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Summary

Electromagnetic sheet metal forming (EMF) is an example of ahigh-speed forming process
driven by the dynamics of a coupled electromagnetic-mechanical system. Although electro-
magnetic forming is a technology known for a few decades, currently renewed interest is taken
in its industrial application. Along with this interest thedemand for simulation tools is increas-
ing. However, up to now modeling approaches found for this process in the literature lack a
comprehensive approach suitable to simulate complex forming operations.

This motivates the algorithmic formulation and implementation of a coupled electromagnetic-
inelastic continuum field model for 2D problems discussed inthe first part of the work at hand.
Here, on the mechanical side, the coupling due to the Lorentzforce is acting as an additional
body force in the material. On the other hand, the spatio-temporal development of the magnetic
field is very sensitive to changes of the shape of the workpiece, resulting in additional coupling.
The algorithmic formulation and numerical implementationof this coupled model is based on a
mixed-element discretization of the deformation and electromagnetic fields combined with an
implicit, staggered numerical solution scheme on two meshes. In particular, the mechanical de-
grees of freedom are solved on a Lagrangian mesh and the electromagnetic ones on an Eulerian
one. The issues of the convergence behavior of the staggeredalgorithm and the influence of
data transfer between the meshes on the solution are discussed in detail. Finally, the numerical
implementation of the model is applied to the modeling and simulation of electromagnetic tube
and sheet forming.

In the second part of the work the relevance of a possible interaction between electron- and
dislocation movement commonly referred to as the electroplastic effect is investigated. In ex-
periments designed to investigate this effect a reduction of the yield stress of up to 60 % is
observed under the influence of electric current pulses. In these investigations the timescales,
electric current densities, length scales and materials ofinterest are those relevant to industrial
EMF processes. By means of careful modeling of all relevant conventional effects it could be
shown that the observed stress reduction is mainly due to thermoelastic effects and it is con-
cluded here that such an effect is of second-order and may safely be neglected in the modeling
and simulation of industrial EMF.

The purpose of the third part of the work is the development and application of strategies
to identify material model parameters for metals at high strain-rates relevant to EMF forming
processes. In particular in the context of the corresponding inverse problem, the goal here is to
identify such parameters using data obtained from electromagnetic forming experiments. On the
basis of the aforementioned staggered solution scheme, theparameter determination is carried
out together with a sensitivity analysis and an error estimation. Here, the optimization problem
of the identification of the viscoplastic material parameters can be simplified. As it turns out,
the Lorentz forces are relatively insensitive to the material parameters. It is just this situation
that allows for an identification procedure at incrementally fixed electromagnetic loads. After
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validation of the proposed methodology using synthetic data sets, the material parameters are
identified by means of experimental results from tube forming operations.

The last part is motivated by the increasing demand for the modeling of 3D forming opera-
tions. This is indispensable for an effective process design of real industrial applications. On
the basis of previous modeling concepts in the work at hand, further approaches particularly
suitable to reduce the enormous computational cost inherent to 3D simulations are developed
and investigated. These consist of a carefully chosen discretization, a data transfer method for
both, the electromagnetic loads and the mechanical deformation to utilize an efficient solid shell
formulation and a termination criterion for the electromagnetic part of the model. As a result
the simulation time is reduced by about one order of magnitude. Finally a 3D forming setup is
modeled and detailed insights with respect to the development of eddy currents, magnetic field
and deformation of the sheet metal are provided.



Zusammenfassung

Die elektromagnetische Blechumformung ist ein Hochgeschwindigkeitsumformprozess, der die
Kraftwirkung hoher Impulsmagnetfelder zur plastischen Umformung elektrisch leitender Werk-
stoffe ausnutzt. Obwohl der Prozess seit vielen Jahren bekannt ist, wird in letzter Zeit ein zu-
nehmendes Interesse an seiner Weiterentwicklung und industriellen Nutzung festgestellt. Dar-
aus ergibt sich eine gesteigerte Nachfrage nach Simulationswerkzeugen, die in der Lage sind,
solche Prozesse zu berechnen.

Vor diesem Hintergrund erfolgt im ersten Teil der vorliegenden Arbeit die Entwicklung und
Implementierung eines Modells zur Lösung eines magneto-mechanisch gekoppelten Mehrfeld-
problems auf Basis der Finite-Elemente-Methode für axialsymmetrische Probleme. Die Kopp-
lung des mechanischen Teils zum elektromagnetischen erfolgt hier durch einen zusätzlichen
Beitrag zur Volumenkraft, der von der Lorentzkraft herrührt. Umgekehrt findet die Kopplung
des elektromagnetischen an den mechanischen Teil durch dieVerschiebung des Bleches statt.
Dabei ḧangt die Entwicklung des Magnetfeldes empfindlich von der vertikalen Verschiebung
des Bleches ab. Die Modellierung dieses Vorgangs gelingt im Rahmen einer separaten Diskre-
tisierung beider Teilsysteme unter Verwendung eines implizit gestaffelten Algorithmus. Dabei
erfolgt die mechanische Finite-Elemente-Formulierung auf einem lagrangeschen Netz und die
elektromagnetische auf einem eulerschen Netz. Fragestellungen, die das Konvergenzverhalten
einer solchen Formulierung sowie den Datentransfer zwischen beiden Netzen betreffen, werden
ausf̈uhrlich diskutiert. Schließlich werden Simulationsergebnisse mit experimentellen Messun-
gen verglichen.

Im zweiten Teil der Arbeit wird eine m̈ogliche Wechselwirkung zwischen Elektronen- und
Versetzungsbewegung untersucht, die unter dem Begriff Elektroplastiziẗat bekannt ist. Dabei
zeigen Experimente, die zur Untersuchung dieses Effekts entwickelt wurden, dass unter Ein-
wirkung pulsartiger Stromstöße ein Abfall der Fließspannung von bis zu 60 % beobachtet
werden kann. Die auftretenden Stromdichten, Abmessungen,Materialien und Pulslängen ent-
sprechen denen, die bei der elektromagnetischen Blechumformung auftreten. Durch sorgfältige
Berücksichtigung aller am Experiment beteiligten Effekte konnte gezeigt werden, dass der in
den Experimenten beobachtete Abfall der Fließspannung in erster Linie durch einen thermoela-
stischen Ausdehnungseffekt hervorgerufen wird und insofern eine untergeordnete Bedeutung
für die elektromagnetische Blechumformung hat.

Der dritte Teil der vorliegenden Arbeit bezieht sich auf weiterführende Konzepte zur Bestim-
mung von Materialparametern für metallische Werkstoffe bei hohen Verzerrungsgeschwinding-
keiten, wie sie bei der elektromagnetischen Blechumformungauftreten. Hier erfolgt auf Basis
des bestehenden Prozessmodels die Abschätzung der Materialparameter durch Abgleich von
Finite-Elemente-Ergebnissen mit experimentellen Daten.Im Rahmen einer statistischen Vorge-
hensweise erfolgt weiterhin eine Fehler- und Sensitivitätsanalyse f̈ur die bestimmten Parame-
ter. Wie sich herausstellt, kann das der Bestimmung zugrundeliegende Optimierungsproblem



vi Zusammenfassung

vereinfacht werden. Insbesondere die schwache Abhängigkeit der Lorentzkräfte von den zu be-
stimmenden Materialparametern ermöglicht eine Identifikationsstrategie auf Basis schrittweise
entkoppelter Lorentzkräfte. Nach einer erfolgreichen Validierung der vorgeschlagenen Konzep-
te erfolgt die Bestimmung der Materialparameter durch experimentell ermittelte Daten.

Im letzten Teil der Arbeit wird die dreidimensionale Modellierung von elektromagnetischen
Umformvorg̈angen behandelt. Die Entwicklung eines entsprechenden Simulationswerkzeugs
stellt eine wichtige Voraussetzung für die Weiterentwicklung dieses Umformvorgangs in Hin-
blick auf seine industrielle Einsetzbarkeit dar. In diesemZusammenhang konnten ausgehend
von bestehenden Entwicklungen weitere Konzepte zur Steigerung der Recheneffizienz ent-
wickelt und implementiert werden, welche die Rechenzeit desProzesses um ein Zehnfaches re-
duzieren. Die angesprochenen Konzepte basieren auf einer problembezogenen Diskretisierung
der Umformanlage, einem Ansatz zum Austausch von Netzinformationen, welcher den Ein-
satz besonders effizienter Volumen-Schalenelemente ermöglicht, und einem Abbruchkriterium
für das elektromagnetische Finite-Elemente-Problem. Schließlich erfolgt die Simulation eines
3D-Umformprozesses, womit tiefergehende Einblicke hinsichtlich der Entwicklung von Strom-
dichteverteilung, Magnetfeldentwicklung und plastischer Verformung erm̈oglicht werden.



Chapter 1

Algorithmic formulation and numerical
implementation of coupled
electromagnetic-inelastic continuum models for
electromagnetic metal forming∗

Abstract – The purpose of this work is the algorithmic formulation and implementation of a recent
coupled electromagnetic-inelastic continuum field model (Svendsen and Chanda, 2005) for a class of en-
gineering materials which can be dynamically formed using strong magnetic fields. Although in general
relevant, temperature effects are for the applications of interest here minimal and are neglected for sim-
plicity. In this case, the coupling is due on the one hand to the Lorentz force acting as an additional body
force in the material. On the other hand, the spatio-temporal development of the magnetic field is very
sensitive to changes in the shape of the workpiece, resulting in additional coupling. The algorithmic for-
mulation and numerical implementation of this coupled model is based on mixed-element discretization
of the deformation and electromagnetic fields combined with an implicit, staggered numerical solution
scheme on two meshes. In particular, the mechanical degrees of freedomare solved for on an Lagrangian
mesh and the electromagnetic ones on an Eulerian one. The issues of the convergence behavior of the
staggered algorithm and the influence of data transfer between the mesheson the solution is discussed in
detail. Finally, the numerical implementation of the model is applied to the modeling and simulation of
electromagnetic tube and sheet forming.

1.1 Introduction

Multifield models, describing a mechanical structure whoseevolution is coupled to the evolu-
tion of further fields as,e.g., electromagnetic or temperature fields, arise in various practical
engineering problems. A typical example is electromagnetic forming (EMF) representing a
high-strain-rate forming method in which strain-rates of≥ 103 s−1 are achieved. In this pro-
cess, deformation of the workpiece is driven by the interaction of a magnetic field generated
by a coil adjacent to the workpiece with a current generated in the workpiece by this field. In
particular, the interaction of these two fields results in anadditional body force,i.e., the Lorentz
force, which drives deformation. EMF is but one of a number ofhigh deformation-rate forming
methods which offer certain advantages over other forming methods such as increase in forma-
bility for certain kinds of materials, reduction in wrinkling, the ability to combine forming and
assembly operations, reduced tool making costs, and other benefits.

First attempts at the numerical simulation of electromagnetic metal forming include (Gour-
din, 1989; Gourdin et al., 1989; Takatsu et al., 1988). In contrast to the first two, the interaction

∗Stiemer et al. (2006a)



2 CHAPTER 1

between the magnetic field and the shape of the workpiece was taken into account in the third.
This is necessary in order to correctly model the influence ofthe change of shape of the work-
piece during the electromagnetic forming process on the magnetic field and the force it exerts
on the workpiece. More recently, Fenton and Daehn (1998) used the computer-code CALE to
numerically simulate electromagnetic forming with complete electromagneto-mechanical cou-
pling. This code is based on the so-called ”arbitrary Lagrangian Eulerian”(ALE) method to
solve the coupled system. In this method, the Lagrangian form of the field equations is used
where mesh distortion is small, and otherwise the Eulerian form. With this approach, numerical
problems can be avoided and the accuracy of the numerical solution is guaranteed. Focusing on
the fast solution of three-dimensional fully coupled magnetomechanical problems, Schinnerlet
al. (Schinnerl et al., 2002) presented a numerical scheme for transient coupled systems based on
an implicit multigrid method. Although their modeling of the mechanical system is restricted
to the case of linear elasticity, realistic simulation results have been obtained for several ex-
perimental arrangements. In the work of El-Azab et al. (2003) the current state of modeling of
EMF is discussed. As one can gather from such works, emphasisin the literature up to this point
has been placed on the modeling and simulation of the field coupling and structure, which has
correspondingly reached a high level of sophistication. The same statement, however, cannot
be made concerning the material models used in the simulations. Such models are, for exam-
ple, most often one-dimensional and identified with the helpof uniaxial tension-compression
tests. Fenton and Daehn (1998), for example, utilized the Steinberg model, which is a one-
dimensional, purely mechanical stress-strain relation independent of the strain-rate. It is just
such rate-dependence, however, which is characteristic ofthe behavior of metallic materials at
high forming rates such as those achieved during EMF. This isin contrast to other high-speed
manufacturing processes like high speed cutting, where such models have been considered (Bil
et al., 2004). Further, rate-dependence is accentuated at such high forming rates by the fact that
the mechanical dissipation can be significant and the process takes place nearly adiabatically,
resulting in a possible significant temperature increase.

The main purpose of the current work is the algorithmic formulation and numerical im-
plementation of the isothermal special case of the continuum thermodynamic model for rate-
dependent coupled electromagnetic-thermoinelastic material behavior at large deformation de-
veloped by Svendsen and Chanda (2005) in order to simulate electromagnetic metal forming
processes. Although in general significant for high-speed forming processes, the uniform na-
ture of the electromagnetic forming process leads to a relatively small temperature increase
which can be safely neglected for the applications of interest in this work. Consequently, such
effects are neglected here. The paper begins (Section 1.2) with a brief summary of the basic
mechanical and electromagnetic field relations of the model. This is followed (Section 1.3)
by a brief summary of the thermodynamically-consistent constitutive and field relations. For
simplicity, these is restricted to electromagnetic, elastic, viscoplastic material behavior with
isotropic hardening. Next, attention is focused (Section 1.4) on the algorithmic formulation and
finite element implementation of the mechanical part of the coupled field model for a moving
body (e.g., workpiece) in the Lagrangian context as based on standard backward-Euler integra-
tion and Newton-Raphson-based iterative solution. The algorithmic formulation is completed
by that of the Eulerian-based electromagnetic initial boundary value problem. In the last part
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of the work, the resulting combined algorithm in staggered form is formulated and investigated
further. In particular, the convergence behavior of the resulting element formulations and nu-
merical solution procedures is investigated for the case ofa prescribed volume force (Section
1.5) as well as for the fully coupled problem (Section 1.6). Finally, the work ends with a brief
summary and conclusions (Section 1.7).

Before we begin, consider first a few mathematical concepts and results to be used in the
sequel. Euclidean vectors are represented in this work by lower-case bold italic lettersa, b, . . .,
and second-order Euclidean tensors by upper-case bold italic charactersA,B, . . .. In particular,
I represents the second-order identity tensor. The scalar product of two such tensors is defined
as usual byA · B : = tr(ATB), with AT the transpose ofA. Let |A| : =

√
A · A, sgn(A)

: = A/|A|, sym(A) : = 1
2
(A + AT), skw(A) : = 1

2
(A − AT), sph(A) : = 1

3
tr(A) I, and

dev(A) : = A− sph(A) represent the magnitude, sign, symmetric part, skew-symmetric part,
spherical part, and deviatoric part, respectively, of any such tensor. For any invertible second-
order tensorF , let cof(F ) : = det(F )F−T represent its cofactor. Fourth-order Euclidean
tensors are treated here as linear mappings of second-ordertensors into second-order tensors.
In particular, the tensor products

(A ⊗ C)[B] : = (B · C)A ,

(A ¤ C)[B] := ABC ,

(A △ C)[B] : = ABTC ,

(1.1)

for all A,B,C ∈ Lin(V, V ) can be interpreted as such. In terms of these, note thatI ¤ I

represents the fourth-order identity, andtsp : = I △ I transposition. Further, we havesym =
1
2
(I ¤ I + I △ I), skw = 1

2
(I ¤ I − I △ I), anddev = I ¤ I − 1

3
I ⊗ I.

The tensor (dyadic) producta ⊗ b of any two Euclidean vectorsa, b is defined by(a ⊗ b)c

: = (b · c)a. In addition, the axial vector of any skew-symmetric tensorW is defined by
axv(W ) × b : = Ab. The curl of any differentiable Euclidean vector fieldu is defined by

curl u : = 2 axv(skw(∇u)) (1.2)

as usual. The identities

curl(u × v) = (div v)u − (div u)v + (∇u)v − (∇v)u ,

div(u × v) = curl u · v − curl v · u ,

curl(curl u) = ∇(div u) − div(∇u) ,

(1.3)

for all differentiable vector fieldsu,v will be useful in the sequel. For notational simplicity, it
proves advantageous to denote functions and their values bythe same symbol. Other notations
and mathematical concepts will be introduced as they arise in what follows.

1.2 Summary of basic model relations

Of principle interest in this work is the modeling of the dynamic interaction of strong elec-
tromagnetic fields with metallic solids resulting in their deformation. The system of interest
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here consists of afixed regionR ⊂ E of Euclidean point spaceE containing one or more
solid bodies moving through it as well as the surrounding air. In the case of EMF, for exam-
ple, these bodies include the workpiece (e.g., sheet metal) and tool (see Figure 1.1 below). As
such,R contains the reference (e.g., initial) Br ⊂ R and currentBc ⊂ R configurations of
any of these bodies. Such bodies are modeled here as electromagnetic, mechanical continua
characterized by a time dependent deformation fieldξ together with the additional degrees of
freedom represented by the electromagnetic fields to be introduced in what follows. Whereas
the time dependent electromagnetic fields are defined on the entire regionR, i.e., also in the
air surrounding stationary or moving material bodies, the deformation fieldξ and all kinematic
fields derived from it, are logically restricted to the configurations of deforming and moving
bodies in what follows.

The following model represents a special case of the generalcontinuum thermodynamic for-
mulation (Svendsen and Chanda, 2005) to the case in which a strong magnetic field induces
electric currents in thermoelastic, viscoplastic electric conductors and so a Lorentz force re-
sulting in their deformation. This is the basic idea underlying the method of electromagnetic
metal forming. Since the relevant electromagnetic frequencies for the engineering structures
of interest here (i.e., less than 10 MHz) correspond to electromagnetic wavelengths which are
much larger than these structures, note that the wave character of the electromagnetic fields
is insignificant, and can be neglected (e.g., Moon, 1980, §2.2 and§2.8). For simplicity, any
thermoelectric effects, as well as any magnetostriction (i.e., the Hall effect), are also neglected
here. This is reasonable for conductors such as aluminum or copper at room temperature and
“low” magnetic fields. Under these conditions, the inhomogeneous “diffusion” equation

⋄

a + κ
EM

curls(curlsa) + ∇sζ = 0 (1.4)

may be derived (Svendsen and Chanda, 2005) for the electromagnetic vector potentiala in the
context of Ohm’s law

j = σ
EM

ǫ (1.5)

for the conductive fluxj . Here,κ
EM

represents the magnetic diffusivity. Further,

⋄

a : = ȧ + LTa = ∂a + (∇sa)v + LTa (1.6)

represents an objective time-derivative ofa with respect to a material moving with spatial ve-
locity v. In this expression,∂ is the partial time-derivative operator,L = ∇sv the spatial
velocity gradient,∇s the spatial gradient operator, andcurls the spatial curl operator. Further,
σ

EM
represents the electrical conductivity,

ζ : = χ − a · v (1.7)

a Euclidean frame-indifferent form of the scalar potentialχ,

ǫ = e + v × b (1.8)

the spatial electromotive intensity,e the spatial electric field, andb the spatial magnetic flux.
Outside of the moving body inR, i.e., in the surrounding air,v andL are neglected. As usual,
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a andχ determineb ande via the potential relations

b = curlsa ,

−e = ∂a + ∇sχ ,
(1.9)

in the context of Maxwell’s equations (Jackson, 1975,§6.4). In particular, these result in the
form

−ǫ = ∂a + ∇sχ + curlsa × v =
⋄

a + ∇sζ (1.10)

for ǫ. In addition, Maxwell’s equations and (1.9)2 together with the Coulomb gauge condition

divsa = 0 (1.11)

(Jackson, 1975,§6.5) ona yield in the alternative form

⋄

a − κ
EM

divs(∇sa) + ∇sζ = 0 (1.12)

for (1.4) via (1.3)3 together with the field relation

divs(∇sχ) = ∇2
s χ = 0 (1.13)

for the scalar potentialχ. The weak forms of these last two field relations are then given by1

∫

R

⋄

a · a
∗
+ {ζ I + κ

EM
∇sa} · ∇sa∗

=

∫

∂R

{ζ I + κ
EM

∇sa}n · a
∗

∫

R

∇sχ · ∇sχ∗
=

∫

∂R

(∇sχ · n)χ
∗

(1.14)

with respect toR via (1.3)2 for all test fieldsa
∗

andχ
∗
. As usual, these vanish on those parts

of ∂R wherea andχ, respectively, are specified. On the timescaleτ
Exp

∼ 10−4 s relevant
to processes such as electromagnetic metal forming, the typical order of magnitudeκ

EM
∼

10−1 m2 s−1 for the magnetic diffusivity of metals implies that “significant” magnetic diffusion
takes place over lengthscales of

√
κ

EM
τ
Exp

∼ 10 cm. Since this is significantly larger than
the smallest dimension of the engineering structures of interest (e.g., sheet metal thickness∼ 1
mm), magnetic diffusion will be important in the applications to be discussed below.

Turning next to the mechanical part of the coupled model, theweak momentum balance for
the deformation fieldξ is given by

∫

Br

(̺r ξ̈ − f ) · ξ
∗
+ P · ∇rξ∗ =

∫

∂Br

|cof(F )nr| tc · ξ∗ (1.15)

with respect to the referential configurationBr ⊂ R for all corresponding test fieldsξ
∗

vanishing
on those parts of the current boundary∂Bc whereξ is specified. Here,

f = det(F ) l = det(F ) j × b (1.16)

1The volumedv and surfaceda elements are dispensed with in the corresponding integrands in this work for
notational simplicity.
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represents the Lorentz (body) force (density),P the first Piola-Kirchhoff stress,F : = ∇rξ the
deformation gradient, andtc the current boundary traction. In the previous work under certain
circumstances (e.g., tube forming: Beerwald et al., 1999; Fenton and Daehn, 1998), the Lorentz
force has also been represented as a boundary pressure. Indeed, this is based on the alternative
form ∫

Bc

j × b =

∫

∂Bc

[(b · nc)(h · nc) − p
M
] nc + (b · nc) nc × (h × nc) (1.17)

for the Lorentz force itself as a boundary integral over the current boundary∂Bc via the diver-
gence theorem, with

p
M

: = 1
2
(b · h) = 1

2
µ

EM
h · h (1.18)

the so-called magnetic pressure. From this, we see that, ifb is parallel to∂Bc, i.e., if b · nc =

0, then the Lorentz force is equivalent to a pressure at the boundary. Again, this is exactly
the type of boundary condition realized in certain types of applications,e.g., certain types of
electromagnetic metal forming (e.g., tube forming: Beerwald et al., 1999; Fenton and Daehn,
1998). For other cases, however, this is no longer true, and in general the Lorentz force must be
treated as a body force (density).

The mechanical model relations are completed by the specification of the material model.
Here, attention is restricted to such a model for the metallic workpiece, which is modeled here
as a hyperelastic, viscoplastic material. For simplicity,the (mild) elastic and flow anisotropy
of the metals of interest (e.g., Al) is neglected here, as well as any kinematic hardening. More
generally,e.g., for the case of deformation-induced anisotropic flow behavior (e.g., Reese and
Svendsen, 2003; Svendsen, 2001), this is of course no longerpossible. Since the metal forming
processes of interest here are predominantly monotonic in nature, however, this last assumption
is not unreasonable. In this case, the constitutive model isspecified via the form of the refer-
ential free energy densityψr(lnV

E
, ǫ

P
) together with the evolution relations for the elastic left

logarithmic stretch tensorlnV
E

and accumulated equivalent inelastic deformation measureǫ
P
.

In the context of small elastic strain, the usual Hooke-based form

ψr(lnV
E
, ǫ

P
) = 1

2
κr (I · lnV

E
)2 + µr dev(lnV

E
) · dev(lnV

E
) + ψ

P
(ǫ

P
) (1.19)

is relevant. Another common assumption in the non-isothermal context in the case of metals
is that of constant specific heat (e.g., Rosakis et al., 2000). Here,κr represents the bulk mod-
ulus, µr the shear modulus, andψ

P
(ǫ

P
) the contribution from energy storage due to isotropic

hardening processes as usual. From (1.19), one obtains in particular the usual hyperelastic form

K = ∂lnVE
ψr = 3κr sph(lnV

E
) + 2µr dev(lnV

E
) (1.20)

for the Kirchhoff stressK = PF T. As usual,ψ
P
(ǫ

P
) is estimated with the help of fits to the

quasi-static yield curve for the materials of interest at room temperature, as discussed in what
follows.

Consider next the evolution of the internal variables and theinelastic behavior. In the metal-
lic polycrystalline materials of interest at low-to-moderate homologous temperature, inelastic
deformation processes are controlled predominantly by theactivation of dislocation glide on
glide systems (e.g., Kocks and Mecking, 2003; Teodosiu, 1997). Indeed, this seems to be the
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case even at high strain-rates (e.g., Frost and Ashby, 1982). Apparently, higher homologous
temperature is required for other mechanics such as dislocation climb or even dynamic recrys-
tallization to begin playing a role. Resistance to dislocation glide arising due to obstacles and
other factors is related in the phenomenological context tohardening behavior. Quasi-static
processes of this nature contributing to energy storage in the material result in the contribution

−ς
P

: = ψr, ǫ
P

(1.21)

to the effective quasi-static flow stress in the material. Such resistance to dislocation motion can
be overcome by thermal fluctuation under the action of the local effective stress, represented in
the current phenomenological context byσ

vM
(K)+ ς

P
−σ

F0, whereσ
vM

(K) represents the von
Mises effective stress with respect toK , andσ

F0 is the initial flow stress. On this basis,

f
P
(K , ς

P
) : = σ

vM
(K) + ς

P
− σ

F0 (1.22)

represents an activation measure or overstress in the current rate-dependent context. A power-
law approximation of the more exact transition-state-based micromechanical relations for the
kinetics of dislocation glide (e.g., Kocks and Mecking, 2003; Teodosiu, 1997) leads to the
power-law form

φ(ǫ
P
,D,K , ς

P
) =

γ
P
(ǫ

P
,D) σ

P
(ǫ

P
,D)

m(ǫ
P
,D) + 1

〈
f

P
(K , ς

P
)

σ
P
(ǫ

P
,D)

〉m
P
(ǫ

P
,D)+1

(1.23)

upon which the evolution of the internal variables is based.Here,σ
F0 represents the initial flow

stress,γ
P

a characteristic strain-rate,σ
P

the characteristic or effective activation stress magni-
tude, andm the strain-rate exponent. Further,〈x〉 : = 1

2
(x + |x|) represents the ramp function.

As indicated,γ
P
, σ

P
andm

P
are in general functions of accumulated inelastic deformation and

deformation rate. For simplicity, however, these materialproperties will be treated as constants
in the algorithmic formulation to follow. To indicate this,we write γ0 =̂ γ

P
, σ0 =̂ σ

P
, and

m0 =̂ m
P
, in what follows. The form (1.23) determines the evolution relations

−
∗

lnV
E

= ∂
K

φ =
√

3
2

sgn(dev(K)) ǫ̇
P

(K 6= 0) ,

ǫ̇
P

= ∂ς
P
φ = γ0

〈
f

P

σ0

〉m0

(f
P

> 0) ,
(1.24)

for the evolution of the internal variables, with
∗

lnV
E

: = 1
2

ln(F
˙

C−1
P

F T) (1.25)

in terms of the inverse plastic right Cauchy-Green deformation C−1
P

. As indicated,φ is differ-
entiable inς

P
everywhere except atf

P
= 0, as well as inK everywhere except atf

P
= 0 and at

K = 0. The corresponding subdifferentials exist everywhere. Inthe context of these forms for
the evolution of the internal variables, the constraintγ

P
(ǫ

P
,0) = 0 on the constitutive form ofγ

P

follows from the general thermodynamic analysis (Svendsenand Chanda, 2005). In addition,
Ohm’s law (1.5) together with the assumption that these evolution relations are independent of
ǫ impliesσ

EM
≥ 0. Lastly, the restriction thatγ

P, DD
(ǫ

P
,0) be non-negative definite (i.e., for

f
P

> 0) follows from the thermodynamic analysis via the assumption that the non-equilibrium
(i.e., dynamic) part ofK is negligible. For more details, the reader is referred to Svendsen and
Chanda (2005).



8 CHAPTER 1

1.3 Initial boundary value problem for EMF

In the rest of this work, attention is focused for simplicityon the application of the general model
relations from the last section to the case of the electromagnetic metal forming of axisymmetric
structures (see Section 1.5 and Section 1.6). In particular, attention is focused here on the case
of the electromagnetic metal forming of circular sheet metal plates as shown in Figure 1.1.

Die

Blank holder

Sheet

Symmetry line

r

z

70

110

6

1
.2

Tool coil
Plane of
symmetry

Tool coil

Sheet metal
(final state)

r

z

F

Figure 1.1: Electromagnetic metal forming of circular sheet metal plates. In this method, an
electric current in the tool coil induces a magnetic field andelectric current in the sheet metal
plate, resulting in a Lorentz (body) force (density) driving its deformation. As shown, the sheet
metal plate is clamped down radially by a die and blank holder. For simplicity, the structure is
approximated in this work as being axisymmetric. See text for details.

For the formulation of the corresponding coupled initial boundary value problem, this structure
is idealized as shown in Figure 1.2.

Let Cc represent the current configuration of the tool,Sc that of the workpiece, andR the region
containing these as well as the die and surrounding air. For simplicity, attention is restricted in
this work to cases in which the tool, die and air are assumed tobe stationary. Consequently, only
the workpiece is assumed to move. The tool consists of an electrically-conducting (σ

EM
6= 0)

copper coil embedded in an non-conducting (σ
EM

= 0) resin matrix. LetLc represent the
interface between the copper coil and the resin matrix in thetool. Further, letFc1 andFc2

represent the surfaces at the beginning and end of the coppercoil connecting this coil with the
rest of the electrical circuit through which current flows. These have known voltagesU1 andU2,
respectively, across them. In this case,R \ (Cc ∪ Sc) represents the region surrounding the tool
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Figure 1.2: Computational domains for the coupled initial boundary value problem. Here,R
represents the entire domain with boundary∂R (at which the magnetic field has effectively
decayed to zero),Sc the current configuration of the sheet metal workpiece, andCc that of the
tool. Further,Fc1 andFc2 represent the surfaces of the tool coil connected to the electric circuit.

and workpiece containing air which, like the resin matrix, is assumed to be non-conducting.
Under these conditions, the restriction ofχ to Cc is determined by the boundary value problem

∇2
s χ = 0 in Cc ,

χ = U1 on Fc1 ,

χ = U2 on Fc2 ,

∇sχ · nc = 0 on Lc ,

(1.26)

via (1.13). Here,nc denotes the outer unit normal vector on the surface of the tool coil. In
particular, the boundary condition on coil-matrix interface Lc insures that theχ-field in the
non-conducting resin matrix does not contribute to the current fluxj in the copper coil. Outside
Cc ∪ Sc in R, i.e., in the surrounding air,χ is determined by

∇2
s χ = 0 in R \ (Cc ∪ Sc) ,

χ = χ|∂Cc
on ∂Cc ,

χ = 0 on ∂R ,

∇sχ · nc = 0 on ∂Sc .

(1.27)

The boundary conditions on∂Cc are based on the continuity ofχ which is a consequence of the
existence of its gradient by definition. These boundary values arise from the computation of the
scalar potential insideCc. Analogous to that (1.264 on the coil-matrix interface, the boundary
condition on∂Sc insures that theχ-field in the non-conducting air does not contribute toj in
the workpiece. Instead of specifyingU on Fc1 andFc2, one may alternatively specify the total
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currentI = I(t) flowing throughCc. In this case, the coupled problem

∂a − κ
EM

∇2
s a + ∇sχ = 0 in R \ Sc ,

∇2
s χ = 0 in R \ (Cc ∪ Sc) ,

∇2
s χ = 0 in Cc ,

∇sχ · nc = 0 on Lc ,

(1.28)

is solved fora andχ subject to boundary conditions fora on ∂R, for χ on ∂R, ∂Cc and∂Sc

as described above and the constraint condition

−
∫

Ac

(∂a + ∇sχ) · nc = σ−1
EM

I (1.29)

for any cross sectional surfaceAc perpendicular toLc. Note that(1.28)1 describes a degenerate
diffusion process. Degeneration occurs inR \ (Cc ∪ Sc), whereκ

EM
equals∞. In this region

the boundary value problem is elliptic. In the special case of axisymmetry under consideration
here, note also that the Coulomb gauge condition (1.11) is satisfied identically. Lastly, consider
the initial boundary value problem for the deformable workpieceSc. As this part is electrically-
conducting and surrounded by air, we have

∇2
s χ = 0 in Sc ,

⋄

ac − κ
EM

∇2
s ac + ∇sζ = 0 in Sc ,

∇sχ · nc = 0 on ∂Sc ,

(1.30)

for the restrictionac of the vector potential toSc, as follows from (1.11), (1.12) and (1.13).

Although the spiral-shaped tool coil is not exactly axisymmetric, it is approximated as such
here. To this end, assuming thatCc consists ofn windings, each winding is approximated by a
torus of the same cross section. The resultingn tori are then cut in the(r, z)-plane atϕ = 0. In
order to simulate the fact that each torus is in fact the arm ofa spiral, the cross sections atϕ = 0

andϕ = 2π are treated electromagnetically as being continuous with respect toχ. Continuity
of potential then implies thatU atϕ = 0 (i.e., except in the first torus) is determined by that in
the preceding torus atϕ = 2π. Let Wck denote the current configuration of thekth torus, and
Uk the potential ofWck atϕ = 0. Under these assumptions, the restrictionχk of χ = χ(r, ϕ, z)

to Wck satisfies
∇2

s χk = 0 in Wck ,

χk = Uk at ϕ = 0 ,

χk = Uk+1 at ϕ = 2π ,

∇sχk · nk = 0 on ∂Wck .

(1.31)

The solution of this boundary value problem is given by

χk(r, ϕ, z) = Uk + ∆Uk

ϕ

2π
, (1.32)

with ∆Uk = Uk+1 − Uk. For the determination of

∇sχk =
∆Uk

2πr
eϕ , (1.33)
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only the potential differences∆Uk need to be considered. They can be obtained from the
measured total currentI = I(t), which is equal in all toriWck, k = 1, . . . , n, since they are
connected in series. The sum over all currents flowing through an arbitrary cross sectionAck of
thekth torus then yields

−σ−1
EM

I =

∫

A
ck

(∂ak + ∇sχk) · nk =

∫

A
ck

(
∂ak +

∆Uk

2πr
eϕ

)
· nk (1.34)

in the context of (1.29), whereak denotes the restriction of the vector potential to thekth torus
Wck. The last relation yields the result

∆Uk = −
{∫

A
ck

1

2πr
eϕ · nk

}−1 {
σ−1

EM
I +

∫

A
ck

∂ak · nk

}
(1.35)

for ∆Uk. In particular, for the case of a coil with rectangular crosssection,

∆Uk = −2π

(
h ln

bk

ak

)−1
{

σ−1
EM

I +

∫

A
ck

∂ak · nk

}
, (1.36)

whereh is the height (inz-direction) of each winding,ak the inner, andbk the outer radius
of thekth winding. On this basis of this formulation, then, one obtains the integro-differential
equation

∂ak − κ
EM

∇2
s ak +

∆Uk

2πr
eϕ = 0 (1.37)

for the restrictionak of a to Wck, with ∆Uk given by (1.36).

In the current axisymmetric situation, the relations (1.28), (1.30) and (1.37) result in a
piecewise-continuous form fora (in contrast to the three-dimensional case in whicha experi-
ences jumps). In turn, this justifies standard finite elementmethods. The boundary condition of
the scalar potential results from the continuity of the normal component of the current density
as well as the tangential component of the electric field, as mentioned in connection with (1.27).
Sinceχ is a harmonic function inSc fulfilling a homogeneous Neumann boundary condition on
the whole boundary according to (1.30), it must be constant there. Hence

⋄

a + ∇sζ = ∂a + curlsa × v (1.38)

applies there by virtue of (1.6) and (1.7). In summary,

∂a − κ
EM

∇2
s a =






0 in R \ (Cc ∪ Sc)

−curlsa × v in Sc

ck

{
σ−1

EM
I +

∫

A
ck

∂a · nk

}
eϕ in Wck

(1.39)

with piecewise smooth coefficients fora in the whole regionR, and with

ck : =

{
r

∫

A
ck

1

r
eϕ · nk

}−1

. (1.40)
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Since (1.39) is homogeneous inR \ (Cc ∪ Sc), no problems arise from the degenerationκ
EM

=

∞ there. In particular, note that piecewise smoothness applies sinceκ
EM

and the right-hand
side of (1.39) exhibits jumps at material interfaces. In general, this is also the case because
a is not continuous inR; in the axisymmetric case, however, it is. As the flux densityof a
magnetic dipole decays likeO(|x|−3) if the norm of the spatial variablex tends to infinity, it
is admissible to assume homogeneous Dirichlet boundary conditions on∂R to good accuracy.
After multiplication with suitable test functionsa

∗
in (1.39) and partial integration, the reduced

form ∫

R

∂a · a
∗
+

∫

R

κ
EM

∇sa · ∇sa∗
+

∫

Sc

curlsa × v · a
∗

=
n∑

k=1

∫

W
ck

ck

{
σ−1

EM
I +

∫

A
ck

∂ak · nk

}
eϕ · a

∗

(1.41)

of the general weak forms (1.14) follows. This is the basis ofthe finite element solution to be
discussed in what follows. Note that the conditionv = 0 outsideSc has been taken into account
here.

1.4 Algorithmic formulation of the coupled model

We begin with the mechanical part of the model. Its algorithmic formulation is carried out here
in the standard context of backward-Euler integration of the local evolution relations (e.g., Simo
and Hughes, 1998) and their implicit solution via Newton-Raphson iteration in the context of
the implicit function theorem. Consistent linearization ofthe resulting algebraic system then
facilitates the corresponding element formulation of the material model and its incorporation in
the finite element solution of the dynamic initial boundary value problem.

To this end, the time interval[0, d] of interest is split intom subintervals[0, t1], . . ., [tm−1, tm],
such that[0, d] =

⋃m−1
i=0 [ti, ti+1] with t0 = 0, ti < ti+1 andtm = d. As usual, assume that the

initial boundary value problem and internal variable evolution relations have been solved up
to the discrete timet = tn, such thatξn, an, andχn, together with their spatial and temporal
derivatives, as well as the corresponding internal variables, are all known in the corresponding
region of Euclidean space at this time. As discussed in the previous section, the difference in
electromagnetic and mechanical timescales, together withthe distinct nature of the respective
fields involved (i.e., Eulerian in the electromagnetic case, Lagrangian in the mechanical large
deformation context), suggest that a staggered numerical solution procedure based on separate
meshes for the electromagnetic and mechanical field problems will be most efficient. Since
we are neglecting temperature effects here, the influence ofthe electromagnetic fields on the
development of the mechanical fields is restricted to the Lorentz force (1.16). Via Ohm’s law
(1.5) for j and the expression (1.10) for the electromotive intensityǫ, we see that the spatial
form l of this force depends in general on both electromagnetic andmechanical fields as well
as their spatial and temporal derivatives via (1.5), (1.9) and (1.16). Since the electromagnetic
fields vary on a timescale much smaller than that of the mechanical fields, a scaling analysis
shows that the convective termb × v = curlsa × v is much smaller than the others and can be
neglected. In this case, we work with the algorithmic approximation

ln+1 ≈ σ
EM

curlsan+1 × (∂an+1 + ∇sχn+1) (1.42)
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for the current Lorentz force which is then “purely electromagnetic” in character. In particular,
in the context of the staggered approach being pursued here,the purely electromagnetic terms
curlsan+1, ∂an+1 and∇sχn+1 appearing here are treated in the mechanical part of the staggered
algorithm as being known and fixed.

The next global step begins with the update of the boundary conditions to the next discrete
time t = tn+1 for the time interval[tn, tn+1] of durationtn+1,n : = tn+1 − tn. Consider first
the local algorithm at the Gauss-point level for the internal variables and the Kirchhoff stress
K . In the backward-Euler context, these are determined as usual as implicit functions of the
current (unknown) deformation gradientFn+1 and (in the current rate-dependent context) time
step sizetn+1,n. In particular, the backward-Euler integration of (1.24) over [tn, tn+1] results in
the algorithmic relations

sph(lnV
E n+1) = sph(lnV tr

E n+1,n) ,

sgn(dev(lnV
E n+1)) = sgn(dev(lnV tr

E n+1,n)) ,
(1.43)

in the context of (1.20) and (1.24)1, and so in the reduced two-dimensional algorithmic system

ǫ
E n+1 = ǫtr

E n+1 −
√

3
2

(ǫ
P n+1 − ǫ

P n) ,

ǫ
P n+1 = ǫ

P n + γ0 〈fP n+1,n/σ0〉m0 tn+1,n ,
(1.44)

for ǫ
E n+1 : = |dev(lnV

E n+1)| andǫ
P n+1, respectively, withǫtr

E n+1 : = |dev(lnV tr
E n+1,n)|. Here,

lnV tr
E n+1,n = lnV tr

E n(Fn+1) : = 1
2

ln(Fn+1C
−1
P nF T

n+1) (1.45)

represents as usual the trial value oflnV
E n+1, with Fn+1,n : = Fn+1F

−1
n the relative deformation

gradient. From (1.44), one obtains the three-dimensional implicit algebraic system

rǫ
E

n+1,n(ǫ
E n+1, ǫP n+1,Fn+1) = 0 ,

rǫ
P

n+1,n(ǫ
E n+1, ǫP n+1,Fn+1) = 0 ,

(1.46)

of non-linear algebraic relations forǫ
E n+1 andǫ

P n+1, where

rǫ
E

n+1,n(ǫ
E n+1, ǫP n+1,Fn+1) = ǫ

E n+1 +
√

3
2

(ǫ
P n+1 − ǫ

P n) − |dev(lnV tr
E n+1,n)| ,

rǫ
P

n+1,n(ǫ
E n+1, ǫP n+1,Fn+1) = ǫ

P n+1 − ǫ
P n − γ0

〈
f

P n+1,n

σ0

〉m0

tn+1,n .
(1.47)

These determine in particular the explicit form

Kn(αn+1 ,Fn+1) = 3κ0 sph(lnV tr
E n(Fn+1)) + 2µ0 ǫ

E n+1 sgn(dev(lnV tr
E n(Fn+1))) (1.48)

of the algorithmic Kirchhoff stress from (1.20). The system(1.46) can be written in the compact
form

r
α n+1,n(αn+1 ,Fn+1) = 0 , (1.49)

with
α : = (ǫ

E
, ǫ

P
) (1.50)
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and

r
α

: = (rǫ
E
, rǫ

P
) . (1.51)

For fixedFn+1 andtn+1,n, iterative solution of (1.49) yields in the usual fashionαn+1 as an
implicit function ofFn+1, and soKn+1 as such a function.

The current unknown deformation fieldξn+1 satisfying the current boundary conditions and
momentum balance is given by solution of

mn+1,n(ξn+1,αn+1 , ξ
∗
) = 0 (1.52)

for all ξ
∗
, with

mn+1,n(ξn+1,αn+1 , ξ
∗
) : =

∫

Br

{̺0 an+1,n(ξn+1) − det(∇rξn+1) ln+1} · ξ∗

+

∫

Br

Kn(αn+1 ,∇rξn+1) · ∇n+1ξ∗

−
∫

∂Br

|cr(∇rξn+1)| tc n+1 · ξ∗

(1.53)

the weak momentum balance functional obtained from the algorithmic form of (1.15). Again,
in the context of the current staggered approach, the Lorentz force ln+1 is assumed known
and given. Here, the material acceleration2 an+1,n(ξn+1) : = a(ξn+1, tn+1,n; ξn, ξ̇n, ξ̈n) is
considered algorithmically a function ofξn+1, tn+1,n, and the state at the endt = tn of the
last time step, in the context of,e.g., the Newmark algorithm. In addition, the notations
∇n+1ξ∗ : = (∇rξ∗)F

−1
n+1 and thatcr(F ) : = cof(F )nr have been introduced, withnr the

outward unit normal to the boundary∂Br of Br.

As usual, the finite element approximation to (1.53) in the Lagrangian context is based on
the discretization

B ≈
⋃

e
Be (1.54)

of B into a finite number of elementsB1, B2, . . .. In terms of the corresponding finite element
approximation

ξe = Hx
e (1.55)

for the element deformation fieldξe in terms of the element shape function matrixH, as well
as in terms of the element nodal position vectorxe, one obtains, as usual, the element represen-
tation

F e(xe) : = ∇e
r ξe = (∇e

r H)S
x

e (1.56)

for the deformation gradient, with(∇e
r H)S

xe : = ∇e
r (Hxe). In particular, these induce the

discretized form

mn+1,n(ξn+1,αn+1 , ξ
∗
) =

∑
e
f

e
n+1,n(xe

n+1, ee
n+1) · xe

∗
(1.57)

2Not to be confused with the vector potentiala.
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of the functional in (1.53), with

f
e
n+1,n(xe

n+1, ee
n+1)

: =

∫

Be
r

H
T
H{̺0 ae

n+1,n(xe
n+1) − det(F e(xe

n+1)) ℓ e
n+1} + (∇e

n+1H)ST Ke
n+1,n(ee

n+1,F
e(xe

n+1))

−
∫

∂Be
r

|cr(F
e(xe

n+1))|HTte
c n+1

(1.58)
with ∇e

n+1H : = (∇e
r H)F−1

n+1 andle = Hℓ e. With the help of the connectivity relations

x
e = I

e
x
x

s (1.59)

between the element and structural nodal positions, (1.57)reduces to

mn+1,n(ξn+1,αn+1 , ξ
∗
) = f

s
n+1,n(xs

n+1, es
n+1) · xs

∗
, (1.60)

with
f

s
n+1,n(xs

n+1, es
n+1) : =

∑
e
I
eT

x
f

e
n+1,n(Ie

x
x

s
n+1, ee

n+1) . (1.61)

Sincexs
∗

is arbitrary, (1.52) reduces to the discrete form

f
s
n+1,n(xs

n+1, es
n+1) = 0 (1.62)

in terms off s
n+1,n. For its iterative solution, we require as usual the algorithmic derivative

∂ a
x

s
n+1

f
s
n+1,n =

∑
e
I
eT

x
(∂ a

x
e
n+1

f
e
n+1,n) Ie

x
(1.63)

of this at fixedℓ s
n+1, with

∂ a
x

e
n+1

f
e
n+1,n : =

∫

Be
r

H
T
H{̺0(∂x

e
n+1

an+1,n)e
n+1 − det(F e(xe

n+1)) (ℓ e
n+1 ⊗ I)(∇e

n+1H)S}

+

∫

Be
r

(∇e
n+1H)ST{(∂ a

Fn+1
Kn)e

n+1 F eT

n+1 − Ke
n+1,n △ I}(∇e

n+1H)S

−
∫

∂Be
r

H
Tte

c n+1 ⊗ (∇e
n+1H)ST

{
|cr|−1[(cr · cr)I − cr ⊗ cr]

}e

n+1

(1.64)
via (1.1)3. Here,

(∂ a
Fn+1

Kn)F T

n+1 = (∂ a
lnV

tr
E n+1,n

Kn)(∂
Fn+1

lnV tr
E n)F T

n+1 (1.65)

represents the “push-forward” to the current algorithmic configuration of the algorithmic deriva-
tive of Kn with respect toFn+1 from (1.48) in terms of the notation
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tr
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(N tr
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(1.66)
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Here,∂
αn+1

r
α n represents the Jacobian of the system (1.49),(∂

αn+1
r
α n)

−1
ǫ
E

ǫ
E

the upper left di-
agonal element of its inverse(∂

α
r
α n)

−1, ǫtr
E n+1,n : = |dev(lnV tr

E n+1,n)| andN tr
E n+1,n : =

sgn(dev(lnV tr
E n+1,n)). Note that

(∂
Fn+1

lnV tr
E n)F T = 1

2
(D ln)(V tr

E n+1,n) (I ¤ Btr
E n+1,n + Btr

E n+1,n △ I) (1.67)

follows from (1.1)2,3 and (1.46)1. As usual, the Fŕechet derivativeD ln of the logarithmic
mappingln on second-order symmetric Euclidean tensors is calculatedwith the help of the
functional calculus (e.g., Šilhav́y, 1997, §1.2.5).

In the context of the finite element method, the Eulerian-based implementation of the elec-
tromagnetic model is based as usual on the spatial discretization

R ≈
⋃

e
Re (1.68)

of R into a finite number of elements. The corresponding approximation

ae = Na
e (1.69)

for the vector potential field at the element levelae in terms of the element shape function
matrixN analogous to (1.55) in the mechanical case results in the axisymmetric case in element
representation

∇e
s ae = (∇e

s N)S
a

e (1.70)

for the corresponding gradient analogous to (1.56). In the more general 3-dimensional case in
which a experiences jump discontinuities, the element formulation would have to be general-
ized,e.g., to Néd́elec elements (Ńed́elec, 1980, 1986) or least-squares-based approaches (Jiang
et al., 1996). On this basis, one obtains the spatially-discretized form

∑
e
(Ae

a
e + B

e
ȧ

e) · ae
∗

=
∑

e
c

e · ae
∗

(1.71)

of (1.41), with

A
e : =
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∩Re
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(1.72)

as well as

c
e : =

∫

W
ck
∩Re

ck κ−1
EM

σ−1
EM

I N
Teϕ . (1.73)

Using the connectivity relation

a
e = I

e
a
a

s (1.74)

between the element and structural nodal vector potential values, the arbitraryness ofa
e
∗

leads
to the structural form

A
s
a

s + B
s
ȧ

s = c
s (1.75)
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of (1.71), with

A
s =

∑
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e T

a
A

e
I
e
a

, B
s =

∑
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I
e T

a
B

e
I
e
a

, c
s =

∑
e
I
e T

a
c

e , (1.76)

formally analogous to (1.61). Integration of (1.75) via thegeneralized trapezoidal rule over the
interval [tn, tn+1] yields the system

[
A

s
B

s
n+1

I −α tn+1,n I

] [
a

s
n+1

ȧ
s
n+1

]
=

[
c

s
n+1

a
s
n + (1 − α) tn+1,nȧ

s
n

]
(1.77)

to solve foras
n+1 and ȧ

s
n+1, in the context of the current staggered approach with fixedx

s
n+1.

In contrast to (1.62) forxs
n+1, note that this last relation can be solvedexplicitly for these

quantities. Here, the parameter0 ≤ α ≤ 1 controls the amount of artificial damping exerted on
the discrete system. Forα = 1 (maximal damping), the methods coincides with backward-Euler
integration, whileα = 1/2 (no damping) yields the more accurate trapezoidal rule exhibiting
an accuracy ofO(∆t2) for a maximal time step size∆t → 0 (Hughes, 1987). Nevertheless,
to switch from the most accurate valueα = 1/2 to a valueα > 1/2 at the beginning of
the simulation and after a specified computation time may filter out non-physical oscillations
entering by the coupling mechanism.

Note that (1.75) reduces to a time independent linear equation for those degrees of freedom
that lie outside the tool coil or the workpiece due toκ−1

EM
= 0 there. These degrees of freedom

depend only indirectly on the time by their coupling to thosedegrees of freedom lying in areas
with κ−1

EM
> 0 (i.e., the tool coil or the workpiece). As in the mechanical case, all spatially-

discretized integrals are evaluated in the standard fashion via Gauss quadrature. Particularly,
in the axisymmetric situation, the computation of the integrals reduces to a two dimensional
quadrature, after cylindrical coordinates have been introduced and the (trivial) azimuthal inte-
gration has been performed. In terms of efficiency, the non-local relations, expressed in the
integral overAck in (1.72), linking all degrees of freedom within the same coil winding, should
be handled with some care. It is recommended to start with a standard assemly of a sparse mass
matrix and to incorporate the additional couplings afterwards. One possibility is to introduce an
additional degree of freedom for each coil winding and to assign the total currentIn+1 flowing
through this winding at timetn+1 to it. The resulting matrix deviates from a standard sparse
matrix only byN columns and rows, whereN denotes the number of coil windings. In the nu-
merical examples reported on below, another technique has been applied: After the application
of a standard mass matrix in(1.77))2, a second matrix is applied, projecting on the subspace
defined by the additional couplings. Such a factorization ofthe matrixBs

n+1 can easily be real-
ized by a modification of the matrix vector multiplication inthe employed iterative solvers (see
below). Consequently, the sparse structure of the matrix need not to be distorted. Whether this
method is more effective has yet to be established.

In summary, since we are nelgecting temperature effects here, and sincecurlsa × v is neg-
ligible and has been neglected in the above algorithmic formulation, the simplified form (1.42)
of the Lorentz force represents the only coupling between the electromagnetic and mechanical
fields in the mechanical part of the model. Likewise, becausecurlsa × v is negligible, the cur-
rent (deformed) shape of the workpiece inR, which determines the spatial distribution ofσ

EM
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in R appearing in (1.77) via (1.72), represents the only coupling between the mechanical and
electromagnetic fields in the electromagnetic part of the model. In this framework, the com-
bined model is solved in an iterative staggered fashion using a two-mesh Lagrangian-Eulerian
approach. To discuss this iterative staggered scheme, assume again that the initial boundary
value problem and internal variable evolution relations have been solved up to the discrete time
t = tn, such thatxs

n anda
s
n, together with their temporal derivatives, as well as the correspond-

ing internal variables, are all known. On this basis, we havethe following algorithm:

1. Initialize the iteration by settingxs(k)
n+1 = x

s
n, ẋs(k)

n+1 = ẋ
s
n andẍ

s(k)
n+1 = ẍ

s
n for k = 1.

2. GivenIn+1 in the tool coil, computeas(k)
n+1 andȧ

s(k)
n+1 on the Eulerian mesh via (1.77). As

indicated, this depends on where one is in the system,i.e., whether or not the point in
question is in the workpiece, tool coil, or air. To this end, the assembly routine deter-
mines whether the nodal points of the Eulerian mesh lie in air, in the tool coil, or in the
workpiece, and so the current spatial distribution ofσ

EM
.

3. Having thenxs(k)
n+1, a

s(k)
n+1 and ȧ

s(k)
n+1, the corresponding Lorentz forcel(k)

n+1 is obtained on
the basis of (1.42) via data transfer and projection from theEulerian to the embedded
Lagrangian mesh for the workpiece. Then, the system consisting of (1.49) and (1.62) is
solved iteratively at fixedl(k)

n+1 to obtainx
s(k+1)
n+1 , ẋ

s(k+1)
n+1 , ẍ

s(k+1)
n+1 , and the corresponding

internal variables.

4. Steps 1.-3. are repeated fork = 2, . . . until convergence is obtained, yieldingxs
n+1, a

s
n+1,

and the internal variables in the entire structure.

In all simulations,k rarely exceeded 3 (e.g., if both the velocity of the structure is quite high
and the flux density of the decaying electromagnetic field inside the structure is still signifi-
cant; see Section 1.6) and in any case was less than 8. The algorithms for the electromagnetic
and mechanical parts of the current coupled-field model havebeen implemented at the element
level into the finite element program SOFAR3. In particular, this has been done for the current
4-node axisymmetric case as well as for the 8-node three-dimensional case. Elsewhere, a stabi-
lized 8-node shell-element formulation (Reese et al., 2005)for the current model has also been
developed and is currently being implemented.

1.5 Data transfer and numerical convergence behavior

In order to investigate the effect of data transfer between the mechanical and electromagnetic
parts of the staggered algorithm on the numerical solution,consider the electromagnetic forming
of a round sheet metal workpiece with the thickness of 1.2 mm and radius of 52 mm consisting
of the aluminum alloy AC120. As shown in Figure 1.1, the work piece and tool coil are idealized
as being axisymmetric, with the tool coil lying 0.6 mm below the workpiece. The sheet metal
is clamped down at a radius of 34.75 mm by the die holder. For simplicity, the corresponding
contact is idealized here by simply fixing the upper and lowersurface nodes of the plate mesh
in the region of the die holder.

3Small Object-oriented Finite-element library for Application and Research
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Application of the model from Section 1.3 and its algorithmic form in Section 1.4 requires
the specification of the isotropic hardening behavior of AC120. As a first approximation, the
quasi-static uniaxial test data of Badelt et al. (2003) were used for this purpose. Identification
of the semi-empirical form

ψ
P
(ǫ

P
) = c1 (ǫ

P
+ c2)

c3 + c4 ln(1 + c5 ǫ
P
) (1.78)

of the dependence of the inelastic partψ
P

of the free energy density onǫ
P

related to energy
storage in the material due to isotropic hardening based on these data yieldsσ

F0 = 116.0 MPa,
c1 = −12.39 MPa,c2 = 0.001, c3 = 0.0697, c4 = 80.31 MPa andc5 = 36.59 for AC120. In
particular, this form determines the quasi-static contribution σ

Y
= −ς

P
to the flow stress from

(1.21). Further, values ofσ0 = 90 MPa, γ0 = 104 s−1 andm0 = 5 for aluminum relevant
for strain-rates of≥ 103 s−1 were taken from the literature (Jones, 1997). Lastly, the elastic
behavior of AC120 is characterized by the valuesλ = 39404 MPa andµ = 26269 MPa for the
Lamé constants at room temperature.

Figure 1.3: Finite element discretization of the coupled problem consisting of a fixed Eule-
rian mesh for the electromagnetic system and deforming Lagrangian mesh for the sheet metal
workpiece.

The finite element meshes used for the mechanical part of the simulation (see Figure 1.3)
are based on four-node bilinear elements. The discretization of the electromagnetic part of the
coupled problem is also based on such elements with edges parallel and perpendicular to thez
axis. As mentioned above, this is in contrast to the three-dimensional case in which disconti-
nuites arise in the electromagnetic fields, requiring more sophisticated numerical methods. In
order to improve efficiency, the design of both meshes are adapted from the start to the ex-
pected deformation and electromagnetic field development.In particular, the element density in
the mechanical mesh is larger near the contact point with thedie holder as well as at the center
of symmetry where bending and deformation are most extreme.Analogously, in the electro-
magnetic case, the region traversed by the moving mechanical mesh as well as the gap between
the tool and work piece are more finely discretized than the remaining regions (see Figure 1.3).
This is not only necessary due to the large gradients in the vector potential arising here, but also
to minimize additional errors due to inaccurate local approximation in elements with internal
diffusivity jumps and inaccurate transfer of the Lorentz forces. More on this in what follows.
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Consider in particular the transfer of Lorentz forces from the electromagnetic to the me-
chanical mesh of the workpiece. In particular, this is basedon (1.42). To begin, this involves
identifying the current positions of element nodes from themechanical mesh in the electromag-
netic mesh. As implied in Figure 1.4, using these, the value of l is calculated at these positions
from the nodal values ofae andȧ

e in the electromagnetic mesh (note that∇sχ = 0 in the work-
piece) via interpolation using the element shape functions. These interpolated values are then
passed to the mechanical mesh for use in the solution of (1.58).

Figure 1.4: Data transfer from the (white-node) electromagnetic mesh to the (black-node) me-
chanical mesh at the element level.

Going in the other direction, the distribution ofκ
EM

(or in the numerical case ofκ−1
EM

) has
to be transferred from the mechanical to the electromagnetic mesh. This is done directly by
determining whether the Gauss points of the current electromagnetic mesh lie in the workpiece,
tool, die or air and setting the value ofκ

EM
accordingly. The simplicity of both of these is

that they require no remeshing. The question of whether or not such an approach is really more
effective than remeshing (in particular the electromagnetic mesh) is a matter of current research.
A clear disadvantage of current approach is that jumps of thediffusivity within elements in
electromagnetic mesh reduce the local approximation order(consistency) of the finite element
discretization. Nevertheless, the resulting loss of accuracy is limited due to the fact that only a
small percentage of small elements is affected.

To get a better understanding of the simulation results of the fully coupled simulation as
described in the proceeding section, consider first the purely mechanical case. In particular,
attention is focused on idealized body-force-based loading analogous to the Lorentz force such
as those shown in Figure 1.10.

Here, in the time interval from 0 to 20µs, a body force densityf with non-trivialz-component
fz is imposed on all points of the structure betweenr = 9 mm andr = 35 mm. After 20µs,
this force is turned off. Spatially, this force is assumed tobe constant in the radial direction
and to vary in the axial direction as depicted in Figure 1.10.In both the linear and exponential
cases, the mean value offz is 10 N mm−3 over the workpiece thickness. Since they both have
the same mean value, we should obtain the same mechanical simulation results. On this basis,
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Figure 1.5: Exponential and linear idealized Lorentz body force density distributions (z-
component) in the circular sheet metal plate used in the investigation of convergence behavior
and the data transfer approach used in the current work (see text for details). Left: Distributions
in the radial direction atz = 0. Right: Distributions in the vertical direction atr = 0.

a series of finite element simulations with different mesheswere performed for both volume
force distributions. All meshes employed were of the type described above (see also Figure 1.3)
and hierarchically refined. Figure 1.6 shows the forming stages of the plate at various instances
for the linear volume force distribution and a mesh with 480 elements in four layers.
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Figure 1.6: Forming stages (left) and solution convergencebehavior (right) as a function of the
number of elements over the thickness for the case of the linear body force density distribution
shown in Figure 1.5. Initially, the displacement due to acceleration is large in the coarse meshes
due to their higher rigidity; as time proceeds, however, this tendency reverses as deformation
begins to dominate, at which point typical convergence behavior (i.e., increased deformation
with number of elements) is observed. See text for details.

As shown on the left in this figure, such body force distributions lead to an initial acceleration
of the middle of the plate. In later stages, the plate center is dragged along and accelerated
by the induced inertial force, resulting in the cap-like form at the end of the forming process
after approximately 120µs. The convergence behavior of the solution as a function of time
for the linear distribution is shown on the right in Figure 1.6. Here, the vertical displacement
of the workpiece at its center (r = 0) for three different meshes is depicted. Initially, coarser
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meshes exhibit more (rigid-body-like) displacement sincefiner meshes accelerate less rigidly
under dynamic loading. With time, however, deformation in the structure begins to dominate
and this trend reverses, resulting in the usual convergencebehavior at the end of the process,
i.e., finer meshes are “softer.”
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Figure 1.7: Overestimation of exponential body force density distribution (left) due to bilinear
interpolation for the case of two elements over the thickness of the plate. Because of this, the
convergence behavior (right) is counterintuitive and contrary to the previous example with a
linear distribution.

As shown in Figure 1.7, in the case of the exponential distribution (using the same bilinear
interpolation scheme) and two elements over the thickness,the reverse tendency in the con-
vergence behavior is observed,i.e., mesh refinement results in decreased deformation. This
results from the data transfer process as based on bilinear interpolation. Indeed, in this case,
two elements over the thickness are insufficient to represent the exponential form and lead to
an overestimate of the Lorentz force in the Gauss points of the mechanical mesh, and hence
more deformation. This overestimation of the force in coarse meshes can be reduced mapping
the values of the Lorentz force from the electromagnetic mesh directly onto the Gauss points
of the mechanical mesh. In any case, using a sufficient numberof elements over the thickness
alleviates the problem.

1.6 Fully coupled simulation

Now, the fully coupled elastoviscoplastic electromagnetic multifield algorithm developed in
Section 1.2 - Section 1.3 is applied to the case of electromagnetic sheet metal forming. Initial
results of coupled simulations of electromagnetic sheet metal forming using an elastoplastic ver-
sion of the model (neglecting the rate dependency) have beenpresented by Kleiner et al. (2004).
The forming of aluminum tubes with an elastoviscoplastic mechanical model is considered by
Svendsen and Chanda (2003). As described in Section 1.5, the experimental configuration con-
sists of a tool, a workpiece and a die holder as depicted in Figure 1.1. The workpiece consists
of the aluminum alloy AC120, while the tool coil consists of copper. The tool coil has a height
of 11.5 mm and consists of 9 windings, each of which is 2.5 mm wide with 0.3 mm distance
to the neighbored windings. The radius of the inner area, which is free of windings, amounts
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to 9 mm. As mentioned before, the coefficients in the semi-empirical form (1.78) have been
fitted by experimental data to model the dependence of the inelastic partψ

P
of the free energy

density onǫ
P

related to energy storage in the material due to isotropic hardening, yielding the
coefficients stated in Section 1.5. The same values for the elastic and viscoplastic parameters
as in Section 1.5 have been employed. Simulation results to be discussed in what follows have
been carried out for converged solutions involving mechanical meshes of 360 elements and 4
elements over the thickness.

Deformation of the workpiece is driven here by a pulsed current (see Figure 1.8) that induces
a magnetic field around the tool coil which is strongly influenced by the movement of the
workpiece.
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Figure 1.8: Measured input current used in the electromagnetic forming simulation.

The corresponding simulated magnetic field is shown in Figure 1.9. In particular, the distribu-
tion of the radial component of the magnetic flux density at 20µs (left) and 80µs (right) during
forming is shown. Note that by virtue of (1.42), this component generates the dominating axial
component of the force vector acting on the structure. In thedark areas, flux densities of about
11 Tesla are achieved, decreasing down to about 1 Tesla in thesurrounding area. As can be
seen, after 80µs, the magnetic flux density and so the Lorentz force have decayed away, such
that further plate deformation is solely driven by inertialforces.

Figure 1.10 shows the volume force density distribution in vertical direction att = 10µs
computed from the field computation (the radial component ofthe volume force density is in
general several orders smaller than the vertical one and is therefore not examined here).

The diagram on the left hand side of Figure 1.10 shows the Lorentz force (density) distribu-
tion in the radial direction at intervals of∆z = 0.2 mm, and that on the right-hand side shows
the vertical force distribution at∆r = 5 mm. The location of the tool coil and its windings is
clearly mirrored in the radial force distribution. On the basis of the non-linear parabolic charac-
ter of the electromagnetic part of the coupled-field model (i.e., (1.4) and (1.42)1), the expected
exponential decay of the body force in the direction of the thickness of the workpiece is evident.

Forming stages of the plate at various instances and the corresponding accumulated inelastic
strain are shown in Figure 1.11.

Initially, the part of the sheet metal lying directly over the tool coil is subject to large induced
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Figure 1.9: Radial component of the magnetic flux density at 20µs (left) and at 80µs (right)
inducing the Lorentz force driving the forming. As the sheetmetal moves away from the tool
coil, the magnetic field diffuses into the region left vacantby the sheet-metal plate, resulting in
a decrease in the intensity of the magnetic flux and thus of theLorentz force.
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Figure 1.10: Simulatedz-component of the Lorentz force density distribution at 10µs. Left:
Distribution in radial direction depicted at different heightsz. Right: Distribution in vertical
direction depicted for different radial positionsr.

Lorentz forces and begins to accelerate. As forming proceeds, this part pulls the center of the
plate along with it. Forming in this part of the plate is then due to the corresponding inertial
forces. These induce the maximum accumulated inelastic strain in the structure at the top of the
cap as shown. A detailed investigation of the development ofstrain and stress in the structure is
the subject of work in progress.

1.7 Discussion

To begin, consider the influence of numerical errors as well as modeling simplifications on the
simulation results. In additional to the usual finite element discretization errors, there are several
additional sources for numerical errors in the described coupled algorithm, which, however,
tend to zero with increasing mesh refinement. As discussed above, for example, the data transfer
process is a source of such error, in particular with respectto the Lorentz force. Secondly, since
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Figure 1.11: Forming stages of the sheet metal plate as a function of time. The shading repre-
sents the development of the accumulated inelastic deformation ǫ

P
. See text for details.

no matching of elements of the mechanical and of the electromagnetic meshes is enforced,
the local finite element approximation (consistency) becomes worse in those elements of the
electromagnetic mesh, that are partially covered by the structure. Consequently, the Lorentz
forces computed in these elements are less accurate. Of course, this error is reduced by an
increasing level of mesh refinement. The resulting loss of accuracy is compensated by a gain of
efficiency, since the chosen arrangement allows for simple mesh generation in both subsystems.
Particularly, no remeshing or mesh deformation on the electromagnetic side is necessary, despite
the movement of the structure. To judge whether the decreased numerical expenses justify the
accompanying loss of accuracy, a further implementation iscurrently being developed in which
the mechanical and the electromagnetic simulation are still carried out in different meshes, but
all elements of the mechanical mesh have an identical counterpart in the electromagnetic mesh.
This allows a direct element-to-element transfer of Lorentz forces without the need of searching
the active element in the electromagnetic mesh and without an additional error due to reduced
consistency. However, such an implementation requires either remeshing or deformation of the
electromagnetic mesh in every step of the Newton iteration of the mechanical structure due to its
movement. In this vein, the method of Liao (e.g., Cai et al., 2004, and references therein cited)
is an effective way to redistribute mesh points of a given grid preserving its topology. Such
methods allow to adapt the electromagnetic mesh to the moving structure without remeshing
and thus seem to be a good choice for the type of coupled problems discussed here.

Compared to the numerical errors reported on above, the physical model simplifications
seem to be less significant, at least at those stages of mesh refinement that have been exam-
ined, although a final verification of this assumption has notbeen performed. To estimate the
influence of the convective terms which have been neglected,test simulations accounting for
curlsa × v in the simulation of the electromagnetic field have been carried out. The computed
axial deformation of the structure during the first 60µs did not deviate from the results neglect-
ing this term more than1%. This is less than the influence of the numerical errors described
above at the levels of mesh refinement considered here. Thus,neglectingcurlsa×v is justified,
and useful also from the point of view that it destroys the symmetry of the equation system to
be solved. In particular, this would mean that the iterativepreconditioned conjugate gradient
solver used to solve (1.77) could no longer be used. For the test computations, a BICGSTAB
solver has been employed (e.g., Meister, 1999). Beyond convection, the solution seems to be
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quite insensitive with respect to changes in the shape and position of the outer boundary, where
homogeneous Dirichlet boundary conditions are assumed. The influence of the approximation
of the tool coil by axisymmetric tori as described in Section1.5 on the simulation results has not
yet been investigated and represents work in progress. Similar, the influence of approximating
the die holder simply by fixing the relevant degrees of freedom is current being investigated.

In further work in progress, methods for rigorous a posteriori error estimation are being
implemented. The size of the numerical errors can be estimated and minimized by a higher
level of discretization if necessary. Moreover, a posteriori error estimators localize areas with a
high contribution to the overall error. The information obtained can be used to design optimal
meshes which maximize the accuracy for given computationalresources. A rigorous control of
the numerical error is particularly important with regard to model identification.



Chapter 2

On the effect of current pulses on the material
behavior during electromagnetic metal forming∗

Abstract – Electromagnetic sheet metal forming (EMF) is an example of a high-speed forming pro-
cess driven by the dynamics of a coupled electromagnetic-mechanical system. Basic physical processes
involved in EMF such as, e.g., inelastic and hardening behavior, or inertia,have been considered in pre-
vious works (Stiemer et al., 2006a; Svendsen and Chanda, 2005). Thepurpose of the current work is
the investigation of temperature development during EMF and a possible reduction in the yield stress
due to electric currents. While thermoelastic and viscoplastic effects are wellunderstood (Lemaitre and
Chaboche, 1990), the possible influence of electric currents on dislocation motion, generally referred to
as the electro-plastic effect (Conrad and Sprecher, 1989; Varma andCornwell, 1979), is still an unre-
solved issue. It is shown here that such an effect is at most of second-order and can most likely be safely
neglected in the modeling and simulation of industrial EMF.

2.1 Introduction

In electromagnetic metal forming (EMF), a strong pulsed magnetic field generated in the tool
coil adjacent to an electrically conducting work piece induces eddy currents in the work piece
which interact with the magnetic field, inducing in turn a Lorentz force in the workpiece which
drives the forming process. The entire forming process lasts in the order of 100-300µs and
achieves strain-rates of up to104 s−1. Compared to other forming methods, it offers increased
formability for certain kinds of materials, reduction in wrinkling, the possibility of combining
forming and assembly operations, reduced tool-making costs etc.. An example of the basic ex-
perimental setup for the case of sheet metal forming is shownin Figure 2.1. The time-dependent
current in the tool coil shown on the right depicts the pulsednature of this current and so that
of the resulting magnetic field.

The further development of EMF as an industrial forming process depends in particular on
the availability and use of reliable simulation tools for the corresponding coupled multifield
problem. In particular, these must be able to deal with high strain ratesǫ̇ ≥ 103 s−1, large
current densities|j | ≥ 104 A/mm2, and strong magnetic fields|b| ≥ 100 T. In this context we
examine possible effects in the material such as a reductionin yield stress due to temperature
and strong electrical currents.

In the literature, the electroplastic (EP) effect has been postulated to contribute to the behav-
ior of metals under combined mechanical and electromagnetic loading (Molotskii, 2000; Troit-
skii, 1969). The idea here is that an interaction between theelectric current and dislocations
may affect the hardening behavior and in particular the yield stress. There has been a consid-

∗Unger et al. (2006b)
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Figure 2.1: Electromagnetic sheet metal forming setup.

Figure 2.2: Experimental results of Okazaki et al. (1979). During tensile testing of a circular
bar, an imposed current density results in stress drops. Thecurrent density achieved maximum
values of from 4060 to 7680 A/mm2 and lasted for about 60µs. For pulse no. 2 tensile stress
decreased to about 70% of its original value.

erable debate regarding the significance of such an effect inpolycrystalline metals (Goldman
et al., 1980).

Figure 2.2 shows the current density and tensile test response of an experiment performed
by Okazaki et al. (1979). In their experiment a titanium bar with diameterd = 0.511 mm was
subjected to simple tension tests. As shown in Figure 2.2, the discharge of a capacitor bank
at given times during this loading resulted in an sudden increase of the current density and
in a time-correlated drop in the yield stress. Okazaki et al.(1979) showed that each of these
current-density “jumps” resulted in a temperature rise of about 12.2 K to 99.9 K depending
on the imposed current density. Since a temperature rise of this order of magnitude implies
a drop of the yield stress of about 0.4% and 5.0%, authors favoring the electroplastic effect
concluded that the observed drops are due to an interaction of electron movements and the
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moving dislocations. Recently, Bilyk et al. (2005) showed that the introduction of an EP effect
is not necessary to explain the stress drops shown in Figure 2.2. They concluded that the stress
drops can be modeled by an accurate modeling of viscoplasticrate effects during pulsing. The
work presented here confirms the view that the stress drops can be explained with the help
of conventional effects. However, it is concluded that mainly thermal expansion leads to the
observed stress drops.

2.2 Thermoelastic, viscoplastic model including Joule heating

The multifield material model used in the current work represents a special case of the general
continuum thermodynamic formulation of such models from Svendsen and Chanda (2005) to
the formulation of models for electromagnetic thermoelastic, viscoplastic solids. In particular,
this work provides a framework for the treatment of EMF processes also accounting for the
interaction between the electromagnetic and thermomechanical effects atlarge deformations.
The case of the simple tension tests mentioned above is somewhat simpler than that of sheet
metal forming shown in Figure 2.1 in the sense that the deformation is significantly smaller.
Following Svendsen and Chanda (2005), in our case the magnetic field can be modeled as
diffusive over the length- and timescales of interest. In this case Maxwell’s equations and
Ohm’s law yield the diffusive field relation

0 = ∂b − κ
EM

∇2b (2.1)

for the spatial magnetic flux densityb. Here,κ
EM

: = σ−1
EM

µ−1
EM

represents the magnetic diffusiv-
ity, µ

EM
the magnetic permeability, andσ

EM
the electric permittivity. (Note that all material and

modeling data can be found in tables 2.1 and 2.2). In particular, on a timescaleτ , κ
EM

implies
a skin depth (i.e., penetration depth of the magnetic field into the material) of ℓ

EM
=

√
κ

EM
τ .

As indicated in Table 2.1, for the case of titanium, the skin depth is significantly larger than the
radius of the “bar” (i.e., a wire here). Consequently, the current density is constantthroughout
the whole cross section. For a long wire (i.e., l/r0 ≫ 1), (2.1) can be solved to obtain

(br, bϕ, bz)(r) = (0,
σ

EM
Ir

2πr2
0

, 0) (2.2)

in cylindrical coordinates(r, ϕ, z) (Jackson, 1975). Here,I represents the imposed current and
r0 the radius of the wire. In turn, this implies a constant current density

(jr, jϕ, jz)(r) = (0, 0, I/πr2
0) (2.3)

within the cross-section of the wire.

Consider next the energy balance and temperature evolution in the bar. Here, the chacteristic
length scale is determined as usual by the thermal diffusivity κ

TM
: = kr/̺rcr, wherekr repre-

sents the thermal conductivity,cr the specific heat capacity, and̺r the mass density at reference
temperatureθr. As usual on a timescaleτ , significant thermal conduction will take place on
the length scaleℓ

TM
=

√
κ

TM
τ . Since this length scale is much smaller than the width of the

wire (see Table 2.1), we are justified in assuming adiabatic conditions over the timescale of the
pulses (≤ 100µs). Over longer timescales, of course, this is not the case. Finally, in contrast
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to EMF we neglect the radially acting Lorentz force for two reasons; firstly its magnitude is
significantly smaller than the applied mechanical loads (Bilyk et al., 2005) and secondly the
structural response is minimal due to the present setup geometry.

ℓ
EM

/r0 ℓ
TM

/r0

Al 5.8 × 100 4.0 × 10−1

Ti 2.2 × 101 1.2 × 10−1

uniform adiabaticAssumption
current density during pulsing

Table 2.1: Scaling relations for electromagnetic diffusion and thermal diffusion.

With these simplifications the temperature is homogeneous and treated as an internal variable
(see (2.10)3 below). Consequently, the deformationξ is the only thermomechanical field given
as usual by the weak form ∫

Br

̺r ξ̈ · ξ
∗
+ K · ∇ξ

∗
= 0 (2.4)

for pure kinematic boundary conditions with respect to the reference configurationBr for all
corresponding test fieldsξ

∗
. Here,K represents the Kirchhoff stress. As usual, this latter

variable, along with the internal variables, is given by a material model. For simplicity, attention
is resticted here to the case of (isotropic) thermoelastoviscoplasticity with isotropic hardening.
Further, in the case of metals, we have small elastic strain.The relevant internal variables are
then the elastic left logarithmic stretchlnV

E
and the accumulated inelastic strainǫ

P
. On this

basis the thermodynamic formulation being pursued here is based on specific model relations
for the referential free energy densityψ as well as on the evolution relations for the internal
variables. In particular, assuming for simplicity that theelastic behavior is not affected by
inelastic processes such as damage, the split

ψ(θ, lnV
E
, ǫ

P
) = ψ

E
(θ, lnV

E
) + ψ

P
(θ, ǫ

P
) (2.5)

of the free energy into thermoelastic and inelastic parts isjustified (e.g., Svendsen, 2001). As-
suming for simplicity that the specific heat capacitycr is constant (Rosakis et al., 2000), and
exploiting the condition of small elastic strain, one obtains the thermoelastic neo-Hooke form

ψ
E
(θ, lnV

E
) = 1

2
λr (I · lnV

E
)2 − (3λr + 2µr) αr(θ − θr) (I · lnV

E
) + 1

2
µr(lnV

E
· lnV

E
)

+ ̺rcr [θ − θr − θ ln(θ/θr)]
(2.6)

for ψ
E
, whereλr andµr represent Laḿe’s constants andαr the thermal heat expansion coeffi-

cient. The inelastic partψ
P

is determined empirically with the help of experimental data, as dis-
cussed in the next section. Consider next the evolution of theinternal variables and the inelastic
behavior. In the metallic polycrystalline materials of interest at low-to-moderate homologous
temperature, inelastic deformation processes are controlled predominantly by the activation of
dislocation glide on glide systems (e.g., Teodosiu (1997)), even at higher strain rates. As such,
higher homologous temperatures are required for other mechanisms such as dislocation climb or
even dynamic recrystallization to activate. Resistance to dislocation glide arises due to extended
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obstacles generating longer-range stress fields related inthe phenomenological context to hard-
ening behavior. In addition, such resistance is caused by short-range local obstacles which can
be overcome by thermal fluctuation under the action of local effective stress, represented in the
current phenomenological context by|dev(K)| + ς

P
− σ

F0(θ), where

−ς
P

: = ψ, ǫ
P

(2.7)

represents the static contribution to the flow stress (in shear). On this basis

f
P

: =
|dev(K)| + ς

P

σ
P

(2.8)

represents an activation function or non-dimensional overstress in the current rate-dependent
context. Here,σ

P
represents the dynamic drag contribution to the effective flow stress in the

system. On this basis a power-law approximation of the more exact transition-state-based mi-
cromechanical relations for the kinetics of dislocation glide leads to the power-law form

φ =
γ

P
σ

P

m
P

+ 1
〈f

P
〉mP

+1 (2.9)

upon which the evolution of the internal variables is based.Here,γ
P

represents a characteristic
strain rate,〈x〉 : = 1

2
(x + |x|) the MaCauley bracket, andm

P
the strain rate exponent. In

general, these will be functions of temperature and rate of deformation; here, we treat them for
simplicity as constants. This potential determines as usual the forms

∗

ln V
E

= −φ, K = −sgn(dev(K)) ǫ̇
P

(K 6= 0) ,

ǫ̇
P

= φ, ς
P

= γ
P
〈f

P
〉mP (f

P
> 0) ,

θ̇ = ̺−1
r c−1

r {ωr + σ−1
EM

det(F ) j · j} ,

(2.10)

for the evolution of the internal variables. Here,ωr represents the rate of mechanical heating
andσ−1

EM
det(F )j · j the electromotive power.

Now, for the case of incompressible material behavior, we assume that the isotropic forms
of the viscoplastic parametersγ

P
, σ

P
andm

P
are independent of the traceI · D of the rate of

deformation. In this case, the thermoelastic form

K = ψ
, lnVE

= {λr (I · lnV
E
) − (3λr + 2µr) αr(θ − θr)}I + µrlnV

E
(2.11)

for the Kirchhoff stress holds from (2.6). In addition,

ωr = γ
P
σ

P
〈f

P
〉mP

+1 − (3λr + 2µr) αr θ
˙

ln det(F ) (2.12)

then follows for the referential form of the mechanical heating rate.

This completes the basic model formulation. The detailed algorithmic formulation and nu-
merical implementation of the finite element model has been presented partially in Stiemer et al.
(2006a). In the present context the material model of this approach was extended by the above
evolution equations. In particular, note that the time stepsize for tensile test simulation has to
be chosen according to the particular timescale where changes of internal variables are to be
expected. During current pulses, the time step size was chosen to be10−6 s. Otherwise, much
larger step sizes in the order of100 s were chosen. The time integration of the velocity and
acceleration fields was carried out using Newmark’s method.Numerical damping was applied
during pulsing and afterwards in order to avoid numerical oscillations.
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2.3 Application to metal bars subject to pulsed currents and simpleten-
sion

In this section, the current model is applied to the tensile tests with pulsed electric currents. To
this end, we specify here the semi-analytical form

−ς
P

= ψ, ǫ
P

= σ
F0

(
1 +

ǫ
P

ǫ0

)n

− σ
F0 (2.13)

for the strain hardening due to energy storage, with

σ
F0 = σ

F0r(1 − ωTM(θ − θr)) (2.14)

for the initial static flow stress,σ
F0r being the initial flow stress at reference temperatureθr.

The parameterωTM mediates the reduction of the initial flow stress due to an increase of the
temperature. Table 2.2 summarizes the material parameterscharacterizing the inelastic material
behavior. For titanium, the parameters in (2.13) were obtained from Bilyk et al. (2005). In
particular,ωTM, γ

P
, σ

P
andm

P
were fitted to the model data also provided in Bilyk et al. (2005).

For aluminum, the tensile test data were used for the strain hardening fit. Table 2.3 lists the
remaining material parameter values needed.

σ
F0r ǫ0 n ωTM γ

P
σ

P
m

P

MPa - - K−1 s−1 MPa -

Al 3.5 × 101 2.0 × 10−3 1.9 × 10−1 1.4 × 10−3 1.0 × 10−4 5.0 × 100 4.0 × 100

Ti 1.7 × 102 2.0 × 10−3 1.5 × 10−1 8.7 × 10−4 1.0 × 10−4 4.0 × 100 4.0 × 100

Table 2.2: Inelastic parameters.

λr µr αr ̺r cr kr

MPa MPa K−1 kg m−3 m s−2 K−1 J s−1 m−1 K−1

Al 5.0 × 104 2.6 × 104 2.3 × 10−5 2.7 × 103 9.2 × 108 2.4 × 102

Ti 8.5 × 104 4.4 × 104 8.6 × 10−6 4.5 × 103 5.2 × 108 2.2 × 101

Table 2.3: Thermoelastic parameters.

Consider next the results in Figure 2.3 for the case of a current pulse applied to a titanium
bar undergoing simple tension in thez-direction. At the time of the pulse (t = 200 s), Joule
heating results in a temperature rise from 301 K to 363 K within 60µs. The slight temperature
rise of 3 K before the pulse is due to mechanical dissipation.In the left part of Figure 2.3, the
change in thezz-component of the Cauchy stressT = J−1K is shown as a function of time.
As can be seen, the current pulse results in a reduction of this component. In addition, both the
rate-dependent and rate-independent cases show this change. In contrast to the work of Bilyk
et al. (2005), we claim that not the rate effect, but rather the thermal expansion effect, is crucial
to correctly model the observed stress drop.

To delve into this in more detail, consider the results depicted in Figure 2.4 for the rate of the
accumulated inelastic strainǫ

P
as well as the rate ofǫ

E
= |dev(lnV

E
)|, representing the norm
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Figure 2.3: Current pulse applied to a titanium bar undergoing simple tension. Left: Devel-
opment of thezz-component of the Cauchy stress simulated with a thermoelastic, viscoplastic
model (rate-dependent: solid line) and a thermoelastic, elastoplastic model (rate-independent:
dashed line). Right: Temperature rise from Joule heating during the current pulse starting at
t = 200s.

of the deviatoric part of the left logarithmic stretch tensor. As soon as the temperature rises,
the spherical partsph(lnV

E
) of lnV

E
increases (see (2.11)). Conversely, the deviatoric part and

henceǫ
E

decreases. Accordingly, since|dev(K)| = 2µǫ
E
, the activation stress (2.9) decreases

and elastic unloading can be observed. The drop ofǫ̇
P

to zero takes place within 60µs (see
Figure 2.4 right). Afterwards for several seconds the tensile testing machine continues to load
the specimen in the elastic domain until the inelastic flow isreactivated. As shown, in this
range,ǫ̇

P
= 0.

Such testing has also been carried out for technically pure aluminum (e.g., Al99,5 or AA1000
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Figure 2.4: Rate of change of the accumulated inelastic strain as a function of time during
pulsing. Left: The current pulse at 200 s forces the stress state below the activation threshold,
resulting inǫ̇
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= 0. Right: Variation in time oḟǫ
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starting att = 200 s (note the difference of the

timescale).
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series). As all experimental conditions are the same as for the tests with titanium, the particular
material characteristics of aluminum are the reason for a smaller stress drop. In particular, for
the same geometry and imposed currentI, j as given by (2.3) is the same for both materials.
Since the contribution tȯθ from Joule heating is given bydet(F ) j · j/(̺rcrσEM

) from (2.10)3,
any difference between the two materials is due to the magnitude of̺rcrσEM

. The parameter
values in Table 2.3 imply that the heat capacity̺rcr per unit volume is almost the same for
aluminum and titanium. On the other hand,σAl

EM
= 3.8 × 107 Ohm−1 m−1 andσTi

EM
= 2.6 ×

106 Ohm−1 m−1 are substantially different. Consequently, sinceσAl
EM

≫ σTi
EM

, it is clear why
the temperature rise in aluminum (6 K) is much smaller than that in titanium (50 K). Via the
thermoelastic coupling in (2.11), then, this difference intemperature increase is reflected in the
respective stress drops,i.e., 60 MPa for titanium and 6 MPa for aluminum (Figure 2.5).
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Figure 2.5: Simulated stress drop for aluminum due to Joule heating during simple tension.
Left: Change ofTzz with time. Right: Blow-up of the stress drop region in time.

2.4 Conclusions

For the typical timescales imposed current densities and materials generally relevant for EMF
processes load drops during tensile testing are observed. For titanium and aluminum it was
shown that the magnitude of the load drops can be modeled without postulating a direct interac-
tion between electron and dislocation movement. The modeling of experimental results indicate
that ”conventional”effects allow for a sufficiently accurate rendering of the experimental obser-
vations and such an interaction can be considered of second order in particular for industrial
applications of EMF. Of all the effects considered, the adiabatic thermo-elastic expansion leads
to the observed load drops; visco-plastic rate effects and thermal softening are notable but sec-
ondary.
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Inverse error propagation and model identification
for coupled dynamic problems with application to
electromagnetic metal forming∗

Abstract – The purpose of this work is the development and application of strategies toidentify material
model parameters for metals at high strain-rates using data obtained from high-speed electromagnetic
metal forming. To this end, a staggered algorithm for the finite element based numerical solution of
the coupled electromagnetic-mechanical boundary value problem has been developed based on mixed
Eulerian-Lagrangian multigrid methods. On this basis, the parameter determination together with a
sensitivity study, correlation analysis and error estimation are carried out.After verifying the validity
of this approach using synthetic data sets, it is applied to the identification of material parameters using
experimental results from electromagnetic tube forming.

3.1 Introduction

Inverse problems are present in many fields of science and engineering. Classes of such inverse
problems include,e.g., seismic problems in geophysics (Scales et al., 2001; Snieder and Tram-
pert, 1991), crack and defect detection (Tanaka and Dulikravich, 2001), process design (Kom-
palka et al., 2007; Tortorelli and Michaleris, 1994; Zabaras et al., 2003), or, as in the current
work, material model parameter identification or material model calibration from experimental
data. The aim here is to determine the set of material parameters from experimental data. In
the current work, these data are obtained at high strain-rates via electromagnetic metal form-
ing (EMF). In this case, strain-rates of up to104 s−1 are achieved. Given the low-to-moderate
homologous temperatures achieved during EMF, experimental evidence summarized in Jones
(1997), as well as considerations regarding dislocation dynamics (e.g., Kocks and Mecking,
2003; Teodosiu, 1997), imply that the material behavior in this case is rate-dependent. Fol-
lowing Svendsen and Chanda (2005), micromechanical and thermodynamic considerations for
metals under such conditions imply that a semi-phenomenological Perzyna-type thermoelastic,
viscoplastic constitutive model is appropriate. In particular, using the electromagnetic form-
ing data, the material parameters in this model which control the rate-dependence are to be
determined.

Classical experimental methods for the determination of dynamical material behavior include
for example the split Hopkinson bar or Kolsky bar, gas gun, electromagnetic ring expansion
and drop tower (e.g., El-Magd and Abouridouane, 2005; Field et al., 1994; Gilat and Clifton,
1985; Gray, 2000; Klepaczko and Malinowski, 1978; Kolsky, 1949; Meyers, 1994). These gen-

∗Unger et al. (2007a)
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erally utilize specimen geometries designed to induce a homogeneous deformation state and
deformation rate. More recent approaches based on numerical solutions of the boundary-value
problem can also deal with experimental results involving non-homogeneous deformation of
the specimen (e.g., Mahnken, 2000; Scheday, 2003; Springmann and Kuna, 2005).For exam-
ple, Kajberg et al. (2004) use data from high speed photography of impact tests to identify
viscoplastic material parameters via a finite element analysis of the inhomogeneous deforma-
tion of the specimen. Similarly, the deformation field obtained during EMF is inhomogeneous,
so that the corresponding material model identification involves the finite element simulation of
the specimen. Such an identification procedure always involves the solution of an inverse prob-
lem. Often, this identification does not take measurement errors into account (e.g., Gelin and
Ghouati, 1994; Kleinermann and Ponthot, 2003, and previously cited authors). Those inves-
tigations that do are usually based on homogeneous deformation results. For example, Bruhns
and Anding (1999) quantified correlations of parameters andestimate variances for identified
material parameters. In addition, Harth et al. (2004) identified parameters for AINSI SS316
stainless steel and estimated their variances by generating synthetic data sets mimicing exper-
imental data. In the current work, the finite element inverseanalysis is extended using such
methods common to statistical model identification and applied to identify material parameters
by means of data obtained via EMF. This approach is then verified with the help of additional
data from homogeneous tests.

The paper begins (Section 3.2) with a brief summary of the mechanical material model for
electromagnetic forming and its numerical implementation. The latter is based on a finite ele-
ment based staggered multigrid approach in which the electromagnetic field relations are solved
on an Eulerian, and the mechanical field relations on a Lagrangian mesh. In the model, the full
coupling between the deformation and magnetic fields is taken into account. Next, we review
the formulation of the corresponding inverse problem (Section 3.3). This includes error, sensi-
tivity and correlation analysis. The approach here exploits the staggered structure of the numer-
ical solution algorithm as well as the fact that the model parameters are only weakly sensitive to
variations in the electromagnetic fields. In any case, the parameters are identified on the basis of
the fully coupled model and simulation. To validate the approach, it is applied to synthetic data
sets generated with assumed parameter values for the case ofaluminum tube forming. After
first carrying out a sensitivity and correlation analysis (Section 3.4), the viscoplastic material
parameters are identified using these data sets along with error estimates (Section 3.5). In the
last part of the work, the approach is applied (Section 3.6) to actual experimental data of Brosius
(2005) for the aluminium alloy AA 6060.

3.2 Coupled model and algorithmic formulation

The matter of interest in this section is the modeling of the dynamic interaction of strong elec-
tromagnetic fields with metallic solids resulting in their deformation. There exist a number
of modeling approaches for coupled magneto-mechanical problems. Some focus on specific
geometries, like in the case of ring forming (Gourdin, 1989;Triantafyllidis and Waldenmyer,
2004). Others are applied to arbitrary geometries but are restricted to small deformations (e.g.,
Schinnerl et al., 2002). For the case of interest here,i.e., large-deformation inelastic processes,
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very little work exists (El-Azab et al., 2003; Fenton and Daehn, 1998). The model to be summa-
rized in this section represents a special case of the general continuum thermodynamic formu-
lation (Svendsen and Chanda, 2005) in which a strong magneticfield induces electric currents
in thermoelastic, viscoplastic electric conductors generating Lorentz forces resulting in large
inelastic deformations.

Here the system consists of afixed regionR ⊂ E of Euclidean point spaceE containing one
or more solid bodies moving through it as well as the surrounding air. In the case of EMF, for
example, these bodies include the workpiece (e.g., sheet metal) and tool coil consisting of tech-
nically pure copper (see Figure 3.1 and Figure 3.2). As such,R contains the reference (e.g.,
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Figure 3.1: Electromagnetic (tube) forming. Left: 3D illustration of the workpiece (tube) and
tool coil (copper windings). Right: Schematic axisymmetric2D representation depicting the
electric circuit, tool coil and workpiece as well as the magnetic flux and current densities in the
workpiece and tool coil.

initial) Br ⊂ R and currentBc ⊂ R configurations of any of these bodies. They are modeled
here as electromagnetic, mechanical continua characterized by a time dependent deformation
fieldξ together with the additional degrees of freedom representing the electromagnetic fields to
be introduced in what follows. Whereas the time dependent electromagnetic fields are defined
on the entire regionR, i.e., also in the air surrounding stationary or moving material bodies, the
deformation fieldξ and all kinematic fields derived from it, are logically restricted to the con-
figurations of deforming and moving bodies. Since the relevant electromagnetic frequencies
for the engineering structures of interest (i.e., less than 10 MHz) correspond to electromagnetic
wavelengths which are much larger than these structures, note that the wave character of the
electromagnetic fields is insignificant, and can be neglected. In effect, this corresponds to the
so-called quasistatic approximation (Moon, 1980,§2.2 and§2.8). For simplicity, any thermo-
electric effects, as well as any magnetostriction (i.e., the Hall effect), are also neglected here.
This is reasonable for conductors like aluminum or copper atroom temperature and “weak”
magnetic fields. In addition, although there is a temperature increase during electromagnetic
forming due to mechanical dissipation and Joule heating (e.g., Svendsen and Chanda, 2005),
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Figure 3.2: Electromagnetic and mechanical domains and meshes for the coupled finite element
simulation. Here,Sc represents the current configuration of the workpiece,Cc that of the tool
coil, Ack the cross section of thekth torus, andR the region of space containing workpiece,
tool coil and the surrounding air with boundary∂R. Shown on the right is the multigrid config-
uration for the coupled simulation consisting of fixed Eulerian electromagnetical and moving
Lagragian mechanical meshes.

this increase is small (20-50 K). Consequently, for simplicity we assume isothermal conditions
in this work. Under these conditions, field relations for theelectromagnetic vector and scalar
potentials can be derived following Svendsen and Chanda (2005). The magnetic field can be
modeled as diffusive here over the length- and timescales ofinterest. In this case, Maxwell’s
equations and the Coulomb gauge conditiondivsa = 0 yield the diffusive field relation

∂a + ∇sχ − κ
EM

divs(∇sa) = 0 (3.1)

for the vector potentiala together with

divs(∇sχ) = ∇2
s χ = 0 (3.2)

for the scalar potentialχ, whereκ
EM

represents the magnetic diffusivity. As usual,a andχ

determine the magnetic flux viab = curlsa and the electric field via−e = ∂a + ∇sχ. Given
that the electromagnetic fields vary on a timescale much shorter than that of the mechanical
fields, the convective termb × v in the electromotive intensityǫ = e + v × b is much smaller
thane and hence−ǫ ≈ ∂a + ∇sχ (e.g., Stiemer et al., 2006a). For more details, the reader is
referred to this latter work.

Consider next the modeling of the tool coil. During tube expansion, it can be treated as
stationary. Consequently, the currentCc and referenceCc,r configurations of this coil coincide
and are fixed (see Figure 3.2, left). As depicted in Figure 3.1, the tool coil has the shape of
a helix consisting ofn windings with constant inner and outer radii. The cross section of any
winding at any azimuthal angleϕ is always identical. The tool coil consists of copper embedded
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in a resin matrix whose electromagnetic properties are close to those of a vacuum. Although the
tool coil is not perfectly axisymmetric, it can be approximated as such with sufficient accuracy
due to the small pitch of the helix. In this case, then windings of the copper helix are replaced
by n tori Wck, k = 1, . . . n, possessing the same cross section (Figure 3.2, below). These are
connected in series via cuts in each torus at an azimuthal angle of ϕ = 0. The cross section
of eachWck, k = 1, . . . , n − 1, at ϕ = 2π is then treated differently from that atϕ = 0

and identified with that atϕ = 0 of the next windingWck+1. In particular, this means that
the electrostatic potential is continuous across the transition from one torus to another. This
simplification also results in the triggering current having only an azimuthal component. Since
then windings are connected in series, the (measurable) total currentI = I(t) (see Figure 3.4
below) flowing through a cross sectionAck of any windingWck at an arbitrary azimuthal angle
is always the same. Outside the tool coil,i.e., in the resin matrix, or in the moving workpieceSc,
or in the air around the tool coil and workpiece, the boundaryand transition conditions for the
electromagnetic fields at material interfaces imply thatχ is constant there and so∇sχ vanishes.
Note thatχ anda may be reasonably approximated by zero at the boundary of theregionR

containing the tool coil, the workpiece, and the surrounding air. Solving then equation (3.2)
explicitly in everyWck subject to the usual boundary conditions between a perfect conductor
(copper) and an insulating medium (resin), one obtains the result

−∇sχ =






0 in R \ (Cc ∪ Sc)

0 in Sc

c

{
σ−1

EM
I +

∫

A
ck

nk · ∂a

}
eϕ in Wck

(3.3)

for the source term∇sχ in (3.1) (Stiemer et al., 2006a), with

c : =

{
r

∫

A
ck

1

r
eϕ · nk

}−1

. (3.4)

Note that the latter quantity is independent of the chosen cross sectionAck under the given
geometric conditions. Here,eϕ denotes a unit vector inϕ-direction andAck the cross section of
thekth torus with outer unit normal vectornk. As such, the model simplifications just discussed
result in an analytic solution of (3.2) and so the elimination of χ as a degree-of-freedom in the
model. Substituting (3.3) into (3.1), forming the scalar product of the result with the test vector
potentiala

∗
, and partial integration, yields the weak form

∫

R

∂a · a
∗
+

∫

R

κ
EM

∇sa · ∇sa∗

=
∑

k

∫

W
ck

c

{
σ−1

EM
I +

∫

A
ck

nk · ∂a

}
eϕ · a

∗
,

(3.5)

together with the boundary conditions fora as discussed above. The relation (3.5) is the starting
point for the finite element discretization to be discussed below.
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Consider next the mechanical part of the coupled model. This is based on the weak momen-
tum balance of the deformation fieldξ. Assuming purely kinematic boundary conditions, this
is given by ∫

Br

(̺r ξ̈ − f ) · ξ
∗
+ P · ∇rξ∗ = 0 (3.6)

with respect to the referential configurationBr ⊂ R for all corresponding test fieldsξ
∗
. Here,

f = det(F ) l = det(F ) j × b (3.7)

represents the Lorentz (body) force (density),l its representation in the current configuration,
P the first Piola-Kirchhoff stress, andF : = ∇rξ the deformation gradient. The mechanical
model is completed by the specification of the material model. Here, attention is restricted to
such a model for the metallic workpiece, which is formulatedhere as a hyperelastic, viscoplas-
tic material. For simplicity, the (mild) elastic and flow anisotropy of the metals of interest (e.g.,
Al) is neglected here, as well as any kinematic hardening. More generally,e.g., for the case
of deformation-induced anisotropic flow behavior (e.g., Svendsen, 2001), this is of course no
longer possible. Since the metal forming processes of interest here are predominantly mono-
tonic in nature, however, this last assumption is reasonable. In this case, the constitutive model
is specified via the form of the referential free energy density ψr(lnV

E
, ǫ

P
) together with the evo-

lution relations for the elastic left logarithmic stretch tensorlnV
E

and accumulated equivalent
inelastic deformation measureǫ

P
. In the context of small elastic strain, the usual Hooke-based

form
ψr(lnV

E
, ǫ

P
) = 1

2
κr (I · lnV

E
)2 + µr dev(lnV

E
) · dev(lnV

E
) + ψ

P
(ǫ

P
) (3.8)

is relevant. Another common assumption in the non-isothermal context in the case of metals
is that of constant specific heat (e.g., Rosakis et al., 2000). Here,κr represents the bulk mod-
ulus, µr the shear modulus, andψ

P
(ǫ

P
) the contribution from energy storage due to isotropic

hardening processes as usual. From (3.8), one obtains in particular the usual hyperelastic form

K = ∂lnVE
ψr = 3κr sph(lnV

E
) + 2µr dev(lnV

E
) (3.9)

for the Kirchhoff stressK = PF T. As usual,ψ
P
(ǫ

P
) is estimated with the help of fits to the

quasi-static yield curve for the materials of interest at room temperature, as discussed in what
follows. Consider next the evolution of the internal variables and the inelastic behavior. In
the case of the metallic polycrystalline materials of interest at a low-to-moderate homologous
temperature, inelastic deformation processes are controlled predominantly by the activation of
dislocation glide on glide systems (e.g., Kocks and Mecking, 2003; Teodosiu, 1997). Indeed,
this seems to be the case even at high strain-rates (e.g., Frost and Ashby, 1982). Apparently,
higher homologous temperature levels are required for other mechanics such as dislocation
climb or even dynamic recrystallization to begin playing a role. Resistance to dislocation glide
arising due to obstacles and other factors is related in the phenomenological context to harden-
ing behavior. Quasi-static processes of this nature contributing to energy storage in the material
result in the contribution

−ς
P

: = ψr, ǫ
P

(3.10)

to the effective quasi-static flow stress in the matrial. Such resistance to dislocation motion can
be overcome by thermal fluctuation under the action of the local effective stress, represented in
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the current phenomenological context byσ
vM

(K)+ ς
P
−σ

F0, whereσ
vM

(K) represents the von
Mises effective stress with respect toK , andσ

F0 is the initial flow stress. On this basis,

f
P
(K , ς

P
) : = σ

vM
(K) + ς

P
− σ

F0 (3.11)

represents an activation measure or overstress in the current rate-dependent context. A power-
law approximation of the more exact transition-state-based micromechanical relations for the
kinetics of dislocation glide (e.g., Kocks and Mecking, 2003; Teodosiu, 1997) leads to the
power-law form

φ(ǫ
P
,D,K , ς

P
) =

γ
P
(ǫ

P
,D) σ

P
(ǫ

P
,D)

mP(ǫP
,D) + 1

〈
f

P
(K , ς

P
)

σ
P
(ǫ

P
,D)

〉m
P
(ǫ

P
,D)+1

(3.12)

upon which the evolution of the internal variables is based.Here,σ
P

represents the dynamic
contribution to the flow stress,γ

P
a characteristic strain-rate andm the strain-rate exponent.

Further,〈x〉 : = 1
2
(x + |x|) represents the ramp function. As indicated,γ

P
, σ

P
andm

P
are in

general functions of accumulated inelastic deformation and deformation rate. For simplicity,
however, these material properties will be treated as constants in the algorithmic formulation to
follow. To indicate this, we writeγ0 =̂ γ

P
, σ0 =̂ σ

P
, andm0 =̂ m

P
. The form (3.12) determines

the evolution relations

−
∗

lnV
E

= ∂
K

φ =
√

3
2

sgn(dev(K)) ǫ̇
P

(K 6= 0) ,

ǫ̇
P

= ∂ς
P
φ = γ0

〈
f

P

σ0

〉m0

(f
P

> 0) ,
(3.13)

for the evolution of the internal variables, with

∗

lnV
E

: = 1
2

ln(F
˙

C−1
P

F T) (3.14)

in terms of the inverse plastic right Cauchy-Green deformationC−1
P

.

In summary, the material parameters introduced in the abovemodel include the magnetic
diffusivity κ

EM
, the electrical conductivityσ

EM
, the bulk modulusκr, the shear modulusµr,

as well as the dynamic viscoplastic parametersγ0, σ0, andm0 appearing in the viscoplastic
potential (3.12) and flow rule (3.13). For the purpose of model identification, we will assume to
a good approximation that the first five of these are known and fixed. In this case, the arrayp
of parameters to be identified takes the form

p : = (γ0, σ0,m0) . (3.15)

The values which these may take are as usual subject to certain physical constraints,e.g., γ0 >

0 andσ0 > 0. Further, micromechanical as well as experimental observations suggest that
m0 > 1. This also holds from the point of view that (3.13) represents an approximation of
more exact transition-state-based micromechanical relations (e.g., Kocks and Mecking, 2003;
Teodosiu, 1997). We return to these issues below.

Next, the algorithmic formulation of the above presented model is summarized. The dif-
ference in electromagnetic and mechanical timescales, together with the distinct nature of the
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fields involved (i.e., Eulerian in the electromagnetic case, Lagrangian in the mechanical large-
deformation context), suggest a staggered numerical solution procedure involving separate grids
for the electromagnetic and mechanical fields (see Figure 3.2). In addition, the electromagnetic
mesh is adapted according to the movement of the structure bymeans of an ALE-scheme. Each
algorithmic formulation is discussed separately before being combined in the framework of the
staggered algorithm at the end of this section. The discretization of the mechanical weak form
(3.6) by means of the finite element method and usage of the Newmark algorithm to integrate
(3.6) over the time intervaltn,n+1, yields the implicit algorithmic system

f
s
n+1,n{xs

n+1, p} = 0 (3.16)

in terms of the arrayxs
n+1 of time dependent nodal positions at fixed Lorentz forceln+1 =

σ
EM

curln+1
s a × ∂an+1. The solution of (3.16) is obtained via Newton-Raphson iteration in

terms of its consistent linearization. A detailed and concise discussion of the advantages of an
implicit solution scheme in contrast to an explicit one in the context of metal forming can be
found in Tekkaya (2000). ThroughK , the discrete form (3.16) depends as well on the current
(unknown) values of the internal variables. Using backward-Euler integration to solve (3.13)
overtn,n+1, one obtains the algorithmic relation written in the compact form

r
α n+1,n{αn+1 ,Fn+1, p} = 0 , (3.17)

with α = (lnV
E
, ǫ

P
) and r

α
= (rlnVE

, rǫ
P
). This last relation is again solved via Newton-

Raphson iteration and holds at each integration point in eachelement of the structure.

Turning next to the electromagnetic weak form (3.5), finite element discretization and tem-
poral integration via the generalized trapezoidal rule over the intervaltn,n+1 yield the system

[
A

s
B

s
n+1

I −α tn+1,n I

] [
a

s
n+1

ȧ
s
n+1

]
=

[
c

s
n+1

a
s
n + (1 − α) tn+1,nȧ

s
n

]
(3.18)

to be solved foras
n+1 and ȧ

s
n+1, in the context of the current staggered approach with fixed

x
s
n+1. Here,As represents the discretized spatial ”stiffness” part andB

s the diffusive ”mass”
part in (3.5). Throughcs

n+1 the measured input current, which is driving the forming operation,
is implemented. The amount of artificial damping is controlled by the the parameter0 < α ≤ 1.

The aforementioned staggered solution scheme is describedin detail in what follows:

1. Update the boundary conditions and supply terms (e.g., currentI in the tool coil) to
t = tn+1.

2. Update the boundary conditions and initialize the nodal fields,i.e., x
s(k)
n+1 = x

s
n, ẋ

s(k)
n+1 =

ẋ
s
n, ẍs(k)

n+1 = ẍ
s
n andes(k)

n+1 for k = 1.

3. Obtaina
s(k)
n+1 and ȧ

s(k)
n+1 from (3.18) depending in particular on the (e.g., experimentally

determined) valueIn+1 of the electrical current in the tool coil as well as the current
spatial distribution ofσ

EM
andκ

EM
in R.

4. Obtainl
(k)
n+1 from (3.7). Transfer the results to the embedded Lagrangianmesh for the

workpiece.
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5. Solve (3.16) at fixedl(k)
n+1 andp to obtainxs(k+1)

n+1 , ẋs(k+1)
n+1 , ẍs(k+1)

n+1 andes(k+1)
n+1 .

6. Steps 2-5 are repeated fork = 2, . . . until convergence is obtained, yieldingxs
n+1, a

s
n+1,

and the updated internal variables.

We refer to this as Algorithm 1 in the following.

3.3 Model indentification procedure

In the algorithm of the previous section,p was fixed. Since we assume the material behavior
here to be homogeneous, the parameter identifcation takes place basically at the material point
level with the help of the finite element solution at the structural level. Indeed however, in the
case of EMF and other high-strain-rate methods, the deformation field is not homogeneous.
To formulate the corresponding algorithm, we proceed as follows. First of all, since the data
available to us concerns the deformation of the workpiece, for matters of simplicity attention is
restricted to the mechanical part of the model. Letdexp(t) represent the (incomplete and inex-
act) experimental data array (e.g., discrete displacement field of the specimen) parameterized
in time. This is to be compared with the correponding information derived from the solution of
(3.16) and (3.18) using the algorithm at the end of the last section. As implied by the notation,
this solution takes the form ofxs

i anda
s
i as implicit functions of all parameters and in partic-

ular p, at each discrete timet = ti for i = 1, . . . ,m in the context of[0, d] =
⋃m

i=1[ti−1, ti].
Sincep is constant in space and time, the complete sets(xs

0,x
s
1, . . . ,x

s
m) and(as

0, a
s
1, . . . ,a

s
m)

of algorithmic solutions in the time interval[0, d] =
⋃m

i=1[ti−1, ti] are relevant here. In the con-
text of the staggered solution approach being pursued here,as well as due to the fact that the
available data are purely mechanical in nature (i.e., deformation data), we neglect for simplicity
the implicit dependence ofas on p and focus on that implied by (3.16). Again, to indicate this
implicit dependence ofxs

n+1 on p in the notation, we writexs
n+1 = x

s
n+1,n{p}. In this context,

the choice ofp is judged to be “good” if the deviation

zn+1{p} : = ds
exp(tn+1) − ds

mod(x
s
n+1,n{p}) (3.19)

betweends
exp and the model predictionds

mod(x
s
n+1) is “small.” Here,ds

mod maps the simulation
resultsxs

n+1 onto a form consistent with the experimental observations.In Section 3.6, it is
shown (see Figure 3.6) that, due to the weak coupling, the neglect of as

n+1 = a
s
n+1,n{p} in

(3.19) is justified. As such, the identification procedure involves directly the mechanical part
of the coupled problem. In general, note thatds

mod could be highly non-trivial,e.g., when
inhomogeneous displacement fields are measured optically and compared with finite element
nodal displacements (Scheday, 2003). In the current context, however, the data consists of the
tube displacement at a single point in the structure as a function of time (see Figure 3.3). In this
case, a direct comparison of experimental and simulation results is possible.

Statistical maximum likelihood considerations (e.g.Bevington, 1969; Press et al., 2002, Ch.
15) motivate the chi-square form

χ2{p} : =
1

2

∑m

i=1
Wi zi{p} · Wi zi{p} =

1

2

∑m

i=1
zi{p} · Ei zi{p} (3.20)
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for the objective function based onzs{p}. Here,Wi represents the weighting matrix taking into
account possible differences in variance and physical dimension of the experimental data, and
Ei : = WT

i Wi. As usual, the best-fit parameter setp
∗

then minimizesχ2{p},

χ2{p
∗
} ≤ χ2{p} , ∀p . (3.21)

In the differentiable case,p
∗

is determined as usual by

∂a
pχ2 =

∑m

i=1
(∂a

pzi)
TEi zi = 0 ,

∂a
p(∂a

pχ2) =
∑m

i=1
(∂a

pzi)
T Ei(∂

a
pzi) + (∂a

p(∂a
pzi))

T Ei zi positive-definite,
(3.22)

where∂a represents the partial algorithmic or implicit derivativeoperator. Note that

∂a
pzi = −(∂

x
sdmod)(∂

a
px

s
i,i−1) = (∂a

x
sdmod)(∂

a
x

s
i
f

s
xi,i−1)

−1(∂a
p f

s
xi,i−1) (3.23)

holds via (3.16). In addition,

∂a
x

sf
s
xi,i−1 =

∑
e
I
eT

x
(∂a

x
ef

e
xi,i−1)I

e
x

, ∂a
p f

s
xi,i−1 =

∑
e
I
eT

x
(∂a

p f
e
xi,i−1) (3.24)

follow from (3.16). Further,

∂a
x

e
i
f

e
xi,i−1 = ∂

x
ef

e
xi,i−1 + (∂ee

i
f

e
xi,i−1)(∂

a
x

e
i
ee
i,i−1)

= ∂
x

ef
e
xi,i−1 − (∂eef

e
xi,i−1)(∂er

e
αi,i−1)

−1(∂
x

er
e
αi,i−1) ,

∂a
p f

e
xi,i−1 = (∂eef

e
xi,i−1)(∂

a
pee

i,i−1)

= −(∂eef
e
xi,i−1)(∂er

e
αi,i−1)

−1(∂pr
e
αi,i−1) ,

(3.25)

are obtained from (3.17). In particular,∂er
e
αi,i−1 represents the Jacobian matrix of the local

Newton-Raphson iteration for the internal variables at the Gauss-point level. Now, if a local
quadratic approximation toχ2 is reasonable, then the first of these can be solved via Newton-
Raphson iteration as based on

(∂ a
p (∂ a

p χ2))k[pk+1 − pk] = −(∂ a
p χ2)k . (3.26)

Otherwise, one would have to “globalize” this approach by combining it with,e.g., a line search
or steepest descent step. In any case, assuming thatz becomes small aspk+1 approachesp

∗
, the

second term(∂ 2
p zi)

T Ei zi in the sum in (3.22))2 should become negligible in comparison to the
first one. Further, assuming the model is physically reasonable, this term is just related to the
random measurement error at each point (Press et al., 2002).This error can have either sign, and
should in general be uncorrelated with the model. As such, wework with the approximation

∂p(∂pχ
2) ≈

∑m

i=1
(∂pzi)

T Ei(∂pzi) (3.27)

in (3.26). On this basis,p
∗

is determined via the following algorithm:

1. Choose starting valuespk (k = 1) for the parameters to be identified.
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2. Solve forxs
i,i−1{pk}, a

s
i,i−1{pk}, andes

i,i−1{pk} for all times stepsi = 1, . . . ,m using
Algorithm 1.

3. Use (3.26) to solve forpk+1.

4. Repeat steps 2.-3. fork = 2, . . . until convergence is achieved.

This is referred to as Algorithm 2 in what follows. Again, note that we are neglecting the (weak)
couplinga

s
n+1 = a

s
n+1,n{p} in the identification process. Clearly, this scheme is general and

can be applied to any model identification based on a staggered solution scheme.

Consider next a variationδp of the parameters. This induces for example that

δxs
i = (∂a

px
s
i,i−1)δp = −(∂a

x
s
i
f

s
xi,i−1)

−1(∂a
p f

s
xi,i−1)δp (3.28)

in x
s
i , representing the sensitivity ofxs

i to variations inp. As it turns out, it is useful to work
with a normalized sensitivity matrixS(ti) based on this

Sjk(ti) : =
|pk|
|xs

ij|
(∂a

px
s
i,i−1)jk (3.29)

(e.g., Kleiber, 1997). In particular,Sjk(ti) represents the variation ofxj due to a variation ofpk

att = ti. The normalization facilitates comparison of the sensitivities for different model param-
eters (Bolzon et al., 2004). Possible correlations among themodel parameters are determined
by the covariance matrix

C : = {∂p(∂pχ
2)}−1

∗
≈

{∑m

i=1
(∂pzi)

T Ei(∂pzi)
}−1

∗

(3.30)

(Press et al., 2002). In the general case of identification ofmore than one material parameter
at a time, the correlation of the parameters represents a further important consideration in the
context of determining a unique and accurate set of parameters (Bevington, 1969). As usual,
the correlation coefficient

ρij : =
Cij√
CiiCjj

(3.31)

is a measure of the degree of correlation between two parameters. Letρ represent the corre-
sponding matrix, such that[ρ]ij denotes its theij-th element. In particular,|ρij| = 1 implies that
pi andpj are linearly dependent, in which case no unique solution of the optimization problem
exists. In practice, the closer|ρij| is to 1, the less distinguishable are the contributions ofpi and
pj to the model behavior,i.e., on the basis of the data used for the model identification.

Further, experimental error and statistical uncertainty are incorporated into the standard de-
viation of the determined model parameter values. To estimate this standard deviation, the
Gaussian law of error propagation is assumed. In this case, the varianceσk of pk ∈ p is given
by

σp
k

=
√

[C]kk (3.32)

in terms of the components ofC. To verify the current approach and obtain additional in-
sight, these variances are also investigated using synthetic data sets based on known material
parameter values endowed with experimental uncertaintiesequivalent to those of the actual ex-
perimental data.
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3.4 Parameter identification, correlation and sensitivity

In the case of electromagnetic tube forming, the experimental results take the form of displace-
ment values at the center of the tube in the radial direction.The measurement system utilizes
a laser beam detected by a Position Sensitive Device (PSD). During the forming process, the
sheet metal moves between the laser and the PSD, resulting ina change in detected laser light
intensity which is directly proportional to the radial expansion (see Figure 3.3, left). The setup
allows for carrying out of forming operations at different initial discharging energies of the ca-
pacitor depicted in Figure 3.1 resulting in an increasing deformation with increasing discharging
energyEcp. In this study we examined forming operations at three different discharging ener-
gies, namely 650 J, 800 J and 1000 J (see figures 3.3 and 3.4. Using this method, one obtains

Figure 3.3: Experimental measurement of tube forming. Left: Laser-based measurement of the
change in the outer radius of the tube with time. Right: Measured change of tube radius at the
middle of the tube for the discharging energies 650 J, 800 J and 1000 J.

the datadexp(t) in the form of the radial component∆r(t) = ur(t) of the displacement fieldu
in the middle of the tube,i.e.,

dexp(ti) = (∆r(ti)) , i = 0, . . . ,m . (3.33)

Together with the simulation, this determineszi{p} in (3.19). Assuming the same standard
deviationσ for all data for simplicity,Wi = σ−1

I for all i = 1, . . . ,m, such that

χ2{p} =
1

2 σ2

∑m

i=1
zi{p} · zi{p} (3.34)

follows for χ2{p} from (3.20). Next, we turn to the specification of the formingsetup. The
tool coil consists of technically pure copper. The tube specimens utilized in the current work
consist of AA 6060 aluminum. Values for the elastic constants, the mass density and the elec-
tromagnetic constants for this material and copper were obtained from the literature and are
summarized in Table 3.1. The quasi-static yield behavior ofAA 6060 is described here by the
contribution

ψ
P
(ǫ

P
) = c1(ǫP

+ c2)
c3 (3.35)
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κr µr ̺r σ
EM Cu σ

EM Al

[MPa] [MPa] [kg m−3] [V A −1m−1] [V A −1m−1]

6.77× 104 2.59× 104 2.70× 103 5.60× 101 3.46× 101

Table 3.1: Fixed elastic and electromagnetic properties ofAA 6060 and conductivity of tool
coil.

σ
F0 c1 c2 c3

[MPa] [MPa] - -

7.17× 101 3.32× 102 1.00× 10−3 3.87× 10−1

Table 3.2: Fixed quasi-static isotropic hardening parameters for AA 6060.

γ0 σ0 m0

[s−1] [MPa] -

6.00× 103 5.00× 101 4.00× 100

Table 3.3: Initial values for the dynamic inelastic parameters for AA 6060.

to the stored energy due to isotropic hardening processes. The corresponding parameter values
together with estimates for the initial flow stressσ

F0 were determined with the help of tensile
tests. These are shown in Table 3.2.

Lastly, starting values for the viscoplastic material parametersp to be identified were ob-
tained from Jones (1997) and are listed in Table 3.3. For completeness, the model geometry
and the measured input current are depicted in Figure 3.4. For the finite element simulations,
convergence studies of the coupled, as well as the purely mechanical problem indicate that four
elements over the tube thickness yield a converged solution. The element type that was utilized
represents a bilinear displacement formulation for large deformation problems. In addition time
step size investigations (Stiemer et al., 2006a) for such systems imply thattn+1,n = 1 µs is a
reasonable choice. Before carrying out the actual identification, consider the correlation and
sensitivity properties of the model determined for a discharging energy of 1000 J. To this end,
the derivatives∂ a

p x
s
i,i−1, i = 1, . . . ,m, were calculated numerically via finite differences using

the starting values forp given in Table 3.3, yielding

ρ =




1.000000 1.000000 0.585362
1.000000 1.000000 0.586542
0.585362 0.586542 1.000000



 . (3.36)

The values in (3.36) indicate thatγ0 andσ0 are linearly dependent. Evidently, this can also be
seen by factoringσ0 out of (3.13). Consequently, it is reasonable to fixγ0 to its initial value, in
which casep reduces to

p = (σ0,m0) . (3.37)

Next, eachSjk(ti), i = 1, . . . ,m, was calculated via (3.29). In particular, these are based
on the single experimental resultdexp(ti) = (∆r(ti)) at eachti, i = 1, . . . ,m. The results
are displayed in Figure 3.5. As shown, in the first part of the forming process (i.e., up to 7
µs), the deformation is elastic, and the sensitivity of the model to variations of the inelastic
parameters is zero. Then the structure begins to deform inelastically and the sensitivity of
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Figure 3.4: Experimental set-up and measured input currents. Left: Geometry of workpiece
and tool coil for tube expansion (dimensions in mm). Right: Measured input currentsI(t) in
the tool coil as a function of time for the discharging energies 650 J, 800 J and 1000 J.

the model to variations in both parameters increases up to about 55µs. At this instance the
deformation is again elastic. After 55µs, the structure deforms mainly elastically and the
sensitivities oscillate about a constant value ofS11 = 0.23 andS12 = 0.052. The oscillations
are due to the normalization usingdsim. Note that the sensitivity of the model to the inelastic
parameters does not reduce to zero during elastic deformation because of the accumulated and
history-dependent nature ofǫ

P
.

In comparison with other cases in the literature (Bolzon et al., 2004; Chen and Chen, 2003),
the magnitudes of the sensitivities here indicate a good identifiability of the material parameters
at the high strain-rates of interest here, for which the power-law form (3.13) of the flow rule is
physically reasonable forσ0 = 50 MPa andm0 = 4. If the effect of rate hardening is reduced
by settingσ0 = 5 MPa, the sensitivity with respect to both parameters is reduced by one order
of magnitude. This would make the identification much more difficult. In the real experimental
situation, this could be the case for materials with less pronounced rate effects.
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Figure 3.5: Correlation of model sensitivity toσ0 andm0 with inelastic deformation as measured
by ǫ̇

P
. Above: Equivalent inelastic strain-rateǫ̇

P
at the center of the tube as a function of time.

Below: Sensitivity of the model to changes inσ0 (S11, solid line) andm0 (S12, dashed line) as a
function of time.

3.5 Identification using synthetic data

Following Harth et al. (2004), the purpose of the current section is to test the identification
procedure under various assumptions regarding the experimental the data. To this end, the
parameter values in Table 3.3 were used to generate synthetic data. Working for simplicity
with the case of no measurement errors first, consider the dependence of the determination of
the material parameters on the number of updates of the Lorentz force,i.e., on the number of
coupled simulations required. To look into this, a synthetic experimental data set analogous
to (3.33) is generated using the parameter valuesp = (50, 4). The starting valuesp1 for the
determination are chosen to be (100,8). The identification procedure then begins with a fully
coupled simulation to determinel1n. The material parameter values are updated, and a new
coupled simulation is carried out, yieldingl2n. The corresponding progression of updates ofp is
shown in Figure 3.6. Each triangle represents an update at fixed body force density. Body force
updates are indicated by circles.

In the case of tube forming, good accuracy is obtained using only one coupled simulation,
e.g., p15 = (5.00135×101, 4.00839×100). Indeed, a further body force update yielded only
marginally better results,e.g., p23 = (5.00000×101, 4.00000×100). This state of affairs can be
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Figure 3.6: Application of the parameter identification algorithm (Algorithm 2) to synthetic
data sets generated using the parameter valuesp

∗
for AA 6060 from Table 3.3. Each triangle

represents an update ofp at fixed body force density.Body force updates are indicated by circles.

explained as follows. At the beginning of the forming process, the body forces reach their max-
imum values at a time when the deformation of the tube is predominantly elastic. Consequently,
inelasticity is not active, and the coupling is weak (Figure3.5). This is in contrast to the case of
sheet metal forming, where the Lorentz force is acting also during inelastic deformation of the
sheet metal. Consequently, a larger number of Lorentz force updates is required for an accurate
parameter determination.

Given the weak interaction between the body forces and inelastic processes in the case of
tube forming, the body forces are fixed for simplicity in whatfollows. On this basis, consider
the efficiency of the identification procedure for differentcombinations of the starting values for
the material parameters. In Figure 3.7, the combinationsm1

0/m0 = 3, σ1
0/σ0 = 3, andm1

0/m0 =

3−1, σ1
0/σ0 = 3−1 are considered. The identification procedure here is illustrated in terms of the

fraction[pn]i/[p]i denoting the difference to the correctly identified material parameter for each
direct computation numbered byn. If [pn]i/[p]i ≈ 1, the parameter can be considered to be
identified. The crucial measure to quantify the efficiency ofthe applied methods is the number
of direct model computations, as these represent the most costly operations in one iteration of
the procedure. In both cases, the material parameters couldbe reidentified with the desired
accuracy|p − pn| < 1 × 10−4, and the identification was stopped.

On the numerical side of things, we compared the gradient-based trust-region method with
the direct Nelder-Mead simplex method. Table 3.4 summarizes the efficiency of the two numer-
ical solution methods for the different parameter value combinations considered. In all cases,
the gradient-based method converges faster to the correct values than the direct approach. Due

m1
0/m0, σ1

0/σ0 3, 3 1/3, 1/3 3, 1/3 1/3, 3
function calls (trust-region Newton) 21 60 21 112
function calls (Nelder Mead) 120 92 90 114

Table 3.4: Numerical efficiency of the identification procedure for different starting values of
the parameters and two different numerical solution methods.
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Figure 3.7: Ratio of current to identified parameter values asa function of the number of func-
tion calls forσ0 (solid line) andm0 (dashed line) for two different starting values. Left:σ1

0/σ0

= m1
0/m0 = 3/1. Right:σ1

0/σ0 = m1
0/m0 = 1/3.

to the mathematical form of the flow rule, initial values ofm0 which are smaller than the iden-
tified ones result in many more function evaluations.

Consider next the influence of measurement uncertainties on the parameter identification.
This is done by generating a large number of data sets with normally distributed “measurement”
errors. The influence of these on the confidence regions for the identification can be specified
by applying the standard estimators for the mean

µi ≈ p̄i : =
1

n

∑n

k=1
pk

i (3.38)

and variance

σ2
i ≈ s2

i : =
1

n

n∑

k=1

(pk
i − p̄i)

2 (3.39)

in terms of the sample variances2
i , for n data. Those then facilitate the verification of confidence

regions obtained from the Gaussian law of error propagationand sensitivity analysis (3.32). In
the above part of Figure 3.8 the results of the error analysisfor N = 100 experiments with a
variance ofσ2 = 1 × 10−6 for each data pointds

exp(ti) are shown. The identified parameters
so obtained can be represented in terms of their deviation from their mean valuesp − p̄ to
indicate the scattering (Press et al., 2002). In the lower part of Figure 3.8 the frequency of
occurrence distributions for the parameters are shown. They can be obtained by projection onto
the corresponding axis. The probability density functionsobtained with the variances from the
Gaussian law of error propagation are also depicted. Valuesfor the variances estimated from
the experiments ares2

σ0
= 1.21 × 10−3 ands2

m0
= 9.86 × 10−3 and values computed from the

Gaussian law of error propagation areσ2
σ0

= 1.24 × 10−3 andσ2
m0

= 1.01 × 10−3, respectively.
The relative variances for the strain-rate exponent are larger than the ones obtained forσ0. This
reflects the results obtained from the sensitivity analysis; here the sensitivity with respect tom0

turned out to be smaller than that forσ0 (see Figure 3.8 below).
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Figure 3.8: Effect of errors on determined paramater values. Above: Parameter value deviations
from the mean forN = 100 identifications. Below left: Corresponding Gaussian distribution of
deviation values form0 and probability density functionf estimated via the sensitivity analysis
and covariance matrix. Below right: Corresponding Gaussian distribution of deviation values
for σ0.

3.6 Identification using experimental data

This section is focused on the identification ofp using real data. In contrast to the synthetic data
sets, real data is available starting att = 10µs. Since the loading of the structure becomes non-
proportional after 50µs and the material model used in the current work takes only isotropic
hardening into account, data after this instance was not used in the identification. The temporal
development of the principal valuesk1,2,3 of the Kirchhoff stress in Figure 3.9 shows that the
loading becomes non-proportional after this instance. Note thatk2 (dash-doted line) can be
considered significantly smaller thank1 andk3. This holds until 60µs. Likewise, the ratio
of k1 to k3 remains approximately constant up to about 50µs. To indicate the degree of
reproducibility for the input current as well as for the change of the radius their mean and
standard deviation were computed and are shown in Figure 3.10. After characterization and
selection of the experimental data, the calibration of the model was performed. In Table 3.5
the identified parameters are given for each of the 3 experiments conducted at 800 J. The
left part of Figure 3.11 displays the radial expansion for the starting values ofp = (100, 8),
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Figure 3.9: Loading path during electromagnetic tube forming. Left: Eigenvaluesk1 (solid
line), k2 (dash-dotted line) andk3 (dashed line) of the Kirchhoff stressK in the middle of the
structure untilt = 60 µs. Up tot = 50 µs, k3/k1 is approximately constant, and proportional
loading prevails.

Experiment 1 Experiment 2 Experiment 3

σ0 [MPa] 5.91× 101 5.82× 101 5.41× 101

m0 [-] 2.41× 100 2.55× 100 2.80× 100

Table 3.5: Identified dynamic viscoplastic material parameter values forEcp = 800 J andγ0 =
6000 s−1.

the identified values and the experimental data for Experiment 2. For validation purposes,
the radial expansion was computed for the two remaining discharging energies based on the
identified parameters. It can be seen that forEcp = 650 J, the simulation underestimates the
actual deformation. This is in contrast toEcp = 1000 J, where the deformation is overestimated
(see Figure 3.11 right). This discrepancy could be due to an insufficiently realistic material
model. As is well-known, the rate contribution to the effective yield stress at low temperatures
can be attributed to thermal activation of dislocation glide for low to moderate strain-rates (i.e.,
ǫ̇
P

< 500 s−1). For higher strain-rates (i.e., ǫ̇
P

> 1000 s−1), experiments exhibit a stronger rate
sensitivity commonly attributed to the influence of drag forces (e.g., Kocks and Mecking, 2003;
Lindholm and Yeakley, 1964). Using the current model, the entire range of strain-rates can be
covered with a reasonable degree of accuracy (see Figure 3.12) and onlytwo parameters. This
simplifies the identification significantly.

In the present situation, the fact that we are not taking the strain-rate dependence of the dy-
namic inelastic material parameters into account leads to the following behavior. The values
obtained in Table 3.5 represent an experiment with a peak strain-rate of abouṫǫ

P
= 4200 s−1.

In the case of the experiment with a discharging energy of 1000 J, strain-rates up tȯǫ
P

= 5900

s−1 are achieved (see Figure 3.5). Since the strain-rate sensitivity increases with increasing
strain-rate, the modeling of the 1000 J experiment with the parameters identified at 800 J un-
derestimates the strain-rate sensitivity. Consequently, the deformation is overestimated. On the
other hand, at 650 J, where a maximum strain-rate of aboutǫ̇

P
= 3000 s−1 is achieved, the

parameter determination at 800 J leads to an overestimationof the strain-rate sensitivity. In this
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Figure 3.10: Characterization of reproducibility based on 3experiments at a discharging energy
of 800 J. Left: Input currents and their mean (hardly distinguishable from one another due to
good match) and standard deviations(ti) at each instance. Right: Corresponding radial change
of tube for experiments (dashed lines), mean (solid line) and standard deviations(ti) at each
instance.

case, the deformation is underestimated. This is also reflected by the parameter values iden-
tified for the two remaining discharging energies. The expectedly higher strain-rate sensitivity
for Ecp = 1000 J is rendered byσ0 = 71.2 MPa andm0 = 2.3. Conversely, forEcp = 650 J the
identification yieldsσ0 = 41.3 andm0 = 2.7. In this respect, the conclusion thatγ

P
, σ

P
andm

P

are in general functions of accumulated inelastic deformation and deformation rate (see Section
3.2) is confirmed. More detailed constitutive modeling represents work in progress.

Although the parameter values given in Table 3.5 are reasonable, there are a number of issues
concerning the approximations built into the model and possible sources of experimental data
or other errors worth mentioning. For example, possible convective effects on the magnetic
field and Lorentz force involving the termcurlsa × v were neglected. Computations show
that this results in a deviation of about 1%. In addition, anydiscretization errors are excluded
for simplicity. Convergence studies in Stiemer et al. (2006a) imply that these are also quite
small. In addition, simulation results seem to be quite insensitive to changes in the shape and
position of the outer boundary, where homogeneous Dirichlet boundary conditions are assumed.
The influence of the approximation of the tool coil by axisymmetric tori represents work in
progress in the context of the extension of the simulation to3D. Lastly, any influence of the
temperature increase during the forming process on the material properties has been neglected
here. Inclusion of the effects of Joule heating as well as heating due to inelastic dissipation yield
a maximum local temperature rise of about 50 K at the inner surface of the tube. In other parts
of the structure, the temperature rise is well below 20 K (Brosius, 2005). For Al, a temperature
rise of 50 K is expected to result in a reduction of the yield stress of about 4% (see,e.g., Bilyk
et al., 2005). On the other hand, the deformation-rate sensitivity is expected to be one order
of magnitude higher. Similar sensitivities apply to all other material parameters (e.g., viscous
properties, elastic material properties, mass density, etc.).

On the experimental side, errors in the geometry of the tube seem to represent the main
source of error. Particularly due to the fact that the tubes are produced by an extrusion pro-
cess, the geometry of the tube is unfortunately rather variable. The thickness of the tube varies,
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Figure 3.11: Parameter identification using experimental data. Left: Deviation of the ra-
dius computed with the initial vector of parameters (lower dashed line), identified parameters
(dashed line) and measurements (solid line) Right: Modelingof remaining discharging ener-
gies (1000 J and 650 J) with identified material parameters (dashed lines) and corresponding
experimental results (solid lines).
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Figure 3.12: Left: Increase of effective yield stress with increasing strain-rate based on the
identified model for each discharging energy ending at the corresponding maximum strain-rate.
Right: Summary of experimentally determined increase of effective yield stress (Hopkinson
bar) with increasing strain-rate taken from Hauser (1966).

affecting the stiffness of the structure. Secondly, deviations of the tube from being perfectly
round result in additional deviations from the simulation.Regarding the measurement of the
radial deviation with a PSD the degree to which the laser is distracted due to the geometry
and surface of the tube needs to be evaluated. Some means to minimize such sources of error
are discussed in Brosius (2005). Additional and less important sources of errors include the
quasistatic inelastic material parameters, measured dimensions of the experimental setup, and
measurement errors in the discharging current and tube displacement. In general, each of the
discussed experimental sources of error accounts for deviations of the identified material pa-
rameters as has been discussed extensively above. Up to now,this has only been considered
for the errors of the measured deviation of the radius. A fullevaluation and quantification of
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sources of error and the determination of variances for the parameters determined in Table 3.5
represents work in progress.

3.7 Conclusions

In the theoretical discussion of the methods for model identification it could be shown that
the finite element inverse method can be extended with methods common to statistical model
identification like correlation-, sensitivity- and error-analysis. Such methods are important
since they offer measures for the reliability of the identified data. The incorporation of these
into the inverse analysis as well as their validation could be demonstrated in the context of high
strain-rate identification with electromagnetic forming.Moreover, it could be shown that the
identification of the constitutive parameters can be simplified in a particular way. In contrast
to a dependence on changes in geometry, which are fully considered, there exists very little
sensitivity of the material model parameters to the sharp increase in the electromagnetic loading
at the beginning of the process. This is the case since the structure deforms predominantly
elastically at the beginning. It is just this situation thatallows for the identification procedure at
stepwise fixed electromagnetic loads.

The material parameters identified with real experimental data indicated a reasonable model-
ing of the electromagnetic forming operation. However, deviations to experimental results sug-
gest that the ansatz chosen represents a relatively rough approximation regarding the wide range
of strain-rates the model has to cover. Yet, for the actual identification procedure this simplicity
represents a great advantage and allows for detailed insight. In this work, the measurement of
the radial expansion of the tube was the focus of attention inregards to error analysis. In work
in progress, additional aspects of the measurement processare being investigated, and will be
reported on in future work.



Chapter 4

Strategies for 3D simulation of electromagnetic
forming processes∗

Abstract – Although electromagnetic forming is a technology known for a few decades, renewed inter-
est for its industrial application is currently taking place. Along with this interest an increasing demand
for simulation tools can be found. Up to now, modeling approaches found for this process in the litera-
ture are restricted to the axisymmetric case or small deformation problems. However, for real industrial
applications, the modeling of large deformation 3D forming operations becomescrucial for an effec-
tive process design. On the basis of previous modeling concepts in the work at hand we develop and
investigate further approaches particularly suitable to reduce the enormous computational cost inherent
to 3D simulations. These consist of a carefully chosen discretization, a datatransfer method for both,
the electromagnetic loads and the mechanical deformation to utilize an efficient solid shell formulation
and a termination criterion for the electromagnetic part of the model. As a resultthe simulation time is
reduced by about one order of magnitude. Finally, a 3D forming setup is modeled and detailed insights
with respect to the development of eddy currents, magnetic field and deformation of the sheet metal are
provided.

4.1 Introduction

Electromagnetic forming (EMF) is a dynamic, high strain-rate forming method in which strain-
rates of up to104 s−1 are achieved. In this process, deformation of the workpieceis driven by
the interaction of a current generated in the workpiece witha magnetic field generated by a coil
adjacent to it. In particular, this interaction results in amaterial body force, i.e., the Lorentz
force and the electromotive power, representing an additional supply of momentum and energy
to the material. On the other hand the electromagnetic part of the system is sensitively influ-
enced by the spatio-temporal evolution of the deformation of the mechanical structure. With
increasing interest in this forming operation, in recent years considerable effort has been made
to simulate such coupled processes. However, approaches tested so far were mainly restricted
to axisymmetric geometries (Fenton and Daehn, 1998; Gourdin et al., 1989; Imbert et al., 2004;
Oliveira et al., 2001; Takatsu et al., 1988) or to small deformation problems (Schinnerl et al.,
2002). Yet, it is the 3D modeling capability in combination with the large inelastic deforma-
tions that is required to advance effectively in the design of industrial EMF processes. To meet
these modeling requirements the sound derivation of a physical model of the relevant magneto-
mechanical phenomena has been developed in Svendsen and Chanda (2005). Its algorithmic
realization is given in Stiemer et al. (2006a) and Stiemer etal. (2006b).

For axisymmetric modeling, nowadays PC computational capacities are sufficient to model

∗Unger et al. (2007b, 2006a)
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forming operations within several hours. As it turns out, inthe case of 3D process models the
computational cost increases dramatically. While typical 2D models of EMF in general exhibit
a model size of between about 3 000 and 10 000 degrees of freedom similar 3D models usually
require discretizations with an extent of a model which is one order of magnitude higher. It is the
goal of the present work to elaborate and demonstrate approaches particularly suitable to reduce
the computational cost for the 3D modeling of EMF processes in the aforementioned context.
In detail these represent an extensive study of convergence, the proposal of a body force and
deformation data transfer method which facilitates the useof solid shell elements (Reese, 2007)
and the development and elaboration of a termination criterion for the electromagnetic part of
the model. These measures are demonstrated by means of a relatively simple forming setup.
Although this presented forming setup geometry is rather exceptional (see figures 4.1 and 4.2),
dimensions and timescales are relevant for typical formingsetups. As elaborated below, since
the results are general in nature they can be transferred to other forming setups.

After a brief summary of the physical model and its algorithmic formulation (see Section
4.2) the study of convergence is discussed in sections 4.3 and 4.5. Here, the study allows for the
exploitation of potential for reduction of the computationtime by selectively choosing a coarse
discretization at locations where this is admissible according to the scope of the desired accu-
racy. Further, by studying the convergence of certain components of the EMF forming setup
(e.g., tool coil, sheet metal, air gap, etc.) further physical insight is provided and the algorith-
mic model can be verified. In Section 4.4 the data transfer between the electromagnetic and the
mechanical part of the model is discussed. In contrast to 2D modeling of EMF where the elec-
tromagnetic loads are transferred elementwise, here an independent discretization of the sheet
metal is facilitated. Here, we exploit the fact that the electromagnetic loads are algorithmically
independent of the mechanical deformation in the context ofthe staggered solution algorithm
and can be integrated separately. In consequence, the use ofa very efficient solid shell element
formulation for the mechanical part of the model becomes feasible. In Section 4.6 a termination
criterion particularly suitable for an efficient modeling of EMF processes is proposed and evalu-
ated. In Section 4.8 a fully coupled forming operation whereall the aforementioned approaches
were implemented is performed and the results are discussed. The work is concluded in Section
4.9.

4.2 Synopsis of model formulation and description of forming setup

The coupled multifield model for electromagnetic forming ofinterest represents a special case
of the general continuum thermodynamic formulation for inelastic non-polarizable and non-
magnetizable materials given in Svendsen and Chanda (2005),where a full elaboration of this
model can be found. In summary, this special case is based on the quasi-static approximation
to Maxwell’s equations, in which the wave character of the electromagnetic (EM) fields is
neglected. In this case, the unknown fields of interest are the motion fieldξ, the scalar potential
χ and the vector potentiala determining in particular the magnetic field in the usual fashion
(Jackson, 1975). Assuming Dirichlet boundary conditions for all fields, one derives the weak
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field relations

0 =

∫

Br

(̺r ξ̈ − lr) · ξ∗ + KF−T · ∇ξ
∗
,

0 =

∫

R

{ȧ + LTa} · a
∗

+

∫

R

(χ − a · v) div a
∗
+ κ

EM
curl a · curl a

∗
,

0 =

∫

R

∇χ · ∇χ
∗
,

(4.1)

for ξ, a, andχ, respectively. Here,ξ
∗
, a

∗
, andχ

∗
represent the corresponding test fields. Fur-

ther,R represents a fixed region in Euclidean point space containing the system under consider-
ation in which the electromagnetic fields exist and on whose boundary the boundary conditions
for these fields are specified. Here, the system comprises thesheet metal consisting of the alu-
minum alloy AA 6060, the tool coil consisting of technicallypure copper and air (see Figure
4.1). Electromagnetic and mechanical material propertiesof the system can be found in Unger
et al. (2007a). The setup has a width and a depth of 60 mm and a height of 7 mm. Both, the
air gap between the sheet metal and the tool coil and the thickness of the sheet metal measure 1
mm. The height of the tool coil measures 5 mm and each winding has a width of 20 mm.

As indicated in Figure 4.1,R contains in particular the fixed reference configurationBr, and
all subsequent (i.e., deformed) configurations of the workpiece. Note thatF : = ∇ξ represents
the deformation gradient, andL : = ∇v the spatial velocity gradient. Further,κ

EM
represents

the magnetic diffusivity,v the spatial velocity field,̺ r the referential mass density,K the
Kirchhoff stress, andlr = det(F ) j × b the Lorentz force in terms of the magnetic fluxb and
the current densityj . As usual,a andχ determine the magnetic flux viab = curl a and the
electric field via−e = ∂a + ∇sχ. Given that the electromagnetic fields vary on a timescale
much shorter than that of the mechanical fields, the convective contribution toj is neglected
here yieldingj = σ

EM
e via Ohm’s law. Note that (4.1)2,3 follow from Maxwell’s equations,

while (4.1)1 represents the weak form of momentum balance. The above weakfield relations are
completed by the thermodynamically consistent formulation of the elasto-viscoplastic material
model (Svendsen and Chanda, 2005).

As indicated in Figure 4.1 the sheet metal is fixed at its lateral edges representing the me-
chanical Dirichlet boundary conditions. For the tool coil the eddy current contribution to the
current density is neglected. This facilitates the direct implementation of the measured input
currentI as a Neumann boundary condition viaj = −σ

EM
∇sχ, wherej = (0,−I/Acon, 0).

Here, Acon represents the area of the surface connecting the tool coil to the capacitor bank
that provides the energy for the forming operation. The other connection surface is grounded
(χ = 0). For the remaining surfaces∇sχ · n = 0 is postulated meaning that no electric current
leaves the coil through any surface but the connection surfaces. Since the deformation of the
sheet metal and thus the correct modeling of the electromagnetic loading represents the main
concern in this work the effects of the eddy currents within the tool coil can be neglected. As
a consequence the current density distribution can be assumed to be homogeneous in the cross
section of the tool coil (e.g., no skin effects). In other words, the effect of the eddy currents in
the tool coil on the magnetic field strength outside the coil and in particular in the sheet metal
is negligible since the total currentI is considered correct. An additional assumption refers
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Figure 4.1: Illustration of forming setup including tool coil, sheet metal, air and annotation
of the entire domain of the systemR, its boundary∂R and the mechanical domainBr. At
∂R homogeneous Dirichlet boundary conditions are assumed. The experimentally measured
input current is implemented as a Neumann boundary condition for χ, wherej = −σ

EM
∇sχ =

(0,−I/Acon, 0). Regarding the mechanical component of the model, the lateral edges of the
sheet metal are fixed.

to the sheet metal. Here the physical constraintj · n = 0 is not considered. Since tool coils
utilized for EMF generally induce circular eddy currents, the error made by this assumption can
be regarded to be small.

Consider next the algorithmic realization of the aforementioned model in terms of the fi-
nite element discretization of (4.1). In more detail this isdiscussed in Stiemer et al. (2006a,b).
The difference in electromagnetic and thermomechanical timescales together with the distinct
nature of the fields involved (i.e., Eulerian in the electromagnetic case, Lagrangian in the ther-
momechanical large deformation context), argue for a staggered numerical solution procedure
resulting in the following algorithmic system:

fn+1,n(xn+1, an+1) = 0 ,

en+1,n(xn+1, an+1) = 0 ,
(4.2)

in terms of the arraysxn+1 and an+1 of time-dependent system nodal positions and vector
potential values at time incrementtn+1. The solution of the mechanical part of (4.2) involves in
particular the consistent linearization required for the Newton-Raphson iteration in the context
of large deformation inelastic problems. In detail, the staggered algorithm procedure consists
of the following steps:

1. Initializea0, x0 and their time derivatives and proceed to (4).

2. A starting valuean+1 of the nodal vector potential array is computed for the measured
amperage in the tool coil at timetn+1 and the known mechanical state of the system at
time tn via (4.2)2.

3. Froman+1, a corresponding valueln+1 for the Lorentz force is obtained. Using this, the
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system consisting of (4.2)1 is solved via Newton-Raphson iteration (i.e., at fixedan+1) to
obtainxn+1.

4. Proceed to next time steptn+1 = tn + tn+1,n and proceed with (2). Else, iftn ≥ ts,
terminate the simulation, wherets is the total simulation time.

Besides the physical motivation the staggered algorithm offers the possibility to apply custom
solutions for both, the mechanical as well as the electromagnetic system. Here, on the mechan-
ical side, an effective continuum shell formulation is applied to minimize the computational
effort Reese (2007) for the mechanical model. On the electromagnetic side, in contrast to the
axisymmetric case, the Coulomb gauge condition is generallynot satisfied and the electromag-
netic fields are not regular for standard boundary conditions. To ensure that the corresponding
finite element solution reflects this lack of smoothness, a penalty method or a least-squares
approach is required. In the simulation presented here, Néd́elec elements (Ńed́elec, 1986) are
employed to overcome this difficulty. These are based on averaged degrees of freedom with
respect to the element edges instead of discrete degrees-of-freedom at the element nodes.

4.3 Study of convergence of the electromagnetic model at fixed sheet metal

Since this is mainly an electromagnetic issue, the deformation of the sheet metal was suppressed
in order to facilitate an easy and effective study of all meshparameters. The simulation was
performed untilt = 8 µs, where the maximum input current is imposed and a time step of
tn+1,n = 2 µs was chosen. In spite of simulating the entire process time,the magnetic flux
and eddy current distribution were evaluated att = 8 µs in order to be able to deal with large
models at reasonable simulation times. Particular attention is given to the modeling of the fields
in the sheet metal. An accurate modeling in this regard accounts for accurate modeling of the
forming operation. In Figure 4.2 three paths, denoted with PX, PY and PZ are depicted. Along
these a quantitative investigation of the magnetic flux density and eddy currents was performed.
The paths along thex- andy-axis are located in themidplaneof the sheet metal and the path
along thez-axis passes through the center of the left part of the coil and the sheet metal. For
these paths, only the most significant componentbx of b andjy of the eddy current fieldj are
considered (see figures 4.27 and 4.28 in Section 4.8). Along with the results obtained from the
path plots the values of

1. bx at the lower surface of the sheet metal, denoted byb̃x and

2. jy at the same location, denoted byj̃y

from the path in vertical direction serve as concrete quantities to measure the dependence of
the solution on a chosen mesh parameter. These indicators ofconvergence are characteristic for
the development of the electromagnetic fields in the sheet metal, since they represent the largest
values in the sheet during the first alternation of the tool coil current and thus characterize the
forming operation. The study of convergence involves the discretization of particular mesh
parameters. They involve the size of the outer boundary of the electromagnetic domain, the
number of elements along thex or y-direction and several mesh parameters that characterize
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the discretization in vertical direction. The most effective way is to investigate those parameters
first, which exhibit the most significant influence on the computational cost. For the study of
some mesh parametern, b̃x(n) andj̃y(n) are in general normalized by the results obtained for
the finest discretization obtained for the maximal value ofn. This indicates the relative deviation
and relative sensitivity, which is more meaningful in comparison to the absolute values ofb̃x(n)

andj̃y(n).

4.3.1 Influence of the size of outer boundary of the electromagnetic domain

From an abstract point of view the EMF setup can be seen as two coupled antennas representing
a magnetic quadrupole. Here, the two antennas consists of the EMF tool (capacitor bank and
tool coil) and the sheet metal. In communications engineering it is very important to be able
to predict the far field solution for,e.g., antenna design. In this case the radiating fields are
successfully predicted with boundary element methods (Poljak et al., 2006). For the simulation
of EMF however, the magnetic near field is significant. As the near field of the flux density of
a magnetic quadrupol decays likeO(|x|−4) it is admissible to assume homogeneous Dirichlet
boundary conditions at some boundary∂R to good accuracy. It is the subject of this section to
investigate the influence of the distance of the boundary∂R from the forming setup with respect
to the magnetic flux density.

The box determined by∂R is commonly referred to as the bounding box. Clearly, the small-
est size of such a bounding box is determined by the size of theforming setup. In this respect, in
what follows the parameterd denotes the distance from the forming setup inx- andy-direction.
Three values ofd, namelyd = 15 mm,d = 30 mm andd = 60 mm, are examined. The height
of the box is kept fixed at 90 mm corresponding to a distance of 45 mm above the sheet metal
and 38 mm below the tool coil. Above the sheet metal the magnetic flux density is very small
due to its shielding effect (see Section 4.8 for further details). Here, the choice of the boundary
is hardly significant (see Section 4.3.3). However, some space is to be reserved to account for
the deformation of the workpiece. For the volume below the tool coil the findings for the lateral

XY
Z

Figure 4.2: Forming setup with illustration of evaluation paths denoted by PX, PY and PZ.
These proceed in horizontal and vertical direction. Horizontal paths are located in the midplane
of the sheet metal.
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boundary can be carried forward. It is advisable to evaluatethe influence of the size of such a
bounding box at the beginning of the study of convergence. This parameter is significant for the
reduction of the computational cost. A well chosen size for the bounding box allows for higher
levels of refinement regarding other mesh parameters.

At this point it is important to note that the field values at the border of the bounding box
depend on the refinement of the mesh. For a proper study of the effect of d on the field values,
a sufficiently refined mesh should be chosen. To indicate thisthe study was conducted with
two different levels of mesh refinement along thex- andy-direction, one with element edge
lengths ofhx = hy = 10 mm and one withhx = hy = 5 mm. The refinement in vertical
direction is kept constant at its finest value (see Section 4.3.3 for further details). In figures 4.3
and 4.4 detailed insight into the aforementioned influence of the discretization on the size of
the bounding box is given. Consideringbx along PX in Figure 4.3 forhx = hy = 10 mm it can
be seen that the rough discretization leads to a considerable overestimation of the magnetic flux
density at the boundary. Ford = 15 mm andhx = hy = 5 mm however, the magnetic field is
significantly decayed. Here, an extension of the bounding box has a minor effect onb inside
the sheet metal.
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Figure 4.3: The componentbx of the magnetic flux density along the path parallel to thex-
axis (see Figure 4.2) for different sizes of the bounding boxand two levels of mesh refinement
hx = hy = 5 mm (left) andhx = hy = 10 mm (right).

The comparison of the convergence indicatorsb̃x andj̃y for both meshes is shown in Figure
4.4. To indicate the above discussed relative deviation between the most accurate model,b̃x and
j̃y are normalized bỹbx(d = 60) andj̃y(d = 60), respectively. For the refined mesh the smallest
bounding box withd = 15 mm leads to an underestimation of the fields of about 1 %. For the
coarse one an underestimation of about 7 % is observed.

Regarding the desired accuracy,d = 15 mm seems to be acceptable and is chosen for the
following studies. Also the number of elements in the space between the bounding box and
the forming setup was chosen such that the decay of the magnetic flux density can be resolved.
This results in 3 elements for the space between the forming setup and the bounding box, cor-
responding tohx = hy = 5 mm in the above study.
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Figure 4.4: Study of the influence of the of the bounding box size for b̃x andj̃y for two levels of
mesh refinement.

4.3.2 Refinement of horizontal mesh parameters

The determination of the size of the bounding box size resulted in a reduction of the total
number of elements at acceptable modeling error levels (fordetails see Table 4.1). The smaller
extent of the model now facilitates a higher refinement for the subsequent study of convergence
of the electromagnetic mesh. The objective here is to start with the model with the finest mesh
and successively reduce the refinement along thex- or y-direction in order to test the influence
on the magnetic field and eddy current distribution in the sheet metal in comparison to the
most refined and most accurate model. Here, the mesh parameter nx denotes the number of
elements inx-direction andny the number of elements iny-direction. Fornx andny, values
of 6, 12 and 24 were tested. They correspond to an element edgelength of 10, 5 and 2.5 mm
in each direction. Due to the construction method of the mesh, its topology in thexy-plane
holds along thez-axis and thus influences the refinement of all vertical regions (Schmaling and
Unger, 2007). As in the case of the choice of the size of the outer boundary, the refinement in
thexy-plane has a significant influence on the total number of elements.

Sincenx andny directly affect the discretization and field distribution in the sheet metal, their
influence is studied with respect to PX, PY and PZ. The distribution of bx along PZ indicates
that the sensitivity of the discretization with respect to thex-direction is higher than in they-
direction (see Figure 4.5). Fornx = 6 the magnetic flux density is reduced by about 13 %
while for ny = 6 a reduction of 1 % can be observed (see Figure 4.7). The reasonfor the
smaller influence ofny on the field values can be attributed to the geometry of the tool coil.
Two conductors of the tool coil are parallel to they-axis and only the rear part of the coil is
parallel to thex-axis. Via Ampere’s law changes ofb are expected to occurperpendicular to
the conductor which is mainly orientated along they-axis here (see also 4.27). Consequently
it is reasonable that a higher amount of elements in thex-direction is required to resolve these
field changes. In more detail in the left part of Figure 4.6 thedistribution ofby in x-direction is
shown, the high sensitivity of the magnetic field distribution tonx can be confirmed. Conversely,
the weak sensitivity tony is indicated for the eddy current distributionjy in y-direction. Only
for y > 45 mm where the eddy currents change their direction accordingto the electric field
induced by the tool coil (see figures 4.28 and 4.26) significant deviations can be observed. In
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Figure 4.7 the study of convergence fornx andny is summarized again with respect to the
indicators of convergence confirming the above considerations.
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Figure 4.5: The componentbx along PZ for different values ofnx (left) andny (right). The
results exhibit a stronger sensitivity tonx than tony.
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Figure 4.6: Illustration of the different sensitivities ofthe field results tonx andny. Left: bx

along PX for different values ofnx. Right: jy along PY for different values ofny.

Considering the study depicted in 4.7nx = 24 andny = 12 represent a good reduction at
relatively small discretization errors. It has to be noted that in contrast to the vertical mesh
parameters and the size of the bounding box the mesh topologyin horizontal direction affects
the mesh of the mechanical part of the model (Schmaling and Unger, 2007). Here, for the
horizontal mesh refinement of the mechanical mesh denoted bynmx andnmy, nx ≥ nmx and
ny ≥ nmy have to hold. However, the choice ofnx = 24 andny = 12 corresponds well with the
results of the mechanical study of convergence (see figures 4.22 and 4.23 in Section 4.5) and is
therefore kept for subsequent computations.
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Figure 4.7: Study of convergence for the mesh refinement in horizontalx andy-direction for the
convergence indicators̃bx and j̃y. Circles indicate the mesh refinement inx-direction at finest
discretization iny-direction (ny = 24) and squares indicate the mesh refinement iny-direction
at finest discretization inx-direction (nx = 24).

4.3.3 Refinement of vertical mesh parameters

As mentioned above, the forming setup can be divided into fiveregions of mesh refinement in
vertical direction. These represent:

1. the air above the forming setup characterized by the number of element layers above the
setup, denoted bynaa,

2. the air below the forming setup characterized by the number of element layers below the
setup, denoted bynab,

3. the number of element layers in the air gap between the toolcoil and the sheet, denoted
by nag,

4. the vertical layers of the mesh which contain the tool coil, denoted by the parameterntc,
and

5. the number of element layers in the sheet metal denoted bynsm.

In Figure 4.8 these layers are illustrated for the present forming setup. We start here with the
investigation of the parametersnaa, nag andntc since these exhibit only a very small influence on
b andj and can be treated in conjunction. In Figure 4.9 the distributions ofbx andjy in thickness
direction of the sheet along the path PZ are depicted for thefinestmesh in vertical direction,
indicated by crosses. Additionally, the mesh distributions where one of the aforementioned
parameters was set to itscoarsestvalue are depicted. As can be seen, the deviations turn out
to be very small. In Figure 4.10 the normalized deviations for b̃x and j̃y are shown in more
detail. The largest deviation can be observed fornaa = 1 and is well below 1 % in comparison
to the finest discretization withnaa = 8. Note thatnaa = 8 is equivalent tonab = 8, ntc = 8

andnag = 8, since only one parameter is changed at a time while the others were kept at their
finest discretization. The physical reasons for these distinct insensitivities are explained in what
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Figure 4.8: Illustration of vertical mesh parameters. Eachcharacteristic mesh entity was at-
tributed to a particular mesh parameter which is utilized for a selective study of convergence.

follows. In Figure 4.11 the vertical distribution ofbx along Path PZ is depicted. Moreover, the
location of the tool coil and the sheet metal are indicated tobe able to relate the distribution to
the particular components of the forming setup. Due to the fact that eddy currents are neglected
for the tool coil (see Section 4.2) a linear distribution canbe observed inside the coil. From
a qualitative point of view this is consistent with the outcome of analytical models for simple
conductors at low frequencies (Jackson, 1975). In the air gap a homogeneous magnetic flux
density can be observed, which is again coherent with results from axisymmetric and analytic
models for similar EMF forming setups (Beerwald, 2004; Mamalis et al., 2004). In accordance
with the character of the parabolic field equation inside thesheet metal the interaction between
the eddy currents within the sheet are such that the magnitude of the magnetic field decays and is
reduced to a value several orders of magnitude smaller than its maximum value. In more detail
this is discussed in Section 4.8. These characteristics arecrucial for the study of convergence of
the vertical mesh parameters. Due to the nature of the finite element approximation the roughly
linear field distribution in the tool coil can easily be rendered by asmall number of vertical
element layers (e.g., ntc = 2). Similarly, in the case of the air gap, where an approximately
homogenous field distribution prevails, again only few layers are sufficient (e.g. nag = 2).
Regarding the upper air, one expects that more elements wouldbe necessary since the magnetic
flux density decays non-linearly just as in other parts of thesurrounding air. However, it has
to be noted that the magnetic flux density is only a fraction ofits maximum value due to the
shielding effect of the sheet metal. Even if the approximation of the field distribution in the
air above the sheet metal is very rough, the field distribution inside the sheet metal remains
unaffected due to the fact that field values are so small in this region that any approximation
error has little influence here.

Next, we turn to the discretization of the sheet metal. If theaccurate modeling of the de-
formation and forming of the sheet metal represents the key modeling objective, an accurate
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Figure 4.9: The componentbx of the magnetic flux density and current flux densityjy along the
sheet thickness (see Figure 4.2, Path PZ). Each curve represents the solution for the coarsest
possible discretization in a specific vertical layer. The value nag = 8 corresponds to the finest
mesh and is equivalent tontc = 8, nag = 8 andnaa = 8 since only one mesh parameter is
refined at a time.

representation of the Lorentz forces in the sheet metal is fundamental (see also Section 4.4).
While the magnetic field distribution is linear or constant inthe tool coil and air gap, the elec-
tromagnetic fields decay is highly non-linear in the sheet metal. As shown in Section 4.8 in
Figure 4.30 according to the electric field induced by the tool coil current, the eddy current dis-
tribution in the sheet metal is very variable. It is expectedthat the results forb andj converge
for high values ofnsm only. This is confirmed by the study of convergence for this parameter
(see figures 4.12 and 4.13).

Finally, we turn to the last vertical mesh parameternab. As it turns out, the number of
element layers for the air below the forming setup has a significantly stronger influence on the
field distribution in the sheet metal than those for the air above the forming setup. In contrast
to the air above the forming setup the magnetic field penetrates the air below the forming setup
freely and at some distance from the forming setup the magnetic field is still significant. In
return, for the lower part of the forming setup, the discretization influences the electromagnetic
fields in the sheet metal. This is also confirmed by the study ofconvergence for the mesh
parameternab. Therefore, as shown in Figure 4.13,b̃x and j̃y are much more sensitive to the
discretization of the lower air than to the one of the upper air (see Figure 4.9).
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Figure 4.10: Convergence ofb̃x and j̃y normalized by the most refined result. For the tool
coil ntc = 1 is inexpedient since this excludes unconstrained nodal components for the scalar
potentialχ.
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Figure 4.11: Illustration of vertical field distribution along Path PZ to indicate field distributions
in particular features of the EMF setup.
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Figure 4.12: Study of convergence ofbx andjy for the number of element layers in the sheet
metal along Path PZ.
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Figure 4.13: Convergence ofb̃x and j̃y normalized by the most refined result. The strong
sensitivity of the results tonsm is evident.

4.4 Mesh adaption and body force data transfer for solid shell elements

In the case of a staggered approach the solution of the coupled system is achieved on two
meshes. In Stiemer et al. (2006a) a coupled simulation has been presented where the discretiza-
tion of the electromagnetic subsystem was based on an Eulerian formulation of the discrete
system. This means that the Lagrangian mesh for the mechanical structure is moved over a
fixedEulerian mesh for the electromagnetic field. However, thereare problems inherent to this
approach since the character of the electromagnetic field equation in a certain point of the elec-
tromagnetic mesh changes from one instant to another when the structure moves over it: As long
as it is not covered by the mechanical structure, the field equations are elliptic (instantaneous
assumption of the equilibrium field) and they become parabolic (diffusion process) as soon as
the point is covered by the sheet metal. This leads to a suddenchange in the local discretiza-
tions since a contribution to the mass matrix arises as soon as a point is covered by the structure
and it disappears when it is uncovered again (see Figure 4.14above right). Methods that rely
on this Euler-Lagrange approach are sometimes called fictitious boundary methods and are also
applied to simulate liquid-structure interaction in computational fluid dynamics (e.g. Anca et al.
(2006)). It has turned out that this change of the discretization in a certain point of the electro-
magnetic mesh causes oscillations in the time derivative ofthe vector potential and thus in the
Lorentz force. If a good approximation to the forces is required an ALE-based method is more
promising. Here, the position of the electromagnetic mesh is adapted to the current position
of the structure so that the character of the electromagnetic field equations as well as the local
discretizations never changes (see Figure 4.14 below rightand left). In an ALE approach, the
electromagnetic mesh is adapted to the moving structure so that the same elements are always
covered by the moving mechanical structure. Consequently, the character of the discretization
in a particular element does never change, which avoids jumps of the Lorentz force. The move-
ment of the electromagnetic mesh is arbitrary in the sense that the position of the discretizing
mesh is not determined by requirements of the electromagnetic field equations themselves, but
by accompanying conditions. As mentioned above, one of these represents the matching of the
mechanical and electromagnetic elements of the sheet metalaccording to its deformation. Ele-
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air
sheet
toolcoil

Figure 4.14: Illustration of the interaction between the mechanical and electromagnetic mesh.
Left: 2D Modeling of an EMF process by means of the ALE algorithm. The electromagnetic
and mechanical meshes of the sheet metal match. Right: Schematics of the fictitious boundary
method (fixed Eulerian mesh) and the ALE method (matching meshes).

ments in the tool coil are fixed at their initial positions. Toavoid mesh distortion or intersection
induced by the deforming sheet metal the mesh in the surrounding air has to be adopted. This
is based on a Lagrangian smoothing algorithm (Field, 1988).

In the above example of the ALE approach for 2D EMF modeling deformation and body
force data is transferred from each element to each element.In this respect both discretizations
can not be chosen independently. This situation can lead to unnecessary refinement for each
subdomain depending on the necessary refinement of the other(see mesh in Figure 4.14 left).
Since the extent of the problem in the case of 2D is relativelysmall in terms of computation time,
this extra refinement can be accepted. Due to the problem sizeof 3D EMF simulations there is
a strong motivation to refine both meshes independently. This requirement becomes even more
fundamental if shell elements – commonly used in sheet forming simulations – are used for the
mechanical mesh. Evidently, then the discretization in thickness direction of the mechanical
mesh is fixed to one layer of elements. Here, an independent mesh refinement in thickness
direction of the electromagnetic component of the sheet metal is mandatory. To resolve this
issue in the electromagnetic part of the model, the deformation of the electromagnetic elements
contained in the mechanical domain needs to be taken into account.

The approach to be presented here is based on the fact that att = 0 the boundaries of the
discretized electromagnetic and mechanical domain overlap. Later the sheet deforms and the
vertex positions̃x of the electromagnetic mesh elements have to be adopted suchthat mesh
domains are congruent again. To achieve this, similar to the2D case, first the vertex positions
of the electromagnetic elements of the sheet metal are movedaccording to the mechanical
deformation and then the remaining vertex positions of the electromagnetic mesh are smoothed.
In the 2D example (see Figure 4.14 left) the sheet element vertices of both, the mechanical and
electromagnetic mesh match. In contrast, when using solid shell elements this is not the case.
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A mapping of the mechanical deformation to those vertices ofthe electromagnetic mesh which
are contained in the sheet metal is required. One proximate approach to achieve this is given by
the simple shape function mapping of the actual nodal element positionsxe(tn)

x̃
i
SM

(tn) = H(ζi(x̃i
SM

(tn))xe(tn) (4.3)

to the element vertexi contained in the sheet metal yielding its new positionx̃
i
SM

(tn) attn. Here,
x̃

SM
(tn) represents the positions of all element vertices of the electromagnetic mesh which are

contained in the sheet,H the shape function matrix evaluated at the local element coordinates
ζi which corresponds tõxi

SM
(tn).

Next, all variable positions of̃x are then adopted tõx
SM

via the aforementioned smoothing
technique yielding the new mesh topology of the electromagnetic mesh attn. Figure 4.15 shows
how the electromagnetic elements are moved according to themechanically deformed mesh.

Next, the mapping of the electromagnetic loads is discussed. As shown in Section 4.8,
for typical frequencies and sheet thicknesses, the Lorentzforce distribution in sheet thickness
direction can be highly non-linear and variable (see Figure4.30). This motivates the separation
of the algorithmic form (4.2) of the weak momentum balance (4.1)1 into a component that is
purely mechanical and a component resulting from the electromagnetic loads,

fn+1,n = f
EM

n+1,n(xn+1, an+1) + f
Mech

n+1,n(xn+1) . (4.4)

As indicated in Equation (4.4),fEM

n+1,n is the part which is attributed to the Lorentz force coupling
and receives particular attention, here. The structural force vector can be rewritten in terms of
the usual assembly relation

fn+1,n =
∑

e
I
eT

x
(f e EM

n+1,n(xe
n+1, a

e
n+1) + f

e Mech

n+1,n (xe
n+1)) . (4.5)

Here,f e
n+1,n represents the element contribution to the structural right hand sidefn which is as-

sembled with the help of the element connectivity matrixI
e
x
. In more detail the electromagnetic

contributionf e EM

n+1,n is obtained via the usual integration over the element domain Be
r

f
e EM

n+1,n(xe
n+1, an+1) = −

∫

Be
r

H
Tdet(F e(xe

n+1)) ℓ e
n+1 . (4.6)

It is important to note that the integration of (4.6) needs tobe accurate in the direction where
ℓ e

n+1 decays (see Figure 4.30 and 4.28). Equation (4.6) is integrated via Gaussian quadrature
(Hughes, 1987). The accurate rendering of the non-linear decay is archived by choosing a high
number of Gaussian points in the thickness direction of the element domain of the solid shell
element. Both, mapping of the deformation and transfer of thebody forces are illustrated in
Figure 4.15.

The integration accuracy with which (4.6) is integrated isonecondition to obtain an accurate
representation off e EM

n+1,n. It should be notified that (4.6) leads to accurate results ifnot only
the number of integration points is sufficiently high enoughbut also the values forℓ e

n+1 at
the integration points are sufficiently accurate. For the edge based elements the magnetic flux
densityb and current flux densityj are given at the barycenter of the element and so isℓ e

n+1.
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Figure 4.15: Illustration of data transfer in the context ofthe staggered solution algorithm attn.
Body force data of the refined electromagnetic mesh is utilized to receive an accurate represen-
tation of the electromagnetic loading. The subsequent deformation of the sheet mapped to its
electromagnetic counterpart and the element topology of the air is smoothed.

The barycenter closest to the global coordinates of a particular Gaussian point coordinate is
used to evaluateℓ e

n+1 in (4.6).

The method proposed above was tested by means of a single mechanical element. Here,
the objective of the study at hand is to obtain a accurate representation off e EM

n+1,n. To this end
the influence of both, the accuracy of the integration of (4.6) and the one ofℓ e

n+1 at the inte-
gration points were investigated. Here, for any fixed numberof integration points the amount
of electromagnetic elements contained in the mechanical element was increased and the cor-
responding sum of the vertical electromagnetic element loads was examined. An eddy current
and a magnetic field distribution was imposed. Both are actingin the plane of the sheet metal
and are perpendicular to each other. As in the case of the fully coupled model, an exponential
decay of both prevails. Decay constants were chosen closelyresembling those computed be-
low (see Figure 4.30). Magnetic flux and eddy current vectorsare given at the barycenters of
the electromagnetic elements. Exemplarily two mechanicalelements containing two and eight
electromagnetic elements withb andj at their barycenters are depicted in Figure 4.16.

The study of convergence depicted in Figure 4.17 demonstrates how the vertical loads con-
verge with increasing number of electromagnetic elements and Gaussian points. Regardless of
the number of Gaussian points, all curves start at the same value, which is sensible. If only
one electromagnetic element is contained, the Lorentz force is assumed to be constant in the
element and the nodal force result is independent of the accuracy of the integration. For the
highest number of Gaussian points the nodal representationof the Lorentz force exhibits the
best convergence. For lower numbers of Gaussian points the loads converge to values that are
too small. A low number of Gaussian points implies that the bottom and top integration points
are not located closely enough to the surface of the sheet, where body forces are maximal. This
results in a pathological underestimation of the loads, which is also confirmed by an under-
estimation of the deformation of the sheet metal for the fully coupled simulation (see Figure
4.17).

Since the additional numerical effort to integrate (4.6) with 8 Gaussian points is relatively
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Figure 4.16: Two of seven electromagnetic discretizationsto investigate the convergence of the
electromagnetic loads with increasing refinement of the electromagnetic elements embedded in
the mechanical one. Magnetic flux and eddy current vectors are given at the barycenters of the
electromagnetic elements.
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Figure 4.17: Study of accuracy of body force mapping algorithm. Left: Convergence of sum
of vertical nodal forces resulting from electromagnetic body forces with increasing number of
elements in sheet metal and Gaussian points. Right: Study of influence of Gaussian quadrature
for a fully coupled simulation with respect to the vertical displacement at Point P2 (see Figure
4.19). The underestimation of electromagnetic loads for a small number of Gaussian points is
confirmed.

small and a sound integration can be ensured, all subsequentcalculations were computed in
this manner. Secondly, it can be seen that good accuracy of the electromagnetic loads can be
achieved by embedding at least 4 elements in the solid shell element.

4.5 Study of convergence of the mechanical model at fixed electromag-
netic loads

To be able to determine the convergence behavior of the mechanical solution, the interaction
between the mechanical and the electromagnetic model was suppressed. Even if one worked
with an electromagnetic model, which remained unchanged interms of its discretization, an
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independent evaluation of the mechanical model would not bepossible. If only the mechanical
mesh was refined, the Lorentz force distribution would stillbe different due to the fact that the
electromagnetic fields depend sensitively on the deformation of the sheet which in turn depends
on its mechanical discretization. In this respect a separate comparability of the mechanical
model discretization is only provided if the electromagnetic model is replaced by a body force
distribution which is independent of the mechanical deformation. On the other hand however,
the spatial body force distribution and its temporal progression should be chosen such that they
are closely related to the fully coupled problem. Otherwisethe conclusions drawn from the
study of convergence might not apply in the context of the fully coupled problem. To find
a suitable distribution the magnetic and eddy current field distributions of the finest mesh with
nx = ny = 24 and full vertical discretization att = 8 µs serve as basis for the spatial component
of the field. Regarding the temporal progression, the directions ofb andj are independent of
t. Only their magnitude is scaled with a time function which serves as a realistic temporal
weighting. This function is obtained from coupled simulations and is depicted in Figure 4.18.
As mentioned above the sheet metal is fully clamped at the edges parallel to they-axis (see
figures 4.18 and 4.20).
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Figure 4.18: Illustration of fixed (i.e., no interaction between mechanical and electromagnetic
fields) Lorentz force distribution. Left: Direction Lorentz force field. Right: Temporal progres-
sion and vertical component at lower surface of plate.

Combinations of mesh refinement inx- andy-direction are investigated for the mechanical
part of the model. Here, the number of elements inx-direction is denoted bynmx and the
number of elements iny-direction bynmy. Selected characteristic nodal values of the vertical
deformation and the nodal projections of the equivalent plastic strainǫ

P
serve as indicators of

convergence. As depicted in Figure 4.19 these are denoted byP1 and P2 and located above the
winding of the tool coil and at the center of the plate .

While the evaluation at P1 and P2 serves as quantitative comparison of different discretiza-
tions, the figures 4.20 and 4.21 provide a qualitative impression of the progression of the in-
elastic and total deformation of the sheet metal. Here, Figure 4.20 shows deformation stages at
the instancest = 30 µs, t = 60 µs, t = 90 µs andt = 120 µs. At the beginning of the process
the center of the plate remains at rest, whereas just above the tool coil the plate experiences
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Figure 4.19: Illustration of points of evaluation for mechanical study of convergence. Here, P1
is located at the center of the left coil winding and P2 at the center of the sheet metal.

high Lorenz forces and begins to accelerate (see also Figure4.18). In later stages the center of
the plate is then pulled along by the rest of the plate and accelerated via predominantly inertial
forces. The final shape representing a rooftop-shaped structure is depicted in Figure 4.21 along
with top view contour plots ofǫ

P
.

t = 30 µs t = 60 µs

t = 90 µs t = 120 µs

Figure 4.20: Deformation stages at various instances for the finest discretization (i.e.nmx =
nmy = 24) obtained by means of the body force distribution depicted in Figure 4.18.

Figure 4.21 also indicates the dependence of the deformation andǫ
P

on mesh refinement
in a particular direction. Regarding the maximal deformation and maximal value ofǫ

P
Figure

4.21 indicates that the sensitivity to mesh refinement inx-direction is much stronger than iny-
direction. While the coarsest mesh refinement iny-direction withnmx = 4nmy = 24 still yields
a similar final shape and maximal value forǫ

P
as the finest discretization withnmx = nmy =

24, a coarse discretization inx-direction results in a wrong prediction of the deformationand
maximal value ofǫ

P
. This can be explained by the electromagnetic loading in combination with

the mechanical boundary conditions. Due to the geometry of the tool coil, the corresponding
body force distribution and the lateral fixing the plate is bent predominantly about they-axis.
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Figure 4.21: Final shape of sheet metal and corresponding top view contour plots ofǫ
P

at
t = 300 µs for different mechanical discretizations (nmx = nmy = 24, nmx = 2nmy = 24,
nmx = 4nmy = 24 and4nmx = nmy = 24). Deformed shapes and contour plots indicate
a pronounced sensitivity with respect to the discretization in x-direction (see in particular last
discretization with4nmx = nmy = 24) while they-direction is less sensitive to mesh refinement
(see first three discretizations).

Only at the rear part of the coil the electromagnetic loads are such that bending about thex-axis
occurs. However, since there is no mechanical fixing at theselocations it turns out to be less
pronounced.

A quantitative evaluation at P1 and P2 confirms the above findings. Here, Figure 4.22 demon-
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strates the sensitivity to mesh refinement with respect to vertical deformation∆z. While a
coarse mesh iny-direction yields a reduction of about 2.5 % of the final shapeof the sheet
metal, coarsening inx-direction results in an underestimation of the deformation by about 25
%. For the accumulated equivalent inelastic strain the deviations are even more severe (see
Figure 4.23). Here, fornmx = 6 at P1 the inelastic deformation is overestimated by 35 % and
underestimated by 43 % at P2. As can be seen in figures 4.21, 4.22 and 4.23, a very good
agreement can be found betweennmx = nmy = 24 andnmx = 2nmy = 24. By choosing
nmx = 2nmy = 24 for subsequent coupled simulations the computation time can be reduced
significantly while conserving solution accuracy.

Regarding computation time, the electromagnetic part of thecoupled system represents the
most extensive part of the model. In this respect the reduction of computational cost due to
mesh coarsening of the mechanical component of the model is relatively small. However one
should note that an interrelation between the electromagnetic and the mechanical mesh exists.
For a particular electromagnetic discretization it is possible to choose a mechanical discretiza-
tion which is coarser than the electromagnetic one. Vice versa it is not possible to choose a
mechanical mesh which is more refined than the electromagnetic one. In this respect the above
discussed mesh coarsening (i.e., nmx = 2nmy = 24) allows for a mesh coarsening of the elec-
tromagnetic mesh. This is the reason for the significant reduction of computational cost.
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Figure 4.22: Study of convergence of mechanical mesh with respect to different directions of
refinement for vertical deformation at P1 and P2. Left: Studyof convergence forx-direction.
Right: Study of convergence fory-direction.



4.6 Termination criterion for the computation of the electromagnetic part 79

0 100 200 300
0

0.05

0.1

0.15

t [µs ]

ǫ P
[-

]
nmx = 24
nmx = 12
nmx = 6

0 100 200 300
0

0.05

0.1

0.15
nmy = 24
nmy = 12
nmy = 6

t [µs ]

ǫ P
[-

]

Figure 4.23: Study of convergence of mechanical mesh with respect to different directions of
refinement forǫ

P
at P1 and P2. Left: Study of convergence forx-direction. Right: Study of

convergence fory-direction.

4.6 Termination criterion for the computation of the electromagnetic part

As mentioned above, the largest computational effort is to be attributed to the solving of the
electromagnetic part of the model. Since the forming operation is the focus of the current study,
it is important to note that external loading due to Lorentz forces typically takes place in the
beginning of the process, during the first alternation of thetool coil current. Later, the amount
of energy transferred to the sheet metal via electromagnetic loads is relatively small. At this
time the actual forming takes place predominantly due to inertial forces. This offers potential to
save further computational cost. If it is possible to find a meaningful criterion to judge whether
the electromagnetic loads are still significant for the forming operation or whether they can be
neglected, the total computation time could be reduced enormously. If such a termination cri-
terion indicates the insignificance of the electromagneticloads, the electromagnetic part of the
model can be turned off and only the fast mechanical part of the model remains. In the field
of non-linear finite element modeling convergence criteriacommonly applied for the termina-
tion of global Newton Raphson schemes are usually based on thechange of the energy of the
corresponding Newton step in relation to the energy change of the first iteration

∆x
i
n+1,n · f i

n+1,n ≤ ǫc∆x
1
n+1,n · f1

n+1,n . (4.7)

Here,∆x
i
n+1,n · f i

n+1,n represents the energy change in terms of the deviation∆x
i
n+1,n of the

nodal positions and the residual force vectorf
i
n+1,n corresponding to the Newton stepi. ǫc rep-

resents the tolerance for which (4.7) is fulfilled. Accordingly a termination criterion for the
electromagnetic model is based on the energy transferred from the electromagnetic system to
the mechanical one. If the amount of energy transferred after some timet ≥ tter is significantly
smaller than the amount of energy that has been transferred up to this instance, it can be ex-
pected that an accurate representation of the mechanical deformation can be obtained without
further consideration of the electromagnetic system. Therefore, with some toleranceǫEM the
electromagnetic simulation is stopped at termination timetter if

EEM(∞) − EEM(tter) =

∫
∞

tter

PEMdt ≤ ǫEM

∫ tter

0

PEMdt (4.8)
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is fulfilled. Here,PEM(t) represents the rate of energy transferred at instancet and EEM(t)

the energy transferred from the electromagnetic system until instancet. Since the quantity
EEM(∞) − EEM(tter) is unknown, an alternative criterion based on the comparison of PEM(t) is
employed. Here, the rate of energy attn+1,n is estimated on the basis of the nodal velocities at
tn+1 and the nodal representations of the electromagnetic loadsgiven in (4.4)

PEM(tn+1) ≈
(xn+1 − xn) · fEM

n+1

tn+1,n

. (4.9)

In the particular case of EMF the rate of energy transferred to the mechanical part oscillates
with decreasing amplitude as can be seen in Figure 4.24. Thisresults from the oscillation
of the input current. In particular during the first alternation, the largest amount of energy
is transferred to the mechanical part. At later instances the intensity of the magnetic field is
reduced due to the imposed input current and the expanded airgap between the sheet and the
tool coil. Correspondingly, the peak valuesPEM(tPi) of PEM(t) decay. In this case, relating the
first peak valuePEM(tP1) to the current peak valuePEM(tPi) represents a close match for the
termination criterion given in (4.8) and represents a meaningful termination criterion. If the
energy contribution fort ≥ tPi is sufficiently small, the computation of the electromagnetic
system can be terminated. In this respect the new termination criterion is denoted by

tter = tPi if PEM(tPi) ≤ ǫEMPEM(tP1) . (4.10)

It is important to note that the value forǫc in (4.7) can precisely be determined on the basis of
the best possible numerical accuracy (usuallyǫc = 1 × 10−16). For ǫEM this is not the case.
There is some degree of freedom given to the modeler to choosesome value forǫEM for which
accurate results can be expected at reasonable modeling effort for a particular class of EMF
processes. To show and quantify the effect of the termination of the electromagnetic simulation
with respect to the forming result, different values forǫEM were chosen and the corresponding
results were compared. Since the principal findings regarding the energy conversion are similar
for coarse and fine meshes (see Section 4.8 Figure 4.31), a coarse mesh for the study of the
termination criterion was chosen to save computation time.

Figure 4.24 shows the progression ofPEM. Each marker indicates the termination of the
electromagnetic system corresponding to three different values forǫEM attributed to 1.5 %, 3 %
and 6 % of the first peak valuePEM(tP1). After terminating the electromagnetic simulation the
total amount of energyEEM(t) transferred to the mechanical system remains constant which can
be confirmed by the straight lines. The dotted red curve showsa simulation without termination
of the electromagnetic system and serves as reference solution. Further, the graphs for the total
amount of energy transferredEEM(t) indicate how criteria (4.8) and (4.10) are related to each
other. As depicted in figures 4.24 and 4.25 the difference between the reference solution and
the terminated one becomes smaller with decreasingǫEM .

Also interesting from the point of view of the technologicalprocess simulation is certainly
the degree of deviation in terms of the deformation. To this end, the vertical displacement at
evaluation Point P2 was examined for the three values forǫEM. As can be seen in the left part
of Figure 4.25 only forǫEM = 0.06 the deformation exhibits a significant underestimation (solid
curve). For all other termination criteria the deformationis very close to the reference solution
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Figure 4.24: Illustration of termination criterion for different termination tolerancesǫEM cor-
responding to 1.5 %, 3 % and 6 % of the first peak valuePEM(tP1). The plot forPEM shows
how most of the energy is transferred to the mechanical system during the first alternation. To
resolve the increase ofEEM due to subsequent alternations the left ordinate starts at 100 J. After
termination of the electromagnetic part of the modelPEM = 0 andEEM = const..

(dotted curve). To quantify this the displacement∆z and transferred energyEEM at t = 300 µs
were compared for the different termination criteria (see right part of Figure 4.25). Similar as in
previous cases the relative deviation is highlighted by normalization with the reference solution
yielding the normalized values∆z̄ and ĒEM. Due to the nature of the termination criterion
ĒEM < 1. As a result of small elastic oscillations∆z̄ > 1 is possible for the comparison of the
deformation. In view of subsequent simulations,ǫEM = 0.03 seems to represent a reasonable
choice.
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4.7 Discussion of all model simplifications

Two objectives drive the above considerations regarding means to evaluate the size of the bound-
ing box, spatial finite element discretization and termination criterion. On the one hand these
studies allow for an estimation of the degree of convergenceof the solution and provide insight
with respect to the expected error due to the chosen discretization. On the other hand the find-
ings allow for the exploitation of potential for reduction of the computation time by selectively
choosing a coarse discretization at locations where this isadmissible according to the study of
convergence within the scope of the desired accuracy. A goodexample of this reasoning is the
evaluation of the vertical mesh parameters for the tool coil, air gap and upper air. The studies
of convergence for these parameters indicate that an accurate solution is already obtained for a
very coarse mesh (see Figure 4.10). This could be explained by physical phenomena in the par-
ticular element layer (tool coil layer, air gap layer or upper air layer). Crucial to the modeling
accuracy and model simplification however was thequantificationof the deviation by means of
the study of convergence. Here, it is important to note that the choice of field variables subject
to the study of convergence has to be made with respect to the simulation objective. In the case
of EMF the objective is to obtain an accurate prediction of the deformation and inelastic internal
variables. In Table 4.1 all taken measures to obtain a simplified model are summarized. This
includes information regarding the model reduction in terms of the number of degrees of free-
dom of the electromagnetic system and the computation time for a coupled simulation ending
at t = 300 µs with a time steptn+1,n = 1 µs (seee.g.(Schinnerl et al., 2002)). Further, on the
basis of the study of convergence the deviation of the deformation due to the particular measure
was estimated. In general the reduction of the size of the bounding box, mesh coarsening or
termination of the electromagnetic simulation leads to an underestimation of the magnitude of
b andj and thus of the deformation. To roughly quantify the reduction of deformation for the
mechanical simulation the magnitude ofb andj was reduced by 1 % for the fixed field distri-
bution shown in Figure 4.18. As a result the deformation at P2was reduced by about 0.8 %
serving as a basis for the quantification of the error of the model simplifications listed in Table
4.1. For the subsequent fully coupled simulation all mesh parameters are summarized in Table
4.2.

For many mesh parameters the results of the studies of convergence can be transferred to
other typical forming setups. In general, the results for discretization parameters like the number
of elements in the air gapnag, tool coil ntc, sheet metalnsm, air above and below the setup
naa,ab can at least qualitatively be transferred to any other setup, regardless of the particular tool
coil design (circular, elliptical, rectangular, etc.) andforming setup, since all of these setups
exhibit equivalent features that can be discretized with the arguments discussed above. The
same applies to the evaluation of the size of the bounding boxd and the termination criterion.
For the discretization parameters in the plane of the sheet metal (nx andnx) some degree of
transferability is given for elliptical or circular tool coil forming setups. For such a setup,nx

can be attributed to the radial direction andny to the circumferential one. It is expected that the
sensitivity of the results is less pronounced in circumferential direction, where the coil windings
proceed.

Modeling of EMF is an evolving field and the above discussed measures represent only a



4.7 Discussion of all model simplifications 83

selection of means to save computational cost. However these are general since they refer to
physical features of the forming operation and are valid regardless of the numerical methods that
are utilized. Further development of algorithmic strategies also offer potential in this regard and
represent work in progress.

reduction of size mesh coarseningmesh coarseningtermination

of bounding box in xy-plane in vertical dir. criterion

No. dof before 6.5 × 105 1.4 × 105 6.9 × 104 3.2 × 104

No. dof after 1.4 × 105 6.9 × 104 3.2 × 104 3.2 × 104

Tsim [d] before too large 3.7 × 101 1.7 × 101 6.5 × 100

Tsim [d] after 3.7 × 101 1.7 × 101 6.5 × 100 2.4 × 100

approx. reduction of

deformation
< 1.5 % < 0.2 % < 2 % < 0.1 %

reference to

figures
4.3,4.4 4.7 4.12,4.10 4.24,4.25

Table 4.1: Summary of the evaluation of the potential to reduce the computational effort. in
terms of the number of degrees of freedom and computation time at simultaneous evaluation of
the associated error of the modeling result.

mesh parameter initial after study

d 60 mm 15 mm

nx 24 24

ny 24 12

nmx 24 24

nmy 24 12

naa 8 2

nab 8 4

nag 8 2

ntc 8 2

nsm 8 8

Table 4.2: Summary of the evaluation of mesh parameters.
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4.8 Discussion of results for a fully coupled simulation

With the above simplifications at hand we now turn to the fullycoupled simulation of the EMF
process. As discussed above the energy driving the forming operation is characterized by the
discharging current depicted in Figure 4.1 which was implemented as a Neumann boundary
condition forχ. For the instancet = 8 µs whereI is maximalχ is depicted in the upper part of
Figure 4.26. Starting from the right connection surface whereχ = 0 is prescribed, the potential
increases to a maximum value ofχ = 4.1 kV to satisfy (4.1)3 and the remaining Neumann
boundary conditions. As could be expected, themagnitudeof j = −σ

EM
∇sχ inside the tool coil

at t = 8 µs remains relatively unchanged, onlyj changes its direction following the centerline
of the coil winding as can be seen in the center part of Figure 4.26. If eddy currents had been
considered some non-uniform distribution ofj in the tool coil cross section could have been
expected. In the lower part of Figure 4.26,j is depicted fort = 40 µs. At this instance the input
current has reached its second extreme value (see Figure 4.1) and flows in opposite direction.
Accordingly the direction ofj is flipped and has a reduced magnitude.

Next we turn to the development of the magnetic flux densityb at the instancest = 4 µs,
t = 12 µs andt = 28 µs. Up tot = 28 µs the largest portion ofEEM is transferred to the
mechanical part of the model (see figures 4.24 and 4.31). In this respect this period of time
is significant for the forming operation. Due to the correlation of the tool coil current with
the input current, alsob is correlated to the input current via Ampere’s law. As can beseen
by comparison of Figure 4.27 (above) and Figure 4.27 (center) the increased input current at
t = 12 µs results in an increase ofb. At t = 28 µs whereI just flipped (see Figure 4.27
(below)) the current in the tool coil and sob are small. At all instancesb is insignificant above
the sheet metal. This can be attributed to the eddy currents induced in the sheet metal (see Figure
4.28). Here, the temporal evolution of the magnetic field becomes important. The increase of
I until t = 8 µs leads to an increase ofb in the air in the center of the tool coil winding. The
magnetic field and its increase∂b are oriented inz-direction here. According to Faraday’s law
of induction,∂b induces an electric field which drives eddy currents which proceed along the
tool coil winding and are oriented in opposition to the current in the winding (compare figures
4.26 and 4.28). Due to their orientation, these eddy currents neutralize the magnetic field above
and inside the sheet metal and lead to the shielding effect. Furthermore att = 12 µs in contrast
to t = 4 µs,b begins to penetrate the sheet metal which can be seen by the vectors ofb at the
upper surface of the sheet metal. This is discussed below together with the development of the
eddy currents in the sheet metal.

In Figure 4.28 the eddy current distributions for the aforementioned instances are shown. In
more detail this is depicted in Figure 4.30 where the significant componentsjy of j andbx of b

are depicted along PZ with increasing time. Since the sheet metal deforms under the influence
of the Lorentz force the current flux distributions move in vertical direction with increasing
time. At the beginning of the process, where the input current exhibits a significant increase,
the magnetic field increases in particular close to the lowersurface of the sheet metal while an
increase inside the sheet metal is relatively small. Accordingly eddy currents occur close to the
lower surface as well (see instancet = 4 µs Figure 4.30) to counter the local penetration of
b. Later, when the first alternation reached its peak att = 8 µs as discussed above,b becomes
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maximal and remains constant outside the sheet metal and theincrease close to the surface of the
sheet metal is reduced. Accordingly the eddy currents induced here are reduced in comparison
to t = 4 µs. Insidethe sheet metal, however,∂b might be larger than at previous instances due
to the fact that further penetration ofb in the sheet metal is facilitated. This in turn leads to an
induction of eddy currents into regions which are more distant from the lower surface. As can
be seen in Figure 4.30 att = 4 µs the eddy currents close to the upper surface are insignificant
and so is the magnetic flux density. While proceeding further to t = 8 µs inside the sheet metal,
bx has risen, consequently even close to the upper surfacejy has become significant while close
to the lower surfacejy is reduced. With increasing time (see,e.g., t = 12 µs) the magnetic
field in the air gap decreases, then the eddy currents close tothe surface become smaller than
inside the sheet metal where the penetration of the magneticfield still leads to an increase of
bx. Close to the lower surface now the effect of self induction ofthe sheet leads to a retention
of the eddy currents althoughb decreases in the air gap. Att = 20 µs and later instances, the
eddy current direction is even reversed close to the lower surface of the sheet metal. The flipped
eddy currents at the surface of the sheet superimpose a magnetic field to that of the tool coil
which leads to a further reduction of the magnetic flux density at the surface of the sheet. The
maximal value forbx is now inside the sheet (see Figure 4.30 instancest = 20 µs, t = 24 µs
andt = 28 µs) and the maximal value forjy at its upper surface.

Referring to the Lorentz forcelr = det(F ) j × b as a coupling term to the mechanical
component the above discussion underlines the fact that special care has to be taken to account
for the strong variations ofb andj in the sheet metal (see Section 4.4). Further it could be
seen thatb andj penetrate the sheet metal at instances where they are still significant in terms
of their magnitude (seee.g., t = 8 µs in Figure 4.30), in this respect the notion of a magnetic
pressure (Mamalis et al., 2004) in the context of EMF is not accurate sinceb andj and so the
Lorentz force act inside the sheet metal. Regarding the development ofb andj with respect
to the progression of the forming operation from figures 4.27and 4.28 it can be seen thatlr
predominantly acts in positive vertical direction and evolves below the tool coil winding (see
also Figure 4.18). This applies to all alternations regardless of the direction of the input current,
b andj basically flip simultaneously. Only at some time shortly before zero-crossing of the
input currentb andj are oriented such thatlr points downwards (see Figure 4.30, instances
t = 20 µs andt = 24 µs).

The temporal development oflr can be deduced from Figure 4.30. While at the very be-
ginning of the process the largest eddy currents are induced, the magnetic flux density is still
relatively small since the tool coil current is relatively small as well; moreover the sheet metal
is basically at rest meaning that very little energy is transferred to the mechanical system. At
some time betweent = 4 µs andt = 20 µs where both, the velocity of the sheet metal and
lr = det(F ) j × b are relatively large, the forming operation is most effective. In fact this
motivates the redesign of the electric circuit attached to the forming setup – presently basically
consisting of a switch and a capacitor – such that the efficiency of the process can be increased.

The aforementioned Lorentz force distribution is also reflected by the stages of deformation
depicted in Figure 4.29. At the beginning of the process, thecenter of the plate remains at rest,
whereas just above the tool coil winding, the plate experiences high Lorenz forces and begins to
accelerate (see Figure 4.29, instancet = 30 µs). The contour plots represent the development
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of the accumulated inelastic deformation for this stage of deformation as a top view of the sheet
metal. Due to the boundary conditions of the sheet metal fort = 30 µs the lateral regions
exhibit an increase ofǫ

P
, the rear part of the structure exhibits no inelastic deformation due to

the fact that the sheet metal can move freely andlr is less pronounced here (see also Figure
4.18). The lateral fixing leads to a combined bending and stretching of the sheet caused by
the body force distribution nearby. In particular at the front corners of the sheet the inelastic
deformation exhibits its maximal value ofǫ

P
≈ 0.8. The loading of the plate leads to a lateral

contraction of the plate which becomes zero at the fixed edge of the plate. The strains resulting
from this lateral deformation, however, are maximal here and contribute to the increase ofǫ

P
.

With increasing time (see Figure 4.29,t = 60 µs) the accelerated parts of the structure continue
to deform and the center of the plate – initially at rest – begins to move. In addition to the front
corners of the sheet metal now the rear corners exhibit an increased inelastic deformation as well
and bands of increased inelastic deformation propagate from the front corners to the center of
the sheet. Att = 90 µs andt = 120 µs the center of the plate is accelerated further, the bands of
deformation evolve and close to the center of the plate a maximum forǫ

P
starts to develop. The

final shape of the structure fort = 300 µs is shown at the bottom part of Figure 4.29. During the
last forming stages the initially downwards bent center of the structure is now pulled along with
the lateral regions of the plate and bent upwards resulting in a roof-top shaped structure. The
strong inelastic bending results in an additional increaseof ǫ

P
at the center of the plate. In Figure

4.31 the vertical deformation at P1 and P2 and the energyEEM(t) is depicted. In comparison to
Figure 4.25, where a comparatively coarse mesh was utilized, the deformation is much larger.
This is in accordance with the mechanical convergence study. In conclusion it is not surprising
that the increased resilience of the refined mesh also leads to a higher value forEEM (see Figure
4.24 right). The structure starts to deform earlier and moreenergy is transferred.
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χ at t = 8 µs

j at t = 8 µs

j at t = 40 µs

Figure 4.26: Electric potential and current distribution in tool coil. Above: scalar potentialχ
at maximal input current. Center: current density distribution in the tool coil at maximal input
current. Below: current density distribution in the tool coil at second extreme value ofI and
flipped direction (see Figure 4.1).
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t = 4 µs

t = 12 µs

t = 28 µs

Figure 4.27: Magnetic flux density distribution for the instancest = 4 µs, t = 12 µs and
t = 28 µs. With increasing input currentI the magnetic flux densityb increases as well. The
shielding effect of the sheet metal becomes evident.
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t = 4 µs

t = 12 µs

t = 28 µs

Figure 4.28: Eddy current distribution for the instancest = 4 µs, t = 12 µs andt = 28 µs. At
the beginning of the process the increase ofb in the air results in high values for the induced
eddy currents at the surface of the sheet metal. At later instancesb increases inside the sheet
and leads to a more homogenous eddy current distribution in thickness direction.
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t = 30 µs

t = 60 µs

t = 90 µs

t = 120 µs

t = 300 µs

Figure 4.29: Forming stages of the sheet metal as a function of time and corresponding top view
contour plots ofǫ

P
. Initially, the part of the sheet metal located directly above the tool coil is

subject to large induced Lorentz forces and begins to accelerate. As forming proceeds, this part
pulls the center of the plate along with it.



4.8 Discussion of results for a fully coupled simulation 91

−10 −7.5 −5 −2.5 0
0

1

2

3

z
[
m

m
]

bx [T]

t = 4 µs
t = 8 µs
t = 12 µs
t = 16 µs
t = 20 µs
t = 24 µs
t = 28 µs

−5051015
0

1

2

3
t = 4 µs
t = 8 µs
t = 12 µs
t = 16 µs
t = 20 µs
t = 24 µs
t = 28 µs

z
[
m

m
]

jy[ kA/mm2]

Figure 4.30: Development ofbx andjy along PZ with evolving time and deformation. Left: The
development ofbx in the sheet and surrounding air. Right: Development of eddy currents in the
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Figure 4.31: Development of vertical deformation at pointsP1 and P2 (left). Energy transferred
to the mechanical system in terms of total energyEEM(t) (right). The ends of the alternations
of the input currentI are highlighted.
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4.9 Conclusions

In contrast to 2D modeling of axisymmetric EMF processes, 3Dprocess models exhibit large
computational costs. However, in the present work it could be shown how a carefully chosen
discretization of typical features of the EMF setup can leadto an improvement and simpli-
fication of the modeling of EMF. The mesh evaluation was done by selectively studying the
convergence of eddy currents and magnetic flux density in thesheet metal with respect to par-
ticular discretization parameters that characterize the finite element mesh of a specific feature.
The study of convergence of typicalverticalmesh parameters indicated that a very low number
of element layers can be chosen for the air gap between the sheet metal and the air above the
sheet metal. Physical reasons for these findings can be attributed to the homogeneous distribu-
tion of the magnetic flux density in the air gap and the insignificantly low field strength above
the sheet metal. Inside the sheet metal a large number of element layers is required to render the
strong variations of the eddy currents and magnetic flux densities in thickness direction during
the forming process. The study of the horizontal mesh parameters and the size of the bounding
box, which determines the extent of the electromagnetic field, facilitate a further reduction of
computational cost without significant loss of accuracy.

To model the mechanical deformation of the sheet metal stabilized solid shell finite elements
(Reese, 2007) are applied. Evidently, here the sheet metal isdiscretized withone element
layer in thickness direction. To be able to deal with the different vertical discretizations of
the mechanical and the electromagnetic mesh, the Lorentz body force distribution in the solid
shell element is integrated separately from its purely mechanical part. Here, a large number
of electromagnetic finite elements which are contained inside the solid shell element is one
condition to obtain an accurate nodal representation of theelectromagnetic loads. Secondly, a
sufficiently high number of Gaussian points in the solid shell element has to be provided to be
able to deal with strong variations of the Lorentz force in thickness direction.

The third measure to reduce the computational cost is based on the fact that the electromag-
netic part of the model becomes less significant with each diminishing amplitude of the input
current. After some time the forming operation is basicallydriven by the conversion of kinetic
energy into inelastic deformation. This motivates the development of a termination criterion for
the electromagnetic part of the model. Results for the energytransferred from the electromag-
netic to the mechanical system denoted byEEM(t) indicate that approximately 98 % ofEEM(t)

is added to the mechanical system after the first three alternations. In particular during the first
alternation, where both, the velocity of the sheet metal andthe Lorentz forces are maximal,
most ofEEM(t) is added to the mechanical system. The electromagnetic partof the simulation
is terminated if the amount of energy added to the mechanicalsystem during the last alternation
falls below some reference value which is based on the first alternation. Together with the above
discussed measures this leads to a reduction of the computation time to 6.5 %.

After evaluation and development of the model simplifications, results for a relatively simple
3D EMF setup consisting of a square shaped sheet metal and an angled tool coil were computed.
For the given input current and tool coil geometry detailed insight with respect to the develop-
ment of eddy currents, magnetic field and deformation of the sheet metal can be provided. A
qualitative interpretation of the electromagnetic results succeeds in the context of Maxwell’s
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equations. At the beginning of the process both the electromagnetic and the mechanical part
of the model are crucial for the forming operation. Only if eddy currents, magnetic field and
the velocity of the sheet metal are significant, the electromagnetic forming operation becomes
efficient in terms of the employed energy. Based on the above developed simplifications and
research experiences future work is focused on more complexforming geometries and sophis-
tication of modeling approaches (see figures A.4 and A.5). From a technological point of view
the above investigations forEEM(t) motivate the further study of possible input current modifi-
cations with respect to an improvement of energy efficiency.





Appendix A

Technical realization of automatic pre- and
postprocessing of parametric 3D models for
electromagnetic forming

Abstract – Besides the theoretical and numerical issues involved with the modeling and simulation
of electromagnetic forming (EMF) a more technical issue is related to the treatment of complex 3D
forming setups in terms of their geometric representation and finite element meshing. To model and mesh
complex 3D parts, the application of a powerful pre- and postprocessingsoftware becomes necessary.
Due to its Python based interfaces the commercial software tool ABAQUS seems to be a good choice
in this regard. In particular the implementation of model scripts in ABAQUS for anautomated and
parametric creation of EMF model setups is demonstrated. Further, it is shown how the ABAQUS
pre- and postprocessing capabilities are combined with in-house implementations of the algorithmic
concepts particularly suitable to simulate EMF processes. Data transfer modules and their interrelation
are discussed and documented.

A.1 Introduction

As discussed in Chapter 4, 2D FEM modeling of EMF has been applied to simulate research
problems which consist of simple structures and exhibit rotational symmetry. In the industrial
context, applications consist of non-symmetric more complex problems which still lack a proper
3D modeling approach. It is an objective to develop a software tool capable of 3D modeling and
simulation of the aforementioned EMF processes. Here, the development and implementation
of numerical methods, particularly suitable to deal with the coupled magneto mechanical prob-
lem at large inelastic deformations is one of many issues involved. This is discussed in chapters
1 and 4.

A more technical issue is related to the treatment of complex3D structures and EMF se-
tups in terms of their geometric representation and finite element meshing. To model and mesh
complex 3D parts the application of a powerful preprocessing software becomes necessary.
Moreover, to be able to deal with the large amount of data received after process simulation, an
equally powerful postprocessing software is required. Thecommercial software tool ABAQUS
seems to be a good choice in this regard. ABAQUS provides welldocumented Python inter-
faces to import and export finite element mesh data includingfield results and has powerful,
sophisticated and reliable meshing and visualization tools. It is in particular the accessibility
for importing and exporting data, which qualifies ABAQUS forthe task. In the aforementioned
context the objective of this work represents the followingpoints:

∗Schmaling and Unger (2007)
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1. The technical realization of individual modeling modules and connection of the data flow
between the modules. The modules consist of ABAQUS- , Python- and MATLAB pro-
grams.

2. The creation of several EMF models in ABAQUS and their parametric automation.

Following the natural order of the above listed tasks, in Section A.2 the data flow and all in-
volved modeling modules are discussed and illustrated. Furthermore, related module descrip-
tions and data names are documented. In Section A.3 the generation of four different models
in ABAQUS is discussed. Those models differ with respect to their complexity starting with
a simple cylindrical rod and ending with an EMF forming setupwith a flat coil that involves
a number of windings. Particular features and difficulties related to the generation of these
models are discussed and model parameters are documented.

A.2 Python based modeling modules and dataflow

Common to other finite element simulations the modeling of a particular EMF process consists
of a preprocessing step, in which the process geometry and finite element meshes are gener-
ated, a solution step, where based on the numerical scheme applied a solution is computed and
a postprocessing step, in which the solution results are visualized. As mentioned above for
the pre- and postprocessing of the simulation, the commercial code ABAQUS was used while
the actual process solution was obtained on the basis of the in-house implementation of the
algorithmic concepts discussed in chapters 4 and 1 and in (Stiemer et al., 2006b). Since model
data generated with ABAQUS cannot be utilized directly for the in-house implementation, a
number of intermediate data formatting steps become necessary. Conversely, results computed
with the in-house code need to be formatted so that an importation into the preprocessing mod-
ules in ABAQUS becomes feasible. To this end a number of data formatting modules were
programmed and are discussed in what follows. Furthermore,a detailed description of the
dataflow between the modules is provided.

The organization of the dataflow for a fictitious process model labelled with the name ’Mod-
elname’ is illustrated in Figure A.1. In Table A.1 all modulenames are listed together with the
files which are created by each module. At the start, the modelgeometry and its mesh is created
in ABAQUS (see Section A.3 for details) and an input file named’Modelname.inp’ is generated.
In particular ’Modelname.inp’ contains information regarding sets of nodes or elements which
play an important role for the assignment of components, interface and connection surfaces and
boundary conditions for the mechanical as well as the electromagnetic mesh (see Table A.2).
Next, the ’Modelname.inp’ is interpreted with respect to these sets, the nodal coordinates and
the connectivity matrix. This is done by the Python script ’ABAQUSinput.py’ which creates
files for each node or element set as well as for element and nodal data. The separation into
different files facilitates the reconstruction of the sets in the postprocessing stage.

The script ’Readmesh.m’ then performs extensive computations to obtain themodel data to
be read by the coupled MATLAB/FEAP code. Since the solution ofthe electromagnetic system
is done on the basis ofedgefinite elements the reformatting and importation of the element
connectivity, nodal coordinates, node and element-sets into MATLAB are not the only tasks to
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obtain the data necessary to run the coupled simulation. Edge based elements require a number
of additional combinatory information, for instance a number-field that uniquely attributes two
element vertices to an edge. Note that the term node for an element vertex in the case of edge
based elements is not applicable and therefore replaced by the term vertex. Furthermore, the
algorithmic treatment of edge based elements requires an extension of the connectivity matrix
where element edge numbers are attributed to global elementnumbers and a number field where
at most six edges are attributed to an element vertex. The computation of this information rep-
resents the most time consuming operation within ’Readmesh.m’. Besides the extraction of
combinatory information for edge elements from the ABAQUS input file, further data trans-
formation tasks involve the extraction of data for the mechanical finite element problem and
the body force mapping between the electromagnetic and the mechanical system discussed in
Section 4.4. For the computation of this information the focus is on the nodes and elements
that represent the sheet metal in the model generated in ABAQUS. For the mechanical problem
solid shell elements are applied. As discussed in Section 4.4 each mechanical element contains
a number of electromagnetic elements that are arranged in layers to resolve the highly nonlin-
ear body force distribution that prevails in vertical direction (see Section 4.8 Figure 4.30). In
this regard, from the layered elements in the sheet metal, which were generated in ABAQUS a
mechanical finite element mesh has to be extracted with one element layer in thickness direc-
tion. This mesh is then formatted and extracted resulting inthe FEAP input file ’IModelname’.
Furthermore as discussed in Section 4.4 the electromagnetic loads are computed on the basis of
the electromagnetic elements that are contained in the mechanical ones. Here, information is
needed to be able to attribute body force data to a corresponding mechanical element.

Besides data relevant for the mapping of the body forces with respect to the shell elements,
the electromagnetic mesh on the other hand has to be adopted so that it matches the deformed
shape of the sheet metal. This requirement is part of the ALE algorithm discussed in Chapter
4 and (Stiemer et al., 2006b). Here, the mechanical deformation of the sheet metal represents
a geometric constraint condition for the new element distribution in the surrounding air (see
Figure 4.15). There exists no direct deformation data for the electromagnetic elements which
are contained in the mechanical solid shell elements. However via relation (4.3) the actual vertex
positions of the solid shell element are mapped on the vertices of the contained electromagnetic
elements. Relation (4.3) represents a shape function mapping of the actual element positions
with respect to the local coordinates attributed to the reference positions of the electromagnetic
elements contained in the solid shell element. The local coordinates required for the shape
function mapping correspond to the reference configurationof the solid shell element. Their
computation can be done at the preprocessing stage of the simulation. After computation of
all necessary arrays, finally all aforementioned data is written to a MATLAB data file named
’Modelname.mat’ and a corresponding FEAP input file ’IModelname’ and the solution module
can be started.

At the beginning of a coupled simulation a number of modelingparameters such as e.g.
total simulation time, time step, selection of experimental input current data, etc. are set. In
particular the model of choice is set by specifying the data file and FEAP input file for the
coupled simulation (here ’Modelname.mat’ and ’IModelname’).

During computation of the fully coupled model, field resultsfor the mechanical as well as
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the electromagnetic system are formatted and outputted to ASCII files which can be imported
into ABAQUS. Here, field variables of choice are outputted ateach simulation instance for the
mechanical and the electromagnetic system, respectively.In MATLAB this is done by the func-
tion ’prepare4odb.m’ and in FEAP at the element level in subroutine ’elmt08.f’. It is important
to note that ABAQUS allows for the reimportation of node and element sets via specified file-
names. This facilitates the illustration of field values forparticular components (e.g., tool coil
or sheet metal) by means of the concept of display groups in ABAQUS. Additionally, both the
mechanical and the electromagnetic results can be joined for a combined visualization.

Importation of the simulation results is done via the Pythonscript ’createodb.py’. The sim-
ulation results are converted to the files ’Modelnamemag.odb’ and ’Modelnamemech.odb’ for
the magnetic and mechanical results, respectively. Withinthe visualization module of ABAQUS
the results can then be visualized as well as evaluated with anumber of different analysis tools.
The user is able to create different types of plots, which most commonly are contour and vector
plots. Other common postprocessing tasks are creating time/path plots and animated illustra-
tions.
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Dataflow

ABAQUS CAE

- create model geometry

- mesh model

- assign node- and elementsets

Coupled EMF code MATLAB/FEAP

- set simulation Parameters, input current, material parameters, simulation time,

time step, etc.

- load <Modelname.mat> and start FEAP in MATLAB via FEAPMEX

- perform fully coupled simulation

- perform postprocessing at each simulation time step and output to

<Elements_mech.txt>,  <Nodes_mech.txt>, <Node_values_mech.txt>,

<Elements_mag.txt>,  <Nodes_mag.txt>, <Node_values_mag.txt>

MATLAB

- read .txt files

- compute edge based data for Nédélec element connectivity matrix, assign

boundary conditions

- compute mechanical mesh data from electromagnetic mesh and compute

boundary conditions

- write electromagnetic edge based mesh data to .mat file

- create FEAP-Input file

<Modelname.inp>

<Modelname_ELEMENTS.txt>

<Modelname_NODES.txt>

<Modelname_ELSET_air.txt>

<Modelname_NSET_Air.txt>

...

Python

- create odb-file from .txt files

<Modelname.mat>

<IModelname>

<Elements_mech.txt>

<Nodes_mech.txt>

<Node_values_mech.txt>

<Elements_mag.txt>

<Nodes_mag.txt>

<Node_values_mag.txt>

<Modelname_mag.odb>

<Modelname_mech.odb>

ABAQUS CAE

- visualisaton of results

- creation of animated illustrations

- output of pictures

-  etc.

Python

- seperates input file data into

mesh, node- and elementsets

- write this data to txt files

Figure A.1: Illustration of data flow between modeling modules. Each box is attributed to a
modeling module, where the basic tasks are summarized. Filenames next to the arrows indicate
the data file that is provided for the subsequent module (see Table A.1).
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program corresponding filenames purpose

ABAQUSInput.py Mn ELEMENTS.txt Separate mesh data

Mn NODES.txt entities from

Mn ELSET PART1 Air.txt ABAQUS input file.

Mn ELSET PART1 Sheet.txt

Mn ELSET PART1 Tool coil.txt

Mn NSET PART1 activation.txt

Mn NSET PART1 normalization.txt

Mn NSET PART1 outerboundary.txt

Mn NSET PART1 work pieceboundary.txt

Mn NSET PART1 zeroNeumanncoil.txt

Mn NSET PART1 insideair.txt

readmesh.m Model name.mat Compute additional

IModel name mesh information for

edge based elements,

data transfer and

mechanical model.

prepare4odb.m Elementsmag.txt Output of magnetic

Nodesmag.txt flux density results

Nodal field valuesmag.txt ready for importation

into ABAQUS.

elmt08.f Elementsmech.txt Output of mechanical

Nodesmech.txt flux density results

Nodal field valuesmech.txt ready for importation

into ABAQUS.

createodb.py Model name.odb Create ABAQUS

.odb file.

Table A.1: Compilation of module names and corresponding output filenames. Filename exten-
sions indicate the corresponding programming language, program or file format (.py - Python
Script, .m - MATLAB Script, .f - FEAP Fortran code, .txt ASCII text file, .mat MATLAB data
file, I - FEAP input file, .odb - ABAQUS Model database, Mn - Model name).
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A.3 Development of automated parametric EMF models with ABAQUS

Process models that can be automated on the basis of particular geometry and mesh parameters
offer many advantages. The special advantage of this approach is demonstrated in Chapter 4
where a study of convergence was performed for the angled tool coil setup depicted in Figure
A.3. Here in particular the mesh parameters facilitated a precise and direct specification of the
discretization of certain features of the model (see Table A.4). The only action to be taken
is the specification of the geometry and mesh parameters at the beginning, subsequently the
model is created automatically by ABAQUS ready for simulation. Similarly, in the field of
process design a new design geometry simply needs to be specified in terms of its characteristic
dimensions and the process model is created. A third important point concerns troubleshooting
of the models or modified implementations. In particular themesh parameters allow for the
specification of an extremely coarse meshing of a model whichcan be computed quickly. As a
consequence testing and debugging times are extremely short.

A.3.1 Common modeling features in ABAQUS

Before the features and difficulties of the individual modelsare discussed, common modeling
steps for EMF setups are described. Here, the major steps during creation of the finite element
model in ABAQUS CAE in general consist of the following sequence of modeling steps:

1. Creation of the parts tool coil, sheet metal and air,

2. merging of the parts in the assembly module,

3. assignment of arbitrary material parameters,

4. creation of display groups for tool coil, sheet metal and air,

5. assignment of node and element sets,

6. partitioning of the geometry and assignment of edge seeds,

7. meshing of the geometry and verification of meshes and

8. output of the input file.

During the generation of a model the ABAQUS Macro Manager records all actions that were
performed. A recorded macro appears in the file ’abaqusMacros.py’ where model parameters
can be assigned. Common to all EMF models, the three components tool coil, sheet metal and
air with their basic geometry are modeled as separate parts.Simple tool coil models and the
sheet metal can be modeled by extrusion of 2D drawings. The surrounding air can be modeled
arbitrarily. For setups which closely match an axisymmetric geometry a cylindrical volume is
usually formed. These parts are then put together and mergedin the assembly module. By
choosing the option to retain intersecting boundaries, allparts can still be identified and do
not form a single part. Additionally, the parts have to be dependent parts which in ABAQUS
terminology basically means that meshing is carried out forthe complete assembly and not for
each part separately. This will result in a compatible mesh,i.e. elements on the intersecting
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boundary are sharing the same nodes. Next, material parameters are defined as the python
script ’ABAQUSInput.py’ requires the keyword ’Material’ in the ABAQUS Input file in order
to be able to divide the model into the three parts and write the information to separate files
(see Figure A.1 and Table A.1). Typically, tool coil, sheet metal and air are chosen to be single
sections. In the section assignment manager the material properties can be applied to each
section. The material parameters will not be used in the simulation and do not affect the results.

The next step is the creation of display groups. These are created not merely for the purpose
of visualization, but rather they enable the user to subsequently create node and element sets.
By plotting only the relevant part to the viewport it is possible to select the specific surfaces
of the assembly. With the help of the display groups tool the user first assigns display groups
to the parts tool coil and sheet metal. The air is produced using Boolean operations. The
labeling of these display groups is chosen in accordance with the subsequent python script
’ABAQUSInput.py’.

After the creation of display groups the generation of node and element sets becomes fea-
sible. The proper assignment of such sets is crucial for the subsequent simulation of the EMF
setup. They are listed in Table A.2 and are common to all EMF models. The sets are attributed
to various aspects of the modeling of the EMF process which are described below. Here, the
main purpose to label elements is to distinguish between regions with different material prop-
erties. In contrast to the air where the development of the electromagnetic fields is governed by
an elliptic equation, coil and sheet metal elements exhibita large conductivity, which necessi-
tates the consideration of the diffusive parabolic character of the describing field equation. In
addition to the assignment of the conductivity, the elementlabels facilitate the visualization of
different entities of the electromagnetic system. Node sets are created to implement boundary
conditions for the scalar potential (see ’Activation’, ’Normalization’, ’ZeroNeumanncoil’ and
’Inside coil’ in Table A.2) and the vector potential (see ’Outerboundary’ in Table A.2).

Although it is possible to create node and element sets directly in the mesh module, the
mesh and as a consequence the node numbering changes if different parameters are input at
the beginning of an ABAQUS script and model dimensions are changed. Thus, every node
and element set is specific and mesh-related for every setup of the finite element model. It is
therefore preferred to creategeometry sets, which automatically produce a corresponding node
and element set in the final input file. The creation of node andelement sets via geometry
sets instead of a direct creation is a major advantage, whichas a result makes the automation
possible.

Next, the forming setup has to be prepared for meshing by means of partitioning and appli-
cation of edge based mesh seeds. Here application of edge seeds facilitates the specification of
the number of elements along a particular edge and thus allows for the implementation of a pa-
rameter which characterizes a particular mesh feature. Themesh partitions basically subdivide
particular geometry features which simplifies the automatic meshing and provides for a mesh
with a good quality (similar element edge lengths, no mesh distortion etc.). Good partitioning
creates an even and well-formed mesh. Bad partitioning likely produces a distorted and inap-
propriate mesh and can cause the meshing algorithm or the following solution code to fail. Due
to their geometrical features with tetrahedral elements itis possible to mesh complex structures
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Node and element set namePurpose

Activation These nodes define the Neumann conditions for the

finite element problem of the scalar potential corresponding

to the imposed electric current in normal direction of

connection surface.

Normalization These nodes define the Dirichlet conditions for the finite

element problem of the scalar potential of the other

connection surface (grounding).

Zero Neumanncoil These nodes define the Neumann conditions for the finite

element problem of the scalar potential. There is no

electric current in normal direction of coil surface.

Insidecoil These nodes define the finite element problem for the

solution of the scalar potential. They represent the free

nodes.

Insideair These nodes are inside the air (not member of boundary

or coil etc.). They are needed to define nodes that can be

adopted according to the Lagrangian smoothing and ALE

algorithm. Further they define edges that are not on the

boundary of the system.

Insidework piece These nodes are inside the sheet.

Work pieceboundary These nodes are on the boundary of the sheet

Outerboundary These nodes define edges that are at the boundary.

For the corresponding degrees of freedom (integral means

of edges) homogeneous Dirichlet conditions are applied.

Tool coil These elements represent the tool coil.

Sheet These elements represent the sheet metal.

Air These elements represent the air.

Table A.2: Node and element sets which represent surfaces orelement groups which correspond
to certain material properties and boundary conditions.

without extensive partitioning. However, these have not been implemented in the solution al-
gorithm. Rather hexahedral edge based finite elements are utilized. Using this element type
complex structures have to be thoroughly partitioned. The meshing algorithm frequently pro-
duces irregular and unusable meshes and must therefore be analyzed for a number of possible
errors. It is checked for gaps and intersections since this is a very common error. In addition,
meshing sometimes produces impracticable elements, whichcan be examined in the mesh veri-
fication dialog specifying different criteria, e.g. element distortion and element length ratios. If
the mesh fulfills all criteria a job is created and an input fileis written.

As mentioned above all models listed below are fully automated and parameterized. Param-
eter values can be changed via various input dialogs at the beginning of a macro. Meaning
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of particular parameters and their illustration can be found below (see tables A.3, A.4,A.5 and
A.6).

A.3.2 Cylindrical rod for test and verification purposes

This model allows for testing and verification of the numerical implementation of the 3D model
by means of simple analytical solutions (see Appendix B). Wire and air are modeled forming
two cylinders which are merged in the assembly module. The easy modeling of the cylindrical
wire does not require complex partitions and edge seeds. Thepartitions of this model are created
merely to provide the necessary edges to which the seeds can be applied. Display groups, node
and element sets are created as explained before. Edge seedsare applied in radial direction for
specifying the number of elements and radial bias in coil andair. In vertical direction the seeds
determine the number of elements along the length of the rod.In Figure A.2 and Table A.3 the
setup is depicted and geometry and mesh parameters of the automated design are listed.

Figure A.2: Illustration of the cylindrical rod to test and verify the numerical implementation of
the 3D model by means of analytic solutions. The left half of the air was removed for illustration
purposes.

Parameter Python variable

Radius of wire wire radius

Radius of outer boundary boundaryradius

Length (z-direction) length

Number of elements in wire (r-direction) wire elements

Number of elements in outer boundary (r-direction)boundaryelements

Number of elements (z-direction) lengthelements

Global elements size global elementsize

Table A.3: Geometry and mesh parameters in ABAQUS graphicaluser interface and the Python
macro ’wire’.
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A.3.3 Forming setup with angled tool coil and square shaped sheet metal

The angled tool coil is particularly suitable to perform a study of convergence for various char-
acteristic features of the forming setup and to gain an understanding of the convergence behavior
with respect to a particular feature. Because of its cubic structure it is possible to exactly con-
trol the number of elements and modify them. Mesh parametersintroduced in Section 4.3 can
directly be attributed to the parameters listed in Table A.4. This forming setup is best created
by a cube that is partitioned in a way that the resulting partitions form the components of the
tool coil and sheet. Further, additional partitions have tobe included to ensure that no distorted
elements appear. In Figure A.3 an engineering drawing and anillustration of the meshed setup
is provided. The dimensions depicted correspond to those ofthe model simulated in Chapter 4.

XY
Z

Figure A.3: Left: Engineering drawing of the angled tool coil and upper work piece. Right:
Discretized forming model with illustration of tool coil, sheet metal and surrounding air (only
right half of air is displayed).
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Parameter Python variable

Width of the Tool Coil (x-direction) tool coil x

Height of the Tool Coil (z-direction) tool coil z

Sheet Width (x-direction) sheetx

Sheet Depth (y-direction) sheety

Sheet Thickness (z-direction) sheetz

Width of Outer-Boundary (x-direction) boundaryx

Depth of Outer-Boundary (y-direction) boundaryy

Height of Outer-Boundary (z-direction) boundaryz

Air Gap (z-direction) airgap

Boundary elements (x-direction) boundelemx

Tool Coil Elements (x-direction) tool coil elemx

Mid Part Elements (x-direction) mid part elemx

Lower Air Elements (z-direction) lower elemz

Tool Coil Elements (z-direction) tool coil elemz

Air Gap Elements (z-direction) air gapelemz

Sheet Elements (z-direction) sheetelemz

Upper Air Elements (z-direction) upperelemz

Global Element Size global elementsize

Table A.4: Geometry and mesh parameters in ABAQUS graphicaluser interface and the Python
macro ’QuadraticCoil’.
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A.3.4 Forming setup with elliptical coil consisting of one winding

The model with an elliptical tool coil is a further example ofa relatively simple forming setup.
The elliptical coil is specified by its major and minor axis and thickness (see Figure A.4). To
be able to implement the input current at the connection surfaces (see ’Activation’ and ’Nor-
malization’ in Table A.2 and Figure 4.1), an opening of the tool coil has to be provided. The
special case of acircular tool coil is obtained by equating the model parameter ’Semi-major
axis of ellipse (r)’ with ’Semi-minor axis (r)’ (see Table A.5). This model quite closely resem-
bles the axisymmetric case. In this regard it facilitates a direct comparison of the successfully
applied axisymmetric model (Stiemer et al., 2006a). At the same time this model geometry is
relatively simple and can be meshed with a reasonable amountof elements (about five to twenty
thousand).

X Y

Z

Figure A.4: Left: Engineering drawing of the elliptical tool coil and sheet metal. Right: Dis-
cretized forming model with illustration of tool coil, sheet metal and surrounding air (only right
half of air is displayed).
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Dimension (direction) Variable name

Semi-major axis of ellipse (r) Major

Semi-minor axis (r) Minor

Total opening of ellipse (phi) Opening

Sheet Thickness (z) Thickness

Height of Tool Coil (z) height tool coil

Sheet Radius (r) Radius

Sheet Thickness (z) sheetthickness

Air Gap (z) airgap

Outer Air radius (r) Outer

Upper Air (z) Upper

Lower Air (z) Lower
Sheet Mesh radial Bias (r) sheetbias
Sheet Elements (r) sheetelements
Outer Mesh Bias (r) outerair bias
Outer Mesh Elements (r) outerair elements
Tool Coil Elements (r) tool coil elementsradial
Tool Coil Elements (z) tool coil elementsheight
Upper Air Elements (z) upperair elements
Lower Air Elements (z) lower air elements
Air Gap Elements (z) air gapelements
Sheet Mesh Bias (z) sheetbiasheight
Sheet Elements (z) sheetelementsheight
Global Seed (z) global seed

Table A.5: Geometry and mesh parameters in ABAQUS graphicaluser interface and the Python
macro ’Elliptical Coil’.
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A.3.5 Forming setup with coil consisting of n windings

This forming setup can be attributed to common experimentalforming setups (see,e.g., Beer-
wald (2004); Mamalis et al. (2004)). Here, the experimentalresults could successfully be mod-
eled by means of axisymmetric models with the help of a torus approximation of the spiral coil
(Stiemer et al., 2006a). To fully evaluate the deviations induced by this approximation the 3D
model depicted in Figure A.5 was created. In contrast to the above discussed models the geo-
metrical complexity of the setup leads to a significantly higher number of elements. Here, coils
that exhibit more than six windings quickly require more than 50 000 elements which corre-
sponds to about 150 000 degrees of freedom. Further, partitioning of this model is a relatively
complex and time-consuming operation. Depending especially on the number of windings, the
partitioning for the tool coil may take up to two hours on a modern PC.

X
Y

Z

Figure A.5: Left: Engineering drawing of the spiral tool coil and sheet metal. Right: Discretized
forming model with illustration of tool coil, sheet metal and surrounding air (only right half of
air is displayed).
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Parameter Python variable

Inner radius of the coil start radius
Pitch of a single winding pitch
Thickness of tool coil (r-direction) rdim
Height of tool coil (z-direction) zdim
Increment for modeling of sweep profile deltaphi
Number of windings windings
Radius of sheet metal radius
Thickness of sheet metal sheetthickness
Thickness of air gap airgap
Outer air radius outer
Upper air (z-direction) upper
Lower air (z-direction) lower
Sheet mesh bias (z-direction) sheetbiasheight
Sheet elements (z-direction) sheetelementsheight
Tool coil elements (z-direction) tool coil elementsheight
Upper air bias (z-direction) upperair bias
Upper air elements (z-direction) upperair elements
Lower air bias (z-direction) lower air bias
Lower air elements (z-direction) lower air elements
Air gap elements (z-direction) air gapelements
Outer mesh bias (r-direction) outerair bias
Outer mesh elements (r-direction) outerair elements
Tool coil elements (r-direction) tool coil elementsradial
Global elements size global elementsize

Table A.6: Geometry and mesh parameters in ABAQUS graphicaluser interface and the Python
macro ’SpiralCoil’.



Appendix B

Two test examples to verify the implementation of
the 2D and 3D electromagnetic models

Abstract – To test and verify the electromagnetic part of the coupled model, results for current flux
density and magnetic flux density were computed for two simple axisymmetric setups. For both analytic
solutions exist which serve as benchmarks for the results obtained with the numerical models.

B.1 Magnetic flux density distribution for a cylindrical rod with cons tant
current flux density

Consider an axisymmetric cylindrical rod composed of isotropic and homogeneous copper as
depicted in the left part of Figure B.1. The rod has a radius ofr0 = 0.25 mm. The lengthl of the
rod is chosen so thatl/r0 ≫ 1 holds. Just as in the case of the electromagnetic forming setup
the air surrounding the rod is assumed to exhibit the properties of vacuum. At the boundary∂R

of the system at radiusr = 1 mm again homogeneous Dirichlet boundary conditions fora are
imposed. Inside the cylinder a constant electric current flux density ofj = (0, 0, 5.1) kA mm−2

is applied corresponding to an input current ofI = 1 kA.

Evaluation of Maxwell’s equations of the above discussed setup in cylindrical coordinates
(r, ϕ, z) yields

br = 0 ,

bϕ =






Ir

2πr2
0

, r ≤ r0

I

2πr
, r > r0

,

bz = 0 ,

(B.1)

for the magnetic flux densityb (seee.g.Jackson (1975)). In the right part of Figure B.1 the re-
sults for this setup are summarized. Analytic, 2D and 3D model indicate good agreement. Also
at ∂R where homogeneous boundary conditions fora were imposed the results coincide well.
It seems that althougha = 0, here the spatial derivatives ofa still lead to relatively accurate
values for the magnetic flux density viab = curl a. At r0 the 3D model yields slightly smaller
values forbϕ than the 2D and the analytic model. This is due to the method bywhich field
quantities for edge based elements are evaluated. From integral means of the vector potential
along the element edges (representing the degrees of freedom here) all field values following
from a are computed for the barycenter of the element based onall of its edge values. As a
result the extreme values ofbϕ are slightly reduced.
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Figure B.1: Left: Illustration of the electromagnetic boundary value problem for a rod with
prescribed static current flux density in the rod. Right: Magnetic flux density distribution in
circumferential direction for the analytic, 2D and 3D model.

B.2 Transient current flux density in a cylindrical rod

For the same cylindrical rod now transient field distributions persist and the surrounding air is
not considered. Here, att = 0 for the entire rodj = 0. And for t > 0 at the surface of the
rod j = (0, 0, 5.0) kA mm−2 (see left part of Figure B.2). These initial boundary conditions
correspond to a suddenly imposed vertical eddy current distribution which is prescribed atr =

r0. The solution procedure is analogous to a standard diffusion problem in heat transfer (e.g.,
(Myers, 1971)) and does not need to be discussed here. The solution can be written as

jr = 0 ,
jϕ = 0 ,

jz =






0 , t = 0
∞∑

i=1

σ
EM

exp(−κ
EM

λ2
i t)

2J0(λir)

λir0J1(λir0)
, t > 0

,
(B.2)

whereJν represents the Bessel function with orderν andσ
EM

the electromagnetic diffusivity.
Further,λi results for theith root of J0 with J0(λir0) = 0. The analytical as well as the
numerically predicted current flux distributions for the instancest1 = 4.5 × 10−9s, t2 = 4.5 ×
10−8s, t3 = 2.0 × 10−7s, t4 = 1.0 × 10−6s andt5 = 4.5 × 10−6s are depicted in the right part
of Figure B.2. For the numerical model the results for each particular instance was obtained by
five single simulations namely fromt = 0 and ending att = ti. A time step oftn+1,n = ti/20µs
was chosen for each simulation. As expected, with increasing time, the fixed eddy current
distribution at the surface of the rod diffuses into the rod until saturation. 3D as well as 2D
results coincide well with the analytical solution (see also Bilyk et al. (2005)).
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Figure B.2: Left: Illustration of the electromagnetic boundary value problem for a rod with
constant current flux density at the surface of the rod which penetrates the rod with increasing
time. Right: Current flux density distribution for the instancest1 = 4.5 × 10−9s, t2 = 4.5 ×
10−8s, t3 = 2.0 × 10−7s, t4 = 1.0 × 10−6s andt5 = 4.5 × 10−6s.
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