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Abstract

Jensen’s inequality states for a random variable X with values in Rd and existing
expectation and for any convex function f : Rd −→ R, that f(E(X)) ≤ E(f(X)).
We prove an analogous inequality, where the expectation operator is replaced by
the halfspace-median-operator (or Tukey-median-operator).
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1 Introduction

Jensen’s inequality is one of the most frequently used inequalities in statistics.
It gives a relationship between the expectation of a random variable X and the
expectation of f(X), where f is a convex function. More explicitly:
For S ⊂ Rd convex, X a random variable with values in Rd, distribution P with
supp(P ) ⊂ S, and existing expectation E(X), Jensen’s inequality reads

f(E(X)) ≤ E(f(X)) or in terms of distributions f(E(P )) ≤ E(P f ).

Proving an analogue of Jensen’s inequality for a median instead of the expecta-
tion causes two problems. Firstly, the expectation of a random variable (provided
it exists) is a unique point in Rd, whereas the median of a random variable may
consist of a whole set. Secondly, there are several generalisations of the median in
the multivariate case. Tukey (1975) introduced the halfspace depth, also known
as Tukey depth. Donoho and Gasko (1992) defined the multivariate Tukey- or
halfspace median using the Tukey depth. For empirical distributions Oja (1983)
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and Liu (1990) introduced the multivariate Oja simplex median and the simplicial
median, respectively. Both definitions require additional assumptions. There are
many more possibilities. We will focus on the Tukey median, which coincides in
the one-dimensional case with the classical median.
An analogue to Jensen’s inequality for the median in the one-dimensional case
was given by Merkle (2005). He considers the classical set of medians and sug-
gests a multivariate version of a median, which is not affine linear equivariant.
This leaves open a generalisation of Jensen’s inequality for medians to the mul-
tivariate case. We will prove a stronger statement here and also generalize it to
the multivariate case.
This paper is organized as follows. Section 2 contains some notation, two equiv-
alent definitions of the Tukey median, and some preliminaries. In Section 3 we
prove Jensen’s inequality for the Tukey median and give some examples. Finally,
we present some open problems in Section 4.

2 Notation and preliminaries

We start with the definition of the set of halfspace medians or Tukey medians.

Let X denote a random variable with values in Rd and distribution P on the
Borel-σ-algebra Bd.

Definition 2.1 Let Hd denote the set of all closed halfspaces of Rd. The halfspace
depth (HD) of a point x ∈ Rd with respect to P is defined by

HD(x; P ) := inf{P (H) ; x ∈ H ; H ∈ Hd}. (1)

The set of points at least as deep as k ∈ (0, 1) w.r.t. P is defined by

TukMedk(X) := TukMedk(P ) := {x ∈ Rd ; HD(x; P ) ≥ k}. (2)

Let k′ := supx∈Rd HD(x; P ). The set of Tukey medians is defined by

TukMed(X) := TukMed(P ) := TukMedk′(P ), (3)

which can be interpreted as the set of “deepest points”.

The Tukey median in the finite sample case, i.e. for an empirical distribution Pn,
has been extensively investigated under computational aspects using different
characterisations. For instance Donoho and Gasko (1992) use a representation of
Tukey medians in the finite sample case by an intersection of certain sets. Merkle
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(2005) defines a set of medians as an intersection of multivariate closed intervals.
The following definition of a set of medians is equivalent to Definition 2.1; this
will be shown in Section 3.

Definition 2.2 Let

Bd
cc := {I ∈ Bd ; I closed and convex}. (4)

With the notation of Definition 2.1 , let

I(δ̃, P ) := {I ∈ Bd
cc, such that ∀ J ) I, J ∈ Bd

cc ⇒ P (J) > δ̃}. (5)

for some δ̃ ∈ [1/2, 1),

δmin := δmin(X) := δmin(P ) := inf{δ̃ ∈ [1/2, 1) ;
⋂

I∈I(δ̃,P )

I 6= ∅} (6)

Medδ′(X) := Medδ′(P ) :=
⋂

I∈I(δ′,P )

I , (7)

for some δ′ ∈ (0, 1), and the set of medians of X or P , respectively,

Med(X) := Med(P ) :=
⋂

I∈I(δmin,P )

I . (8)

The gravity point of Med(P ), i.e. the expectation of a random variable, uniformly
distributed on Med(P ), will be denoted by GMed(P ).

Lemma 2.1 The set of medians remains unchanged if we replace I(δ̃, P ) by one
of the following subsystems

Ĩ(δ̃, P ) := {Ĩ ∈ I(δ̃, P ) ; P (Ĩ) > δ̃} (9)

H(δ̃, P ) := {H ∈ I(δ̃, P ) ; H is halfspace } (10)

H̃(δ̃, P ) := {H̃ ∈ Ĩ(δ̃, P ) ; H is halfspace }, (11)

i.e. for δ′ ∈ [δmin, 1) we have

Medδ′(P ) =
⋂

Ĩ∈Ĩ(δ′,P )

Ĩ =
⋂

H∈H(δ′,P )

H =
⋂

H̃∈H̃(δ′,P )

H̃.

Proof. First, we aim at the representation Medδ′(P ) =
⋂

Ĩ∈Ĩ(δ′,P )
Ĩ. For each

I ∈ I(δ′, P ) we define the system of sets

J (I, δ′) := {J ∈ Bd
cc ; J ) I, such that P (J) > δ′} ⊂ Ĩ(δ′, P ).
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We show that I =
⋂

J∈J (I,δ′) J =: I ′ for each I ∈ I(δ′, P ). Obviously, I ⊂⋂
J∈J (I,δ′) J because by definition I ⊂ J whenever J ∈ J (I, δ′). Clearly, if I is an

element of I(δ′, P ), I ′ is as well. Moreover, if I 6= I ′, there is no set in Bd
cc “in

between them”, i.e.

@K ∈ Bd
cc with I ( K ( I ′. (12)

Assume that there exists such a set K. Then K must be an element of J (I, δ′),
and therefore K = I ′ =

⋂
J∈J (I,δ′) J , which implies (12). On the other hand, for

each pair of sets I, I ′ ∈ Bd
cc, I ( I ′ there exists in either case a set K ∈ Bd

cc

satisfying I ( K ( I ′. This contradicts (12) and hence the set I cannot be a
strict subset of I ′. Since I =

⋂
J∈J (I,δ′) J for each I ∈ I(δ′, P ), we can represent

each element of I(δ′, P ) by intersecting elements of Ĩ(δ′, P ), which yields the first
part of the proof.
We prove Medδ′(P ) =

⋂
H∈H(δ′,P ) H in a similar way. For each I ∈ I(δ′, P ) there

exists a system of half spaces included in I(δ′, P ) generating I by intersections.
Hence, the intersection of all half spaces in I(δ′, P ) or all elements of H(δ′, P ),
respectively, generates the set Medδ′(P ).
A proof of the last statement can be given in an analogous way. 2

It is not immediately obvious that the medians defined in Definition 2.2 always
exist. The following lemma shows that Med(P ) is never empty.

Lemma 2.2 The set defined by (6) is closed from below, i.e.

δmin = inf{δ̃ ∈ [1/2, 1) ;
⋂

I∈I(δ̃,P )

I 6= ∅}

= min{δ̃ ∈ [1/2, 1) ;
⋂

I∈I(δ̃,P )

I 6= ∅}.

Proof. It is easy to check that there exists δ′ ∈ [1/2, 1) such that Medδ′(P ) 6= ∅.
We can use the representation Med(P ) =

⋂
Ĩ∈Ĩ(δmin,P )

Ĩ (Lemma 2.1). Then, for

each δ′ ∈ (δmin, 1):

Medδ′(P ) =
⋂

Ĩ∈Ĩ(δ′,P )

Ĩ 6= ∅, and (13)

⋂

δ′∈(δmin,1)

Medδ′(P ) 6= ∅. (14)

(13) follows immediately by (5), (6), and (9). Assume (14) does not hold. By the
Heine-Borel Theorem one can find {δ1, ..., δn} ⊂ (δmin, 1) satisfying Medδ1(P ) ∩
...∩Medδn(P ) = ∅ . Since Medδi

(P ) ⊂ Medδj
(P ) whenever δi ≤ δj, it follows that
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Medmin{δ1,...,δn}(P ) = ∅ , which contradicts (13). Hence, (14) holds. By Lemma
2.1 we have

⋂
δ′∈(δmin,1) Medδ′(P ) =

⋂
δ′∈[δmin,1) Medδ′(P ) 6= ∅, which completes

the proof. 2

Remark 2.1
a) In the one-dimensional case, Definition 2.2 yields the classical set of medi-

ans and δmin = 1/2. This follows immediately from Theorem 2.1 in Merkle
(2005).

b) Med(P ) is a compact and convex set because the intersection of convex sets
is convex, the intersection of closed sets is closed, and the intersection of a
closed set with at least one compact set is compact.

c) Note that we claim in (6): δ̃ ∈ [1/2, 1). The lower bound of 1/2 seems to be
restrictive. But it is easy to check that if we allow δ̃ to be smaller, i.e.

δmin(P ) = inf{δ̃ ∈ (0, 1) ;
⋂

I∈I(δ̃,P )

I 6= ∅}, (15)

we obtain the same set of medians. In other words, let δmin(P ) be defined
as in (15) and let δ̃ be such that δmin(P ) ≤ δ̃ < 1/2, then Med

δ̃
(P ) =

Med1/2(P ).
d) One could conjecture that δmin = 1/2 holds in general. But for the uniform

distribution on the vertices of a regular pentagon in R2, we get δmin = 3/5.

Obviously, each H ∈ H(δmin, P ) contains Med(P ) as a subset. For technical
purposes we need the opposite inclusion.

Lemma 2.3 If H is a half space containing Med(P ), i.e. Med(P ) ⊂ H, then H
is an element of H(δmin, P ).

Proof. By Lemma 2.1 Med(P ) can be generated by intersecting all half spaces in
H(δmin, P ). Hence, there exists H ′ ∈ H(δmin, P ), which is a subset of H. There-
fore, H ∈ H(δmin, P ). 2

In order to prove Jensen’s inequality for the Tukey median we need that a median
exists in certain subsets. The following lemma provides a criterion for this.

Lemma 2.4 Let K ∈ Bd
cc and let P denote a distribution on Rd such that

P (K) ≥ 1/2. Then K ∩ Med(P ) 6= ∅, i.e. K contains at least one median of
P .

Proof. We first prove the statement for any half space H with P (H) ≥ 1/2.
Assume that H ∩ Med(P ) = ∅. Since H and Med(P ) are closed and convex,
there exists a hyperplane h′ separating H and Med(P ). Hence, there exists a
closed half space H ′ satisfying ∂H ′ = h′ and H ′ ∩H = ∅ where ∂H ′ denotes the
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boundary of H ′. Since H ′ contains Med(P ), by Lemma 2.3 H ′ is an element of
H(δmin, P ). H ′ is closed and convex, thus there exists a set J ∈ Bd

cc such that
P (J) > δmin ≥ 1/2 and J ∩H = ∅. Therefore,

P (H ∪ J) = P (H) + P (J) > 1/2 + δmin ≥ 1,

which is not possible. Hence,

H ∩Med(P ) 6= ∅. (16)

If we only assume that K ∈ Bd
cc such that P (K) ≥ 1/2, and that the statement

does not hold, there exists a half space H such that H ∩Med(P ) = ∅, P (H) ≥
1/2, and K ⊂ H, which contradicts (16) and thus completes the proof. 2

It is a natural requirement that the set of medians should not depend on the
choice of the coordinate system. The following lemma states the equivariance un-
der affine linear transformations. For technical purposes a generalisation to linear
projections into lower dimensional subspaces would be desirable. But this is not
possible. We therefore give the following weaker statement.

Lemma 2.5 Let G denote the gravity-operator, i.e. G maps a compact set onto
its gravity point. For each affine linear and bijective function f : Rd −→ Rd we
have:

f(Med(P )) = Med(P f ), (17)

f(GMed(P )) = GMed(P f ), (18)

where P f denotes the distribution of f(X). Moreover, for each δ′ ≥ δmin(P ) let
Medδ′(P ) be defined as in (13). For each linear function L : Rd −→ Rd′, we get

L(Medδ′(P )) ⊂ Medδ′(P
L), (19)

and consequently, if δmin(P ) = δmin(PL),

L(Med(P )) ⊂ Med(PL). (20)

Proof. Since f is affine linear and bijective, f maps convex sets onto convex sets.
Further, f is also measurable, hence I ∈ I(δmin, P ) implies f(I) ∈ I(δmin, P

f ).
So (17) follows from this one-to-one relation and hence also (18) because an
affine linear and bijective function and the G-operator are commutative. In order
to prove (19) we define for each linear function L : Rd −→ Rd′ an equivalence
relation ∼=L on the system of sets I(δ′, P ):

K1
∼=L K2 :⇔ L(K1) = L(K2).
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Consequently,

[I(δ′, P )]L := {IP ∈ I(δ′, P ) ; IP = L−1(L(IP )) } (21)

is a set of representatives of the equivalence classes. Since L(IP ) ∈ I(δ′, PL)
whenever IP ∈ I(δ′, P ), it follows that

I(δ′, PL) = {I = L(IP ) ; IP ∈ [I(δ′, P )]L}. (22)

Thus,

L(Medδ′(P ))) = L(
⋂

IP∈I(δ′,P ) IP ) ⊂ ⋂
IP∈I(δ′,P ) L(IP )

by(21)
=

⋂
IP∈[I(δ′,P )]L L(IP )

by(22)
=

⋂
I∈I(δ′,P L) I = Medδ′(P

L),

which completes the proof. 2

3 The main theorem and examples

With the previous results we can now prove Jensen’s inequality for the median.

Theorem 3.1 Let f : S −→ R be a convex function, where S ⊂ Rd is convex,
and let X be a random variable and P its distribution with supp(P ) ⊂ S. Then
the following inequality holds:

inf{f(Med(P ))} ≤ inf{Med(P f )}. (23)

Moreover, if P satisfies δmin(P ) = 1/2, e.g. if
⋂

H∈Hd ; P (H)>1/2 H 6= ∅, and if f is
continuous, then

sup{f(Med(P ))} ≤ sup{Med(P f )}. (24)

Proof. We start with the proof of (23). Without loss of generality we assume that
S is not a subset of any d′-dimensional hyperplane with d′ < d. If S is a subset
of a d′-dimensional hyperplane with d′ < d, there exists an affine linear change of
coordinates such that P can be seen as a distribution on Rd′ with convex support
S ′ ⊂ Rd′ . Moreover, if f is not continuous, then the boundary ∂S contains all
points of discontinuity, cf. Rockafellar (1970), Section 10. Let f̄ : S −→ R denote
the continuous function satisfying f̄(x) = f(x) ∀x ∈ S \ ∂S. Then we have

inf{f̄(Med(P ))}= inf{f(Med(P ))}, and

inf{(Med(P f̄ ))}≤ inf{(Med(P f ))}.
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Hence, without loss of generality we can assume that f is continuous. Let M ∈
Med(P f ) be arbitrary, and let IM ⊂ Rd be defined by IM := f−1((−∞,M ]). IM

is closed and convex because f is continuous and convex. By Remark 2.1 a) it
follows:

P (IM) = P f ((−∞,M ]) ≥ 1/2,

and therefore, by Lemma 2.4, IM∩Med(P ) 6= ∅, i.e. there exists m ∈ Med(P ) that
is also an element of IM . The definition of IM yields the inequality f(m) ≤ M.
Since M is an arbitrary element of Med(P f ) and due to the compactness of
Med(P f ), we have f(m) ≤ inf{Med(P f )} for at least one element m ∈ Med(P ).
We thus get (23). Next we prove (24). Let U be the intersection of all hyperplanes
U ′ with Med(P ) ⊂ U ′, and let IntMed(P ) ⊂ Med(P ) be the interior of Med(P )
w.r.t. the subspace topology of U . Additionally, for each m ∈ IntMed(P ) let
f ′(x) := f(x)− f(m). We now show that

sup{Med(P f )} ≥ f(m), i.e. sup{Med(P f ′)} ≥ 0 . (25)

Let L : Rd −→ R be a linear function satisfying

f ′′(x) := L(x−m) ≤ f ′(x) ∀ x ∈ Rd, (26)

and let m′ be such that

L(m′) = sup{L(Med(P ))}. (27)

Therefore,

sup{Med(P f ′)}
by(26)

≥ sup{Med(P f ′′)}
by(20) and δmin(P )=1/2

≥ sup{L(Med(P ))} − sup{L(Med(εm))}
by(27)

≥ sup{L(Med(P ))} − sup{L(Med(εm′))}
by(27)
= 0 ,

where the ”−” in the last two inequalities corresponds to affine movements of
sets, and εm , εm′ denote the Dirac measures on m and m′, respectively. Since
IntMed(P ) is dense in Med(P ), and since f is continuous, replacing f(m) in (25)
by sup{f(Med(P ))} completes the proof. 2

A similar version for the GMed-operator might be desirable. The next theorem
gives such a Jensen’s inequality in the univariate case.
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Example 3.1 Under the assumptions of Theorem 3.1 with S ⊂ R and
f : S −→ R continuous the following inequality holds:

f(GMed(P )) ≤ GMed(P f ). (28)

Proof. Theorem 3.1 immediately implies

G(f(Med(P ))) ≤ GMed(P f ). (29)

Observing that GMed(P ) = E(Y ) for a random variable Y , uniformly distributed
on Med(P ), we get

f(GMed(P )) ≤ G(f(Med(P ))) (30)

by the standard Jensen’s inequality. Combining (29) and (30) completes the proof.

2

As a simple consequence of Jensen’s inequality in the multivariate case we get a
kind of Hölder’s inequality for medians.

Example 3.2 Let X, Y denote real valued and non-negative random variables,
and let δmin((X,Y )) = 1/2, then the following inequality holds for 0 ≤ p ≤ 1:

inf{Med(XpY 1−p)}≤ inf{Med(X)}p inf{Med(Y )}1−p.

Proof. Observe that for each 0 < p < 1 the function

f : R2
+ −→ R, f(x, y) = −xpy1−p

is convex. By δmin((X,Y )) = 1/2, and by Lemma 2.5 (20) we get
Med((X, Y )) ⊂ Med(X)×Med(Y ), and hence,

inf{f(Med((X, Y )))} ≥ inf{f(Med(X)×Med(Y ))}. (31)

From Theorem 3.1 and by (31) we get the desired result. 2

Example 3.3 As mentioned in Remark 2.1 a), δmin(P ) = 1/2 if P is a distri-
bution on R. Hence (23) and (24) hold in the one-dimensional case.

Example 3.4 We demonstrate by a counterexample that (24) does not necessar-
ily hold if δmin(P ) 6= 1/2. Let P be the uniform distribution on the set
{(1, 0), (0, 0), (0, 1)} ⊂ R2, and let L : R2 −→ R be the orthogonal projection onto
the x-axis, i.e. L(x, y) = x. Obviously, L is continuous and convex. It is easy to
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check that δmin(P ) = 2/3 and Med(P ) is the convex hull of {(1, 0), (0, 0), (0, 1)},
but Med(PL) = 0. Therefore, (24) does not hold. 2

Theorem 3.1 states an analogue of Jensen’s inequality for medians as defined in
Definition 2.2. This analogue holds also for Tukey medians if the set of Tukey
medians and the set of medians defined in Definition 2.2 are equal:

Lemma 3.1 Let P be a distribution on Rd and let k ∈ (0, 1). Then

TukMedk(P ) = Med1−k(P ), especially TukMed(P ) = Med(P ). (32)

Proof. First note that in Lemma 3.1 we do not restrict to 1−k ≥ 1/2. As pointed
out in Remark 2.1 c), Med1−k(P ) = Med1−k∨1/2(P ), if Med1−k(P ) 6= ∅. In the
following we make use of representations of Med1−k(P ) as given in Lemma 2.1.
We show (32) by proving that the complements of TukMedk(P ) and Med1−k(P )
are equal. Let Hd be defined as in Definition 2.1, let θ ∈ Rd, and assume θ 6∈
Med1−k(P ). From the definition of Med1−k(P ) it is clear that there exists H ∈ Hd

such that θ 6∈ H and P (H) > 1−k, or 1−P (H) < k, respectively. Consequently,
there exists a sequence of closed halfspaces H ′

n ∈ Hd, n ∈ N, with the following
properties:

H ′
n ∩H = ∅, and θ ∈ H ′

n ∀n ∈ N, and

lim
n−→∞P (H ′

n) = 1− P (H) < k.

Therefore, HD(θ; P ) < k, and θ 6∈ TukMedk(P ).

Conversely, assume θ 6∈ TukMedk(P ), i.e. inf{P (H ′) ; θ ∈ H ′ ∈ Hd} < k;
hence there exists a sequence of closed
halfspaces H ′

n satisfying

θ ∈ H ′
n ∀n ∈ N, and

lim
n−→∞P (H ′

n) < k ⇔ 1− lim
n−→∞P (H ′

n) > 1− k,

and thus a sequence of closed halfspaces Hn such that

H ′
n ∩Hn = ∅ (and also θ 6∈ Hn), and

lim
n−→∞P (Hn) = 1− lim

n−→∞P (H ′
n) > 1− k.

This implies θ 6∈ Med1−k(P ) which completes the proof. 2
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4 Discussion

We have given an analogue of the classical Jensen’s inequality with the expec-
tation replaced by the median, more precisely, by the set of Tukey medians. For
technical reasons we have used an equivalent characterisation of the standard
definition of Tukey medians. We have shown Jensen’s inequality for the infimum
of the set of Tukey medians. In the one-dimensional case Jensen’s inequality even
holds for the supremum and the center of gravity of the set of Tukey medians if
the convex function f is continuous. Since in the one-dimensional case the set of
Tukey medians coincides with the set of classical medians, Jensen’s inequality also
holds for the classical sample median. On the other hand, Jensen’s inequality for
the supremum of the set of Tukey medians requires at least one additional assump-
tion, where the continuity of f and δmin(P ) = 1/2, i.e.

⋂
H∈Hd ; P (H)>1/2 H 6= ∅

is such a sufficient condition. It is an open question whether this condition is
necessary. Jensen’s inequality for the gravity point of the set of Tukey medians
also needs additional assumptions besides the continuity of f . It is interesting
whether δmin(P ) = 1/2 is sufficient here, or not. However, other conditions that
imply δmin(P ) = 1/2 and which are easy to check also allow to apply our theorem.
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