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Abstract

In this paper, we describe an adjusted method to facilitate a non-inferiority trial by a three-arm robust

design. Because local optimal designs derived in Hasler et al. [2007] require knowledge about the ratios of

the population variances and are not necessarily robust with respect to possible misspecifications, a maximin

approach is adopted. This method requires only the specification of an interval for the of variance ratios

and yields robust and efficient designs. We demonstrate that a maximin optimal design only depends on the

boundary points specified for the intervals of the variance ratios and receive numerical and analytical solutions.

The derived designs are robust and very efficient for statistical analysis in non inferiority three arm trials.

Keywords: maximin design, robust design, non-inferiority, three arm design, gold design trials, randomized

clinical trial

1 Introduction

Nowadays, randomized clinical trials claiming at least non-inferiority are performed. A two-arm design where
a new experimental drug (E) is compared with the reference drug or active control (R) is common. "Gold design
trials" are performed as three-arm designs, including the new experimental drug (E), the reference drug or active
control (R) and a placebo control (P). For these trials, Pigeot et al. [2003] formulate non-inferiority as a fraction
of the trial sensitivity. The null hypothesis is based on the ratio of the differences of the means H0 : µE−µP

µR−µP
≤ θ

and is compared with the alternative H1 : µE−µP
µR−µP

> θ for a given threshold θ ∈ (0,1). The alternative hypothesis
indicates that the relative efficacy of the experimental drug is more than θ ∗100% of the efficacy of the reference
compound compared to placebo. For this ratio hypothesis, a t-distributed test statistic was derived, assuming
normal distribution and variance homogeneity. However, in real data it is more realistic that heterogeneous
variances occur.

For example, Table 1 shows the summary statistics for the primary respiratory endpoint PaO2 (kPa) of a
clinical trial data set of Silva-Costa-Gomes et al. [2005]. The experimental drug ALM4+NO was compared
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2 LOCAL OPTIMAL DESIGN 2

Treatment group Mean Standard deviation Sample size
Placebo 16.5 7.5 14

ALM4+NO 26.5 10.4 14
ALM16+NO 36.7 13.2 14

Table 1: Summary statistics for PaO2 (kPa) 30 minutes after onset of one-lung ventilation of the clinical data
set of Silva-Costa-Gomes et al. (2005)

with the reference ALM16+NO and the placebo which all were administered 30 minutes after onset of one-lung
ventilation. The data shows a markedly lower variance in the placebo group.

Assuming homogeneous variances, an optimal design can be achieved (see Pigeot et al. [2003]), where
the unbalancedness now depends only on the given threshold θ . Assuming heterogeneous - but "known" -
variances, an optimal design can as well be calculated (see Hasler et al. [2007]), where the unbalancedness
depends on the given threshold θ and the variances of the three treatments. However, the availability of the
exact variances is rather unlikely in practice and a misspecification of these variances can lead to substantial
errors in the experimental design. In order to derive designs which are robust against such misspecification - but
still efficient for a broad range of the parameters - we propose a maximin approach. In particular, we describe
an adjusted method to facilitate a non-inferiority trial by a three-arm robust design in the case of heterogeneous
variances. Only interval estimates of variance ratios have to be available for the construction of an experimental
design of a randomized clinical trial. We consider this situation as more realistic from a practical point of
view, because usually information from preliminary clinical trials does not yield precise information for the
variance ratios, but often allows the experimenter to derive lower and upper bounds for such ratios. We prove
that such robust optimal designs only depend on the boundary points of the specified region for the variance
ratios and receive numerical and analytical solutions. Moreover, it is demonstrated that the derived designs
are very efficient over a broad range of specified variance ratios. Thus, the new designs provide an interesting
alternative to the commonly used designs, which may be inefficient if the ratios of the population variances have
been misspecified. A MatLab program serving the purpose of calculating the robust designs can be downloaded
at Maximin-Program [2007].

2 Local Optimal Design

We consider three groups which correspond to an experimental, a reference and a placebo group with means
µ1,µ2,µ3 in medical trials and concentrate on the previously introduced problem of finding a robust design for
the hypothesis

H0 :
µ1−µ3

µ2−µ3
≤ θ vs. H1 :

µ1−µ3

µ2−µ3
> θ

with effectiveness threshold θ ∈ (0,1) in a so called non-inferiority three arm design.
We scrutinize the following statistic

T =
x̄1−θ x̄2− (1−θ)x̄3√
1
n1

σ2
1 + θ 2

n2
σ2

2 + (1−θ)
n3

σ2
3

∼ N

 µ1−θ µ2− (1−θ)µ3√
1
n1

σ2
1 + θ 2

n2
σ2

2 + (1−θ)
n3

σ2
3

,1

 , (1)
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where σ2
i denotes the (unknown) variance, ni the sample size and x̄i the arithmetic mean of each group i =

{1,2,3}, and the observations in the different groups are assumed to be normally distributed with mean µi and
variances σ2

i (i = 1,2,3). The formula (1) can be equivalently changed to

T ∼ N

√
n1 (µ1−θ µ2− (1−θ)µ3)√

σ2
1 + θ 2

w1
σ2

2 + (1−θ)2

w2
σ2

3

,1


with w1 = n2

n1
, w2 = n3

n1
being ratios of the sample sizes. For a given significance level α and power level 1−β

we derive the formula
√

n1 (µ1−θ µ2− (1−θ)µ3)√
σ2

1 + θ 2

w1
σ2

2 + (1−θ)2

w2
σ2

3

= z1−α − zβ ,

where zu,u ∈ [0,1] denotes the u-quantile of a standard normal distribution. This leads to

n1 =
(
z1−α − zβ

)2 (µ1−θ µ2− (1−θ)µ3)
−2
(

σ
2
1 +

θ 2

w1
σ

2
2 +

(1−θ)2

w2
σ

2
3

)
=

(
z1−α − zβ

µ1−θ µ2− (1−θ)µ3

)2

·σ2
1

(
1+

θ 2

w1
b1 +

(1−θ)2

w2
b2

)
as sample size for group one, where b1 = σ2

2 /σ2
1 and b2 = σ2

3 /σ2
1 denote the (fixed) ratios of the variances σ2

2

and σ2
3 with reference to σ2

1 . This means that one has to determine the ratios of the variances for the design of
the experiment.

The minimum sample size n to achieve the required power is now determined via

n = n1(1+w1 +w2) =
(

z1−α − zβ

µ1−θ µ2− (1−θ)µ3

)2

·σ2
1

(
1+

θ 2

w1
b1 +

(1−θ)2

w2
b2

)
(1+w1 +w2) , (2)

where
(

1+ θ 2

w1
b1 + (1−θ)2

w2
b2

)
(1+w1 +w2) is the only part which can be minimized with respect to the sample

sizes (or more precisely: with respect to the ratios of sample sizes w1 and w2).
The optimal values for w1 and w2 are determined by solving the system of equations

0 =
δ

δw1

(
1+

θ 2

w1
b1 +

(1−θ)2

w2
b2

)
(1+w1 +w2)

0 =
δ

δw2

(
1+

θ 2

w1
b1 +

(1−θ)2

w2
b2

)
(1+w1 +w2) .

For 0 < θ < 1 the only solution is

w1 = θ
√

b1 (3)

w2 = (1−θ)
√

b2 , (4)
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which leads to the optimal sample sizes

n1 =
(

z1−α − zβ

µ1−θ µ2− (1−θ)µ3

)2

·σ2
1

(
1+θ

√
b1 +(1−θ)

√
b2

)
n2 = θ ·

√
b1 ·n1

n3 = (1−θ) ·
√

b2 ·n1

N = n1 ·
(

1+θ
√

b1 +(1−θ)
√

b2

)
.

For the calculation of the optimal group apportionment for a fixed sample size N, we introduce the following
two parameters

p2 =
w1

1+w1 +w2
p3 =

w2

1+w1 +w2
(5)

which indicate the proportion of observations allocated to group two and three with respect to the total sample
size. Following Chernoff [1953] the resulting design is called local optimal. Thus, the local optimal design
advises the experimenter to take n1 = (1− p2− p3) ·N, n2 = p2 ·N and n3 = p3 ·N observations at group one,
two and three, respectively. These results coincide with the recent findings in the article of Hasler et al. [2007]
(if one substitutes i ∈ {1,2,3} with i ∈ {E,R,P}).

Note that the optimal sample sizes depend on the unknown variance ratios b1 and b2, which are usually not
available before the experiment. In particular, a misspecification of these ratios may result in serious errors of
the allocation of the treatments thus making that specific trial rather inefficient. In the following section, we
will propose a robust design, which is less sensitive with respect to misspecified variance ratios and which is
additionally excessively efficient for the three-arm clinical trial.

3 Robust Design With A Maximin Approach

A more realistic approach to the problem considered in Section 1 is that the ratios of the variances are not
exactly known, but interval estimates are available based on previous (similar) trials. This means that we have
access to information of the form σ2

1
σ2

2
∈ V 1 :=

[
V 1

L ,V 1
U
]

and σ2
1

σ2
3
∈ V 2 :=

[
V 2

L ,V 2
U
]
, where V 1

L ,V 1
U ,V 2

L ,V 2
U are the

boundary points of the postulated intervals for the variance ratios with respect to σ2
1 ∈R+. We want to minimize

the required total population sample size N to achieve a given power. For this purpose we use the rate function

f (w1,w2,b1,b2) =
(

1+
θ 2

w1
b1 +

(1−θ)2

w2
b2

)
(1+w1 +w2) (6)

and mention that - if the ratios of the variances are fixed and known - this function has exactly one minimum
(see the previous chapter or Hasler et al. [2007]). Nevertheless, this local optimal design might not be a good
choice if the ratios of the variances are misspecified. In order to derive designs which are less sensitive with
respect to such misspecifications, we consider the efficiency

e f f (w1,w2,b1,b2) =
minν ,ω f (ν ,ω,b1,b2)

f (w1,w2,b1,b2)
∈ [0,1] , (7)
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which measures the performance of an arbitrary design w = (w1 ,w2) (in the denominator) with respect to
the best design (in the numerator) calculated under the assumption that b1 and b2 are the "true" ratios of the
population variances. Following Dette [1997] a design w∗

M =
(
w∗

1 ,w∗
2
)

is called standardized maximin optimal
if it maximizes the minimum efficiency

g(w1,w2) = min
b1∈V 1,b2∈V 2

e f f (w1,w2,b1,b2) (8)

over the rectangle V 1×V 2.
With our knowledge from the previous chapter we know that for fixed variance ratios b1 and b2 the minimum

of f (ν ,ω,b1,b2) is attained at the point ν = θ
√

b1 and ω = (1−θ)
√

b2 and thus formula (7) has the form

e f f (w1,w2,b1,b2) =
minν ,ω f (ν ,ω,b1,b2)

f (w1,w2,b1,b2)
=

f
(
θ
√

b1, (1−θ)
√

b2, b1,b2
)

f (w1,w2,b1,b2)
, (9)

where
f
(

θ
√

b1, (1−θ)
√

b2, b1,b2

)
=
(

1+θ
√

b1 +(1−θ)
√

b2

)2
. (10)

This simplifies the analysis of formula (8) substantially since now

g(w1,w2) = min
b1∈V 1,b2∈V 2

(
1+θ

√
b1 +(1−θ)

√
b2
)2

f (w1,w2,b1,b2)
(11)

= min
b1∈V 1,b2∈V 2

(
1+θ

√
b1 +(1−θ)

√
b2
)2(

1+ θ 2

w1
b1 + (1−θ)2

w2
b2

)
(1+w1 +w2)

(12)

The following Lemma states that the minimum on the right hand side of (11) with respect to (b1,b2) may only
be attained at the edges of the rectangle V 1×V 2. The proof can be found in the appendix.

Lemma
The minimum of the function e f f defined by (9) with respect to (b1,b2) ∈ V 1×V 2 may only be attained at the

edges of the rectangle V1×V2, that is

g(w1,w2) = min{e f f
(
w1,w2,V 1

L ,V 2
L
)
,e f f

(
w1,w2,V 1

U ,V 2
L
)
,

e f f
(
w1,w2,V 1

L ,V 2
U
)
,e f f

(
w1,w2,V 1

U ,V 2
U
)
} (13)

With this Lemma, one only has to numerically maximize the function (8) at the four edges of V1 ×V2. The
resulting robust design is

arg max
w1,w2

g(w1,w2) = (w∗
1, w∗

2) = w∗ , (14)

which has to be calculated numerically using e.g. Maximin-Program [2007].
Note that such numerical optimization may yield local maxima and it is not clear that a numerically found

maximum corresponds to the global maximum, i.e. the standardized maximin optimal design. In the following,
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we state a necessary and sufficient checking condition for the standardized maximin optimal design. This
condition can then be used to check the optimality of the numerically calculated design. For a detailed discussion
the reader is referred to e.g. Pukelsheim [1993] or Müller [1995]. For this purpose we introduce the following
notation

cT
θ =

(
1 θ (1−θ)

)
, θ ∈ (0,1) ,

and the set
V = V 1×V 2 .

For fixed variance ratios v = (b1, b2) ∈V and arbitrary group ratios w = (w1,w2) we define

M (w,v) :=
1

1+w1 +w2
diag

(
σ

2
1 ,

w1

σ2
2
,

w2

σ2
3

)
=

1
σ2

1 · (1+w1 +w2)
·diag

(
1,

w1

b1
,

w2

b2

)
The optimality criterion in (7) can be rewritten as

g(w) = min
b∈V

e f f (w,b) = min
b∈V

cT
θ

M−1
(
w∗

b,b
)

cθ

cT
θ

M−1 (w,b)cθ

, (15)

where w∗
b denotes the locally optimal design assuming known ratios for the variances b1 and b2, that is w∗

b =(
θ
√

b1,(1−θ)
√

b2
)

(see the discussion in the previous chapter). The following characterization of the stan-
dardized maximin optimal design is a consequence of Theorem 2 in Biedermann et al. [2006].

Theorem
Let

N (w) =
{

b̃ ∈V |e f f
(
w, b̃
)

= min
b∈V

e f f (w, b)
}

be the subset of V consisting of those values of b, for which the efficiency (15) of a design w takes its minimal

value over V. A design w∗
M is standardized maximin optimal if and only if for each v ∈ N (w∗

M) there exists a

positive weight π∗(v) such that the following equality is valid for i = {1,2,3}

∑
v∈N(w∗M)

π
∗ (v) ·

(
cT

θ
M−1 (w∗

M,v)xi
)2

cT
θ

M−1 (w∗
M,v)cθ

= 1 , (16)

where

x1 =

 1
0
0

 , x2 =

 0
1
0

 , x3 =

 0
0
1


and

∑
v∈N(w∗M)

π
∗(v) = 1

By our Lemma derived in this Section, the set N (w) consists for any design at most of the 4 edges of the
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rectangle V , namely

v1 = (V L
1 ,V L

2 ), v2 = (VU
1 ,V L

2 ), v3 = (V L
1 ,VU

2 ), v4 = (VU
1 ,VU

2 ) .

Numerical evaluations show that for the standardized maximin optimal design w∗
M the set N (w∗

M) normally de-
generates to just two or three points which means that the remaining edges of the set V have higher efficiencies.

Equality of (16) is always attained at the points x1,x2 and x3 which leads to the following three equations
for i = 1,2,3:

4

∑
j=1

π(v j) ·
(
cT

θ
M−1 (w∗

M,v j)xi
)2

cT
θ

M−1 (w∗
M,v j)cθ

= 1

These equations contain the unknown parameters π(v1),π(v2),π(v3), w1 and w2 since π(v4) = 1− π(v1)−
π(v2)−π(v3). Note that some of the probabilities π(vi) may be zero because the corresponding edge vi is not
an element of the set N(w∗

M).
We use the following notation to keep the equations more readable

a11 = θ

√
V 1

L , a12 = θ

√
V 1

U , a21 = (1−θ)
√

V 2
L , a22 = (1−θ)

√
V 2

U ,

and obtain the following system of nonlinear equations

π(v1) · (1+w1+w2)

1+
a2
11

w1
+

a2
21

w2

+π(v2) · (1+w1+w2)

1+
a2
12

w1
+

a2
21

w2

+π(v3) · (1+w1+w2)

1+
a2

11
w1

+
a2

22
w2

+π(v4) · (1+w1+w2)

1+
a2

12
w1

+
a2
22

w2

= 1 (17)

π(v1) ·
(1+w1+w2)

(
a11
w1

)2

1+
a2
11

w1
+

a2
21

w2

+π(v2) ·
(1+w1+w2)

(
a12
w1

)2

1+
a2
12

w1
+

a2
21

w2

+π(v3) ·
(1+w1+w2)

(
a11
w1

)2

1+
a2

11
w1

+
a2
22

w2

+π(v4) ·
(1+w1+w2)

(
a12
w1

)2

1+
a2
12

w1
+

a2
22

w2

= 1

π(v1) ·
(1+w1+w2)

(
a21
w2

)2

1+
a2
11

w1
+

a2
21

w2

+π(v2) ·
(1+w1+w2)

(
a21
w2

)2

1+
a2
12

w1
+

a2
21

w2

+π(v3) ·
(1+w1+w2)

(
a22
w2

)2

1+
a2

11
w1

+
a2
22

w2

+π(v4) ·
(1+w1+w2)

(
a22
w2

)2

1+
a2
12

w1
+

a2
22

w2

= 1

These equations allow us to check whether a given design (w1,w2) is optimal or not. To find such an optimal
design, one first solves the maximizing problem (14), evaluates the efficiencies at the edges of the rectangle
V and then picks the point(s) where the minimum efficiency is attained (the weights of the remaining points
are set to zero). Now one numerically evaluates the remaining weights π(v j) using the system of equations
(17). If there exists a valid solution, one can be assured that the optimal design has been found. All of these
calculations can easily be done using e.g. MatLab (The-MathWorks [1984]) and/or Mathematica (Wolfram-
Research [1988]). Several examples of the described procedure can be found in the following section.

4 Examples

4.1 Example 1

In a first example we illustrate the use of the checking condition. For this purpose let us assume that the variance
ratios are located in the intervals V 1 = [0.16,0.64] and V 2 = [0.49,3.24], and that the non-inferiority parameter
is given by θ = 0.5. We first convert these parameters to the previously used terms in the system of equations
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(17)

a11 = 0.5 ·
√

0.16 = 0.2 a21 = 0.5 ·
√

0.49 = 0.35

a12 = 0.5 ·
√

0.64 = 0.4 a22 = 0.5 ·
√

3.24 = 0.9

In the next step we numerically maximize the minimal efficiency at the edges of the rectangle V = V 1 ×V 2 in
terms of w1 and w2:

argmaxw1,w2 min {e f f (w1,w2,a11,a21) ,e f f (w1,w2,a12,a21) , (18)

e f f (w1,w2,a11,a22) ,e f f (w1,w2,a12,a22)}

using a slightly modified version efficiency function (7), that is

e f f (w1,w2,a1,a2) =
(1+a1 +a2)

2(
1+ a2

1
w1

+ a2
2

w2

)
(1+w1 +w2)

The numerical solution of the optimization problem (18) is in our considered case w∗ = (0.3818, 0.6249) yield-
ing a minimal efficiency of at least 93.26%. To check whether the calculated design is optimal or not, we
calculate the efficiencies

e f f (w∗
1,w

∗
2,a11,a21) = 0.9326 e f f (w∗

1,w
∗
2,a12,a21) = 0.9326

e f f (w∗
1,w

∗
2,a11,a22) = 0.9326 e f f (w∗

1,w
∗
2,a12,a22) = 0.9730

in order to apply Theorem. Because the efficiency at the point v4 = (a12,a22) is greater than the efficiencies
at the other three points, we set the weight π(v4) equal zero. Thus, we have to numerically find the weights
π(v1) and π(v2) (since π(v3) = 1−π(v1)−π(v2)) to fulfill the three equations in (17). Using MatLab and/or
Mathematica, we calculate the weights to be π(v1) = 0.4603 for the point v1 = (a11,a21), π(v2) = 0.5072 for
the point v2 = (a12,a21) and the remaining mass to be π(v3) = 0.0325 at the point v3 = (a12,a21).

With this weight distribution we validated that the solution w∗ is indeed the optimal solution. Using the
conversion (5), the optimal allocation w∗ means that we have to take about p∗2 = 17% of our observations at
group two, about p∗3 = 32% of our observations at group three, and the remaining 51% of our observations at
group one. To achieve a predefined power, one can use the formula (2) to compute the approximately total
sample size N.

4.2 Example 2

In the second example we illustrate how the new methodology can be used to derive a robust and efficient
design for a similar clinical trial as considered in the introduction. Consider the case that we will design a
new randomized clinical trial with a further experimental drug and that we expect similar results as presented
in Table 1. Therefore, we assume that the variance ratios are located within the intervals V 1 = [1.0,2.0] and
V 2 = [0.40,0.60]. The non-inferiority parameter is given by θ = 0.8. Numerical calculations similar to Example
4.1 yield the optimal weight distribution to be w∗ = (0.9566,0.1434). Using (5), we obtain that this means that
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θ V 1 V 2 p∗ = (p∗2, p∗3) eff
0.6 [0.4, 0.5] [3, 4] (0.1875, 0.3474) 0.9978
0.6 [3, 4] [0.4, 0.5] (0.4685, 0.1127) 0.9980
0.6 [0.8, 1.2] [0.4, 0.5] (0.3197, 0.1443) 0.9969
0.6 [0.8, 1.2] [0.4, 1.7] (0.3057, 0.1938) 0.9753

θ V 1 V 2 p∗ = (p∗2, p∗3) eff
0.7 [0.4, 0.5] [3, 4] (0.2315, 0.2760) 0.9979
0.7 [3, 4] [0.4, 0.5] (0.5205, 0.0805) 0.9982
0.7 [0.8, 1.2] [0.4, 0.5] (0.3664, 0.1065) 0.9969
0.7 [0.8, 1.2] [0.4, 1.7] (0.3544, 0.1464) 0.9795

θ V 1 V 2 p∗ = (p∗2, p∗3) eff
0.8 [0.4, 0.5] [3, 4] (0.2809, 0.1957) 0.9981
0.8 [3, 4] [0.4, 0.5] (0.5677, 0.0513) 0.9984
0.8 [0.8, 1.2] [0.4, 0.5] (0.4116, 0.0699) 0.9970
0.8 [0.8, 1.2] [0.4, 1.7] (0.4031, 0.0981) 0.9846

θ V 1 V 2 p∗ = (p∗2, p∗3) eff
0.9 [0.4, 0.5] [3, 4] (0.3369, 0.1046) 0.9985
0.9 [3, 4] [0.4, 0.5] (0.6108, 0.0246) 0.9986
0.9 [0.8, 1.2] [0.4, 0.5] (0.4552, 0.0344) 0.9972
0.9 [0.8, 1.2] [0.4, 1.7] (0.4517, 0.0501) 0.9906

Table 2: Optimal group allocation and minimal efficiency for different non-inferiority parameters θ and vari-
ance ratios V1 and V2

the standardized maximin designs allocates approximately n1 = 0.4762 ·N, n2 = 0.4555 ·N and n3 = 0.0683 ·N
at the three trials for a fixed sample size N. The efficiency of this design is at least 0.9910.

If we consider a possible total sample size of 100 patients, this design advises the experimenter to prescribe
about 46 persons the experimental drug, 7 persons a placebo treatment, and the remaining 57 persons the
standard treatment.

4.3 Example 3

In our final example we list some optimal robust designs for certain non-inferiority parameters and variance
ratios and compare their efficiencies. For a fixed variance σ2

1 ∈R of the first group, numerical evaluations yield
Table 2 where V 1 = [V L

1 , VU
1 ] is the specified interval for the variance ratio of our second group, V 2 = [V L

2 , VU
2 ]

is the interval of the variance ratio of our third group, p∗ is the optimal allocation of group two and three, and the
column labeled with e f f shows the minimal (worst case) efficiency. Rather than listing the values of w∗ we list
the values of p∗ because they are easier to interpret: for a sample of size N this means to take p∗2 ·N observations
at group 2, p∗3 ·N observations at group 3, and the remaining observations at group one. The MatLab program
used to derive the optimal designs may be attained at Maximin-Program [2007].

It is worthwhile to mention that the efficiency values in Table 2 represent the minimal efficiency value over
the region V 1 ×V 2 and are always very high. This and further results, which are not shown for the sake of
simplicity, indicate that the derived results are rather robust and efficient. If one chooses the optimal allocation
p∗ of the standardized maximin optimal design, one can be assured that the design is close to being ”perfect”
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for the considered range of variance ratios.

5 Concluding Remarks

Most experimental designs for three-arm clinical trials depend on the ratios of the population variances, which
are not available before the trial. An erroneous specification of these ratios can lead to very inefficient experi-
mental designs, and notable care is necessary in choosing these variance ratios. In this paper we have proposed
a new method for robust designs in three-arm non-inferiority trials which is less sensitive to such misspecifica-
tions. In particular, only intervals of variance ratios have to be specified for the design of the clinical trial in
advance. These estimates may even be very conservative and the resulting maximin design still allows to con-
duct economic and highly efficient studies. We feel that this situation is more realistic in practical applications,
because in many cases preliminary information from previous similar trials is available. These data might not
grant a precise classification of the variance ratios, but might allow to specify - sometimes very large - intervals
of the required ratios of the population variances.

Our approach is based on the standardized maximin principle, and determines the design which maximizes
the worst efficiency over the range of the provided variance ratios. The numerical results indicate that the new
results are very efficient for all values of specified variances. Therefore standardized maximin optimal designs
provide an interesting alternative to the commonly used local optimal designs, which my be inefficient, if the
variance ratios have been misspecified. A MatLab program for the numerical construction of the standardized
designs can be downloaded at Maximin-Program [2007].
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7 Appendix

7.1 Proof of Lemma

We will investigate the previously used efficiency function g(w1, w2) from (8) for fixed w1 and w2 and vary the
variance ratios b1 and b2 to see where a minimum is attained. For this purpose we consider the function

h(b1,b2) =

(
1+θ

√
b1 +(1−θ)

√
b2
)2(

1+ θ 2

w1
b1 + (1−θ)2

w2
b2

)
(1+w1 +w2)

(19)

and simplify it to

f (a1,a2) =
(1+a1 +a2)

2(
1+ a2

1
w1

+ a2
2

w2

)
(1+w1 +w2)

,

where a1 = θ
√

b1 and a2 = (1−θ)
√

b2. The gradient of grad f (a1,a2) is given by

grad f (a1,a2) = 2 1+a1+a2

(1+
a2

1
w1

+
a2
2

w2
)(1+w1+w2)


1− a1(1+a1 +a2)

w1(1+ a2
1

w1
+ a2

2
w2

)

1− a2(1+a1 +a2)

w2(1+ a2
1

w1
+ a2

2
w2

)

 ,

which equals zero only at the point

a∗1 = w1 (20)

a∗2 = w2

The Hessian Matrix at this point is obtained as

H ( f (a∗1,a
∗
2)) = 2

(1+w1+w2)2

(
− 1+w2

w1
1

1 − 1+w1
w2

)

This matrix is indefinite: the signs of the two minors alternate starting with a negative value. With this informa-
tion it follows that the minimum of (8) must be attained at the boundary of the set V = V 1×V 2. But looking at
the one-directional derivatives with respect to a1 and a2 yield even more: the minimum value must be attained
at one of the four edges of the rectangle. This follows because the function δ f

δa1
has only one possible extrema

at the point

ã1 =
w1(a2

2 +w2)
w2(1+a2)

where the second derivative is always negative. Thus this point always corresponds to a maximum. The same
argument is valid for the function δ f

δa2
and leads to the conclusion that the minimal value of f (a1,a2) (and of

h(b1,b2) for fixed w1,w2 and θ , of course) is taken at one of the four edges of the rectangle.
Thus, (19) has only a single, global extrema which is a maximum, and the directional derivatives in direction
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of b1 and b2 (a1 and a2, respectively) have only one critical point corresponding to a local maximum, too. Since
the set V = V 1×V 2 is compact, we conclude that the minimal value of h (with respect to (b1,b2) is attained at
one of the four edges of the rectangle V .
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