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Chapter 1

Introduction

The present dissertation aims to make a contribution to improved econo-

metric practice in testing statistical hypotheses on nonstationary and (cross-

sectionally) dependent panel datasets. I have chosen to illustrate the challenges

involved in testing in nonstationary and dependent panels by focusing on the

Purchasing Power Parity (henceforth, PPP) Condition, or Law of One Price,

one of the most intensively discussed theories in international economics. How-

ever, nonstationarity and cross-sectional dependence are common features of

many macroeconomic panels. Hence, I conjecture that many of the issues dis-

cussed and methods suggested here may also be fruitfully applied to other

macroeconometric questions, such as the Fisher relation or savings and invest-

ment correlations.

This Introduction briefly outlines the main results of and the common thread

of the different chapters. These chapters are mainly taken from eight self-

contained essays I have written (three of them together with Walter Krämer

and Guglielmo Maria Caporale). I therefore have to beg the reader’s pardon

for some redundancies, which, however, were inevitable to make each of the

papers as coherent as possible.

Chapter 2, written together with Guglielmo Maria Caporale, adopts a more tra-

1



2 CHAPTER 1. INTRODUCTION

ditional time series based framework to highlight drawbacks in testing for PPP

by means of Engle and Granger (1987) or Johansen (1988) type cointegration

tests on the exchange rate and home and foreign price levels. It has long been

known that these tests suffer from problems such as low power (Haug, 1996),

size distortion (Gonzalo, 1994) or excessive sensitivity to nuisance parameters

(Kremers, Ericsson, and Dolado, 1992). Similarly, it is well-known that the

outcome of tests for PPP are quite sensitive to, e.g., how one constructs the

price variables (Coakley, Kellard, and Snaith, 2005). Chapter 2 adds to this lit-

erature by demonstrating that existing popular time series based cointegration

tests seem to be uninformative about PPP (or “erratic”) in that the conclusion

of the test is highly sensitive to the sample period an investigator uses.

One of the remedies suggested in the literature to overcome these problems is

to employ panel data—i.e., to pool observations on several units (here, coun-

tries) over time—to conduct estimation and inference (see, e.g., Baltagi, 2001).

Several panel unit root and cointegration tests and estimators (see Breitung

and Pesaran, 2007, for a recent survey) have been developed to this end. The

contribution of Chapter 3 is to provide some new tests for panel cointegration.

I extend the meta analytic panel unit root tests of Maddala and Wu (1999)

and Choi (2001) to the cointegration setting. Compared with other tests in

the literature, the meta analytic approach has the advantage of being highly

flexible, relatively easy to implement and quite intuitive. I conduct a simula-

tion study to demonstrate that several variants of the new tests compare quite

favorably with existing ones in terms of both type I and type II error rates.

The tests put forward in Chapter 3 belong to the class of so called “First-

Generation Tests” in that they ignore the potential presence of cross-sectional

dependence among the countries in the panel. This is of course easily seen

to be a very restrictive assumption (made to simplify the derivation of the

asymptotic distribution of the tests). To give an example, it is tantamount
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to assuming that the exchange rate behaviour of the British Pound to the

U.S. dollar is independent of the exchange rate behaviour of the Euro to the

Dollar.

Recent work—so called “Second-Generation Tests” (e.g., Bai and Ng, 2004;

Phillips and Sul, 2003)—has therefore focused on relaxing this assumption.

Chapter 4 builds on Chapter 3 in that the most promising variants of the meta

analytic panel tests are used to provide additional cross-sectional correlation

robust tests for panel cointegration. I employ a sieve bootstrap approach to

account for nonstationarity and dependence under the maintained null hypoth-

esis of no panel cointegration. This semi-parametric bootstrap scheme allows

for more general forms of cross-sectional dependence than other robust tests

previously suggested in the literature. Again, a simulation study reveals that

the tests are capable of handling dependence of a quite general form. An em-

pirical application to the PPP condition shows that properly accounting for the

loss of information incurred by combining correlated rather than independent

data weakens the evidence in favor of PPP.

Chapter 5, written together with Guglielmo Maria Caporale, revisits the ques-

tion of erratic behaviour of PPP test statistics. We use cross-sectional corre-

lation robust panel unit root tests to test the PPP hypothesis over different

sample periods. It turns out that the behaviour of the panel test statistics

shows no evidence of erraticism. We therefore conjecture that panel tests are

capable of not only alleviating the above-mentioned well-known problems of,

e.g., low power but also the issue of erraticism discussed in Chapter 2 and in

Caporale, Pittis, and Sakellis (2003).

The previous chapters contribute evidence that panel tests—if properly

designed—hold much promise to become a useful standard tool in macro-

econometric practice. The following three chapters, on the other hand, high-

light some open issues in the use of panel tests.
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Chapter 6 provides an analytic framework to understand the puzzling finding

of many simulation studies that the performance of meta-analytic panel tests

deteriorates if one increases the number of units in the panel. (We measure per-

formance by control of the type I error rate. That is, a test performs well if its

rejection rate—when applied to repeated drawings of finite samples generated

under the null—is close to the nominal one.) This is, a priori, rather counterin-

tuitive because one would normally expect the performance to improve if more

information becomes available. I demonstrate that this puzzle can be explained

by seemingly negligible size distortions of the time series tests used to construct

the meta-analytic panel test statistics. These distortions then “add up” when

combining ever more units to yield an increasingly size-distorted panel test. In

practice, it is therefore strongly recommended to use time series tests which

carefully control the type I error rate. I propose to solve or at least alleviate

this problem by using adjusted critical values which give a better approxima-

tion to the finite sample distribution than the fixed (first-order) asymptotic

critical values. In practice, adjusted critical values may be obtained via the

response surface regression approach pioneered in the cointegration literature

by MacKinnon (1991).

Chapter 7 compares results from test outcomes of several popular panel cointe-

gration tests when applied to artificial data. The use of artificial data allows to

control the Data Generating Process, such as to know whether a particular test

decision is correct or not. It turns out that panel cointegration tests produce

“mixed signals”—just as time series cointegration tests do (Gregory, Haug, and

Lomuto, 2004). That is, it frequently occurs that one tests produces a rather

emphatic rejection of the null hypothesis while another one confirms the null—

even though both are applied to the same sample. Put differently, it is likely

that it will be possible to find at least one test that, as desired, confirms or

rejects any given hypothesis tested on some dataset. The likely explanation for
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this is that panel cointegration tests (unlike classical Wald, Likelihood Ratio

or Lagrange Multiplier tests, for which Berndt and Savin (1977) show that

the “mixed signals” problem vanishes asymptotically) have different implicit

alternatives. E.g., Johansen (1988) type tests look at the eigenvalues of some

residual moment matrix, whereas Engle and Granger (1987) type tests rely on

the mean reversion of a residual series. While the alternatives of both tests

is taken to be “cointegration,” the mathematical characterization obviously

differs substantially.

The recommendation for empirical practice therefore is to report results on

preferably several panel cointegration tests to increase the confidence one can

put into the rejection or non-rejection of some particular economic hypothesis,

provided the test results agree.

Chapter 8, on a more general level, takes issue with popular approaches to

testing for PPP and suggests a novel one. One popular, traditional strategy

is to gather price and exchange rate data on several countries (relative to

some reference country) and test for PPP in each by, e.g., testing the null of

a unit root in the real exchange rate. It is then argued that PPP holds for

those countries for which the null of a unit root is rejected at, say, the 5%

level, because the real exchange rate is then statistically significantly mean-

reverting. While this intuitive procedure is by construction adequate when

one only considers a single country, it is questionable from a statistical point of

view when applied to several countries simultaneously as it ignores the problem

of multiplicity. That is, I demonstrate that one is almost bound to spuriously

find some evidence in favor of PPP even if it is not present in any country

because testing at, e.g., the 5% level in several countries does not control the

type I error at the 5% level for the entire panel of countries.

Similarly, the panel approaches discussed in some of the previous chapters are

to be used with caution, too, as many of the available tests’ alternatives might
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lead one to mistakenly believe PPP to hold for all countries in case of a rejection

even if in fact it only holds for some. Moreover, existing panel tests do not

allow to identify the countries for which PPP holds.

I therefore modify a recent proposal of Romano and Wolf (2005) to be appli-

cable to the nonstationary testing problem. The main idea is to control for

multiplicity with a multiple testing technique which, unlike traditional Bonfer-

roni type multiple tests, guarantees high power of the procedure by exploiting

the dependence structure among the countries with a bootstrap procedure. In-

deed, my empirical results show that the modified Romano and Wolf (2005)

approach seems to be more powerful than traditional multiple testing tech-

niques in that it identifies PPP to hold for more countries. Conversely, the

results suggest that the simple testing approach ignoring multiplicity as well

as panel tests apparently produce spurious rejections which do not result if one

properly accounts for multiplicity.

Finally, Chapter 9 adopts an alternative approach to model cross-sectional

dependence. This chapter contributes to the spatial econometrics literature,

where one proceeds by assuming a known form of cross-sectional dependence.

This assumption can be a plausible one if one can correctly capture the depen-

dence structure among panels by observables as, e.g., trade shares. Consistent

estimation is then possible even if only one panel wave is available.

The chapter first shows that the standard estimator of the disturbance variance,

i.e., the degrees of freedom adjusted mean of the sum of squared Ordinary

Least Squares (OLS) residuals, is applicable by demonstrating that the variance

covariance matrix of the reduced form errors of a spatial model is homoskedastic

under many popular specifications of the dependence structure. This clarifies

a recurrent misunderstanding in the literature. Then, the chapter derives the

exact finite sample bias of this estimator and proves its consistency. Hence,

it is shown that a simple and readily computed estimator can be used as an
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ingredient in test statistics without affecting the asymptotic validity of the

tests.





Chapter 2

Cointegration Tests Of PPP: Do
They Exhibit Erratic
Behaviour?

Abstract

We analyse whether tests of PPP exhibit erratic behaviour (as previ-
ously reported by Caporale, Pittis, and Sakellis, 2003) even when (pos-
sibly unwarranted) homogeneity and proportionality restrictions are not
imposed, and trivariate cointegration (stage-three) tests between the
nominal exchange rate, domestic and foreign price levels are carried out
(instead of stationarity tests on the real exchange rate, as in stage-two
tests). We examine the US dollar real exchange rate vis-à-vis 21 other
currencies over a period of more than a century, and find that stage-
three tests produce similar results to those for stage-two tests, namely
the former also behave erratically. This confirms that neither of these
traditional approaches to testing for PPP can solve the issue of PPP.1

Keywords: Purchasing Power Parity (PPP), Real Exchange Rate, Coin-
tegration, Stationarity, Parameter Instability

1This chapter has been written jointly with Guglielmo Maria Caporale.
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10 CHAPTER 2. ERRATIC COINTEGRATION TESTS FOR PPP

2.1 Introduction

Purchasing Power Parity (PPP) is one of the most popular theories for ex-

plaining the long-run behaviour of exchange rates, and has therefore been ex-

tensively investigated. Froot and Rogoff (1995) distinguish three stages in the

time series literature on PPP. Stage-one tests were flawed by their failure to

take into account possible non-stationarities in the series of interest. Stage-two

tests focused on the null that the real exchange rate follows a random walk,

the alternative being that PPP holds in the long run. However, such unit root

tests were found to have very low power, and not to be able to distinguish

between random-walk behaviour and very slow mean-reversion in the PPP-

consistent level of the real exchange rate (see, e.g., Frankel, 1986, and Lothian

and Taylor, 1997), unless very long spans of data were used (see, e.g., Lothian

and Taylor, 1996, and Cheung and Lai, 1994).2 Stage-three tests have used

cointegration tests, but essentially suffer from the same problem of low power,

and consequently have not significantly improved our understanding of real

exchange rate behaviour (see Rogoff, 1996).

Caporale, Pittis, and Sakellis (2003) aimed to find an explanation for the con-

tradictory evidence on PPP, even when long runs of data are used to increase

the power of test statistics. They focused on stage-two tests and argued that

the reason is that the type of stationarity exhibited by the real exchange rate

cannot be accommodated by the fixed-parameter autoregressive homoscedastic

models normally employed in the literature. Using a dataset including 39 coun-

tries and spanning a period of up to two centuries, they analysed the behaviour

of both WPI- and CPI-based measures of the real exchange rate. In particular,

they computed a recursive t-statistic (see below for a precise definition), and

showed that it has an erratic behaviour, suggesting the presence of instability,

2Indeed, Krämer and Marmol (2004) show that the divergence of Dickey-Fuller type unit
root tests is slower against slowly mean-reverting I(d) alternatives.
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and of a type of non-stationarity more complex than the unit root one usually

assumed.

In the present study we explore this issue further by analysing whether erratic

behaviour also characterises stage-three tests. The advantage of such tests

is that they do not impose the homogeneity and proportionality restrictions

entailed by stage-two tests, which might not hold in practice. Therefore, by

carrying out cointegration tests of PPP we check whether there might be a

relation between the presence of erratic behaviour and the imposition of overly

strong restrictions. The layout of the chapter is as follows. Section 2 reviews the

PPP condition in its different forms. Section 3 describes the data and presents

some empirical evidence based on two different cointegration methods. Section

4 summarises the main findings and offers some concluding remarks.

2.2 The PPP Condition

In its absolute form, the PPP condition states that the nominal exchange rate

should be proportional to the ratio of the domestic to the foreign price level,

i.e.:

st = α+ β0pt + β1p
∗
t , (2.1)

where st is the nominal exchange rate, pt the domestic price level, and p∗t

the foreign price level, all in logs.3 This is known as a trivariate relationship.

Imposing the “symmetry” restriction β0 = −β1 = β on the price coefficients,

one obtains the following bivariate relationship:

st = α+ β(pt − p∗t ). (2.2)

Finally, the “proportionality” restriction α = 0, β = 1 implies

qt = st − pt + p∗t , (2.3)

3Relative PPP implies that the percentage change in the exchange rate between two
currencies equals the inflation differential, i.e. ∆st = β0∆pt − β1∆p∗t .
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where qt is the real exchange rate.

Most of the literature in the 1980s tested PPP by means of (stage-two) unit

root tests (DF or ADF—see Dickey and Fuller, 1979) on the real exchange rate,

which, under PPP, should revert to its long-run equilibrium value given by PPP

after being hit by shocks. The null hypothesis is that it follows a random walk

(it has a unit root), since market efficiency implies that its changes should

be unpredictable, whilst the alternative is that PPP holds. The maintained

(joint) hypothesis is that the symmetry/proportionality restrictions both hold,

which might not be true in practice. Consequently, the evidence presented by

Caporale, Pittis, and Sakellis (2003) on the erratic behaviour of unit root tests

might reflect unwarranted restrictions.

By contrast, a trivariate cointegration test of PPP entails running the following

cointegrating regression (which does not impose any such restrictions):

st = α+ β0pt − β1p
∗
t + ut (2.4)

where the variables are defined as before, and ut stands for the regression

errors. PPP is then tested by means of DF and ADF tests on the estimated

residuals. In the present chapter, by implementing cointegration tests of this

type, we aim to establish whether or not evidence of erratic behaviour can

still be found, even without the abovementioned restrictions, and consequently

whether or not the findings of Caporale, Pittis, and Sakellis (2003) are robust

or instead are due the imposition of unwarranted restrictions.

2.3 Cointegration Tests of PPP

Data sources and definitions

We revisit the dataset employed by Taylor (2002), which includes annual data

for the nominal exchange rate, CPI and the GDP deflator. This dataset is
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Table 2.1: ADF Unit Root Tests

country pCPI pGDP e

Argentina 1.836 3.976 1.319
Australia -0.671 -0.906 0.578
Belgium -1.666 -2.510 -0.771
Brazil 0.681 5.162 1.204
Canada -1.279 -2.079 0.875
Chile 0.111 0.061 0.229
Denmark -1.941 -2.381 0.291
Finland -1.158 -0.973 -0.763
France -0.956 -0.849 -0.245
Germany -2.190 -2.123 -1.525
Italy -0.843 -0.528 -0.527
Japan -0.282 -1.189 -1.401
Mexico 1.277 –b) 1.751
Netherlands -1.875 -1.484 0.175
New Zealand -0.953 –b) -0.313
Norway -1.931 -2.188 0.017
Portugal -1.069 -1.089 -0.914
Spain -0.314 -0.406 0.950
Sweden -1.487 -2.226 0.185
Switzerland 0.096 -0.526 0.151
UK -0.472 -0.564 0.793
United States 0.741 0.792 –a)
N.A.: a) reference country

b) series unavailable/too short
The number of lagged differences is chosen according to the MAIC
(Ng and Perron, 2001). Yearly data from 1892 to 1996. pCPI is the
log CPI price level, pGDP is the log GDP deflated price level and
e is the log nominal exchange rate.

particularly useful for our purposes because it covers a long period, ranging

from 1892 through to 1996. The countries contained in our panel are given in

Table 2.1. We use the United States as the reference country throughout. See

Taylor (2002) for further details on data sources and definitions.
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Empirical analysis

As a first step, we carried out standard augmented Dickey-Fuller (Said and

Dickey, 1984) unit root tests to establish whether the series are all I(1), and it

is therefore legitimate to test for cointegration. The results indicate that this

hypothesis can indeed not be rejected (see Table 2.1). We then proceeded to

the estimation of cointegrating regressions using the Engle and Granger (1987)

methodology. That is, we estimated (2.4) by OLS, and used the residuals to test

the null hypothesis that they are nonstationary (i.e., that PPP does not hold)

by means of DF and ADF tests. In order to investigate possible parameter

instability, we created a new time series “t-stat” which is the computed t-

statistic from the successive estimation of the coefficients of the following model

whose order is selected using the Modified AIC (MAIC) of Ng and Perron

(2001):

∆ût = α0 + α1ût−1 +

p∑
j=1

γj∆ût−j + εt (2.5)

Here, ût are the residuals from OLS estimation of the cointegrating regression

(2.4), εt is a white noise error term, and t-stat is defined as α̂1/est.s.e.(α̂1).

Equation (2.4) is estimated using the first k observations to produce the first

residual series, from which we compute the unit root test statistic α̂1/est.s.e.(α̂1).

We then add an extra observation to compute the second estimate based on

k+1 data points, and repeat the process until all T available observations have

been used to yield T − k + 1 values of the test statistics. We let k ≈ 20 − 25

to discard estimates which are heavily affected by small-sample size-distortion.

One can then plot the t-statistics based on the successive estimates to see more

clearly whether it changes substantially as more data points are added, which

would be a strong indication of instability in the parameter. Big jumps in

either the rejection or the acceptance region, or from one to the other, are

a strong sign of a structural break in the DGP. The results are summarised
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Table 2.2: Successive t-stat results

country Min Max Accept Reject Obs
Argentina -5.635 -1.259 0.728 0.272 80
Australia -4.788 -0.536 0.975 0.025 80
Belgium -3.734 0.220 1 0 80
Brazil -2.947 -0.395 1 0 60
Canada -4.253 -0.437 0.988 0.012 80
Chile -4.427 -1.229 0.650 0.350 59
Denmark -3.782 -1.509 1 0 80
Finland -4.797 -0.471 0.481 0.519 80
France -5.311 0.204 0.951 0.049 80
Germany -3.867 -1.104 1 0 80
Italy -3.666 -1.336 1 0 80
Japan -6.253 -4.109 0 1 24
Mexico -5.481 0.289 0.383 0.617 80
Netherlands -4.092 0.774 0.988 0.012 80
New Zealand -5.372 -2.259 0.560 0.440 24
Norway -4.289 -0.496 0.988 0.012 80
Portugal -5.923 -1.710 0.852 0.148 80
Spain -3.242 -0.018 1 0 80
Sweden -4.219 -1.773 0.852 0.148 80
Switzerland -3.234 -0.279 1 0 80
UK -6.642 -1.551 0.802 0.198 80
Minimum and maximum t-test statistics, acceptance and rejection percentages
and number of available observations for each country, using CPI price series

in Table 2.2. Columns 4 and 5 show that the test decision on whether PPP

holds or not is not constant over the sample in the vast majority of countries.

Frequent switches from the rejection to the non-rejection regions are found to

occur, the successive t-statistic exhibiting erratic behaviour very similarly to

the case of stage-two tests. For some graphical illustration, consider the cases

of Argentina (Figure 2.1), Finland (Figure 2.2), Mexico (Figure 2.3), or Chile

(Figure 2.4).4 The instability found clearly does not concern specific points

in time, such that it could be dealt with using procedures for cointegration

testing in the presence of structural breaks (see, e.g., Hansen, 1992, or Gre-

4The two lines at the bottom are the 10% and 5% critical values calculated as in
MacKinnon (1991).
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Figure 2.1: CPI-based Argentine t-stat series using a data-dependent rule (Ng
and Perron, 2001) for the choice of lags in the ADF regression

Figure 2.2: CPI-based Finnish t-stat series using a data-dependent rule (Ng
and Perron, 2001) for the choice of lags in the ADF regression

gory and Hansen, 1996), but appears instead to be of an endemic type. As

a counterexample where no switches occur at the finite sample 5% level, see

Denmark (Figure 2.5).
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Figure 2.3: CPI-based Mexican t-stat series using a data-dependent rule (Ng
and Perron, 2001) for the choice of lags in the ADF regression

Figure 2.4: CPI-based Chilean t-stat series using a data-dependent rule (Ng
and Perron, 2001) for the choice of lags in the ADF regression

We conducted the same type of analysis using the GDP deflator this time to

construct the real exchange rate, obtaining a very similar picture, namely er-

ratic behaviour in the majority of cases. For instance, compare Figure 2.7 with
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Figure 2.5: CPI-based Danish t-stat series using a data-dependent rule (Ng
and Perron, 2001) for the choice of lags in the ADF regression

the corresponding CPI based Figure 2.1. There are only a few exceptions, such

as Denmark, where no rejections occur (Figure 2.8).5 Further, as a robustness

check, we tried different number of lags in the ADF regressions (2.5). Over-

all, a qualitatively similar pattern emerges throughout, although we find that

higher number of lags are associated with fewer rejections (see Figure 2.1 and

Figures 2.9 to 2.12). This is what one would expect, the estimation of too

many parameters resulting in lower power (Phillips and Perron, 1988).

To explore more in depth the issue of possible structural breaks, we also used

fixed-size windows.6 That is, we select a fixed sample size T ∗ and create the nth

entry of the series t-stat as before but now based on observations t = n, . . . , T ∗+

n, where n = k, . . . , T − T ∗. One would expect using fixed windows to reduce

the likelihood of structural breaks occurring within the chosen sample, and

hence to result in more frequent rejections of the null hypothesis that PPP

5Results for other countries are available upon request.
6A variety of other methods could also be used to shed additional light on whether

structural breaks are present. See, e.g., Ploberger, Krämer, and Kontrus (1989).
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Figure 2.6: CPI-based Danish t-stat series with a moving window of T ∗ = 30

Figure 2.7: WPI-based Argentine t-stat series using a data-dependent rule
(Ng and Perron, 2001) for the choice of lags in the ADF regression

does not hold. However, it turns out that the behaviour of the t-stat series

is, if anything, even more erratic than for increasing window sizes. It appears

that the answer to whether or not PPP holds is highly dependent on the chosen

sample. For instance, using Danish data ending in the 1960s and early 70s an
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Figure 2.8: WPI-based Danish t-stat series using a data-dependent rule (Ng
and Perron, 2001) for the choice of lags in the ADF regression

Figure 2.9: CPI-based Argentine t-stat series using 1 lag in ADF regression

investigator using T ∗ = 30 years of data would strongly reject the null of PPP

not holding (see Figure 2.6).

Finally, we carried out alternative cointegration tests in all cases. Specifically,
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Figure 2.10: CPI-based Argentine t-stat series using 2 lags in ADF regression

Figure 2.11: CPI-based Argentine t-stat series using 3 lags in ADF regression

we used the λ-trace test (Johansen, 1988, 1991). Here the critical values were

obtained by modifying the asymptotic ones from Osterwald-Lenum (1992) us-

ing the response surface regression results of Cheung and Lai (1993). Some
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Figure 2.12: CPI-based Argentine t-stat series using 4 lags in ADF regression

results are reported in Table 2.3.7 Since this test statistic’s null distribution is

related to the χ2 distribution, unlike in the previous cases, the rejection region

is now above the critical value lines. As can be seen, we find further evidence

of erratic behaviour (Figure 2.13), suggesting that this is not due to the type

of cointegration test used, but it is a more fundamental issue pertaining to the

stochastic properties of the PPP relationship. Interestingly, switches from the

rejection to the non-rejection region occur around the same time in a number

of cases—compare, e.g., Figures 2.1 and 2.13.8

2.4 Conclusion

In this chapter we have analysed whether tests of PPP exhibit erratic be-

haviour (as previously reported by Caporale, Pittis, and Sakellis, 2003) even

7Again, using WPI data or a different number of lagged differences in the Johansen
procedure does not make a qualitative difference. Detailed results are available upon request.

8Similar patterns emerge for Australia, Brazil, Canada, Denmark, Finland, France, Mex-
ico, the Netherlands, Norway, Portugal, Sweden and the UK, that is 14 out of 19 countries
for which the sample size is sufficiently large to make statistically meaningful statements.
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Table 2.3: Successive λ̂-test results

country Min Max Accept Reject Obs
Argentina 14.961 60.399 0.450 0.550 80
Australia 12.710 54.296 0.900 0.100 80
Belgium 28.806 81.093 0.025 0.975 80
Brazil 16.048 35.891 0.883 0.117 60
Canada 22.723 64.069 0.375 0.625 80
Chile 18.919 40.487 0.322 0.678 59
Denmark 28.834 75.214 0.025 0.975 80
Finland 49.730 75.629 0 1 80
France 16.919 66.961 0.688 0.313 80
Germany 19.392 77.090 0.025 0.975 80
Italy 27.789 85.518 0.300 0.700 80
Japan 34.481 70.718 0 1 24
Mexico 45.355 96.397 0 1 80
Netherlands 16.440 89.232 0.775 0.225 80
New Zealand 21.102 48.917 0.458 0.542 24
Norway 25.484 81.281 0.175 0.825 80
Portugal 12.222 95.157 0.325 0.675 80
Spain 16.991 34.764 0.925 0.075 80
Sweden 34.655 111.531 0 1 80
Switzerland 16.630 36.658 0.813 0.188 80
UK 28.242 78.313 0.063 0.938 80
Minimum and maximum λ̂-test statistics, acceptance and rejection percentages
and number of available observations for each country, using CPI price series

when (possibly unwarranted) homogeneity and proportionality restrictions are

not imposed, and trivariate cointegration (stage-three) tests between the nom-

inal exchange rate, domestic and foreign price levels are carried out (instead

of stationarity tests on the real exchange rate, as in stage-two tests). We ex-

amine the US dollar real exchange rate vis-à-vis 21 other currencies over a

period of more than a century, and find that stage-three tests produce similar

results to those for stage-two tests, namely the former also behave erratically.

This corroborates the findings of Caporale, Pittis, and Sakellis (2003), in the

sense that these do not appear to be the consequence of arbitrarily imposed

(symmetry/proportionality) restrictions.
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Figure 2.13: CPI-based Argentine λ̂-trace stat series

Our results confirm that neither of the two traditional approaches to testing for

PPP (stage-two and stage-three tests) can solve the issue of PPP. Consistently

with Caporale, Pittis, and Sakellis (2003), the reported evidence again points to

some form of non-stationarity in the data which is unlike the standard unit-root

type normally assumed, or even the “separable” type discussed in Caporale and

Pittis (2002), but rather one where all the unconditional moments are unknown

functions of time. Future research should aim to determine its exact dynamic

features.



Chapter 3

A Meta Analytic Approach to
Testing for Panel Cointegration

Abstract

We propose new tests for panel cointegration by extending the panel
unit root tests of Choi (2001) and Maddala and Wu (1999) to the panel
cointegration case. The tests are flexible, intuitively appealing and rel-
atively easy to compute. We investigate the finite sample behavior in
a simulation study. Several variants of the tests compare favorably in
terms of both size and power with other widely used panel cointegration
tests.

Keywords: Panel cointegration tests, Monte Carlo study, Meta Analysis
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3.1 Introduction

There is wide consensus in economics that cointegration is an important statis-

tical concept which is implied by many economic models. In practice, however,

evidence of cointegration or non-cointegration is often weak because of the

rather small sample sizes typically available in macroeconometrics. To over-

come this problem, the cointegration methodology has recently been extended

to panel data. This allows the researcher to work with larger samples, thereby

improving the power of tests and efficiency of estimators.

Pedroni (2004) and Kao (1999) generalize the residual-based tests of Engle

and Granger (1987) and Phillips and Ouliaris (1990), Larsson, Lyhagen, and

Löthgren (2001) extend the Johansen (1988) tests to panel data while Mc-

Coskey and Kao (1998) propose a test for the null of panel cointegration in the

spirit of Shin (1994).

The present chapter introduces some new tests for panel cointegration, extend-

ing the p-value combination panel unit root tests of Maddala and Wu (1999)

and Choi (2001) to the cointegration setting. In this framework, it is straight-

forward to account for unbalanced panels and arbitrary heterogeneity in the

serial correlation structure of the series. Moreover, the tests are simple to im-

plement and intuitively appealing. We explore the finite sample performance

of the new tests in a simulation study. Certain variants of the tests compare

favorably with many previously proposed panel cointegration tests.

3.2 P-Value Combination Tests for Panel

Cointegration

The present section develops the new tests for panel cointegration. The fol-

lowing notation is used throughout. xik is a (Ti × 1) column vector collecting



3.2. COMBINATION TESTS FOR PANEL COINTEGRATION 27

the observations on the kth variable of unit i of the panel, where i = 1, . . . , N

and k = 1, . . . , K. Additionally, we allow for time polynomials of order up to

2, i.e. constants, trend and squared trend terms. The number of observations

Ti per unit may depend on i, i.e. the panel may be unbalanced. Denote by pi

the marginal significance level, or p-value, of a time series cointegration test

applied to the ith unit of the panel. Let θi,Ti
be a time series cointegration

test statistic on unit i for a sample size of Ti. FTi
denotes the exact, finite Ti

null distribution function of θi,Ti
. Since the tests considered here are one-sided,

pi = FTi
(θi,Ti

) if the test rejects for small values of θi,Ti
and pi = 1− FTi

(θi,Ti
)

if the test rejects for large values of θi,Ti
. We only consider time series tests

with the null of no cointegration.

We are interested in testing the following null hypothesis

H0 : There is no (within-unit) cointegration for any i, i = 1, . . . , N, (3.1)

against the alternative

H1 : There is (within-unit) cointegration for at least one i, i = 1, . . . , N.

The alternative H1 states that a rejection is evidence of 1 to N cointegrated

units in the panel. That is, a rejection neither allows to conclude that the

entire panel is cointegrated nor does it provide information about the number

of units of the panel that exhibit cointegrating relationships.

The main idea of the suggested testing principle has been used in meta analytic

studies for a long time (cf. Fisher, 1970; Hedges and Olkin, 1985). Consider

the testing problem on the panel as consisting of N testing problems for each

unit of the panel. That is, conduct N separate time series cointegration tests

and obtain the corresponding p-values of the test statistics.1 We make the

1Both Maddala and Wu (1999) and Choi (2001) suggest extending their panel unit root
tests to the cointegration case. However, to the best of our knowledge, they do not provide
an actual implementation nor do they investigate the performance of the tests. Furthermore,
our approach is more general and likely to be more accurate in some respects to be discussed
below.
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following assumptions (see Pedroni, 2004).

Assumption 1 (Continuity)

Under H0, θi,Ti
has a continuous distribution function for all i =

1, . . . , N .

Assumption 2 (Cross-Sectional Uncorrelatedness)

xik,t = xik,t−1 + ξik,t, t = 1, . . . , Ti, i = 1, . . . , N, k = 1, . . . , K. Let

ξi,t ≡ (ξi1,t, . . . , ξiK,t)
′. We require E[ξi,tξ

′
j,s] = 0 ∀ s, t = 1, . . . , Ti

and i 6= j. The error process ξi,t is generated as a linear vector

process ξi,t = Ci(L)ηi,t, where L is the lag operator and Ci are

coefficient matrices. ηi,t is vector white noise.

Remarks

• Assumption 1 is a regularity condition that asymptotically ensures a

uniform p-value distribution of the time series test statistics under H0 on

the unit interval: pi ∼ U [0, 1] (i ∈ NN) (see, e.g., Bickel and Doksum,

2001, Sec. 4.1). It is satisfied by the tests considered in this chapter.

• The second assumption is strong (see, e.g., Banerjee, Marcellino, and

Osbat, 2005). It implies that the different units of a panel must not be

linked to each other beyond relatively simple forms of correlation such

as common time effects which can be eliminated by demeaning across

the cross sectional dimension. This assumption is likely to be violated

in many typical macroeconomic panel data sets. We will return to this

issue in Chapter 4.

We now present the new tests. Combine the N p-values of the individual

time series cointegration tests, pi, i = 1, . . . , N , as follows to obtain three test
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statistics for panel cointegration:

Pχ2 = −2
N∑

i=1

ln(pi) (3.2a)

PΦ−1 = N− 1
2

N∑
i=1

Φ−1(pi) (3.2b)

Pt =

√
3(5N + 4)

π2N(5N + 2)

N∑
i=1

ln

(
pi

1− pi

)
(3.2c)

Here, Φ is the cdf of the standard normal distribution. When considered to-

gether we refer to Eqs. (3.2a) to (3.2c) as P tests from now on. The P tests,

via pooling p-values, provide convenient tests for panel cointegration by impos-

ing minimal homogeneity restrictions on the panel. For instance, the different

units of the panel can be unbalanced. Furthermore, the evidence for (non-

)cointegration is first investigated for each unit of the panel and then com-

pactly expressed with the p-value of the time series cointegration test. Hence,

the coefficients describing the relationship between the different variables for

each unit of the panel can be heterogeneous across i. Thus, the availability

of large-T time series allows for pooling the data into a panel without having

to impose strong homogeneity restrictions on the slope coefficients as in tradi-

tional panel data analysis.2 Under Assumptions 1 and 2, as Ti → ∞ for all i,

the test statistics are asymptotically distributed as

Pχ2 →d χ
2
2N

PΦ−1 →d N (0, 1)

Pt
approx.→d T5N+4,

where χ2 is a chi-squared distributed random variable and T denotes Student’s

t distribution. The subscripts give the degrees of freedom. Using consistent

time series cointegration tests, pi →p 0 under the alternative of cointegration.

Hence, quite intuitively, the smaller pi, the more it acts towards rejecting

2For an overview of panel data models relying on N →∞ asymptotics see Hsiao (2003).
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the null of no panel cointegration. The decision rule therefore is to reject

the null of no panel cointegration when Pχ2 exceeds the critical value from a

χ2
2N distribution at the desired significance level. For (3.2b) and (3.2c) one

would reject for large negative values of the panel test statistics PΦ−1 and Pt,

respectively.

We now discuss how to obtain the p-values required for computation of the P

test statistics. (In Chapter 5, we will show that using accurate p-values for

meta analytic panel tests is crucial to achieve a precise control of the type

I error rate.) The null distributions of both residual and system-based time

series cointegration tests converge to functionals of Brownian motion. Hence,

analytic expressions of the distribution functions are hard to obtain, and p-

values of the tests cannot simply be obtained by evaluating the corresponding

cdf.

A remedy frequently adopted in the literature is to derive the critical values

(and, consequently, the p-values) by Monte Carlo simulation. However, this

approach is unsatisfactory for (at least) the following reason. These simulations

are typically only performed for one sample size which is meant to provide an

approximation to the asymptotic distribution. This sample size need neither be

large enough to be useful as an asymptotic approximation nor does it generally

yield accurate critical values for other sample sizes. MacKinnon, Haug, and

Michelis (1999) show for cases where analytic expressions of the distribution

functions are available that this approach may deliver fairly inaccurate critical

values. In the time series case, it is now fairly standard practice to report

p-values of unit root and cointegration tests using the results of the response

surface regressions introduced by MacKinnon (1991). We follow this approach

here.

The null hypothesis (3.1) formulates no precise econometric characterization

of (non-) cointegration. This is to allow for generality in testing the long-run
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equilibrium properties of the series, enabling the researcher to use whichever

time series tests seem suitable to test for time series (non-)cointegration in

the different units of the panel. We use p-values of the Augmented Dickey-

Fuller (ADF ) cointegration tests (Engle and Granger, 1987) as provided by

MacKinnon (1996).3 That is, the p-values are obtained from the t-statistic of

γi − 1 in the OLS regression

∆ûi,t = (γi − 1)ûi,t−1 +
P∑

p=1

νp∆ûi,t−p + εi,t.

Here, ûi,t is the usual residual from a first stage OLS regression of one of the

xik on the remaining xi,−k and, possibly, deterministic terms. Alternatively,

one could capture serial correlation by the semiparametric approach of Phillips

and Ouliaris (1990). Finally, we obtain the p-values for the Johansen (1988)

λtrace and λmax tests provided in MacKinnon, Haug, and Michelis (1999). That

is, we test for the presence of h cointegrating relationships by estimating the

number of significantly non-zero eigenvalues of the matrix Π̂i estimated from

the Vector Error Correction Model

∆xi,t = −Πixi,t−P +
P−1∑
p=1

Γi,p∆xi,t−p + εi,t

by the λtrace-test

λtrace,i (h) = −T
K∑

k=h+1

ln (1− π̂k,i) (3.3)

and the λmax-test

λmax,i (h|h+ 1) = −T ln (1− π̂h+1,i) . (3.4)

Here, π̂k,i denotes the kth largest eigenvalue of Π̂i. In (3.3), the alternative is

a general one, while one tests against h+1 cointegration relationships in (3.4).

3MacKinnon improves upon his prior work by using a heteroskedasticity and serial cor-
relation robust technique to approximate between the estimated quantiles of the response
surface regressions. Our application is based on a translation of James MacKinnon’s Fortran
code into a GAUSS procedure which is available upon request. The procedure implements
all panel data tests developed in this section.
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Hence, we obtain the p-values required for performing the P tests from the

most widely used time series cointegration tests.

3.3 Finite Sample Performance

We now present a Monte Carlo study of the finite sample performance of the

tests proposed in the previous section. The Data Generating Process (DGP)

is similar to the one used by Engle and Granger (1987). The extension to the

panel data setting is discussed in Kao (1999). For simplicity, only consider the

bivariate case, i.e. K = 2:

DGP A

xi,1t − αi − βxi,2t = zi,t, a1xi,1t − a2xi,2t = wi,t

where

zi,t = ρzi,t−1 + ezi,t, ∆wi,t = ewi,t

and (
ezi,t

ewi,t

)
iid∼ N

([
0

0

]
,

[
1 ψσ

ψσ σ2

])
Remarks

• When |ρ| < 1 the equilibrium error in the first equation is stationary

such that xi1,t and xi2,t are cointegrated with βi = (1 − αi − β)′.

• When writing the above DGP as an error correction model (see, e.g.,

Gonzalo, 1994) it is immediate that xi2,t is weakly exogenous when a1 = 0.

We investigate all combinations of the following values for the parameters of the

model: β = 2, a1 ∈ {0, 1}, a2 = −1, σ ∈ {0.5, 1}, ρ ∈ {0.9, 0.99, 1} and ψ ∈

{−0.5, 0, 0.5}. The fraction of cointegrated series in the panel is increased from

0 to 1 in steps of 0.1, i.e. δ ∈ {0, 0.1, . . . , 1}. The dimensions of the panel are

N ∈ {10, 20, 50, 100, 150} and, after having discarded 150 initial observations,
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T ∈ {10, 30, 50, 100, 250, 500}, for a total of 2×1×2×3×3×11×5×6 = 11, 880

experiments. For a given cross-sectional dimension, the unit specific intercepts

are drawn as αi ∼ U [0, 10] and kept fixed for all T . Each experiment involves

M = 5, 000 replications.4 We choose a common β for all i in order to be able to

compare the performance of our tests with results for other panel cointegration

tests as reported by Gutierrez (2003). The p-values are from the Engle and

Granger (1987) ADF test, holding the number of lagged differences fixed at

1. We further test for cointegration using the λtrace-test for h = 0 vs. an

unrestricted number of cointegrating relationships.

For brevity, we only give the results for ψ = 0, a1 = 0 and σ = 1.5 Table 3.1

shows the empirical size of the tests (ρ = 1) at the nominal 5% level using the

ADF - and λtrace-tests as the underlying time series tests. Two conclusions are

obvious. First, the Engle/Granger-based tests are undersized. This issue is

particularly severe in short panels but vanishes with increasing T . Oddly, all

tests become more undersized as N increases. Chapter 5 provides an analysis

of this behavior. The Pχ2 test seems to have slightly better size than the

other two. We also investigate whether using MacKinnon’s (1996) p-values

improves the behavior of the tests relative to obtaining quantiles by generating

only one set of replicates. For smaller panels, the latter approach (with 50,000

replications) exhibits non-negligible upward size distortions even when using

quantiles specifically generated for the sample sizes considered. Interestingly,

however, there does not seem to be a trend towards lower size with increasing

N . For medium- and large-dimensional panels neither approach has a clear

advantage over the other.

4Uniform random numbers are generated using the KM algorithm from which Nor-
mal variates are created with the fast acceptance-rejection algorithm, both implemented
in GAUSS. Part of the calculations are performed with COINT 2.0 by Peter Phillips and
Sam Ouliaris.

5The full set of results of the finite sample study are available upon request. Broadly
speaking, a lower σ seems to have little, if any, systematic effect. Correlation in the error
processes (ψ 6= 0) has a slightly negative effect on power.
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Table 3.1: Empirical Size of the P Tests

ADF λtrace

T N 10 20 50 100 150 10 20 50 100 150

(i) Pχ2

10 .038 .040 .024 .018 .011 .956 .999 1.00 1.00 1.00
30 .035 .031 .021 .014 .009 .184 .260 .467 .702 .845
50 .041 .033 .027 .022 .021 .102 .137 .216 .344 .437
100 .047 .042 .036 .034 .029 .074 .077 .109 .143 .171
250 .046 .044 .046 .045 .036 .052 .056 .063 .076 .086
500 .049 .048 .049 .048 .047 .056 .052 .054 .068 .068

(ii) PΦ−1

10 .027 .019 .006 .002 .001 .954 .998 1.00 1.00 1.00
30 .034 .022 .016 .009 .005 .180 .265 .468 .711 .848
50 .038 .030 .026 .018 .016 .102 .136 .218 .355 .447
100 .046 .038 .032 .033 .025 .072 .081 .111 .139 .177
250 .043 .045 .044 .041 .032 .051 .061 .061 .079 .086
500 .049 .047 .045 .044 .041 .056 .053 .055 .070 .065

(iii) Pt

10 .030 .019 .006 .002 .001 .957 .998 1.00 1.00 1.00
30 .035 .023 .016 .010 .005 .183 .264 .473 .716 .852
50 .039 .030 .027 .018 .014 .102 .139 .217 .36 .447
100 .046 .038 .033 .032 .024 .074 .079 .109 .141 .176
250 .046 .045 .044 .041 .031 .053 .061 .063 .082 .086
500 .050 .048 .046 .045 .041 .056 .057 .059 .070 .067
Note: ρ = 1, ψ = 0, σ = 1 and a1 = 0. M = 5, 000 replications.
5% nominal level. ADF and λtrace are the underlying time series tests.

Second, the Johansen-based tests are grossly oversized in panels of small and

medium dimensions. Two reasons may be put forward for this disappointing

performance. First, the underlying λtrace-test overrejects in short time series

when using asymptotic critical values (see also Cheung and Lai, 1993). This

flaw then inevitably carries over to the panel tests via erroneously small p-

values. Second, MacKinnon, Haug, and Michelis (1999) emphasize that the

p-values estimated for the Johansen (1988) tests, unlike those estimated in

MacKinnon (1996) for the Engle and Granger (1987) test, are only valid asymp-

totically. It may thus not be appropriate to use these for shorter time series.

We therefore waive to report the essentially meaningless empirical power for
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shorter panels.

Table 3.2 shows the raw6 power of the tests at ρ = 0.9. The major findings

are as follows. First, after having discarded the severely size-distorted panels,

both the Engle/Granger- and Johansen-based tests behave consistently in that

power for all variants grows with both dimensions. The use of panel data is

therefore justified. Second, the PΦ−1 and the Pt tests outperform the Pχ2 test

at least for the ADF variant. This finding is in line with the results reported

by Choi (2001) for his panel unit root tests. Whether to choose the PΦ−1 or

the Pt in any application would be a matter of taste. Third, in each of the

cases, power grows faster along the time series dimension. More specifically, the

power of the tests rises quickly between T = 50 and T = 100. The simulation

evidence therefore suggests that the P tests are particularly useful in relatively

long panels. Figure 3.1 plots the power of the Engle/Granger-based tests for

N = 100 as the fraction of cointegrated variables in the system, δ, increases.

Panels (a) and (b) depict the cases T = 50 and T = 100, respectively. It can

be seen that the power of the P tests rises to one substantially quicker when

the underlying time series are longer.

We now relate our results to those of Gutierrez (2003). We first give the key

statistics of the various tests that are considered. For more details we refer

to the original contributions. Furthermore, Banerjee (1999), Baltagi and Kao

(2000) or Breitung and Pesaran [forthcoming] provide surveys of the literature.

Pedroni (2004)

Pedroni (2004) derives seven different tests for panel cointegration. These may

be categorized according to what information on the different units of the panel

is pooled. The “Group-Mean” Statistics are essentially means of the conven-

6Horowitz and Savin (2000) emphasize that size-adjusted critical values are of little use
in empirical work. We therefore do not calculate size-adjusted power.
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Table 3.2: Empirical Power of the P Tests

ADF λtrace

T N 10 20 50 100 150 10 20 50 100 150

(i) Pχ2

10 .061 .052 .040 .037 .033
30 .062 .070 .088 .120 .135
50 .115 .158 .287 .465 .609 .082 .131 .138 .152 .176
100 .403 .659 .955 1.00 1.00 .110 .217 .246 .254 .309
250 .999 1.00 1.00 1.00 1.00 .564 .966 .997 .999 1.00
500 1.00 1.00 1.00 1.00 1.00 .998 1.00 1.00 1.00 1.00

(ii) PΦ−1

10 .039 .031 .015 .006 .005
30 .063 .078 .108 .151 .188
50 .136 .201 .376 .617 .771 .076 .130 .128 .129 .143
100 .426 .700 .968 1.00 1.00 .106 .223 .238 .238 .271
250 .990 1.00 1.00 1.00 1.00 .443 .892 .975 .996 1.00
500 1.00 1.00 1.00 1.00 1.00 .941 1.00 1.00 1.00 1.00

(iii) Pt

10 .041 .030 .015 .005 .004
30 .063 .076 .105 .150 .182
50 .132 .196 .359 .603 .751 .078 .135 .131 .134 .148
100 .423 .685 .961 1.00 1.00 .108 .222 .240 .241 .277
250 .994 1.00 1.00 1.00 1.00 .480 .915 .982 .997 1.00
500 1.00 1.00 1.00 1.00 1.00 .979 1.00 1.00 1.00 1.00
Note: ρ = 0.9, ψ = 0, σ = 1, δ = 0.5 and a1 = 0. M = 5, 000 replications.
5% nominal level. ADF and λtrace are the underlying time series tests.

tional time series tests (see Phillips and Ouliaris, 1990). The “Within” Statis-

tics separately sum the numerator and denominator terms of the correspond-

ing time series statistics. Let Ai =
∑T

t=1 ẽi,tẽ
′
i,t, where ẽi,t = (∆êi,t, êi,t−1)

′.

The êi,t are obtained from heterogenous Engle/Granger-type first stage OLS

regressions of an xik on the remaining xi,−k, and possibly some determinis-

tic regressors. We consider the “Group-ρ”, “Panel-ρ” and (nonparametric)
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(a) T = 50, N = 100. (b) T = N = 100.
ρ = 0.9, ψ = 0, σ = 1 and a1 = 0

Figure 3.1: Power of the P panel cointegration tests

“Panel-t”-test statistics which are given by, respectively,

Z̃ρ̂NT−1 =
N∑

i=1

A−1
22i(A21i − T λ̂i),

Zρ̂NT−1 =

(
N∑

i=1

A22i

)−1 N∑
i=1

(A21i − T λ̂i) and

Zt̂NT
=

(
σ̃2

NT

N∑
i=1

A22i

)−1/2 N∑
i=1

(A21i − T λ̂i).
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The expressions λ̂i and σ̃2
NT estimate nuisance parameters from the long-run

conditional variances. After proper standardization, all statistics have a stan-

dard normal limiting distribution. The decision rule is to reject the null hy-

pothesis of no panel cointegration for large negative values.

Kao (1999)

Kao (1999) proposes five different panel extensions of the time series (A)DF -

type tests. We focus on those that do not require strict exogeneity of the

regressors. More specifically,

DF ∗ρ =

√
NT (ρ̂− 1) +

3
√
Nσ̂2

ν

σ̂2
0ν√

3 +
36σ̂4

ν

5σ̂4
0ν

and

DF ∗t =
tρ +

q
6Nσ̂2

ν

2σ̂0ν√
σ̂2

0ν

2σ̂2
ν

+
3σ̂2

ν

10σ̂2
ν

.

Here, ρ̂ is the estimate of the AR(1) coefficient of the residuals from a fixed

effects panel regression and tρ is the associated t-statistic. The remaining

terms play a role similar to the nuisance parameter estimates in the Pedroni

(2004) tests. Again, both tests are standard normal under the null of no panel

cointegration and reject for large negative values.

Larsson, Lyhagen, and Löthgren (2001)

The panel cointegration test of Larsson, Lyhagen, and Löthgren (2001) applies

a Central Limit Theorem to (3.3). Defining λtrace = N−1
∑N

i=1 λtrace,i, their

panel cointegration test statistic is given by

ΥLR =
√
N

λtrace − E[λtrace]√
Var[λtrace]

 .
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Under some conditions, including
√
NT−1 → 0, Larsson, Lyhagen, and Löthgren

(2001) can show that ΥLR
T,N−→ N (0, 1). The moments are obtained by stochas-

tic simulation and are tabulated in the chapter. The null hypothesis of no coin-

tegration at a level α is rejected if the test statistic exceeds the (1−α)-quantile

of the standard normal distribution, i.e. for large values.

Now, let us compare the results in Figure 3.1 with those obtained by Gutier-

rez (2003).7 The P tests are somewhat less powerful than the residual-based

panel tests Z̃ρ̂NT−1, Zρ̂NT−1, DF
∗
ρ and DF ∗t for shorter panels. However, power

for longer panels is similar. Furthermore, the P tests always outperform the

system-based ΥLR test by Larsson, Lyhagen, and Löthgren (2001). Note,

though, that these results are not based on size-adjusted critical values as

in Gutierrez (2003). Given that the P tests seem to be undersized (see Table

3.1), their power would be higher if it were reported on the basis of exact rather

than nominal critical values.

We think that DGP A is restrictive. Apart from the unit specific intercepts, no

heterogeneity is allowed for. But, in many practical applications, the units of

a panel, say, countries, differ in their short-run dynamic adjustment behavior.

We therefore elicit how the performance of the tests changes when we introduce

heterogeneity in the serial correlation properties. Since, to the best of our

knowledge, no comparison of the different panel cointegration tests under these

circumstances is available in the literature, we also include some of the tests

presented above.

Consider the following modification of DGP A to introduce higher order serial

correlation in the equilibrium error zi,t. We draw, for each cointegrated series

in the panel, the order of the AR-process according to ζ̃i = [ζi], where ζi ∼

U [1, 6], i = 1, . . . , δN and [y] is the integer part of y. We then generate the

AR-coefficients from ϕi,p ∼ U [0, 0.99], i = 1, . . . , δN ; pi = 1, . . . , ζ̃i, discarding

7Figure 3.1 corresponds to the middle and lower right panel in Fig. 1 in Gutierrez (2003).
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Table 3.3: Power with AR(p) Errors

T N 10 30 50 10 30 50

Pχ2DF PΦ−1DF

20 .899 .999 1.00 .792 .992 .999
30 .990 1.00 1.00 .961 1.00 1.00
50 .999 1.00 1.00 .997 1.00 1.00

PtDF Zρ̂NT−1

20 .832 .995 .999 .806 .996 1.00
30 .973 1.00 1.00 .899 .999 1.00
50 .998 1.00 1.00 .980 1.00 1.00

Zt̂NT
DF ∗ρ

20 .968 1.00 1.00 .030 .019 .015
30 .969 1.00 1.00 .101 .109 .130
50 .988 1.00 1.00 .276 .355 .424
Note: σ = 1, δ = 0.5, ψ = a1 = 0.
M = 5, 000 replications. 5% nominal level.

all processes with eigenvalues outside the unit circle.

DGP B

xi1,t − αi − βxi2,t = zi,t, a1xi1,t − a2xi2,t = wi,t,

zi,t =

ζ̃i∑
pi=1

ϕi,pi
zi,t−pi

+ ezi,t, ∆wi,t = ewi,t,(
ezi,t

ewi,t

)
iid∼ N

([
0

0

]
,

[
1 ψσ

ψσ σ2

])
Table 3.3 gives results on the power of the tests for σ = 1, ψ = 0, a1 = 0 and

δ = 0.5. The dimensions are T ∈ {20, 30, 50}, N ∈ {10, 30, 50}. The second

part of the subscript (‘DF ’) indicates that Engle and Granger’s (1987) ADF

test is chosen as the underlying time series test for the P tests. The number of

lagged differences for the ADF regression is chosen according to the automatic

procedure suggested by Ng and Perron (2001). It is not possible to compare the

power with the results from Table 3.2 because the alternative is now different.

But, Table 3.3 shows that the first five tests clearly have higher power than

the last one. This is intuitive as the P and Pedroni (2004) tests are designed
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to accommodate cross-sectional heterogeneity. The tests put forward in this

chapter may therefore be useful in a fairly wide range of practical applications.

3.4 Conclusion

We introduce new tests for panel cointegration. As in Maddala and Wu (1999)

and Choi (2001), we use a meta analytic p-value combination approach to de-

velop tests for nonstationary panel data. The new tests are flexible, intuitively

appealing and easy to implement. The tests employ highly accurate p-values

obtained from response surface regressions (MacKinnon, 1996; MacKinnon,

Haug, and Michelis, 1999). A finite sample study reveals that the Engle and

Granger (1987)-based variant of the suggested tests is somewhat undersized in

very short and wide panels. However, the empirical size of the tests is very

close to the nominal one for panel dimensions often encountered in applied

macroeconometric work. In terms of power, their performance is intermediate

between other widely used panel cointegration tests.

As most tests in this literature, the ones suggested here rely on the assumption

of cross-sectional uncorrelatedness (see Assumption 2). This assumption is

likely to be overly strong for many macroeconomic panels and may lead, if

violated, to erroneous conclusions (cf. O’Connell, 1998). We therefore suggest

to extend the tests developed here to allow for cross-sectional correlation by,

e.g., the bootstrap method. Maddala and Wu (1999) report encouraging results

along these lines for their panel unit root test. There is a growing literature

on bootstrapping cointegrating regressions (see Li and Maddala, 1997) that

can be fruitfully applied to the present problem. Recent useful contributions

include Chang and Park (2003) and Chang, Park, and Song (2006). We turn

to this question in the next chapter.





Chapter 4

Cross-Sectional Correlation
Robust Tests for Panel
Cointegration

Abstract

We use meta analytic combination procedures to develop new tests for
panel cointegration. The main idea consists in combining p-values from
time series cointegration tests on the different units of the panel. The
tests are robust to heterogeneity as well as to cross-sectional dependence
between the different units of the panel. To achieve the latter, we employ
a sieve bootstrap procedure with joint resampling of the residuals of the
different units. A simulation study shows that the suggested bootstrap
tests can have substantially smaller error-in-rejection probabilities than
tests ignoring the presence of cross-sectional dependence while preserv-
ing high power. We apply the tests to a panel of Post-Bretton Woods
data to test for weak Purchasing Power Parity (PPP).1

Keywords: panel cointegration tests, cross-sectional dependence, sieve
bootstrap

1I would like to thank conference participants at the FEMES 2006, Beijing and the
Statistische Woche 2006, Dresden, and Pavel Stoimenov for helpful comments.
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4.1 Introduction

The application of unit root and cointegration tests in macroeconometric prac-

tice is often hampered by the lack of large sample sizes. The (first-order)

asymptotic approximation used for deriving the distribution of the test statis-

tics may then be rather inaccurate. One solution to improve the power and

reduce the error-in-rejection probability (size distortion) of these tests is to

pool several time series into a panel data set and develop panel unit root and

cointegration tests.

Pedroni (2004) and Kao (1999) generalize the residual-based tests of Engle

and Granger (1987) and Phillips and Ouliaris (1990), Larsson, Lyhagen, and

Löthgren (2001) extend the Johansen (1988) tests to panel data while Mc-

Coskey and Kao (1998) propose a test for the null of panel cointegration in

the spirit of Shin (1994). All these tests, however, rely on the assumption that

the different cross-sectional units of the panel are independent or, at most,

exhibit dependence of a rather simple form. This assumption, characterizing

the so-called first generation tests, greatly simplifies the derivation of limiting

distributions of the panel test statistics, but may not hold in practice. Phillips

and Sul (2003), Moon and Perron (2004) and Bai and Ng (2004) put forward

factor approaches to deal with cross-sectional correlation in panel unit root

and cointegration testing. Their approach may, however, require the validity

of the factor structure assumption modelling the correlation structure of the

panel units. As argued by Breitung and Das (2005), size distortions may result

if this assumption, which is hard to verify, is not met.

The main contribution of the present chapter therefore is to suggest new tests

for panel cointegration that are robust to cross-sectional dependence (or, syn-

onymously, cross-sectional correlation) of an arbitrary form. The main idea of

the testing principle has been used in meta analytic studies for a long time (see
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Fisher, 1970; Hedges and Olkin, 1985) and was introduced into the panel liter-

ature by Maddala and Wu (1999) and Choi (2001), who propose meta analytic

panel unit root tests: Consider the testing problem on the panel as consisting

of N testing problems for each unit of the panel. Conduct N separate time

series tests and obtain the corresponding p-values of the test statistics. Then,

combine the p-values of the N tests (in a sense to be made precise below) into

a single panel test statistic. Chapter 3 extends their framework to the panel

cointegration setting.

To robustify the panel cointegration tests against cross-sectional correlation

of an arbitrary form, we use a bootstrap scheme that jointly resamples entire

cross-sections of residuals to preserve the cross-sectional correlation structure

in the panel. We provide some simulation evidence to demonstrate the ef-

fectiveness of the suggested procedure. In particular, the bootstrap tests can

have dramatically smaller error-in-rejection probabilities than tests ignoring

the presence of cross-sectional dependence. At the same time, the bootstrap

tests preserve high power. We use the tests to investigate the weak PPP hy-

pothesis for a panel of Post-Bretton Woods exchange rate data. Our main

result is that using cross-sectional correlation corrected critical values may

make an important difference in econometric practice.

The remainder of the chapter is organized as follows. The next section es-

tablishes notation and reviews the meta analytic p-value combination tests

for panel cointegration under the assumption of cross-sectional independence.

Section 3 discusses the bootstrap algorithm used to robustify the tests against

general forms of cross-sectional dependence. Section 4 summarizes the simula-

tion evidence on the effectiveness of the bootstrap tests under cross-sectional

dependence. Section 5 illustrates the use of the tests. The final section con-

cludes.
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4.2 P-Value Combination Tests for Panel

Cointegration

Consider the multivariate time series regression

yi,t = αi + κit+ ϑit
2 + βixi,t + ui,t (t ∈ NTi

) (4.1)

for each of the N units of a possibly unbalanced panel. (a ∈ Nb
c is short-

hand for a = b, . . . , c, omitting b if b = 1.) The (K × 1) column vector

xi,t = (xi1t, . . . , xiKt)
> (i ∈ NN , t ∈ NTi

) collects the observations on the

K regressors for given i and t. yi,t and xi,t are integrated of order one, I(1)

(i ∈ NN). The row vector βi, αi, κi and ϑi may vary across i, allowing for

heterogeneous cointegrating vectors and time polynomials of order up to two,

i.e. constants, trend and squared trend terms. We furthermore make the fol-

lowing Functional Central Limit Assumption on the Data Generating Process

(DGP) of the variables.

Assumption 1 (Invariance Principle).

Let zi,t := (yi,t,x
>
i,t)

> and ξi,t := (ξiyt, ξi1t, . . . , ξiKt)
>. The true pro-

cess zi,t is generated as zi,t = zi,t−1 + ξi,t, (i ∈ NN , t ∈ NTi
).

ξi,t satisfies T
− 1

2
i

∑[Tir]
t=1 ξi,t ⇒ Bi,Ωi

(r) (i ∈ NN) as Ti → ∞, where

r ∈ [0, 1] and ⇒ denotes weak convergence. [x] is the integer part

of x and Bi,Ωi
(r) is vector Brownian motion with asymptotic co-

variance matrix Ωi. Also, the K ×K lower right submatrix of Ωi,

Ωxx,i, has full rank.

This assumption ensures, among other things, that there are no cointegrating

relationships among the regressors in (4.1).2 pi denotes the p-value of a time

series cointegration test applied to the ith unit of the panel. Let θi,Ti
be a

2See Pedroni (2004) for further discussion.
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time series cointegration test statistic on unit i for a sample size of Ti. Let FTi

denote the null cumulative distribution function (cdf) of θi,Ti
. Since the tests

considered here are one-sided, pi = FTi
(θi,Ti

) if the test rejects for small values

of θi,Ti
and pi = 1−FTi

(θi,Ti
) if the test rejects for large values of θi,Ti

. We only

consider time series tests with the null of no cointegration.

We test the following null hypothesis:

H0 : There is no cointegration for any i (i ∈ NN),

against the alternative

H1 : There is cointegration for at least one i.

UnderH0, {ui,t}t in (4.1) is an I(1) stochastic process (i ∈ NN). The alternative

H1 states that there are 1 to N cointegrated units in the panel. That is, a

rejection neither allows to conclude that the entire panel is cointegrated nor

does it provide information about the number of units of the panel that exhibit

cointegrating relationships.

We make the following assumptions (see Pedroni, 2004):

Assumption 2 (Continuity).

Under H0, θi,Ti
has a continuous distribution function (i ∈ NN).

Assumption 3 (Cross-Sectional Uncorrelatedness).

E[ξi,tξ
>
l,s] = 0 (s, t ∈ NTi

, i 6= l). The error process ξi,t is generated

as a linear vector process ξi,t = Ci(L)ηi,t, where L is the lag operator

and ηi,t is vector white noise.

Remarks

• Assumption 2 is a regularity condition which ensures a uniform distri-

bution of the p-values of the time series test statistics under H0: pi ∼
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U [0, 1] (i ∈ NN) (see, e.g., Bickel and Doksum, 2001, Sec. 4.1). It is

satisfied by the time series tests considered in this chapter.

• Assumption 3 is strong (see, e.g., Banerjee, Marcellino, and Osbat, 2005).

It implies that the different units of a panel must not be linked to each

other beyond relatively simple forms of correlation such as common time

effects. These can be eliminated by demeaning across the cross-sectional

dimension. This assumption is likely to be violated in many typical

macroeconomic panel data sets. For instance, consider a panel data set

consisting of exchange rates vis-à-vis the U.S. dollar. The exchange rates

of, say, the Euro and the Mexican Peso generally do not react identically

to a macroeconomic shock in the U.S., given the very different structure

of financial and trade links with the U.S.

• We emphasize that Assumption 3 is sufficient, but not necessary. Section

3 presents an approach that allows to dispense with this assumption.

We now present the test statistics for panel cointegration put forward in this

chapter. Combine the N p-values of the individual time series cointegration

tests, pi (i ∈ NN), as follows:

Pχ2 = −2
N∑

i=1

ln(pi) (4.2a)

PΦ−1 = N− 1
2

N∑
i=1

Φ−1(pi), (4.2b)

where Φ−1 denotes the inverse of the cdf of the standard normal distribution.3

When considered as a group we refer to Eqs. (4.2a) and (4.2b) as P tests. Fur-

thermore, we refer to P tests relying on Assumption 3 as “simple” P tests. The

P tests, via pooling p-values, provide convenient tests for panel cointegration

by imposing minimal homogeneity restrictions on the panel. For instance, the

3See also Maddala and Wu (1999) and Choi (2001).
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different units of the panel can be unbalanced. Furthermore, the evidence for

(non-)cointegration is first investigated for each unit of the panel and then com-

pactly expressed with the p-value of the time series cointegration test. Hence,

the coefficients describing the relationship between the different variables for

each unit of the panel can be heterogeneous across i. Thus, the availability

of large-T time series allows for pooling the data into a panel without having

to impose strong homogeneity restrictions on β as in traditional panel data

analysis.4

We now turn to the asymptotic distributions of the tests.

Theorem 1.

Under the null of no panel cointegration and Assumptions 1, 2 and 3, as Ti →

∞ (i ∈ NN), the P tests are asymptotically distributed as

(i) Pχ2 →d χ
2
2N

(ii) PΦ−1 →d N (0, 1).

Proof. (i) The proof is an application of the transformation theorem for absolutely con-
tinuous random variables (r.v.s) (see, e.g., Bierens, 2005, Thm. 4.2). Under H0, pi ∼ U [0, 1].
Let y = g(pi) := −2 ln(pi). Then, pi = g−1(y) = e−

1
2 y and the density of −2 ln(pi) is given

by

f−2 ln(pi)(y) = fpi
(g−1(y))

∣∣∣∣ ∂∂y g−1(y)
∣∣∣∣ .

Hence, ∂
∂y g

−1(y) = − 1
2e
− 1

2 y and | ∂
∂y g

−1(y)| = 1
2e
− 1

2 y. We have fpi(g
−1(y)) = 1 ∀ g−1(y) ∈

[0, 1]. This implies f−2 ln(pi)(y) = 1
2e
− 1

2 y. The density of a χ2
R r.v. is fχ2

R
(y) = 1

2R/2Γ(R/2)
y

R
2 −1

e−
y
2 . With R = 2, we get fχ2

2
(y) = 1

2Γ(1)e
− y

2 . Recall that Γ(1) =
∫∞
0
t1−1e−t dt = 1. So,

fχ2
2
(y) =

1
2
e−

y
2 .

We have shown that f−2 ln(pi)(y) = fχ2
2
(y). The proof is complete since the sum of N

independent χ2
R r.v.s is distributed as χ2

NR.

(ii) Since, under H0, P(Φ−1(pi) 6 x) = P(pi 6 Φ(x)) = Φ(x), we have Φ−1(pi) ∼ N (0, 1).
By the convolution theorem (see, e.g., Spanos, 1986, pp. 99), the sum of N independent
N (0, 1) r.v.s has a N (0, N) distribution. Hence, PΦ−1 is also normal with

E[PΦ−1 ] = 0 and Var[PΦ−1 ] = Var

[
N−

1
2

∑N

i=1
Φ−1(pi)

]
=

1
N

Var

[∑N

i=1
Φ−1(pi)

]
= 1.

4For an overview of panel data models relying on N →∞ asymptotics see Hsiao (2003).
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Using consistent (as Ti → ∞) time series cointegration tests, pi →p 0 under

the alternative of cointegration. Hence, quite intuitively, the smaller pi, the

more it contributes towards rejecting the null of no panel cointegration. The

decision rule therefore is to reject the null of no panel cointegration when the

realized test statistic Pχ2 exceeds the critical value from a χ2
2N distribution

at the desired significance level. For (4.2b) one would reject for large negative

values of the panel test statistic PΦ−1 . We also see from the proof that the tests

have a well-defined asymptotic distribution for any finite N . This feature is

attractive because in many applications of panel cointegration analysis like the

above example, the assumption of N , the number of units in the panel, going to

infinity may not be a natural one. To rationalize the alternative hypothesis H1,

note that a small fraction of the units of the panel exhibiting strong evidence of

time series cointegration, thus yielding low p-values, might lead to a rejection

of the null hypothesis. Thus, as stated above, rejection of H0 should not be

taken as evidence of the entire panel being cointegrated.

We now discuss how to obtain the p-values required for computation of the

P test statistics. The null distributions of residual based cointegration tests

generally converge to functionals of Brownian motion. Hence, analytic expres-

sions of the distribution functions are not available and p-values of the tests

cannot simply be obtained by evaluating the corresponding cdf. In the time

series case, it is now fairly standard practice to obtain p-values of unit root

and cointegration tests using response surface regressions. We use p-values of

the Augmented Dickey-Fuller (ADF ) cointegration tests (Engle and Granger,

1987) as provided by MacKinnon (1996).5 Suppressing deterministic trend

terms for brevity, the p-values are derived from the t-statistic of %i − 1 in the

5MacKinnon improves upon his prior work by using a heteroskedasticity and serial cor-
relation robust technique to approximate between the estimated quantiles of the response
surface regressions.
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OLS regression

∆ûi,t = (%i − 1)ûi,t−1 +

Ji∑
j=1

νj∆ûi,t−j + εJi,i,t, (4.3)

where ∆ := 1−L and Ji is the number of lagged differences required to render

εJi,i,t white noise. Here, ûi,t is the usual OLS residual from the first stage

Engle and Granger (1987) regression (4.1). However, as should be clear from

the above discussion, the P tests are general enough to accommodate any time

series cointegration test for which p-values are available. Alternatively, one

could, for instance, capture serial correlation by the semiparametric approach

of Phillips and Ouliaris (1990).6 We focus on the Engle and Granger (1987)

ADF cointegration test because of its popularity and widespread availability.

4.3 Allowing for cross-sectional error

dependence

We now relax Assumption 3. As can be seen from the proof of Theorem 1,

this assumption guarantees the correct null distributions of the test statistics.

Theorem 1 no longer holds under general forms of cross-sectional dependence.

We suggest a bootstrap approach to capture the dependence structure in the

panel with the aim to construct panel cointegration tests robust to the pres-

ence of cross-sectional correlation. We employ the sieve bootstrap.7 The sieve

bootstrap approximates ui,t with a finite order autoregressive process, where

the order increases with sample size, and resamples from the residuals. Under

the following assumption, the sieve bootstrap yields an accurate approximation

6In Chapter 3, we also employed the p-values for the Johansen (1988) λtrace and λmax

tests. The corresponding P tests perform poorly, however, as the Johansen (1988) time
series cointegration tests severely overreject for the time series lengths usually available in
macroeconometric practice. Accordingly, the corresponding p-values are not distributed as
U [0, 1] under H0 and hence not suitable for the P tests. Chapter 3 also discusses other
p-value combination tests and provides more extensive Monte Carlo evidence on the simple
P tests.

7For related approaches, see Maddala and Wu (1999) and Swensen (2003).
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(Chang and Park, 2003):

Assumption 4 (Linearity).

The first differences of the equilibrium errors are generated as (pos-

sibly heterogeneous) linear processes, ∆ui,t = φi(L)εi,t, where φi(z) :=∑∞
`=0 φi,`z

`.

More precisely, the bootstrap algorithm proceeds as follows.

1. Compute the P test statistic(s) according to (4.2a) and (4.2b). Denote

the realizations by P̃χ2 and P̃Φ−1 .

2. Suppressing deterministic trend terms and denoting estimates by a ˆ ,

estimate equation (4.1) by OLS:

yi,t = α̂i + β̂ixi,t + ûi,t. (i ∈ NN , t ∈ NTi
)

3. Fit an autoregressive process to ∆ûi,t (i ∈ NN , t ∈ N2
Ti

). It is natural

to use the Yule-Walker procedure because it always yields an invertible

representation (Brockwell and Davis, 1991, Secs. 8.1–2). Letting ∆ûi :=

(Ti − 1)−1
∑Ti

t=2 ∆ûi,t, compute

γ̂i(j) :=
1

Ti − 1− j

Ti−j∑
t=2

(∆ûi,t−∆ûi)(∆ûi,t+j−∆ûi), (i ∈ NN , j ∈ Nq)

the empirical autocovariances of ∆ûi,t up to order q. Defining

Γ̂i,q :=

 γ̂i(0) · · · γ̂i(q − 1)
...

. . .
...

γ̂i(q − 1) · · · γ̂i(0)


and γ̂i := (γ̂i(1), . . . , γ̂i(q))

>, obtain the AR coefficient vector as

(φ̂q,i,1, . . . , φ̂q,i,q)
> := Γ̂−1

i,q γ̂i. (i ∈ NN)

4. The residuals are, as usual, given by

ε̂q,i,t := ∆ûi,t −
q∑

`=1

φ̂q,i,`∆ûi,t−`. (i ∈ NN , t ∈ Nq+2
Ti

)
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Center ε̂q,i,t to obtain

ε̃q,i,t := ε̂q,i,t −
1

Ti − q − 1

Ti∑
g=q+2

ε̂q,i,g. (i ∈ NN , t ∈ Nq+2
Ti

)

5. Resample nonparametrically from ε̃q,i,t to get ε∗q,i,t. To preserve the empir-

ical cross-sectional dependence structure, jointly resample residual vec-

tors

ε̃q,�,t := (ε̃q,1,t, . . . , ε̃q,N,t). (t ∈ Nq+2
Ti

)

6. Recursively construct the bootstrap samples as8

∆u∗q,i,t =

q∑
`=1

φ̂q,i,`∆u
∗
q,i,t−` + ε∗q,i,t. (i ∈ NN , t ∈ Nq+2

Ti
)

7. It is necessary to impose the null of a unit root when generating the

artificial data in bootstrap unit root tests to achieve consistency (Basawa,

Mallik, McCormick, Reeves, and Taylor, 1991). Accordingly, impose the

null of non-cointegration by integrating ∆u∗i,t to obtain u∗i,t and form

y∗q,i,t = α̂i + β̂ixi,t + u∗q,i,t. (i ∈ NN , t ∈ NTi
)

8. Perform the P tests using the artificial data set (y∗q,i,t,x
>
i,t)

>. Denote the

realizations of the test statistics by, e.g., P b∗
χ2 .

9. Repeat steps 4 to 8 many, say B, times.

10. Denote the indicator function by 1{ } and choose a significance level α.

Then, reject H0 of the Pχ2 or the PΦ−1 test if

1

B

B∑
b=1

1{P b∗
χ2 > P̃χ2} < α or

1

B

B∑
b=1

1{P b∗
Φ−1 < P̃Φ−1} < α, (4.4)

respectively.

8We run the recursion for 30 initial observations before using the ∆u∗q,i,t to mitigate the
effect of initial conditions.
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Remarks

• We provide no formal proof of the consistency of this bootstrap proce-

dure. It might be conjectured from the proofs of bootstrap consistency

for unit root tests (Swensen, 2003; Chang and Park, 2003) and for in-

ference in cointegrating regressions (Chang, Park, and Song, 2006). The

latter authors argue that their results may hold more generally, e.g., for

panel cointegration models.

• Steps 4 and 6 respectively “prewhiten” (or “sieve”) and “recolour” the

residuals using the sieve bootstrap. Thus, we attempt to generate a valid

bootstrap distribution of the data across the time series dimension using

a parametric AR approximation to the true DGP. There is, however, no

plausible parametric approximation of the dependence structure across

the cross-sectional dimension. We therefore resample entire cross-sections

of residuals to preserve the cross-sectional dependence structure of the

data. The resampling scheme across the cross-sectional dimension is thus

similar to block bootstrap procedures (Künsch, 1989).

• The selection of the lag order q in step 3 can be based on any of the

well-known selection criteria such as the Akaike Information Criterion or

a top-down procedure. The goal of the sieve bootstrap is to prewhiten

the residuals across t to obtain random resamples from ε̃q,i,t. Hence,

a selection scheme based on the whiteness of ε̃q,i,t is also an appealing

choice.

• It is possible to let q vary over i, qi 6= q, to capture heterogeneity in the

error processes. We do not make this possibility explicit in the notation.

• It is also possible to compute the bootstrap P tests based on resam-

ples from prewhitened residuals of a VAR regression of (∆ûi,t,∆x>i,t)
>.

For a related purpose, Chang, Park, and Song (2006) advocate a similar
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scheme in order to capture endogeneity of the regressors xi,t. Our sim-

ulation results are however similar to the ones to be presented for the

sieve bootstrap in the next section. The VAR approach is computation-

ally considerably more expensive and is therefore not discussed in detail.

Results are available upon request.

4.4 A Monte Carlo study

We perform a Monte Carlo study of the tests proposed in the previous sections.

The main results are as follows. The simple P tests can have high errors

in rejection probabilities (ERPs) when the units of the panel exhibit cross-

sectional correlation of a general form.9 Compared to the simple P tests,

bootstrapping the P tests as outlined in the previous section can strongly

reduce the ERP.

The DGP used here is an extension of a design which has been used in many

Monte Carlo studies of (panel) cointegration tests. See Engle and Granger

(1987) and, for the extension to the panel data setting, Kao (1999). For sim-

plicity, consider the bivariate case, i.e. K = 1.

yi,t − αi − βixi,t = vi,t, a1yi,t − a2xi,t = wi,t (i ∈ NN) (4.5)

where

vi,t = ρivi,t−1 + ĕzi,t, ∆wi,t = ĕwi,t,

ĕzi,t = ezi,t + λiεt ĕwi,t = ewi,t + πiewi,t−1

and  ezi,t

ewi,t

εt

 iid∼ N

 0

0

0

 ,
 1 ψσ 0

ψσ σ2 0

0 0 1


9Suppose the DGP is in the null hypothesis set, the tests are performed at a nominal level

α and the rejection frequency, or type I error rate, of the test is R(α). Then, ERP := |R(α)−
α|. The term size distortion is often used synonymously (see Davidson and MacKinnon,
1999).
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Remarks

• When |ρi| < 1 the equilibrium error vi,t in (4.5) is stationary such that yi,t

and xi,t are cointegrated with (1 − αi − βi)
>. Further, ρi need not be

constant across i. We do, however, choose a common ρ in the simulations

to limit the number of experiments and to facilitate the interpretation of

the results.

• Solving the system of equations (4.5) for xi,t, we can write

xi,t =
a1αi + a1vi,t − wi,t

a2 − a1βi

.

Thus, xi,t is weakly exogenous when a1 = 0.

• The panel is cross-sectionally dependent because of the common factor

εt and the idiosyncratic factor loadings λi ∼ U [ζ1, ζ2], where U [ζ1, ζ2]

denotes the uniform distribution with lower bound ζ1 and upper bound

ζ2.
10 Similar factor structures have been employed by Bai and Ng (2004)

and Phillips and Sul (2003). Even though we generate cross-sectional

dependence via a single factor, the validity of the suggested bootstrap

tests does not depend on knowledge of the latent factor structure.

• Since λi 6= λ = cst. it is not possible to remove the cross-sectional de-

pendence by subtracting time-specific means N−1
∑

i zi,t, as would be

possible under the stronger assumptions of, e.g., Westerlund (2005).

• If πi 6= 0 there is a moving-average component in the errors. In particular,

values −1 < πi < 0 are well-known to have a potentially severe size-

distorting effect on unit root and cointegration tests (Schwert, 1989).

10Uniform random numbers are generated using the KM algorithm from which Nor-
mal variates are created with the fast acceptance-rejection algorithm, both implemented
in GAUSS. Part of the calculations are performed with COINT 2.0 by Peter Phillips and
Sam Ouliaris.
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The dimensions of the panel are N ∈ {10, 30} and, after having discarded

75 initial observations, T ∈ {50, 100}. These are representative for the di-

mensions of data sets often encountered in macroeconometric applications.

For a given cross-sectional dimension we draw the unit specific intercepts as

αi ∼ U [0, 5] and keep them fixed for both T . We choose βi = U [1, 2], a2 = −1

and σ = 1 and investigate all combinations of the following values for the

parameters of the model: a1 ∈ {0, 1}, ψ ∈ {0, 0.5}, π ∈ {−0.5, 0} and

ρ ∈ {0.8, 0.9, 1}. Further, there are three different degrees of cross-sectional

dependence: (ζ1, ζ2) = (0, 0), (ζ1, ζ2) = (0, 1) and (ζ1, ζ2) = (1, 4), correspond-

ing to no, “weak” and “strong” cross-sectional dependence (see Mark, Ogaki,

and Sul, 2005). That is, 72 experiments are conducted for each of the 4 panel

dimensions.

To limit the computational burden, we use M = 1, 000 replications with

B = 1, 000 bootstrap resamples in each.11 The p-values are obtained from

the Engle and Granger (1987) ADF test, selecting the number of lagged differ-

ences Ji in the second stage ADF regressions (4.3) according to the automatic

procedure suggested by Ng and Perron (2001). We record a rejection if (i)

the Pχ2 test statistic exceeds the 5% critical value of the χ2
2N distribution, the

PΦ−1 test statistic falls below the 5% quantile of the cdf of the standard normal

distribution, −1.645, or (ii) for the bootstrap version of the tests, if equation

(4.4) applies.

To summarize, the DGP used here simultaneously addresses several issues that

have proved both relevant for empirical work and challenging for unit root and

cointegration tests. Hence, while cautioning that interpretation of Monte Carlo

results should strictly speaking be confined to the DGP at hand (see Horowitz

and Savin, 2000), we are optimistic that tests which perform well under this

11To gauge the sampling variability of the experiments we perform selected experiments
several times. The rejection rates never differed by more than 2 percentage points and
usually by less. This suggests the number of replications is sufficient.
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Table 4.1: Rejection Rates of the P Tests.

Pχ2 PΦ−1

N 10 30 10 30
T BS2 BSs Sim BS2 BSs Sim BS2 BSs Sim BS2 BSs Sim

(a) λi ∼ U [1, 4] (i) a1 = 0
50 .068 .049 .090 .092 .072 .141 .111 .081 .143 .127 .113 .193ρ = 1
100 .099 .056 .102 .114 .082 .166 .125 .091 .142 .156 .119 .233
50 .138 .092 .228 .156 .133 .313 .208 .157 .319 .235 .216 .452ρ = .9
100 .433 .294 .548 .477 .341 .691 .521 .393 .679 .691 .437 .815
50 .332 .267 .483 .396 .279 .632 .438 .379 .606 .502 .394 .753ρ = .8
100 .842 .736 .913 .879 .753 .954 .890 .805 .950 .912 .825 .981

(ii) a1 = 1
50 .200 .084 .272 .387 .148 .470 .237 .150 .214 .451 .253 .379ρ = 1
100 .256 .082 .162 .471 .128 .293 .289 .124 .180 .536 .248 .346
50 .185 .101 .165 .369 .160 .272 .224 .152 .096 .443 .307 .191ρ = .9
100 .273 .104 .078 .536 .143 .142 .327 .152 .076 .658 .334 .149
50 .229 .116 .155 .408 .211 .206 .303 .202 .093 .546 .415 .106ρ = .8
100 .452 .150 .138 .749 .300 .251 .550 .288 .162 .839 .593 .295

(b) λi ∼ U [0, 1] (i) a1 = 0
50 .047 .021 .024 .044 .011 .008 .077 .043 .021 .086 .055 .009ρ = 1
100 .103 .034 .035 .126 .036 .033 .127 .055 .033 .195 .087 .039
50 .157 .090 .090 .328 .208 .174 .326 .250 .131 .627 .540 .297ρ = .9
100 .763 .484 .599 .968 .873 .924 .903 .786 .774 .995 .980 .978
50 .569 .423 .486 .922 .773 .862 .804 .732 .630 .987 .974 .948ρ = .8
100 .999 .987 .998 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00

(ii) a1 = 1
50 .159 .057 .216 .289 .080 .322 .201 .119 .131 .383 .255 .182ρ = 1
100 .237 .068 .114 .477 .099 .191 .289 .118 .127 .559 .239 .185
50 .219 .113 .170 .404 .192 .275 .315 .229 .132 .590 .450 .188ρ = .9
100 .469 .232 .244 .905 .551 .537 .626 .455 .308 .974 .867 .695
50 .418 .227 .346 .790 .569 .625 .618 .470 .346 .942 .889 .630ρ = .8
100 .972 .791 .908 1.00 .989 1.00 .993 .946 .963 1.00 1.00 1.00

(c) λi ≡ 0 (i) a1 = 0
50 .030 .018 .015 .044 .006 .005 .059 .041 .011 .074 .033 .005ρ = 1
100 .081 .030 .019 .098 .015 .013 .092 .049 .016 .172 .063 .010
50 .145 .091 .068 .349 .165 .111 .332 .255 .091 .737 .605 .186ρ = .9
100 .789 .512 .567 .996 .940 .958 .927 .797 .784 1.00 .999 .995
50 .577 .367 .444 .953 .853 .848 .843 .742 .592 1.00 .998 .964ρ = .8
100 1.00 .995 .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(ii) a1 = 1
50 .157 .062 .196 .271 .085 .308 .198 .129 .132 .370 .153 .170ρ = 1
100 .265 .071 .142 .496 .090 .209 .304 .110 .124 .564 .215 .199
50 .241 .127 .198 .425 .205 .305 .327 .237 .143 .645 .510 .250ρ = .9
100 .583 .319 .345 .946 .664 .709 .744 .551 .450 .990 .940 .853
50 .481 .317 .405 .863 .649 .752 .680 .535 .435 .983 .947 .784ρ = .8
100 .994 .890 .969 1.00 1.00 1.00 .999 .990 .995 1.00 1.00 1.00

Note: ψ = 0.5, πi = −0.5. M,B = 1, 000 replications and resamples.
Panels (a), (b) and (c) correspond to “strong”, “weak” and no correlation.
Panels (i) and (ii) correspond to the exogenous and endogenous case.
BS2, BSs and Sim are the sieve bootstrap with q = 2, q data dependent, and simple, resp.
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experimental design may be useful for applied studies.

Table 4.1 reports the rejection rates from the Monte Carlo study of the boot-

strap and the simple P tests. For brevity, we only give the (representative)

results for the serially correlated case (π = −0.5) and ψ = 0.5.12 In or-

der to illustrate the importance of a suitable lag order q when applying the

sieve bootstrap we choose q = 2 (columns BS2) and the data dependent rule

q = [4 · (T/100).25] (columns BSs). The columns “Sim” refer to the simple P

tests.

The main findings may be summarized as follows. The simple P tests overreject

in the presence of cross-sectional correlation. The strength of the dependence—

see the rows ρ = 1 in panels (a) and (b)—does matter. The ERPs are partic-

ularly severe in the presence of endogenous regressors (see panels (ii) vs. (i)).

Under “strong” correlation (panel (a)) and endogeneity (a1 = 1), the simple P

tests even seem to be biased as they reject more frequently for samples gener-

ated under H1 than for samples generated under H0. On the other hand, the

difference in the performance of the tests between the uncorrelated case (c) and

the weakly correlated case (b) is small, suggesting that correlation robust tests

may be most expedient when one suspects strong forms of dependence in the

data. Generally, the sieve bootstrap is capable of removing or at least substan-

tially reducing the ERP. Size control usually is more effective in columns BSs

than in columns BS2. Thus, as expected, it is necessary to suitably prewhiten

the residuals with a data-dependent lag order selection scheme for q. This

is in line with many other studies in the nonstationary panel literature. For

instance, Hlouskova and Wagner (2006) find that selection of the lag length in

panel unit root ADF regressions plays an important role for the behavior of

many popular tests.

Concerning the power of the tests, consider rows ρ = 0.9, 0.8. Power increases

12The full set of results of the study is available upon request.
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with T , as expected. The increase in power with growing N is more pronounced

when the dependence in the data is smaller. This is intuitive because under

strong dependence, the amount of independent information in the panel is

smaller for a given N .

4.5 An Empirical Test of the PPP Hypothesis

In this section, we reconsider the Purchasing Power Parity (PPP) hypothesis

that has attracted wide attention in the literature (see Taylor and Taylor, 2004,

for a recent survey). Assuming the law of one price to hold at least in the long

run, its absolute version implies that the ratio of domestic price level Pi,t and

foreign price level P ∗i,t should be close to the exchange rate Si,t. Equivalently,

the real exchange rate Ri,t should be near one. Empirically, denoting natural

logs by lowercase letters, the PPP hypothesis therefore postulates that

ri,t = pi,t − p∗i,t − si,t (i ∈ NN)

is a stationary process. Due to factors such as transportation costs, one often

allows for non-unitary coefficients to obtain an equation of the form

p∗i,t = ai + βi1pi,t + βi2si,t + ei,t, (i ∈ NN) (4.6)

referred to as the weak PPP hypothesis. Since the variables typically are I(1),

the weak PPP hypothesis implies that ei,t is stationary, or, equivalently, that

p∗i,t, pi,t and si,t are cointegrated.

We use quarterly Post-Bretton Woods data for a panel of OECD countries,

observing the spot exchange rate and the consumer price index ranging from

1973:1 until 1998:2.13 The numeraire country (with respect to which the spot

exchange rate is sampled) is the United States. As has been pointed by, inter

13The data is from the IMF Financial Statistics CD-ROM. The list of included countries
can be found in Table 4.2.
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Table 4.2: Tests for Weak Purchasing Power Parity

Countries âi β̂1i β̂2i Ji t%i−1

Australia 16.848 0.833 3.982 2 -1.912
Austria -23.109 1.216 -0.115 2 -2.412
Belgium -3.907 1.114 -0.205 1 -1.626
Canada -5.292 0.943 10.491 1 -0.809
Denmark 12.461 0.974 -1.005 0 -0.751
Finland 10.224 0.915 0.455 3 -1.841
France 18.154 0.959 -2.014 1 -0.446
Germany -40.631 1.425 -3.421 3 -2.778
Greece 38.940 -0.036 0.352 0 -2.273
Ireland 30.309 0.875 -23.705 0 -1.082
Italy 28.505 0.659 0.003 3 -2.815
Japan 6.847 1.098 -0.119 0 -1.222
Netherlands -21.331 1.290 -6.165 0 -3.010
New Zealand 26.845 0.734 3.613 2 -1.727
Norway 11.707 0.888 0.489 1 -1.500
Portugal 38.443 0.383 0.155 3 -2.821
Spain 27.919 0.657 0.046 1 -2.340
Sweden 14.692 0.766 1.426 3 -2.423
Switzerland -30.012 1.313 -2.622 0 -1.203
United Kingdom 16.231 0.819 5.693 1 -2.002
United States numeraire country

Panel Results simple bootstrap critical values for q =
cr. val 2 4 6 8 10

P̃χ2 16.751 55.758 46.018 33.160 38.908 37.408 41.151
P̃Φ−1 3.483 -1.645 -0.522 1.190 0.383 0.432 -0.052
Note: First 3 columns are estimates of (4.6), Ji are number of lagged differences
chosen for unit root tests on êi,t. t%i−1 is t-statistic from (4.3). Bottom part gives
realized test statistics (left), simple (middle) and bootstrap (right) 5% critical
values for different AR orders q in the sieve bootstrap procedure.

alia, O’Connell (1998), the choice of a numeraire country naturally induces a

common component in the set of regressions (4.6). It is therefore interesting

to investigate the effect of using cross-sectional correlation robust tests of the

PPP hypothesis. Table 4.2 reports the estimation results. The first three

columns give the estimates of ai, βi1 and βi2. The results differ across countries,

making it attractive to use a panel procedure that allows for heterogeneity.

The number of lagged differences Ji chosen by the procedure of Ng and Perron

(2001) is reported in column 4. The fifth column gives the results for the t-
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statistics of the individual ADF cointegration regressions (4.3). All statistics

fail to produce evidence in favor of PPP, clearly exceeding the critical value of

-3.837. The Netherlands have the smallest statistic t%Neth−1
= −3.010, implying

a p-value of 0.251 (MacKinnon, 1996). The estimates of the panel tests are

reported in the bottom of Table 4.2. In view of the individual outcomes, it is

not surprising that the simple and bootstrap p-value combination tests also do

not reject the null hypothesis of no PPP.

Even though neither tests rejects the null, the critical values differ substantially.

In particular, the bootstrap critical values are almost all closer to the realized

test statistic, indicating that using the critical values of the simple tests would

be overly conservative in the present application. We conclude that using

cross-sectional correlation robust tests may well make an important difference

in econometric practice.

4.6 Conclusion

We suggest new meta analytic p-value combination tests for panel cointegra-

tion. The tests are robust to cross-sectional dependence of an arbitrary form.

To achieve robustness, a bootstrap procedure is used. Further advantages com-

pared to other widely used panel cointegration tests are that they are flexible,

intuitively appealing and comparatively easy to compute.

The simulation study reveals that the approach is generally effective in improv-

ing the reliability of the “simple” P tests. However, care is needed in properly

selecting the lag order in the sieve bootstrap scheme. This finding is analogous

to the well-known result that the size and power of time series unit root and

cointegration tests are fairly sensitive to the selection of the correct number of

lagged differences in the ADF regressions (or, selection of lag truncations in

estimating long-run variances).
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A further interesting finding is that the power gains from using panel tests

are the smaller the stronger the cross-sectional correlation in the data. We

interpret this as reflecting that combining correlated time series leads to less

additional information than combining independent series. This could imply

that the impressive power gains reported in simulations of first generation panel

unit root tests vs. time series unit root tests are partially an artefact of the ex-

perimental design relying on independence of the units. Our empirical study of

the weak PPP hypothesis reveals that cross-sectional correlation robust critical

values for the P tests can differ substantially from their simple counterparts.

It would be interesting to investigate how other commonly used panel cointe-

gration tests such as those developed by Pedroni (2004) or Kao (1999) perform

under general forms of cross-sectional correlation.

Another task for future research is to establish whether the bootstrap procedure

suggested in this chapter is consistent in the sense of leading to the same

limiting distributions for the bootstrap statistics as for the original ones. It

may be possible to establish bootstrap consistency along the lines of Chang

and Park (2003), Chang, Park, and Song (2006) and Swensen (2003).





Chapter 5

Are PPP Tests Erratic? Some
Panel Evidence

Abstract

This chapter1 examines whether, in addition to standard unit root and
cointegration tests, panel approaches also produce test statistics behav-
ing erratically when applied to tests for PPP. We show that if appro-
priate tests (which are robust to cross-sectional dependence and more
powerful than single time series tests) are used, any evidence of erratic
behaviour disappears, and strong empirical support is found for PPP.

Keywords: Purchasing Power Parity (PPP), Real Exchange Rates, Er-
ratic Behaviour, Panel Tests

1This chapter has been written jointly with Guglielmo Maria Caporale.
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5.1 Introduction

Purchasing Power Parity (PPP) is a key concept to the way international

economists understand real exchange rate behaviour. Most of them would

agree that PPP holds in the long run, if not continuously, at least in some

form, and that therefore it represents a valid international parity condition

(see, e.g., Taylor and Taylor, 2004, for a critical review of the PPP debate).

However, the available empirical evidence has not always been consistent with

the PPP condition. Given the wide consensus on the theory, this failure of for-

mal tests to provide support to PPP has mainly been attributed to flaws in the

econometric approaches taken. Froot and Rogoff (1995), in particular, high-

lighted the limitations of the tests used in three successive stages in the time

series literature on PPP. Initially, possible non-stationarities were overlooked.

Then the null that the real exchange rate follows a random walk (long-run

PPP being the alternative) was tested by means of unit root tests which are

now well-known to have very low power; cointegration methods, subsequently

used, suffered from similar problems. Recently, Caporale, Pittis, and Sakellis

(2003) have also argued that classical unit root tests are not informative about

PPP. Specifically, they show that the type of stationarity exhibited by the real

exchange rate cannot be accommodated by the fixed-parameter autoregressive

homoscedastic models normally employed in the literature. In particular, they

compute a recursive t-statistic, and show that it exhibits erratic behaviour, sug-

gesting the presence of endemic instability, and of a type of non-stationarity

more complex than the unit root one usually assumed. Similar results are

reported in the case of trivariate cointegration tests in Chapter 2, where we

conclude that the observed erratic behaviour is therefore not due to imposed

symmetry/proportionality restrictions.

In order to increase the power of tests of PPP, more recent studies have used
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panel methods (see, e.g., Wu, 1996, and Papell, 1997, 2002).2 The present

chapter investigates whether erratic behaviour still occurs when panel ap-

proaches are taken. If erraticism is found to disappear once more powerful,

panel tests are applied, one could then argue that the failure of earlier tests to

give support to PPP theory was indeed due to their low power, rather than to

incorrect assumptions about the dynamic features of the stochastic process of

interest. In this case, panel tests, characterised by much higher power, could

be seen as the way forward to settle the PPP debate. The layout of the chapter

is the following. Section 2 outlines the panel methods used. Section 3 presents

the empirical evidence. Section 4 summarises the main findings and offers some

concluding remarks.

5.2 The Panel Tests

This section briefly describes the panel tests considered in this study. It is

widely acknowledged that panels of exchange rate data are generally cross-

sectionally dependent (O’Connell, 1998). Panel unit root tests relying on the

assumption of cross-sectional independence (see, e.g., Levin, Lin, and Chu,

2002, Im, Pesaran, and Shin, 2003, or Choi, 2001) will therefore suffer from size

distortion, as recently demonstrated in, for instance, Hlouskova and Wagner

(2006). Accordingly, we focus on panel tests which are robust to the presence of

cross-sectional dependence. More specifically, we consider the tests put forward

by Choi (2006) and Phillips and Sul (2003).

2See Caporale and Cerrato (2006) for a critical survey of the empirical literature testing
PPP by means of panel methods. Another new development in the literature on real exchange
rates is the modelling of nonlinearities (resulting, for instance, from transaction costs – see
Taylor, Peel, and Sarno, 2001) in mean reversion. Some studies also allow for structural
breaks (see, e.g., Papell, 2002).
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Choi (2006)

In the first step, the panel tests of Choi (2006) apply Elliott, Rothenberg, and

Stock (1996) GLS detrending to the panel, thereby removing cross-sectional

dependence. In the second step, meta-analytic panel tests from, e.g., Choi

(2001) can then be used (see also Maddala and Wu, 1999).

Choi (2006) assumes the following two-way error-component model

yi,t = β0 + xi,t (i = 1, . . . , N ; t = 1, . . . , T ),

where

xi,t = µi + λt + vi,t,

and

vi,t =

pi∑
l=1

αilvi,t−l + ei,t

The test of a panel unit root is formulated as

H0 :

pi∑
l=1

αil = 1 i = 1, . . . , N

against

H1 :

pi∑
l=1

αil < 1 for a non-zero fraction #i/N

The Elliott, Rothenberg, and Stock (1996) GLS estimator of β0 is given by

β̂0i =
yi,1 +

(
1− 7

T

)∑T
t=2 yi,t −

(
1− 7

T

)
yi,t−1

1 + (T − 1)
(
1− (1− 7

T
)
)2

Choi (2006) shows that demeaning yit− β̂0i cross-sectionally gives, for large T ,

zi,t := yi,t − β̂0i −
1

N

N∑
i=1

(yi,t − β̂0i) ' vi,t − vi,1 − v.t + v.1,

where v.a := 1
N

∑N
i=1 via. This expression is independent of β0, λt and µi.

Moreover, v.t, v.1 →p 0. Hence, zi,t is cross-sectionally independent.
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In a second step, one applies meta-analytic panel tests to zit. For instance,

run Augmented Dickey-Fuller tests on zit. Then, after having obtained the

p-values of the test statistics3, these may be combined into panel test statistics

as follows:

Pm = − 1√
N

N∑
i=1

(ln(pi) + 1) (5.1)

Z =
1√
N

N∑
i=1

Φ−1(pi) (5.2)

L∗ =
1√

π2N/3

N∑
i=1

ln

(
pi

1− pi

)
, (5.3)

where Φ is the standard normal cumulative distribution function. As N, T →

∞, Pm, Z, L
∗ ⇒ N(0, 1). The tests are consistent because Pm →p ∞ and

Z, L∗ →p −∞ under H1.

Phillips and Sul (2003)

Phillips and Sul (2003) work with the dynamic panel representation

yi,t = µi(1− ρ) + ρyi,t−1 +

`i∑
j=1

φij∆yi,t−j + ui,t, (5.4)

where t = 1, . . . , T, i = 1, . . . , N and ρ ∈ (−1, 1]. They model cross-sectional

dependence with a standard normal common time effect θt which is allowed to

affect the units of the panel heterogeneously:

uit = δiθt + εit.

The εit are normal with mean zero and variance σ2
i . Letting ut = (u1, . . . , uN)>,

δ = (δ1, . . . , δN)> and Σ = diag(σ2
1, . . . , σ

2
N), we have Cov(ut) = Σ + δδ>. To

deal with the cross-sectional dependence in ut, Phillips and Sul (2003) suggest

estimating δ and Σ by computing MT = 1
T

∑T
t=1 ûtû

>
t , where ût is obtained

3In practice, one can evaluate the numerical distribution functions obtained by MacK-
innon (1994, 1996) via response surface regressions.
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from the residuals obtained under the null ρ = 1 in (5.4), and iteratively solving

the system of equations

δ̂ = (MT δ̂ − Σ̂δ̂)/δ̂
>
δ̂, σ̂2

i = MTii − δ̂2
i .

Using the orthogonal complement matrix δ̂⊥, one then computes the de-factored

series y+
t = (δ̂

>
⊥Σ̂δ̂⊥)−1/2δ̂

>
⊥yt. Phillips and Sul (2003) show that the above

transformation asymptotically removes the dependence in yt such that y+
t is

cross-sectionally independent.

It is then possible to perform, e.g., Fisher-type panel unit root tests:

P = −2
N−1∑
i=1

ln(pi), (5.5)

using p-values from unit root tests applied to each series y+
it , i = 1, . . . , N . In

practice, one can obtain the p-values as described in the previous subsection.

Under H0, P ⇒ χ2
2(N−1). Under the alternative, P →p ∞.

5.3 Results

We now investigate whether using the panel unit root tests discussed above

leads to erratic behaviour of the test statistics, namely whether there are fre-

quent jumps from the rejection to the non-rejection region as new observations

are successively added to the sample. We use the dataset also employed by

Taylor (2002), which includes annual data for the nominal exchange rate, CPI

and the GDP deflator. This dataset is particularly useful for our purposes

because it covers a long period, ranging from 1892 through to 1996. The

countries contained in our panel are: Argentina, Australia, Belgium, Canada,

Denmark, Finland, France, Germany, Italy, Mexico, Netherlands, Norway, Por-

tugal, Spain, Sweden, Switzerland and the United Kingdom. We use the United

States as the reference country throughout (see Taylor, 2002, for further details
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Figure 5.1: Test statistic series for L∗ for various N

on data sources and definitions). In order to investigate possible parameter in-

stability, we create a time series of test statistics resulting from the successive

estimation of (5.1)–(5.3) and (5.5). That is, we use the first k observations

to produce the first set of statistics, where we let k = 40 to discard estimates

which are likely to be affected by small-sample distortions. We then add an

extra observation to compute the second set of statistics based on k + 1 data

points, and repeat the process until all T available observations have been used

to yield T − k + 1 estimates of the test statistics.

We report results obtained using CPI data to construct the real exchange

rate series in Figures 5.1 to 5.4, where we plot the test statistic series against

the endpoint of the sample used to construct the statistics. The dashed lines

indicate the appropriate critical values at the 5% level.4

It is fairly apparent that there is little evidence of erratic behaviour in the panel

4The findings were very similar when the GDP deflator was used instead of the CPI
series (they are not reported here for the sake of brevity).
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Figure 5.2: Test statistic series for Pm for various N

test statistic series. Rather, the test statistics seem to be approaching their

respective probability limits under the alternative. In other words, it appears

that using suitably designed (i.e., robust to cross-sectional dependence) panel

tests, with much higher power compared to standard unit root tests, removes

erraticism of the test statistics, and provides strong evidence in favour of PPP.

5.4 Conclusion

This chapter has examined whether, in addition to standard unit root and

cointegration tests, panel approaches also produce test statistics behaving er-

ratically when applied to testing for PPP. We have shown that if appropriate

tests (which are robust to cross-sectional dependence and more powerful) are

used, any evidence of erratic behaviour disappears, and strong empirical sup-

port is found for PPP. This suggests that power is the critical issue in testing

PPP, rather than considering more complicated dynamic structures. Although
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Figure 5.3: Test statistic series for Z for various N

nonlinear modelling also seems to be a very promising direction for future re-

search on real exchange rates (see, e.g., Taylor and Peel, 2000), addressing

the power problem is confirmed here to be of crucial importance, and panel

approaches may to be able to provide conclusive evidence of the adequacy of

PPP as a theory of real exchange rate determination, provided sufficiently long

runs of data are used and cross-sectional dependence is tackled appropriately.
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Figure 5.4: Test statistic series for P for various N



Chapter 6

The Error-in-Rejection
Probability of Meta-Analytic
Panel Tests

Abstract

Meta-analytic panel unit root tests such as Fisher’s χ2 test, which consist
of pooling the p-values of time series unit root tests, are widely applied in
practice. Recently, several Monte Carlo studies have found these tests’
Error-in-Rejection Probabilities (or, synonymously, size distortion) to
increase with the number of series in the panel. We investigate this
puzzling finding by modelling the finite sample p-value distribution of
the time series tests with local deviations from the asymptotic p-value
distribution. We find that the size distortions of the panel tests can be
explained as the cumulative effect of small size distortions in the time
series tests.1

Keywords: Panel Unit Root Tests, Meta-Analysis, Error-in-Rejection
Probability

1I would like to thank Sebastian Herr for very helpful discussion.
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Meta-analysis is a useful tool to efficiently combine related information.2 In

recent years, the meta-analytic testing approach has been fruitfully applied to

nonstationary panels: Consider the testing problem on the panel as consisting

of N testing problems for each unit of the panel. That is, conduct N separate

time series tests and obtain the corresponding p-values of the test statistics.

Then, combine the p-values of the N tests into a single panel test statistic.

Among others, Maddala and Wu (1999), Choi (2001) and Phillips and Sul

(2003) propose meta-analytic panel unit root and cointegration tests. The tests

are intuitive, relatively easy to compute and allow for a considerable amount

of heterogeneity in the panel.

Via Monte Carlo experiments, the above-cited authors show that their meta-

analytic tests can be substantially more powerful than separate time series

tests on each unit in the panel, justifying the use of panel tests. Disturbingly,

however, Choi (2001), Hlouskova and Wagner (2006) and Chapter 3, inter

alia, find the Error-in-Rejection Probability (ERP ) (or, synonymously, size

distortion) to be increasing in N . That is, the (absolute) difference between the

estimated rejection probability (or type I error rate) R(α,N) and the nominal

significance level α, ERPN(α) := |R(α,N)− α|, gets larger with N . A priori,

this finding is counterintuitive, since more information should improve the

performance of the panel tests.

We argue that this behavior may be explained as the cumulative effect of

arbitrarily small ERP s in the underlying time series test statistics composing

the panel test statistics. Under a simple H0, assuming continuous distribution

functions of the test statistics, p-values of test statistics should be distributed

uniformly on the unit interval, denoted U [0, 1] (see, e.g., Bickel and Doksum,

2001, Sec. 4.1). We model size-distorted time series tests by deviations from the

null distribution of the test statistics’ p-values. The analytical and simulation

2See Hedges and Olkin (1985) for a nice introduction to the topic.
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evidence reported in the following sections corroborate our conjecture.

6.1 The P-Value Combination Test

We briefly review the p-value combination test whose ERP is investigated sub-

sequently.3 We discuss the example of a panel unit root test. The conclusions

might however be valid also for other applications of the meta test. Denote

by pi the marginal significance level, or p-value, of a time series unit root test

applied to the ith unit of the panel. Let θi,Ti
be a unit root test statistic on

unit i for a sample size of Ti . Let FTi
denote the null distribution function of

the test θi,Ti
. Since the tests considered here are one-sided, pi = FTi

(θi,Ti
) if

the test rejects for small values of θi,Ti
and pi = 1−FTi

(θi,Ti
) if the test rejects

for large values of θi,Ti
. We only consider time series tests with the null of a

unit root.

We test the following null hypothesis:

H0 : The time series i is unit-root nonstationary (i ∈ NN), (6.1)

against the alternative

H1 : For at least one i, the time series is stationary.

((i ∈ NN) is shorthand for i = 1, . . . , N .) The N p-values of the individual

time series tests, pi (i ∈ NN), are combined as follows to obtain a test statistic

for panel (non-) stationarity:

Pχ2 = −2
N∑

i=1

ln pi (6.2)

The Pχ2 test, via pooling p-values, provides a convenient test for panel (non-)

stationarity by imposing minimal homogeneity restrictions on the panel. For

3Similar results for other widely used meta-analytic tests such as the inverse normal test
are available upon request.



78 CHAPTER 6. THE ERP OF META-ANALYTIC PANEL TESTS

instance, the panel can be unbalanced. For further discussion see Choi (2001)

or Chapter 3. The following lemma gives the asymptotic distribution of the

test.

Lemma 1 (Distribution of the Pχ2 test).

Under the null of panel nonstationarity and assuming continuous distribution

functions of the θi,Ti
, the Pχ2 test is, as Ti → ∞ (i ∈ NN), asymptotically

distributed as

Pχ2 →d χ
2
2N

Proof. See page 49.

The decision rule is to reject the null of panel nonstationarity when Pχ2 exceeds

the critical value from a χ2
2N distribution at the desired significance level. The

test has a well-defined asymptotic distribution (for T → ∞) for any finite N .

This feature is attractive because in many applications, the assumption that

N , the number of units in the panel, goes to infinity may not be a natural one.

6.2 The Error-in-Rejection Probability of the

Combination Test

As should be clear from the previous discussion, any unit root for which p-values

are available can be used to compute the Pχ2 test statistic. Popular choices

include the Augmented Dickey-Fuller test (Dickey and Fuller, 1979). It is well-

known that using the (first-order) asymptotic approximation F , a functional of

Brownian Motions and possibly nuisance parameters, to the exact, finite Ti null

distribution of the test statistics, FTi
, need not be accurate. This is because

the null hypothesis (6.1) is not a simple one (and the available test statistics

are not pivotal). H0 is satisfied by all unit-root nonstationary processes

yi,t = yi,t−1 + ui,t, (i ∈ NN)
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Table 6.1: Simulated Type I Error Rates for the Pχ2 Test.

N 5 10 25 30 50 60 100
Maddala and Wu (1999) .044 .107 .131
Choi (2001) .050 .070 .090 .090 .130
Chapter 3 .035 .031 .021 .014
Hlouskova and Wagner (2006) .090 .110 .120 .145
Choi [forthcoming] .051 .042 .037
Note: All results are for the nominal 5% level.

where the errors ui,t can be from a wide class of dependent and heteroge-

neous sequences. See, for instance, the fairly general strong mixing conditions

on ui,t of Phillips (1987). Hence, the p-values of the test need no longer be

uniformly distributed on the unit interval, even if the true Data Generating

Process (DGP) of the time series is from the null hypothesis set of unit-root

nonstationary processes. Thus, the assumptions required for validity of Lemma

1 need no longer be met.

As we argue in this section, this fact can explain the counterintuitive finding of

a deteriorating performance of the Pχ2 test with increasing N . Table 6.1 sum-

marizes selected Monte Carlo results on the ERP of the Pχ2 test reported in the

literature.4 Most authors find R(α,N)− α to increase with N , while Chapter

3 and Choi report an inverse relationship. All find ERPN(α) = |R(α,N)− α|

to increase with N .

We propose the following modelling assumption to investigate this behavior.

Assumption 5 (Generalized p-value distribution).

For finite Ti, the p-values are distributed as p̃i ∼ U [a, b], where

a > 0, b 6 1 and a < b, (i ∈ NN).

4The differences stem from the length of the underlying time series, the type of non-
stationarity test applied to the time series, as well as the design of the DGP.
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Since the exact, finite Ti distribution of the test statistics is generally unknown,

so is the exact p-values’ distribution. The assumption is, however, convenient

for modelling purposes. First, letting a → 0 and b → 1, it comprises the

asymptotic result as a limiting case. Second, it is easy to characterize the

ERP of a single time series test in terms of a and b. More precisely, since a

rejection at level α is equivalent to a p-value p < α,

P(Fp̃i
< α) = R(α, 1) =


0 for a > α

α−a
b−a

for a < α and b > α

1 for b < α

In particular, it is possible to model “oversized” unit root tests by taking

p̃i ∼ U [0, b], where b < 1. Intuitively, we remove the p-values corresponding

to the test statistics speaking most strongly in favor of H0. Conversely, p̃i ∼

U [a, 1], a > 0 represents an “undersized” test. The following lemma derives

the density function of −2 ln p̃i under Assumption 1.

Lemma 2 (Distribution of −2 ln p̃i).

Under p̃i ∼ U [a, b], the density of −2 ln p̃i is given by

f−2 ln p̃i
(y) =


0 for y ∈ (−∞,−2 ln b)

1
2(b−a)

e−
y
2 for y ∈ [−2 ln b,−2 ln a]

0 for y ∈ (−2 ln a,∞),

taking − ln a = ∞ for a = 0.

Proof. Again, we can apply the transformation theorem for absolutely continuous r.v.s.
Using the notation from the proof of Lemma 1, we still have p̃i = g−1(y) = e−

1
2 y and hence

|g−1′(y)| = 1
2e
− y

2 . fp̃i
follows immediately from Assumption 1 as fp̃i

(g−1(y)) = 1
b−a for

g−1(y) ∈ [a, b] and 0 otherwise. The support of the r.v. −2 ln p̃i follows from solving g−1

for the lower and upper bounds of p̃i. It is verified elementarily that f−2 ln p̃i
(y) satisfies∫

R f−2 ln p̃i
(ỹ)dỹ = 1.

f−2 ln p̃i
(y) contains the density of the χ2

2 distribution as a special case with a = 0

and b = 1. We now study the ERP of the Pχ2 test for the case N = 1, denoted

ERP1(α). Let cα2 be the critical value of the χ2
2-distribution at nominal level
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α, i.e.
∫ cα2

0
1
2
e−

1
2
ỹdỹ = 1− α⇒ cα2 = −2 lnα. Then,

R(α, 1) = 1−
∫ −2 ln α

−∞
f−2 ln p̃i

(ỹ)dỹ

=
α

b

Let us consider a specific example. We investigate the “oversized” case, p̃i ∼

U [0, 0.9], and α = 0.05. Then, ERP1(0.05) =
∣∣∣0.05(1−0.9)

0.9

∣∣∣ = 0.05(1−0.9)
0.9

≈ 0.005,

yielding an ERP which would be considered small in most Monte Carlo anal-

yses.

For N = 2, we derive the following lemma in the appendix:

Lemma 3 (Density function of f−2
P2

i=1 ln p̃i
(y)).

f−2
P2

i=1 ln p̃i
(y) =


0 for y ∈ (−∞,−2 ln b)

1
4(b−a)2

e−
y
2 (y + 4 ln b) for y ∈ [−4 ln b,−2 ln a− 2 ln b]

1
4(b−a)2

e−
y
2 (−y − 4 ln a) for y ∈ (−2 ln a− 2 ln b,−4 ln a]

0 for y ∈ (−4 ln a,∞),

taking − ln a = ∞ for a = 0.

Continuing the above example, we compute ERP2(0.05) as

ERP2(0.05) = |R(0.05, 2)− 0.05| = R(0.05, 2)− 0.05

= 1−
∫ cα4

−∞
f−2

P2
i=1 ln p̃i

(ỹ)dỹ − 0.05

≈ 0.009

Note that ERP2(0.05) > ERP1(0.05). For illustration, Figure 6.1 displays

f−2
P2

i=1 ln p̃i
(y) and the density function of the χ2

4 distribution. The generalized

p-value distribution lies to the right of the χ2
4 distribution, as expected. The

dashed line indicates the 0.95 quantile of the χ2
4 distribution. f−2

P2
i=1 ln p̃i

(y)

has probability mass of more than 0.05 to the right of cα4 .

To analyze the ERP of the Pχ2 test for general N , we require the cumulative

distribution function of the r.v. −2
∑N

i=1 ln p̃i under Assumption 1. In keeping
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Figure 6.1: The density functions for the case N = 2

with most applications in the literature, we assume independence across i. It

is then possible to write the density of −2
∑N

i=1 ln p̃i as the convolution of

f−2 ln p̃i
(i ∈ NN) (see, e.g., Shiryaev, 1996, pp. 241)

f−2
PN

i=1 ln p̃i
(y) = f−2 ln p̃1 ∗ · · · ∗ f−2 ln p̃N

(y)

=
e−

y
2

2N(b− a)N
ϕ−2 ln b,−2 ln a ∗ · · · ∗ ϕ−2 ln b,−2 ln a,

where ϕ is the indicator function of y on the interval I = [−2 ln b,−2 ln a].

Introducing a suitable standardization factor rN , the convolution for general

N can be written as a function of the indicator functions of y on the unit

interval,

f−2
PN

i=1 ln p̃i
(y) = rN

e−
y
2

2N(b− a)N
ϕ0,1 ∗ · · · ∗ ϕ0,1.

By a Central Limit Theorem, the sum of N centered and standardized uniform

r.v.s converges to a standard normal r.v. Using a further scaling constant sN ,

we expect that the density of f−2
PN

i=1 ln p̃i
(y) can be well approximated for N

sufficiently large by an expression of the form rNsN
e−

y
2

2N (b−a)N φN(y). Here, φN(y)
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Figure 6.2: Rejection Rates of Pχ2 test at 5% as a Function of N

is the density function of the standard normal distribution (whose argument

also depends on N).

The exact computation however quickly becomes cumbersome for large N . We

shall therefore rely on simulation to further illustrate the effect of increasing N .

For each N ∈ {1, 6, 11, . . . , 246} we generate p-values according to U [0.02, 1],

U [0, 1] and U [0, 0.9], corresponding to under-, correctly, and oversized tests.

Based on R = 50, 000 replications, Figure 6.2 displays the rejection rates of the

Pχ2 test as a function of N when using the 5% critical values of the appropriate

χ2
2N distribution.

The figure confirms the conjectures resulting from the theoretical analysis.

When the p-values are, as they should be under H0, distributed uniformly

on the unit interval, the ERP of the Pχ2 test is excellent uniformly in N .

Conversely, even for small deviations from the nominal size of the time series

tests, the ERP s clearly increase in N . Reassuringly, the simulation result for

N = 1 is virtually indistinguishable from the analytical result above. Similarly,

Figure 6.3 reveals that the ERP of the panel test is the higher the stronger
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the component test statistics are oversized, as one would expect.

Figure 6.3: Rejection Rates of Pχ2 test at 5% for differing degrees of “over-
sizedness”

6.3 Conclusion

We show that meta-analytic panel tests can have arbitrarily large Errors-in-

Rejection Probabilities (size distortions) even when the underlying time series

tests have only slight Errors-in-Rejection Probabilities. The recommendation

for empirical practice therefore is to use critical values which take into account

as well as possible the shape of the exact (but generally unknown) finite sample

distribution of the test statistics. One way to achieve this is to compute cor-

rection factors depending on T using response surface regressions (MacKinnon,

1991). Even though we discuss the application of the Pχ2 test to testing prob-

lems for nonstationary panel data, the conclusions may hold more generally

for other applications and other meta-analytic test statistics.
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Appendix

Proof of Lemma 3

The convolution integral is given by

f−2
P2

i=1 ln p̃i
(y) = f−2 ln p̃i

∗ f−2 ln p̃i

=
∫

R

1
4(b− a)2

e−
1
2
xϕ−2 ln b,−2 ln ae

− 1
2
(y−x)ϕ−2 ln b,−2 ln adx

=
1

4(b− a)2
e−

1
2
y

∫
R
ϕ−2 ln b,−2 ln aϕ−2 ln b,−2 ln adx (6.A.1)

Since we consider the convolution of two densities with support I = [−2 ln b,−2 ln a],
the arguments have to satisfy y−x, x ∈ [−2 ln b,−2 ln a], implying the following weak
inequalities: x 6 y + 2 ln b, x > y + 2 ln a, y 6 −4 ln a and y > −4 ln b. Together,
these require that

x 6 min{y + 2 ln b,−2 ln a} =: M(y) and
x > max{−2 ln b, y + 2 ln a} =: m(y)

That is, we distinguish the following cases in (6.A.1):

1. For y ∈ (−∞,−4 ln b), we have f−2
P2

i=1 ln p̃i
(y) = 0.

2. We have −2 ln b > y+ 2 ln a for y ∈ [−4 ln b,−2 ln a− 2 ln b] and hence m(y) =
−2 ln b and M(y) = y + 2 ln b. Thus,

f−2
P2

i=1 ln p̃i
(y) =

1
4(b− a)2

e−
1
2
y

∫ y+2 ln b

−2 ln b
dx

=
1

4(b− a)2
e−

y
2 (y + 4 ln b).

3. We have −2 ln b 6 y+2 ln a for y ∈ (−2 ln a−2 ln b,−4 ln a) and hence m(y) =
y + 2 ln a and M(y) = −2 ln a. Thus,

f−2
P2

i=1 ln p̃i
(y) =

1
4(b− a)2

e−
1
2
y

∫ −2 ln a

y+2 ln a
dx

=
1

4(b− a)2
e−

y
2 (−y − 4 ln a).

4. For y ∈ (−4 ln a,∞), we have f−2
P2

i=1 ln p̃i
(y) = 0.





Chapter 7

Mixed Signals Among Panel
Cointegration Tests

Abstract

Time series cointegration tests, even in the presence of large sample sizes,
often yield conflicting conclusions (“mixed signals”) as measured by, in-
ter alia, a low correlation of empirical p-values (see Gregory, Haug, and
Lomuto, 2004, Journal of Applied Econometrics). Using their method-
ology, we present evidence suggesting that the problem of mixed sig-
nals persists for popular panel cointegration tests. As expected, there
is weaker correlation between residual and system-based tests than be-
tween tests of the same group.

Keywords: Panel cointegration tests, Monte Carlo comparison
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7.1 Introduction

An extensive battery of tests is available to investigate the unit root and coin-

tegration properties of economic time series. Typically, however, an applied

researcher has little practical guidance as to which test to use, as most tests

test very similar hypotheses. It would therefore be reassuring if rejection or

acceptance of a particular economic hypothesis did not depend on which of the

tests is used. For instance, in the context of hypothesis testing with stationary

variables it is well-known that the classical likelihood ratio, Lagrange multiplier

and Wald tests are asymptotically numerically equivalent under quite general

conditions (Davidson and MacKinnon, 1993, Ch. 13).

As analytical characterizations of the correlations of the various test statistics

for cointegration are difficult to obtain, Gregory, Haug, and Lomuto (2004)

analyze this question by means of Monte Carlo methods. They generate repli-

cations of two independent random walks and test the null of no cointegration

using the popular residual-based tests by Engle and Granger (1987) and Phillips

and Ouliaris (1990) as well as the system-based λtrace and λmax tests (Johansen,

1988). They then calculate p-values from the empirical distribution of the test

statistics by taking rank order of the latter and dividing by M , the number of

replications. Disturbingly, for most pairs of tests, virtually any combination

of p-values can arise. That is, while the combinations should ideally cluster

around the 45◦-line, it frequently occurs that a particularly strong rejection

using, say, the λtrace-test is associated with a clear acceptance of the null us-

ing, say, the Engle and Granger (1987) Augmented Dickey-Fuller (ADF )-test.

The main conclusion is that using different tests is likely to yield conflicting

conclusions in applications.

In recent years, the cointegration methodology has been extended to panel

data. Pedroni (2004) and Kao (1999) generalize residual-based tests, Larsson,
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Lyhagen, and Löthgren (2001) extend the Johansen (1988) tests, while Mc-

Coskey and Kao (1998) propose a test for the null of panel cointegration in the

spirit of Shin (1994). Chapter 3 extends the p-value combination panel unit

root tests of Maddala and Wu (1999) and Choi (2001) to the panel cointegra-

tion case.

Under cross-sectional independence all the above-mentioned panel tests pro-

vide a means to better exploit the variation in the data. Furthermore, Phillips

and Moon (1999) show that panel data can help mitigate the spurious regres-

sion phenomenon. The contribution of this chapter is to investigate whether

the availability of panel data is also useful for obtaining more consistent deci-

sions among the competing tests. To shed light on this question we adopt the

methodology suggested by Gregory, Haug, and Lomuto (2004) and extend it

to the panel data setting.

The remainder of the chapter is organized as follows. Section 2 briefly reviews

the panel cointegration tests compared in this chapter. Section 3 describes the

simulation setup of the comparative study and reports the results. Section 4

concludes.

7.2 Panel Cointegration Tests

We give the key statistics of the various tests that are considered. For more

details, refer to the original contributions. Furthermore, Banerjee (1999) or

Baltagi and Kao (2000) provide surveys of the literature. We focus on tests

with the null of no panel cointegration.

Pedroni (2004)

Pedroni (2004) derives seven different tests for panel cointegration. These may

be categorized according to what information on the different units of the panel
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is pooled. The “Group-Mean” Statistics are essentially means of the conven-

tional time series tests (see Phillips and Ouliaris, 1990). The “Within” Statis-

tics separately sum the numerator and denominator terms of the corresponding

time series statistics. Let Ai =
∑T

t=1 ẽi,tẽ
′
i,t, where ẽi,t = (∆êi,t, êi,t−1)

′ and T is

sample size. The êi,t are obtained from heterogenous Engle/Granger-type first

stage OLS multivariate time series regressions of one of the variables xik on the

remaining xi,−k, possibly including some deterministic regressors. We consider

the “Group-ρ”, “Panel-ρ” and (nonparametric) “Panel-t”-test statistics which

are given by, respectively,

Z̃ρ̂NT−1 =
N∑

i=1

A−1
22i(A21i − T λ̂i),

Zρ̂NT−1 =

(
N∑

i=1

A22i

)−1 N∑
i=1

(A21i − T λ̂i) and

Zt̂NT
=

(
σ̃2

NT

N∑
i=1

A22i

)−1/2 N∑
i=1

(A21i − T λ̂i).

The expressions λ̂i and σ̃2
NT estimate nuisance parameters from the long-run

conditional variances. After proper standardization, all statistics have a stan-

dard normal limiting distribution. The decision rule is to reject the null hy-

pothesis of no panel cointegration for large negative values.

Kao (1999)

Kao (1999) proposes five different panel extensions of the time series (A)DF -

type tests. We focus on those that do not require strict exogeneity of the
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regressors. More specifically,

DF ∗ρ =

√
NT (ρ̂− 1) +

3
√
Nσ̂2

ν

σ̂2
0ν√

3 +
36σ̂4

ν

5σ̂4
0ν

and

DF ∗t =
tρ +

q
6Nσ̂2

ν

2σ̂0ν√
σ̂2

0ν

2σ̂2
ν

+
3σ̂2

ν

10σ̂2
ν

.

Here, ρ̂ is the estimate of the AR(1) coefficient of the residuals from a fixed

effects panel regression and tρ is the associated t-statistic. The remaining

terms play a role similar to the nuisance parameter estimates in the Pedroni

(2004) tests. Again, both tests are standard normal under the null of no panel

cointegration and reject for large negative values.

Larsson, Lyhagen, and Löthgren (2001)

The panel cointegration test of Larsson, Lyhagen, and Löthgren (2001) ap-

plies a Central Limit Theorem to the set of N λtrace test statistics (Johansen,

1988) for each unit in the panel. (See also (7.2) below.) Defining λtrace =

N−1
∑N

i=1 λtrace,i, their panel cointegration test statistic is given by

ΥLR =
√
N

λtrace − E[λtrace]√
Var[λtrace]

 .

Under some conditions, including
√
NT−1 → 0, Larsson, Lyhagen, and Löthgren

(2001) can show that ΥLR
T,N−→ N (0, 1). The moments are obtained by stochas-

tic simulation and are tabulated in the paper. The null hypothesis of no coin-

tegration at a level α is rejected if the test statistic exceeds the (1−α)-quantile

of the standard normal distribution, i.e. for large values.
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The Tests from Chapter 3

The main idea of the testing principle has been used in meta analytic studies

for a long time (cf. Fisher, 1970; Hedges and Olkin, 1985). Consider the testing

problem on the panel as consisting of N testing problems for each unit of the

panel. That is, conduct N separate time series cointegration tests and obtain

the corresponding p-values of the test statistics. The test statistics are obtained

by combining the p-values of the N tests into panel test statistics as follows:

Pχ2 = −2
N∑

i=1

ln(pi) (7.1a)

PΦ−1 = N− 1
2

N∑
i=1

Φ−1(pi), (7.1b)

where Φ−1 denotes the inverse of the cumulative distribution function (cdf)

of the standard normal distribution. When considered together we refer to

Eqs. (7.1a) and (7.1b) as P tests from now on. Assuming continuous distribu-

tion functions of the time series test statistics under H0, as Ti → ∞ for all i,

the test statistics are asymptotically distributed as

Pχ2 →d χ
2
2N

PΦ−1 →d N (0, 1),

where χ2
2N is a χ2 random variable with 2N degrees of freedom. The decision

rule is to reject the null of no panel cointegration when Pχ2 exceeds the critical

value from a χ2
2N distribution at the desired significance level. On the other

hand, for (7.1b) one would reject for large negative values of PΦ−1 .

We obtain the p-values from the ADF cointegration tests (Engle and Granger,

1987) as provided by MacKinnon (1996). That is, the p-values are from the

t-statistic of γi − 1 in the OLS regression

∆ûi,t = (γi − 1)ûi,t−1 +
P∑

p=1

νp∆ûi,t−p + εi,t.
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Here, ûi,t is the usual residual from a first stage multivariate OLS time series

regressions of one of the variables xik on the remaining xi,−k. Alternatively,

one could capture serial correlation by the semiparametric approach of Phillips

and Ouliaris (1990). Finally, we obtain the p-values for the Johansen (1988)

λtrace and λmax tests provided in MacKinnon, Haug, and Michelis (1999). That

is, we test for the presence of h cointegrating relationships by estimating the

number of significantly non-zero eigenvalues of the matrix Π̂i estimated from

the Vector Error Correction Model

∆xi,t = −Πixi,t−P +
P−1∑
p=1

Γi,p∆xi,t−p + εi,t

by the λtrace-test

λtrace,i (h) = −T
K∑

k=h+1

ln (1− π̂k,i) (7.2)

and the λmax-test

λmax,i (h|h+ 1) = −T ln (1− π̂h+1,i) . (7.3)

Here, π̂k,i denotes the kth largest eigenvalue of Π̂i. In (7.2), the alternative is

a general one, while one tests against h+1 cointegration relationships in (7.3).

7.3 Do Panel Cointegration Tests Produce

“Mixed Signals”?

We now use the panel cointegration tests outlined in the previous section to

investigate the extent to which different widely used panel cointegration tests

yield the same decision for a given (artificial) sample. Gregory, Haug, and

Lomuto (2004) observe mixed signals, i.e. a relatively high test statistic for one

test and a relatively low test statistic for another, for time series cointegration
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tests.1 This effect is particularly strong when comparing residual- and system-

based tests.

It might be conjectured that the availability of panel data, leading to standard

(often, standard normal) null distributions of the test statistics, could help

alleviate this problem. To shed light on this question, we adopt the methodol-

ogy of Gregory, Haug, and Lomuto (2004).2 More precisely, we generate many,

say M , replications of two integrated time series for each of the N units in

the panel. For each replication, we store the different panel cointegration test

statistics. The extent to which the different tests yield identical decisions is

measured by two related criteria. First, we compute empirical p-values of the

tests by taking rank order of the test statistics and dividing by M . We then

compute the correlation of the empirical p-values for each pair of tests. If both

have the same null and the same alternative, the correlation should therefore

ideally be close to one, i.e. a strong rejection of one test should also be a strong

one of the other. Second, we record all the instances of each pair of tests

rejecting jointly. The critical values are either taken from the asymptotic dis-

tribution of the tests or the empirical distribution arising from the replications

under the null. Thus, when testing a sample generated under the null at the

5% level, all pairs of tests should ideally jointly reject in close to 5% of the

replications.

We compare the tests of Kao (1999), Pedroni (2004) and Larsson, Lyhagen, and

Löthgren (2001) presented in the previous section. We further include the two

P tests. For each, we use both Engle and Granger’s (1987) ADF test with one

1Berndt and Savin (1977) study the related problem of conflicting decisions among the
classical hypothesis tests in linear regression models. A crucial difference is that the numer-
ical relationship between the criteria is well understood for these simpler models. Further-
more, in this context the situation is resolved asymptotically.

2Gregory, Haug, and Lomuto (2004) complement their simulation study with an extensive
analysis of all applications of the cointegration methodology published in the Journal of
Applied Econometrics in recent years. While such an approach has obvious appeal it is not
yet promising in the panel data context due to the small number of empirical applications.
We therefore exclusively rely on artificial data.
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lagged difference (Pχ2DF and PΦ−1DF ) as well as Johansen’s (1988) λtrace test

for h = 0 versus h 6 2 cointegrating relationships (Pχ2J and PΦ−1J). Following

Gregory, Haug, and Lomuto (2004), we choose relatively large time series di-

mensions to limit size distortions. More specifically, T ∈ {250, 500, 1000, 2000}

and N ∈ {10, 20, 50, 100, 150}. The Data Generating Process (DGP) is similar

to the one used by Engle and Granger (1987). The extension to the panel data

setting is discussed in Kao (1999). For simplicity we only consider the bivariate

case:

DGP

xi,1t − αi − βxi,2t = zi,t, a1xi,1t − a2xi,2t = wi,t

where

zi,t = ρzi,t−1 + ezi,t, ∆wi,t = ewi,t

and (
ezi,t

ewi,t

)
iid∼ N

([
0

0

]
,

[
1 ψσ

ψσ σ2

])

Remarks

• When |ρ| < 1 the equilibrium error in the first equation is stationary

such that xi1t and xi2t are cointegrated with βi = (1 − αi − β)′.

• When writing the above DGP as an error correction model (see, e.g.,

Gonzalo, 1994) it is immediate that xi2t is weakly exogenous when a1 = 0.

We consider the parameter space β = 2, a2 = −1, σ ∈ {0.5, 1}, ψ ∈

{−0.5, 0, 0.5} and a1 ∈ {0, 1}. This implies that, for instance, the Pedroni

(2004) and P tests cannot exhibit their comparative advantage of being able

to detect cross-sectional heterogeneity in the slope coefficients. Similarly, a

bivariate system necessarily has at most one cointegrating relationship. Thus,

the Larsson, Lyhagen, and Löthgren (2001) test has no opportunity to detect
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multiple cointegration. But, the Kao (1999) tests require a common β for all

i. Hence, in order to be able to validly compare all tests under both the null

and the alternative we use this simple DGP. We carry out the experiments

under both the null and the alternative.3 For the latter we set ρ = 0.98. The

fraction of cointegrated series in the panel is either zero or one. For a given

cross-sectional dimension we draw the unit specific intercepts as αi ∼ U [0, 10]

and keep them fixed for all T . The number of replications for each experiment

is M = 10, 000.

Here, we report the (representative) results for a1 = 1, σ = 1, ψ = 0.4 Table

7.1 shows the correlation of the empirical p-values for N = 50. Panels (a) and

(b) consider T = 250 and T = 2000, respectively. Within each of the panels

there is a fairly high correlation among the different residual-based tests (rows

2-8) and, especially, among the different system-based tests (rows 1, 9-10). The

pattern is not uniform, though. For the residual-based tests, the correlation

ranges from roughly 30% (Pχ2DF and Zt̂NT
) to almost 95% (DF ∗ρ and Zρ̂NT−1).

For a graphical illustration, see the scatter plot of the empirical p-values for

these cases in Figure 7.1. Panel (a), depicting the correlation of Pχ2DF and

Zt̂NT
, shows that, even within the group of residual-based tests, virtually any

combination of empirical p-values can arise. On the other hand, Panel (b)

reveals that for some cases the p-values cluster around the 45◦-line, indicating

a close correspondence.

Furthermore, different tests by the same author do not seem to be any more

related than tests by different authors. Across the two groups the correlation

typically is substantially lower, with several entries even being negative (see,

e.g., the first column). Finally, compare Panels (a) and (b). Increasing the

3Uniform random numbers are generated using the KM algorithm from which Nor-
mal variates are created with the fast acceptance-rejection algorithm, both implemented
in GAUSS. Part of the calculations are performed with COINT 2.0 by Peter Phillips and
Sam Ouliaris.

4The full set of results of the finite sample study is available upon request.
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upper panel: Pχ2DF and Zt̂NT
lower panel: DF ∗ρ and Zρ̂NT−1

Figure 7.1: Correlation of Empirical p-values

time series dimension barely affects the correlation of the empirical p-values.

(Similar results obtain for increasing N .)

We provide some further insights in Table 7.2. Using 5% size-adjusted critical

values we report the fraction of each pair of test rejecting jointly.5 The case

5Horowitz and Savin (2000) correctly point out that size-adjusted critical values are
usually of little use for applied work. Here, however, we use them to avoid spurious results
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Table 7.1: Correlation of the Empirical p-values under the Null

ΥLR DF ∗t Zρ̂NT−1Z̃ρ̂NT−1DF
∗
ρ Zt̂NT

Pχ2DF PΦ−1DFPχ2J PΦ−1J

ΥLR 1.00
DF ∗t -.055 1.00 (a) T = 250
Zρ̂NT−1 .115 .445 1.00
Z̃ρ̂NT−1 .264 .312 .698 1.00
DF ∗ρ .098 .514 .944 .658 1.00
Zt̂NT

-.087 .935 .486 .341 .492 1.00
Pχ2DF .235 .314 .583 .927 .599 .304 1.00
PΦ−1DF .213 .466 .764 .919 .806 .439 .898 1.00
Pχ2J .984 -.059 .116 .268 .099 -.089 .245 .213 1.00
PΦ−1J .961 -.045 .106 .242 .090 -.078 .205 .198 .898 1.00

ΥLR 1.00
DF ∗t -.096 1.00 (b) T = 2000
Zρ̂NT−1 .131 .466 1.00
Z̃ρ̂NT−1 .346 .320 .652 1.00
DF ∗ρ .094 .552 .949 .614 1.00
Zt̂NT

-.112 .938 .505 .359 .530 1.00
Pχ2DF .265 .330 .545 .929 .561 .330 1.00
PΦ−1DF .242 .487 .736 .915 .782 .467 .896 1.00
Pχ2J .984 -.097 .135 .351 .099 -.111 .279 .245 1.00
PΦ−1J .964 -.090 .119 .318 .083 -.107 .229 .222 .903 1.00
Note: N = 50, ρ = 1, ψ = 0, σ = 1, δ = 1 and a1 = 1. M = 10, 000 replications.

considered in Panel (a) corresponds to Panel (a) of Table 7.1. The entries

under (b) give results under the alternative of panel cointegration. As expected

from Table 7.1, no pair of tests achieves a fraction of joint rejections of 5%.

Reassuringly, the combinations having a high correlation of empirical p-values

also have a relatively high fraction of joint rejections. However, in spite of fairly

high correlation (take Pχ2J and PΦ−1J with more than 90%) we still observe

pair of tests jointly rejecting for a rather small fraction of samples (1.6% for this

example). That is, conflicting testing decisions are not uncommon. As all tests

reject more frequently under the alternative, the fraction of joint rejections of

course increases (see Panel b). Nevertheless, there is still a large amount of

disagreement especially across groups of tests.

that could arise if, say, two tests were both heavily oversized and would therefore also
frequently reject jointly.
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Table 7.2: Fraction of joint rejections under H0 and H1

ΥLR DF ∗t Zρ̂NT−1Z̃ρ̂NT−1DF
∗
ρ Zt̂NT

Pχ2DF PΦ−1DFPχ2J PΦ−1J

ΥLR .050
DF ∗t .002 .050 (a) ρ = 1
Zρ̂NT−1 .005 .011 .050
Z̃ρ̂NT−1 .007 .008 .021 .050
DF ∗ρ .004 .015 .037 .020 .050
Zt̂NT

.002 .036 .012 .011 .014 .050
Pχ2DF .006 .008 .016 .036 .017 .008 .050
PΦ−1DF .006 .012 .025 .036 .028 .013 .032 .050
Pχ2J .043 .002 .004 .007 .004 .002 .007 .006 .050
PΦ−1J .040 .002 .004 .007 .004 .002 .005 .006 .016 .050

ΥLR .191
DF ∗t .191 .999 (b) ρ = .98
Zρ̂NT−1 .190 .975 .975
Z̃ρ̂NT−1 .183 .872 .869 .873
DF ∗ρ .176 .857 .858 .809 .858
Zt̂NT

.191 .999 .975 .873 .858 1.00
Pχ2DF .135 .516 .516 .516 .504 .516 .516
PΦ−1DF .169 .750 .750 .749 .733 .750 .513 .750
Pχ2J .164 .174 .173 .166 .161 .174 .124 .155 .174
PΦ−1J .173 .227 .225 .215 .208 .227 .153 .197 .028 .227
Note: N = 50, T = 250, ψ = 0, σ = 1, δ = 1 and a1 = 1.

M = 10, 000 replications. Size-adjusted 5% critical values.

Comparing the results with Gregory, Haug, and Lomuto (2004), we state that

the consensus in test decisions among panel data cointegration tests generally

does not seem to be higher than among time series cointegration tests. Thus,

it seems all but unlikely that a researcher will find conflicting evidence when

applying some pairs of panel cointegration tests to a given dataset. The issue

is not resolved asymptotically. A possible explanation of this phenomenon

could be that the complexities inherent to panel data—such as treatment of

cross-sectional heterogeneity—lead to different implicit alternatives of the tests.

Consequently, we observe a rather low correlation of empirical p-values and

fractions of joint rejections when the data is generated under the null.



100 CHAPTER 7. MIXED SIGNALS AMONG PANEL TESTS

7.4 Conclusion

We perform a simulation study to investigate whether several widely used panel

cointegration tests yield the same acceptance or rejection decisions. Broadly in

accordance with the evidence presented by Gregory, Haug, and Lomuto (2004)

for time series tests, the panel versions also exhibit a low correlation of empirical

p-values under the null. The persistence of the phenomenon even at T = 2000

indicates that this problem does not seem to be resolved asymptotically. When

analyzing the relative frequency of joint rejections, we constrain the tests to

have the desired size by using size-adjusted critical values. Low fractions of

joint rejections (relative to the size of the tests) show that the tests do not reject

for the same samples. This phenomenon is less prevalent under the alternative.

The practical upshot is that researchers are likely to be confronted with con-

flicting test decisions when using different tests in applied work. Given that

there rarely is a compelling theoretical reason to prefer one test over another

in practice, this issue is rather troublesome. More research clarifying the the-

oretical relationship between the different tests would be welcome.



Chapter 8

For Which Countries did PPP
hold? A Multiple Testing
Approach

Abstract

We use recent advances in multiple testing to identify those countries for
which Purchasing Power Parity (PPP) held over the last century. The
approach controls the multiplicity problem inherent in simultaneously
testing for PPP on several time series, thereby avoiding spurious rejec-
tions. It has higher power than traditional multiple testing techniques
by exploiting the dependence structure between the countries with a
bootstrap approach. We use a sieve bootstrap approach to account for
nonstationarity under the null hypothesis. Our empirical results show
that, plausibly, controlling for multiplicity in this way leads to a number
of rejections of the null of no PPP that is intermediate between that of
traditional multiple testing techniques and that which results if one tests
the null on each single time series at some level α.

Keywords: Multiple Testing, Bootstrap, PPP, Panel Data
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8.1 Introduction

Purchasing Power Parity (PPP) is among the most popular theories to explain

the long run behaviour of exchange rates. Not least because it is ready-made

for empirical implementation, it has been investigated by a host of economet-

ric techniques. So-called “stage-two” tests (Froot and Rogoff, 1995) test the

hypothesis that the real exchange rate follows a random walk. The alternative

is that the real exchange rate is a stationary process, i.e. that PPP holds in the

long run. Typically, researchers would obtain real exchange rate data over a

certain time span for several countries and conduct appropriate unit root tests

on each series (see, e.g., Taylor, 2002). It is then argued that PPP holds for

those countries for which the null is rejected.

Unfortunately, this simple and intuitive way of investigating the validity of

PPP is problematic from a statistical point of view. In particular, it ignores

the issue of “multiplicity.” To illustrate the problem, consider the following

artificial numerical example. Suppose one has exchange rate data (relative to

some reference country) on a panel of, say, N = 20 countries. Also assume for

simplicity that the units are independent and that PPP does not hold for any

of the units. When conducting tests on each unit at, say, the α = 0.05 level,

one might expect to erroneously find evidence in favor of PPP once on average,

because 1/20 = 0.05. However, the event of a rejection is a Bernoulli random

variable with “success” probability 0.05. Hence, the number of k rejections in

N tests, is a Binomial random variable with probability function

Pk =

(
N

k

)
αk(1− α)N−k.

Therefore, the probability of (at least) one erroneous rejection, also known as
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the Familywise Error Rate1 (FWER), equals

Pk>1 =
20∑

j=1

(
20

j

)
0.05j(1− 0.05)20−j = 0.6415.

Even if PPP does not hold for any of the countries in the panel, one will falsely

find some evidence of it with a rather high probability. Of course, the problem

only worsens if one adds more units to the panel.

This so-called “multiplicity” problem, while not widely recognized in econo-

metrics (Savin, 1984), has of course been realized long ago in the statistics

literature (see Lehmann and Romano, 2005). Several solutions to controlling

the FWER at some specified level α have been suggested. Among the most

popular are the Bonferroni and the Holm (1979) procedure. These procedures

have however been less successful in econometric applications because ensuring

FWER 6 α typically comes at the price of reducing the ability to identify false

hypotheses. That is, the procedures are conservative or have low “power.”2

Hence, often quite reasonably, researchers have tended to ignore the issue of

multiplicity.

Recently, panel data methods have become popular to test for PPP. See for

instance Wu (1996), Papell and Theodoridis (2001), Papell (2002) or Murray

and Papell (2005). Typically, these panel unit root tests formulate the null of

the entire panel being nonstationary. The alternative quite often is that of a

stationary panel (see, for instance, Harris and Tzavalis, 1999; Levin, Lin, and

Chu, 2002; Breitung, 2000). These panel tests also have power against “mixed”

panels, where only some fraction of the units is actually stationary (see Taylor

and Sarno, 1998; Karlsson and Löthgren, 2000; Boucher Breuer, McNown, and

Wallace, 2001). Hence, erroneous conclusions on the number of countries for

1More generally, the j-FWER is defined as Pk>j , the probability of j or more false
rejections.

2For a discussion of “power” in a multiple testing framework see Romano and Wolf
(2005), Sec. 2.2.
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which PPP holds remain possible. (Concluding from a rejection of a panel unit

test that all units are stationary is closely related to the erroneous inference

that a rejection in an F test of the “significance of a regression” implies that

all coefficients are nonzero.)

As a partial remedy, Maddala and Wu (1999) and Choi (2001) draw on the

meta analytic literature (see Hedges and Olkin, 1985) to provide panel unit root

tests having the more conservative alternative that some nonzero fraction of the

panel is stationary. However, their approach neither allows to identify which

nor how many of the countries in the panel have a stationary real exchange

rate.

Recently, there has been substantial research on improving the ability of mul-

tiple testing approaches to detect false hypotheses while still controlling the

FWER. Notably, Romano and Wolf (2005) have put forward a bootstrap

scheme that exploits the dependence structure of the statistics in order to

improve the power of the multiple test. In the present chapter, we propose an

adaptation of the Romano and Wolf (2005) approach to identify those countries

of a panel of real exchange rate data for which the Purchasing Power Parity

condition holds.

The plan of the chapter is as follows. Section 2 offers a brief statement of the

PPP condition and presents the general multiple testing approach of Romano

and Wolf (2005). Section 3 discusses the bootstrap approach employed in this

chapter. The empirical results are in Section 4. Section 5 concludes.

8.2 The Multiple Testing Approach

Our goal is to identify those countries of a panel for which the Purchasing

Power Parity (PPP) relation held over the sample period. Let pi,t be the (log)

price level in country i and period t, where i = 1, . . . , N and t = 1, . . . , T ,
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p∗t the “foreign” (log) price level of the reference country in the panel and si,t

the (log) nominal exchange rate between the currencies of country i and the

reference country. The real exchange rate is then given by

ri,t = pi,t − p∗t − si,t (i = 1, . . . , N)

Testing the strong PPP hypothesis is naturally formulated (see Rogoff, 1996)

as a unit root test on the real exchange rate. A vast number of unit root tests

have been suggested in the literature (see Phillips and Xiao, 1998, for a survey),

many of which have been applied to the PPP question. We will use the standard

augmented Dickey and Fuller (1979) test (see also Said and Dickey, 1984). We

do so because it is still the most popular unit root test and, more importantly,

the bootstrap versions of the test required for the multiple testing scheme have

desirable properties (Swensen, 2003; Chang and Park, 2003). Accordingly, we

investigate PPP by testing the individual hypotheses

Hi : %i = 0 vs. H ′
i : %i < 0 (i = 1, . . . , N) (8.1)

where

∆ri,t = %iri,t−1 +

Ji∑
j=1

νj∆ri,t−j + εJi,i,t. (8.2)

The number of lagged differences Ji required to capture serial correlation in

ri,t, is allowed to vary across i. Our test statistic is given by τ̂i = %̂i/s.e.(%̂i),

the t-statistic of %i in (8.2), where %̂i is the usual OLS estimator and s.e.(%̂i)

the associated standard error.

We aim to determine those countries I ⊂ {1, . . . , N} for which ri,t is a sta-

tionary process. As argued in the Introduction, in order to provide reliable

statistical inference in the sense of controlling the FWER, it is important to

take into account the multiplicity inherent in testing in a panel setting. We

now present the general multiple testing framework used here, making suitable

adjustments to adapt the procedure to the PPP testing case.
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First, relabel the test statistics from smallest to largest, such that τ̂r1 6 τ̂r2 6

· · · 6 τ̂rN
. (The smaller a Dickey-Fuller test statistic, the stronger the evidence

in favor of stationarity.) Form a joint rectangular confidence region for the

vector (%r1 , . . . , %rN
)>. The region is of the form

(−∞, %̂r1 + s.e.(%̂r1) · d1]× · · · × (−∞, %̂rN
+ s.e.(%̂rN

) · d1], (8.3)

where one chooses d1 so as to ensure a joint asymptotic coverage probabil-

ity 1 − α.3 The bootstrap method to appropriately choose d1 in the present

problem will be discussed below. The decision rule is to reject a particular hy-

pothesis Hrn if the corresponding confidence interval satisfies 0 /∈ (−∞, %̂rn +

s.e.(%̂rn) ·d1]. Romano and Wolf (2005) show that if the confidence region (8.3)

has coverage probability 1 − α, then this method asymptotically controls the

FWER at level α, limT FWER 6 α. Crucially, the method does not stop there.

In order to improve the ability of the method to detect false hypotheses, one

can construct further confidence regions after having rejected, say, the first N1

hypotheses. In a second step, one forms a confidence region for the remain-

ing N − N1 coefficients (%rN1+1
, . . . , %rN

)>. This is again constructed to have

nominal joint coverage probability 1− α and is of the form

(−∞, %̂rN1+1
+ s.e.(%̂rN1+1

) · d2]× · · · × (−∞, %̂rN
+ s.e.(%̂rN

) · d2],

potentially leading to the rejection of some further N2 hypotheses. This step-

down process can be repeated until no further hypotheses are rejected. Romano

and Wolf (2005) show that the dj should ideally be chosen as

dj ≡ dj(1− α, P ) = inf

{
x : PrP

[
max

Rj−1+16n6N

(
%̂rn − %rn

s.e.(%̂rn)

)
6 x

]
> 1− α

}
,

where Rj−1 =
∑j−1

k=0Nk and R0 = 0. In practice, however, P and hence dj are

unknown. Fortunately, Romano and Wolf (2005, Thms. 3.1 and 4.1) show that

dj can often be estimated consistently with the bootstrap without affecting

asymptotic control of the FWER.

3As recommended by Romano and Wolf (2005) we use the studentized version of their
method. For a discussion of the “basic” approach, see Sec. 3 of their paper.
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8.3 The Bootstrap Algorithm

We now outline the bootstrap approach to obtain an estimator d̂j employed in

this chapter.

1. Fit an autoregressive process to ∆ri,t (i = 1, . . . , N ; t = 2, . . . , T ). It is

natural to use the Yule-Walker procedure because it always yields an in-

vertible representation (Brockwell and Davis, 1991, Secs. 8.1–2). Letting

∆ri := (Ti − 1)−1
∑Ti

t=2 ∆ri,t, compute the empirical autocovariances of

∆ri,t up to order q,

γ̂i(`) :=
1

Ti − 1− `

Ti−∑̀
t=2

(∆ri,t −∆ri)(∆ri,t+` −∆ri),

where i = 1, . . . , N ; ` = 1, . . . , q.4 Defining

Γ̂i,q :=

 γ̂i(0) · · · γ̂i(q − 1)
...

. . .
...

γ̂i(q − 1) · · · γ̂i(0)


and γ̂i := (γ̂i(1), . . . , γ̂i(q))

>, obtain the AR coefficient vector as

(φ̂q,i,1, . . . , φ̂q,i,q)
> := Γ̂−1

i,q γ̂i. (i = 1, . . . , N)

2. The residuals are, as usual, given by

ε̂q,i,t := ∆ri,t −
q∑

`=1

φ̂q,i,`∆ri,t−`,

for i = 1, . . . , N ; t = q + 2, . . . , T . Center ε̂q,i,t to obtain

ε̃q,i,t := ε̂q,i,t −
1

Ti − q − 1

Ti∑
g=q+2

ε̂q,i,g

for i = 1, . . . , N ; t = q + 2, . . . , T .

4In practice, q can be chosen with a data-dependent criterion such as Akaike’s.



108 CHAPTER 8. MULTIPLE TESTING FOR PPP

3. Resample nonparametrically from ε̃q,i,t to get ε∗q,i,t. To preserve the empir-

ical cross-sectional dependence structure, jointly resample residual vec-

tors

ε̃q,�,t := (ε̃q,1,t, . . . , ε̃q,N,t). (t = q + 2, . . . , T )

See Chapter 4 for evidence of the good performance of this step to account

for cross-sectional dependence.

4. Recursively construct the bootstrap samples as5

∆r∗q,i,t =

q∑
`=1

φ̂q,i,`∆r
∗
q,i,t−` + ε∗q,i,t

for i = 1, . . . , N, t = q + 2, . . . , T .

5. It is necessary to impose the null of a unit root when generating the

artificial data in bootstrap unit root tests to achieve consistency (Basawa,

Mallik, McCormick, Reeves, and Taylor, 1991). Accordingly, impose the

null of nonstationarity by integrating ∆r∗i,t to obtain r∗i,t.

6. For each sample r∗b :=
(
(r∗b,1,1, . . . , rb,1,T )>, . . . , (r∗b,N,1, . . . , r

∗
b,N,T )>

)
, com-

pute the test statistics τ ∗b,rn
, rn = Rj−1 + 1, . . . , N , and

max∗b,j := max
Rj−1+16n6N

(τ ∗b,rn
− τ̂rn).

7. Repeat steps 3 to 6 many, say B, times.

8. Compute d̂j as the 1− α quantile of the B values max∗1,j, . . . ,max∗B,j.

Chang and Park (2003) and Swensen (2003) show that the above sieve boot-

strap scheme yields asymptotically valid bootstrap ADF tests in the sense that

using the α quantile of the bootstrap distribution of the τ ∗b,rn
as critical value

asymptotically gives a test with size α. By a continuous mapping theorem ar-

gument, the bootstrap also consistently estimates the distribution of the max∗b,j

and hence d̂j.

5We run the recursion for 30 initial observations before using the ∆r∗q,i,t to mitigate the
effect of initial conditions.
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Table 8.1: Empirical Results

country τ̂i p-value Holm criterion
Mexico -4.334 < 0.001 0.0026
Finland -4.136 0.001 0.0028
Argentina -3.632 0.006 0.0029
Italy -3.344 0.015 0.0031
Norway -3.285 0.018 0.0033
Sweden -3.202 0.022 0.0036
UK -2.996 0.038 0.0038
Belgium -2.980 0.040 0.0042
Germany -2.957 0.042 0.0046
France -2.929 0.045 0.0050
Brazil -2.561 0.104 0.0056
Australia -2.544 0.108 0.0063
Netherlands -2.498 0.119 0.0071
Portugal -2.391 0.147 0.0083
Canada -2.202 0.207 0.0100
Spain -2.118 0.238 0.0125
Denmark -2.058 0.262 0.0167
Switzerland -1.349 0.604 0.0250
Japan -1.323 0.617 0.0500

8.4 Results

We now present the empirical results of an application of the modified Romano

and Wolf (2005) methodology to the PPP condition. We revisit the dataset

used by Taylor (2002), which includes annual data for the nominal exchange

rate, CPI and the GDP deflator. This dataset is particularly useful for our

purposes because it covers a long period, ranging from 1892 through to 1996.

The countries contained in our panel are given in Table 8.1. We use the United

States as the reference country throughout and report results using CPI price

series. See Taylor (2002) for further details on data sources and definitions.

Using standard ADF unit root tests, we find rejections for 9 out of 19 countries

at the 5% critical value -2.94. See the first column of Table 8.1. (The entries are

sorted for later use.) The number of lagged differences Ji in (8.2) is chosen with
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the data-dependent criterion of Ng and Perron (2001). The findings of Taylor

(2002) are very similar.6 Evidence in favor of PPP is therefore at best mixed.

Taylor (2002) then argues that it may be possible to find more rejections in

favor of PPP by employing more powerful techniques. Our goal, on the other

hand, is to investigate whether some of the rejections are spurious in the sense

that they would not occur when taking into account the multiplicity of the

testing problem.

As a preliminary step, we report results for the more classical techniques to

control the FWER, namely the Bonferroni and the Holm (1979) procedures.

Recall that the former rejects Hi if the p-value p̂i corresponding to the test

statistic τ̂i satisfies p̂i 6 α/N . The Holm (1979) procedure first sorts the

p-values from smallest to largest, p̂r1 6 · · · 6 p̂rN
. Relabel the hypotheses

accordingly as Hrn . Then, reject Hrn at level α if p̂rj
6 α/(N − j + 1) for all

rj = 1, . . . , rn.7 The cutoff value for the first hypothesis is identical for both

methods, but unlike the Bonferroni method, the Holm (1979) procedure uses

gradually less challenging criteria for Hr2 , . . . , HrN
. Nevertheless, it often has

low power because it also fails to exploit the dependence structure between the

statistics.

The limit distribution of the ADF test statistics is a functional of Brownian

motions that cannot be evaluated analytically to obtain p-values. We therefore

rely on response surface regressions suggested by MacKinnon (1994, 1996) to

obtain numerical distribution functions of the test statistics. We report results

in columns 2 and 3 of Table 8.1.

As expected, the number of rejections is now much lower. After controlling

for multiplicity, we only observe rejections for Mexico and Finland for either

6The small differences can be explained by different interpolation schemes for missing
wartime data, other lag selection criteria as well as the fact that we balance our panel.

7See Lehmann and Romano (2005) for a proof that the Bonferroni and the Holm method
control the FWER at level α.
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method. These results indeed suggest that the Bonferroni and Holm procedures

are conservative.

We therefore now turn to the results of the Romano and Wolf (2005) approach.

The algorithm presented in Section 2 yields d̂1 = 4.050, leading to a rejection

for Mexico and Finland. In the second round, we obtain d̂2 = 3.429, implying

evidence in favor of PPP for Argentina. Next, we find d̂3 = 3.252 such that we

reject for Italy and Norway. Finally, d̂4 = 3.075 means that we also reject the

null in the case of Sweden.

Observe that the number of rejections is intermediate between the results for

the Holm and Bonferroni methods and that of the individual country results.

In view of the above discussion, we find that this result is rather plausible.

Furthermore, the ability of the Romano and Wolf (2005) method to detect

several false hypotheses in a stepwise fashion proved instrumental in improving

upon the more traditional multiple testing methods.

8.5 Conclusion

We have used recent advances in the multiple testing literature to attempt to

identify those countries for which Purchasing Power Parity (PPP) held over

the last century. The approach controls the multiplicity problem inherent in

simultaneously testing for PPP on several time series, thereby avoiding spurious

rejections. It has higher power than traditional multiple testing techniques by

exploiting the dependence structure between the countries with a bootstrap

approach. We use a sieve bootstrap approach to account for nonstationarity

under the null hypothesis. On the other hand, our empirical results show that,

plausibly, controlling for multiplicity leads to fewer rejections of the null of

no PPP than if one tests the null on each single time series at some level
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α. Specifically, we find rejections of the null of no PPP for Mexico, Finland,

Argentina, Italy, Norway and Sweden.

Several open issues remain. Hlouskova and Wagner (2006) point out that

bootstrapping in a nonstationary framework is a “delicate issue.” It would

therefore be interesting to investigate the performance of other resampling

techniques in the present problem. Consider, for instance, block bootstrapping

as in Psaradakis (2006).

Obviously, the present framework is fairly general and could be applied to other

macroeconomic questions such as savings-investment correlation or spot and

forward exchange rates (Mark, Ogaki, and Sul, 2005) that have hitherto been

dealt with using panel techniques. Similarly, it is possible to accommodate

problems that imply testing for cointegration.



Chapter 9

OLS-based Estimation of the
Disturbance Variance under
Spatial Autocorrelation

Abstract

We1 investigate the OLS-based estimator s2 of the disturbance variance
in the standard linear regression model with cross section data when the
disturbances are homoskedastic, but spatially correlated. For the most
popular model of spatially autoregressive disturbances, we show that s2

can be severely biased in finite samples, but is asymptotically unbiased
and consistent for most types of spatial weighting matrices as sample
size increases.

Keywords: regression, spatial error correlation, bias, variance

1This chapter has been written jointly with Walter Krämer.
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9.1 Introduction

We consider the standard linear regression model

y = Xβ + u,

where y is N × 1, X is nonstochastic N ×K with rank K and β is unknown

K × 1. The components of u have expected value E(u) = 0 and a common

variance E(u2
i ) = σ2. The OLS estimate for β is β̂ = (X ′X)−1X ′y, and the

OLS-based estimate for σ2 is

s2 =
1

N −K
(y −Xβ̂)′(y −Xβ̂) =

1

N −K
u′Mu, (9.1)

where M = I − X(X ′X)−1X ′. It has long been known that s2 is in general

(and contrary to β̂) biased whenever V := Cov(u) is no longer a multiple of the

identity matrix. Krämer (1991) and Krämer and Berghoff (1991) show that this

problem disappears asymptotically for certain types of temporal correlation

such as stationary AR(1)-disturbances, although it is clear from Kiviet and

Krämer (1992) that the relative bias of s2 might still be substantial for any

finite sample size. The present chapter extends these analyses to the case of

spatial correlation, where we allow the disturbance vector u to be generated

by the spatial autoregressive scheme

u = ρWu+ ε, (9.2)

where ε is a N ×1 random vector with mean zero and scalar covariance matrix

σ2
ε I and W is some known N ×N -matrix of nonnegative spatial weights with

wii = 0 (i = 1, . . . , N). Such patterns of dependence are often entertained when

the objects under study are positioned in some “space,” whether geographical

or sociological (in some social network, say) and account for spillovers from one

unit to its neighbors, whichever way “neighborhood” may be defined. They

date back to Whittle (1954) and have become quite popular in econometrics
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recently. See Anselin and Florax (1995) or Anselin (2001) for surveys of this

literature.

The coefficient ρ in (9.2) measures the degree of correlation, which can be both

positive and negative. Below we focus on the empirically more relevant case of

positive disturbance correlation, where

0 6 ρ 6
1

λmax

(9.3)

and where λmax is the Frobenius-root of W (i.e. the unique positive real eigen-

value such that λmax > |λi| for arbitrary eigenvalues λi). The disturbances are

then given by

u = (I − ρW )−1ε, (9.4)

so

V = Cov(u) = σ2
ε [(I − ρW )′(I − ρW )]−1 (9.5)

which reduces to V = σ2
ε I whenever ρ = 0.

Of course, for our analysis to make sense, the main diagonal of V should be

constant, i.e.

V = σ2Σ, (9.6)

where Σ is the correlation matrix of the disturbance vector.2 It is therefore

important to clarify that many, though not all, spatial autocorrelation schemes

are compatible with homoskedasticity. Consider for instance the following pop-

ular specification for the weight matrix known as “one ahead and one behind:”

W̃ :=



0 1 0 · · · 0 1

1 0
. . . 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . 0
. . . 0

0 · · · 0 1 0 1

1 0 · · · 0 1 0


2Note that σ2 = V ar(ui) need not be equal to σ2

ε = V ar(εi), unless Σ = I. In the sequel,
we keep σ2

ε fixed, so σ2 will in general vary with W and N .
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and renormalize the rows such that the row sums are 1. Then it is easily seen

that E(u2
i ) is independent of i, and analogous results hold for the more general

“j ahead and j behind” weight matrix W which has non-zero elements in the

j entries before and after the main diagonal, with the non-zero entries equal

to j/2. This specification has been considered by, for instance, Kelejian and

Prucha (1999) and Krämer and Donninger (1987).

As another example, consider the equal-weight matrix (see, e.g., Kelejian and

Prucha (2002), Lee (2004), Case (1992) or Kelejian, Prucha, and Yuzefovich

(2006)), defined by

WEW = (wEW
ij ) =

{
1

N−1
for i 6= j

0 for i = j
. (9.7)

One easily verifies that, for |ρ| < 1,

(I − ρWEW )−1 = δ1JN + δ2IN , (9.8)

where

δ1 =
ρ

(N − 1 + ρ)(1− ρ)
, δ2 =

N − 1

N − 1 + ρ
(9.9)

and JN is an (N × N) matrix of ones. Without loss of generality, let σ2
ε = 1.

We then have, using symmetry of W ,

V = [(I − ρWEW )′(I − ρWEW )]−1

= (I − ρWEW )−1(I − ρWEW )−1 (9.10)

= (δ1JN + δ2IN)2.

Carrying out the multiplication, it is seen that

E(u2
i ) = (δ2

1 + δ2
2)

2 + (N − 1)δ2
1 for i = 1, . . . , N.

So V is homoskedastic. It is straightforward to extend this result to the case

where W is block-diagonal with B blocks of dimension (R×R), defined as
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WEW
R = (wEW

R,ij ) =

{
1

R−1
for i 6= j

0 for i = j,
(9.11)

where N = BR. We therefore conclude that our analysis is applicable in many

relevant spatial econometric specifications.

9.2 The relative bias of s2 in finite samples

We have

E

(
s2

σ2

)
= E

(
1

σ2(N −K)
u′Mu

)
=

1

σ2(N −K)
tr(MV ) (9.12)

=
1

N −K
tr(MΣ).

Watson (1955) and Sathe and Vinod (1974) derive the (attainable) bounds

mean of N −K smallest eigenvalues of Σ

6 E

(
s2

σ2

)
6 (9.13)

mean of N −K largest eigenvalues of Σ,

which shows that the bias can be both positive and negative, depending on

the regressor matrix X, whatever Σ may be. Finally, Dufour (1986) points out

that the inequalities (9.13) amount to

0 6 E

(
s2

σ2

)
6

N

N −K
(9.14)

when no restrictions are placed on X and Σ. Again, these bounds are sharp

and show that underestimation of σ2 is much more of a threat in practise than

overestimation.
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The problem with Dufour’s bounds is that they are unnecessarily wide when

extra information on V is available. Here we assume a disturbance covariance

matrix V as in (9.5) and show first that the relative bias of s2 depends crucially

on the interplay between X and W . In particular, irrespective of sample size

and of the weighting matrix W , we can always produce a regressor matrix X

such that E(s2/σ2) becomes as close to zero as desired. To see this, let W be

symmetric3 and let

W =
N∑

i=1

λiωiω
′
i (9.15)

be the spectral decomposition of W , with the eigenvalues λi in increasing order

and ωi the corresponding orthonormal eigenvectors. Now it is easily seen that

lim
ρ→1/λN

E

(
s2

σ2

)
= 0 (9.16)

whenever

MωN = 0. (9.17)

This follows from

V = σ2
ε

[
N∑

i=1

1

(1− ρλi)2
ωiω

′
i

]
(9.18)

and

Σ =
1

σ2
V =

1∑N
i=1

1
(1−ρλi)2

ω2
i1

N∑
i=1

1

(1− ρλi)2
ωiω

′
i, (9.19)

where ω2
i1 is the (1, 1)-element of ωiω

′
i (under homoscedasticity, we could select

any diagonal element of ωiω
′
i) and

σ2 = σ2
ε

N∑
i=1

1

(1− ρλi)2
ω2

i1. (9.20)

Multiplying the numerator and denominator of (9.19) by (1−ρλN)2, we obtain

Σ =
1

σ2
V =

1∑N
i=1

(1−ρλN )2

(1−ρλi)2
ω2

i1

N∑
i=1

(1− ρλN)2

(1− ρλi)2
ωiω

′
i, (9.21)

3Notice that for all the homoskedastic examples considered above, row-normalization
does not destroy symmetry of W .
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which tends to
1

ω2
N1

ωNω
′
N (9.22)

as ρ→ 1/λN . Given W , one can therefore choose X to be (N×1) and equal to

ωN . Then, M is by construction orthogonal to ωN , which implies that tr(MΣ)

and therefore also E(s2/σ2) tend to zero as ρ→ 1/λN .

Figure 9.1: The relative bias of s2 as a function of ρ and N

For illustration, consider the following example. The largest eigenvalue λN of

a row-normalized matrix such as W̃/2 is 1. (This follows immediately from

Theorem 8.1.22 of Horn and Johnson (1985).) It is then readily verified that

ωN = ι := (1, . . . , 1)′ is (up to the usual multiple) the eigenvector correspond-

ing to λN . Now, if X = ι, MωN = (I − 1
N
ιι′)ι = 0. Figure 9.1 shows the

behaviour of the relative bias as ρ → 1/λN = 1. We see that (9.16) holds for

any given N . Also, pointwise in ρ, the relative bias vanishes as N → ∞, as
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one would expect. We now rigorously establish the latter property.

9.3 Asymptotic bias and consistency

From (9.14), it is clear that, for any V , the relative upward bias of s2 must

vanish as N → ∞. A sufficient condition for the relative downward bias to

disappear as well is that the largest eigenvalue of Σ, µN , is

µN = o(N). (9.23)

This is so because, using
∑N

i=1 µi =
∑N−K

i=1 µi +
∑K

i=1 µi+N−K = N , we have

mean of N −K smallest eigenvalues of Σ =
N

N −K
− 1

N −K

K∑
i=1

µi+N−K

>
N

N −K
− K

N −K
µN

and the right-hand side tends to 1 when (9.23) holds as N →∞.

Condition (9.23) also guarantees consistency. From (9.1), we have

s2 =
1

N
u′Mu =

1

N
u′u− 1

N
u′Hu, (9.24)

where H = X(X ′X)−1X ′. Since u′u/N
p−→ σ2, it remains to show that

1

N
u′Hu

p−→ 0. (9.25)

To this purpose, consider

E

(
1

N
u′Hu

)
= E

(
1

N
ε′Σ1/2HΣ1/2ε

)
(where ε = Σ−1/2u)

=
σ2

N
tr(Σ1/2HΣ1/2)

=
σ2

N
tr(HΣ)

6
σ2

N
K · µN , (9.26)
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where the inequality follows from the fact that HΣ has rank K (since rank

(H) = K). Since no eigenvalue of HΣ can exceed µN , and HΣ has exactly K

nonzero eigenvalues, the inequality follows from the well known fact that the

trace of a matrix equals the sum of its eigenvalues. By assumption, µN/N → 0

as N → ∞, so in view of (9.26), E(u′Hu/N) → 0. As u′Hu is nonnegative,

this in turn implies u′Hu/N
p−→ 0 and therefore the consistency of s2.

The crucial condition (9.23) is a rather mild one; in the present context, it

obviously depends on the weighting matrix W . From (9.6) and (9.18), we have

µN =
σ2

ε

σ2(1− ρλN)2
, (9.27)

so the condition (9.23) obtains whenever

σ2(1− ρλN)2N →∞ (9.28)

For row-normalized weight matrices, λN ≡ 1 irrespective of N , so (9.28) holds

trivially, provided σ2 remains bounded away from zero. This in turn follows

from the fact that, in view of (9.20),

σ2 >
σ2

ε

(1− ρλN)2

N∑
i=1

ω2
i1, (9.29)

where
N∑

i=1

ω2
i1 = 1 (9.30)

as Ω = (ω1, . . . , ωN) satisfies ΩΩ′ = I.

As another example, consider the “one ahead and one behind” matrix adapted

to a “non-circular world” where the (1, N) and (N, 1) entries of W̃ are set to

zero, such that after row-normalization,

W ′ :=



0 0.5 0 · · · 0 0

0.5 0
. . . 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . 0
. . . 0

0 · · · 0 0.5 0 0.5

0 0 · · · 0 0.5 0


.
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Ord (1975) shows that the eigenvalues of W ′ are then given by

λ′i = cos

(
πi

N + 1

)
, i = 1, . . . , N,

so

λ′i ∈ [−1, 1], i = 1, . . . , N.



Chapter 10

Concluding Remarks

The previous eight chapters report my research of the last 18 months. Since

the main messages have already been stated in the Introduction, I would now

like to give a brief outlook on possible extensions of the work presented here.

First, the PPP Condition was used throughout as a common device to illustrate

the methods and issues discussed in this thesis. Obviously, there are many

other macroeconometric topics to which the machinery developed here could

be applied. As such, the multiple testing approach developed in Chapter 8

might be applied to questions such as savings and investment correlations or

the unbiasedness of the forward exchange rate, to name a few. Similarly, panels

of investment data are quite obviously cross-sectionally dependent, so that

applying the robust tests of Chapter 4 would be an interesting exercise. On

a more formal level, as already mentioned in the Conclusion of that Chapter,

it would be desirable to analytically establish the consistency of the bootstrap

approach put forward there.

Also, I use two rather distinct and competing approaches to deal with de-

pendence among different units such as countries, viz. the more flexible, but

potentially less efficient bootstrap and the spatial econometric approach which

assumes a lot more structure for the dependence. The spatial econometric ap-

123
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proach has so far mainly been used in a cross-sectional framework. There is

a recent literature on panel data models under spatial correlation. See, e.g.,

Baltagi, Song, and Koh (2003) or Kapoor, Kelejian, and Prucha (forthcoming).

However, these contributions deal with stationary and small-T panels and are

therefore not directly applicable to the problem of testing, e.g., the null of no

PPP.

Obviously, the spatial econometric approach of modelling dependence may also

be useful in a nonstationary setting. Future work might therefore investigate

whether a cross-fertilization of these hitherto fairly independent literatures

proves fruitful. As a sort of converse, one might investigate whether popular

panel unit root or cointegration tests remain “robust” if cross-sectional de-

pendence is driven by structures typically assumed in the spatial econometrics

literature rather than by factor models often assumed in nonstationary models

(see Baltagi, Bresson, and Pirotte, 2007).
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Dortmund, den 21. Februar 2007

Christoph Hanck


