
U N I V E R S I T Ä T D O R T M U N D

REIHE COMPUTATIONAL INTELLIGENCE

S O N D E R F O R S C H U N G S B E R E I C H 5 3 1

Design und Management komplexer technischer Prozesse
und Systeme mit Methoden der Computational Intelligence

On the Analysis of the
(1+1) Memetic Algorithm

Dirk Sudholt

Nr. CI-201/06

Interner Bericht ISSN 1433-3325 Januar 2006

Sekretariat des SFB 531 · Universität Dortmund · Fachbereich Informatik/XI
44221 Dortmund · Germany

Diese Arbeit ist im Sonderforschungsbereich 531,
”
Computational Intelligence“, der

Universität Dortmund entstanden und wurde auf seine Veranlassung unter Verwendung
der ihm von der Deutschen Forschungsgemeinschaft zur Verfügung gestellten Mittel
gedruckt.

On the Analysis of the
(1+1) Memetic Algorithm

Dirk Sudholt∗

FB Informatik, Univ. Dortmund, 44221 Dortmund, Germany

Dirk.Sudholt@udo.edu

Abstract

Memetic algorithms are evolutionary algorithms incorporating lo-
cal search to increase exploitation. This hybridization has been fruitful
in countless applications. However, theory on memetic algorithms is
still in its infancy.

Here, we introduce a simple memetic algorithm, the (1+1) Memetic
Algorithm ((1+1) MA), working with a population size of 1 and no
crossover. We compare it with the well-known (1+1) EA and random-
ized local search and show that these three algorithms can outperform
each other drastically.

On problems like, e. g., long path problems it is essential to limit
the duration of local search. We investigate the (1+1) MA with a fixed
maximal local search duration and define a class of fitness functions
where a small variation of the local search duration has a large impact
on the performance of the (1+1) MA.

All results are proved rigorously without assumptions.

∗supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative
Research Center “Computational Intelligence” (SFB 531).

1

1 Introduction

Memetic algorithm is a term for a hybridization of evolutionary algorithms
and local search. Combining these two types of algorithms, the hope is
to preserve good properties of two algorithms and to create a more power-
ful hybrid algorithm. This approach has led to many implementations of
memetic algorithms that have shown their usefulness in many applications,
see Moscato [7] for an overview.

Due to the rapid development in this research area, it is hard for theory to
keep up with the state-of-the-art. An example of a theoretical analysis on
memetic algorithms is the work of Merz [6] based on an empirical approach.
However, rigorous theoretical results are rare and difficult to obtain.

The purpose of this paper is to build a rigorous theory on memetic algorithms,
i. e., a theory not based on assumptions. Such a theory has been established
for simple evolutionary algorithms such as the (1+1) EA (see, e. g., Droste,
Jansen, and Wegener [1]) and for population-based evolutionary algorithms
(see Witt [9] for a rigorous analysis of a (µ+1) EA and Jansen and Wegener [5]
for a rigorous analysis of genetic algorithms with crossover).

When dealing with a new class of algorithms, it makes sense to start with
a simple algorithm. Thus, we define the so-called (1+1) Memetic Algorithm
((1+1) MA) working with a population of size 1 and no crossover. We will see
that the analysis of this simple memetic algorithm provides valuable insights
into the interaction of mutation and local search. Furthermore, this work
can be used as a basis for results on more complex algorithms.

The fitness functions considered in this work are artificial functions that have
been constructed explicitly to prove specific properties of the (1+1) MA.
This approach has shown to be fruitful in the past since it is possible to
enforce a certain behavior of the considered algorithm with a custom-built
fitness function. That way the investigation of constructed example func-
tions may disprove simple conjectures on the considered algorithm (see, e. g.,
Jansen and Wegener [4]) and yield various insights into the behavior of the
algorithm (see, e. g., Garnier, Kallel, and Schoenauer [2]).

This paper is structured as follows. In Section 2 we define the three algo-
rithms considered here: the (1+1) MA, the (1+1) EA, and randomized local

2

search. Section 3 introduces a construction plan that is used in Sections 4
and 5 to define functions with specific properties. In Section 4 we define three
functions and prove that each algorithm beats the other two algorithms dras-
tically on one function. In Section 5 we consider the (1+1) MA with maximal
local search duration d(n). A class of functions is presented where only spe-
cific values of d(n) for the (1+1) MA lead to an efficient optimization while
even small deviations from these values are likely to lure the (1+1) MA into
a trap.

2 Definitions

First, we will define the algorithms considered in this work. All algorithms
are defined for the maximization of a function f : {0, 1}n → R ∪ {−∞}.

Randomized local search (RLS) chooses a Hamming neighbor of the current
search point uniformly at random. The offspring replaces its parent if its
fitness is not worse.

Algorithm 1 (RLS).

1. Choose x ∈ {0, 1}n uniformly at random.

2. y := x. Flip a bit in y chosen uniformly at random.

3. If f(y) ≥ f(x), x := y.

4. If the stopping criterion is not met, continue at line 2.

We do not explicitly define a stopping criterion. Instead, we consider the
algorithm as an infinite stochastic process since we are only interested in the
random variable describing the time until a global optimum is found.

The (1+1) EA almost works like RLS. The only difference is the mutation
operator flipping each bit with a fixed mutation probability pm.

Algorithm 2 ((1+1) EA).

1. Choose x ∈ {0, 1}n uniformly at random.

2. y := x. Flip every bit in y independently with probability pm.

3

3. If f(y) ≥ f(x), x := y.

4. If the stopping criterion is not met, continue at line 2.

The (1+1) MA uses a local search procedure defined as follows. H(x, y)
denotes the Hamming distance of two search points x, y ∈ {0, 1}n.

Procedure 1 (Local Search(y)).
S := {z | H(z, y) = 1 ∧ f(z) > f(y)}.

While S 6= ∅ do {
Choose y ∈ S uniformly at random.
S := {z | H(z, y) = 1 ∧ f(z) > f(y)}.

}
Return y.

The difference between the local search strategies of RLS and the (1+1) MA’s
local search procedure is that in a region of search points with equal fitness, a
so-called plateau, RLS can move around since search points with equal fitness
are accepted. The (1+1) MA’s local search procedure, however, stops since
only search points with larger fitness are accepted.

Having defined the local search procedure, we can now define the (1+1) MA.

Algorithm 3 ((1+1) Memetic Algorithm ((1+1) MA)).

1. Choose x ∈ {0, 1}n uniformly at random.
x := Local Search(x).

2. y := x. Flip every bit in y independently with probability pm.
y := Local Search(y).

3. If f(y) ≥ f(x), x := y.

4. If the stopping criterion is not met, continue at line 2.

A common choice for pm is pm := 1/n implying that one bit flips in ex-
pectance. In the following, we will investigate values for pm with ε/n ≤
pm ≤ 1/2 for some constant 0 < ε ≤ 1. Obviously, values larger than 1/2 do
not make sense since individuals with a large Hamming distance to the cur-
rent search point are preferred. If the mutation probability is very small, say

4

pm = o(1/n), then most mutations will not flip any bit in the parent. While
RLS and the (1+1) MA can use local search strategies to have progress, the
(1+1) EA has a large waiting time until it finds a new search point. Thus,
it makes sense to restrict pm to values pm ≥ ε/n.

Next, we define notions to classify the performance of an algorithm.

Definition 1. An event E occurs with overwhelming probability if the proba-
bility Prob (E) converges to 1 exponentially fast with the search space dimen-
sion n, i. e., Prob (E) = 1 − 2−Ω(nε) for some constant ε > 0.

We say that an algorithm A is efficient on a function f iff A finds a global
optimum on f in polynomial time with overwhelming probability.

We say that an algorithm A fails on a function f iff A does not find a global
optimum in exponential time with overwhelming probability.

For the (1+1) MA, we have to take into account all steps of the local search
process. Note that the (1+1) MA’s local search procedure performs n fitness
evaluations per step while (1+1) EA and RLS use only one fitness evaluation
per step. Our notions of efficiency are not affected by this additional factor
n, though. Even polynomially large factors do not affect these notions as we
do not differentiate between polynomials of different orders. This perspective
resembles the one taken in complexity theory and is explicit in the notion of
NP-completeness and the Church-Turing thesis.

In Sections 4 and 5 we will define functions where certain subfunctions are
embedded. Amongst others, we will make use of so-called long path problems
introduced by Horn, Goldberg, and Deb [3]. A long path of Hamming neigh-
bors is embedded into a fitness function such that on the path the fitness is
strictly increasing and all other search points give hints to reach the start of
the path.

Long paths can be generalized to so-called long K-paths where the prob-
ability to take a shortcut on the path by mutation decreases rapidly with
increasing K. This generalization was informally described in [3] and then
formally defined by Rudolph [8].

Definition 2. Let K, N ∈ N with (N − 1)/K ∈ N. The long K-path of
dimension N is a sequence of bitstrings from {0, 1}N defined recursively

5

as follows. The long K-path of dimension 1 is defined as P K
1 := (0, 1).

Let P K
N−K = (v1, . . . , vℓ) be the long K-path of dimension N − K. Then

the long K-path of dimension N is defined by prepending K bits to the
search points from {v1, . . . , vℓ}: let S0 := (0Kv1, 0

Kv2, . . . , 0
Kvℓ), S1 :=

(1Kvℓ, 1
Kvℓ−1, . . . , 1

Kv1), and B := (0K−11vℓ, 0
K−212vℓ, . . . , 01K−1vℓ). The

search points in S0 and S1 differ in the K leading bits and the search points
in B represent a bridge between them. The long K-path of dimension N is
constructed by concatenating S0, B, and S1.

We cite two important properties of long K-paths that will be referred to in
Section 5. Proofs are given in [1].

Lemma 1.

1. The length of the long K-path is (K + 1)2(N−1)/K − K + 1. (We will
often choose N := (K2 + 1) yielding an exponential length.) All points
on the path are different.

2. Let x be a point on the long path. For all 0 < i < K the following
holds. If x has at least i successors on the path, then the i-th successor
has Hamming distance i of x and all other successors of x on the path
have Hamming distances different from i.

The second property is important, stating that unless an algorithm performs
jumps of at least K bits, the algorithm cannot take shortcuts on the long
K-path.

3 A Common Construction Plan

The functions defined in Sections 4 and 5 are constructed by a common con-
struction plan. A function g defined on a bitstring of length N is to be
maximized and we want the optimization of g to start with a bitstring con-
taining almost only zeros. Hence, we embed the function g into a function f .
The function f is defined on a larger bitstring where N bits are appended to
the bits of g.

The following function ZZO (zeros, zeros, ones) gives hints to turn the first
N bits into zeros and the last N bits into ones.

6

Definition 3. Let |x|i be the number of bits with value i in x. Let x ∈ {0, 1}n

be divided into two halves, x = x′x′′ with x′, x′′ ∈ {0, 1}N . Then we define
ZZO : {0, 1}n → R as

ZZO(x) :=











|x′′|0 − 3N if x′ 6= 0N , x′′ 6= 0N

|x′|0 − 2N if x′ 6= 0N , x′′ = 0N

|x′′|1 − N if x′ = 0N .

In a typical run of one of the algorithms considered here, the algorithm starts
with an initial search point x where x′′ 6= 0N and then maximizes the number
of zeros in x′′. Once x′′ = 0N , the number of zeros in x′ is maximized and
once x′ = 0N , the number of ones in x′′ is maximized. Note that ZZO is
unimodal, i. e., there is a path of Hamming neighbors with strictly increasing
fitness that leads to the global optimum 0N1N .

Now we embed the function ZZO into a function such that the fitness de-
pends on the function g once the right half contains only ones. ZZO gives
hints to maximize the number of ones in the right half only if the left half
consists of zeros. Thus, the first search point where g comes into play is likely
to contain (almost) only zeros.

Lemma 2. Let x ∈ {0, 1}n be divided into two halves, x = x′x′′ with
x′, x′′ ∈ {0, 1}N . Let g : {0, 1}N → R

+ ∪ {−∞} be an arbitrary function
and f : {0, 1}n → R ∪ {−∞} be defined as

f(x) :=

{

ZZO(x) if x′′ 6= 1N

g(x′) if x′′ = 1N .

A search point x is called well-formed iff its right half contains only ones.
Consider an algorithm A ∈ {RLS, (1+1) EA, (1+1) MA} on f with mutation
probability pm := Θ(1/n). Then with overwhelming probability the following
statements hold.

1. The embedded function g is first evaluated with a well-formed search
point x = x′1N where either x′ = 0N or x′ is a mutant of 0N .

2. If, in addition, g(0N) > −∞, the algorithm accepts some well-formed
search point y = y′1N within O(n2) fitness evaluations.

7

Proof. We investigate a typical run of the algorithm and show that the
claimed events occur in a typical run. Events preventing a run from be-
ing typical are called errors. Showing that the sum of all error probabilities
is exponentially small completes the proof.

By Chernoff’s bounds, A is initialized with some search point x = x′x′′ where
|x′′|1 ≤ 2N/3 with overwhelming probability. (If the complementary event
occurs, this is considered an error and the run is not typical.) The probability
that at least N/3 = Ω(n) bits flip in one single mutation is exponentially
small. The probability that this happens at least once in cn2 steps for some
c > 0 is still exponentially small and this is considered an error, too.

If |x′′|1 ≤ 2N/3, the only search points with a larger number of ones in the
right half that can be reached by local search or mutations of less than
N/3 bits contain only zeros in the left half. Once the left half consists
of zeros, these values must be maintained until a well-formed search point
is reached. Now, consider the variation step creating the first well-formed
offspring y = y′1N . Then y′ results from 0N by the very same variation, thus
either y′ = 0N or y′ is a mutant of 0N .

We now prove that the time bound cn2 holds with overwhelming probability.
The (1+1) MA reaches a search point x = 0Nx′′ with |x′′|1 ≥ N − 1 during
the initial local search process within (c− 1)n2 fitness evaluations if c ≥ 5/2.
For RLS and the (1+1) EA, the probability to increase the fitness is bounded
below by Ω(1/n) if f(x) < −1 for the current population x. By Chernoff’s
bounds, the probability to have less than 3N − 1 fitness-increasing steps in
(c − 1)n2 steps is exponentially small if c > 0 is chosen large enough. Thus,
all three algorithms reach either x = 0Nx′′ with |x′′|1 = N − 1 or some
well-formed search point in (c − 1)n2 fitness evaluations with overwhelming
probability.

If the current population is x = 0Nx′′ with |x′′|1 = N − 1, the probability to
create its well-formed Hamming neighbor 0N1N as an offspring is Ω(1/n) for
all three algorithms. Thus, as long as no other well-formed search point is
accepted, the probability of creating y = 0N1N in one step is Ω(1/n) and the
probability that y is created in n2 trials is 1 − (1 − Ω(1/n))n2

= 1 − e−Ω(n).
This proves the time bound cn2 and the first statement. Since 0N1N has a
non-negative fitness if g(0N) > −∞, we have also shown that a well-formed
search point is accepted by the algorithm in cn2 fitness evaluations with

8

overwhelming probability.

It is easy to see that the sum of all error probabilities is exponentially small.

The first well-formed search point reached by the (1+1) MA typically con-
tains many zeros in the left half. This is due to the structure of ZZO and
the random initialization. The (1+1) MA’s local search procedure, however,
can behave differently since it is initialized with a mutant of the (1+1) MA’s
current population.

Consider a step where the (1+1) MA mutates some well-formed search point
x = x′1N and creates an offspring y = y′y′′ with |y′′|1 = N − 1. The fitness
of y is determined by ZZO(y) and local search is started from y. Then
the (1+1) MA’s local search procedure can only increase the fitness by two
means: either by increasing the number of zeros in y′′ or by flipping back the
only zero-bit in y′′ if g(y′) > −∞. In the latter case, a well-formed search
point y′1N with non-negative fitness is reached. In the former case or in case
|y′′|1 < N − 1, the Hamming distance to all well-formed search points is at
least 2 and the only fitness-increasing path leading to a well-formed search
point traverses 0N1N . Lastly, if y′′ = 1N and g(y′) = −∞, either z = z′1N is
reached with non-negative fitness where z′ is a Hamming neighbor of y′ or a
bit flips in the right half and 0N1N is traversed.

We summarize these arguments in the following corollary. With regard to
Section 5 we also consider the case that the (1+1) MA can stop the local
search process at some point of time.

Corollary 1. Consider the (1+1) MA on a function f as defined in Lemma 2.
If the (1+1) MA performs a mutation of a well-formed search point x with
non-negative fitness creating y = y′y′′, then LocalSearch(y) either

• stops with a search point with negative fitness or

• traverses the search point 0N1N or

• reaches a search point z = z′1N with H(z′, y′) ≤ 1 and non-negative
fitness.

9

In the first case the result of the local search process is rejected by the
(1+1) MA. In the second case, we are in the situation of a typical run as
described in the proof of Lemma 2. The third case yields a well-formed search
point where the left half is almost a mutant of x′. Hence, the outcome of the
local search process and the following selection is restricted to search points
on a fitness-increasing path starting with either 0N1N or z = z′1N .

4 RLS, (1+1) EA, and (1+1) MA Can Beat

Each Other Drastically

We now present three functions showing that each algorithm can beat the
other two algorithms drastically. W. l. o. g. n is a multiple of 4 and N := n/2.
Then we divide the bitstring of x into two halves of length N , x = x′x′′ with
x′, x′′ ∈ {0, 1}N .

Let T ⊂ {0, 1}N be defined as

T := {x′ | |x′|1 ≤ N/2, ∀0 ≤ i ≤ N : H(x′, 1i0N−i) ≥ 2}.

A common idea behind the three functions is the following. Using the con-
struction defined in Section 3, the optimization of some subfunction in the
x′ part starts close to 0N . Concentrating on the subspace defined by the x′

part, there is a ridge of search points 1i0N−i where the fitness increases with
i. Close to this ridge, but with Hamming distance of at least 2, there is a set
T of search points with larger fitness that can be either a trap or a target
area of global optima.

First, we define the function fMA where only the (1+1) MA is efficient.

fMA(x) :=



















ZZO(x) if x′′ 6= 1N

i if x′′ = 1N , x′ = 1i0N−i, i 6= N − 1

N − 1
2

if x′′ = 1N , x′ ∈ T

−∞ otherwise.

The idea behind this function is that local search allows the (1+1) MA to
walk past the trap T and mutation allows the (1+1) MA to jump across
a small gap in the ridge. This gap prevents RLS from reaching the global

10

optimum while the (1+1) EA is very likely to run into the trap by mutations
flipping more than one bit.

The function fEA is defined such that only the (1+1) EA is efficient.

fEA(x) :=



















ZZO(x) if x′′ 6= 1N

i if x′′ = 1N , x′ = 1i0N−i

N + 1
2

if x′′ = 1N , x′ ∈ T

−∞ otherwise.

Here T is not a trap but a target area of global optima. Both RLS and the
(1+1) MA are likely to run into the local optimum 1N while the (1+1) EA
can reach T easily by mutations flipping more than one bit.

Finally, the function fRLS is efficient only for RLS.

fRLS(x) :=



















ZZO(x) if x′′ 6= 1N

2j if x′′ = 1N , x′ ∈ {12j0N−2j, 12j+10N−2j−1}

N − 1
2

if x′′ = 1N , x′ ∈ T

−∞ otherwise.

Here the idea is that RLS walks past the trap T while mutation is likely to
lead the (1+1) EA into the trap. For the (1+1) MA, small plateaus in the
ridge stop local search processes and mutation leads the (1+1) MA into the
trap.

Now, we want to concretize these ideas and give rigorous proofs for these
claims.

Theorem 1. While the (1+1) MA with mutation probability pm := 1/n is
efficient on fMA, both RLS and the (1+1) EA with mutation probability ε/n ≤
pm ≤ 1/2, ε > 0, fail on fMA.

Proof. By Lemma 2 and due to the fact that local search is performed right
after initialization, the (1+1) MA reaches the search point 0N1N with over-
whelming probability. Due to the construction of fMA, for every well-formed
search point x with x′ = 1i0N−i and i < N − 2 there is exactly one Ham-
ming neighbor with larger fitness. Thus, the (1+1) MA reaches x′ = 1N−202

during the initial local search process within O(n2) fitness evaluations.

11

Then, local search processes climbing the ridge stop due to the gap in the
ridge. Moreover, it is unlikely that the trap T is hit by mutation and local
search since by Corollary 1 at least N/2−3 bits have to flip in one mutation.
The probability that this happens at least once in O(n2) trials is exponentially
small.

A sufficient condition to increase the fitness is to mutate x = 1N−2021N into
y = 1N1N . The probability for this event is 1/n2·(1−1/n)n−2 ≥ 1/(en2). The
probability that this does not happen within n3 mutations is exponentially
small.

If the (1+1) MA’s local search procedure is initialized with a non-well-formed
search point, it may spend time to optimize ZZO and/or to climb the ridge
again. Since fMA has O(n) different fitness values, our time bound increases
by a factor of O(n2) yielding a bound of O(n5). Since the sum of all error
probabilities is exponentially small, we have shown that the (1+1) MA is
efficient on fMA.

By Lemma 2, RLS reaches the search point 0N1N with overwhelming prob-
ability. Then the only fitness-increasing path of Hamming neighbors ends
with x′ = 1N−202 and the global optimum cannot be reached by variation
steps flipping only one single bit. Thus, with overwhelming probability RLS
does not find the optimum in an exponential number of steps.

Finally, we have to show that the (1+1) EA fails on fMA. With probability
1 − 2−N , x′′ 6= 1N holds for the initial search point x. We now distinct two
cases according to the value of the mutation probability pm.

If n−1/2 ≤ pm ≤ 1/2, we concentrate on the last N bits in the bit string and
remark that these bits must be turned into ones to reach the optimum. The
probability to mutate an arbitrary bit string x′′ of length N into the string
1N is bounded above by

(max{pm, 1 − pm})
N ≤

(

1 −
1

n1/2

)n/2

≤ e−n1/2/2

and so the (1+1) EA fails in this case.

Let ε/n ≤ pm < n−1/2. The probability to flip at least cN bits in one

12

mutation, 0 < c < 1/12, is at most

(

N

cN

)

· pcN
m ≤ 2N · n−Ω(n) = n−Ω(n).

The probability that such an event occurs in 2o(n) steps is still of order n−Ω(n),
so we can assume that such an event does not occur in 2o(n) steps and intro-
duce only an exponentially small error probability.

Using this result, we remark that the first statement of Lemma 2 also holds
in this case: the probability of flipping at least N/3 bits in at least one of
2o(n) mutations exponentially small and a well-formed search point is created
in time 2O(n1/2) with overwhelming probability.

Let x = x′1N be the first well-formed search point reached by the (1+1) EA.
Since fEA(x) > −∞, either x′ ∈ T or x′ belongs to the ridge implying
x′ = 1i0N−i and i ≤ cN .

Let y be a mutant of x and k := H(x, y). We estimate the conditional prob-
ability of y′ ∈ T given that x′ = 1i0N−i with i ≤ N/2 − cN and k < cN .
In the subspace induced by the N bits of x′, among all search points with
i one-bits, i ≤ N/2, there are at most O(N) search points not in T . For
symmetry reasons, y′ is distributed uniformly at random among all individ-
uals with Hamming distance k from x′, 2 ≤ k ≤ cN . The probability that
k ≥ 2 is at least

(

n
2

)

p2
m = Ω(1) since pm ≥ ε/n. Then, since x′ = 1i0N−i

with i ≤ N/2 − cN , the probability of y′ /∈ T is O(kN)/
(

N
k

)

. This term is
maximal for k = 2 if 2 ≤ k < cN . Altogether,

Prob (y′ ∈ T) ≥ Prob (k ≥ 2) · (1 − Prob (y′ /∈ T | k)) = Ω(1).

We now show that with overwhelming probability the algorithm spends at
least n3/2/8 steps near the trap. To have progress on the ridge, it is necessary
that the leftmost zero-bits flip. These bits are called relevant zero-bits. We
consider a random 0-1-string of infinite length where a position is set to
1 with probability pm. Then we can interpret this string as follows. The
number of ones between the (i − 1)-th zero and the i-th zero, i ≥ 1, is the
number of flipping relevant zero-bits in the i-th step on the path. If there are
less than n/6 ones among the first n3/2/8 + n/6 bits, the number of flipping
relevant zero-bits in n3/2/8 steps is smaller than n/6 and the progress on the

13

ridge is at most n/6. Since the expected number of ones in n3/2/8+n/6 bits
is pm(n3/2/8 + n/6) ≤ n/8 + n1/2/6, the probability of having at least n/6
ones is 2−Ω(n) by Chernoff’s bounds.

Thus, with an error probability of 2−Ω(n), the progress is less than n/6 = N/3
implying that for the current population x either x′ ∈ T or x′ = 1i0N−i with
i ≤ N/2 − cN holds.

As long as we have not hit the trap, the algorithm spends n3/2/8 steps near
the trap and the probability to hit the trap in one step is Ω(1). Thus, the

probability to hit the trap in that period of time is 1−2−Ω(n3/2). Once the trap
is hit, the global optimum can only be reached by a mutation flipping at least
N/2 bits. The probability that this happens in 2o(n) steps is exponentially
small.

Summing up all error probabilities completes the proof for the (1+1) EA.

Having proved the properties of the function fMA, the following proofs get
easier since we can reuse some of the arguments presented in Theorem 1.

Theorem 2. While the (1+1) EA with mutation probability pm := 1/n is
efficient on fEA, both RLS and the (1+1) MA with mutation probability
ε/n ≤ pm ≤ 1/2, ε > 0, fail on fEA.

Proof. Except fitness values larger than N − 2, the function fEA equals the
function fMA. We have seen in the proof of Theorem 1 that the (1+1) EA
reaches the target T with overwhelming probability. The time until some
well-formed search point is reached is O(n2) with overwhelming probability.
Afterwards, the time until the target T is reached is bounded by n with
overwhelming probability since there is a constant probability of jumping
into T . Thus, the (1+1) EA is efficient on fEA.

By Lemma 2 both RLS and the (1+1) MA reach 0N1N with overwhelming
probability. In that case, both algorithms deterministically run into the local
optimum x with x′ = 1N . By Corollary 1 the (1+1) MA can only escape from
this local optimum and reach T by mutating x with x′ = 1N into some y with
y′ ∈ T or a Hamming neighbor thereof. Moreover, y′′ must not contain more
than one bit with value zero since otherwise the Hamming distance to all
well-formed search points is at least 2 and 0N1N is traversed during the local

14

search process. Using these arguments we can show that the probability of
the considered mutation is exponentially small: if pm ≥ n1/2, the probability
that at most one bit flips in x′′ is exponentially small. If pm < n1/2, the
probability to flip at least N/2 − 1 bits in x′ is exponentially small. Thus,
both RLS and the (1+1) MA fail on fEA.

Theorem 3. While RLS is efficient on fRLS, both the (1+1) EA and the
(1+1) MA with mutation probability ε/n ≤ pm ≤ 1/2, ε > 0, fail on fRLS.

Proof. By Lemma 2, RLS reaches the well-formed search point 0N1N in O(n2)
fitness evaluations with overwhelming probability. On the ridge the fitness
is monotonically increasing due to small plateaus of size 2. We now show
that the expected time until RLS crosses a non-optimal plateau and thereby
increases the fitness is bounded above by 3n.

Let Pi be a well-formed search point where the left half is 1i0N−i, then P2j

and P2j+1 form a plateau with fitness 2j. RLS first reaches P2j when entering
the plateau. Then the only accepted search point is P2j+1 and the expected
time to reach P2j+1 is n. Once P2j+1 is reached, RLS can reach either P2j or
P2j+2. The expected waiting time for a transition is n/2 and with probability
1/2, P2j+2 is reached and the fitness increases. Thus, in expectance, P2j has
to be left at most 2 times and the expected time to increase the fitness is at
most 2(n + n/2) = 3n.

An application of Markov’s inequality yields that the probability to increase
the fitness in 6n steps is at least 1/2. To climb up the ridge, the fitness has to
be increased N/2 times. By Chernoff’s bounds the probability of having less
than N/2 fitness increases in 2N independent phases of 6n steps is 2−Ω(n).
Hence, RLS needs at most O(n2)+ 6n2 steps with overwhelming probability.

Consider the case ε/n ≤ pm < n−1/2. With overwhelming probability both
the (1+1) EA and the (1+1) MA reach either T or the ridge at some search
point x with x′ = 1i0N−i and i ≤ cN for some 0 < c < 1/12 (refer to the
proof of Theorem 1). On the ridge the (1+1) MA behaves differently for
search points with an odd or an even number of one-bits, resp. Consider
the subspace induced by the N bits of x′. In case the (1+1) MA reaches
some search point 12j0N−2j on the ridge by local search, this local search
process is stopped since there is no Hamming neighbor with larger fitness.
Thus, the (1+1) MA performs a mutation in the next generation. In case the

15

(1+1) MA reaches some search point 12j+10N−2j−1 on the ridge by mutation,
local search is called and 12j+20N−2j−2 is reached deterministically.

In the proof of Theorem 1 we have shown that with overwhelming probability
the progress on the ridge defined by fMA in n3/2/8 mutations is at most N/3.
By the same arguments, the progress on the ridge defined by fRLS in n3/2/16
mutations is at most N/6 with overwhelming probability. Moreover, we have
seen that the probability to jump into the trap in one mutation is Ω(1) if
x′ = 1i0N−i with i ≤ N/2 − cN holds for the current search point and less
than cN bits flip in one mutation.

This proves that the (1+1) EA fails on fRLS since the trap is reached with
overwhelming probability. For the (1+1) MA each progress by mutation is
followed by a progress by local search. However, the progress by a local search
call is at most 1. Thus, after n3/2/16 mutations the progress of the (1+1) MA
by both mutation and local search is at most N/3 and the (1+1) MA also
fails on fRLS.

In case n−1/2 ≤ pm ≤ 1/2, the (1+1) EA fails to create a well-formed search
point (see proof of Theorem 1). The (1+1) MA fails to create a well-formed
offspring y 6= 0N1N from x = 0N1N as the probability to flip at most one bit
in x′′ is exponentially small and local search stops with 0N1N in case more
than one bit flips in x′′.

5 On the Local Search Duration

It is a general and important question for memetic algorithms whether local
search should be performed to local optimality or not. On some functions it
would be unwise to perform local search until a local optimum is found.

An example is the long path problem defined by Horn, Goldberg, and Deb [3]
based on a long 2-path. Although in [3] the authors were convinced to observe
exponential runtimes of the (1+1) EA on this function, Rudolph [8] proved
that the expected runtime of the (1+1) EA is bounded by O(n3). This is
due to the fact that the (1+1) EA can take shortcuts by mutations flipping
more than one bit. The (1+1) MA, however, is likely to reach the start of
the long 2-path within the initial local search process and then climbs up the

16

whole path of length (2 + 1)2(n−1)/2 − 2 + 1 = 2Ω(n) (see Lemma 1). Thus, it
is essential to stop local search before a local optimum is reached, here.

A simple way of limiting local search is to set a threshold of maximal d(n)
steps within one local search call, thus using the following local search pro-
cedure instead of Procedure 1.

Procedure 2 (Local Search(y) with maximal duration d(n)).
t := 1.

S := {z | H(z, y) = 1 ∧ f(z) > f(y)}.
While S 6= ∅ and t ≤ d(n) {

Choose y ∈ S uniformly at random.
t := t + 1.
if t ≤ d(n) then S := {z | H(z, y) = 1 ∧ f(z) > f(y)}.

}
Return y.

In the following, we investigate the (1+1) MA using Procedure 2. Since the
(1+1) MA cannot be efficient if a local search process takes superpolynomial
time, we only consider polynomial values for d(n). We will see that even for
polynomial values the accurate choice of d(n) can have a large impact on the
performance of the (1+1) MA.

We now investigate the following function LPTm where the duration of the
local search process has an impact on the optimization process. The abbre-
viation LPT stands for long path with trap and the parameter m defines the
length of the path.

Definition 4. Let n = 4N and N := (K2+1) for some K ∈ N. Let Pi be the

i-th point on the long K-path with dimension N . Then for some m = 2o(n1/2)

we define the function LPTm : {0, 1}N → R ∪ {−∞} as

LPTm(x′) :=











i if x′ = Pi, i ≤ m

m − 1
2

if x′ ∈ Tm

−∞ otherwise

where Tm ⊂ {0, 1}N is defined as

Tm := {x′ |∃i, N1/3 + 2 < i < m − N1/3 − 2: H(x′, Pi) = 2,

∀j, 0 ≤ j ≤ m : H(x′, Pj) ≥ 2}.

17

Now, if the local search duration is large enough, the (1+1) MA walks past
the trap Tm and reaches the final search point Pm on the path. However, if
the local search duration is small, the (1+1) MA performs a mutation near
the trap, thus having a chance to jump into it. This is shown in the following
lemma.

Lemma 3. Let n := 4N , N := (K2 + 1) for some K ∈ N, and m = 2o(n1/2).
Consider the (1+1) MA with mutation probability Θ(1/N) and maximal local
search duration d(n), d(n) ≥ n1/2, on LPTm. If the (1+1) MA starts by
performing at least d(n)− 1 iterations of a local search process from a search
point in {P0, . . . , PN1/3}, the following statements hold.

1. If d(n) > m, Prob (reaching Tm before Pm) = 0.

2. If d(n) ≤ m − n1/2 + 1, Prob (reaching Tm before Pm) = Ω(1).

In both cases the number of mutations until either Tm or Pm is reached is
bounded by O(n) with overwhelming probability.

Proof. The first statement is trivial since due to construction of LPTm, local
search ends with Pm deterministically.

For the second statement, we observe that the local search process ends
with a search point Pi where i ≥ d(n) − 1 > N1/3 + 2 and i ≤ N1/3 +
d(n) < m − N1/3 − 2 if n large enough. Due to these bounds for i and
the definition of Tm, all search points with Hamming distance 2 from Pi

either belong to Tm or have Hamming distance at most 1 to a search point in
{Pi−3, Pi−2, Pi−1, Pi+1, Pi+2, Pi+3}. The number of search points where the
latter condition holds is O(N). Thus, among all search points with Hamming
distance 2 from Pi, an (1−O(1/N))-fraction belongs to Tm. The probability
for an arbitrary 2-bit-mutation is

(

N
2

)

· (Θ(1/N))2 · (1 − Θ(1/N))N−2 = Ω(1).
Thus, Tm is reached via a direct mutation from Pi with probability Ω(1).

For the time bound we show that after the first local search process the
probability to run into either Tm or Pm in one mutation is Ω(1). Let x = Pi

be the search point that is mutated. After the first local search process, the
probability to jump into Tm is Ω(1) if i < m−N1/3 − 2. If i ≥ m−N1/3 − 2
there is a constant probability that mutation creates a replica of x. In that
case, local search runs into Pm deterministically. Hence, there is a constant

18

probability to reach either Tm or Pm in one mutation and the probability
that this does not happen in n mutations is exponentially small.

The probability to hit the trap is Ω(1) if the local search duration is small.
This result is weak since we want to obtain overwhelming probabilities. We
can achieve better results by using LPT as a subfunction that has to be
optimized several times to reach the optimum of the superior function. We
will see that the (1+1) MA then reaches the trap in at least one of these
trials with overwhelming probability.

Moreover, we want to trap the (1+1) MA if the local search duration is too
large, i. e., if it is at least D+n1/2−1 for some fixed value D. This can be done
as follows. We define subfunctions LPTD+n1/2

−1 such that these subfunctions
have to be optimized one after another under the starting conditions given
in Lemma 3. If the local search duration is too large, these subfunctions are
optimized deterministically and in all trials the trap is avoided. However,
the global optimum of the superior function is a set of search points where
the trap is hit in one of these trials.

This leads to the following definition of a superior function. Since this defi-
nition is somehow complicated, a detailed explanation is given below.

Again, we use the construction introduced in Section 3 and divide the bit-
string into two halves. The difference to the functions defined in Section 4,
however, is that the left half itself is divided into two quarters of length N .
Thus, we have search points x = x′x′′x′′′ with x′, x′′ ∈ {0, 1}N and x′′′ ∈
{0, 1}2N where x′x′′ represents the left half and x′′′ represents the right half
of x. Note that the term well-formed now applies to search points x where
x = x′x′′12N for some x′, x′′ ∈ {0, 1}N .

Definition 5. Let n := 4N and N := (K2 + 1) for some K ∈ N. Let
x = x′x′′x′′′ with x′, x′′ ∈ {0, 1}N and x′′′ ∈ {0, 1}2N . Let D ∈ N.

19

We define

fD(x) :=















































































ZZO(x) if x′′′ 6= 12N

i · 2N+1 + hi(x
′)

if x /∈ OPT, x′′′ = 12N ,

∃i, 1 ≤ i ≤ 4n : x′′ = Pi·K ,

hi(x
′) < max{hi}

i · 2N+1 + hi(x
′) + j

if x /∈ OPT, x′′′ = 12N ,

∃i, 0 ≤ i < 4n : x′′ = Pi·K+j, 0 ≤ j ≤ K − 2,

hi(x
′) = max{hi}

2n if x ∈ OPT

−∞ otherwise

where the subfunctions h0, . . . , h4n : {0, 1}N → [0, 2N] ∪ {−∞} and the set
OPT ⊆ {0, 1}n are defined as follows. For 0 ≤ i ≤ 4n, let h0(x

′) := 0,
hi(x

′) := |x′|0 if i odd, hi(x
′) := LPTD(x′) if i even and 2 ≤ i ≤ 2n,

hi(x
′) := LPTD+n1/2

−1(x
′) if i even and i > 2n. Finally,

OPT := {x |x′′′ = 12N ,

∃i ∈ {2n + 2, 2n + 4, . . . , 4n} : x′′ = Pi·K ,

x′ ∈ TD+n1/2
−1}.

This definition needs some explanation. The only purpose of the right half
of the bitstring—the x′′′ part—is to ensure that the left half is close to 02N

when the first well-formed search point is reached (see Section 3).

Consider a well-formed search point x. In the x′ part some subfunction is
optimized and the x′′ part helps to determine that subfunction. In the x′′ part
there is a long K-path that is revealed piecewise. If the (i·K)-th point on the
long K-path is reached in the x′′ part, the i-th subfunction is optimized in
the x′ part. Unless the optimum of that subfunction is reached, all successors
with Hamming distance less than K on the long K-path in x′′ are hidden,
i. e., yield a fitness value of −∞. Thus, if no jumps by at least K bits take
place, x′′ = Pi·K is maintained until the x′ part has been optimized.

If an optimum of the subfunction in x′ is found, K − 2 successors of Pi·K

on the long K-path in x′′ are revealed. Now the algorithm can reach x′′ =

20

P(i+1)·K easily by climbing up the path to x′′ = P(i+1)·K−2 and jumping to
x′′ = P(i+1)·K . The gap between P(i+1)·K−2 and P(i+1)·K ensures that P(i+1)·K

is reached by mutation instead of local search. Hence, a new local search
process starts with x′′ = P(i+1)·K . Note that in the x′ part, an optimum of
the subfunction has to be maintained until x′′ = P(i+1)·K is reached. Thus,
an optimum of the i-th subfunction is the starting point for the optimization
of the (i + 1)-th subfunction. Once x′′ = P(i+1)·K is reached, the (i + 1)-th
subfunction has to be optimized in the x′ part, and so on. That way we can
embed arbitrary subfunctions into the x′ part (with slight restrictions to the
range of fitness values).

The subfunctions with an even index are chosen by the ideas described above.
Subfunctions with odd index maximize the number of zeros, thus the opti-
mization of the next subfunction starts with x′ = 0N .

Now we are able to prove that the function fD has the desired properties.

Theorem 4. Let D ∈ N. Consider the (1+1) MA with mutation probability
pm := 1/n and maximal local search duration d(n) ≥ n1/2 with d(n) = poly(n)
on fD. If d(n) = D, the (1+1) MA is efficient on fD. If d(n) ≤ D − n1/2 or
d(n) ≥ D + n1/2, the (1+1) MA fails on fD.

Proof. Again, we investigate typical runs, i. e., runs without errors, and com-
plete the analysis by showing that the sum of all error probabilities is expo-
nentially small.

The probability that at least N1/3 bits flip in one mutation is 2−Ω(N1/3 log N).
The probability that this happens at least once in 2N1/3

mutations is still
2−Ω(N1/3 log N) and this is considered an error.

A closer look at the proof of Lemma 2 reveals that the proof also holds
for the (1+1) MA with maximal local search duration d(n) ≥ n1/2 except
for the time bound O(n2). However, since a mutation increases the fitness
with probability Ω(1/n), the number of mutations performed until the first
well-formed search point is reached is clearly bounded by O(n2) with over-
whelming probability.

For all well-formed search points x = x′x′′12N with a fitness value larger
than −∞, x′′ ∈ {P0, P1, . . . } holds since all other x′′ yield fD(x) = −∞.
Hence, if y = y′y′′12N is the first well-formed search point, y′′ = Pj for some

21

0 ≤ j ≤ N1/3 since all Pj , j > N1/3 have a Hamming distance larger than
N1/3 from 0N (see Lemma 1).

Having reached y, we partition the rest of the run into 8n phases of two
different types. Phases R1, . . . , R4n concern the right part of the partial
bitstring x′x′′ while phases L1, . . . , L4n concern the left part of x′x′′. Let i
be the variable introduced in Definition 5. Phase Rm starts when i = m− 1
and lasts as long as the fitness value of the current population is determined
by the third case of the definition of fD. Phase Lm starts right after phase
Rm where i = m and lasts as long as the fitness of the current population
is determined by the second case of the definition of fD. It is important
that during Lm an operation flipping one bit in x′′ or x′′′ results in a negative
fitness value. Thus, a local search process starting with a non-negative fitness
value only concerns the x′ part.

The co-domains of all subfunctions hi are subsets of [0, 2N] ∪ {−∞}. As
long as OPT is not found, all fD-values encountered in phase Li are larger
than all fD-values in phases R1, L1, R2, L2, . . . , Ri since in the definition of
fD, the value i is weighted by 2N+1 and the fitness gain in Li−1 and Ri is
at most 2N + K < 2N+1. Obviously, the fitness values in Ri+1 are larger
than those in Li. Since at most N1/3 bits flip in one step and all search
points in {P0·K , P1·K , . . . } have a pairwise Hamming distance of at least
K > N1/3, Ri can only be reached by Ri−1 or Li−1. Thus, the order of phases
is R1, L1, R2, L2, . . . , R4n, L4n unless a trap or OPT is reached. (However, a
phase Lm may be empty if the optimization of hi starts with an optimum
thereof.)

Due to the gap between Pi·K−2 and Pi·K , every non-empty phase Li, 1 ≤ i ≤
4n, can only be reached by a direct mutation to Pi·K or by a mutation to
a Hamming neighbor thereof if the first iteration of the local search process
reaches Pi·K .

Furthermore, Li for i even starts with a search point x where x′ = Pj with
0 ≤ j < N1/3 (or a Hamming neighbor thereof in case pi·K was reached by a
direct mutation). This is due to the fact that 0N is the unique optimum of
hi−1(x

′) and this optimum must be maintained during phase Ri. Thus, the
only accepted step that may modify x′ is the mutation leading to the start of
Li. Since P0, . . . , PN1/3

−1 are the only search points with an hi-value larger
than −∞ and a Hamming distance less than N1/3 to 0N , the claim follows

22

and the conditions of Lemma 3 are fulfilled for the subspace of the x′ part.1

In case d(n) ≥ D Lemma 3 yields that on all subfunctions LPTD the search
point x′ = PD is reached with probability 1. Thus, the (1+1) MA does not
get trapped within the phases R1, L1, . . . , R2n, L2n. Contrarily, if d(n) ≤
D− n1/2, the probability that x′ ∈ TD is reached on at least one subfunction
LPTD is 1 − 2−Ω(n). In that case, due to the definition of the trap TD, at
least N1/3 bits have to flip in one mutation to reach x′ = PD or another
search point with larger fitness. This proves the failure of the (1+1) MA in
case d(n) ≤ D − n1/2.

Now we consider the phases R2n+1, L2n+2, . . . , R4n, L4n. In case d(n) ≤ D,
by Lemma 3, the probability that x′ ∈ TD+n1/2

−1 is reached on at least one
subfunction LPTD+n1/2

−1 is 1−2−Ω(n) and then the set OPT of global optima
is found. However, if d(n) ≥ D + n1/2, Lemma 3 states that x′ = PD+n1/2

−1

is reached on all subfunctions LPTD+n1/2
−1. In that case more than N1/3

bits have to flip in one mutation to reach OPT and the (1+1) MA fails.

Finally, we have to prove that in case d(n) = D the runtime of the (1+1) MA
is polynomially bounded with overwhelming probability. We first count the
number of mutation steps. Every mutation implies one local search call. The
number of fitness evaluations in one local search call is trivially bounded by
d(n) · n, thus the number of fitness evaluations is at most by a factor of
d(n) · n + 1 larger than the number of mutation steps (plus d(n) · n for the
initial local search process).

We have already shown that the first phase R1 starts within O(n2) muta-
tions with overwhelming probability. By the same arguments, in a phase
Ri+1 concerning the x′′ part either P(i+1)·K−2 or P(i+1)·K is reached from
Pi·K within O(nK) mutation steps with overwhelming probability. To reach
P(i+1)·K from P(i+1)·K−2, a small gap has to be crossed. A sufficient condition
to reach P(i+1)·K from P(i+1)·K−2 is a direct jump to P(i+1)·K by mutation
which happens with probability Ω(1/n2). The probability that in all phases
R1, . . . , R4n less than 4n of these jumps occur in cn3 trials is exponentially
small by Chernoff’s bounds if c > 0 is chosen large enough. Thus, we obtain
a term O(n3) for the number of mutations in all phases R1, . . . , R4n that

1It is easy to see that Lemma 3 also holds for the optimization of LPTm as a subfunction
of fD since the n − N additional bits only affect the constant values hidden in the big-O
and big-Omega notations.

23

holds with overwhelming probability.

By Lemma 3 the number of mutations in a phase Li, i even, is bounded by
O(n) with overwhelming probability. For a phase Li, i odd, it is easy to see
that the subfunction |x′|0 is optimized within O(n2) mutations with over-
whelming probability. Hence, we obtain another bound O(n3) for the overall
number of mutations of all phases L1, . . . , L4n holding with overwhelming
probability.

Together, the number of fitness evaluations is bounded by O(d(n) · n4) with
overwhelming probability. This term is polynomial since d(n) is polynomially
bounded.

6 Conclusions and Future Work

We have defined a simple memetic algorithm, the (1+1) MA, and compared it
to the well-known (1+1) EA and randomized local search. For each algorithm
we have defined a function where only that algorithm is efficient while the
other two algorithms need exponential time with overwhelming probability.
Furthermore, the analyses gave insights into the interplay of mutation and
local search.

On functions like the well-known long 2-path problems it is essential to limit
the duration of local search. Thus, we have investigated the (1+1) MA with a
limitation to at most d(n) steps of each local search process. We have defined
a class of functions where, given some value D, the (1+1) MA with d(n) = D
is efficient. However, even with a small deviation of d(n) by only n1/2, the
(1+1) MA gets trapped and does not find an optimum in exponential time
with overwhelming probability.

This paper is a first step towards a theoretical analysis of memetic algorithms
without assumptions. However, many questions remain open. Since local
search processes are computationally expensive, it is an interesting question
when to apply local search. Furthermore, the analysis of population-based
memetic algorithms may reveal insights into the interaction of crossover and
local search.

24

7 Acknowledgement

The author thanks Thomas Jansen for fruitful discussions and comments.

References

[1] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

[2] J. Garnier, L. Kallel, and M. Schoenauer. Rigorous hitting times for
binary mutations. Evolutionary Computation, 7(2):173–203, 1999.

[3] J. Horn, D. E. Goldberg, and K. Deb. Long path problems. In Y. Davidor,
H.-P. Schwefel, and R. Männer, editors, Parallel Problem Solving from
Nature(PPSN III), volume 866, pages 149–158, Jerusalem, 9–14 1994.
Springer.

[4] T. Jansen and I. Wegener. On the choice of the mutation probability for
the (1+1) EA. In Proceedings of the 6th Conference on Parallel Prob-
lem Solving From Nature (PPSN ’00), volume 1917 of Lecture Notes in
Computer Science, pages 89–98. Springer, 2000.

[5] T. Jansen and I. Wegener. Real royal road functions – where crossover
provably is essential. Discrete Applied Mathematics, 149:111–125, 2005.

[6] P. Merz. Advanced fitness landscape analysis and the performance of
memetic algorithms. Evolutionary Computation, 12(3):303–326, 2004.

[7] P. Moscato. Memetic algorithms: a short introduction. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
219–234. McGraw-Hill, 1999.

[8] G. Rudolph. How mutation and selection solve long-path problems in
polynomial expected time. Evolutionary Computation, 4(2):195–205,
1997.

[9] C. Witt. An analysis of the (µ+1) EA on pseudo-boolean functions.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2004), pages 761–773. Springer, 2004. LNCS 3102.

25

