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Summary

Electromagnetic sheet metal forming (EMF) is an example biga-speed forming process
driven by the dynamics of a coupled electromagnetic-meachhsystem. Although electro-

magnetic forming is a technology known for a few decadeggeatly renewed interest is taken
in its industrial application. Along with this interest tdemand for simulation tools is increas-
ing. However, up to now modeling approaches found for thacess in the literature lack a
comprehensive approach suitable to simulate complex f@ymperations.

This motivates the algorithmic formulation and impleméiotaof a coupled electromagnetic-
inelastic continuum field model for 2D problems discusseith@first part of the work at hand.
Here, on the mechanical side, the coupling due to the Loffente is acting as an additional
body force in the material. On the other hand, the spatigpteal development of the magnetic
field is very sensitive to changes of the shape of the worlkpiesulting in additional coupling.
The algorithmic formulation and numerical implementatidithis coupled model is based on a
mixed-element discretization of the deformation and etecagnetic fields combined with an
implicit, staggered numerical solution scheme on two meskmeparticular, the mechanical de-
grees of freedom are solved on a Lagrangian mesh and theoahagnetic ones on an Eulerian
one. The issues of the convergence behavior of the staggégedthm and the influence of
data transfer between the meshes on the solution are destursdetail. Finally, the numerical
implementation of the model is applied to the modeling antl$ation of electromagnetic tube
and sheet forming.

In the second part of the work the relevance of a possibleaoten between electron- and
dislocation movement commonly referred to as the elecisif effect is investigated. In ex-
periments designed to investigate this effect a reductfohe yield stress of up to 60 % is
observed under the influence of electric current pulseshdsd investigations the timescales,
electric current densities, length scales and materiaistefest are those relevant to industrial
EMF processes. By means of careful modeling of all relevanteotional effects it could be
shown that the observed stress reduction is mainly due tonttedastic effects and it is con-
cluded here that such an effect is of second-order and malydad neglected in the modeling
and simulation of industrial EMF.

The purpose of the third part of the work is the development @pplication of strategies
to identify material model parameters for metals at highistrates relevant to EMF forming
processes. In particular in the context of the correspaniiverse problem, the goal here is to
identify such parameters using data obtained from electgmatic forming experiments. On the
basis of the aforementioned staggered solution schemeatiaeneter determination is carried
out together with a sensitivity analysis and an error edtonaHere, the optimization problem
of the identification of the viscoplastic material paramg&tean be simplified. As it turns out,
the Lorentz forces are relatively insensitive to the matgrarameters. It is just this situation
that allows for an identification procedure at incremegttiked electromagnetic loads. After
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validation of the proposed methodology using synthetia dats, the material parameters are
identified by means of experimental results from tube fogr@perations.

The last part is motivated by the increasing demand for thdeiog of 3D forming opera-
tions. This is indispensable for an effective process aesfgeal industrial applications. On
the basis of previous modeling concepts in the work at hamthér approaches particularly
suitable to reduce the enormous computational cost inhére3D simulations are developed
and investigated. These consist of a carefully chosenetigation, a data transfer method for
both, the electromagnetic loads and the mechanical defanmta utilize an efficient solid shell
formulation and a termination criterion for the electrometic part of the model. As a result
the simulation time is reduced by about one order of magait&ahally a 3D forming setup is
modeled and detailed insights with respect to the developofeeddy currents, magnetic field
and deformation of the sheet metal are provided.



Zusammenfassung

Die elektromagnetische Blechumformung ist ein Hochgesetiigkeitsumformprozess, der die
Kraftwirkung hoher Impulsmagnetfelder zur plastischenfamung elektrisch leitender Werk-
stoffe ausnutzt. Obwohl der Prozess seit vielen Jahrenminékst, wird in letzter Zeit ein zu-
nehmendes Interesse an seiner Weiterentwicklung undtimellen Nutzung festgestellt. Dar-
aus ergibt sich eine gesteigerte Nachfrage nach Simutaterkzeugen, die in der Lage sind,
solche Prozesse zu berechnen.

Vor diesem Hintergrund erfolgt im ersten Teil der vorlieden Arbeit die Entwicklung und
Implementierung eines Modells zubkung eines magneto-mechanisch gekoppelten Mehrfeld-
problems auf Basis der Finite-Elemente-Methoiieaxialsymmetrische Probleme. Die Kopp-
lung des mechanischen Teils zum elektromagnetischengetia@r durch einen z@dzlichen
Beitrag zur Volumenkraft, der von der Lorentzkraft lidmwt. Umgekehrt findet die Kopplung
des elektromagnetischen an den mechanischen Teil durdfedsehiebung des Bleches statt.
Dabei tangt die Entwicklung des Magnetfeldes empfindlich von detikeden Verschiebung
des Bleches ab. Die Modellierung dieses Vorgangs gelingt inmiea einer separaten Diskre-
tisierung beider Teilsysteme unter Verwendung eines mrgestaffelten Algorithmus. Dabei
erfolgt die mechanische Finite-Elemente-Formulierunigesiiem lagrangeschen Netz und die
elektromagnetische auf einem eulerschen Netz. Fragasgelh, die das Konvergenzverhalten
einer solchen Formulierung sowie den Datentransfer zwistieiden Netzen betreffen, werden
austihrlich diskutiert. Schlie3lich werden Simulationsengisse mit experimentellen Messun-
gen verglichen.

Im zweiten Teil der Arbeit wird eine dgliche Wechselwirkung zwischen Elektronen- und
Versetzungsbewegung untersucht, die unter dem Begrifftilelastiziait bekannt ist. Dabei
zeigen Experimente, die zur Untersuchung dieses Effektgietelt wurden, dass unter Ein-
wirkung pulsartiger Stromsf3e ein Abfall der Flie3spannung von bis zu 60 % beobachtet
werden kann. Die auftretenden Stromdichten, Abmessurigaterialien und Puléingen ent-
sprechen denen, die bei der elektromagnetischen Blechomafay auftreten. Durch sorgtige
Beruicksichtigung aller am Experiment beteiligten Effekte ktengezeigt werden, dass der in
den Experimenten beobachtete Abfall der Flie3spannunigiare_inie durch einen thermoela-
stischen Ausdehnungseffekt hervorgerufen wird und insoééne untergeordnete Bedeutung
fur die elektromagnetische Blechumformung hat.

Der dritte Teil der vorliegenden Arbeit bezieht sich auftediihrende Konzepte zur Bestim-
mung von Materialparameteriifmetallische Werkstoffe bei hohen Verzerrungsgeschwgid
keiten, wie sie bei der elektromagnetischen Blechumformauftyreten. Hier erfolgt auf Basis
des bestehenden Prozessmodels die Adigaing der Materialparameter durch Abgleich von
Finite-Elemente-Ergebnissen mit experimentellen DdtarRahmen einer statistischen Vorge-
hensweise erfolgt weiterhin eine Fehler- und Sensiisdnalysetir die bestimmten Parame-
ter. Wie sich herausstellt, kann das der Bestimmung zugrliegende Optimierungsproblem
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vereinfacht werden. Insbesondere die schwacheApigkeit der Lorentzlafte von den zu be-
stimmenden Materialparametern émgticht eine Identifikationsstrategie auf Basis schritseei
entkoppelter Lorentzifte. Nach einer erfolgreichen Validierung der vorgesgéieen Konzep-
te erfolgt die Bestimmung der Materialparameter durch erpartell ermittelte Daten.

Im letzten Teil der Arbeit wird die dreidimensionale Modetlng von elektromagnetischen
Umformvorgangen behandelt. Die Entwicklung eines entsprechendenl&ionswerkzeugs
stellt eine wichtige Voraussetzungrfdie Weiterentwicklung dieses Umformvorgangs in Hin-
blick auf seine industrielle Einsetzbarkeit dar. In diesfasammenhang konnten ausgehend
von bestehenden Entwicklungen weitere Konzepte zur Steigeder Recheneffizienz ent-
wickelt und implementiert werden, welche die RechenzeitRtezesses um ein Zehnfaches re-
duzieren. Die angesprochenen Konzepte basieren auf emldembezogenen Diskretisierung
der Umformanlage, einem Ansatz zum Austausch von Netazimdtionen, welcher den Ein-
satz besonders effizienter Volumen-Schalenelementégiicht, und einem Abbruchkriterium
fur das elektromagnetische Finite-Elemente-Problem.i&klidh erfolgt die Simulation eines
3D-Umformprozesses, womit tiefergehende Einblicke leimdich der Entwicklung von Strom-
dichteverteilung, Magnetfeldentwicklung und plastiscterformung ernaglicht werden.



Chapter 1

Algorithmic formulation and numerical
Implementation of coupled
electromagnetic-inelastic continuum models for
electromagnetic metal forming

Abstract — The purpose of this work is the algorithmic formulation and implementation of entec
coupled electromagnetic-inelastic continuum field model (Svendsen amdi& H2005) for a class of en-
gineering materials which can be dynamically formed using strong magnetic fidtdsugh in general
relevant, temperature effects are for the applications of interest here rhamhare neglected for sim-
plicity. In this case, the coupling is due on the one hand to the Lorentz fotcgas an additional body
force in the material. On the other hand, the spatio-temporal developmer ofagnetic field is very
sensitive to changes in the shape of the workpiece, resulting in additiomglireg. The algorithmic for-
mulation and numerical implementation of this coupled model is based on mixed-¢lgisertization
of the deformation and electromagnetic fields combined with an implicit, staggaredrital solution
scheme on two meshes. In particular, the mechanical degrees of freeeswived for on an Lagrangian
mesh and the electromagnetic ones on an Eulerian one. The issues ofwbreane behavior of the
staggered algorithm and the influence of data transfer between the noeshessolution is discussed in
detail. Finally, the numerical implementation of the model is applied to the modelingranthton of
electromagnetic tube and sheet forming.

1.1 Introduction

Multifield models, describing a mechanical structure whegaution is coupled to the evolu-
tion of further fields ase.g, electromagnetic or temperature fields, arise in varioastural
engineering problems. A typical example is electromagnitiming (EMF) representing a
high-strain-rate forming method in which strain-rates>ofil0® s—! are achieved. In this pro-
cess, deformation of the workpiece is driven by the intéoacdf a magnetic field generated
by a coil adjacent to the workpiece with a current generatetie workpiece by this field. In
particular, the interaction of these two fields results imdditional body force,e., the Lorentz
force, which drives deformation. EMF is but one of a numbdrigh deformation-rate forming
methods which offer certain advantages over other formiathods such as increase in forma-
bility for certain kinds of materials, reduction in wrinkly, the ability to combine forming and
assembly operations, reduced tool making costs, and o#mefits.

First attempts at the numerical simulation of electromégmeetal forming include (Gour-
din, 1989; Gourdin et al., 1989; Takatsu et al., 1988). Iniast to the first two, the interaction

*Stiemer et al. (2006a)
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between the magnetic field and the shape of the workpieceakas into account in the third.
This is necessary in order to correctly model the influenddeichange of shape of the work-
piece during the electromagnetic forming process on thenetagfield and the force it exerts
on the workpiece. More recently, Fenton and Daehn (1998) tieecomputer-code CALE to
numerically simulate electromagnetic forming with comelelectromagneto-mechanical cou-
pling. This code is based on the so-called "arbitrary Lagiam Eulerian”(ALE) method to
solve the coupled system. In this method, the Lagrangiam fafrthe field equations is used
where mesh distortion is small, and otherwise the Eulenamf With this approach, numerical
problems can be avoided and the accuracy of the numerical@ois guaranteed. Focusing on
the fast solution of three-dimensional fully coupled magnechanical problems, Schinnetl
al. (Schinnerl et al., 2002) presented a numerical schemedisignt coupled systems based on
an implicit multigrid method. Although their modeling ofdlhmechanical system is restricted
to the case of linear elasticity, realistic simulation teshave been obtained for several ex-
perimental arrangements. In the work of EI-Azab et al. (2@B8 current state of modeling of
EMF is discussed. As one can gather from such works, empihabis literature up to this point
has been placed on the modeling and simulation of the fielglzauand structure, which has
correspondingly reached a high level of sophisticatione $ame statement, however, cannot
be made concerning the material models used in the simo&atiuch models are, for exam-
ple, most often one-dimensional and identified with the luflpniaxial tension-compression
tests. Fenton and Daehn (1998), for example, utilized teenB¢rg model, which is a one-
dimensional, purely mechanical stress-strain relatiaep@endent of the strain-rate. It is just
such rate-dependence, however, which is characteristleediehavior of metallic materials at
high forming rates such as those achieved during EMF. Thiséentrast to other high-speed
manufacturing processes like high speed cutting, where siodels have been considered (Bil
et al., 2004). Further, rate-dependence is accentuatedahsgh forming rates by the fact that
the mechanical dissipation can be significant and the psoed®s place nearly adiabatically,
resulting in a possible significant temperature increase.

The main purpose of the current work is the algorithmic folatian and numerical im-
plementation of the isothermal special case of the contmthermodynamic model for rate-
dependent coupled electromagnetic-thermoinelasticrabbehavior at large deformation de-
veloped by Svendsen and Chanda (2005) in order to simulataaieagnetic metal forming
processes. Although in general significant for high-sp@eching processes, the uniform na-
ture of the electromagnetic forming process leads to aivelgtsmall temperature increase
which can be safely neglected for the applications of itieirethis work. Consequently, such
effects are neglected here. The paper begins (Section itf2)avbrief summary of the basic
mechanical and electromagnetic field relations of the mod#iis is followed (Section 1.3)
by a brief summary of the thermodynamically-consistentstitutive and field relations. For
simplicity, these is restricted to electromagnetic, étastiscoplastic material behavior with
isotropic hardening. Next, attention is focused (Sectign @n the algorithmic formulation and
finite element implementation of the mechanical part of thepted field model for a moving
body €.g, workpiece) in the Lagrangian context as based on standeidrard-Euler integra-
tion and Newton-Raphson-based iterative solution. Therdlkgoic formulation is completed
by that of the Eulerian-based electromagnetic initial loarg value problem. In the last part
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of the work, the resulting combined algorithm in stagge@difis formulated and investigated
further. In particular, the convergence behavior of thelltex) element formulations and nu-
merical solution procedures is investigated for the case mfescribed volume force (Section
1.5) as well as for the fully coupled problem (Section 1.GhaRy, the work ends with a brief
summary and conclusions (Section 1.7).

Before we begin, consider first a few mathematical concepdsresults to be used in the
sequel. Euclidean vectors are represented in this workvegrigase bold italic letters, b, . . .,
and second-order Euclidean tensors by upper-case botddteractersA, B, . . .. In particular,

I represents the second-order identity tensor. The scaldupt of two such tensors is defined
asusualbyd - B := tr(A"B), with A" the transpose ofA. Let|A| := VA - A, sgn(A)

= A/|A],sym(A) := (A + A"),skw(A) := (A — A"),sph(A) := ;tr(A)I, and
dev(A) := A —sph(A) represent the magnitude, sign, symmetric part, skew-synopart,
spherical part, and deviatoric part, respectively, of amyhstensor. For any invertible second-
order tensorF, let cof(F) := det(F)F~" represent its cofactor. Fourth-order Euclidean
tensors are treated here as linear mappings of second{erdsnrs into second-order tensors.
In particular, the tensor products

(A®C)B] := (B-C)A,
(AnC)[B] := ABC, (1.1)
(ArC)B] := AB'C,

for all A,B,C < Lin(V,V) can be interpreted as such. In terms of these, notelthak
represents the fourth-order identity, arsgg : = I A I transposition. Further, we havgem =
%(IDI—I—IAI),SkW:%(IDI—IAI), anddev:IDI—éI@@I.

The tensor (dyadic) produat @ b of any two Euclidean vectows, b is defined by(a ® b)c
:= (b c¢)a. In addition, the axial vector of any skew-symmetric ten¥ris defined by
axv(W) x b := Ab. The curl of any differentiable Euclidean vector fields defined by

curlu : = 2 axv(skw(Vu)) (1.2)

as usual. The identities
curl(u x v) = (divv)u — (dive)v + (Vu)v — (Vo)u,
div(u xv) = curlu-v —curlv-u, (1.3)
curl(curlu) = V(divu) — div(Vu) ,

for all differentiable vector fields, v will be useful in the sequel. For notational simplicity, it

proves advantageous to denote functions and their valudgsetsame symbol. Other notations
and mathematical concepts will be introduced as they anigéat follows.

1.2 Summary of basic model relations

Of principle interest in this work is the modeling of the dyma interaction of strong elec-
tromagnetic fields with metallic solids resulting in thegfdrmation. The system of interest
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here consists of &xed region R C E of Euclidean point spac& containing one or more
solid bodies moving through it as well as the surrounding lairthe case of EMF, for exam-
ple, these bodies include the workpieeey| sheet metal) and tool (see Figure 1.1 below). As
such, R contains the reference.g, initial) B, C R and currentB, C R configurations of
any of these bodies. Such bodies are modeled here as elagetic, mechanical continua
characterized by a time dependent deformation #etdgether with the additional degrees of
freedom represented by the electromagnetic fields to bedated in what follows. Whereas
the time dependent electromagnetic fields are defined onntiive eegionR, i.e., also in the
air surrounding stationary or moving material bodies, tedmation field¢ and all kinematic
fields derived from it, are logically restricted to the configtions of deforming and moving
bodies in what follows.

The following model represents a special case of the geoendinuum thermodynamic for-
mulation (Svendsen and Chanda, 2005) to the case in whicloragsinagnetic field induces
electric currents in thermoelastic, viscoplastic electonductors and so a Lorentz force re-
sulting in their deformation. This is the basic idea undedythe method of electromagnetic
metal forming. Since the relevant electromagnetic fregie=nfor the engineering structures
of interest hereife., less than 10 MHz) correspond to electromagnetic wavesnghich are
much larger than these structures, note that the wave dbamicthe electromagnetic fields
is insignificant, and can be neglectexg, Moon, 1980, §2.2 and§2.8). For simplicity, any
thermoelectric effects, as well as any magnetostricti@n (he Hall effect), are also neglected
here. This is reasonable for conductors such as aluminuropgrer at room temperature and
“low” magnetic fields. Under these conditions, the inhomuemus “diffusion” equation

a + riy,, curl (curla) + V¢ =0 (1.4)

may be derived (Svendsen and Chanda, 2005) for the electrmti@agector potentiak in the
context of Ohm’s law

J = 0y € (1.5)
for the conductive fluy . Here,x,,, represents the magnetic diffusivity. Further,

a:=a+L"=0da+ (Va)v+La (1.6)

represents an objective time-derivativeaotvith respect to a material moving with spatial ve-
locity v. In this expressiong is the partial time-derivative operatal, = V,v the spatial
velocity gradient,V, the spatial gradient operator, aaatl, the spatial curl operator. Further,
0., represents the electrical conductivity,

(:=x—a-v .7
a Euclidean frame-indifferent form of the scalar potential
e=e+vxb (1.8)

the spatial electromotive intensity,the spatial electric field, anbl the spatial magnetic flux.
Outside of the moving body iR, i.e., in the surrounding air and L are neglected. As usual,
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a andy determineb ande via the potential relations

b = curla,
(1.9)
—e = Jda+ V),

in the context of Maxwell's equations (Jackson, 19%86,4). In particular, these result in the
form
—e=0da+V,x+curla xv=a+V( (1.10)

for €. In addition, Maxwell's equations and (1;3pbgether with the Coulomb gauge condition
div.a =0 (1.11)
(Jackson, 1975§6.5) ona yield in the alternative form
a — kg, div,(V.a) + V,( =0 (1.12)
for (1.4) via (1.3) together with the field relation
div (V.x) = VZx =0 (1.13)

for the scalar potentia}. The weak forms of these last two field relations are thenngibyé

/ a: a, +{CI+ry, Via}t-Va, = {CI+ kg, Viain -a,
R OR

R OR

with respect toR via (1.3), for all test fieldsa, andx,. As usual, these vanish on those parts
of 9R wherea and y, respectively, are specified. On the timescale ~ 107 s relevant

to processes such as electromagnetic metal forming, theatyprder of magnitudes,, ~
10~ m? s~! for the magnetic diffusivity of metals implies that “sigmifint” magnetic diffusion
takes place over lengthscales ofi;,,, 7, . ~ 10 cm. Since this is significantly larger than
the smallest dimension of the engineering structures efést €.g, sheet metal thickness 1

mm), magnetic diffusion will be important in the applicatgto be discussed below.

Turning next to the mechanical part of the coupled modelywtbak momentum balance for
the deformation field is given by

(1.14)

/B (€ f) & +P Ve = / cof (F)m, |1, - €, (1.15)

0B,

T

with respect to the referential configuratitp C R for all corresponding test fields vanishing
on those parts of the current boundad®, whereg is specified. Here,

f=det(F)l =det(F)j x b (1.16)

1The volumedv and surfacela elements are dispensed with in the corresponding integrianthis work for
notational simplicity.
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represents the Lorentz (body) force (densify)the first Piola-Kirchhoff stresg’ : = V £ the
deformation gradient, ant] the current boundary traction. In the previous work undetaoe
circumstancesg(g, tube forming: Beerwald et al., 1999; Fenton and Daehn, 1988) orentz
force has also been represented as a boundary pressured ltitis is based on the alternative
form

/ .7 X b= / [(b ’ nc)(h’ ’ nc) _pM] n. + (b ’ nc) n. X (h X nc) (117)
B. OB,
for the Lorentz force itself as a boundary integral over theent boundary B, via the diver-
gence theorem, with

D ::%(b'h):%MEMh'h (1.18)

the so-called magnetic pressure. From this, we see thatsiparallel todB,, i.e., if b - n_ =

0, then the Lorentz force is equivalent to a pressure at thadeny. Again, this is exactly
the type of boundary condition realized in certain typespydl@ations,e.g, certain types of
electromagnetic metal forming.@, tube forming: Beerwald et al., 1999; Fenton and Daehn,
1998). For other cases, however, this is no longer true,ragdneral the Lorentz force must be
treated as a body force (density).

The mechanical model relations are completed by the spatdicof the material model.
Here, attention is restricted to such a model for the metalbrkpiece, which is modeled here
as a hyperelastic, viscoplastic material. For simplidityg (mild) elastic and flow anisotropy
of the metals of interese(g, Al) is neglected here, as well as any kinematic hardeningreM
generally,e.g, for the case of deformation-induced anisotropic flow bérale.g, Reese and
Svendsen, 2003; Svendsen, 2001), this is of course no lpogsible. Since the metal forming
processes of interest here are predominantly monotoniatur®, however, this last assumption
is not unreasonable. In this case, the constitutive modgbesified via the form of the refer-
ential free energy density,.(InV,, ¢,) together with the evolution relations for the elastic left
logarithmic stretch tensdnV,, and accumulated equivalent inelastic deformation measure
In the context of small elastic strain, the usual Hooke-8dsem

U (Vi &) = 5k, (I-InV,)? + g, dev(InV,,) - dev(InVy,) + ¥ (e) (1.19)

is relevant. Another common assumption in the non-isothéoantext in the case of metals
is that of constant specific hea.g, Rosakis et al., 2000). Here, represents the bulk mod-
ulus, i, the shear modulus, ang,(¢,) the contribution from energy storage due to isotropic
hardening processes as usual. From (1.19), one obtaingicybar the usual hyperelastic form

K = 0,y ¥, = 3k, sph(InV;) + 24, dev(InV;) (1.20)

for the Kirchhoff stressK = PF". As usual,(e,) is estimated with the help of fits to the
guasi-static yield curve for the materials of interest annaemperature, as discussed in what
follows.

Consider next the evolution of the internal variables andribastic behavior. In the metal-
lic polycrystalline materials of interest at low-to-modex homologous temperature, inelastic
deformation processes are controlled predominantly byatitiwation of dislocation glide on
glide systemsd.g, Kocks and Mecking, 2003; Teodosiu, 1997). Indeed, thisnset® be the
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case even at high strain-ratesd, Frost and Ashby, 1982). Apparently, higher homologous
temperature is required for other mechanics such as digdaceimb or even dynamic recrys-
tallization to begin playing a role. Resistance to dislamagylide arising due to obstacles and
other factors is related in the phenomenological contextamening behavior. Quasi-static
processes of this nature contributing to energy storageeimaterial result in the contribution

= (1.21)

T, ep

to the effective quasi-static flow stress in the materiatrSesistance to dislocation motion can
be overcome by thermal fluctuation under the action of thalleffective stress, represented in
the current phenomenological contextdy,(K) + ¢, — o,,, Whereo, (K ) represents the von
Mises effective stress with respectlo, ando,, is the initial flow stress. On this basis,

fP(K7 gP) F= UvM(K> + S~ Oxo (122)

represents an activation measure or overstress in thentuate-dependent context. A power-
law approximation of the more exact transition-state-lase&cromechanical relations for the
kinetics of dislocation glideg.g, Kocks and Mecking, 2003; Teodosiu, 1997) leads to the
power-law form

D D K mp(ep,D)+1
é(e,, D, K ,c,) = VP(::(E )1;13(_6:71 ) <£P<(E 7;;;> (1.23)

upon which the evolution of the internal variables is bas¢ere,o,, represents the initial flow
stress;y, a characteristic strain-rate, the characteristic or effective activation stress magni-
tude, andn the strain-rate exponent. Furthér) : = 1 (z + |z|) represents the ramp function.
As indicated;y,, o, andm,, are in general functions of accumulated inelastic defoionaand
deformation rate. For simplicity, however, these matgaraperties will be treated as constants
in the algorithmic formulation to follow. To indicate thisye write v, = 4., 0, = 0., and

m, = m,, in what follows. The form (1.23) determines the evolutietations

WV, = Oxd = \Jsn(dev(K))é, (K £0),

. £ (1.24)
€& = 8§P¢ = % <0__0> (fP>O>7
for the evolution of the internal variables, with
WV, := 1 n(FC, F") (1.25)

in terms of the inverse plastic right Cauchy-Green deforomed, !. As indicated is differ-
entiable ing, everywhere except g, = 0, as well as in{ everywhere except g, = 0 and at
K = 0. The corresponding subdifferentials exist everywhereghéncontext of these forms for
the evolution of the internal variables, the constrajrit,, 0) = 0 on the constitutive form of,
follows from the general thermodynamic analysis (SvenasehChanda, 2005). In addition,
Ohm’s law (1.5) together with the assumption that theseutiol relations are independent of
e implieso,,, > 0. Lastly, the restriction that, 5 (¢, 0) be non-negative definite.¢., for

f. > 0) follows from the thermodynamic analysis via the assunmptiat the non-equilibrium
(i.e., dynamic) part of is negligible. For more details, the reader is referred tensigen and
Chanda (2005).
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1.3 Initial boundary value problem for EMF

In the rest of this work, attention is focused for simpliatythe application of the general model
relations from the last section to the case of the electromtgmetal forming of axisymmetric
structures (see Section 1.5 and Section 1.6). In particati@ntion is focused here on the case
of the electromagnetic metal forming of circular sheet ngtes as shown in Figure 1.1.

Sheet metal 7 110

(final state)

Plane of
symmetry

Tool coil
Sheet

—e &
Dmmmj

@70

Die
AN
8 A

1.2

‘ Blank holder
Symmetry line

Tool coil z z
‘D/b' T_,

Figure 1.1: Electromagnetic metal forming of circular dhmetal plates. In this method, an
electric current in the tool coil induces a magnetic field atettric current in the sheet metal
plate, resulting in a Lorentz (body) force (density) driyits deformation. As shown, the sheet
metal plate is clamped down radially by a die and blank holBer simplicity, the structure is
approximated in this work as being axisymmetric. See taxtiéails.

v

For the formulation of the corresponding coupled initialibdary value problem, this structure
is idealized as shown in Figure 1.2.

Let C. represent the current configuration of the taflthat of the workpiece, ang the region
containing these as well as the die and surrounding air. iIfFgliity, attention is restricted in
this work to cases in which the tool, die and air are assumbd stationary. Consequently, only
the workpiece is assumed to move. The tool consists of afriel#lty-conducting §,,, # 0)
copper coil embedded in an non-conductirg,( = 0) resin matrix. LetL, represent the
interface between the copper coil and the resin matrix intblo¢ Further, letF,, and F,
represent the surfaces at the beginning and end of the coppeonnecting this coil with the
rest of the electrical circuit through which current flow$ieBe have known voltagés andU,,
respectively, across them. In this cage\ (C. U S.) represents the region surrounding the tool
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Se \
Ce Fa | Electric
y /cricuit
.~ ANNRRRE-
| i

R z

OR ;

Figure 1.2: Computational domains for the coupled initialifgary value problem. Heré?
represents the entire domain with boundary (at which the magnetic field has effectively
decayed to zero). the current configuration of the sheet metal workpiece,@nthat of the
tool. Further,F, andF, represent the surfaces of the tool coil connected to thérglewrcuit.

and workpiece containing air which, like the resin matrsxassumed to be non-conducting.
Under these conditions, the restrictiomofo C. is determined by the boundary value problem

Vix = 0 inC,,

x = U onk,,
(1.26)
x = U, onF, ,

VSX‘TLC = 0 OHLC’

via (1.13). Heren, denotes the outer unit normal vector on the surface of thiecmb In
particular, the boundary condition on coil-matrix intedal.. insures that thec-field in the
non-conducting resin matrix does not contribute to theanrfluxj in the copper coil. Outside
C.U S, in R, i.e, in the surrounding airy is determined by

Vix = 0 inR\ (C.US.),
X = X| on 0C, ,
o (1.27)
= 0 ondR ,
Vx-n, = 0 on ds, .

The boundary conditions o', are based on the continuity gfwhich is a consequence of the
existence of its gradient by definition. These boundaryeshrise from the computation of the
scalar potential insid€’,. Analogous to that (1.260n the coil-matrix interface, the boundary
condition ondS, insures that the-field in the non-conducting air does not contributejtm

the workpiece. Instead of specifyiigon F,, andF,, one may alternatively specify the total
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current/ = I(t) flowing throughC.. In this case, the coupled problem
da — Kk, Via+Vyxy = 0 inR\S,.,
Viy = inR\(C,US,),

S

0
o . (1.28)
X = 1mn c
0

S

V.ox - m, = onlL,,

is solved fora andy subject to boundary conditions faron dR, for x ondR, 0C, anddsS,
as described above and the constraint condition

—/ (0a+V,x) n, = o1 (1.29)

Ac

for any cross sectional surfaee perpendicular td. .. Note that(1.28), describes a degenerate
diffusion process. Degeneration occursin, (C. U S,), wherer,,, equalsco. In this region
the boundary value problem is elliptic. In the special cdssxsymmetry under consideration
here, note also that the Coulomb gauge condition (1.11)isfieat identically. Lastly, consider
the initial boundary value problem for the deformable waeke S,. As this part is electrically-
conducting and surrounded by air, we have

Vix = 0 inS,,
a, — ki, Via,+V( = 0 inS,), (1.30)

Vx-n, = 0 ondS,.,

for the restrictiona,. of the vector potential t¢, as follows from (1.11), (1.12) and (1.13).

Although the spiral-shaped tool colil is not exactly axisyetne, it is approximated as such
here. To this end, assuming th@t consists of» windings, each winding is approximated by a
torus of the same cross section. The resultirigri are then cut in thér, z)-plane atp = 0. In
order to simulate the fact that each torus is in fact the arenggfiral, the cross sections@at= 0
andy = 27 are treated electromagnetically as being continuous wgpect toy. Continuity
of potential then implies thdt atp = 0 (i.e., except in the first torus) is determined by that in
the preceding torus at = 2. Let W, denote the current configuration of thé torus, and
Uy, the potential ol aty = 0. Under these assumptions, the restrictiqrof x = x(r, ¢, 2)
to W, satisfies

Vixe = 0 in W, ,
= U at o =0,
Xk k ¥ (1.31)
Xe = Uk ato=2m,
vst . nk - 0 on ach .
The solution of this boundary value problem is given by
Xi(ry9:2) = U + AUL =, (1.32)
with AU, = U, — Uy. For the determination of
AU
Vok=——e,, (1.33)

2rr
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only the potential differencealU, need to be considered. They can be obtained from the
measured total curredt = I(¢), which is equal in all toriV_,, £ = 1,...,n, since they are
connected in series. The sum over all currents flowing tHi@rgarbitrary cross sectiot,, of

the k" torus then yields

—opn I = / (Oay + V,xy) -1y, = /
A

ck Ac

AU
k <(‘3ak + ?: e@> -y, (1.34)

in the context of (1.29), where, denotes the restriction of the vector potential to tHetorus
W,.. The last relation yields the result

-1
1 .
AUk:—{/A %ew-nk} {UEN}IjL/A 8ak-nk} (1.35)
ck ck

for AUy. In particular, for the case of a coil with rectangular cresstion,

b\ !
AU, = =27 (h In —k) {UEI\} I +/ Oa,, - nk} , (1.36)
ak A

wherel is the height (inz-direction) of each windingg, the inner, and,, the outer radius
of the £*® winding. On this basis of this formulation, then, one obsaime integro-differential

equation
AUy

oa, — Ky, Via, + 5o o = 0 (1.37)
for the restrictiona,, of a to W, with AU}, given by (1.36).

In the current axisymmetric situation, the relations (],248.30) and (1.37) result in a
piecewise-continuous form far (in contrast to the three-dimensional case in whickxperi-
ences jumps). In turn, this justifies standard finite elemsthods. The boundary condition of
the scalar potential results from the continuity of the nalrcomponent of the current density
as well as the tangential component of the electric field, @stioned in connection with (1.27).
Sincey is a harmonic function iy, fulfiling a homogeneous Neumann boundary condition on

the whole boundary according to (1.30), it must be constaret Hence

a+ V.( = da + curl.a x v (1.38)
applies there by virtue of (1.6) and (1.7). In summary,
(

0 inR\ (C,US,)

—curlla x v in S, (1.39)

ck{am}I—F/ (‘3a'nk}e@ in W,
\ Ack:

with piecewise smooth coefficients farin the whole regionk, and with

S {T/A %e¢~nk} . (1.40)

ck

2,
da — Ky, Via =




12 CHAPTER1

Since (1.39) is homogeneousih\ (C, U S.), no problems arise from the degeneratiQr =

oo there. In particular, note that piecewise smoothness epgincex,,, and the right-hand
side of (1.39) exhibits jumps at material interfaces. Inegah this is also the case because
a is not continuous ink; in the axisymmetric case, however, it is. As the flux density
magnetic dipole decays lik@(|x|~?) if the norm of the spatial variable tends to infinity, it

is admissible to assume homogeneous Dirichlet boundargittams onoR to good accuracy.
After multiplication with suitable test functions, in (1.39) and partial integration, the reduced
form

Jda - a, —l—/ Ky Vi@ - V,a, —|—/ curlla X v - a,
R Se

R
n
-1
= E / Ck O‘EMI—I—/ day-my re,-a,
k=1 ch Ack

of the general weak forms (1.14) follows. This is the basitheffinite element solution to be
discussed in what follows. Note that the conditioa= 0 outsideS, has been taken into account
here.

(1.41)

1.4 Algorithmic formulation of the coupled model

We begin with the mechanical part of the model. Its algorithformulation is carried out here
in the standard context of backward-Euler integration efitital evolution relationg(g, Simo
and Hughes, 1998) and their implicit solution via Newton-Ragmn iteration in the context of
the implicit function theorem. Consistent linearizationtloé resulting algebraic system then
facilitates the corresponding element formulation of thetemnial model and its incorporation in
the finite element solution of the dynamic initial boundaajue problem.

To this end, the time intervé), d| of interest is split inton subintervalso, ¢,], . . ., [t,,_1, t,.),
such thaf0, d] = U™, [t;, tiy,] With ¢, = 0, ¢, < t,,, andt, = d. As usual, assume that the

initial boundary value problem and internal variable etiolu relations have been solved up
to the discrete time = ¢,, such that,, a,,, andy,,, together with their spatial and temporal
derivatives, as well as the corresponding internal vaemdre all known in the corresponding
region of Euclidean space at this time. As discussed in teeiqus section, the difference in
electromagnetic and mechanical timescales, togetherthtiaistinct nature of the respective
fields involved {.e., Eulerian in the electromagnetic case, Lagrangian in thehar@cal large
deformation context), suggest that a staggered numentaien procedure based on separate
meshes for the electromagnetic and mechanical field prabieithbe most efficient. Since
we are neglecting temperature effects here, the influentieeoélectromagnetic fields on the
development of the mechanical fields is restricted to theehtarforce (1.16). Via Ohm’s law
(1.5) for 5 and the expression (1.10) for the electromotive intensjtwe see that the spatial
form [ of this force depends in general on both electromagnetionaachanical fields as well
as their spatial and temporal derivatives via (1.5), (1r) @..16). Since the electromagnetic
fields vary on a timescale much smaller than that of the mechkfields, a scaling analysis
shows that the convective tebnx v = curl,a x v is much smaller than the others and can be
neglected. In this case, we work with the algorithmic appration

ln+1 ~ O-EM Curlsa’n—i-l X <8a’n+1 + Van+1) (142)
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for the current Lorentz force which is then “purely electagnetic” in character. In particular,
in the context of the staggered approach being pursued therpurely electromagnetic terms
curlya,, ., 0a, , andV,y, ., appearing here are treated in the mechanical part of thgeted
algorithm as being known and fixed.

The next global step begins with the update of the boundamgitons to the next discrete
timet = ¢, ,, for the time intervalt, ¢, ,,] of durationt, ,, , := ¢t ., —t,. Consider first
the local algorithm at the Gauss-point level for the intéraaiables and the Kirchhoff stress
K. In the backward-Euler context, these are determined aad asumplicit functions of the
current (unknown) deformation gradiehy_ , and (in the current rate-dependent context) time
step size,, ., ,,. In particular, the backward-Euler integration of (1.2¢¢0[¢,,, ¢, ] results in
the algorithmic relations

sph(InV,,..y) = sph(nVi.,,) .

(1.43)
sgn(dev(InV,, 1)) = sgn(dev(InVi7,, ),

in the context of (1.20) and (1.24)and so in the reduced two-dimensional algorithmic system

_ tr o 3 o
CEnt1 — CEntl \/;(Epn—&-l 6Pn)?

(1.44)

6Pn+1 = & + Yo <an+1,n/UO>m0 tn+1,n )
fore,, ., := |dev(InV,, )| ande,, ., respectively, with , := |dev(InV;_,,)|. Here,
an;fH_Ln = 1n‘/];;(Fn+1) L= % 1n(Fn+1C;71FnT+1) (1.45)

represents as usual the trial valué¥, . ,, with F,,_, , : = F, | F, ' the relative deformation

gradient. From (1.44), one obtains the three-dimensionglicit algebraic system

r (€ € F,_,) =0
€ n+1ln\*En+1> *Pn+17 * n+l )
(1.46)
reP n—l—l,n(EEn-l—l? € n+1> Fn+1) =0 ’
of non-linear algebraic relations fey,, ., ande,,,. ,, where
_ 3 tr
reE n+1,n(EEn+17 EPn—i—l? Fn+1) - EEn—‘,—l + \/; (EPn+1 - EPn) - |dev(1n‘/;:n+1,n)| )
; - (1.47)
F ) — ¢ — ¢ _ Pn+1,n t
reP n+1,n(€En+17 6Pn+17 n+1 Pn+1 Pn Yo o n+l,n °
0

These determine in particular the explicit form
K, (a1, F,) =3k SphanV;;(Fn—Fl)) + 210 €5t Sgn(dev(ln‘/Etl;L(Fn—i-l))) (1.48)

of the algorithmic Kirchhoff stress from (1.20). The systéin?6) can be written in the compact
form

F'a n+1,n

(anJrl 7Fn+1) =0 ) (149)
with

a = (e,€) (1.50)
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and
ro i=(r_,r.). (1.51)

(87 €E7 EP
For fixed F,,,, andt, ., ,, iterative solution of (1.49) yields in the usual fashiop,, as an
implicit function of F;,, ;, and soK,, . ; as such a function.

The current unknown deformation fiefq , , satisfying the current boundary conditions and
momentum balance is given by solution of

My 10 (Enits @ppr,€) =0 (1.52)
for all £, with
mn+1,n (En—&-l’ an+1 76*) = /l; {QO a’n+1,n(£n+1) - det(vTEn+1) ln—l—l} : E*
+ / Kn(an—i-l ) vr5n+1> ’ Vn+1€* (153)
BI‘

- / |Cr(vr€n+1)| tcn+1 : E*
B,

the weak momentum balance functional obtained from theriggoic form of (1.15). Again,
in the context of the current staggered approach, the Loremntel,  , is assumed known
and given. Here, the material acceleratiat), ., (&,,1) = a(&, i1ty &ns&nr &) IS
considered algorithmically a function ¢&f, ,,, ¢,,.,,, and the state at the erid= ¢, of the
last time step, in the context o&é.g, the Newmark algorithm. In addition, the notations
V& = (V.£)FE, ., and thate,(F) := cof(F)n, have been introduced, with, the
outward unit normal to the boundaf\3, of B..

As usual, the finite element approximation to (1.53) in thgraagian context is based on
the discretization

Br~|] B (1.54)
of B into a finite number of element3!, B2, .. .. In terms of the corresponding finite element
approximation
£ = Hx (1.55)

for the element deformation fielgl, in terms of the element shape function matix as well
as in terms of the element nodal position vestgrone obtains, as usual, the element represen-
tation

F¢(x°) :=V7E, = (VPH) k¢ (1.56)
for the deformation gradient, wittV:H)*x, := V¢(Hx,). In particular, these induce the
discretized form

mn+1,n(€n+17 an—H 75*) = Ze fs—i-l,n(xqe@—i-la eqem-i-l) ' Xi (157)

2Not to be confused with the vector potential
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of the functional in (1.53), with
f5+1 n( fH—l? efz—&-l)

:=[ H'H{o, a’i+1,n(xfl+l) — det(F(x7,41)) €41} + (VSHH)ST K$L+1,n(e161+17 Fe(x341))

By

- [ JeF

(1.58)
with Ve, H : = (V°H)F, !, andl® = H£°. With the help of the connectivity relations
x¢ =1Ig x° (1.59)
between the element and structural nodal positions, (t€sljces to
mn+1,n(€n+17 an—i—l ’S*) = fz—i—l,n(XfL—H? e:rSL—i-l) : Xi ) (160)
with
f781+1,n<xfl+17 €y1) = Z L' fris, WL X1, €41) - (1.61)
Sincex? is arbitrary, (1.52) reduces to the discrete form
fTSL+1,n(X7sl+17 efz+1) =0 (1.62)

interms off; , .. For its iterative solution, we require as usual the alganit derivative

1fn+1 n Z IeT ae 1 n+1 n) Ie (163)

n +

of this at fixedé,, , ;, with

aanﬂffwrl noo= HTH{QO(aXfL_Ha‘n—i-l,n)fL-I—l — det(F*(x;,41)) (U @ I)(Vy 1 H)}

B

b R0 K B - Koo TV HY

- oB, H't,, , ®(V,H) { e, |7 (e, e )T —¢,®c ]}n+1

(1.64)
via (1.1),. Here,

g, K )EL = (Onye,, K,)(0p, WV )E], (1.65)

n+1

represents the “push-forward” to the current algorithnoicfeyuration of the algorithmic deriva-
tive of K, with respect taF,,__, from (1.48) in terms of the notation

81thr K - = aan“ Kn)(aan+lra n)_l(aanEt’T'HLn F'a n)

En+1,n n En+1,n

Kn - (aa
n—+1

= 3kgsph + 2py— “entl (IoI - N/

| En+1,n
En—i—ln

+ 2:“0(8an+1ra n)il (Nl:grn—l—l n ® N]grn—s—l n) dev .

BB

® NP 4 ,)dev  (1.66)
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Here,d, .. represents the Jacobian of the system (1'@’+1ra .)oL the upper left di-

Solso)

agonal element of its invers@,r, )", €1, = |dev(ln@;+1,n)| and Ny, ., =
sgn(dev(InVj; ., ). Note that
(aF an}-zt;)FT = % (D ln)(vl:;l;wrl,n) (ID B::rn+1,n + B::rnJrl,n A I) (167)

n+1

follows from (1.1),; and (1.46). As usual, the Fechet derivativeD In of the logarithmic
mappingln on second-order symmetric Euclidean tensors is calculattddthe help of the
functional calculus€.g, Silhavy, 1997, §1.2.5).

In the context of the finite element method, the Euleriaredasmplementation of the elec-
tromagnetic model is based as usual on the spatial disatietiz

R =~ U Re (1.68)
of R into a finite number of elements. The corresponding appration
a, = Na‘ (1.69)

for the vector potential field at the element levgl in terms of the element shape function
matrix N analogous to (1.55) in the mechanical case results in tisg@xnetric case in element
representation

Véa, = (VSN)a® (1.70)

for the corresponding gradient analogous to (1.56). In tbeengeneral 3-dimensional case in
which a experiences jump discontinuities, the element formutetiould have to be general-
ized,e.g, to Necelec elements (Belec, 1980, 1986) or least-squares-based approacheg (Jian
et al., 1996). On this basis, one obtains the spatiallyreisz=d form

> (Aca®+B%)-al=)» c-af (1.72)
of (1.41), with
A i [ (NN
Re
(1.72)
B = /fgkli/ NTN—F/QEI}{/ Ck NT6@®/ N'n, | ,
Re W, . .NRe A
as well as
c = / Cr K Omi I NTe, . (1.73)
W, . .NRe

Using the connectivity relation
a‘=1If a° (1.74)

a

between the element and structural nodal vector poterdlaksg, the arbitraryness af leads
to the structural form
A’a® + B%a® = ¢ (1.75)
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of (1.71), with
AP=) ITAT, B'=) IBIL, =) Ict, (1.76)

formally analogous to (1.61). Integration of (1.75) via generalized trapezoidal rule over the
interval(t,, ¢, ] yields the system

A’ B: api |
[ I —at,,,I ] { as ., } B
to solve fora? ., anda;_,, in the context of the current staggered approach with fixgd.
In contrast to (1.62) fox; ,,, note that this last relation can be solvexplicitly for these
quantities. Here, the parametex « < 1 controls the amount of artificial damping exerted on
the discrete system. Far= 1 (maximal damping), the methods coincides with backwarbtkiEu
integration, whileaw = 1/2 (no damping) yields the more accurate trapezoidal rulebéing
an accuracy o) (At?) for a maximal time step siz&t — 0 (Hughes, 1987). Nevertheless,
to switch from the most accurate valae = 1/2 to a valuea > 1/2 at the beginning of

the simulation and after a specified computation time magrfout non-physical oscillations
entering by the coupling mechanism.

Chi1
1.77
ai%—(l——a)tn+Lnai ( )

Note that (1.75) reduces to a time independent linear emué&ir those degrees of freedom
that lie outside the tool coil or the workpiece duestg, = 0 there. These degrees of freedom
depend only indirectly on the time by their coupling to thdsgrees of freedom lying in areas
with kL > 0 (i.e. the tool coil or the workpiece). As in the mechanical cadlespmtially-
discretized integrals are evaluated in the standard fasha Gauss quadrature. Particularly,
in the axisymmetric situation, the computation of the inédg reduces to a two dimensional
guadrature, after cylindrical coordinates have been dhiced and the (trivial) azimuthal inte-
gration has been performed. In terms of efficiency, the wmaallrelations, expressed in the
integral overA,, in (1.72), linking all degrees of freedom within the samd wonding, should
be handled with some care. It is recommended to start withraedatrd assemly of a sparse mass
matrix and to incorporate the additional couplings aftedsaOne possibility is to introduce an
additional degree of freedom for each coil winding and tagsthe total current,, . ; flowing
through this winding at time, ,; to it. The resulting matrix deviates from a standard sparse
matrix only by N columns and rows, wher® denotes the number of coil windings. In the nu-
merical examples reported on below, another technique é&s &pplied: After the application
of a standard mass matrix {n.77)),, a second matrix is applied, projecting on the subspace
defined by the additional couplings. Such a factorizatiothefmatrixB; . ; can easily be real-
ized by a modification of the matrix vector multiplicationtimee employed iterative solvers (see
below). Consequently, the sparse structure of the matrigd neeto be distorted. Whether this
method is more effective has yet to be established.

In summary, since we are nelgecting temperature effects lhed sinceurl.a x v is neg-
ligible and has been neglected in the above algorithmic éitetion, the simplified form (1.42)
of the Lorentz force represents the only coupling betweeretbctromagnetic and mechanical
fields in the mechanical part of the model. Likewise, becauska x v is negligible, the cur-
rent (deformed) shape of the workpieceftn which determines the spatial distribution®f,
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in R appearing in (1.77) via (1.72), represents the only coggdiietween the mechanical and
electromagnetic fields in the electromagnetic part of theleholn this framework, the com-
bined model is solved in an iterative staggered fashionguasitwo-mesh Lagrangian-Eulerian
approach. To discuss this iterative staggered schememasagain that the initial boundary
value problem and internal variable evolution relationgehaeen solved up to the discrete time
t = t,, such thak’ anda’, together with their temporal derivatives, as well as theespond-
ing internal variables, are all known. On this basis, we hhedollowing algorithm:

1. Initialize the iteration by setting’"") = x2, x*") = x5 andx’') = %2 for k = 1.

2. Givenl,, in the tool coil, computelfl(ﬂ andafl(f% on the Eulerian mesh via (1.77). As
indicated, this depends on where one is in the systasm whether or not the point in
guestion is in the workpiece, tool coil, or air. To this enge assembly routine deter-
mines whether the nodal points of the Eulerian mesh lie iniraithe tool coil, or in the
workpiece, and so the current spatial distributiom,gf.

3. Having thenx’"), a’*) anda’*), the corresponding Lorentz fordg!, is obtained on
the basis of (1.42) via data transfer and projection fromEhgerian to the embedded
Lagrangian mesh for the workpiece. Then, the system camgist (1.49) and (1.62) is
solved iteratively at fixed", to obtainx®!"7", x:*™) %"V and the corresponding

internal variables.

4. Steps 1.-3. are repeated foe= 2, ... until convergence is obtained, yieldisg , ,, a; , ;,
and the internal variables in the entire structure.

In all simulations,k rarely exceeded 3e(g, if both the velocity of the structure is quite high
and the flux density of the decaying electromagnetic fieltdashe structure is still signifi-
cant; see Section 1.6) and in any case was less than 8. Thélaigofor the electromagnetic
and mechanical parts of the current coupled-field model bae@ implemented at the element
level into the finite element program SOFARN particular, this has been done for the current
4-node axisymmetric case as well as for the 8-node threestional case. Elsewhere, a stabi-
lized 8-node shell-element formulation (Reese et al., 2@@3he current model has also been
developed and is currently being implemented.

1.5 Data transfer and numerical convergence behavior

In order to investigate the effect of data transfer betwéennechanical and electromagnetic
parts of the staggered algorithm on the numerical solutionsider the electromagnetic forming
of a round sheet metal workpiece with the thickness of 1.2 mdradius of 52 mm consisting
of the aluminum alloy AC120. As shown in Figure 1.1, the workga and tool coil are idealized
as being axisymmetric, with the tool coil lying 0.6 mm beldve tworkpiece. The sheet metal
is clamped down at a radius of 34.75 mm by the die holder. Foplgity, the corresponding
contact is idealized here by simply fixing the upper and losweface nodes of the plate mesh
in the region of the die holder.

3Small Object-oriented Fite-element library for Aplication and Rsearch
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Application of the model from Section 1.3 and its algoritkrform in Section 1.4 requires
the specification of the isotropic hardening behavior of ACQ124s a first approximation, the
quasi-static uniaxial test data of Badelt et al. (2003) weseduor this purpose. Identification
of the semi-empirical form

Yp(€p) = 1 (6 +¢5)% + ¢, In(1 4 5 €,) (1.78)

of the dependence of the inelastic pagtof the free energy density ofy related to energy
storage in the material due to isotropic hardening basetesetdata yields,, = 116.0 MPa,

¢, = —12.39 MPa, ¢, = 0.001, ¢; = 0.0697, ¢, = 80.31 MPa andc; = 36.59 for AC120. In

particular, this form determines the quasi-static contrdn o, = —¢,, to the flow stress from
(1.21). Further, values of, = 90 MPa,, = 10* s7! andm, = 5 for aluminum relevant
for strain-rates of> 10® s~! were taken from the literature (Jones, 1997). Lastly, thste

behavior of AC120 is characterized by the values 39404 MPa andu = 26269 MPa for the

Lamé constants at room temperature.

e
Mechanical ,
= Lagrangian mesh

| | Electromagnetic
Eulerian mesh Bp
i

Figure 1.3: Finite element discretization of the coupledbtgm consisting of a fixed Eule-
rian mesh for the electromagnetic system and deformingdragan mesh for the sheet metal
workpiece.

The finite element meshes used for the mechanical part ofiti@agion (see Figure 1.3)
are based on four-node bilinear elements. The discraiizati the electromagnetic part of the
coupled problem is also based on such elements with edgafégband perpendicular to the
axis. As mentioned above, this is in contrast to the thregedsional case in which disconti-
nuites arise in the electromagnetic fields, requiring mogghssticated numerical methods. In
order to improve efficiency, the design of both meshes arptadarom the start to the ex-
pected deformation and electromagnetic field developnieiparticular, the element density in
the mechanical mesh is larger near the contact point witklign@older as well as at the center
of symmetry where bending and deformation are most extreimalogously, in the electro-
magnetic case, the region traversed by the moving mecHanésh as well as the gap between
the tool and work piece are more finely discretized than theameing regions (see Figure 1.3).
This is not only necessary due to the large gradients in tb®kpotential arising here, but also
to minimize additional errors due to inaccurate local agpnation in elements with internal
diffusivity jumps and inaccurate transfer of the Lorentecss. More on this in what follows.
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Consider in particular the transfer of Lorentz forces frora #iectromagnetic to the me-
chanical mesh of the workpiece. In particular, this is basedl1.42). To begin, this involves
identifying the current positions of element nodes fromrtrechanical mesh in the electromag-
netic mesh. As implied in Figure 1.4, using these, the vafuei®calculated at these positions
from the nodal values of® anda® in the electromagnetic mesh (note tRag = 0 in the work-
piece) via interpolation using the element shape functidieese interpolated values are then
passed to the mechanical mesh for use in the solution of)1.58

Figure 1.4: Data transfer from the (white-node) electronedig mesh to the (black-node) me-
chanical mesh at the element level.

Going in the other direction, the distribution ef,, (or in the numerical case of_!) has

to be transferred from the mechanical to the electromagmegish. This is done directly by
determining whether the Gauss points of the current eleagmetic mesh lie in the workpiece,
tool, die or air and setting the value ef,, accordingly. The simplicity of both of these is
that they require no remeshing. The question of whether bsuch an approach is really more
effective than remeshing (in particular the electromaigmeesh) is a matter of current research.
A clear disadvantage of current approach is that jumps oftfiesivity within elements in
electromagnetic mesh reduce the local approximation qabersistency) of the finite element
discretization. Nevertheless, the resulting loss of aaxurs limited due to the fact that only a
small percentage of small elements is affected.

To get a better understanding of the simulation results efftily coupled simulation as
described in the proceeding section, consider first thelypwnechanical case. In particular,
attention is focused on idealized body-force-based lgadiralogous to the Lorentz force such
as those shown in Figure 1.10.

Here, in the time interval from 0O to 2@s, a body force density with non-trivial z-component

f. is imposed on all points of the structure betweea 9 mm andr = 35 mm. After 20yus,
this force is turned off. Spatially, this force is assumedbéoconstant in the radial direction
and to vary in the axial direction as depicted in Figure 1lh(oth the linear and exponential
cases, the mean value #fis 10 N mnt3 over the workpiece thickness. Since they both have
the same mean value, we should obtain the same mechaniecdagon results. On this basis,
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--- exponential decay --- exponential decay
— linear decay — linear decay
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Figure 1.5: Exponential and linear idealized Lorentz bodycé density distributionsz{
component) in the circular sheet metal plate used in thestigagion of convergence behavior
and the data transfer approach used in the current workggefot details). Left: Distributions
in the radial direction at = 0. Right: Distributions in the vertical direction at= 0.

a series of finite element simulations with different meshese performed for both volume
force distributions. All meshes employed were of the typscdeed above (see also Figure 1.3)
and hierarchically refined. Figure 1.6 shows the formingeseof the plate at various instances
for the linear volume force distribution and a mesh with 4B9veents in four layers.

‘‘‘‘‘ elements over thickness: 1
157 - -~ elements over thickness: 2 PEEY
— elements over thickness: 4 e
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{ 80
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Figure 1.6: Forming stages (left) and solution convergdratevior (right) as a function of the
number of elements over the thickness for the case of tharlinedy force density distribution
shown in Figure 1.5. Initially, the displacement due to &@ion is large in the coarse meshes
due to their higher rigidity; as time proceeds, howevess tendency reverses as deformation
begins to dominate, at which point typical convergence Wehdi.e., increased deformation
with number of elements) is observed. See text for details.

As shown on the left in this figure, such body force distribng lead to an initial acceleration
of the middle of the plate. In later stages, the plate cesteiragged along and accelerated
by the induced inertial force, resulting in the cap-likenfoat the end of the forming process
after approximately 12@xs. The convergence behavior of the solution as a functiomué t
for the linear distribution is shown on the right in Figur&.1Here, the vertical displacement
of the workpiece at its center & 0) for three different meshes is depicted. Initially, cears
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meshes exhibit more (rigid-body-like) displacement sificer meshes accelerate less rigidly
under dynamic loading. With time, however, deformationha structure begins to dominate
and this trend reverses, resulting in the usual convergbebkavior at the end of the process,
i.e. finer meshes are “softer.”

‘‘‘‘‘ elements over thickness: 1 —
--- exponential decay --- elements over thickness: 2 J
\ — elements over thickness: 2 — elements over thickness: 4 ;
200’, 60 ’i
B ’
£
o c . R
Z E ‘ .
~ 100 S ks L,
- = R
© ’
20r ‘ o
0 . . 0 olet . .
0 0.9 12 0 40 ) 80 120
time [us]

Figure 1.7: Overestimation of exponential body force dgrdistribution (left) due to bilinear
interpolation for the case of two elements over the thickrddhe plate. Because of this, the
convergence behavior (right) is counterintuitive and camytto the previous example with a
linear distribution.

As shown in Figure 1.7, in the case of the exponential distioim (using the same bilinear
interpolation scheme) and two elements over the thickrtessreverse tendency in the con-
vergence behavior is observad., mesh refinement results in decreased deformation. This
results from the data transfer process as based on bilineapolation. Indeed, in this case,
two elements over the thickness are insufficient to reptabenexponential form and lead to
an overestimate of the Lorentz force in the Gauss points@htechanical mesh, and hence
more deformation. This overestimation of the force in ceaneshes can be reduced mapping
the values of the Lorentz force from the electromagnetichmsectly onto the Gauss points
of the mechanical mesh. In any case, using a sufficient nuoflEdements over the thickness
alleviates the problem.

1.6 Fully coupled simulation

Now, the fully coupled elastoviscoplastic electromagnetiultifield algorithm developed in
Section 1.2 - Section 1.3 is applied to the case of electroetagsheet metal forming. Initial
results of coupled simulations of electromagnetic she¢éahf@ming using an elastoplastic ver-
sion of the model (neglecting the rate dependency) haveresented by Kleiner et al. (2004).
The forming of aluminum tubes with an elastoviscoplastichamnical model is considered by
Svendsen and Chanda (2003). As described in Section 1.5¢lkemental configuration con-
sists of a tool, a workpiece and a die holder as depicted inrEid.1. The workpiece consists
of the aluminum alloy AC120, while the tool coil consists opper. The tool coil has a height
of 11.5 mm and consists of 9 windings, each of which is 2.5 mehewtith 0.3 mm distance
to the neighbored windings. The radius of the inner areachvls free of windings, amounts
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to 9 mm. As mentioned before, the coefficients in the semiteogb form (1.78) have been
fitted by experimental data to model the dependence of thastie party,, of the free energy
density one, related to energy storage in the material due to isotropiddrang, yielding the
coefficients stated in Section 1.5. The same values for @sieland viscoplastic parameters
as in Section 1.5 have been employed. Simulation results thdzussed in what follows have
been carried out for converged solutions involving meatenineshes of 360 elements and 4
elements over the thickness.

Deformation of the workpiece is driven here by a pulsed curfgee Figure 1.8) that induces
a magnetic field around the tool coil which is strongly infloed by the movement of the
workpiece.
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Figure 1.8: Measured input current used in the electromagfmeming simulation.

The corresponding simulated magnetic field is shown in ledu®. In particular, the distribu-
tion of the radial component of the magnetic flux density at2@left) and 8Qus (right) during
forming is shown. Note that by virtue of (1.42), this compoeihgenerates the dominating axial
component of the force vector acting on the structure. Irdtiré areas, flux densities of about
11 Tesla are achieved, decreasing down to about 1 Tesla isutiheunding area. As can be
seen, after 8Qis, the magnetic flux density and so the Lorentz force haveyageicaway, such
that further plate deformation is solely driven by inerfices.

Figure 1.10 shows the volume force density distribution entical direction at = 10us
computed from the field computation (the radial componerthefvolume force density is in
general several orders smaller than the vertical one ameisfore not examined here).

The diagram on the left hand side of Figure 1.10 shows thertpferce (density) distribu-
tion in the radial direction at intervals &z = 0.2 mm, and that on the right-hand side shows
the vertical force distribution ahr = 5 mm. The location of the tool coil and its windings is
clearly mirrored in the radial force distribution. On theslsaof the non-linear parabolic charac-
ter of the electromagnetic part of the coupled-field model, (1.4) and (1.42)), the expected
exponential decay of the body force in the direction of thekimess of the workpiece is evident.

Forming stages of the plate at various instances and thesponding accumulated inelastic
strain are shown in Figure 1.11.

Initially, the part of the sheet metal lying directly oveettool coil is subject to large induced



24 CHAPTER1

-2 0 2 4 6 8 10 12 -1 0 1 2 3 4 5 6
b [T] b, [T]

Figure 1.9: Radial component of the magnetic flux density at2Qeft) and at 8Qus (right)
inducing the Lorentz force driving the forming. As the shewttal moves away from the tool
coil, the magnetic field diffuses into the region left vachythe sheet-metal plate, resulting in
a decrease in the intensity of the magnetic flux and thus dfdhentz force.
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Figure 1.10: Simulated-component of the Lorentz force density distribution atyH0 Left:
Distribution in radial direction depicted at different gbts z. Right: Distribution in vertical
direction depicted for different radial positions

Lorentz forces and begins to accelerate. As forming pragabds part pulls the center of the
plate along with it. Forming in this part of the plate is thamedo the corresponding inertial
forces. These induce the maximum accumulated inelastéimstr the structure at the top of the
cap as shown. A detailed investigation of the developmestrafn and stress in the structure is

the subject of work in progress.

1.7 Discussion

To begin, consider the influence of numerical errors as veathadeling simplifications on the
simulation results. In additional to the usual finite elettkscretization errors, there are several
additional sources for numerical errors in the describagptea algorithm, which, however,

tend to zero with increasing mesh refinement. As discussedeafor example, the data transfer
process is a source of such error, in particular with redjpettte Lorentz force. Secondly, since
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Figure 1.11: Forming stages of the sheet metal plate as éidaraf time. The shading repre-
sents the development of the accumulated inelastic detmma. See text for details.

no matching of elements of the mechanical and of the electgmtic meshes is enforced,
the local finite element approximation (consistency) beesmvorse in those elements of the
electromagnetic mesh, that are partially covered by thecstre. Consequently, the Lorentz
forces computed in these elements are less accurate. Odegatirs error is reduced by an
increasing level of mesh refinement. The resulting loss cligcy is compensated by a gain of
efficiency, since the chosen arrangement allows for simglehngeneration in both subsystems.
Particularly, no remeshing or mesh deformation on the ele@gnetic side is necessary, despite
the movement of the structure. To judge whether the deadeasmerical expenses justify the
accompanying loss of accuracy, a further implementatieaigently being developed in which
the mechanical and the electromagnetic simulation aftecatilied out in different meshes, but
all elements of the mechanical mesh have an identical cuartan the electromagnetic mesh.
This allows a direct element-to-element transfer of Lazéatces without the need of searching
the active element in the electromagnetic mesh and withoadaitional error due to reduced
consistency. However, such an implementation requirégeiemeshing or deformation of the
electromagnetic mesh in every step of the Newton iteratidineomechanical structure due to its
movement. In this vein, the method of Lia@.g, Cai et al., 2004, and references therein cited)
is an effective way to redistribute mesh points of a givemnl gmieserving its topology. Such
methods allow to adapt the electromagnetic mesh to the mgatmicture without remeshing
and thus seem to be a good choice for the type of coupled pnshdiesscussed here.

Compared to the numerical errors reported on above, the gdlysiodel simplifications
seem to be less significant, at least at those stages of miasénment that have been exam-
ined, although a final verification of this assumption hasbe#n performed. To estimate the
influence of the convective terms which have been negletéstl simulations accounting for
curla x v in the simulation of the electromagnetic field have beenedwut. The computed
axial deformation of the structure during the first;@ddid not deviate from the results neglect-
ing this term more than%. This is less than the influence of the numerical errors deesdr
above at the levels of mesh refinement considered here. megkectingcurl.a x v is justified,
and useful also from the point of view that it destroys the syetry of the equation system to
be solved. In particular, this would mean that the iterafiveconditioned conjugate gradient
solver used to solve (1.77) could no longer be used. For Stectenputations, a BICGSTAB
solver has been employed.g, Meister, 1999). Beyond convection, the solution seems to be
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quite insensitive with respect to changes in the shape asitigroof the outer boundary, where
homogeneous Dirichlet boundary conditions are assumee.influence of the approximation

of the tool coil by axisymmetric tori as described in Sectlohon the simulation results has not
yet been investigated and represents work in progresslasijiiie influence of approximating

the die holder simply by fixing the relevant degrees of fresa®current being investigated.

In further work in progress, methods for rigorous a postemgoror estimation are being
implemented. The size of the numerical errors can be esnamd minimized by a higher
level of discretization if necessary. Moreover, a posteaaor estimators localize areas with a
high contribution to the overall error. The information aited can be used to design optimal
meshes which maximize the accuracy for given computatie@salurces. A rigorous control of
the numerical error is particularly important with reganchtodel identification.



Chapter 2

On the effect of current pulses on the material
behavior during electromagnetic metal forming’

Abstract — Electromagnetic sheet metal forming (EMF) is an example of a high-speaihfp pro-
cess driven by the dynamics of a coupled electromagnetic-mechanitainsyBasic physical processes
involved in EMF such as, e.g., inelastic and hardening behavior, or ineatia, been considered in pre-
vious works (Stiemer et al., 2006a; Svendsen and Chanda, 2005)pufpese of the current work is
the investigation of temperature development during EMF and a possibleti@din the yield stress
due to electric currents. While thermoelastic and viscoplastic effects aremadrstood (Lemaitre and
Chaboche, 1990), the possible influence of electric currents on dislocaotion, generally referred to
as the electro-plastic effect (Conrad and Sprecher, 1989; Varm&amuavell, 1979), is still an unre-
solved issue. Itis shown here that such an effect is at most of sewdedand can most likely be safely
neglected in the modeling and simulation of industrial EMF.

2.1 Introduction

In electromagnetic metal forming (EMF), a strong pulsed nedig field generated in the tool
coil adjacent to an electrically conducting work piece ioesieddy currents in the work piece
which interact with the magnetic field, inducing in turn a &tz force in the workpiece which
drives the forming process. The entire forming process lesthe order of 100-30@s and
achieves strain-rates of up t6* s~'. Compared to other forming methods, it offers increased
formability for certain kinds of materials, reduction ininkling, the possibility of combining
forming and assembly operations, reduced tool-making@&ist An example of the basic ex-
perimental setup for the case of sheet metal forming is shioWwigure 2.1. The time-dependent
current in the tool coil shown on the right depicts the pulsature of this current and so that
of the resulting magnetic field.

The further development of EMF as an industrial forming pssdepends in particular on
the availability and use of reliable simulation tools foe tborresponding coupled multifield
problem. In particular, these must be able to deal with highirs ratesc > 10° s™!, large
current densitiegj| > 10* A/mm?, and strong magnetic fields| > 10° T. In this context we
examine possible effects in the material such as a reductigield stress due to temperature
and strong electrical currents.

In the literature, the electroplastic (EP) effect has bemstdated to contribute to the behav-
ior of metals under combined mechanical and electromagteetding (Molotskii, 2000; Troit-
skii, 1969). The idea here is that an interaction betweereteetric current and dislocations
may affect the hardening behavior and in particular thedysétess. There has been a consid-

*Unger et al. (2006b)
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Figure 2.1: Electromagnetic sheet metal forming setup.
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Figure 2.2: Experimental results of Okazaki et al. (1979Wriby tensile testing of a circular
bar, an imposed current density results in stress dropsciinent density achieved maximum
values of from 4060 to 7680 A/mhand lasted for about 60@s. For pulse no. 2 tensile stress
decreased to about 70% of its original value.

erable debate regarding the significance of such an effqoblycrystalline metals (Goldman
et al., 1980).

Figure 2.2 shows the current density and tensile test ragpohan experiment performed
by Okazaki et al. (1979). In their experiment a titanium bahwliameterd = 0.511 mm was
subjected to simple tension tests. As shown in Figure 2 dibcharge of a capacitor bank
at given times during this loading resulted in an suddenease of the current density and
in a time-correlated drop in the yield stress. Okazaki e{1#879) showed that each of these
current-density “jumps” resulted in a temperature riselmfd 12.2 K to 99.9 K depending
on the imposed current density. Since a temperature risei®btder of magnitude implies
a drop of the yield stress of about 0.4% and 5.0%, authorgifaydhe electroplastic effect
concluded that the observed drops are due to an interactiefectron movements and the
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moving dislocations. Recently, Bilyk et al. (2005) showed tha introduction of an EP effect
IS not necessary to explain the stress drops shown in Fig@rélBey concluded that the stress
drops can be modeled by an accurate modeling of viscoplaggeffects during pulsing. The
work presented here confirms the view that the stress drapdeaexplained with the help
of conventional effects. However, it is concluded that yathermal expansion leads to the
observed stress drops.

2.2 Thermoelastic, viscoplastic model including Joule heating

The multifield material model used in the current work repres a special case of the general
continuum thermodynamic formulation of such models froner®&lsen and Chanda (2005) to
the formulation of models for electromagnetic thermodétasiscoplastic solids. In particular,
this work provides a framework for the treatment of EMF pssss also accounting for the
interaction between the electromagnetic and thermomeéadiagifects atlarge deformations.
The case of the simple tension tests mentioned above is doahammpler than that of sheet
metal forming shown in Figure 2.1 in the sense that the dedtion is significantly smaller.
Following Svendsen and Chanda (2005), in our case the madimlt can be modeled as
diffusive over the length- and timescales of interest. lis tase Maxwell's equations and
Ohm’s law yield the diffusive field relation

0=0b—k,, Vb (2.1)

for the spatial magnetic flux densiby Herex,,, := ol 15 represents the magnetic diffusiv-
ity, 1, the magnetic permeability, ang,, the electric permittivity. (Note that all material and
modeling data can be found in tables 2.1 and 2.2). In pas#icoh a timescale, ~,,, implies
a skin depthi(e., penetration depth of the magnetic field into the materibl).Q = /%, 7
As indicated in Table 2.1, for the case of titanium, the slapttl is significantly larger than the
radius of the “bar” (.e., a wire here). Consequently, the current density is congtantighout
the whole cross section. For a long wire( [/r, > 1), (2.1) can be solved to obtain

o AT

(b,,b,,b.)(r) = (0, 22" ) (2.2)

s 2mrg

in cylindrical coordinatesr, ¢, z) (Jackson, 1975). Heré,represents the imposed current and
ro the radius of the wire. In turn, this implies a constant coirgensity

(jmjwjz)(T) = (0707 ]/71'7”3) (2.3)

within the cross-section of the wire.

Consider next the energy balance and temperature evolutibwe ibar. Here, the chacteristic
length scale is determined as usual by the thermal difflysivi,, : = &,./0,c,, wherek, repre-
sents the thermal conductivity, the specific heat capacity, andthe mass density at reference
temperature).. As usual on a timescale, significant thermal conduction will take place on
the length scalé,,, = ,/~.,7. Since this length scale is much smaller than the width of the
wire (see Table 2.1), we are justified in assuming adiabaticlitions over the timescale of the
pulses € 100 us). Over longer timescales, of course, this is not the cas®lly in contrast
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to EMF we neglect the radially acting Lorentz force for twagens; firstly its magnitude is
significantly smaller than the applied mechanical loadsy{Bét al., 2005) and secondly the
structural response is minimal due to the present setup giepm

/70 o
Al 5.8 x 10Y 40 % 10 ¢
Ti 2.2 x 10 1.9 % 10-1
Assumption uniform adiabatic
current density during pulsing

Table 2.1: Scaling relations for electromagnetic diffsamd thermal diffusion.

With these simplifications the temperature is homogeneodsraated as an internal variable
(see (2.10) below). Consequently, the deformatigns the only thermomechanical field given
as usual by the weak form

/B@Té-ﬁﬁK-Vﬁ*—o (2.4)

for pure kinematic boundary conditions with respect to thienrence configuratioss, for all
corresponding test field§,. Here, K represents the Kirchhoff stress. As usual, this latter
variable, along with the internal variables, is given by d@emial model. For simplicity, attention

is resticted here to the case of (isotropic) thermoelastaylasticity with isotropic hardening.
Further, in the case of metals, we have small elastic sti#e. relevant internal variables are
then the elastic left logarithmic stret¢hV, and the accumulated inelastic strajn On this
basis the thermodynamic formulation being pursued herasgd on specific model relations
for the referential free energy densityas well as on the evolution relations for the internal
variables. In particular, assuming for simplicity that thlastic behavior is not affected by
inelastic processes such as damage, the split

(0, 0V, 6) = ¢(0,InVy) + 44, (0, ) (2.5)

of the free energy into thermoelastic and inelastic parjisssfied .9, Svendsen, 2001). As-
suming for simplicity that the specific heat capacifyis constant (Rosakis et al., 2000), and
exploiting the condition of small elastic strain, one obsaihe thermoelastic neo-Hooke form

U(0, V) = 5\ (I-WnVy)? — (3, +2u,) a, (0 — 6,) (I - nV;) + 5 1, (InV; - nV)
+ 0,600, —0In(0/6,)

(2.6)
for ¢, where), andp, represent La@'s constants and, the thermal heat expansion coeffi-
cient. The inelastic part, is determined empirically with the help of experimentaledats dis-
cussed in the next section. Consider next the evolution ahtieenal variables and the inelastic
behavior. In the metallic polycrystalline materials ofdrést at low-to-moderate homologous
temperature, inelastic deformation processes are ctadrptedominantly by the activation of
dislocation glide on glide systems.@, Teodosiu (1997)), even at higher strain rates. As such,
higher homologous temperatures are required for other amsms such as dislocation climb or
even dynamic recrystallization to activate. Resistancéstochtion glide arises due to extended
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obstacles generating longer-range stress fields relatbé phenomenological context to hard-
ening behavior. In addition, such resistance is caused dy-séinge local obstacles which can
be overcome by thermal fluctuation under the action of loffat#ve stress, represented in the
current phenomenological context plev(K)| + ¢, — 0,4(f), where

—G =1 (2.7)
represents the static contribution to the flow stress (iag9h@n this basis
dev(K)| +¢
fp e | (U)| P (28)

P

represents an activation function or non-dimensional sivess in the current rate-dependent
context. Hereg, represents the dynamic drag contribution to the effectwe 8tress in the
system. On this basis a power-law approximation of the meaetaransition-state-based mi-

cromechanical relations for the kinetics of dislocatioiglleads to the power-law form
0,

_ e Op mp+1 2.9

¢ mp+1 <fP> ( " )
upon which the evolution of the internal variables is baséele,, represents a characteristic
strain rate,(z) : = 1 (z + |z|) the MaCauley bracket, ana, the strain rate exponent. In

general, these will be functions of temperature and rateefdrdhation; here, we treat them for
simplicity as constants. This potential determines aslubedorms

mV, = —¢x — —sgn(dev(K))é, (K #0),
ép - ¢ = % <fp>mp (fP > 0) ) (210)

,Sp
0 = o 'c;Hw +opudet(F)j -5}
for the evolution of the internal variables. Hete, represents the rate of mechanical heating
ando,,}det(F)j - j the electromotive power.

EM
Now, for the case of incompressible material behavior, veeiae that the isotropic forms
of the viscoplastic parametets, o, andm,, are independent of the trade D of the rate of
deformation. In this case, the thermoelastic form

K =9,y ={\ V) =6\ +20) 0,00 )} +pnV,  (2.11)
for the Kirchhoff stress holds from (2.6). In addition,
@, = % (o) = (3, +20,) @, 0 Indet (F) (212)

then follows for the referential form of the mechanical hegtate.

This completes the basic model formulation. The detailgdrithmic formulation and nu-
merical implementation of the finite element model has beesgnted partially in Stiemer et al.
(2006a). In the present context the material model of this@gch was extended by the above
evolution equations. In particular, note that the time stiep for tensile test simulation has to
be chosen according to the particular timescale where @saofjinternal variables are to be
expected. During current pulses, the time step size waeahosbel0% s. Otherwise, much
larger step sizes in the order 6 s were chosen. The time integration of the velocity and
acceleration fields was carried out using Newmark’s metiadnerical damping was applied
during pulsing and afterwards in order to avoid numericalltzdions.
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2.3 Application to metal bars subject to pulsed currents and simplden-
sion

In this section, the current model is applied to the tensigst with pulsed electric currents. To
this end, we specify here the semi-analytical form

=W, = 0w (1 + i—) — 0 (2.13)

0

for the strain hardening due to energy storage, with
0o = Opor(1 — wrm(0 — 6,)) (2.14)

for the initial static flow stressy,,. being the initial flow stress at reference temperatiire
The parametet.,, mediates the reduction of the initial flow stress due to aneiase of the
temperature. Table 2.2 summarizes the material paranataracterizing the inelastic material
behavior. For titanium, the parameters in (2.13) were abthifrom Bilyk et al. (2005). In
particularwqy, 7., 0, andm, were fitted to the model data also provided in Bilyk et al. (2005
For aluminum, the tensile test data were used for the straideming fit. Table 2.3 lists the
remaining material parameter values needed.

Ogor € n Wrm e Op my
MPa - - K-t s! MPa -
Al [ 35x10' [20x 1072 1.9 x 107" | 1.4x 1072 | 1.0 x 107* | 5.0 x 10° | 4.0 x 10°
T | 1.7x10% |20x1072 | 1.5x 107! [ 8.7 x 107 | 1.0 x 107* | 4.0 x 10° | 4.0 x 10°

Table 2.2: Inelastic parameters.

A [y o, o, ¢ K,

MPa MPa K-t kgm3 |ms?K! | Jstm!tK!
Al | 5.0 x 10* | 2.6 x 10* | 2.3 x107° | 2.7 x 103 | 9.2 x 10°® 2.4 x 10?
Ti | 85x10% | 44x10* | 86x107°|4.5x%x10%| 5.2 x 108 2.2 x 10!

Table 2.3: Thermoelastic parameters.

Consider next the results in Figure 2.3 for the case of a cupelse applied to a titanium
bar undergoing simple tension in thedirection. At the time of the pulse (= 200 s), Joule
heating results in a temperature rise from 301 K to 363 K wi0 s. The slight temperature
rise of 3 K before the pulse is due to mechanical dissipatiorhe left part of Figure 2.3, the
change in the:z-component of the Cauchy strefs= J ' K is shown as a function of time.
As can be seen, the current pulse results in a reduction©tdmponent. In addition, both the
rate-dependent and rate-independent cases show thisechiangpntrast to the work of Bilyk
et al. (2005), we claim that not the rate effect, but rathertliermal expansion effect, is crucial
to correctly model the observed stress drop.

To delve into this in more detail, consider the results degiin Figure 2.4 for the rate of the
accumulated inelastic straiy as well as the rate of, = |dev(InV})|, representing the norm
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Figure 2.3: Current pulse applied to a titanium bar undegaimple tension. Left: Devel-
opment of thezz-component of the Cauchy stress simulated with a thermaelagtcoplastic
model (rate-dependent: solid line) and a thermoelastisteplastic model (rate-independent:
dashed line). Right: Temperature rise from Joule heatinghduhe current pulse starting at

t = 200s.

of the deviatoric part of the left logarithmic stretch tensAs soon as the temperature rises,
the spherical padph(InV},) of InV, increases (see (2.11)). Conversely, the deviatoric part and
hencer, decreases. Accordingly, sing&ev(K )| = 2ue,, the activation stress (2.9) decreases
and elastic unloading can be observed. The drog, @b zero takes place within 60s (see
Figure 2.4 right). Afterwards for several seconds the ternissting machine continues to load
the specimen in the elastic domain until the inelastic flowectivated. As shown, in this
range, = 0.

Such testing has also been carried out for technically ureiaum (.g, Al99,5 or AA1000
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Figure 2.4: Rate of change of the accumulated inelasticnstraia function of time during
pulsing. Left: The current pulse at 200 s forces the streds sielow the activation threshold,
resulting iné, = 0. Right: Variation in time ok, starting at = 200 s (note the difference of the

timescale).
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series). As all experimental conditions are the same a$iéoietsts with titanium, the particular
material characteristics of aluminum are the reason foralemstress drop. In particular, for
the same geometry and imposed currenf as given by (2.3) is the same for both materials.
Since the contribution té from Joule heating is given biet(F) j - 5/(0,¢,0,,,) from (2.10),
any difference between the two materials is due to the mad@iofo,c,o,,,. The parameter
values in Table 2.3 imply that the heat capagify, per unit volume is almost the same for
aluminum and titanium. On the other hang = 3.8 x 107 Ohm! m~! andoli = 2.6 x

10° Ohm! m~! are substantially different. Consequently, singe > o1, it is clear why
the temperature rise in aluminum (6 K) is much smaller thaat i titanium (50 K). Via the
thermoelastic coupling in (2.11), then, this differencéamperature increase is reflected in the
respective stress dropss., 60 MPa for titanium and 6 MPa for aluminum (Figure 2.5).

80 w w \ 65

57.5f

T,. [N/mm?]
5 3
T.. [N/mm?]

N
[=]

0 ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 5fso 190 200 210 220
t[s] t[s]

Figure 2.5: Simulated stress drop for aluminum due to Joabdihg during simple tension.
Left: Change off,, with time. Right: Blow-up of the stress drop region in time.

2.4 Conclusions

For the typical timescales imposed current densities arténaés generally relevant for EMF
processes load drops during tensile testing are observedtit&nium and aluminum it was
shown that the magnitude of the load drops can be modeledwtiffostulating a direct interac-
tion between electron and dislocation movement. The mogeli experimental results indicate
that "conventional”effects allow for a sufficiently accteaendering of the experimental obser-
vations and such an interaction can be considered of seauled im particular for industrial
applications of EMF. Of all the effects considered, the bdia thermo-elastic expansion leads
to the observed load drops; visco-plastic rate effects hadrtal softening are notable but sec-
ondary.



Chapter 3

Inverse error propagation and model identification
for coupled dynamic problems with application to
electromagnetic metal forming

Abstract — The purpose of this work is the development and application of strategaestiofy material
model parameters for metals at high strain-rates using data obtained frorsgegd electromagnetic
metal forming. To this end, a staggered algorithm for the finite element basedrital solution of
the coupled electromagnetic-mechanical boundary value problem hasleeeloped based on mixed
Eulerian-Lagrangian multigrid methods. On this basis, the parameter determitagiether with a
sensitivity study, correlation analysis and error estimation are carriedAdter verifying the validity
of this approach using synthetic data sets, it is applied to the identification ofiah@Erameters using
experimental results from electromagnetic tube forming.

3.1 Introduction

Inverse problems are present in many fields of science andesrgng. Classes of such inverse
problems includee.g, seismic problems in geophysics (Scales et al., 2001; 8naatt Tram-
pert, 1991), crack and defect detection (Tanaka and Duiikina2001), process design (Kom-
palka et al., 2007; Tortorelli and Michaleris, 1994; Zalsagt al., 2003), or, as in the current
work, material model parameter identification or materiadel calibration from experimental
data. The aim here is to determine the set of material pasamfbm experimental data. In
the current work, these data are obtained at high stragsngat electromagnetic metal form-
ing (EMF). In this case, strain-rates of up1@* s—! are achieved. Given the low-to-moderate
homologous temperatures achieved during EMF, experirhenidence summarized in Jones
(1997), as well as considerations regarding dislocatiamadyics €.g, Kocks and Mecking,
2003; Teodosiu, 1997), imply that the material behaviorhis tase is rate-dependent. Fol-
lowing Svendsen and Chanda (2005), micromechanical anchdugmamic considerations for
metals under such conditions imply that a semi-phenomeieabPerzyna-type thermoelastic,
viscoplastic constitutive model is appropriate. In paitae, using the electromagnetic form-
ing data, the material parameters in this model which contw rate-dependence are to be
determined.

Classical experimental methods for the determination o&dyinal material behavior include
for example the split Hopkinson bar or Kolsky bar, gas guectbmagnetic ring expansion
and drop tower€.g, EI-Magd and Abouridouane, 2005; Field et al., 1994; Gilad &lifton,
1985; Gray, 2000; Klepaczko and Malinowski, 1978; Kolsk349; Meyers, 1994). These gen-

*Unger et al. (2007a)
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erally utilize specimen geometries designed to induce adgemeous deformation state and
deformation rate. More recent approaches based on nurhssicéions of the boundary-value
problem can also deal with experimental results involvieg-homogeneous deformation of
the specimend.g, Mahnken, 2000; Scheday, 2003; Springmann and Kuna, 26@6)exam-
ple, Kajberg et al. (2004) use data from high speed photbgrap impact tests to identify
viscoplastic material parameters via a finite element aislyf the inhomogeneous deforma-
tion of the specimen. Similarly, the deformation field ob&d during EMF is inhomogeneous,
so that the corresponding material model identificationlvies the finite element simulation of
the specimen. Such an identification procedure alwaysvegdhe solution of an inverse prob-
lem. Often, this identification does not take measuremaont®into accountd.g, Gelin and
Ghouati, 1994; Kleinermann and Ponthot, 2003, and prelyaited authors). Those inves-
tigations that do are usually based on homogeneous defomrasults. For example, Bruhns
and Anding (1999) quantified correlations of parametersesinate variances for identified
material parameters. In addition, Harth et al. (2004) idiedt parameters for AINSI SS316
stainless steel and estimated their variances by gengsytimhetic data sets mimicing exper-
imental data. In the current work, the finite element invaasalysis is extended using such
methods common to statistical model identification andiagpb identify material parameters
by means of data obtained via EMF. This approach is then edniiith the help of additional
data from homogeneous tests.

The paper begins (Section 3.2) with a brief summary of thehaeical material model for
electromagnetic forming and its numerical implementatidhe latter is based on a finite ele-
ment based staggered multigrid approach in which the electgnetic field relations are solved
on an Eulerian, and the mechanical field relations on a Laggarmesh. In the model, the full
coupling between the deformation and magnetic fields isntaki® account. Next, we review
the formulation of the corresponding inverse problem (®ac3.3). This includes error, sensi-
tivity and correlation analysis. The approach here explbi¢ staggered structure of the numer-
ical solution algorithm as well as the fact that the modebpaaters are only weakly sensitive to
variations in the electromagnetic fields. In any case, tharpaters are identified on the basis of
the fully coupled model and simulation. To validate the apjh, it is applied to synthetic data
sets generated with assumed parameter values for the catemohum tube forming. After
first carrying out a sensitivity and correlation analysisc®n 3.4), the viscoplastic material
parameters are identified using these data sets along withestimates (Section 3.5). In the
last part of the work, the approach is applied (Section ®.@xtual experimental data of Brosius
(2005) for the aluminium alloy AA 6060.

3.2 Coupled model and algorithmic formulation

The matter of interest in this section is the modeling of tieainic interaction of strong elec-
tromagnetic fields with metallic solids resulting in thegfdrmation. There exist a number
of modeling approaches for coupled magneto-mechanicllgmts. Some focus on specific
geometries, like in the case of ring forming (Gourdin, 1988antafyllidis and Waldenmyer,
2004). Others are applied to arbitrary geometries but ateicted to small deformationg.@,
Schinnerl et al., 2002). For the case of interest hiezg Jarge-deformation inelastic processes,
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very little work exists (El-Azab et al., 2003; Fenton and Bagl998). The model to be summa-
rized in this section represents a special case of the dermrénuum thermodynamic formu-

lation (Svendsen and Chanda, 2005) in which a strong magdindtidnduces electric currents

in thermoelastic, viscoplastic electric conductors gatieg Lorentz forces resulting in large
inelastic deformations.

Here the system consists ofiged regionR C E of Euclidean point spacE containing one
or more solid bodies moving through it as well as the surrougndir. In the case of EMF, for
example, these bodies include the workpiexg,(sheet metal) and tool coil consisting of tech-
nically pure copper (see Figure 3.1 and Figure 3.2). As skcbontains the reference.g,

© tube

electric
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electric cricuit

symmetry axis

magnetic
flux density
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Figure 3.1: Electromagnetic (tube) forming. Left: 3D iliegion of the workpiece (tube) and
tool coil (copper windings). Right: Schematic axisymme#I2 representation depicting the
electric circuit, tool coil and workpiece as well as the metgmflux and current densities in the
workpiece and tool coil.

initial) B, C R and currentB, C R configurations of any of these bodies. They are modeled
here as electromagnetic, mechanical continua charageteby a time dependent deformation
field £ together with the additional degrees of freedom represgitiie electromagnetic fields to
be introduced in what follows. Whereas the time dependentreimagnetic fields are defined
on the entire regiok, i.e., also in the air surrounding stationary or moving materalibs, the
deformation field¢ and all kinematic fields derived from it, are logically réstied to the con-
figurations of deforming and moving bodies. Since the releedectromagnetic frequencies
for the engineering structures of intereist ( less than 10 MHz) correspond to electromagnetic
wavelengths which are much larger than these structurés,that the wave character of the
electromagnetic fields is insignificant, and can be negiedte effect, this corresponds to the
so-called quasistatic approximation (Moon, 198@,2 and;2.8). For simplicity, any thermo-
electric effects, as well as any magnetostrictioe.(the Hall effect), are also neglected here.
This is reasonable for conductors like aluminum or coppepain temperature and “weak”
magnetic fields. In addition, although there is a tempeeatuecrease during electromagnetic
forming due to mechanical dissipation and Joule heating, (Svendsen and Chanda, 2005),
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I | EM and mechanical meshes
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Figure 3.2: Electromagnetic and mechanical domains anti@sdsr the coupled finite element
simulation. HereS, represents the current configuration of the workpiéc¢ethat of the tool
coil, A, the cross section of the' torus, andR the region of space containing workpiece,
tool coil and the surrounding air with boundaiy®. Shown on the right is the multigrid config-
uration for the coupled simulation consisting of fixed Eislerelectromagnetical and moving
Lagragian mechanical meshes.

this increase is small (20-50 K). Consequently, for simpliete assume isothermal conditions
in this work. Under these conditions, field relations for #électromagnetic vector and scalar
potentials can be derived following Svendsen and Chandaj20the magnetic field can be

modeled as diffusive here over the length- and timescalést@fest. In this case, Maxwell’s

equations and the Coulomb gauge conditibna = 0 yield the diffusive field relation

da + V,x — Ky, div,(V.a) =0 (3.1)
for the vector potentiak together with
div,(Vx) = Vix =0 (3.2)

for the scalar potential, wherex,,, represents the magnetic diffusivity. As usualand y
determine the magnetic flux via= curl,a and the electric field via-e = da + V,x. Given
that the electromagnetic fields vary on a timescale muchteshtitan that of the mechanical
fields, the convective term x v in the electromotive intensity = e + v x b is much smaller
thane and hence-e ~ da + V,x (e.g, Stiemer et al., 2006a). For more details, the reader is
referred to this latter work.

Consider next the modeling of the tool coil. During tube exgan, it can be treated as
stationary. Consequently, the curréntand referencé€’, . configurations of this coil coincide
and are fixed (see Figure 3.2, left). As depicted in Figure & tool coil has the shape of
a helix consisting of windings with constant inner and outer radii. The crossiseaif any
winding at any azimuthal angleis always identical. The tool coil consists of copper emizedd
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in a resin matrix whose electromagnetic properties areedlmtghose of a vacuum. Although the
tool coil is not perfectly axisymmetric, it can be approxtedas such with sufficient accuracy
due to the small pitch of the helix. In this case, thevindings of the copper helix are replaced
by n tori W, k = 1,...n, possessing the same cross section (Figure 3.2, belowseTdre
connected in series via cuts in each torus at an azimuthé afg = 0. The cross section
of eachW,, k = 1,....,n — 1, aty = 27 is then treated differently from that at = 0
and identified with that app = 0 of the next windingi¥_, . ,. In particular, this means that
the electrostatic potential is continuous across the itiansrom one torus to another. This
simplification also results in the triggering current hayonly an azimuthal component. Since
then windings are connected in series, the (measurable) totedrtid = /(¢) (see Figure 3.4
below) flowing through a cross sectieh,, of any winding\V,, at an arbitrary azimuthal angle
is always the same. Outside the tool cbé,, in the resin matrix, or in the moving workpiege,

or in the air around the tool coil and workpiece, the boundanrg transition conditions for the
electromagnetic fields at material interfaces imply tha constant there and S x vanishes.
Note thaty anda may be reasonably approximated by zero at the boundary ottiien R
containing the tool coil, the workpiece, and the surrougdiir. Solving then equation (3.2)
explicitly in everyV_, subject to the usual boundary conditions between a peréetductor
(copper) and an insulating medium (resin), one obtainsdabelr

.

0 inR\ (C.US,)

—VX _ 0 in SC (3_3)

c O’E_Ml[-f-/ n, -O0a pe, INW,
\ Ack

for the source ternv,y in (3.1) (Stiemer et al., 2006a), with

c:= {r/ 1eso-'n,k} : (3.4)
AT

Note that the latter quantity is independent of the chosesscsection4 , under the given
geometric conditions. Here,, denotes a unit vector ip-direction andA, , the cross section of
the k™™ torus with outer unit normal vectar, . As such, the model simplifications just discussed
result in an analytic solution of (3.2) and so the eliminatd y as a degree-of-freedom in the
model. Substituting (3.3) into (3.1), forming the scalavqurct of the result with the test vector
potentiala,, and partial integration, yields the weak form

/ da - a, + / Ky Vs@ - V,a,
R R

:Z/ c{%}}]%—/ nk-aa}e¢-a*,
k ch’ Ack:

together with the boundary conditions s discussed above. The relation (3.5) is the starting
point for the finite element discretization to be discusseldw.

(3.5)
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Consider next the mechanical part of the coupled model. Shased on the weak momen-
tum balance of the deformation fiefd Assuming purely kinematic boundary conditions, this
is given by

/(g)ré—f)-&ﬁP-VT&*:o (3.6)

B!‘

with respect to the referential configuratiéh C R for all corresponding test fields . Here,
f=det(F)l =det(F)j xb (3.7)

represents the Lorentz (body) force (densityits representation in the current configuration,
P the first Piola-Kirchhoff stress, anfl : = V, & the deformation gradient. The mechanical
model is completed by the specification of the material motigre, attention is restricted to
such a model for the metallic workpiece, which is formulatede as a hyperelastic, viscoplas-
tic material. For simplicity, the (mild) elastic and flow antropy of the metals of interest.(,
Al) is neglected here, as well as any kinematic hardeningreMyenerallye.g, for the case
of deformation-induced anisotropic flow behavierq, Svendsen, 2001), this is of course no
longer possible. Since the metal forming processes ofaatdrere are predominantly mono-
tonic in nature, however, this last assumption is reas@nablthis case, the constitutive model
is specified via the form of the referential free energy dgnsi(InV,,, €, ) together with the evo-
lution relations for the elastic left logarithmic stret@msorlnV,, and accumulated equivalent
inelastic deformation measugg. In the context of small elastic strain, the usual Hookesdas
form

wr(ln‘/Ev EP) = % Ky (I ) ln‘/;:)Q + Wy dev(anE) ’ dev(an;]) + wP(EP) (38)

is relevant. Another common assumption in the non-isothéoantext in the case of metals
is that of constant specific head.§, Rosakis et al., 2000). Here, represents the bulk mod-
ulus, u,. the shear modulus, and (e,) the contribution from energy storage due to isotropic
hardening processes as usual. From (3.8), one obtainstioysar the usual hyperelastic form

K = 0,y ¥, = 3k, sph(InVy) + 24, dev(InV}) (3.9)

for the Kirchhoff stressK’ = PF". As usual,y;(¢,) is estimated with the help of fits to the
guasi-static yield curve for the materials of interest annaemperature, as discussed in what
follows. Consider next the evolution of the internal varegblnd the inelastic behavior. In
the case of the metallic polycrystalline materials of iagtrat a low-to-moderate homologous
temperature, inelastic deformation processes are ctedrptedominantly by the activation of
dislocation glide on glide systems.{, Kocks and Mecking, 2003; Teodosiu, 1997). Indeed,
this seems to be the case even at high strain-ratgs Frost and Ashby, 1982). Apparently,
higher homologous temperature levels are required forratiechanics such as dislocation
climb or even dynamic recrystallization to begin playingker Resistance to dislocation glide
arising due to obstacles and other factors is related intlee@menological context to harden-
ing behavior. Quasi-static processes of this nature dariing to energy storage in the material
result in the contribution
—6p 1= (3.10)

to the effective quasi-static flow stress in the matrial. fSugsistance to dislocation motion can
be overcome by thermal fluctuation under the action of thalleffective stress, represented in

) €p
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the current phenomenological contextdy, (K) + ¢, — 0., Whereo, (K ) represents the von
Mises effective stress with respectho, ando,, is the initial flow stress. On this basis,

fP(K7 gp) F= UVM(K> + S~ Oxo (3-11)

represents an activation measure or overstress in thentuate-dependent context. A power-
law approximation of the more exact transition-state-dasé&cromechanical relations for the
kinetics of dislocation glided.g, Kocks and Mecking, 2003; Teodosiu, 1997) leads to the
power-law form

D D K,g,)\ e
(6 D, K. ,) = %576;:(6 );)")(6:1 ) <£<<E ;§> (3.12)

upon which the evolution of the internal variables is basddre, s, represents the dynamic
contribution to the flow stress,, a characteristic strain-rate ama the strain-rate exponent.
Further,(z) : = % (z + |z|) represents the ramp function. As indicated, o, andm,, are in
general functions of accumulated inelastic deformatioth @eformation rate. For simplicity,
however, these material properties will be treated as eaistn the algorithmic formulation to
follow. To indicate this, we writey, = ~,, 0, = o,, andm, = m,. The form (3.12) determines
the evolution relations

WV, = 0o = \[Ismldev(K))é, (K #0),
£ (3.13)
éP :a¢ :70<_P> (fP>O)7

Sp 0_0

for the evolution of the internal variables, with
WV, =L n(FC;'F") (3.14)

in terms of the inverse plastic right Cauchy-Green deforomed, .

In summary, the material parameters introduced in the aboaeel include the magnetic
diffusivity x,,,, the electrical conductivity,,,, the bulk moduluss,, the shear modulus,,
as well as the dynamic viscoplastic parametgtso,, andm, appearing in the viscoplastic
potential (3.12) and flow rule (3.13). For the purpose of nhatkntification, we will assume to
a good approximation that the first five of these are known awdifiIn this case, the arrgy
of parameters to be identified takes the form

P = (V09 My) - (3.15)

The values which these may take are as usual subject torcphgsical constraint®.g, v, >

0 ando, > 0. Further, micromechanical as well as experimental obsiens suggest that
m, > 1. This also holds from the point of view that (3.13) represeant approximation of
more exact transition-state-based micromechanicalisaite.g, Kocks and Mecking, 2003;
Teodosiu, 1997). We return to these issues below.

Next, the algorithmic formulation of the above presenteddetas summarized. The dif-
ference in electromagnetic and mechanical timescalesthegwith the distinct nature of the
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fields involved {.e., Eulerian in the electromagnetic case, Lagrangian in thehamacal large-
deformation context), suggest a staggered numericalisolptocedure involving separate grids
for the electromagnetic and mechanical fields (see Fig@e B addition, the electromagnetic
mesh is adapted according to the movement of the structumeelays of an ALE-scheme. Each
algorithmic formulation is discussed separately befoiadheombined in the framework of the
staggered algorithm at the end of this section. The digatin of the mechanical weak form
(3.6) by means of the finite element method and usage of theridekvalgorithm to integrate
(3.6) over the time interval, ., ,, yields the implicit algorithmic system

£ %P = 0 (3.16)

in terms of the array; _, of time dependent nodal positions at fixed Lorentz fokcg =

O curl”™a x da, ;. The solution of (3.16) is obtained via Newton-Raphson ftenain
terms of its consistent linearization. A detailed and ceadiscussion of the advantages of an
implicit solution scheme in contrast to an explicit one ie tontext of metal forming can be
found in Tekkaya (2000). ThrougK', the discrete form (3.16) depends as well on the current
(unknown) values of the internal variables. Using backwiaunter integration to solve (3.13)
overt, .., one obtains the algorithmic relation written in the contgaom

ra n—i—l,n{an-i—l 7Fn+1’ p} - O ) (317)

with a = (InV,,¢.) andr, = (r,v,.r., ). This last relation is again solved via Newton-
Raphson iteration and holds at each integration point in ebrhent of the structure.

Turning next to the electromagnetic weak form (3.5), finiemmeent discretization and tem-
poral integration via the generalized trapezoidal ruler e intervalt,, , ., yield the system

A® B ay 4 _
I —« tn—i—l,n I afz—&-l
to be solved fora; ., anda;_ ,, in the context of the current staggered approach with fixed
x; 1. Here,A® represents the discretized spatial "stiffness” part Bridhe diffusive "mass”
partin (3.5). Througk;  , the measured input current, which is driving the formingragien,

is implemented. The amount of artificial damping is congdlby the the parametér< o < 1.
The aforementioned staggered solution scheme is desanlaksdail in what follows:

Chi1
3.18
as +(1—a)t, & (3.18)

n+1,n%n

1. Update the boundary conditions and supply termg,(current/ in the tool coil) to
b= 2fn—f—l'

2. Update the boundary conditions and initialize the nodddi§ii.e., xfff)l = x?, X‘;(ﬁ =
.. s(k)

xs, %) = %2 ande’'t) for k = 1.

3. Obtaina;ffff)1 and aiﬁ’f)l from (3.18) depending in particular on the.q, experimentally
determined) valud,,; of the electrical current in the tool coil as well as the cotre
spatial distribution of,,, andx,,, in R.

4, Obtainlﬁﬂ1 from (3.7). Transfer the results to the embedded Lagrangiesh for the
workpiece.
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5. Solve (3.16) at fixed"), andp to obtainx’¥/", x4 x*® ) ande’ ),

6. Steps 2-5 are repeated for= 2, ... until convergence is obtained, yielding_,, a; , ,,
and the updated internal variables.

We refer to this as Algorithm 1 in the following.

3.3 Model indentification procedure

In the algorithm of the previous sectiop,was fixed. Since we assume the material behavior
here to be homogeneous, the parameter identifcation td&es pasically at the material point
level with the help of the finite element solution at the stuwal level. Indeed however, in the
case of EMF and other high-strain-rate methods, the defiowmé&eld is not homogeneous.
To formulate the corresponding algorithm, we proceed devisl. First of all, since the data
available to us concerns the deformation of the workpiemeytatters of simplicity attention is
restricted to the mechanical part of the model. dgt (¢) represent the (incomplete and inex-
act) experimental data arrag.g, discrete displacement field of the specimen) parameterize
in time. This is to be compared with the correponding infaioraderived from the solution of
(3.16) and (3.18) using the algorithm at the end of the lagti@® As implied by the notation,
this solution takes the form of; anda; as implicit functions of all parameters and in partic-
ular p, at each discrete time= ¢, for i = 1,...,m in the context ofl0,d] = " ,[t,_;, ;]
Sincep is constant in space and time, the complete gejsx;,...,x’, ) and(aj,aj,...,a?)

of algorithmic solutions in the time interv@l, d] = J",[t,_,. ;] are relevant here. In the con-

i—17 73

text of the staggered solution approach being pursued heregll as due to the fact that the

available data are purely mechanical in natuuee, (deformation data), we neglect for simplicity

the implicit dependence @f onp and focus on that implied by (3.16). Again, to indicate this
implicit dependence at; , onp in the notation, we writes;, ., = x;,,, ,{p}. In this context,

the choice op is judged to be “good” if the deviation

Zn+1{p} F= dgxp(tn-‘rl) - di’lod(xfl-&—l,n{p}) (319)

betweerd;, , and the model predictiod;, 4(x; ) is “small.” Here,d;, ,, maps the simulation
resultsx;_ , onto a form consistent with the experimental observatidnsSection 3.6, it is
shown (see Figure 3.6) that, due to the weak coupling, théecegfa’,, = a’,, {p} in
(3.19) is justified. As such, the identification proceduneolues directly the mechanical part
of the coupled problem. In general, note tlat , could be highly non-triviale.g, when
inhomogeneous displacement fields are measured opticadlz@mpared with finite element
nodal displacements (Scheday, 2003). In the current cgritewever, the data consists of the
tube displacement at a single point in the structure as dimof time (see Figure 3.3). In this

case, a direct comparison of experimental and simulatisult®is possible.

Statistical maximum likelihood consideratioresd.Bevington, 1969; Press et al., 2002, Ch.
15) motivate the chi-square form

1

X*{p} := %Z:nl W;z{p} -W,;z{p} = B Zzl z,{p} - E;z{p} (3.20)
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for the objective function based a{p}. Here,W, represents the weighting matrix taking into
account possible differences in variance and physical nsmo@ of the experimental data, and
E, : = W/W,. As usual, the best-fit parameter pethen minimizesy*{p},

X{p.} < x*{p}. Vp. (3.21)
In the differentiable cas@, is determined as usual by

83)(2 = Zizl(agzz‘)TEiZz‘ =0,

(3.22)
R(RX?) = Zi:1<aszi)T E,(05z;) + (05(9z;))" E; z;  positive-definite,
whereod? represents the partial algorithmic or implicit derivatgerator. Note that
8821' = _<ax3dmod)<asxiifl) = (Q?Sdmod)(aiff;c’i,ifnil(asfii,ifl) (3-23)

holds via (3.16). In addition,
aiSf)zi,ifl = Z L (@efii,z’fl)li ) 3Sfii,i71 = Z L (33f§i,i71) (3.24)

follow from (3.16). Further,

aiffii,i—l = Ogefgiiq + (8e§f§i,i—1)(ai§ez€,i—l)
= Ogefliiq — <8e6f§i,ifl>(ae’gi,ifl)_l(ax“rtexi,ifl) )
(3.25)
3Sf§i,¢_1 = (aeefii,i—l)(agef,i—l)
= _(aeﬂfii,i—l)(ae'fxi,i—l)il<8p Fevii 1) s

are obtained from (3.17). In particulad,r,; ; , represents the Jacobian matrix of the local
Newton-Raphson iteration for the internal variables at tla@i<s-point level. Now, if a local
quadratic approximation tg? is reasonable, then the first of these can be solved via Newton
Raphson iteration as based on

(apa(apax2>>k[pk+l — Pl = _(aan2>k . (3.26)

Otherwise, one would have to “globalize” this approach bybming it with,e.g, a line search
or steepest descent step. In any case, assuming ligabmes small gs, . , approachep,, the
second terntd,’z;)" E; z; in the sum in (3.22))should become negligible in comparison to the
first one. Further, assuming the model is physically redslenshis term is just related to the
random measurement error at each point (Press et al., ZD@R)error can have either sign, and
should in general be uncorrelated with the model. As suchyar& with the approximation

8p(apx2) ~ Zzl(apzz‘)T E,(9,2)) (3.27)
in (3.26). On this basig, is determined via the following algorithm:

1. Choose starting valugs (k = 1) for the parameters to be identified.
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2. Solve forx:; {p.}, aj, {p,}, ande;, ,{p,} for all imes steps = 1,...,m using
Algorithm 1.

3. Use (3.26) to solve fqu, , ;.
4. Repeat steps 2.-3. fér= 2, ... until convergence is achieved.

This is referred to as Algorithm 2 in what follows. Again, adhat we are neglecting the (weak)
couplinga;,, = a;,, ,{p} in the identification process. Clearly, this scheme is gereerd
can be applied to any model identification based on a staggetation scheme.

Consider next a variatiofp of the parameters. This induces for example that

oxi = (3x5, )0p = —(02.f5,, ) (93, ,)op (3.28)

pXii—1 x5 i i—1 plxii—1

in x?, representing the sensitivity af to variations inp. As it turns out, it is useful to work
with a normalized sensitivity matri8(¢,) based on this

Sjk(ti) = |’§f|| (agxf,i—l)jk (3.29)
ij
(e.g, Kleiber, 1997). In particular$), (¢,) represents the variation of due to a variation op,
att =t,. The normalization facilitates comparison of the senisi¢is for different model param-
eters (Bolzon et al., 2004). Possible correlations amongnibael parameters are determined
by the covariance matrix
2\1—1 m T -1

Ci= {01 = {D" (3,2) E(%2) ) (3.30)
(Press et al., 2002). In the general case of identificatiomafe than one material parameter
at a time, the correlation of the parameters representgf@efumportant consideration in the
context of determining a unique and accurate set of param@evington, 1969). As usual,
the correlation coefficient

Cyi
P = ——— (3.31)

is a measure of the degree of correlation between two paessndietp represent the corre-
sponding matrix, such thgp|;; denotes its théj-th element. In particulafp;;| = 1 implies that
p; andp; are linearly dependent, in which case no unique solutioh@bptimization problem
exists. In practice, the closgyr;;| is to 1, the less distinguishable are the contributions, ahd
p; to the model behavior.e., on the basis of the data used for the model identification.

Further, experimental error and statistical uncertaingyiacorporated into the standard de-
viation of the determined model parameter values. To estirttas standard deviation, the
Gaussian law of error propagation is assumed. In this chsejariancer, of p, € p is given
by

0y =V [Clik (3.32)
in terms of the components &. To verify the current approach and obtain additional in-
sight, these variances are also investigated using syniletia sets based on known material
parameter values endowed with experimental uncertaiatjg&valent to those of the actual ex-
perimental data.
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3.4 Parameter identification, correlation and sensitivity

In the case of electromagnetic tube forming, the experiade@asults take the form of displace-
ment values at the center of the tube in the radial directidre measurement system utilizes
a laser beam detected by a Position Sensitive Device (PSID)ndpthe forming process, the
sheet metal moves between the laser and the PSD, resultinghange in detected laser light
intensity which is directly proportional to the radial exyggon (see Figure 3.3, left). The setup
allows for carrying out of forming operations at differenitial discharging energies of the ca-
pacitor depicted in Figure 3.1 resulting in an increasingaeation with increasing discharging
energyE,,. In this study we examined forming operations at three défé discharging ener-
gies, namely 650 J, 800 J and 1000 J (see figures 3.3 and 3.4g thg method, one obtains

2

laser diode —_| .

lens 2
tube
\

measurement
point

coil /

PSD . T U(tn) ~Ar(t,)

Ar(t) [mm]

0 5I0 160 150
t [us]

Figure 3.3: Experimental measurement of tube forming.:llefser-based measurement of the
change in the outer radius of the tube with time. Right: Meedwhange of tube radius at the
middle of the tube for the discharging energies 650 J, 80@J.800 J.

the datad, () in the form of the radial componentr(¢) = u,(t) of the displacement field
in the middle of the tubs,e.,

Aep(t) = (Ar(t)), i=0,...,m. (3.33)
Together with the simulation, this determinegp} in (3.19). Assuming the same standard
deviationo for all data for simplicityW, = c~'Iforalli = 1,...,m, such that
1 m
{p} = 252 ~z{p}-z{p} (3.34)
g =1

follows for xy?{p} from (3.20). Next, we turn to the specification of the formsetup. The
tool coil consists of technically pure copper. The tube 8peas utilized in the current work
consist of AA 6060 aluminum. Values for the elastic consatite mass density and the elec-
tromagnetic constants for this material and copper weraiodd from the literature and are
summarized in Table 3.1. The quasi-static yield behavigkA6060 is described here by the
contribution

¢P(€P) =G (EP + 02)03 (3.35)
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K, Ky Oy OgM Cu ZIVINI
[MPa] [MPa] [kgm=3] | [VA~Im™] [ [VAm™]

| 6.77x 10" | 2.59x 10* | 2.70x 10° | 5.60x 10" | 3.46x 10" |

Table 3.1: Fixed elastic and electromagnetic propertie8A6060 and conductivity of tool
coil.

9¥0 1 Co C3
[MPa] [MPa] - -
| 7.17x 10" [ 3.32x 10% | 1.00x 1077 | 3.87x 10" |

Table 3.2: Fixed quasi-static isotropic hardening paransdgbr AA 6060.

70 0o mo
[s7'] [MPa] -
| 6.00x 10° | 5.00x 10' | 4.00x 10° |

Table 3.3: Initial values for the dynamic inelastic paraangfor AA 6060.

to the stored energy due to isotropic hardening processescdrresponding parameter values
together with estimates for the initial flow stregg were determined with the help of tensile
tests. These are shown in Table 3.2.

Lastly, starting values for the viscoplastic material paggersp to be identified were ob-
tained from Jones (1997) and are listed in Table 3.3. For ¢etemess, the model geometry
and the measured input current are depicted in Figure 3.AthEdinite element simulations,
convergence studies of the coupled, as well as the purelpanézal problem indicate that four
elements over the tube thickness yield a converged solufioa element type that was utilized
represents a bilinear displacement formulation for lagfeation problems. In addition time
step size investigations (Stiemer et al., 2006a) for suskesys imply that, ., , = 1 usis a
reasonable choice. Before carrying out the actual identibicaconsider the correlation and
sensitivity properties of the model determined for a disgimy energy of 1000 J. To this end,
the derivatives);' x;, ,,i = 1,...,m, were calculated numerically via finite differences using
the starting values fqu given in Table 3.3, yielding

1.000000 1.000000 0.585362
p = 1.000000 1.000000 0.586542 | . (3.36)
0.585362 0.586542 1.000000

The values in (3.36) indicate thgj ando, are linearly dependent. Evidently, this can also be
seen by factoring;, out of (3.13). Consequently, it is reasonable tofjxo its initial value, in
which case reduces to

p = (09, myg) - (3.37)
Next, eachS;(t;), i = 1,...,m, was calculated via (3.29). In particular, these are based
on the single experimental reswlf,  (t,) = (Ar(t;)) at eacht;, i = 1,...,m. The results

are displayed in Figure 3.5. As shown, in the first part of iening processif., up to 7
1S), the deformation is elastic, and the sensitivity of thedeldo variations of the inelastic
parameters is zero. Then the structure begins to deformastiedlly and the sensitivity of
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Figure 3.4: Experimental set-up and measured input cwremeft: Geometry of workpiece
and tool coil for tube expansion (dimensions in mm). Rightasiered input current&(t) in
the tool coil as a function of time for the discharging enesgh50 J, 800 J and 1000 J.

the model to variations in both parameters increases updatdb ;is. At this instance the
deformation is again elastic. After 5%s, the structure deforms mainly elastically and the
sensitivities oscillate about a constant valueSgf = 0.23 andS;, = 0.052. The oscillations
are due to the normalization usinig,,,. Note that the sensitivity of the model to the inelastic
parameters does not reduce to zero during elastic defmmbécause of the accumulated and
history-dependent nature gf.

In comparison with other cases in the literature (Bolzon 28I04; Chen and Chen, 2003),
the magnitudes of the sensitivities here indicate a goatiiikbility of the material parameters
at the high strain-rates of interest here, for which the pdas form (3.13) of the flow rule is
physically reasonable far, = 50 MPa andn, = 4. If the effect of rate hardening is reduced
by settings, = 5 MPa, the sensitivity with respect to both parameters isced by one order
of magnitude. This would make the identification much mofgatilt. In the real experimental
situation, this could be the case for materials with lesspunced rate effects.
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Figure 3.5: Correlation of model sensitivitydg andm, with inelastic deformation as measured
by ¢.. Above: Equivalent inelastic strain-rate at the center of the tube as a function of time.
Below: Sensitivity of the model to changesdn(S;1, solid line) andn, (S;2, dashed line) as a
function of time.

3.5 Identification using synthetic data

Following Harth et al. (2004), the purpose of the currentisacis to test the identification
procedure under various assumptions regarding the expetainthe data. To this end, the
parameter values in Table 3.3 were used to generate syntte. Working for simplicity
with the case of no measurement errors first, consider thendigmce of the determination of
the material parameters on the number of updates of the toferce,i.e., on the number of
coupled simulations required. To look into this, a synthettperimental data set analogous
to (3.33) is generated using the parameter vajues (50, 4). The starting valugs, for the
determination are chosen to be (100,8). The identificatrmegrure then begins with a fully
coupled simulation to determiris. The material parameter values are updated, and a new
coupled simulation is carried out, yieldidg The corresponding progression of updates if
shown in Figure 3.6. Each triangle represents an updateeat figdy force density. Body force
updates are indicated by circles.

In the case of tube forming, good accuracy is obtained usihg @ne coupled simulation,
e.d, p;; = (5.00135¢10", 4.0083%10°). Indeed, a further body force update yielded only
marginally better result®.g, p,; = (5.00000 x 10',4.00000 x 10°). This state of affairs can be
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105

85
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Figure 3.6: Application of the parameter identificationalghm (Algorithm 2) to synthetic
data sets generated using the parameter vauésr AA 6060 from Table 3.3. Each triangle
represents an updateat fixed body force density.Body force updates are indicayezirbles.

explained as follows. At the beginning of the forming pragedke body forces reach their max-
imum values at a time when the deformation of the tube is praciantly elastic. Consequently,
inelasticity is not active, and the coupling is weak (Fig8rg). This is in contrast to the case of
sheet metal forming, where the Lorentz force is acting alsind inelastic deformation of the
sheet metal. Consequently, a larger number of Lorentz fqudates is required for an accurate
parameter determination.

Given the weak interaction between the body forces andstielprocesses in the case of
tube forming, the body forces are fixed for simplicity in whaltows. On this basis, consider
the efficiency of the identification procedure for differenmbinations of the starting values for
the material parameters. In Figure 3.7, the combinatiof)sn, = 3, o¢ /o, = 3, andm}/m, =
371, 04 /0, = 37! are considered. The identification procedure here is ifitistl in terms of the
fraction[p,,];/[p]; denoting the difference to the correctly identified matgreaameter for each
direct computation numbered by If [p,|;/[p]: = 1, the parameter can be considered to be
identified. The crucial measure to quantify the efficiencyhaf applied methods is the number
of direct model computations, as these represent the mesy @perations in one iteration of
the procedure. In both cases, the material parameters beutdidentified with the desired
accuracylp — p,,| < 1 x 107, and the identification was stopped.

On the numerical side of things, we compared the gradiesgdbérust-region method with
the direct Nelder-Mead simplex method. Table 3.4 summaitize efficiency of the two numer-
ical solution methods for the different parameter value oim@tions considered. In all cases,
the gradient-based method converges faster to the coakets/than the direct approach. Due

m/myg, 04 /0, 3,3[1/3,1/3| 3,1/3| 1/3,3
function calls (trust-region Newton) 21 60 21 112
function calls (Nelder Mead) 120 92 90 114

Table 3.4: Numerical efficiency of the identification prouasesl for different starting values of
the parameters and two different numerical solution method
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Figure 3.7: Ratio of current to identified parameter values fasction of the number of func-
tion calls foro, (solid line) andm, (dashed line) for two different starting values. Lef};/o,
=mg/my = 3/1. Right: o /o, = m{/my = 1/3.

to the mathematical form of the flow rule, initial valuesmf which are smaller than the iden-
tified ones result in many more function evaluations.

Consider next the influence of measurement uncertaintieb@parameter identification.
This is done by generating a large number of data sets withaldr distributed “measurement”
errors. The influence of these on the confidence regions éoidéntification can be specified
by applying the standard estimators for the mean

_ 1 n k
wip =y (3.38)
and variance
1 n
oimsii==) (0 - )’ (3.39)
k=1

in terms of the sample varianeg, for n data. Those then facilitate the verification of confidence
regions obtained from the Gaussian law of error propagatn@hsensitivity analysis (3.32). In
the above part of Figure 3.8 the results of the error anafgsi&v = 100 experiments with a
variance ofo> = 1 x 10~° for each data poind;, (;) are shown. The identified parameters
so obtained can be represented in terms of their deviatmm their mean valuep — p to
indicate the scattering (Press et al., 2002). In the lower gfaFigure 3.8 the frequency of
occurrence distributions for the parameters are showny Gtie be obtained by projection onto
the corresponding axis. The probability density functiob&ined with the variances from the
Gaussian law of error propagation are also depicted. Vdtrethe variances estimated from
the experiments ar€, = 1.21 x 10~° ands,) = 9.86 x 10~? and values computed from the
Gaussian law of error propagation a:r% =1.24 x 107% ando2,, = 1.01 x 107, respectively.
The relative variances for the strain-rate exponent agefehan the ones obtained fgy. This
reflects the results obtained from the sensitivity anajysase the sensitivity with respect tay

turned out to be smaller than that tgy (see Figure 3.8 below).
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Figure 3.8: Effect of errors on determined paramater valabsve: Parameter value deviations
from the mean forV = 100 identifications. Below left: Corresponding Gaussiarridhigtion of
deviation values fom, and probability density functioii estimated via the sensitivity analysis
and covariance matrix. Below right: Corresponding Gaussistniloution of deviation values
for o,,.

3.6 Identification using experimental data

This section is focused on the identificatiorpafising real data. In contrast to the synthetic data
sets, real data is available starting at 10 us. Since the loading of the structure becomes non-
proportional after 5Q.s and the material model used in the current work takes ootyopic
hardening into account, data after this instance was natinse identification. The temporal
development of the principal valués , ; of the Kirchhoff stress in Figure 3.9 shows that the
loading becomes non-proportional after this instance.eNbatk, (dash-doted line) can be
considered significantly smaller than and ;. This holds until 60us. Likewise, the ratio

of k£, to k3 remains approximately constant up to about/80 To indicate the degree of
reproducibility for the input current as well as for the cbarof the radius their mean and
standard deviation were computed and are shown in Figufe 3 After characterization and
selection of the experimental data, the calibration of tleeleh was performed. In Table 3.5
the identified parameters are given for each of the 3 expetsneonducted at 800 J. The
left part of Figure 3.11 displays the radial expansion fa ¢harting values gb = (100, 8),
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Figure 3.9: Loading path during electromagnetic tube fagni Left: Eigenvalues:, (solid
line), k, (dash-dotted line) ankl, (dashed line) of the Kirchhoff stregs in the middle of the
structure untilt = 60 us. Up tot = 50 us, k4 /k, is approximately constant, and proportional
loading prevails.

Experiment 1| Experiment 2| Experiment 3

o, [MPa] | 5.91x 10! 5.82x 10! 5.41x 10!
mo [-] 2.41x 10° 2.55x 10° 2.80x 10°

Table 3.5: Identified dynamic viscoplastic material par@nealues fort,, = 800 J andy, =
6000 s L.

the identified values and the experimental data for Experir2e For validation purposes,
the radial expansion was computed for the two remaininghdiggng energies based on the
identified parameters. It can be seen thatfipy = 650 J, the simulation underestimates the
actual deformation. This is in contrast&), = 1000 J, where the deformation is overestimated
(see Figure 3.11 right). This discrepancy could be due taaufiiciently realistic material
model. As is well-known, the rate contribution to the effeetyield stress at low temperatures
can be attributed to thermal activation of dislocation glidr low to moderate strain-rateise(,

é, < 500 s1). For higher strain-rates.€., ¢, > 1000 s~!), experiments exhibit a stronger rate
sensitivity commonly attributed to the influence of dragcks €.g, Kocks and Mecking, 2003;
Lindholm and Yeakley, 1964). Using the current model, thiéremange of strain-rates can be
covered with a reasonable degree of accuracy (see Figuzeahtl onlytwo parameters. This
simplifies the identification significantly.

In the present situation, the fact that we are not taking tteérsrate dependence of the dy-
namic inelastic material parameters into account leadeeddllowing behavior. The values
obtained in Table 3.5 represent an experiment with a pealnstate of about, = 4200 s™*.

In the case of the experiment with a discharging energy 0010Gtrain-rates up @ = 5900
s~! are achieved (see Figure 3.5). Since the strain-rate séfysihcreases with increasing
strain-rate, the modeling of the 1000 J experiment with w@meters identified at 800 J un-
derestimates the strain-rate sensitivity. Consequehtygéeformation is overestimated. On the
other hand, at 650 J, where a maximum strain-rate of ahout 3000 s™! is achieved, the
parameter determination at 800 J leads to an overestimattitie strain-rate sensitivity. In this
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Figure 3.10: Characterization of reproducibility based @x@eriments at a discharging energy
of 800 J. Left: Input currents and their mean (hardly distisgable from one another due to
good match) and standard deviatigm,) at each instance. Right: Corresponding radial change
of tube for experiments (dashed lines), mean (solid line) standard deviatior(t;) at each
instance.

case, the deformation is underestimated. This is also tefldny the parameter values iden-
tified for the two remaining discharging energies. The etguilg higher strain-rate sensitivity
for E., = 1000 J is rendered by, = 71.2 MPa andn, = 2.3. Conversely, fol&,, = 650 J the
identification yieldsy, = 41.3 andm, = 2.7. In this respect, the conclusion that o, andm_
are in general functions of accumulated inelastic defoionaind deformation rate (see Section
3.2) is confirmed. More detailed constitutive modeling esgnts work in progress.

Although the parameter values given in Table 3.5 are reddethaere are a number of issues
concerning the approximations built into the model and ftssources of experimental data
or other errors worth mentioning. For example, possibleveotive effects on the magnetic
field and Lorentz force involving the termurl.a x v were neglected. Computations show
that this results in a deviation of about 1%. In addition, discretization errors are excluded
for simplicity. Convergence studies in Stiemer et al. (2Q06®ply that these are also quite
small. In addition, simulation results seem to be quitensge&e to changes in the shape and
position of the outer boundary, where homogeneous Dirididandary conditions are assumed.
The influence of the approximation of the tool coil by axisystrit tori represents work in
progress in the context of the extension of the simulatioBDo Lastly, any influence of the
temperature increase during the forming process on theriagbteoperties has been neglected
here. Inclusion of the effects of Joule heating as well asifgdue to inelastic dissipation yield
a maximum local temperature rise of about 50 K at the inndaesarof the tube. In other parts
of the structure, the temperature rise is well below 20 K (Br®s2005). For Al, a temperature
rise of 50 K is expected to result in a reduction of the yieléssd of about 4% (see,g, Bilyk
et al., 2005). On the other hand, the deformation-rate wehgis expected to be one order
of magnitude higher. Similar sensitivities apply to all @ttmaterial parameterg.g, viscous
properties, elastic material properties, mass density), et

On the experimental side, errors in the geometry of the t@eensto represent the main
source of error. Particularly due to the fact that the tulrespaoduced by an extrusion pro-
cess, the geometry of the tube is unfortunately rather bigid he thickness of the tube varies,
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Figure 3.11: Parameter identification using experimentdhd Left: Deviation of the ra-
dius computed with the initial vector of parameters (lowaslied line), identified parameters
(dashed line) and measurements (solid line) Right: Modadihgemaining discharging ener-
gies (1000 J and 650 J) with identified material parameteashed lines) and corresponding
experimental results (solid lines).
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Figure 3.12: Left: Increase of effective yield stress witlereasing strain-rate based on the
identified model for each discharging energy ending at theesponding maximum strain-rate.
Right: Summary of experimentally determined increase adatife yield stress (Hopkinson
bar) with increasing strain-rate taken from Hauser (1966).

affecting the stiffness of the structure. Secondly, dewmst of the tube from being perfectly
round result in additional deviations from the simulatidRegarding the measurement of the
radial deviation with a PSD the degree to which the laser ssrattited due to the geometry
and surface of the tube needs to be evaluated. Some meansitoizei such sources of error
are discussed in Brosius (2005). Additional and less impbiaurces of errors include the
quasistatic inelastic material parameters, measuredndiimes of the experimental setup, and
measurement errors in the discharging current and tubéadespent. In general, each of the
discussed experimental sources of error accounts for titavgaof the identified material pa-
rameters as has been discussed extensively above. Up tahswas only been considered
for the errors of the measured deviation of the radius. Adullluation and quantification of
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sources of error and the determination of variances for #narpeters determined in Table 3.5
represents work in progress.

3.7 Conclusions

In the theoretical discussion of the methods for model ifieation it could be shown that
the finite element inverse method can be extended with metbochmon to statistical model
identification like correlation-, sensitivity- and erranalysis. Such methods are important
since they offer measures for the reliability of the ideatfdata. The incorporation of these
into the inverse analysis as well as their validation co@dlemonstrated in the context of high
strain-rate identification with electromagnetic formingoreover, it could be shown that the
identification of the constitutive parameters can be sifigliin a particular way. In contrast
to a dependence on changes in geometry, which are fully dered, there exists very little
sensitivity of the material model parameters to the shasease in the electromagnetic loading
at the beginning of the process. This is the case since thetste deforms predominantly
elastically at the beginning. It is just this situation tafiows for the identification procedure at
stepwise fixed electromagnetic loads.

The material parameters identified with real experimerdtd thdicated a reasonable model-
ing of the electromagnetic forming operation. However,iggons to experimental results sug-
gest that the ansatz chosen represents a relatively ropgbxamation regarding the wide range
of strain-rates the model has to cover. Yet, for the actualtification procedure this simplicity
represents a great advantage and allows for detailed indigkhis work, the measurement of
the radial expansion of the tube was the focus of attentioagards to error analysis. In work
in progress, additional aspects of the measurement pracedsing investigated, and will be
reported on in future work.



Chapter 4

Strategies for 3D simulation of electromagnetic
forming processes

Abstract — Although electromagnetic forming is a technology known for a few decadeewed inter-
est for its industrial application is currently taking place. Along with this intea@sncreasing demand
for simulation tools can be found. Up to now, modeling approaches fourttii®oprocess in the litera-
ture are restricted to the axisymmetric case or small deformation problems veipdae real industrial
applications, the modeling of large deformation 3D forming operations becornesl for an effec-
tive process design. On the basis of previous modeling concepts in ttkeatvband we develop and
investigate further approaches particularly suitable to reduce the ensmooputational cost inherent
to 3D simulations. These consist of a carefully chosen discretization, ardasier method for both,
the electromagnetic loads and the mechanical deformation to utilize an effiolehsisell formulation
and a termination criterion for the electromagnetic part of the model. As a tesudimulation time is
reduced by about one order of magnitude. Finally, a 3D forming setup iglewdnd detailed insights
with respect to the development of eddy currents, magnetic field andhaation of the sheet metal are
provided.

4.1 Introduction

Electromagnetic forming (EMF) is a dynamic, high straitereorming method in which strain-
rates of up tal0* s~! are achieved. In this process, deformation of the workpigciiven by
the interaction of a current generated in the workpiece aitimagnetic field generated by a coill
adjacent to it. In particular, this interaction results imaterial body force, i.e., the Lorentz
force and the electromotive power, representing an adaditisupply of momentum and energy
to the material. On the other hand the electromagnetic paheosystem is sensitively influ-
enced by the spatio-temporal evolution of the deformatibthe mechanical structure. With
increasing interest in this forming operation, in recerdargeconsiderable effort has been made
to simulate such coupled processes. However, approacsted & far were mainly restricted
to axisymmetric geometries (Fenton and Daehn, 1998; Goetdil., 1989; Imbert et al., 2004;
Oliveira et al., 2001; Takatsu et al., 1988) or to small defation problems (Schinnerl et al.,
2002). Yet, it is the 3D modeling capability in combinatiofittwthe large inelastic deforma-
tions that is required to advance effectively in the desigindustrial EMF processes. To meet
these modeling requirements the sound derivation of a palysiodel of the relevant magneto-
mechanical phenomena has been developed in Svendsen andaGRAA5). Its algorithmic
realization is given in Stiemer et al. (2006a) and Stiemeat.§2006b).

For axisymmetric modeling, nowadays PC computational ciéipa are sufficient to model

*Unger et al. (2007b, 2006a)
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forming operations within several hours. As it turns outthia case of 3D process models the
computational cost increases dramatically. While typiéah2odels of EMF in general exhibit
a model size of between about 3 000 and 10 000 degrees of fregidular 3D models usually
require discretizations with an extent of a model which is order of magnitude higher. Itis the
goal of the present work to elaborate and demonstrate apipgegarticularly suitable to reduce
the computational cost for the 3D modeling of EMF processdbe aforementioned context.
In detail these represent an extensive study of convergéinegroposal of a body force and
deformation data transfer method which facilitates theaiselid shell elements (Reese, 2007)
and the development and elaboration of a termination @riteior the electromagnetic part of
the model. These measures are demonstrated by means ofigehglsimple forming setup.
Although this presented forming setup geometry is ratheeptional (see figures 4.1 and 4.2),
dimensions and timescales are relevant for typical forrsetyps. As elaborated below, since
the results are general in nature they can be transferretiéo fmrming setups.

After a brief summary of the physical model and its algorithfiormulation (see Section
4.2) the study of convergence is discussed in sections 4.3.8n Here, the study allows for the
exploitation of potential for reduction of the computatiime by selectively choosing a coarse
discretization at locations where this is admissible agiogy to the scope of the desired accu-
racy. Further, by studying the convergence of certain corapts of the EMF forming setup
(e.g, tool coll, sheet metal, air gap, etc.) further physicalghsis provided and the algorith-
mic model can be verified. In Section 4.4 the data transfevdset the electromagnetic and the
mechanical part of the model is discussed. In contrast to 2Detng of EMF where the elec-
tromagnetic loads are transferred elementwise, here apamdlent discretization of the sheet
metal is facilitated. Here, we exploit the fact that the gl@magnetic loads are algorithmically
independent of the mechanical deformation in the contetth@fstaggered solution algorithm
and can be integrated separately. In consequence, the asenf efficient solid shell element
formulation for the mechanical part of the model becomesilda. In Section 4.6 a termination
criterion particularly suitable for an efficient modelingEEMF processes is proposed and evalu-
ated. In Section 4.8 a fully coupled forming operation wredr¢éhe aforementioned approaches
were implemented is performed and the results are discusbedvork is concluded in Section
4.9.

4.2 Synopsis of model formulation and description of forming setup

The coupled multifield model for electromagnetic formingrderest represents a special case
of the general continuum thermodynamic formulation fordaséc non-polarizable and non-
magnetizable materials given in Svendsen and Chanda (206886)¢ a full elaboration of this
model can be found. In summary, this special case is basdueoquiasi-static approximation
to Maxwell’s equations, in which the wave character of thecekbmagnetic (EM) fields is
neglected. In this case, the unknown fields of interest aretbtion field¢, the scalar potential

x and the vector potential determining in particular the magnetic field in the usuahfas
(Jackson, 1975). Assuming Dirichlet boundary conditiaosdil fields, one derives the weak
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field relations

0 = /(Qré—lr)-£*+KF_T-V§*,
B

-

0 = {a+ L"a}-a, +/(X—a-v) diva, + kg, curla - curla, , (4.1)
R

for &, a, andy, respectively. Here§,, a,, andy, represent the corresponding test fields. Fur-
ther, R represents a fixed region in Euclidean point space contathmsystem under consider-
ation in which the electromagnetic fields exist and on whasendary the boundary conditions
for these fields are specified. Here, the system compriseshtiet metal consisting of the alu-
minum alloy AA 6060, the tool coil consisting of technicajiyre copper and air (see Figure
4.1). Electromagnetic and mechanical material propedifi¢ise system can be found in Unger
et al. (2007a). The setup has a width and a depth of 60 mm anilattoé 7 mm. Both, the
air gap between the sheet metal and the tool coil and thertbgskof the sheet metal measure 1
mm. The height of the tool coil measures 5 mm and each windasgahwidth of 20 mm.

As indicated in Figure 4.1 contains in particular the fixed reference configuratitynand
all subsequent.g., deformed) configurations of the workpiece. Note that = V¢ represents
the deformation gradient, antl : = Vv the spatial velocity gradient. Further,,, represents
the magnetic diffusivityw the spatial velocity fieldp, the referential mass density§ the
Kirchhoff stress, and,. = det(F') 7 x b the Lorentz force in terms of the magnetic floband
the current density. As usual,a andy determine the magnetic flux via = curl a and the
electric field via—e = da + V,x. Given that the electromagnetic fields vary on a timescale
much shorter than that of the mechanical fields, the corweecthntribution toj is neglected
here yieldingy = o,,,e via Ohm’s law. Note that (4.1) follow from Maxwell's equations,
while (4.1), represents the weak form of momentum balance. The abovefiethkelations are
completed by the thermodynamically consistent formuratibthe elasto-viscoplastic material
model (Svendsen and Chanda, 2005).

As indicated in Figure 4.1 the sheet metal is fixed at its #dtedges representing the me-
chanical Dirichlet boundary conditions. For the tool cbiéteddy current contribution to the
current density is neglected. This facilitates the diregplementation of the measured input
current/ as a Neumann boundary condition via= —o,,,V.x, wherej = (0, —1/Acon,0).
Here, A.,, represents the area of the surface connecting the tool @aliet capacitor bank
that provides the energy for the forming operation. The rotmanection surface is grounded
(x = 0). For the remaining surfacég x - n = 0 is postulated meaning that no electric current
leaves the colil through any surface but the connection sesfaSince the deformation of the
sheet metal and thus the correct modeling of the electroatagioading represents the main
concern in this work the effects of the eddy currents withi@ tool coil can be neglected. As
a consequence the current density distribution can be a&sktovbe homogeneous in the cross
section of the tool coil€.g, no skin effects). In other words, the effect of the eddy ents in
the tool coil on the magnetic field strength outside the cad & particular in the sheet metal
is negligible since the total curreiitis considered correct. An additional assumption refers
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Figure 4.1: lllustration of forming setup including toolicsheet metal, air and annotation
of the entire domain of the system, its boundaryoR and the mechanical domais,. At

0R homogeneous Dirichlet boundary conditions are assumeé@. experimentally measured
input current is implemented as a Neumann boundary condioy, wherej = —o,,,V.x =

(0,—1/A.on,0). Regarding the mechanical component of the model, the latdges of the
sheet metal are fixed.
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to the sheet metal. Here the physical constrgint: = 0 is not considered. Since tool coils
utilized for EMF generally induce circular eddy currentee error made by this assumption can
be regarded to be small.

Consider next the algorithmic realization of the aforenwrd model in terms of the fi-
nite element discretization of (4.1). In more detail thigliscussed in Stiemer et al. (2006a,b).
The difference in electromagnetic and thermomechanigadcales together with the distinct
nature of the fields involved.€., Eulerian in the electromagnetic case, Lagrangian in te th
momechanical large deformation context), argue for a sia@ghnumerical solution procedure
resulting in the following algorithmic system:

fn+1,n(Xn+17 anJrl) =0 ) (42)

en+17n<xn+1’an+1) = 07

in terms of the arrays,, ., anda,,, of time-dependent system nodal positions and vector
potential values at time increment ;. The solution of the mechanical part of (4.2) involves in
particular the consistent linearization required for thetbn-Raphson iteration in the context
of large deformation inelastic problems. In detail, theggred algorithm procedure consists
of the following steps:

1. Initialize a,, x, and their time derivatives and proceed to (4).

2. A starting valuea,, ., of the nodal vector potential array is computed for the mesku
amperage in the tool coil at timg_ ; and the known mechanical state of the system at
timet, via (4.2),.

3. Froma, _,, a corresponding valug , , for the Lorentz force is obtained. Using this, the
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system consisting of (4.2)s solved via Newton-Raphson iteratidre(, at fixeda,, ;) to
obtainx,, ;.

4. Proceed to next time step,, = ¢, +¢,,,,, and proceed with (2). Else, if, > ¢,
terminate the simulation, wheteis the total simulation time.

Besides the physical motivation the staggered algorithersfthe possibility to apply custom
solutions for both, the mechanical as well as the electroreigsystem. Here, on the mechan-
ical side, an effective continuum shell formulation is apglto minimize the computational
effort Reese (2007) for the mechanical model. On the ele@gmetic side, in contrast to the
axisymmetric case, the Coulomb gauge condition is genemaligatisfied and the electromag-
netic fields are not regular for standard boundary conditidio ensure that the corresponding
finite element solution reflects this lack of smoothness, raajte method or a least-squares
approach is required. In the simulation presented heeeeldc elements (Blelec, 1986) are
employed to overcome this difficulty. These are based onageer degrees of freedom with
respect to the element edges instead of discrete degrédesmedbm at the element nodes.

4.3 Study of convergence of the electromagnetic model at fixed sheet metal

Since this is mainly an electromagnetic issue, the defoomaff the sheet metal was suppressed
in order to facilitate an easy and effective study of all mpahameters. The simulation was
performed untilt = 8 s, where the maximum input current is imposed and a time step o
t,i1, = 2 pus was chosen. In spite of simulating the entire process tieemagnetic flux
and eddy current distribution were evaluated at 8 ys in order to be able to deal with large
models at reasonable simulation times. Particular atiemgigiven to the modeling of the fields
in the sheet metal. An accurate modeling in this regard adsdor accurate modeling of the
forming operation. In Figure 4.2 three paths, denoted wXhRPY and PZ are depicted. Along
these a quantitative investigation of the magnetic flux dgasid eddy currents was performed.
The paths along the- andy-axis are located in thenidplaneof the sheet metal and the path
along thez-axis passes through the center of the left part of the cailtha sheet metal. For
these paths, only the most significant comporterdf b andj, of the eddy current fielg are
considered (see figures 4.27 and 4.28 in Section 4.8). Alatigtiae results obtained from the
path plots the values of

1. b, at the lower surface of the sheet metal, denoted,tand

2. j, at the same location, denoted jy

from the path in vertical direction serve as concrete gtiastto measure the dependence of
the solution on a chosen mesh parameter. These indicatoosye¢érgence are characteristic for
the development of the electromagnetic fields in the she&tinsince they represent the largest
values in the sheet during the first alternation of the todl@arent and thus characterize the
forming operation. The study of convergence involves treemtization of particular mesh
parameters. They involve the size of the outer boundary e@fetectromagnetic domain, the
number of elements along theor y-direction and several mesh parameters that characterize
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the discretization in vertical direction. The most effeetway is to investigate those parameters
first, which exhibit the most significant influence on the comagtional cost. For the study of
some mesh parameter b,(n) andj,(n) are in general normalized by the results obtained for
the finest discretization obtained for the maximal value.of his indicates the relative deviation
and relative sensitivity, which is more meaningful in comigan to the absolute values if(n)
andj,(n).

4.3.1 Influence of the size of outer boundary of the electgimetc domain

From an abstract point of view the EMF setup can be seen asdwmed antennas representing
a magnetic quadrupole. Here, the two antennas consistg &N tool (capacitor bank and
tool coil) and the sheet metal. In communications engimgeiti is very important to be able

to predict the far field solution fog.g, antenna design. In this case the radiating fields are
successfully predicted with boundary element methodgdRetl al., 2006). For the simulation
of EMF however, the magnetic near field is significant. As tharrfield of the flux density of

a magnetic quadrupol decays lik¥ |z|~*) it is admissible to assume homogeneous Dirichlet
boundary conditions at some boundari to good accuracy. It is the subject of this section to
investigate the influence of the distance of the bound#tyrom the forming setup with respect

to the magnetic flux density.

The box determined b§ R is commonly referred to as the bounding box. Clearly, the kmal
est size of such a bounding box is determined by the size ddtheng setup. In this respect, in
what follows the parameterdenotes the distance from the forming setup-andy-direction.
Three values ofl, namelyd = 15 mm,d = 30 mm andd = 60 mm, are examined. The height
of the box is kept fixed at 90 mm corresponding to a distance&aheh above the sheet metal
and 38 mm below the tool coil. Above the sheet metal the magfiex density is very small
due to its shielding effect (see Section 4.8 for further ittaHere, the choice of the boundary
is hardly significant (see Section 4.3.3). However, someepato be reserved to account for
the deformation of the workpiece. For the volume below tleé ¢oil the findings for the lateral

Figure 4.2: Forming setup with illustration of evaluatioatips denoted by PX, PY and PZ.
These proceed in horizontal and vertical direction. Hortabpaths are located in the midplane
of the sheet metal.
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boundary can be carried forward. It is advisable to evaltleenfluence of the size of such a
bounding box at the beginning of the study of convergences géwrameter is significant for the
reduction of the computational cost. A well chosen sizelfiertounding box allows for higher
levels of refinement regarding other mesh parameters.

At this point it is important to note that the field values at thorder of the bounding box
depend on the refinement of the mesh. For a proper study offéet ef d on the field values,
a sufficiently refined mesh should be chosen. To indicatethi@sstudy was conducted with
two different levels of mesh refinement along theand y-direction, one with element edge
lengths ofh, = h, = 10 mm and one withh, = h, = 5 mm. The refinement in vertical
direction is kept constant at its finest value (see Secti8r34or further details). In figures 4.3
and 4.4 detailed insight into the aforementioned influerfcin® discretization on the size of
the bounding box is given. Considerihgalong PX in Figure 4.3 foh, = h, = 10 mm it can
be seen that the rough discretization leads to a consideoablestimation of the magnetic flux
density at the boundary. Far= 15 mm andh, = h, = 5 mm however, the magnetic field is
significantly decayed. Here, an extension of the boundinghas a minor effect ob inside
the sheet metal.

éd=60mm éd=60mm
H=d =30 mm +d =30 mm
<td =15 mn| 3 : <td =15 mm]

I ) |
30 60 5
x[ mm]

Figure 4.3: The componemnt. of the magnetic flux density along the path parallel to the
axis (see Figure 4.2) for different sizes of the bounding &od two levels of mesh refinement
h, = h, =5 mm (left) andh, = h, = 10 mm (right).

The comparison of the convergence indicaﬁ;rand}y for both meshes is shown in Figure
4.4. To indicate the above discussed relative deviatiowden the most accurate model.and
}'y are normalized b@z(d = 60) andjy(d = 60), respectively. For the refined mesh the smallest
bounding box withi = 15 mm leads to an underestimation of the fields of about 1 %. Fer th
coarse one an underestimation of about 7 % is observed.

Regarding the desired accurady= 15 mm seems to be acceptable and is chosen for the
following studies. Also the number of elements in the spas@vben the bounding box and
the forming setup was chosen such that the decay of the madn&tdensity can be resolved.
This results in 3 elements for the space between the forrahgysand the bounding box, cor-
responding td, = h, = 5 mm in the above study.
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Figure 4.4: Study of the influence of the of the bounding ba §orb, andj'y for two levels of
mesh refinement.

4.3.2 Refinement of horizontal mesh parameters

The determination of the size of the bounding box size reduih a reduction of the total
number of elements at acceptable modeling error levelgi@tails see Table 4.1). The smaller
extent of the model now facilitates a higher refinement ferdghbsequent study of convergence
of the electromagnetic mesh. The objective here is to stightttve model with the finest mesh
and successively reduce the refinement along:tha y-direction in order to test the influence
on the magnetic field and eddy current distribution in theesimeetal in comparison to the
most refined and most accurate model. Here, the mesh parametenotes the number of
elements inz-direction andn, the number of elements irdirection. Forn, andn,, values
of 6, 12 and 24 were tested. They correspond to an elementledigia of 10, 5 and 2.5 mm
in each direction. Due to the construction method of the mishopology in thery-plane
holds along the-axis and thus influences the refinement of all vertical negi&chmaling and
Unger, 2007). As in the case of the choice of the size of thercagundary, the refinement in
thezy-plane has a significant influence on the total number of elsne

Sincen, andn, directly affect the discretization and field distributiorthe sheet metal, their
influence is studied with respect to PX, PY and PZ. The digtigm of b, along PZ indicates
that the sensitivity of the discretization with respecthe t-direction is higher than in theg-
direction (see Figure 4.5). For, = 6 the magnetic flux density is reduced by about 13 %
while for n, = 6 a reduction of 1 % can be observed (see Figure 4.7). The rdasohe
smaller influence of,, on the field values can be attributed to the geometry of thedoib
Two conductors of the tool coil are parallel to theaxis and only the rear part of the coil is
parallel to ther-axis. Via Ampere’s law changes bfare expected to occuperpendicular to
the conductor which is mainly orientated along ihrexis here (see also 4.27). Consequently
it is reasonable that a higher amount of elements incth@ection is required to resolve these
field changes. In more detail in the left part of Figure 4.6distribution ofb, in z-direction is
shown, the high sensitivity of the magnetic field distribattorn, can be confirmed. Conversely,
the weak sensitivity ta, is indicated for the eddy current distributignin y-direction. Only
for y > 45 mm where the eddy currents change their direction accortirige electric field
induced by the tool coil (see figures 4.28 and 4.26) signifidawiations can be observed. In
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Figure 4.7 the study of convergence foy andn, is summarized again with respect to the
indicators of convergence confirming the above consid@rati
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Figure 4.5: The componemnt along PZ for different values af, (left) andn, (right). The
results exhibit a stronger sensitivity #Q than ton,,.
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Figure 4.6: lllustration of the different sensitivities thie field results to:, andn,. Left: b,
along PX for different values of,.. Right: j, along PY for different values of,.

Considering the study depicted in 42 = 24 andn, = 12 represent a good reduction at
relatively small discretization errors. It has to be notedttin contrast to the vertical mesh
parameters and the size of the bounding box the mesh topoidgyrizontal direction affects
the mesh of the mechanical part of the model (Schmaling arget)r2007). Here, for the
horizontal mesh refinement of the mechanical mesh denoted,byndn,,,, n, > n,,, and
n, > n.,, have to hold. However, the choicenf = 24 andn, = 12 corresponds well with the
results of the mechanical study of convergence (see figue@sathd 4.23 in Section 4.5) and is
therefore kept for subsequent computations.
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Figure 4.7: Study of convergence for the mesh refinementrizdwatal - andy-direction for the
convergence indicators, and}y. Circles indicate the mesh refinementzdirection at finest
discretization iny-direction (2, = 24) and squares indicate the mesh refinementdirection
at finest discretization im-direction @, = 24).

4.3.3 Refinement of vertical mesh parameters

As mentioned above, the forming setup can be divided intorégens of mesh refinement in
vertical direction. These represent:

1. the air above the forming setup characterized by the nupfledement layers above the
setup, denoted by,,,

2. the air below the forming setup characterized by the nurabelement layers below the
setup, denoted by,;,

3. the number of element layers in the air gap between thectiband the sheet, denoted
by 14,

4. the vertical layers of the mesh which contain the tool,d@hoted by the parametey,,
and

5. the number of element layers in the sheet metal denoted,hy

In Figure 4.8 these layers are illustrated for the presemtifty setup. We start here with the
investigation of the parametets,, n,, andn,. since these exhibit only a very small influence on
b andj and can be treated in conjunction. In Figure 4.9 the didtiobs ofb, andj, in thickness
direction of the sheet along the path PZ are depicted fofittlestmesh in vertical direction,
indicated by crosses. Additionally, the mesh distribugiavhere one of the aforementioned
parameters was set to it®arsestvalue are depicted. As can be seen, the deviations turn out
to be very small. In Figure 4.10 the normalized deviationsE@oandjy are shown in more
detail. The largest deviation can be observedi#fgr= 1 and is well below 1 % in comparison
to the finest discretization with,, = 8. Note thatn,, = 8 is equivalent tau,, = 8, n,. = 8
andn,, = 8, since only one parameter is changed at a time while the ©there kept at their
finest discretization. The physical reasons for thesendisitnsensitivities are explained in what
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Figure 4.8: lllustration of vertical mesh parameters. Eelshracteristic mesh entity was at-
tributed to a particular mesh parameter which is utilizedefeelective study of convergence.

follows. In Figure 4.11 the vertical distribution 6f along Path PZ is depicted. Moreover, the
location of the tool coil and the sheet metal are indicateloetable to relate the distribution to
the particular components of the forming setup. Due to thetfeat eddy currents are neglected
for the tool coil (see Section 4.2) a linear distribution d@nobserved inside the coil. From
a qualitative point of view this is consistent with the outmof analytical models for simple
conductors at low frequencies (Jackson, 1975). In the giragpomogeneous magnetic flux
density can be observed, which is again coherent with efalin axisymmetric and analytic
models for similar EMF forming setups (Beerwald, 2004; Mamat al., 2004). In accordance
with the character of the parabolic field equation insidestieet metal the interaction between
the eddy currents within the sheet are such that the magnitiitie magnetic field decays and is
reduced to a value several orders of magnitude smaller taamaximum value. In more detail
this is discussed in Section 4.8. These characteristiazacel for the study of convergence of
the vertical mesh parameters. Due to the nature of the fild@teent approximation the roughly
linear field distribution in the tool coil can easily be rendered bgnaall number of vertical
element layersd.g, n;,. = 2). Similarly, in the case of the air gap, where an approxitgate
homogenous field distribution prevails, again only few fayare sufficient.g.n,, = 2).
Regarding the upper air, one expects that more elements Weuldcessary since the magnetic
flux density decays non-linearly just as in other parts ofsheounding air. However, it has
to be noted that the magnetic flux density is only a fractioitomaximum value due to the
shielding effect of the sheet metal. Even if the approxioratf the field distribution in the
air above the sheet metal is very rough, the field distrilbutiside the sheet metal remains
unaffected due to the fact that field values are so small mriggion that any approximation
error has little influence here.

Next, we turn to the discretization of the sheet metal. Ifalseurate modeling of the de-
formation and forming of the sheet metal represents the kaegefing objective, an accurate



68 CHAPTER4

<t ng, =1 | | |
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Figure 4.9: The component of the magnetic flux density and current flux dengityalong the
sheet thickness (see Figure 4.2, Path PZ). Each curve ezpsethe solution for the coarsest
possible discretization in a specific vertical layer. Thiiga,, = 8 corresponds to the finest
mesh and is equivalent te,. = 8, n,, = 8 andn,, = 8 since only one mesh parameter is
refined at a time.

representation of the Lorentz forces in the sheet metalnddmental (see also Section 4.4).
While the magnetic field distribution is linear or constanthe tool coil and air gap, the elec-
tromagnetic fields decay is highly non-linear in the sheetaineAs shown in Section 4.8 in
Figure 4.30 according to the electric field induced by thé ¢od current, the eddy current dis-
tribution in the sheet metal is very variable. It is expedteat the results fob andj converge
for high values ofn,,, only. This is confirmed by the study of convergence for thisapzeter
(see figures 4.12 and 4.13).

Finally, we turn to the last vertical mesh parametey. As it turns out, the number of
element layers for the air below the forming setup has a fsogmitly stronger influence on the
field distribution in the sheet metal than those for the aovalthe forming setup. In contrast
to the air above the forming setup the magnetic field perestitiie air below the forming setup
freely and at some distance from the forming setup the magfield is still significant. In
return, for the lower part of the forming setup, the disaation influences the electromagnetic
fields in the sheet metal. This is also confirmed by the studgooiergence for the mesh
parametemn,,. Therefore, as shown in Figure 4.]53,andjy are much more sensitive to the
discretization of the lower air than to the one of the uppe(sse Figure 4.9).
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Figure 4.10: Convergence f and j, normalized by the most refined result. For the tool
coil n;. = 1 is inexpedient since this excludes unconstrained nodapooents for the scalar

potentialy.
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Figure 4.11: lllustration of vertical field distributionadg Path PZ to indicate field distributions
in particular features of the EMF setup.
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Figure 4.12: Study of convergence fgf and j, for the number of element layers in the sheet
metal along Path PZ.
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Figure 4.13: Convergence éf and jy normalized by the most refined result. The strong
sensitivity of the results ta,, is evident.

4.4 Mesh adaption and body force data transfer for solid shell elements

In the case of a staggered approach the solution of the abgytetem is achieved on two
meshes. In Stiemer et al. (2006a) a coupled simulation hers fresented where the discretiza-
tion of the electromagnetic subsystem was based on an &ul@rmulation of the discrete
system. This means that the Lagrangian mesh for the me&iatiacture is moved over a
fixedEulerian mesh for the electromagnetic field. However, tlagegproblems inherent to this
approach since the character of the electromagnetic fieidteo in a certain point of the elec-
tromagnetic mesh changes from one instant to another wieestrilicture moves over it: As long
as it is not covered by the mechanical structure, the fieldtgpus are elliptic (instantaneous
assumption of the equilibrium field) and they become paial§diffusion process) as soon as
the point is covered by the sheet metal. This leads to a sucltkemge in the local discretiza-
tions since a contribution to the mass matrix arises as searpaint is covered by the structure
and it disappears when it is uncovered again (see Figureahdve right). Methods that rely
on this Euler-Lagrange approach are sometimes calleddiggiboundary methods and are also
applied to simulate liquid-structure interaction in cortgiional fluid dynamics (e.g. Anca et al.
(2006)). It has turned out that this change of the discrétiman a certain point of the electro-
magnetic mesh causes oscillations in the time derivatitee¥ector potential and thus in the
Lorentz force. If a good approximation to the forces is reggiian ALE-based method is more
promising. Here, the position of the electromagnetic mashdiapted to the current position
of the structure so that the character of the electromagfietd equations as well as the local
discretizations never changes (see Figure 4.14 below aigthtieft). In an ALE approach, the
electromagnetic mesh is adapted to the moving structureatdhie same elements are always
covered by the moving mechanical structure. Consequeh#ygharacter of the discretization
in a particular element does never change, which avoidsgwhfhe Lorentz force. The move-
ment of the electromagnetic mesh is arbitrary in the sereetile position of the discretizing
mesh is not determined by requirements of the electromangineti equations themselves, but
by accompanying conditions. As mentioned above, one ottheggresents the matching of the
mechanical and electromagnetic elements of the sheet aetatding to its deformation. Ele-
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Figure 4.14: lllustration of the interaction between thechmnical and electromagnetic mesh.
Left: 2D Modeling of an EMF process by means of the ALE aldornt The electromagnetic
and mechanical meshes of the sheet metal match. Right: Sthemthe fictitious boundary
method (fixed Eulerian mesh) and the ALE method (matchinghe®s

ments in the tool coil are fixed at their initial positions. 8wid mesh distortion or intersection
induced by the deforming sheet metal the mesh in the surmogradr has to be adopted. This
is based on a Lagrangian smoothing algorithm (Field, 1988).

In the above example of the ALE approach for 2D EMF modelinfpaieation and body
force data is transferred from each element to each elenmethtis respect both discretizations
can not be chosen independently. This situation can leadrieaessary refinement for each
subdomain depending on the necessary refinement of the (stkemesh in Figure 4.14 left).
Since the extent of the problem in the case of 2D is relatisgigll in terms of computation time,
this extra refinement can be accepted. Due to the problenots&e EMF simulations there is
a strong motivation to refine both meshes independentlys fHguirement becomes even more
fundamental if shell elements — commonly used in sheet fagraimulations — are used for the
mechanical mesh. Evidently, then the discretization iokiess direction of the mechanical
mesh is fixed to one layer of elements. Here, an independesih meéinement in thickness
direction of the electromagnetic component of the sheealgtmandatory. To resolve this
issue in the electromagnetic part of the model, the defoomaif the electromagnetic elements
contained in the mechanical domain needs to be taken intuatc

The approach to be presented here is based on the fact that atthe boundaries of the
discretized electromagnetic and mechanical domain qvetlater the sheet deforms and the
vertex positionsk of the electromagnetic mesh elements have to be adoptedtisatcmesh
domains are congruent again. To achieve this, similar t@hease, first the vertex positions
of the electromagnetic elements of the sheet metal are mageording to the mechanical
deformation and then the remaining vertex positions of theteomagnetic mesh are smoothed.
In the 2D example (see Figure 4.14 left) the sheet elemetitgsrof both, the mechanical and
electromagnetic mesh match. In contrast, when using sbéd slements this is not the case.
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A mapping of the mechanical deformation to those verticeb®klectromagnetic mesh which
are contained in the sheet metal is required. One proxinpgeach to achieve this is given by
the simple shape function mapping of the actual nodal elép@sitionsx®(¢,,)

iéM (tn> = H(CZ (iéM(tn))Xe (tn) (4.3)

to the element vertexcontained in the sheet metal yielding its new posifén(¢,,) att, . Here,
X (t,,) represents the positions of all element vertices of thetreleagnetic mesh which are
contained in the sheel] the shape function matrix evaluated at the local elementdooates
¢" which corresponds &’ (¢, ).

Next, all variable positions at are then adopted t&,,, via the aforementioned smoothing
technique yielding the new mesh topology of the electroretigmesh at,,. Figure 4.15 shows

how the electromagnetic elements are moved according tméwdanically deformed mesh.

Next, the mapping of the electromagnetic loads is discusg&sl shown in Section 4.8,
for typical frequencies and sheet thicknesses, the Lofente distribution in sheet thickness
direction can be highly non-linear and variable (see Figud®). This motivates the separation
of the algorithmic form (4.2) of the weak momentum balancéd)4into a component that is
purely mechanical and a component resulting from the ele@gnetic loads,

fn—l—l,n fg—l\&—/ll n( n+17 an+1) frlzw—iclhn(xn—s—l) . (44)

As indicated in Equation (4.4J,%", | is the part which is attributed to the Lorentz force coupling
and receives particular attention, here. The structurakfeector can be rewritten in terms of
the usual assembly relation

foprn = Y T (B 50 (0 a0 ) + 550 (x00) - (4.5)

Here,f:,, , represents the element contribution to the structurat hghd sidef,, which is as-
sembled with the help of the element connectivity malkfixin more detail the electromagnetic
contributionfy; " is obtained via the usual integration over the element dormBai

£ PN (X 8 y) = — / Hdot (F*(x%,,)) £5,, .6)

It is important to note that the integration of (4.6) needbdcaccurate in the direction where
£; | decays (see Figure 4.30 and 4.28). Equation (4.6) is iresdyrda Gaussian quadrature
(Hughes, 1987). The accurate rendering of the non-linezaydis archived by choosing a high
number of Gaussian points in the thickness direction of tament domain of the solid shell
element. Both, mapping of the deformation and transfer otibdy forces are illustrated in
Figure 4.15.

The integration accuracy with which (4.6) is integratedngcondition to obtain an accurate
representation of? ", . It should be notified that (4.6) leads to accurate resultotfonly
the number of integration points is sufficiently high enouml also the values fof, , at
the integration points are sufficiently accurate. For thgedoased elements the magnetic flux
densityb and current flux density are given at the barycenter of the element and j is.
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Figure 4.15: lllustration of data transfer in the contextiw staggered solution algorithmiat
Body force data of the refined electromagnetic mesh is utiliveeceive an accurate represen-
tation of the electromagnetic loading. The subsequentraeftion of the sheet mapped to its
electromagnetic counterpart and the element topologyeoaihis smoothed.

The barycenter closest to the global coordinates of a pdaticGaussian point coordinate is
used to evaluaté;  , in (4.6).

The method proposed above was tested by means of a singlemeghelement. Here,
the objective of the study at hand is to obtain a accurateesemtation of; ", . To this end
the influence of both, the accuracy of the integration of)(4itd the one of;_, at the inte-
gration points were investigated. Here, for any fixed nundfentegration points the amount
of electromagnetic elements contained in the mechanieah@ht was increased and the cor-
responding sum of the vertical electromagnetic elememidagas examined. An eddy current
and a magnetic field distribution was imposed. Both are acdtirtje plane of the sheet metal
and are perpendicular to each other. As in the case of thedalipled model, an exponential
decay of both prevails. Decay constants were chosen clossgmbling those computed be-
low (see Figure 4.30). Magnetic flux and eddy current vecinesgiven at the barycenters of
the electromagnetic elements. Exemplarily two mechamilgahents containing two and eight
electromagnetic elements wibthandj at their barycenters are depicted in Figure 4.16.

The study of convergence depicted in Figure 4.17 demomsttaiw the vertical loads con-
verge with increasing number of electromagnetic elememis@aussian points. Regardless of
the number of Gaussian points, all curves start at the safoe,vahich is sensible. If only
one electromagnetic element is contained, the Lorentzafr@assumed to be constant in the
element and the nodal force result is independent of theracgwf the integration. For the
highest number of Gaussian points the nodal representatitre Lorentz force exhibits the
best convergence. For lower numbers of Gaussian point®#us lconverge to values that are
too small. A low number of Gaussian points implies that thedso and top integration points
are not located closely enough to the surface of the sheeteAdody forces are maximal. This
results in a pathological underestimation of the loadscti$ also confirmed by an under-
estimation of the deformation of the sheet metal for theyfabbupled simulation (see Figure
4.17).

Since the additional numerical effort to integrate (4.6)w8 Gaussian points is relatively
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Figure 4.16: Two of seven electromagnetic discretizattorisvestigate the convergence of the
electromagnetic loads with increasing refinement of thetedenagnetic elements embedded in
the mechanical one. Magnetic flux and eddy current vectergiaen at the barycenters of the
electromagnetic elements.
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Figure 4.17: Study of accuracy of body force mapping al@arit Left: Convergence of sum

of vertical nodal forces resulting from electromagnetidypdorces with increasing number of

elements in sheet metal and Gaussian points. Right: Stuahfloénce of Gaussian quadrature
for a fully coupled simulation with respect to the verticedmlacement at Point P2 (see Figure
4.19). The underestimation of electromagnetic loads fanallsnumber of Gaussian points is
confirmed.

small and a sound integration can be ensured, all subseqakniations were computed in
this manner. Secondly, it can be seen that good accuracyea@léetromagnetic loads can be
achieved by embedding at least 4 elements in the solid deetient.

4.5 Study of convergence of the mechanical model at fixed electromag-
netic loads

To be able to determine the convergence behavior of the meaiaolution, the interaction
between the mechanical and the electromagnetic model vpgsessed. Even if one worked
with an electromagnetic model, which remained unchangeédrims of its discretization, an
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independent evaluation of the mechanical model would ngidssible. If only the mechanical
mesh was refined, the Lorentz force distribution would belldifferent due to the fact that the
electromagnetic fields depend sensitively on the defoonatf the sheet which in turn depends
on its mechanical discretization. In this respect a separamparability of the mechanical
model discretization is only provided if the electromagmetodel is replaced by a body force
distribution which is independent of the mechanical defation. On the other hand however,
the spatial body force distribution and its temporal pregien should be chosen such that they
are closely related to the fully coupled problem. Othervits® conclusions drawn from the
study of convergence might not apply in the context of théyfabupled problem. To find

a suitable distribution the magnetic and eddy current figdttidutions of the finest mesh with
n, = n, = 24 and full vertical discretization d@t= 8 ;s serve as basis for the spatial component
of the field. Regarding the temporal progression, the dwastofb andj are independent of
t. Only their magnitude is scaled with a time function whichves as a realistic temporal
weighting. This function is obtained from coupled simwas and is depicted in Figure 4.18.
As mentioned above the sheet metal is fully clamped at thesggrallel to the-axis (see
figures 4.18 and 4.20).

Lox % 25 50
t|ps]

Figure 4.18: lllustration of fixedi.g., no interaction between mechanical and electromagnetic
fields) Lorentz force distribution. Left: Direction Lorenforce field. Right: Temporal progres-
sion and vertical component at lower surface of plate.

Combinations of mesh refinement:in andy-direction are investigated for the mechanical
part of the model. Here, the number of elementg4direction is denoted by, and the
number of elements ip-direction byn,,,. Selected characteristic nodal values of the vertical
deformation and the nodal projections of the equivalenstilastraine, serve as indicators of
convergence. As depicted in Figure 4.19 these are denotPd layd P2 and located above the
winding of the tool coil and at the center of the plate .

While the evaluation at P1 and P2 serves as quantitative atsopaof different discretiza-
tions, the figures 4.20 and 4.21 provide a qualitative ingoesof the progression of the in-
elastic and total deformation of the sheet metal. Here,reigi0 shows deformation stages at
the instances = 30 pus,t = 60 us,t = 90 us andt = 120 us. At the beginning of the process
the center of the plate remains at rest, whereas just abevedth coil the plate experiences
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Figure 4.19: lllustration of points of evaluation for meaf@al study of convergence. Here, P1
is located at the center of the left coil winding and P2 at theter of the sheet metal.

high Lorenz forces and begins to accelerate (see also Hgli83. In later stages the center of
the plate is then pulled along by the rest of the plate and@@ted via predominantly inertial
forces. The final shape representing a rooftop-shapedusteus depicted in Figure 4.21 along
with top view contour plots of,.

t =30 us t =60 us

e
SRNRRRe

Figure 4.20: Deformation stages at various instances #ffittest discretizationi.en,,, =
N,y = 24) obtained by means of the body force distribution depicteligure 4.18.

Figure 4.21 also indicates the dependence of the deformatide, on mesh refinement
in a particular direction. Regarding the maximal deformatmd maximal value of, Figure
4.21 indicates that the sensitivity to mesh refinementdirection is much stronger than in
direction. While the coarsest mesh refinement-girection withn,,, = 4n,,,, = 24 still yields
a similar final shape and maximal value fgras the finest discretization with,,, = n,,, =
24, a coarse discretization irrdirection results in a wrong prediction of the deformatend
maximal value ot,. This can be explained by the electromagnetic loading intpation with
the mechanical boundary conditions. Due to the geometria@tdol coil, the corresponding
body force distribution and the lateral fixing the plate istyeredominantly about thg-axis.
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Figure 4.21: Final shape of sheet metal and correspondipgigw contour plots of, at

t = 300 ps for different mechanical discretizations,(, = n,, = 24, Ny, = 20y, = 24,
Nme = 4Ny = 24 anddn,,, = n,,, = 24). Deformed shapes and contour plots indicate
a pronounced sensitivity with respect to the discretizaiioz-direction (see in particular last
discretization within,,,, = n,,, = 24) while they-direction is less sensitive to mesh refinement
(see first three discretizations).

Only at the rear part of the coil the electromagnetic loadssach that bending about theaxis
occurs. However, since there is no mechanical fixing at thesaions it turns out to be less
pronounced.

A quantitative evaluation at P1 and P2 confirms the aboverfgediHere, Figure 4.22 demon-
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strates the sensitivity to mesh refinement with respect toce¢ deformationAz. While a
coarse mesh ig-direction yields a reduction of about 2.5 % of the final shap¢he sheet
metal, coarsening im-direction results in an underestimation of the defornrabg about 25

%. For the accumulated equivalent inelastic strain theadiewis are even more severe (see
Figure 4.23). Here, fon,,, = 6 at P1 the inelastic deformation is overestimated by 35 % and
underestimated by 43 % at P2. As can be seen in figures 4.22 aa4@ 4.23, a very good
agreement can be found betweep, = n,,, = 24 andn,,, = 2n,,, = 24. By choosing
Nma = 2Ny = 24 for subsequent coupled simulations the computation tinmebeareduced
significantly while conserving solution accuracy.

Regarding computation time, the electromagnetic part otthmled system represents the
most extensive part of the model. In this respect the redoai computational cost due to
mesh coarsening of the mechanical component of the modelasvely small. However one
should note that an interrelation between the electrontagaed the mechanical mesh exists.
For a particular electromagnetic discretization it is fllesto choose a mechanical discretiza-
tion which is coarser than the electromagnetic one. Vicsavd@ris not possible to choose a
mechanical mesh which is more refined than the electromiagoes. In this respect the above
discussed mesh coarsening@( n,,, = 2n,,, = 24) allows for a mesh coarsening of the elec-
tromagnetic mesh. This is the reason for the significantatolu of computational cost.

1 : ‘ 1 | |
_nmy:24 e .
| iy = 12

Az [mm]
Az [mm]

0 100 200 300 0 100 200 300
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Figure 4.22: Study of convergence of mechanical mesh wipeet to different directions of
refinement for vertical deformation at P1 and P2. Left: Staflgonvergence fox-direction.
Right: Study of convergence fgrdirection.
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Figure 4.23: Study of convergence of mechanical mesh wipeet to different directions of
refinement fore, at P1 and P2. Left: Study of convergence fedirection. Right: Study of
convergence fog-direction.

4.6 Termination criterion for the computation of the electromagnetic part

As mentioned above, the largest computational effort iset@tributed to the solving of the
electromagnetic part of the model. Since the forming op@nas the focus of the current study,
it is important to note that external loading due to Loremzés typically takes place in the
beginning of the process, during the first alternation ofttiwé coil current. Later, the amount
of energy transferred to the sheet metal via electromagiteds is relatively small. At this
time the actual forming takes place predominantly due tdisldorces. This offers potential to
save further computational cost. If it is possible to find amegful criterion to judge whether
the electromagnetic loads are still significant for the fimigroperation or whether they can be
neglected, the total computation time could be reducedmeoasly. If such a termination cri-
terion indicates the insignificance of the electromagnefds, the electromagnetic part of the
model can be turned off and only the fast mechanical part@inbodel remains. In the field
of non-linear finite element modeling convergence criteaenmonly applied for the termina-
tion of global Newton Raphson schemes are usually based arhdrege of the energy of the
corresponding Newton step in relation to the energy chahtgeedirst iteration

% 7 1 1
AXn—&—l,n ’ fn+1,n < ECAXn—l-l,n ’ fn—l—l,n : (47)

Here,Ax; - f/,,, represents the energy change in terms of the devialigf, , , of the
nodal positions and the residual force vedt’grl,n corresponding to the Newton stépe. rep-
resents the tolerance for which (4.7) is fulfilled. Accoglina termination criterion for the
electromagnetic model is based on the energy transferoad tihe electromagnetic system to
the mechanical one. If the amount of energy transferred sé®e time > t.., is significantly
smaller than the amount of energy that has been transfepreéd this instance, it can be ex-
pected that an accurate representation of the mechanicahtsion can be obtained without
further consideration of the electromagnetic system. dfoee, with some tolerance,, the

electromagnetic simulation is stopped at termination timef

ter

EEM(OO) - EEM(tter) = / Peydt < GEM/ Py dt (48)

tter 0
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is fulfilled. Here, P, (t) represents the rate of energy transferred at instarared £, ()
the energy transferred from the electromagnetic systenh instancet. Since the quantity
FEunu(00) — Egu(tier) is unknown, an alternative criterion based on the compaiéd’.,, (¢) is
employed. Here, the rate of energytat, ,, is estimated on the basis of the nodal velocities at
t,+1 and the nodal representations of the electromagnetic lgigea in (4.4)

. fEM

Xpt1 — Xp n
Poni(tns1) =~ ( Ht ) by . (4.9)
n+1,n

In the particular case of EMF the rate of energy transfercethé mechanical part oscillates
with decreasing amplitude as can be seen in Figure 4.24. rébidts from the oscillation
of the input current. In particular during the first alteinat the largest amount of energy
is transferred to the mechanical part. At later instancesritensity of the magnetic field is
reduced due to the imposed input current and the expande@aibetween the sheet and the
tool coil. Correspondingly, the peak valus,(tp;) of P\ (t) decay. In this case, relating the
first peak valueP,, (tp;) to the current peak valug,, (tp;) represents a close match for the
termination criterion given in (4.8) and represents a magini termination criterion. If the
energy contribution fot > tp; is sufficiently small, the computation of the electromagnet
system can be terminated. In this respect the new termmatiterion is denoted by

tier = tp; if PEM<tPi) < 6EMPEM(tPl) . (410)

It is important to note that the value feyin (4.7) can precisely be determined on the basis of
the best possible numerical accuracy (usually= 1 x 107%6). For e, this is not the case.
There is some degree of freedom given to the modeler to clsmse value fok,, for which
accurate results can be expected at reasonable modelorg feff a particular class of EMF
processes. To show and quantify the effect of the terminatiahe electromagnetic simulation
with respect to the forming result, different values égy;, were chosen and the corresponding
results were compared. Since the principal findings reggrttie energy conversion are similar
for coarse and fine meshes (see Section 4.8 Figure 4.31) reecoeesh for the study of the
termination criterion was chosen to save computation time.

Figure 4.24 shows the progression if,,. Each marker indicates the termination of the
electromagnetic system corresponding to three differalutes forey,, attributed to 1.5 %, 3 %
and 6 % of the first peak valuk,,, (tp;). After terminating the electromagnetic simulation the
total amount of energ¥, (¢) transferred to the mechanical system remains constanhwhic
be confirmed by the straight lines. The dotted red curve slacsusiulation without termination
of the electromagnetic system and serves as referencesolbtrther, the graphs for the total
amount of energy transferrdd,, (¢) indicate how criteria (4.8) and (4.10) are related to each
other. As depicted in figures 4.24 and 4.25 the differencevdsen the reference solution and
the terminated one becomes smaller with decreasing

Also interesting from the point of view of the technologigabcess simulation is certainly
the degree of deviation in terms of the deformation. To tinid, éhe vertical displacement at
evaluation Point P2 was examined for the three valuesfor As can be seen in the left part
of Figure 4.25 only foe,, = 0.06 the deformation exhibits a significant underestimatiotigso
curve). For all other termination criteria the deformatiswery close to the reference solution
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Figure 4.24: lllustration of termination criterion for tifent termination tolerances,, cor-
responding to 1.5 %, 3 % and 6 % of the first peak valig(¢p1). The plot for Py, shows
how most of the energy is transferred to the mechanical sydtaing the first alternation. To
resolve the increase @f.,, due to subsequent alternations the left ordinate star@3ad 1After
termination of the electromagnetic part of the moBg| = 0 and E,,, = const..

(dotted curve). To quantify this the displacemént and transferred energys,, att = 300 us
were compared for the different termination criteria (3gbtrpart of Figure 4.25). Similar as in
previous cases the relative deviation is highlighted bymadization with the reference solution
yielding the normalized valuedz and E,,,,. Due to the nature of the termination criterion
Feu < 1. As aresult of small elastic oscillatiodsz > 1 is possible for the comparison of the
deformation. In view of subsequent simulationg, = 0.03 seems to represent a reasonable
choice.
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Figure 4.25: Influence of;,, on the vertical deformation at P2 artg},,. Left: Vertical defor-
mation with evolving time. Right: Normalized vertical defioation att = 300 us andEyy,
depending on different values fey,,.
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4.7 Discussion of all model simplifications

Two objectives drive the above considerations regardingmméo evaluate the size of the bound-
ing box, spatial finite element discretization and termoratriterion. On the one hand these
studies allow for an estimation of the degree of convergefitee solution and provide insight
with respect to the expected error due to the chosen dizatietn. On the other hand the find-
ings allow for the exploitation of potential for reductiohtbe computation time by selectively
choosing a coarse discretization at locations where tladmsissible according to the study of
convergence within the scope of the desired accuracy. A ggathple of this reasoning is the
evaluation of the vertical mesh parameters for the tool emilgap and upper air. The studies
of convergence for these parameters indicate that an deaohution is already obtained for a
very coarse mesh (see Figure 4.10). This could be explaynetiysical phenomena in the par-
ticular element layer (tool coil layer, air gap layer or upp# layer). Crucial to the modeling
accuracy and model simplification however wasdheantificationof the deviation by means of
the study of convergence. Here, it is important to note thatchoice of field variables subject
to the study of convergence has to be made with respect tanthutasion objective. In the case
of EMF the objective is to obtain an accurate prediction efdeformation and inelastic internal
variables. In Table 4.1 all taken measures to obtain a sfieglmodel are summarized. This
includes information regarding the model reduction in tewwhthe number of degrees of free-
dom of the electromagnetic system and the computation toma toupled simulation ending
att = 300 us with a time steg,, ., , = 1 us (seee.g(Schinnerl et al., 2002)). Further, on the
basis of the study of convergence the deviation of the dedttam due to the particular measure
was estimated. In general the reduction of the size of thedliag box, mesh coarsening or
termination of the electromagnetic simulation leads to latlemestimation of the magnitude of
b andj and thus of the deformation. To roughly quantify the reductf deformation for the
mechanical simulation the magnitudeto&ndj was reduced by 1 % for the fixed field distri-
bution shown in Figure 4.18. As a result the deformation atv@ reduced by about 0.8 %
serving as a basis for the quantification of the error of the@hsimplifications listed in Table
4.1. For the subsequent fully coupled simulation all mestpaters are summarized in Table
4.2.

For many mesh parameters the results of the studies of @ewves can be transferred to
other typical forming setups. In general, the results fecditization parameters like the number
of elements in the air gap,,, tool coil n,., sheet metah,,,, air above and below the setup
Naa,qp CAN at least qualitatively be transferred to any other setg@rdless of the particular tool
coil design (circular, elliptical, rectangular, etc.) a@dming setup, since all of these setups
exhibit equivalent features that can be discretized withalguments discussed above. The
same applies to the evaluation of the size of the bounding/kemxd the termination criterion.
For the discretization parameters in the plane of the shetdlrn, andn,) some degree of
transferability is given for elliptical or circular tool ddorming setups. For such a setup,
can be attributed to the radial direction angto the circumferential one. It is expected that the
sensitivity of the results is less pronounced in circuntiged direction, where the coil windings
proceed.

Modeling of EMF is an evolving field and the above discussedsugees represent only a
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selection of means to save computational cost. Howeveetaesgeneral since they refer to
physical features of the forming operation and are validrelgss of the numerical methods that
are utilized. Further development of algorithmic stragsglso offer potential in this regard and

represent work in progress.
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reduction of size

mesh coarsenin

jmesh coarsenin

jtermination

of bounding box in zy-plane in vertical dir. criterion

No. dof before 6.5 x 10° 1.4 x 10° 6.9 x 10* 3.2 x 104

No. dof after 1.4 x 10° 6.9 x 10* 3.2 x 10* 3.2 x 104

T.:m [d] before too large 3.7 x 10* 1.7 x 10* 6.5 x 10°

T.im [d] after 3.7 x 10 1.7 x 10 6.5 x 10° 2.4 x 10°

approx. reduction o

) <15% <0.2% <2% <0.1%
deformation
reference to

) 4.3,4.4 4.7 4.12,4.10 4.24.,4.25

figures

Table 4.1: Summary of the evaluation of the potential to cedilhe computational effort. in

terms of the number of degrees of freedom and computatiandirsimultaneous evaluation of

the associated error of the modeling result.

mesh parameter initial | after study
d 60 mm| 15 mm
Ny 24 24
ny 24 12
N 24 24
Moy 24 12
Naa 8 2
Tab 8 4
Nag 8 2
Te 8 2
Tem, 8 8

Table 4.2: Summary of the evaluation of mesh parameters.
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4.8 Discussion of results for a fully coupled simulation

With the above simplifications at hand we now turn to the fathypled simulation of the EMF
process. As discussed above the energy driving the fornpegation is characterized by the
discharging current depicted in Figure 4.1 which was im@etad as a Neumann boundary
condition fory. For the instance = 8 us wherel is maximaly is depicted in the upper part of
Figure 4.26. Starting from the right connection surfacenghe= 0 is prescribed, the potential
increases to a maximum value @f = 4.1 kV to satisfy (4.1) and the remaining Neumann
boundary conditions. As could be expected,tfegnitudeof 3 = —o,,,, V. x inside the tool coil
att = 8 us remains relatively unchanged, oplychanges its direction following the centerline
of the coil winding as can be seen in the center part of Figuz6.4lf eddy currents had been
considered some non-uniform distribution join the tool coil cross section could have been
expected. In the lower part of Figure 4.26is depicted for = 40 us. At this instance the input
current has reached its second extreme value (see Figyrantflows in opposite direction.
Accordingly the direction of is flipped and has a reduced magnitude.

Next we turn to the development of the magnetic flux denkigt the instances = 4 us,
t = 12 us andt = 28 us. Up tot = 28 us the largest portion ofy,, is transferred to the
mechanical part of the model (see figures 4.24 and 4.31). isrrdéispect this period of time
is significant for the forming operation. Due to the cornelatof the tool coil current with
the input current, alsé is correlated to the input current via Ampere’s law. As carsben
by comparison of Figure 4.27 (above) and Figure 4.27 (cetherincreased input current at
t = 12 ps results in an increase 6t At t = 28 us wherel! just flipped (see Figure 4.27
(below)) the current in the tool coil and soare small. At all instances is insignificant above
the sheet metal. This can be attributed to the eddy curnetitsed in the sheet metal (see Figure
4.28). Here, the temporal evolution of the magnetic fielddpees important. The increase of
I until t = 8 us leads to an increase bfin the air in the center of the tool coil winding. The
magnetic field and its increag® are oriented irx-direction here. According to Faraday’s law
of induction,db induces an electric field which drives eddy currents whiatcped along the
tool coil winding and are oriented in opposition to the catri@ the winding (compare figures
4.26 and 4.28). Due to their orientation, these eddy cusneatitralize the magnetic field above
and inside the sheet metal and lead to the shielding effecth&more at = 12 us in contrast
tot = 4 us, b begins to penetrate the sheet metal which can be seen bydtws/efb at the
upper surface of the sheet metal. This is discussed belogtitegwith the development of the
eddy currents in the sheet metal.

In Figure 4.28 the eddy current distributions for the afoeationed instances are shown. In
more detail this is depicted in Figure 4.30 where the sigaificomponentg, of 5 andb, of b
are depicted along PZ with increasing time. Since the she&lrdeforms under the influence
of the Lorentz force the current flux distributions move intigal direction with increasing
time. At the beginning of the process, where the input cureghibits a significant increase,
the magnetic field increases in particular close to the I®ueiace of the sheet metal while an
increase inside the sheet metal is relatively small. Adogitg eddy currents occur close to the
lower surface as well (see instance= 4 us Figure 4.30) to counter the local penetration of
b. Later, when the first alternation reached its peak-at8 us as discussed abovepbecomes
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maximal and remains constant outside the sheet metal aimttiease close to the surface of the
sheet metal is reduced. Accordingly the eddy currents iedirere are reduced in comparison
tot = 4 us. Insidethe sheet metal, howevétb might be larger than at previous instances due
to the fact that further penetration bfin the sheet metal is facilitated. This in turn leads to an
induction of eddy currents into regions which are more disteom the lower surface. As can
be seen in Figure 4.30 at= 4 us the eddy currents close to the upper surface are insigmifica
and so is the magnetic flux density. While proceeding furtbert 8 ;s inside the sheet metal,
b, has risen, consequently even close to the upper sujfates become significant while close
to the lower surfacg, is reduced. With increasing time (seeg, ¢ = 12 us) the magnetic
field in the air gap decreases, then the eddy currents clade teurface become smaller than
inside the sheet metal where the penetration of the magfietilcstill leads to an increase of
b,. Close to the lower surface now the effect of self inductiothef sheet leads to a retention
of the eddy currents althoudhdecreases in the air gap. At= 20 s and later instances, the
eddy current direction is even reversed close to the lowdasel of the sheet metal. The flipped
eddy currents at the surface of the sheet superimpose a tiafielel to that of the tool coil
which leads to a further reduction of the magnetic flux dgreiitthe surface of the sheet. The
maximal value for, is now inside the sheet (see Figure 4.30 instamces20 us,t = 24 us
andt = 28 ps) and the maximal value fgy, at its upper surface.

Referring to the Lorentz forcé. = det(F')j x b as a coupling term to the mechanical
component the above discussion underlines the fact thatsdpare has to be taken to account
for the strong variations ab andj in the sheet metal (see Section 4.4). Further it could be
seen thab andj penetrate the sheet metal at instances where they aragtificant in terms
of their magnitude (see.g, t = 8 us in Figure 4.30), in this respect the notion of a magnetic
pressure (Mamalis et al., 2004) in the context of EMF is ncuaate sincé andj and so the
Lorentz force act inside the sheet metal. Regarding the dpnednt ofb andj with respect
to the progression of the forming operation from figures 4a8d 4.28 it can be seen thiat
predominantly acts in positive vertical direction and &esl below the tool coil winding (see
also Figure 4.18). This applies to all alternations regessibf the direction of the input current,
b andj basically flip simultaneously. Only at some time shortlydvefzero-crossing of the
input currentb andj are oriented such thdj points downwards (see Figure 4.30, instances
t = 20 us andt = 24 us).

The temporal development &f can be deduced from Figure 4.30. While at the very be-
ginning of the process the largest eddy currents are indubednagnetic flux density is still
relatively small since the tool coil current is relativelyall as well; moreover the sheet metal
is basically at rest meaning that very little energy is tfamed to the mechanical system. At
some time between = 4 us andt = 20 us where both, the velocity of the sheet metal and
[, = det(F)j x b are relatively large, the forming operation is most effeti In fact this
motivates the redesign of the electric circuit attachedhéfbrming setup — presently basically
consisting of a switch and a capacitor — such that the efitgienthe process can be increased.

The aforementioned Lorentz force distribution is also méd by the stages of deformation
depicted in Figure 4.29. At the beginning of the processctrger of the plate remains at rest,
whereas just above the tool coil winding, the plate expegerhigh Lorenz forces and begins to
accelerate (see Figure 4.29, instahee 30 us). The contour plots represent the development
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of the accumulated inelastic deformation for this stagesdddnation as a top view of the sheet
metal. Due to the boundary conditions of the sheet metat fer 30 us the lateral regions
exhibit an increase aof,, the rear part of the structure exhibits no inelastic defdgrom due to
the fact that the sheet metal can move freely §nis less pronounced here (see also Figure
4.18). The lateral fixing leads to a combined bending andc$tieg of the sheet caused by
the body force distribution nearby. In particular at thenfroorners of the sheet the inelastic
deformation exhibits its maximal value gf ~ 0.8. The loading of the plate leads to a lateral
contraction of the plate which becomes zero at the fixed etlfee@late. The strains resulting
from this lateral deformation, however, are maximal heré eontribute to the increase ef.
With increasing time (see Figure 4.29= 60 uS) the accelerated parts of the structure continue
to deform and the center of the plate — initially at rest — bedgd move. In addition to the front
corners of the sheet metal now the rear corners exhibit aeased inelastic deformation as well
and bands of increased inelastic deformation propagate tine front corners to the center of
the sheet. At = 90 us andt = 120 us the center of the plate is accelerated further, the bands of
deformation evolve and close to the center of the plate ammaxi fore, starts to develop. The
final shape of the structure for= 300 s is shown at the bottom part of Figure 4.29. During the
last forming stages the initially downwards bent centehefdtructure is now pulled along with
the lateral regions of the plate and bent upwards resultiryrioof-top shaped structure. The
strong inelastic bending results in an additional incredisg at the center of the plate. In Figure
4.31 the vertical deformation at P1 and P2 and the en&gyt) is depicted. In comparison to
Figure 4.25, where a comparatively coarse mesh was utjlibeddeformation is much larger.
This is in accordance with the mechanical convergence stadyonclusion it is not surprising
that the increased resilience of the refined mesh also leadkigher value foF;,, (see Figure
4.24 right). The structure starts to deform earlier and nemergy is transferred.
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Figure 4.26: Electric potential and current distributiont@ol coil. Above: scalar potential
at maximal input current. Center: current density distitouin the tool coil at maximal input
current. Below: current density distribution in the toollcat second extreme value éfand

flipped direction (see Figure 4.1).
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Figure 4.27: Magnetic flux density distribution for the mstest = 4 us,t = 12 us and
t = 28 ps. With increasing input currertthe magnetic flux density increases as well. The
shielding effect of the sheet metal becomes evident.
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Figure 4.28: Eddy current distribution for the instances 4 us,t = 12 us andt = 28 us. At
the beginning of the process the increas® af the air results in high values for the induced
eddy currents at the surface of the sheet metal. At lateamesisb increases inside the sheet
and leads to a more homogenous eddy current distributidnckrtess direction.
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Figure 4.29: Forming stages of the sheet metal as a functiiome and corresponding top view
contour plots of,. Initially, the part of the sheet metal located directly addhe tool coil is
subject to large induced Lorentz forces and begins to a@teleAs forming proceeds, this part

pulls the center of the plate along with it.
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Figure 4.30: Development ¢f andj, along PZ with evolving time and deformation. Left: The
development ob, in the sheet and surrounding air. Right: Development of eddreats in the
sheet. Curves fof, move according to the vertical deformation of the sheet.
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Figure 4.31: Development of vertical deformation at pofitsand P2 (left). Energy transferred
to the mechanical system in terms of total enefgy; (¢) (right). The ends of the alternations
of the input current are highlighted.
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4.9 Conclusions

In contrast to 2D modeling of axisymmetric EMF processes p8itess models exhibit large
computational costs. However, in the present work it coddshbown how a carefully chosen
discretization of typical features of the EMF setup can lea@n improvement and simpli-
fication of the modeling of EMF. The mesh evaluation was donadiectively studying the
convergence of eddy currents and magnetic flux density istieet metal with respect to par-
ticular discretization parameters that characterize thigefelement mesh of a specific feature.
The study of convergence of typicadrtical mesh parameters indicated that a very low number
of element layers can be chosen for the air gap between tle¢ stetal and the air above the
sheet metal. Physical reasons for these findings can bleusétti to the homogeneous distribu-
tion of the magnetic flux density in the air gap and the indigantly low field strength above
the sheet metal. Inside the sheet metal a large number oéatdayers is required to render the
strong variations of the eddy currents and magnetic fluxitdeasn thickness direction during
the forming process. The study of the horizontal mesh patenmiand the size of the bounding
box, which determines the extent of the electromagnetid,fielkilitate a further reduction of
computational cost without significant loss of accuracy.

To model the mechanical deformation of the sheet metallstadisolid shell finite elements
(Reese, 2007) are applied. Evidently, here the sheet methsgsetized withone element
layer in thickness direction. To be able to deal with theeddht vertical discretizations of
the mechanical and the electromagnetic mesh, the Lorewly fooce distribution in the solid
shell element is integrated separately from its purely raecal part. Here, a large number
of electromagnetic finite elements which are containeddashe solid shell element is one
condition to obtain an accurate nodal representation oékbetromagnetic loads. Secondly, a
sufficiently high number of Gaussian points in the solid seleiment has to be provided to be
able to deal with strong variations of the Lorentz force iickhess direction.

The third measure to reduce the computational cost is bas#tedact that the electromag-
netic part of the model becomes less significant with eachnisimng amplitude of the input
current. After some time the forming operation is basicdliyen by the conversion of kinetic
energy into inelastic deformation. This motivates the tlgu@ent of a termination criterion for
the electromagnetic part of the model. Results for the eneeaggferred from the electromag-
netic to the mechanical system denotedHy; (¢) indicate that approximately 98 % @f;,,(t)
is added to the mechanical system after the first three aliens. In particular during the first
alternation, where both, the velocity of the sheet metal thedLorentz forces are maximal,
most of . (t) is added to the mechanical system. The electromagnetioptré simulation
is terminated if the amount of energy added to the mechasysaém during the last alternation
falls below some reference value which is based on the fiestredtion. Together with the above
discussed measures this leads to a reduction of the congoutiate to 6.5 %.

After evaluation and development of the model simplificasiaresults for a relatively simple
3D EMF setup consisting of a square shaped sheet metal amgjddool coil were computed.
For the given input current and tool coil geometry detailegsight with respect to the develop-
ment of eddy currents, magnetic field and deformation of tteesmetal can be provided. A
gualitative interpretation of the electromagnetic resslicceeds in the context of Maxwell's
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equations. At the beginning of the process both the ele@gmmtic and the mechanical part
of the model are crucial for the forming operation. Only idgcturrents, magnetic field and
the velocity of the sheet metal are significant, the elecagmetic forming operation becomes
efficient in terms of the employed energy. Based on the abowvelajged simplifications and
research experiences future work is focused on more confipledng geometries and sophis-
tication of modeling approaches (see figures A.4 and A.5)mFa technological point of view
the above investigations fdf;,, (¢) motivate the further study of possible input current modifi-
cations with respect to an improvement of energy efficiency.






Appendix A

Technical realization of automatic pre- and
postprocessing of parametric 3D models for
electromagnetic forming

Abstract — Besides the theoretical and numerical issues involved with the modelingirantatson

of electromagnetic forming (EMF) a more technical issue is related to the treattheomplex 3D
forming setups in terms of their geometric representation and finite element mesbimodel and mesh
complex 3D parts, the application of a powerful pre- and postprocessiitggare becomes necessary.
Due to its Python based interfaces the commercial software tool ABAQUSsseebe a good choice
in this regard. In particular the implementation of model scripts in ABAQUS foaatomated and
parametric creation of EMF model setups is demonstrated. Further, it isnshow the ABAQUS
pre- and postprocessing capabilities are combined with in-house implemestafitime algorithmic
concepts particularly suitable to simulate EMF processes. Data transfeten@ohd their interrelation
are discussed and documented.

A.1 Introduction

As discussed in Chapter 4, 2D FEM modeling of EMF has beenegpdi simulate research
problems which consist of simple structures and exhibdtrohal symmetry. In the industrial
context, applications consist of non-symmetric more c@xplroblems which still lack a proper
3D modeling approach. Itis an objective to develop a sofm@ol capable of 3D modeling and
simulation of the aforementioned EMF processes. Here, ¢éieldpment and implementation
of numerical methods, particularly suitable to deal witl toupled magneto mechanical prob-
lem at large inelastic deformations is one of many issuedwed. This is discussed in chapters
1 and 4.

A more technical issue is related to the treatment of comp@structures and EMF se-
tups in terms of their geometric representation and fingeneint meshing. To model and mesh
complex 3D parts the application of a powerful preprocessiaoftware becomes necessary.
Moreover, to be able to deal with the large amount of dataivedefter process simulation, an
equally powerful postprocessing software is required. ddramercial software tool ABAQUS
seems to be a good choice in this regard. ABAQUS provides deellmented Python inter-
faces to import and export finite element mesh data inclufleld results and has powerful,
sophisticated and reliable meshing and visualizationstotilis in particular the accessibility
for importing and exporting data, which qualifies ABAQUS fbe task. In the aforementioned
context the objective of this work represents the followpaints:

*Schmaling and Unger (2007)
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1. The technical realization of individual modeling modusnd connection of the data flow
between the modules. The modules consist of ABAQUS- , Pythod MATLAB pro-
grams.

2. The creation of several EMF models in ABAQUS and their petic automation.

Following the natural order of the above listed tasks, intiacA.2 the data flow and all in-
volved modeling modules are discussed and illustratedthBumore, related module descrip-
tions and data names are documented. In Section A.3 theajemeof four different models
in ABAQUS is discussed. Those models differ with respeche&rtcomplexity starting with
a simple cylindrical rod and ending with an EMF forming sewith a flat coil that involves
a number of windings. Particular features and difficultiemted to the generation of these
models are discussed and model parameters are documented.

A.2 Python based modeling modules and dataflow

Common to other finite element simulations the modeling ofriqadar EMF process consists
of a preprocessing step, in which the process geometry aitel lement meshes are gener-
ated, a solution step, where based on the numerical schephedaa solution is computed and
a postprocessing step, in which the solution results angairied. As mentioned above for
the pre- and postprocessing of the simulation, the commalezode ABAQUS was used while
the actual process solution was obtained on the basis ohtheuse implementation of the
algorithmic concepts discussed in chapters 4 and 1 andientgt et al., 2006b). Since model
data generated with ABAQUS cannot be utilized directly foe tn-house implementation, a
number of intermediate data formatting steps become nagesSonversely, results computed
with the in-house code need to be formatted so that an infpmrtato the preprocessing mod-
ules in ABAQUS becomes feasible. To this end a number of datadtting modules were
programmed and are discussed in what follows. Furthermemgtailed description of the
dataflow between the modules is provided.

The organization of the dataflow for a fictitious process nhéadeelled with the name "Mod-
elname’ is illustrated in Figure A.1. In Table A.1 all modulames are listed together with the
files which are created by each module. At the start, the ngetehetry and its mesh is created
in ABAQUS (see Section A.3 for details) and an input file narialdelname.inp’ is generated.
In particular 'Modelname.inp’ contains information redeng sets of nodes or elements which
play an important role for the assignment of componentsriate and connection surfaces and
boundary conditions for the mechanical as well as the els@gnetic mesh (see Table A.2).
Next, the 'Modelname.inp’ is interpreted with respect tedé sets, the nodal coordinates and
the connectivity matrix. This is done by the Python scripBAQUSinput.py’ which creates
files for each node or element set as well as for element andl Wada. The separation into
different files facilitates the reconstruction of the setthie postprocessing stage.

The script 'Readnesh.m’ then performs extensive computations to obtaimibael data to
be read by the coupled MATLAB/FEAP code. Since the solutiothefelectromagnetic system
is done on the basis @dgefinite elements the reformatting and importation of the elgtn
connectivity, nodal coordinates, node and element-s&adMAATLAB are not the only tasks to
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obtain the data necessary to run the coupled simulatione Bdged elements require a number
of additional combinatory information, for instance a nwanbeld that uniquely attributes two
element vertices to an edge. Note that the term node for ameglevertex in the case of edge
based elements is not applicable and therefore replacelebtetm vertex. Furthermore, the
algorithmic treatment of edge based elements requirestanggn of the connectivity matrix
where element edge numbers are attributed to global elememtbers and a number field where
at most six edges are attributed to an element vertex. Thee@tion of this information rep-
resents the most time consuming operation within 'Ressh.m’. Besides the extraction of
combinatory information for edge elements from the ABAQW§Lt file, further data trans-
formation tasks involve the extraction of data for the medte finite element problem and
the body force mapping between the electromagnetic and duhamical system discussed in
Section 4.4. For the computation of this information theufbcs on the nodes and elements
that represent the sheet metal in the model generated in ABBA@or the mechanical problem
solid shell elements are applied. As discussed in Sectbeakch mechanical element contains
a number of electromagnetic elements that are arrangegensiao resolve the highly nonlin-
ear body force distribution that prevails in vertical diien (see Section 4.8 Figure 4.30). In
this regard, from the layered elements in the sheet metathwirere generated in ABAQUS a
mechanical finite element mesh has to be extracted with @meeglt layer in thickness direc-
tion. This mesh is then formatted and extracted resultinger=EAP input file 'IModelname’.
Furthermore as discussed in Section 4.4 the electromadoatls are computed on the basis of
the electromagnetic elements that are contained in the anézd ones. Here, information is
needed to be able to attribute body force data to a correspgpnuiechanical element.

Besides data relevant for the mapping of the body forces wihect to the shell elements,
the electromagnetic mesh on the other hand has to be adaptbdtst matches the deformed
shape of the sheet metal. This requirement is part of the Ag&righm discussed in Chapter
4 and (Stiemer et al., 2006b). Here, the mechanical defasmaft the sheet metal represents
a geometric constraint condition for the new element distron in the surrounding air (see
Figure 4.15). There exists no direct deformation data ferdlectromagnetic elements which
are contained in the mechanical solid shell elements. Hemes relation (4.3) the actual vertex
positions of the solid shell element are mapped on the esrtif the contained electromagnetic
elements. Relation (4.3) represents a shape function n@pithe actual element positions
with respect to the local coordinates attributed to theregfee positions of the electromagnetic
elements contained in the solid shell element. The locatdinates required for the shape
function mapping correspond to the reference configuratfothe solid shell element. Their
computation can be done at the preprocessing stage of theasiom. After computation of
all necessary arrays, finally all aforementioned data istevwrito a MATLAB data file named
'Modelname.mat’ and a corresponding FEAP input file 'IModehe’ and the solution module
can be started.

At the beginning of a coupled simulation a number of modelpagameters such as e.g.
total simulation time, time step, selection of experimeitput current data, etc. are set. In
particular the model of choice is set by specifying the ddeadnd FEAP input file for the
coupled simulation (here 'Modelname.mat’ and 'IModelngme

During computation of the fully coupled model, field resttis the mechanical as well as
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the electromagnetic system are formatted and outputtedtIAfiles which can be imported
into ABAQUS. Here, field variables of choice are outputteéath simulation instance for the
mechanical and the electromagnetic system, respectivelJATLAB this is done by the func-
tion 'prepare4odb.m’ and in FEAP at the element level in subne 'elmt08.f". It is important
to note that ABAQUS allows for the reimportation of node afeheent sets via specified file-
names. This facilitates the illustration of field values particular components(g, tool coil
or sheet metal) by means of the concept of display groups IAQBS. Additionally, both the
mechanical and the electromagnetic results can be joimeldombined visualization.

Importation of the simulation results is done via the Pytkoript 'createodb.py’. The sim-
ulation results are converted to the files 'Modelnamag.odb’ and 'Modelnamenech.odb’ for
the magnetic and mechanical results, respectively. Witlgrvisualization module of ABAQUS
the results can then be visualized as well as evaluated witimdoer of different analysis tools.
The user is able to create different types of plots, whichtraosimonly are contour and vector
plots. Other common postprocessing tasks are creatingpatieplots and animated illustra-
tions.



A.2 Python based modeling modules and dataflow

ABAQUS CAE

- create model geometry
- mesh model
gn node- and elementsets

<Modelname.inp>

- seperates input file data into
node- and elementsets
- write this data to txt files

<Modelname_ELEMENTS.txt>
<Modelname_NODES.txt>
<Modelname_ELSET_air.txt>
<Modelname_NSET_Air.txt>

MATLAB

- read .txt files
- compute edge based data for Nédélec element connectivity matrix, assign
boundary conditions
- compute mechanical mesh data from electromagnetic mesh and compute
boundary conditions
- write electromagnetic edge based mesh data to .mat file

FEAP-Input file

<Modelname.mat>
<IModelname>

Coupled EMF code MATLAB/FEAP

- set simulation Parameters, input current, material parameters, simulation time,
time step, etc.

- load <Modelname.mat> and tFEAPin MATLABvia FEAPMEX

- perform fully coupled simula

- perform postpr sing at each simulation time step and output to
<Elements_mech.txt>, <Nodes_mech.txt>, <Node_values_mech.txt>,
<Elements_ t>, <Nodes_mag.txt>, <Node_values_ir

<Elements_mech.txt>
<Nodes_mech.txt>
<Node_values_mech.txt>
<Elements_mag.txt>
<Nodes_mag.txt>
<Node_values_mag.txt>

Python

- create odb-file from .txt files

<Modelname_mag.odb>
<Modelname_mech.odb>

99

ABAQUS CAE

isualisaton of results
ation of animated illustrations
- output of pictures
- etc.

Figure A.1: lllustration of data flow between modeling mazhil Each box is attributed to a
modeling module, where the basic tasks are summarizeahdriles next to the arrows indicate
the data file that is provided for the subsequent module (able™R.1).
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’ program

corresponding filenames

purpose

ABAQUSInput.py

Mn_ELEMENTS.txt
Mn_NODES.txt
Mn_ELSET_PARTLAir.txt

Mn_ELSET_PART1 Sheet.txt
Mn_ELSET_PART1 Tool_coil.txt
Mn_NSET PART 1 activation.txt

Mn_NSET _PART1 normalization.txt
Mn_NSET PART1 outer boundary.txt
Mn_NSET PART1 work _pieceboundary.txt
Mn_NSET_PART1 zera Neumanncoil.txt
Mn_NSET PARTLlinsideair.txt

Separate mesh data
entities from
ABAQUS input file.

readmesh.m

Model.name.mat
IModel_name

Compute additional
mesh information for
edge based element
data transfer and
mechanical model.

UJ

prepare4odb.m

Elementsmag.txt
Nodesmag.txt
Nodalfield valuesmag.txt

Output of magnetic
flux density results
ready for importation
into ABAQUS.

elmt08.f

Elementsmech.txt
Nodesmech.txt
Nodalfield_valuesmech.txt

Output of mechanical
flux density results
ready for importation
into ABAQUS.

createodb.py

Model_.name.odb

Create ABAQUS
.0odb file.

Table A.1: Compilation of module names and correspondinguddilenames. Filename exten-
sions indicate the corresponding programming languageram or file format (.py - Python

Script, .m - MATLAB Script, .f - FEAP Fortran code, .txt ASCHxtt file, .mat MATLAB data
file, I - FEAP input file, .odb - ABAQUS Model database, Mn - Mbdame).
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A.3 Development of automated parametric EMF models with ABAQUS

Process models that can be automated on the basis of parg@dmetry and mesh parameters
offer many advantages. The special advantage of this agipisademonstrated in Chapter 4
where a study of convergence was performed for the angldddilcsetup depicted in Figure
A.3. Here in particular the mesh parameters facilitatedegipe and direct specification of the
discretization of certain features of the model (see Tabh#®).AThe only action to be taken
is the specification of the geometry and mesh parametersediddinning, subsequently the
model is created automatically by ABAQUS ready for simwlati Similarly, in the field of
process design a new design geometry simply needs to bdisgeciterms of its characteristic
dimensions and the process model is created. A third impopi@int concerns troubleshooting
of the models or modified implementations. In particular tesh parameters allow for the
specification of an extremely coarse meshing of a model wtachbe computed quickly. As a
consequence testing and debugging times are extremely shor

A.3.1 Common modeling features in ABAQUS

Before the features and difficulties of the individual modails discussed, common modeling
steps for EMF setups are described. Here, the major stepgydireation of the finite element
model in ABAQUS CAE in general consist of the following seqoenf modeling steps:

1. Creation of the parts tool coil, sheet metal and air,
2. merging of the parts in the assembly module,

assignment of arbitrary material parameters,

> W

creation of display groups for tool coil, sheet metal aind a
5. assignment of node and element sets,

6. partitioning of the geometry and assignment of edge seeds
7. meshing of the geometry and verification of meshes and

8. output of the input file.

During the generation of a model the ABAQUS Macro Manageom@s all actions that were
performed. A recorded macro appears in the file 'abagusMazyowhere model parameters
can be assigned. Common to all EMF models, the three compotuaitcoil, sheet metal and
air with their basic geometry are modeled as separate p@msple tool coil models and the
sheet metal can be modeled by extrusion of 2D drawings. Timewsuding air can be modeled
arbitrarily. For setups which closely match an axisymneegeometry a cylindrical volume is
usually formed. These parts are then put together and méngineg assembly module. By
choosing the option to retain intersecting boundariespaits can still be identified and do
not form a single part. Additionally, the parts have to beatgfent parts which in ABAQUS
terminology basically means that meshing is carried outifercomplete assembly and not for
each part separately. This will result in a compatible meésh, elements on the intersecting
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boundary are sharing the same nodes. Next, material paesrate defined as the python
script ’"ABAQUSInput.py’ requires the keyword 'Materiahithe ABAQUS Input file in order
to be able to divide the model into the three parts and wrigeitformation to separate files
(see Figure A.1 and Table A.1). Typically, tool coil, sheedtat and air are chosen to be single
sections. In the section assignment manager the matedpkgres can be applied to each
section. The material parameters will not be used in thelsitiomn and do not affect the results.

The next step is the creation of display groups. These astextanot merely for the purpose
of visualization, but rather they enable the user to subs@ityicreate node and element sets.
By plotting only the relevant part to the viewport it is podsilto select the specific surfaces
of the assembly. With the help of the display groups tool ther dirst assigns display groups
to the parts tool coil and sheet metal. The air is producedguBioolean operations. The
labeling of these display groups is chosen in accordande thé subsequent python script
"ABAQUSInput.py’.

After the creation of display groups the generation of nodeé @lement sets becomes fea-
sible. The proper assignment of such sets is crucial forthsexjuent simulation of the EMF
setup. They are listed in Table A.2 and are common to all EMBets The sets are attributed
to various aspects of the modeling of the EMF process whiehdascribed below. Here, the
main purpose to label elements is to distinguish betweeiomegvith different material prop-
erties. In contrast to the air where the development of theteimagnetic fields is governed by
an elliptic equation, coil and sheet metal elements exAhilidirge conductivity, which necessi-
tates the consideration of the diffusive parabolic ch@rmaet the describing field equation. In
addition to the assignment of the conductivity, the elentanels facilitate the visualization of
different entities of the electromagnetic system. Node aet created to implement boundary
conditions for the scalar potential (see 'Activation’, 'Maealization’, '’ZeraNeumanncoil’ and
'Inside_coil’ in Table A.2) and the vector potential (see 'Outsyundary’ in Table A.2).

Although it is possible to create node and element setsttjirecthe mesh module, the
mesh and as a consequence the node numbering changesrérdiff@rameters are input at
the beginning of an ABAQUS script and model dimensions amngkd. Thus, every node
and element set is specific and mesh-related for every sétilne dinite element model. It is
therefore preferred to creaeometry sefsvhich automatically produce a corresponding node
and element set in the final input file. The creation of node @lrchent sets via geometry
sets instead of a direct creation is a major advantage, vascnresult makes the automation
possible.

Next, the forming setup has to be prepared for meshing by snefpartitioning and appli-
cation of edge based mesh seeds. Here application of edde feeditates the specification of
the number of elements along a particular edge and thussflavthe implementation of a pa-
rameter which characterizes a particular mesh feature mMigsd partitions basically subdivide
particular geometry features which simplifies the autocateshing and provides for a mesh
with a good quality (similar element edge lengths, no mestodion etc.). Good partitioning
creates an even and well-formed mesh. Bad partitioningyligebduces a distorted and inap-
propriate mesh and can cause the meshing algorithm or tloevfoy solution code to fail. Due
to their geometrical features with tetrahedral elemensspbssible to mesh complex structures
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Node and element set naméurpose

Activation These nodes define the Neumann conditions for the
finite element problem of the scalar potential correspamdli
to the imposed electric current in normal direction of
connection surface.

Normalization These nodes define the Dirichlet conditions for the finite
element problem of the scalar potential of the other
connection surface (grounding).

Zero.Neumanncoil These nodes define the Neumann conditions for the finite
element problem of the scalar potential. There is no
electric current in normal direction of coil surface.

n

Insidecoll These nodes define the finite element problem for the
solution of the scalar potential. They represent the free
nodes.

Inside air These nodes are inside the air (not member of boundary

or coil etc.). They are needed to define nodes that can be
adopted according to the Lagrangian smoothing and ALE
algorithm. Further they define edges that are not on the
boundary of the system.

Inside work _piece These nodes are inside the sheet.
Work pieceboundary | These nodes are on the boundary of the sheet
Outerboundary These nodes define edges that are at the boundary.

For the corresponding degrees of freedom (integral means
of edges) homogeneous Dirichlet conditions are applied.

Tool_coil These elements represent the tool coil.
Sheet These elements represent the sheet metal.
Air These elements represent the air.

Table A.2: Node and element sets which represent surfa@dsraent groups which correspond
to certain material properties and boundary conditions.

without extensive partitioning. However, these have nerbenplemented in the solution al-
gorithm. Rather hexahedral edge based finite elements dimedti Using this element type

complex structures have to be thoroughly partitioned. Tleshing algorithm frequently pro-

duces irregular and unusable meshes and must thereforealyzeoh for a number of possible
errors. It is checked for gaps and intersections since shésviery common error. In addition,

meshing sometimes produces impracticable elements, whithe examined in the mesh veri-
fication dialog specifying different criteria, e.g. elerhdistortion and element length ratios. If
the mesh fulfills all criteria a job is created and an inputiBlevritten.

As mentioned above all models listed below are fully aut@dand parameterized. Param-
eter values can be changed via various input dialogs at thmrtiag of a macro. Meaning
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of particular parameters and their illustration can be tbbalow (see tables A.3, A.4,A.5 and
A.6).

A.3.2 Cylindrical rod for test and verification purposes

This model allows for testing and verification of the numarimplementation of the 3D model
by means of simple analytical solutions (see Appendix B).eVéind air are modeled forming
two cylinders which are merged in the assembly module. Thg eedeling of the cylindrical
wire does not require complex partitions and edge seedspditiéons of this model are created
merely to provide the necessary edges to which the seedscapplied. Display groups, node
and element sets are created as explained before. Edgeaseesplied in radial direction for
specifying the number of elements and radial bias in coilandn vertical direction the seeds
determine the number of elements along the length of thelroigure A.2 and Table A.3 the
setup is depicted and geometry and mesh parameters of threatetd design are listed.

Figure A.2: lllustration of the cylindrical rod to test andnify the numerical implementation of
the 3D model by means of analytic solutions. The left halhefair was removed for illustration
purposes.

Parameter Python variable
Radius of wire wire_radius
Radius of outer boundary boundaryradius
Length (z-direction) length
Number of elements in wire (r-direction) wire_elements
Number of elements in outer boundary (r-directiorfjoundaryelements
Number of elements (z-direction) lengthelements
Global elements size global elementsize

Table A.3: Geometry and mesh parameters in ABAQUS grapbgmlinterface and the Python
macro ‘wire’.
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A.3.3 Forming setup with angled tool coil and square shapeétametal

The angled tool coil is particularly suitable to perform adst of convergence for various char-
acteristic features of the forming setup and to gain an wtdeding of the convergence behavior
with respect to a particular feature. Because of its cubiesire it is possible to exactly con-
trol the number of elements and modify them. Mesh parametgsuced in Section 4.3 can
directly be attributed to the parameters listed in Table. Ais forming setup is best created
by a cube that is partitioned in a way that the resulting pans form the components of the
tool coil and sheet. Further, additional partitions havbdoncluded to ensure that no distorted
elements appear. In Figure A.3 an engineering drawing aritliatration of the meshed setup
is provided. The dimensions depicted correspond to tho#eahodel simulated in Chapter 4.

c0 20 20
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Figure A.3: Left: Engineering drawing of the angled toolland upper work piece. Right:
Discretized forming model with illustration of tool coilheet metal and surrounding air (only
right half of air is displayed).
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Parameter Python variable
Width of the Tool Coil (x-direction) tool_coil_x
Height of the Tool Coil (z-direction) tool_coil _z
Sheet Width (x-direction) sheetx
Sheet Depth (y-direction) sheety
Sheet Thickness (z-direction) sheetz

Width of Outer-Boundary (x-direction boundaryx
Depth of Outer-Boundary (y-direction boundaryy
Height of Outer-Boundary (z-direction)  boundaryz

Air Gap (z-direction) airgap
Boundary elements (x-direction) boundelemx
Tool Coil Elements (x-direction) tool_coil_elemx
Mid Part Elements (x-direction) mid_partelemx
Lower Air Elements (z-direction) lower elemz
Tool Coil Elements (z-direction) tool_coil_elemz
Air Gap Elements (z-direction) air gapelemz
Sheet Elements (z-direction) sheetelemz
Upper Air Elements (z-direction) upperelemz
Global Element Size global elementsize

Table A.4: Geometry and mesh parameters in ABAQUS grapbgmlinterface and the Python
macro 'QuadraticCoil’.
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A.3.4 Forming setup with elliptical coil consisting of onénaling

The model with an elliptical tool coil is a further exampleaofelatively simple forming setup.
The elliptical coil is specified by its major and minor axisgdahickness (see Figure A.4). To
be able to implement the input current at the connectiorased (see 'Activation’ and 'Nor-
malization’ in Table A.2 and Figure 4.1), an opening of thel tcoil has to be provided. The
special case of aircular tool coil is obtained by equating the model parameter ’'Serajer
axis of ellipse (r)’ with 'Semi-minor axis (r)’ (see Table 3. This model quite closely resem-
bles the axisymmetric case. In this regard it facilitatesracl comparison of the successfully
applied axisymmetric model (Stiemer et al., 2006a). At tma time this model geometry is
relatively simple and can be meshed with a reasonable anobetgments (about five to twenty
thousand).

Xy

Figure A.4: Left: Engineering drawing of the elliptical famil and sheet metal. Right: Dis-
cretized forming model with illustration of tool coil, shteaetal and surrounding air (only right
half of air is displayed).
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Dimension (direction) Variable name
Semi-major axis of ellipse (r Major
Semi-minor axis (r) Minor

Total opening of ellipse (phi Opening
Sheet Thickness (z) Thickness
Height of Tool Coil (z) heighttool_coll
Sheet Radius (r) Radius

Sheet Thickness (z) sheetthickness
Air Gap (2) airgap

Outer Air radius (r) Outer

Upper Air (2) Upper

Lower Air (z) Lower

Sheet Mesh radial Bias (r) sheetbias
Sheet Elements (r) sheetelements
Outer Mesh Bias (r) outerair_bias
Outer Mesh Elements (r) outerair_elements
Tool Coil Elements (r) tool_coil_elementsradial
Tool Coil Elements (z) tool_coil_elementsheight
Upper Air Elements (z) upperair_elements
Lower Air Elements (z) lower air_elements
Air Gap Elements (z) air_gapelements
Sheet Mesh Bias (2) sheetbias height
Sheet Elements (z) sheetelementsheight
Global Seed (z) global seed

Table A.5: Geometry and mesh parameters in ABAQUS graphgz interface and the Python
macro 'Elliptical Coil'.
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A.3.5 Forming setup with coil consisting of n windings

This forming setup can be attributed to common experimdaotating setups (see.g, Beer-
wald (2004); Mamalis et al. (2004)). Here, the experimergallts could successfully be mod-
eled by means of axisymmetric models with the help of a topps@imation of the spiral coll
(Stiemer et al., 2006a). To fully evaluate the deviatiortuted by this approximation the 3D
model depicted in Figure A.5 was created. In contrast to Hwvea discussed models the geo-
metrical complexity of the setup leads to a significantlyneignumber of elements. Here, coils
that exhibit more than six windings quickly require morertl# 000 elements which corre-
sponds to about 150 000 degrees of freedom. Further, paitig of this model is a relatively
complex and time-consuming operation. Depending espgoialthe number of windings, the
partitioning for the tool coil may take up to two hours on a redPC.
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Figure A.5: Left: Engineering drawing of the spiral tool kaand sheet metal. Right: Discretized
forming model with illustration of tool coil, sheet metaldasurrounding air (only right half of
air is displayed).
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Parameter

Python variable

Inner radius of the coil

startradius

Pitch of a single winding pitch
Thickness of tool coil (r-direction) rdim
Height of tool coil (z-direction) zdim
Increment for modeling of sweep profile deltaphi
Number of windings windings
Radius of sheet metal radius
Thickness of sheet metal sheetthickness
Thickness of air gap airgap
Outer air radius outer
Upper air (z-direction) upper
Lower air (z-direction) lower

Sheet mesh bias (z-direction)

sheetbias height

Sheet elements (z-direction)

sheetelementsheight

Tool coil elements (z-direction)

tool_coil_elementsheight

Upper air bias (z-direction)

upperair_bias

Upper air elements (z-direction)

upperair_elements

Lower air bias (z-direction)

lower_ air_bias

Lower air elements (z-direction)

lower_air_elements

Air gap elements (z-direction)

air_gapelements

Outer mesh bias (r-direction)

outerair_bias

Outer mesh elements (r-direction)

outerair_elements

Tool coil elements (r-direction)

tool_coil_elementsradial

Global elements size

global elementsize

macro 'SpiralCoil’.




Appendix B

Two test examples to verify the implementation of
the 2D and 3D electromagnetic models

Abstract — To test and verify the electromagnetic part of the coupled model, resultuifieent flux
density and magnetic flux density were computed for two simple axisymmetric s€wpsoth analytic
solutions exist which serve as benchmarks for the results obtained withitierical models.

B.1 Magnetic flux density distribution for a cylindrical rod with cons tant
current flux density

Consider an axisymmetric cylindrical rod composed of isutt@nd homogeneous copper as
depicted in the left part of Figure B.1. The rod has a radiug 6f 0.25 mm. The length of the
rod is chosen so théfr, > 1 holds. Just as in the case of the electromagnetic formingpset
the air surrounding the rod is assumed to exhibit the praggeof vacuum. At the boundatyR

of the system at radius= 1 mm again homogeneous Dirichlet boundary conditionsifare
imposed. Inside the cylinder a constant electric curremtdiensity of; = (0,0, 5.1) KA mm—2

is applied corresponding to an input current/of 1 kA.

Evaluation of Maxwell’'s equations of the above discussddpsen cylindrical coordinates
(r,p, z) yields

b = 0,
Ir -
r<To
omre
by = {2 | (B.1)
% , " >T
bz - 07

for the magnetic flux density (seee.gJackson (1975)). In the right part of Figure B.1 the re-
sults for this setup are summarized. Analytic, 2D and 3D rhioaiicate good agreement. Also
at R where homogeneous boundary conditionsdowere imposed the results coincide well.
It seems that althoughh = 0, here the spatial derivatives afstill lead to relatively accurate
values for the magnetic flux density la= curl a. At o the 3D model yields slightly smaller
values forb,, than the 2D and the analytic model. This is due to the methodHigh field
guantities for edge based elements are evaluated. Frograhteeans of the vector potential
along the element edges (representing the degrees of frebdre) all field values following
from a are computed for the barycenter of the element baseallaf its edge values. As a
result the extreme values bf are slightly reduced.
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Figure B.1: Left: Illustration of the electromagnetic boang value problem for a rod with
prescribed static current flux density in the rod. Right: Metgnflux density distribution in
circumferential direction for the analytic, 2D and 3D madel

B.2 Transient current flux density in a cylindrical rod

For the same cylindrical rod now transient field distribo@ersist and the surrounding air is
not considered. Here, at= 0 for the entire rodj = 0. And for¢ > 0 at the surface of the
rodj = (0,0,5.0) kKA mm~2 (see left part of Figure B.2). These initial boundary cordis
correspond to a suddenly imposed vertical eddy currentlaision which is prescribed at=

ro. The solution procedure is analogous to a standard diffiusioblem in heat transfee(g,
(Myers, 1971)) and does not need to be discussed here. Titesatan be written as

jr =0 s
jga =0 )
0 =0 (B.2)
L = = 2Jo(Nir)
Jz 2 0\"\¢ ,
O EXPL—R )\iti ,t>0
; EM ( EM >/\¢7”o<]1 (/\ﬂ“o)

where J, represents the Bessel function with ordeando,,, the electromagnetic diffusivity.
Further, \; results for theith root of Jy with Jy(\;79) = 0. The analytical as well as the
numerically predicted current flux distributions for thaetances; = 4.5 x 107%s,t, = 4.5 x
107%s,t3 = 2.0 x 107 7s,t, = 1.0 x 10~%s andt; = 4.5 x 10~%s are depicted in the right part
of Figure B.2. For the numerical model the results for eachiqdar instance was obtained by
five single simulations namely from= 0 and ending at = ¢;. Atime stepof,,, , = t;/20us
was chosen for each simulation. As expected, with incrgasime, the fixed eddy current
distribution at the surface of the rod diffuses into the radilisaturation. 3D as well as 2D
results coincide well with the analytical solution (seedBslyk et al. (2005)).
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Figure B.2: Left: lllustration of the electromagnetic boany value problem for a rod with
constant current flux density at the surface of the rod whareprates the rod with increasing
time. Right: Current flux density distribution for the instas¢, = 4.5 x 107%s,t, = 4.5 x
1078s,t5 = 2.0 x 1077s,#, = 1.0 x 10~ %s andt; = 4.5 x 107 Ys.
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