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Abstract

This paper suggests an improved GMM estimator for the autoregres-

sive parameter of a spatial autoregressive error model by taking into

account that unobservable regression disturbances are different from

observable regression residuals. Although this difference decreases in

large samples, it is important in small samples. Monte Carlo simu-

lations show that the bias can be reduced by 65 − 80% compared to

a GMM estimator that neglects the difference between disturbances

and residuals. The mean squared error is smaller, too.
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1 Introduction and Summary

Disturbances of regression models are typically not observable, so inference on

the disturbances must rely on the regression residuals. It is well known that

under general conditions, the residuals converge to the disturbances when

the sample size increases, see e.g. Rao and Toutenburg (1995). However, the

statistical properties of the disturbances and the residuals are different in

finite samples.

This paper considers a linear regression model where the disturbances

are generated by a spatial autoregressive model introduced by Cliff and Ord

(1973), and where the parameter of main interest is the spatial autoregressive

parameter.

Since the calculation of the maximum likelihood estimator can be com-

putationally expensive, Kelejian and Prucha (1999) suggest a generalized

method of moments (GMM) estimator, which uses three theoretical moments

of the disturbances and equates them to the corresponding empirical mo-

ments of the residuals. This estimator has been applied to data of industrial

specialization by Tingvall (2004), to microlevel data by Bell and Bockstael

(2000) and to agricultural data by Schlenker et al. (2006) and Anselin et al.

(2004). It has also been extended in several ways, for example to panel data

by Druska and Horrace (2004) and to systems of simultaneous equations by

Kelejian and Prucha (2004).

We suggest a variation of the estimator that is motivated by the following

argument: If the empirical moments must rely on the residuals, the theoret-

ical moments should be calculated in terms of the residuals, too. We show

that both estimators coincide as the sample size increases. The computa-

tional costs are of the same order of magnitude for both estimators. A small

Monte Carlo study shows that the bias can be reduced by 65 − 80%. The

mean squared error decreases, too.

In the following, we restrict ourselves to linear regression in order to keep

notation as simple as possible. Nevertheless, the main idea also applies to
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nonlinear regression.

2 The Model and the Main Result

We consider a linear regression model

y = Xβ + u, (1)

where y is the (n× 1)-vector of observations on the dependent variable, X is

the nonstochastic (n × k)-matrix on the explanatory variables and β is the

(k×1)-vector of unknown model parameters. We assume that u, the (n×1)-

vector of disturbances, is generated by a spatial autoregressive model,

u = ρWu + ε, (2)

where W (n × n) is a so called weighting matrix of known constants, ρ is a

scalar parameter and ε is an (n× 1)-vector of innovations. We maintain the

following assumptions.

Assumption 1 (a) All diagonal elements of W are zero. (b) The row sums

of W are equal to one,
∑n

j=1 wij = 1 ∀ i = 1, . . . , n. (c) |ρ| < 1.

Assumption 2 The innovations ε1, . . . , εn are independently and identically

distributed with zero mean and variance σ2, where the variance is bounded by

some positive constant b, 0 < σ2 < b < ∞. Additionally, E(ε4
i ) < ∞.

Assumption 1 ensures that the matrix I − ρW is nonsingular so that

u = (I − ρW )−1ε. Thus,

Cov(u) = σ2(I − ρW )−1(I − ρW T )−1, (3)

where W T denotes the transpose of the matrix W .

Since u is not observable, estimation of ρ and σ2 must rely on û, the

vector of regression residuals. For the case of OLS-regression, û is given by
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û = y −Xβ̂ = Mu, where M = I −X(XT X)−1XT , and β̂ = (XT X)−1XT y

is the OLS-estimator of β.

In this situation, Kelejian and Prucha (1999) suggest a GMM estimator

for ρ and σ2 that uses three moments of ε, namely

E

(
1

n
εT ε

)
= σ2, E

(
1

n
εT W T Wε

)
=

σ2

n
tr(W T W ), E

(
1

n
εT W T ε

)
= 0.

(4)

With the help of equation (2), the sample counterpart of (4) can be written

as

G(ρ, ρ2, σ2)T − g = v(ρ, σ2),

where

G =




2
n
ûT Wû − 1

n
ûT W T Wû 1

2
n
ûT W T WWû − 1

n
ûT W T W T WWû 1

n
tr(W T W )

1
n
ûT [W + W T ]Wû − 1

n
ûT W T WWû 0




and

g =

(
1

n
ûT û,

1

n
ûT W T Wû,

1

n
ûT Wû

)T

.

The nonlinear least squares estimator of Kelejian and Prucha (1999) for ρ

and σ2 is defined as

(ρ̂NLS, σ̂2
NLS) = argmin{v(ρ, σ2)T v(ρ, σ2) : ρ ∈ [−a, a], σ2 ∈ [0, b]}, (5)

where a ≥ 1 and b < ∞.

Now the main idea is the following: If the unobservable disturbances u

have to be replaced by the regression residuals û, one should calculate the

moment conditions (4) also in terms of ε̂ = Mε = Mu − ρMWu instead of

ε. Consequently, we recommend an estimator that is based on the moments
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of Mε corresponding to (4):

E

(
1

n
(Mε)T Mε

)
=

σ2

n
tr(M), (6)

E

(
1

n
(WMε)T WMε

)
=

σ2

n
tr(MW T W ), (7)

E

(
1

n
(WMε)T Mε

)
=

σ2

n
tr(WM), (8)

where we made use of the fact that M is an orthogonal projector. If we

multiply (2) by M and WM , respectively, we get

Mε = Mu− ρMWu, (9)

WMε = WMu− ρWMWu. (10)

Plugging equations (9) and (10) into the moment conditions (6)-(8) yields

1

n
E(uT Mu)− 2ρ

n
E(uT MWu)

+
ρ2

n
E(uT W T MWu) =

σ2

n
tr(M),

1

n
E(uT MW T WMu)− 2ρ

n
E(uT W T WMWMu)

+
ρ2

n
E(uT W T MW T WMWu) =

σ2

n
tr(MW T W ),

1

n
E(uT MW T Mu)− ρ

n
E(uT M [W + W T ]MWu)

+
ρ2

n
E(uT W T MWMWu) =

σ2

n
tr(WM).

Finally, for every (n × n)-matrix A, the theoretical moments E(uT Au) are

replaced by their sample counterparts ûT Aû. Since Mu = û and tr(M) =
n−k

n
, the sample analogon to (6) - (8) can be written as

H
(
ρ, ρ2, σ2

)T − h = w(ρ, σ2),

where

H =




2
n
ûT Wû − 1

n
ûT W T MWû n−k

n
2
n
ûT W T WMWû − 1

n
ûT W T MW T WMWû 1

n
tr(MW T W )

1
n
ûT [W + W T ]MWû − 1

n
ûT W T MWMWû 1

n
tr(WM)



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and h = g. Our nonlinear least squares estimator for ρ and σ2 is defined as

(ρ̂∗NLS, σ̂2∗
NLS) = argmin{w(ρ, σ2)T w(ρ, σ2) : ρ ∈ [−a, a], σ2 ∈ [0, b]}, (11)

where a ≥ 1 and b < ∞. We maintain the following typical assumptions for

the regressor matrix X.

Assumption 3 The elements of X are nonstochastic and bounded in abso-

lute value by 0 < cX < ∞. Further, X has full column rank, and the matrix

QX = limn→∞ 1
n
XT X is finite and nonsingular.

Theorem 2.1 states the asymptotic equivalence of (ρ̂NLS, σ̂2
NLS) and

(ρ̂∗NLS, σ̂2∗
NLS).

Theorem 2.1 Under assumptions 1-3, for n →∞

(ρ̂∗NLS, σ̂2∗
NLS)− (ρ̂NLS, σ̂2

NLS)
P−→ 0.

Proof. Because of assumption 3, for large n the elements of X(XT X)−1XT

are bounded by the corresponding elements of
kc2X
n

Q−1
X

n→∞−→ 0 so that M =

I − X(XT X)−1XT n→∞−→ I and thus H
P−→ G as n → ∞. Since g = h,

w(ρ, σ2)
P−→ v(ρ, σ2), so that the minimization problems (11) and (5) coin-

cide for n → ∞ because w(ρ, σ2) and v(ρ, σ2) are continuous functions of ρ

and σ2. ¤
As a consequence of theorem 2.1, (ρ̂∗NLS, σ̂2∗

NLS) shares the asymptotic proper-

ties of (ρ̂NLS, σ̂2
NLS) given in theorems 1 and 2 of Kelejian and Prucha (1999):

(ρ̂∗NLS, σ̂2∗
NLS) is a consistent estimator for (ρ, σ2), the feasible GLS estimator

β̂FG is a consistent estimator for β and the asymptotic covariance matrix of

β̂FG can be estimated consistently, too.

The next section compares the finite sample performance of (ρ̂∗NLS, σ̂2∗
NLS)

and (ρ̂NLS, σ̂2
NLS) by way of Monte Carlo simulation.
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3 Monte Carlo simulation

We compare the finite sample properties of (ρ̂∗NLS, σ̂2∗
NLS) and (ρ̂NLS, σ̂2

NLS) for

n = 20, 100, 400, ρ = −0.5, 0.5 and σ2 = 1. The matrix W is specified such

that each element of ui is directly related to the three elements immediately

after and immediately before it. For the first three and the last three elements

of u, we imply a circular setting such that for example u1 is directly related to

u2, u3, u4, un−3, un−2 and un−1. The row sums of W are standardized to one.

Thus, in each row of W , six elements are equal to 1
6

and the other elements

are equal to zero. With respect to the regression model (1), we decided for

X =




1 1 1
...

... 0
...

...
...

... 1
...

... 0
...

...
...

...
...

... 1

1 0 0




,

the model matrix of a regression on an intercept and two binary regressors.

For each combination of n and ρ, we generated m = 10, 000 realizations of

the disturbance vector u corresponding to the spatial autoregressive model

(2), where the components of ε are i.i.d. N(0, 1). The left part of Table 1

shows the simulated biases 1
m

∑m
i=1(ρ̂ − ρ), variances 1

m

∑m
i=1(ρ̂ − ¯̂ρ)2 and

MSEs 1
m

∑m
i=1(ρ̂ − ρ)2 of both estimators for ρ. The right part of the table

contains the corresponding numbers for σ2.

For the combinations of n and ρ considered here, the bias of ρ̂∗NLS is

65− 80% smaller than the bias of ρ̂NLS. The variance of ρ̂∗NLS is also smaller

than the variance of ρ̂NLS, but in contrast to the situation for the bias, this

effect seems to vanish as n increases. As a consequence, the MSE can be
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n ρ Bias Var MSE Bias Var MSE

20 −0.5 ρ̂NLS -0.5791 0.7007 1.0361 σ̂2
NLS -0.2725 0.0814 0.1557

ρ̂∗NLS -0.1239 0.5770 0.5923 σ̂2∗
NLS -0.0898 0.1282 0.1363

20 0.5 ρ̂NLS -0.6620 0.5238 0.9621 σ̂2
NLS -0.2281 0.0839 0.1359

ρ̂∗NLS -0.1615 0.5040 0.5306 σ̂2∗
NLS -0.0745 0.1174 0.1229

100 −0.5 ρ̂NLS -0.1005 0.0522 0.0623 σ̂2
NLS -0.0588 0.0203 0.0237

ρ̂∗NLS -0.0293 0.0506 0.0514 σ̂2∗
NLS -0.0180 0.0218 0.0221

100 0.5 ρ̂NLS -0.0718 0.0203 0.0255 σ̂2
NLS -0.0324 0.0197 0.0207

ρ̂∗NLS -0.0253 0.0186 0.0192 σ̂2∗
NLS -0.0099 0.0206 0.0207

400 −0.5 ρ̂NLS -0.0251 0.0117 0.0123 σ̂2
NLS -0.0160 0.0052 0.0055

ρ̂∗NLS -0.0075 0.0115 0.0116 σ̂2∗
NLS -0.0057 0.0053 0.0053

400 0.5 ρ̂NLS -0.0155 0.0034 0.0036 σ̂2
NLS -0.0086 0.0052 0.0053

ρ̂∗NLS -0.0054 0.0033 0.0033 σ̂2∗
NLS -0.0033 0.0053 0.0053

Table 1: Bias, variance and MSE of the estimators

reduced by around 45% for n = 20, 20% for n = 100 and 5% for n = 400 if

we use ρ̂∗NLS instead of ρ̂NLS to estimate ρ.

With respect to the estimators for σ2, the right part of Table 1 shows

the same positive effect for the bias. Contrary to that, the variance of σ̂2∗
NLS

is larger than the variance of σ̂2
NLS in small samples. Again, this effect

vanishes as n increases. We conjecture that this difference in the variances

is caused by the bottom right element of the matrices G and H: In contrast

to H, this element is zero for G so that in the elements of the vector v,

σ2 appears only twice whereas in the elements of the vector w, σ2 appears

three times. This could be the reason for the different variances. Despite

the larger variance, the MSE of σ̂2∗
NLS is smaller than the MSE of σ̂2

NLS. For

n = 20, this gain is about 10%. For larger samples, the MSEs are almost

identical for both estimators. We conclude that the drawback for the variance

is overcompensated by the gain for the bias.

The simulation also revealed that the squared differences between the

estimators converge to zero more quickly than the MSEs of the estimators.
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For example, 1
m

∑m
i=1(ρ̂

∗
NLS − ρ̂NLS)2 = 0.0001 for n = 400 and ρ = 0.5

whereas the corresponding MSEs are 0.0033 and 0.0036, respectively. This

result is in line with Theorem 2.1.

4 Discussion

The main idea of this paper is to take into consideration the fact that the

behavior of observable regression residuals is different from the behavior of

the corresponding unobservable disturbances. This idea is applied to a GMM

estimator for the spatial autocorrelation parameter in a linear regression

model, but it also applies in other situations.

We considered the linear regression model (1) to keep notation as simple

as possible. However, the idea generalizes to situations where the regression

model is nonlinear. In this case, the matrix X can be replaced by the matrix

of the first partial derivatives of the yi on the βj evaluated in β = β̂NLS,

the nonlinear least squares estimator for β. The reason for that is that the

nonlinear least squares regression residuals are orthogonal to the columns of

the matrix of the first partial derivatives.

Furthermore, it would be interesting to simulate the small sample proper-

ties of (ρ̂∗NLS, σ̂2∗
NLS) for other model matrices X and for nonnormal distribu-

tions of ε. One could compare (ρ̂∗NLS, σ̂2∗
NLS) to the quasi maximum likelihood

estimator which maximizes the normal likelihood. It should be noted here

that the improvement of the GMM estimator discussed in this paper does not

easily carry over to the (quasi) maximum likelihood estimator. In contrast

to the covariance matrix of the disturbances, the covariance matrix of the

regression residuals is singular since M is singular. As a consequence, the

multivariate normal density of u cannot easily be rewritten in terms of û.

Finally, it would be interesting to investigate the properties of significance

tests and confidence regions for the parameter vector β in (1). To perform

such procedures, an estimator for the disturbance covariance matrix (3) is
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needed. One way to construct such an estimator is to just plug in the es-

timators for ρ and σ2 in (3). Since (ρ̂∗NLS, σ̂2∗
NLS) has a smaller MSE and a

considerably smaller bias than (ρ̂NLS, σ̂2
NLS), we guess that the distortion of

significance tests on β could be reduced by our new estimator.
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