the integrand

is dominated by momenta of order k ' T . Therefore, we can expand !k0 with respect to
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For T � m0 we �nd directly from (A.1) the well-known approximation
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It yields the hard thermal loop corrections to the mass.

The �nite temperature part of the �sh graph, which can be considered as a �nite

correction to the coupling constant, is given by
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For small T or large Tnm we �nd the approximation
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For large temperatures this integral behaves linear in T , more precisely
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The �nite temperature part associated with the quartic divergence in the energy is given

by the Planck formula
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As an approximation for large Tnm or small T we �nd
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For large temperatures one obtains

�1(m0; T ) '
�2
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T 4 : (A.9)
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Appendix B

Mode Functions in the Gauge

Invariant Approach

In this appendix we summarize the leading behavior of the mode functions in the gauge

invariant approach. The truncated mode function for the �eld ' is given by (3.239):

f' = �
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As for the single channels we expand this function in orders of the potential

f' = f (1)' + f (2)' + � � � : (B.2)

B.1 The First Order

We �nd in the �rst order of the potential
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In order to �nd the leading behavior of f (1)' we have to insert the matrix elements M11 and

M12. After integration by parts we get

f (1)' = �
tZ

0

dt0
i

2!p0

(
(�+ e2)(�2 � �20) + 2ie2

!p0

!2
a0

� _�+
e2

k2
I1
)

� 1

4!2
p0

(
(�+ e2)(�2 � �20) + 2ie2

!p0

!2
a0

� _�+
e2

k2
I1
)

128



APPENDIX B. MODE FUNCTIONS IN THE GAUGE INVARIANT APPROACH

+

tZ
0

dt0
1

4!2
p0

e2i!p0�t
(
2� _�(�+ e2) + 2ie2

!p0

!2
a0

( _�2 + ���) +
e2

k2
_I1
)
; (B.5)

with

I1 = ��2(�2 � v2)� ��20(�
2
0 � v2) + �2 � � _�� _�� : (B.6)

For the analysis of the equation of motion we need the real part of f (1)' . We can write it

in the following way
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For the imaginary part we �nd

Imf (1)' = �
tZ

0

dt0
1

2!p0
(�+ e2)(�2 � �20) +KI

'(!) ; (B.9)

with

KI
'(!) = �

tZ
0

dt0
e2

2!p0k2
I1 �

e2

2!p0!
2
a0

� _�

+

tZ
0

dt0
1

4!2
p0

sin(2!p0�t)

(
2(�+ e2)� _�+

e2

k2
_I1
)

+

tZ
0

dt0
e2

2!p0!
2
a0

cos(2!p0�t)( _�
2 + ���) : (B.10)

In the same way we can handle the function f�'. The function is given by (3.240)
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0

dt0
i

2!p0

�
e2i!p0�t � 1

� " !2
a0

i!p0k2
M21(1 + f') +M22(1 + f�')

#
: (B.11)

The di�erential equation for f�' in the �rst order of the potential is then given by

�f (1)�'
� 2i!p0 _f

(1)
�'

=
!2
a0

ik2!p0
M21 +M22 ; (B.12)
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or the equivalent integral equation

f (1)�'
= �

tZ
0

dt0
i

2!p0

�
e2i!p0�t � 1

� !2
a0

i!p0k2
M11 +M22

!
: (B.13)

After integration by parts we get

f (1)�'
= �

tZ
0

dt0
i

2!p0

(
(�+ e2)(�2 � �20) + 2i

!2
a0

!p0k2
(�� _�+

e2

k2
� _�) +

e2

k2
I2
)

� 1

4!2
p0

(
(�+ e2)(�2 � �20) + 2i

!2
a0

!p0k2

 
�� _�+

e2

k2
� _�

!
+
e2

k2
I2
)

+

tZ
0

dt0
1

4!2
p0

e2i!p0�t
(
2i

!2
a0

!p0k2

"
�( _�2 + ���) +

e2

k2
( _�2 +� _�)

#

+2� _�(�+ e2) +
e2

k2
_I2
)
; (B.14)

with

I2 = ��2(�2 � v2)� ��20(�
2
0 � v2) + �2 +� _�+ _�� : (B.15)

The separation into real and imaginary part leads to

Ref (1)�'
=

V'

2!2
p0

� 1

4!2
p0

(�+ e2)(�2 � �20) +KR
� (!) ; (B.16)

with

KR
� (!) = � e2

4!2
p0k

2
I2 +

tZ
0

dt0
e2

!2
p0k

2

 
�� _��20 +� _� +

e2

k2
� _��20

!

+

tZ
0

dt0
1

4!2
p0

cos(2!p0�t)

(
2(�+ e2)� _�+

e2

k2
_I2
)

�
tZ

0

dt0
!2
a0

2!3
p0k

2
sin(2!p0�t)

"
�( _�2 + ���) +

e2

k2
( _�2 +� _�)

#
: (B.17)

For the imaginary part we �nd

Imf (1)�'
= �

tZ
0

dt0
1

2!p0
(�+ e2)(�2 � �20) +KI

�(!) ; (B.18)

with

KI
�(!) = � !2

a0

2!3
p0k

2

 
�� _�+
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� _�

!
�

tZ
0

dt0
e2

2!p0k2
I2

130



APPENDIX B. MODE FUNCTIONS IN THE GAUGE INVARIANT APPROACH

+

tZ
0

dt0
1

4!2
p0

sin(2!p0�t)

(
2(�+ e2)� _�+

e2

k2
_I2
)

+

tZ
0

dt0
!2
a0

2!3
p0k

2
cos(2!p0�t)

"
�( _�2 + ���) +

e2

k2
( _�2 +� _�)

#
: (B.19)

B.2 The Second Order

In the equation of motion as well as in the energy we have contributions of the form

Ref
(2)
j + f

(1)
j f

(1)�
j . In the single channels the leading order of the two terms is cancelled

as we have seen in the Feynman gauge theory [38]. For the Goldstone mode we have to

check this cancellation. As we will see we are still left with contributions of O(!�4). In the
equation of motion they are �nite but in the energy they lead to logarithmic divergences.

In order to �nd the real part of f (2)' we have to investigate the following integral

f (2)' =

tZ
0

dt0
i

2!p0

h
e2i!p0�t � 1

i ("
(�+ e2)(�2 � �20) +

e2

k2
I1
#
f (1)' + 2ie2

!p0

!2
a0

� _�f (1)�'

)
:

(B.20)

We are only interested in f (2)' up to O(!�4) because these terms contributes to the diver-
gences. Therefore, we need f (1)' only up to O(!�4) and f (1)�'

up to O(!�3):

f (1)' = ��� e2

4!2
p0

(�2 � �20) + i
�� e2

4!3
p0

� _�

�
tZ

0

dt0
i

2!p0

"
(�+ e2)(�2 � �20) +

e2

k2
I1
#
+O(!�4) ; (B.21)

f (1)�'
= �e

2 � �

4!2
p0

(�2 � �20) +
i

4!3
p0

(e2 � �)� _�

�
tZ

0

dt0
i

2!p0

"
(�+ e2)(�2 � �20) +

e2

k2
I2
#
+O(!�4) : (B.22)

We have given f (2)�'
also up to O(!�4) because we need it for the computation of f (2)�'

.

We have used the connection between the frequencies !2
p0 = !2

a0 + O(!0) to simplify the

expression for f (1)' . Since we are only interested in the leading behavior we can identify

the two frequencies. By inserting (B.21) and (B.22) into (B.20) we �nd

Ref (2)' = �
tZ

0

dt0
t0Z
0

dt00
(�+ e2)2

4!2
p0

h
�2(t0)� �20

i h
�2(t00)� �20

i

�
tZ

0

dt0
t0Z
0

dt00
e2(�+ e2)

4!2
p0k

2

nh
�2(t00)� �20

i
I1(t0) +

h
�2(t0)� �20

i
I1(t00)

o
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+

tZ
0

dt0
�2 � e4

8!4
p0

�(t0) _�(t0)
h
�2(t0)� �20

i

�
tZ

0

dt0
e2(e2 � �)

4!4
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�(t0) _�(t0)
h
�2(t0)� �20

i
(B.23)

+
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0
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�2 � e4
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+

tZ
0

dt0
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For Ref (2)�'
we have to investigate

f (2)�'
=

tZ
0

dt0
i

2!p0

h
e2i!p0�t � 1

i (
2i

�

!p0
� _�f (1)' +

"
(�+ e2)(�2 � �20) +

e2
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I2
#
f (1)�'
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: (B.24)

With (B.21) and (B.22) we �nd

Ref (2)�'
= �
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dt0
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(B.25)

�
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h
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There are many cancellations in the between (B.25) and (B.23). But taking f
(1)
j f

(1)�
j into

account the expression becomes even more simpler. In particular we �nd

f (1)' f (1)�' =
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0

dt00
(�+ e2)2
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0
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h
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+O(!�5) ; (B.26)

and

f (1)�'
f (1)��'

=
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0
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+O(!�5) : (B.27)

Therefore, the relevant term in the energy becomes rather simple

2Ref (2)' + f (1)' f (1)�' + 2Ref (2)�'
+ f (1)�'

f (1)��'
=

(�+ e2)2

4!4
p0

�
�2 � �20

�2
+O(!�5) : (B.28)

The leading behavior in ! cancels, therefore we have no problems in the equation of motion.

But for the energy the term is relevant. It leads to a logarithmic divergence. This is a

new feature in comparison to the Feynman gauge �xed theory. There, we haven't take into

account terms from this sum, they were already �nite.
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Appendix C

Dimensional Regularization

In this appendix we give a short overview of the dimensional regularization of the divergent

integrals. All these integrals are of the following form [113]

1Z
0

dx x��1(x + y)��(x + z)�� = z��y���B(�; �+ �� �)2F1

�
�; �; �+ �; 1� y

z

�
; (C.1)

with

B(a; b) =
�(a)�(b)

�(a+ b)
; 2F1(a; b; c;m) =

�(c)

�(a)�(b)

1X
n=0

�(a+ n)�(b + n)

�(c+ n)

mn

n!
: (C.2)

We also need the following expansion formulas for the � function

�(�n+ �) =
(�1)n
n!

�
1

�
+  (n+ 1) +O(�)

�
;

1

�(n + �)
=

1

�(n)
� �

 (n)

�(n)
+O(�2) : (C.3)

We show the proceedings for the regularization explicitly for one integral. The calculations

for the others are analogous and we will only give the results for them. A typical integral

we have found is Z
d3k

(2�)3
1

4!p0k2
=

Z
d3k

(2�)3
1

4!a0!'0k
; (C.4)

where we have used the relation !p0k = !'0!a0 between the frequencies in order to get the

same structure for the integral as in (C.1). By shifting the dimension of the integral from

3! 3� � and substituting k2 = x, we get

Z
d3k

(2�)3
1

4!a0!'0k
! 1

4(4�)(3��)=2
1

�(3
2
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2
)
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0
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�
2 (x+m2

'0)
�

1

2 (x +m2
W0)

�
1

2 : (C.5)
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Now we can use the integral formula (C.1), expand the �-functions, and we are left with a

�nite sum over n and the typical 1=�-pole for dimensional regularization:

1
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2 1
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with
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; (C.7)


 = 0:57721 � � � : (C.8)

We neglect the �nite contribution 1
64�

(1�
�2 ln 2). In the same way we �nd for the other

divergent integrals
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