Implementierung und Verwendung der Normalkoordinatenanalyse in einer integrierten graphischen Benutzeroberfläche sowie quantenmechanische Untersuchungen an organischen Zinn/Silizium-Verbindungen

> Von der Abteilung Chemie der Universität Dortmund

> > genehmigte

Dissertation

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften

> vorgelegt von Dipl. Chem. Dirk Hövener aus Haltern

Diese Arbeit wurde im Zeitraum von Februar 1997 bis Januar 2001 im Fachbereich Chemie der Universität Dortmund unter der Betreuung von Prof. Dr. P. Bleckmann durchgeführt.

Gutachter:

Prof. Dr. P. Bleckmann, Universität Dortmund, FB Chemie Prof. Dr. A. Geiger, Universität Dortmund, FB Chemie

Aufgabe der Naturwissenschaft ist es nicht nur, die Erfahrung stets zu erweitern, sondern in diese Erfahrung eine Ordnung zu bringen. Niels Bohr (1885 - 1962), dänischer Physiker, 1922 Nobelpreis für Physik

Inhaltsverzeichnis

1	Einl	eitung		1		
2	The	eoretische Grundlagen				
	2.1	Grundlagen der Normalkoordinatenanalyse		4		
		2.1.1 Koordinatensysteme		5		
		2.1.2 Säkulargleichung		7		
		2.1.3 Jacobi-Matrix		9		
		2.1.4 \mathbf{L}_X -Matrix		10		
		2.1.5 Potentialenergieverteilung		10		
	2.2	Optimierungsalgorithmen		12		
		2.2.1 Simulated Annealing $[16, 36]$		12		
		2.2.2 Simplex-Verfahren		14		
	2.3	Quantenmechanische Verfahren		15		
		2.3.1 Beschreibung von Vielteilchenproblemen		15		
		2.3.2 Die adiabatische Näherung		15		
		2.3.3 Die Hartree–Fock Methode		16		
		2.3.4 Die Dichtefunktionaltheorie		17		
	2.4	Wibergfragmente		21		
	2.5	Wahl der Programmiersprachen		22		

		2.5.1	Delphi	22
		2.5.2	VRML	22
3	Das	Progr	amm WinNork	25
	3.1	Aufgal	pen des Programms	25
	3.2	Das H	auptfenster	27
		3.2.1	Menupunkt Datei	27
		3.2.2	Menupunkt <i>Editieren</i>	32
		3.2.3	Menupunkt Start	37
		3.2.4	Menupunkt Visualisierung	37
		3.2.5	Menupunkt <i>Hilfe</i>	38
	3.3	Das G	raphikfenster	39
		3.3.1	Menupunkt Darstellung	40
	3.4	Funkti	onsweise	44
		3.4.1	Shortcuts	44
		3.4.2	Datenformat der Eingabedatei	45
		3.4.3	Ladevorgang WinNork	56
		3.4.4	Optimierung mit WinNork	57
		3.4.5	VRML-Ausgabe	63
4	Das	Progr	amm VisuChem	74
	4.1	Aufgal	pen des Programms	74
	4.2	Das H	auptfenster	75
		4.2.1	Das Menu <i>Datei</i>	75
		4.2.2	Das Menu <i>Bearbeiten</i>	75
		4.2.3	Das Menu Optionen	76

INHALTSVERZEICHNIS

	4.3	Das G	raphikfenster	77
		4.3.1	Das Menu Darstellung	77
		4.3.2	Shortcuts	78
	4.4	Funkt	ionsweise	78
		4.4.1	Einleseroutine	78
		4.4.2	Ausgaberoutinen	79
		4.4.3	Bekannte Probleme	80
5	Erg	ebniss	e	81
	5.1	Norma	alkoordinatenanalyse	81
		5.1.1	Füllung der Datenbank in WinNork	81
		5.1.2	Vergleich Simulated Annealing – Simplex	86
		5.1.3	Anwendung von WinNork im Laborkontext	87
	5.2	Quant	enmechanische Untersuchungen an Zinn-Silzium-Organylen	92
		5.2.1	Wibergfragmente	92
		5.2.2	Berechnungen zur Bestimmung der günstigsten Methoden	93
		5.2.3	Berechnungen zur Aufklärung des Reaktionsverhaltens	95
		5.2.4	Elektrostatische Potentiale	97
\mathbf{A}	Ver	wende	te Computer 1	13
В	Dat	eiform	ate 1	14
	B.1	XYZ-I	Format	14
	B.2	Erweit	tertes XYZ-Format	14
	B.3	Eingal	bedatei für Glycerinaldehyd 1	16
	B.4	Reduz	ierte Eingabedatei für Methan	19

INHALTSVERZEICHNIS

С	Kraftkonstantendatenbank					
	C.1	Valenzkraftkonstanten	121			
	C.2	Deformationskraftkonstanten	123			
	C.3	Out-of-plane Kraftkonstanten	126			
	C.4	Torsionskraftkonstanten	126			
D	Wib	bergfragmente	128			
\mathbf{E}	Spe	Spektren 1				
	E.1	5-Hydroxy-Salicylsäure	130			
	E.2	5-Hydroxy-Salicylsäureethylester	131			
	E.3	5-(p-Vinylbenzyloxy)-Salicylsäureethylester	132			
	E.4	Copolymer	133			
	F 5		104			

Tabellenverzeichnis

1	Liste der verwendeten Abkürzungen	IX
2	Verwendete Formelzeichen (Normalkoordinatenanalyse)	Х
3	Verwendete Formelzeichen (Quantenmechanische Berechnungen) \hdots	XI
3.1	Molekülmanipulationsmöglichkeiten in WinNork	39
3.2	Shortcuts in WinNork	44
3.3	Standardwerte	55
3.4	Parameter Simulated Annealing	60
3.5	Parameter SIMPLEX	62
4.1	Shortcuts in VisuChem	78
C.1	Valenzkraftkonstantendatenbank	123
C.2	Deformationskraftkonstantendatenbank	125
C.3	Out-of-plane-Kraftkonstantendatenbank	126
C.4	Torsionskraftkonstantendatenbank	127
D.1	Verwendete Wibergfragmente	128

Abbildungsverzeichnis

2.1	Algorithmus der Optimierung mit simulated annealing	13
3.1	Das Programm WinNork	25
3.2	WinNork – Hauptmenu	27
3.3	WinNork – Atomoptionen	28
3.4	WinNork – Bindungsoptionen	29
3.5	WinNork – Datenbank	30
3.6	WinNork – Optimierer	31
3.7	WinNork – Editieren der allgemeinen Daten	32
3.8	WinNork – Editieren der Atompositionsdaten	33
3.9	WinNork – Editieren der Valenzdaten	34
3.10	WinNork – Editieren der Deformations- bis Torsionsdaten	35
3.11	WinNork – Editieren der Z-Matrixdaten	36
3.12	WinNork – Info-Dialog	38
3.13	WinNork – Das Graphikfenster	39
3.14	WinNork – Spacefill Darstellung	40
3.15	WinNork – Sticks Darstellung	40
3.16	WinNork – Ball and Sticks Darstellung	41
3.17	WinNork – Van der Waal's Darstellung	41
3.18	WinNork – Visualisierungseinstellungen I	42

3.19	WinNork – Visualisierungseinstellungen II	43
3.20	WinNork – Optimierung mit WinNork	57
3.21	WinNork – Allgemeiner Optimierungsdialog	58
3.22	WinNork – Optimierer: Simulated Annealing	59
3.23	WinNork – Optimierer: SIMPLEX	62
4.1	Das Programm VisuChem	74
4.2	VisuChem – Das Hauptmenu	75
4.3	VisuChem – Öffnen	75
4.4	VisuChem – Ausgabe	76
4.5	VisuChem – Hilfsprogramme	76
4.6	VisuChem – Einstellungen Bindungen	77
4.7	VisuChem – Einstellungen Zwischenpunkte	77
4.8	VisuChem – Einstellungen Hintergrund	78
5.1	Korrelation der Matrixgröße mit der Rechengeschwindigkeit	84
5.2	Bildung des polymer gebundenen Reagens	87
5.3	Gemessenes Spektrum von 5-Hydroxy-Salicylsäure mit berechneten Spektrum . $$.	88
5.4	Gemessenes Spektrum von 5-Hydroxy-Salicylsäureethylesters mit berechneten Spektrum	89
5.5	Gemessenes Spektrum von 5-(p-Vinylbenzyloxy)-Salicylsäureethylester mit be- rechneten Spektrum	90
5.6	Gemessenes Spektrum des Copolymers mit berechneten Spektrum	91
5.7	Ergebnisse der Bindungslängenberechnungen	94
5.8	Fragmentanzahlen für die berechneten Verbindungen	95
5.9	Bildungsenthalpien aus Wibergfragmenten	95
5.10	NBO-Analyse	96

5.11	Elektrostatisches Potential von ${}^{t}Bu_{2}(H)Sn-SiMe_{2}-Sn(H){}^{t}Bu_{2}$	98
5.12	Elektrostatisches Potential von ${}^{t}Bu_{2}(H)Sn-SiMe_{2}-Sn(Li){}^{t}Bu_{2}$	99
5.13	Elektrostatisches Potential von ${}^{t}Bu_{2}(Li)Sn-SiMe_{2}-Sn(Li){}^{t}Bu_{2}$.00
5.14	Elektrostatisches Potential von ${}^{t}Bu_{2}(H)Sn-(SiMe_{2})_{2}-Sn(H){}^{t}Bu_{2}$.02
5.15	Elektrostatisches Potential von ${}^{t}Bu_{2}(H)Sn-(SiMe_{2})_{2}-Sn(Li){}^{t}Bu_{2}$.03
5.16	Elektrostatisches Potential von ${}^{t}Bu_{2}(Li)Sn-(SiMe_{2})_{2}-Sn(Li){}^{t}Bu_{2}$.05
E.1	Gemessenes Spektrum 5-Hydroxy-Salicylsäure	.30
E.2	Gemessenes Spektrum 5-Hydroxy-Salicylsäureethylester	31
E.3	Gemessenes Spektrum 5-(p-Vinylbenzyloxy)-Salicylsäureethylester	32
E.4	Gemessenes Spektrum Copolymer	.33

Verwendete Abkürzungen und Formelzeichen

- PED Prozentuale Anteile einer Kraftkonstante an der jeweiligen Schwingung
- DFT density functional theorie, Dichtefunktionaltheorie
- RGB Aufteilung einer Farbe in Rot, Grün und Blau-Werte
- XYZ Datei, in der die kartesischen Koordinaten der Atome gespeichert sind
- VRML Virtual Reality Modelling Language, Beschreibungssprache für dreidimensionale Räume
- AVI Dateiformat für Videofilme
- DLL Zur Laufzeit des Programms ladbare Bibliothek mit Zusatzfunktionen
- LB Lower Bond; Untere Grenze für die Optimierung der Kraftkonstanten
- UB Upper Bond; Obere Grenze für die Optimierung der Kraftkonstanten
- ^tBu tert-Butylrest

Tabelle 1: Liste der verwendeten Abkürzungen

- N Anzahl der Atome im Molekül
- V Potentielle Energie
- T Kinetische Energie
- F Kraftkonstante
- r Bindungsabstand
- α Winkel (Bindungs-, Azimutal- oder Diederwinkel bzw. Linearkombination)
- \vec{x} kartesische Koordinaten
- \vec{q} massengewichtete kartesische Koordinaten
- $\vec{q_s}$ mass engewichtete kartesische Symmetriekoordinaten

Fortsetzung auf nächster Seite

IX

Fortsetzung

- \vec{R} innere Koordinaten
- \vec{Q} Normalkoordinaten
- $\dot{\vec{x}}$ Zeitliche Änderung der kartesische Koordinaten
- $\dot{\vec{q}}$ Zeitliche Änderung der massengewichtete kartesische Koordinaten
- \vec{R} Zeitliche Änderung der innere Koordinaten
- $m^{\frac{1}{2}}$ Diagonalmatrix der Wurzeln der Atommassen
- Δr Änderung der Bindungslängen
- $\Delta \phi$ Änderung der Bindungswinkel
- $\Delta \theta$ Änderung der Azimutalwinkel
- $\Delta \tau$ Änderung der Diederwinkel
- **B** Matrix zur Umwandlung kartesischer in innere Koordinaten
- B_{xy} Element der **B**-Matrix
- **E** Einheitsmatrix
- **G** Matrix zur Umwandlung kartesischer in massengewichtete innere Koordinaten
- **F** Kraftkonstantenmatrix (kartesische Koordinaten)
- \mathbf{F}_q Kraftkonstantenmatrix (massengewichtete kartesische Koordinaten)
- \mathbf{F}_{q_s} Kraftkonstantenmatrix (massengewichtete kartesische Symmetriekoordinaten)
- \mathbf{F}_R Kraftkonstantenmatrix (innere Koordinaten)
- **A** Amplitudenmatrix
- **U** Matrix zur Umwandlung massengewichteter kartesischer in massengewichtete kartesische Symmetriekoordinaten
- J Jacobi-Matrix (Abhängigkeit der Frequenzen von den Kraftkonstanten)
- \mathbf{L}_x Matrix der Auslenkungen der Atome in kartesische Koordinaten
- \mathbf{L}_{q_s} Eigenvektormatrix (massengewichtete kartesische Symmetriekoordinaten)
- Λ Diagonalmatrix der Eigenwerte
- λ_i Eigenwerte
- J_{xy} Element der Jacobi-Matrix
- $\tilde{\nu}_i$ Wellenzahl in [cm⁻¹]
- ν_i Frequenz in $[1/\text{cm}^{-1}]$

Tabelle 2: Verwendete Formelzeichen (Normalkoordinatenanalyse)

- \hat{H} Hamilton operator
- T Kinetische Energie
- n Quantenzahl der Elektronenzustände
- \vec{R} Ortskoordinate der Kerne
- \vec{r} Ortskoordinate der Elektronen
- $\rho(\vec{r})$ Elektronendichte
- \hat{T} Operator der kinetischen Energie
- \hat{U} Operator der potentiellen Energie (Elektronenwechselwirkung)
- \hat{V} Potentielle Energie der Elektronen im Potentialfeld der Kerne
- $v(\vec{r})$ Potential
- Z Kernladungszahl

Tabelle 3: Verwendete Formelzeichen (Quantenmechanische Berechnungen)

Kapitel 1

Einleitung

Die Normalkoordinatenanalyse [20] ist eine geeignete Methode, verschiedene Schwingungen in Molekülen zuzuordnen und somit tiefere Einblicke in Moleküle zu gewinnen, mit denen Chemiker umgehen.

In ihrer Anfangszeit war eine solche Analyse sehr aufwendig und nahm viel Zeit in Anspruch, so daß eine standardmäßige Verwendung durch den präparativen Chemiker nicht möglich war. Computer waren selten oder gar nicht vorhanden, vorhandene Computer waren sehr langsam und die Eingabe der Daten über Lochkarten oder Lochstreifen war nicht sehr bedienerfreundlich. Die knappen Computerressourcen für eine laufende Verwendung im Labor zu nutzen war nicht möglich. Dies hat sich im Laufe der letzten Jahre geändert, so daß heute Computerkapazitäten im ausreichenden Maße zur Verfügung stehen.

Somit kann die Normalkoordinatenanalyse, ein leicht zu bedienendes graphisches Benutzerinterface vorausgesetzt, zu einem wertvollen, einfach zu bedienenden Instrument auch für den präparativen Chemiker werden. Das dazu notwendige graphische Umfeld wurde im Rahmen dieser Arbeit geschaffen, um ohne einen allzu großen Anspruch an die theoretischen Kenntnisse zur Normalkoordinatenanalyse eine Benutzung im Laborkontext zu ermöglichen.

Durch die Erstellung einer Datenbank mit intramolekularen Kraftkonstanten ist es möglich, auch für unbekannte Stoffe angenäherte Schwingungsspektren zu berechnen, die eine Identifizierung synthetisierter Verbindungen erleichtert oder gar erst ermöglicht. Eine einfache und stringente Benutzerführung ist hierbei wichtig, um im Laborkontext einen schnellen und effizienten Umgang mit dieser Methode zu ermöglichen. Dies führt schnell zu verwertbaren Ergebnissen. In diesem Zusammenhang wichtig ist die notwendige Rechenzeit auf der zur Verfügung stehenden Hardware. Hier bietet die Normalkoordinatenanalyse große Vorteile im Vergleich zu quantenmechanischen Programmen, da die Normalkoordinatenanalyse, bei Vorhandensein einer ausreichenden Datenbank von Kraftkonstanten, sehr viel schneller hinreichende Ergebnisse liefert. So benötigt die Berechnung der Schwingungen des Benzols inclusive aller notwendigen Ausgaben auf einem heute üblichen Arbeitsplatzrechner typischerweise zwei Sekunden. Die reine Berechnung der Frequenzen ist sogar noch schneller, hier werden beim Benzol mehr als 10 Berechnungen pro Sekunde erreicht. Hierbei ist zwar die Zeit nicht berücksichtigt, die zur Erstellung der Eingabedatei aufzubringen ist, dies wird aber auch bei quantenmechanischen Programmen üblicherweise vernachlässigt. Diese Zeit wird durch eine gute Benutzerführung minimiert.

Am Lehrstuhl Krause werden mit Hilfe polymer gebundener Salicylsäureester (2-Hydroxy-Benzoesäureester) diastereoselektive Protonierungen durchgeführt. Die hiermit erzeugbaren Stoffe können z.B. als Grundstoffe zur Synthese von Naturstoffen dienen. Die einzelnen Reaktionsschritte einer typischen Verbindung [59] dieser Verbindungsklasse ausgehend von 5-Hydroxy-Salicylsäure bis zum polymer gebundenen Salicylsäureethylester (Copolymer mit Styrol)

werden als Beispiel der Anwendung des entstandenen Normalkoordinatenprogrammes aufgeführt. Die Ergebnisse lassen auf eine gute Anwendbarkeit des Programms im Laborkontext schließen.

Die Darstellung chemischer Reaktionsmechanismen wird auch heute noch vielfach zweidimensional betrieben. Die Anwendung von Computern zur Darstellung von Reaktionsmechanismen steckt noch in den Kinderschuhen, auch weil die zur Visualisierung notwendigen Programme noch fehlen. Im Laufe dieser Arbeit wurde es notwendig, für ein Projekt dreidimensionale, in ihrem Ausschnitt wählbare Animationen von Reaktionsmechanismen und Schwingungen zu erstellen. Hierzu wurde ein Programm entwickelt, das die Animation von Reaktionsmechanismen aus einer Datei mit Atomkoordinaten ermöglicht, wobei Erweiterungen auf andere Datenformate, wie z.B. das Einlesen der in der Röntgenstrukturanalyse verwendeten pdb-Dateien möglich und in der Programmstruktur vorgesehen sind. Die Ausgaberoutine zur Visualisierung von Schwingungen wurde in das oben beschriebene Normalkoordinatenanalyseprogramm integriert.

Während sich die Normalkoordinatenanalyse gut dazu eignet, schnell ein Schwingungsspektrum einer bekannten oder unbekannten Substanz zu erzeugen, ist sie nicht dazu geeignet, Aussagen über die Reaktivität oder das unterschiedliche Reaktionsverhalten von einander ähnlichen Molekülen zu treffen. Hier muss auf quantenmechanische Berechnungen zurückgegriffen werden.

Im Rahmen einer Zusammenarbeit mit der Arbeitsgruppe F. Uhlig, wurden an der Universität Dortmund Untersuchungen zum Reaktionsverhalten einiger zinnmodifierter Polysilane durchgeführt. In dieser Arbeitsgruppe werden seit mehreren Jahren Untersuchungen an Polysilanen des Typs

$$[R_2Sn]_x[R'_2Si]_y$$

durchgeführt. Offenkettige Stannasilane stellen wichtige Ausgangsbausteine zur Darstellung solcher Si-Sn-Polymere dar, welche die Änderung und Anpassung der Materialeigenschaften von Polysilanen ermöglichen. Diese Stannasilane müssen in ringförmige Verbindungen überführt werden, bevor eine Polymerisation möglich wird. Hierzu ist eine Lithiierung notwendig, wobei beim untersuchten ${}^{t}Bu_{2}(H)Sn-(SiMe_{2})_{2}-Sn(H){}^{t}Bu_{2}$ [87] eine Dilithiierung möglich und bevorzugt ist, während es beim ebenfalls untersuchten ${}^{t}Bu_{2}(H)Sn-SiMe_{2}-Sn(H){}^{t}Bu_{2}$ [87] beim Versuch einer zweiten Lithiierung zur Spaltung der Si-Sn Bindungen kommt. Im Rahmen dieser Arbeit sollte ein Erklärungsansatz für obiges experimentelles Ergebnis gesucht werden.

Kapitel 2

Theoretische Grundlagen

2.1 Grundlagen der Normalkoordinatenanalyse

Mit Hilfe der Normalkoordinatenanalyse [20] lassen sich die Schwingungsfrequenzen und Schwingungsformen von Molekülen und Kristallen berechnen.

Die Schwingungen sind durch Verfahren der Infrarot- und Ramanspektroskopie experimentell zugänglich. Schwingungen mit hinreichend kleinen Amplituden werden unter den Bedingungen der harmonischen Näherung behandelt. Die Simulation der Schwingungen kann nun dadurch erfolgen, daß man, unter Verwendung klassischer Mechanik, das Molekül als System von Punktmassen betrachtet, wobei die Bindungen durch Federn mit definierten Federkraftkonstanten beschrieben werden. Es ist nun möglich, einen Zusammenhang zwischen einem solchen Punktmassensystem und den Schwingungsformen und Frequenzen herzuleiten. Prinzipiell ist auch der umgekehrte Weg möglich, aus den Schwingungsfrequenzen lassen sich die Federkraftkonstanten bestimmen. Im Normalfall ist eine Kombination aus Infrarot- und Ramanspektroskopie notwendig, da nur so alle Frequenzen erhalten werden (einzelne Schwingungsformen führen aufgrund der zu messenden Observablen zu keinem Signal, da sie in der jeweiligen Methode symmetrieverboten sind). Die Zahl der Schwingungen eines Moleküls wird schnell sehr groß, bei NAtomen im Molekül ergeben sich für lineare Moleküle 3N-5, für nichtlineare Moleküle 3N-6Schwingungsformen, die sich im Spektrum häufig überlagern und nicht getrennt werden können. Auch treten Oberschwingungen, Kombinations- und Differenzbanden auf. Eine Zuordnung der Frequenzen zu einzelnen Schwingungen und damit die Bestimmung der Kraftkonstanten erweist sich folglich häufig als schwierig.

Die notwendige Verknüpfung zwischen den aus dem Spektrum gewonnenen Schwingungsfrequenzen und dem Molekülmodell kann mit Hilfe der Normalkoordinatenanalyse [20] hergestellt werden. Aus einem geeignet gewählten Molekülmodell können mit der Normalkoordinatenanalyse sowohl die Schwingungsfrequenzen als auch die relativen Amplituden der Basiskoordinaten jeder Schwingungsform berechnet werden. Eine Zuordnung der beobachteten zu den berechneten Spektren ist damit möglich.

Wenn man winkel- and abstandserhaltende Kräfte zwischen den einzelnen Atomen eines Moleküls annimmt, so läßt sich die Potentialfunktion des *inneren Valenzkraftfeldes* [11] (*Internal Valence Force Field*, IVFF) wie folgt formulieren:

$$2V = \sum_{i} F_{ii}^{r} (\Delta r_{i})^{2} + \sum_{k} r_{0}^{2} F_{kk}^{\alpha} (\Delta \alpha_{k})^{2} + \sum_{i \neq j} F_{ij}^{rr} (\Delta r_{i}) (\Delta r_{j}) + \sum_{k \neq l} r_{0}^{2} F_{kl}^{\alpha \alpha} (\Delta \alpha_{k}) (\Delta \alpha_{l}) + 2 \sum_{i,k} r_{0} F_{ik}^{r\alpha} (\Delta r_{i}) (\Delta \alpha_{k})$$

$$(2.1)$$

Hierbei bezeichnen r_i die Bindungsabstände und α_k die Linearkombinationen von Bindungs-, Azimutal- (out-of-plane) und Diederwinkeln oder nur von den jeweils einzelnen Winkel. Da die Kraftkonstanten F_{ij} in N · cm⁻¹, nicht in N · m⁻¹, angegeben werden, sind für die Glieder mit Deformationskraftkonstanten die Dimensionskorrekturen r_0 und r_0^2 notwendig.

Durch Eliminierung der Redundanzbedingungen aus der Koordinatenbasis des IVFF geht dieses in ein allgemeines Valenzkraftfeld (*General Valence Force Field*, GVFF) über. Die Potentialfunktion 2.1 gilt auch für das GVFF. Das GVFF kann alternativ auch auf der Basis innerer Symmetriekoordinaten formuliert sein.

Im folgenden soll kurz die Darstellung der theoretische Grundlagen der Normalkoordinatenanalyse erfolgen. Dieses Verfahren bildet die Grundlage von NORKO [82], den Modifikationen von NORKO [10, 12, 57, 80] und des im Rahmen dieser Arbeit erstellten WinNork (siehe 3).

2.1.1 Koordinatensysteme

Zur Beschreibung des Verhaltens eines schwingenden Moleküls, das durch seine kinetische und potentielle Energie bestimmt wird, verwendet man im allgemeinen ein Verschiebungskoordinatensystem. Hier stehen das *kartesische Koordinatensystem* und die *inneren Verschiebungskoordinaten* zur Auswahl. Die Darstellung der Molekülbewegung in kartesischen Koordinaten benötigt pro Atom einen Vektor \vec{x} mit den drei Verschiebungsskalaren in x, y und z-Richtung ($\Delta x, \Delta y, \Delta z$). Zur Definition der Verschiebungen eines Moleküls mit N Atomen braucht man also 3N Koordinaten.

Es können anstelle der Vektoren \vec{x} auch massengewichtete kartesische Koordinaten \vec{q} verwendet werden. Die beiden Spaltenvektoren \vec{x} und \vec{q} sind über

$$\vec{q} = \vec{x} \cdot m^{\frac{1}{2}} \tag{2.2}$$

verknüpft, mit $m^{\frac{1}{2}}$ als Diagonalmatrix der Wurzeln der Atommassen.

Um die Schwingung des Moleküls in inneren Verschiebungskoordinaten darstellen zu können, müssen die Änderungen der Bindungslängen (Δr), Bindungswinkel ($\Delta \phi$), Azimutalwinkel ($\Delta \theta$) und Diederwinkel ($\Delta \tau$) angegeben werden. Die Dimension des Schwingungseigenwertproblems eines derart molekülfixierten Koordinatensystems entspricht der Anzahl der Schwingungsfreiheitsgrade (3N - 6 bzw. 3N - 5). Die auf der Basis innerer Koordinaten angegebenen Kraftkonstanten haben eine anschauliche Bedeutung.

Um kartesische in innere Koordinaten umzuwandeln, benötigt man die (3N - 6)(3N)dimensionale **B**-Matrix nach

$$\vec{R} = \mathbf{B}\vec{x} \tag{2.3}$$

Die einzelnen Elemente der **B**-Matrix

$$B_{ij} = \frac{\partial R_i}{\partial x_j} \tag{2.4}$$

sind algebraisch bestimmbar. Mit Hilfe der Beziehung

$$\vec{x} = \mathbf{B}^{-1}\vec{R} \tag{2.5}$$

ist die Rücktransformation der internen in kartesische Koordinaten möglich. Für die **B**-Matrix gilt

$$\mathbf{B}\mathbf{B}^{-1} = \mathbf{E} \tag{2.6}$$

mit \mathbf{E} als Einheitsmatrix. Wenn massengewichtete kartesische Koordinaten verwendet werden, ergeben sich die inneren Koordinaten zu

$$\vec{R} = \mathbf{B}m^{\frac{1}{2}}\vec{q} \tag{2.7}$$

2.1.2 Säkulargleichung

Da man die Eigenschwingungen eines Moleküls als periodische Bewegungen der Atome um eine Gleichgewichtslage auffassen kann, kann die kinetische Energie T eine solchen Punktmassensystems durch

$$2T = \vec{q}^T \vec{x} = \vec{x}^T m \vec{x}$$
(2.8)

ausgedrückt werden. Parallel zu Gleichung 2.5 gilt

$$\dot{\vec{x}} = \mathbf{B}^{-1} \vec{R} \tag{2.9}$$

Die kinetische Energie in inneren Koordinaten ergibt sich also zu

$$2T = \vec{\vec{R}}^T \mathbf{G}^{-1} \dot{\vec{R}}$$
(2.10)

Hierbei ist die Matrix ${\bf G}$ definiert durch

$$G_{tt'} = \sum_{i=1}^{3N} \frac{1}{m_j} B_{ti} B_{t'i} \qquad t, t' = 1, 2, \dots, 3N - 6 \qquad (2.11)$$

Mit m_j sind die Massen der jeweils zugehörigen Atome gemeint, also $j = (i - 1) \div 3 + 1$. Die Größen $\dot{\vec{x}}$ und $\dot{\vec{R}}$ bedeuten hierbei jeweils die zeitlichen Änderungen der kartesischen oder inneren Verschiebungen.

Um die potentielle Energie des Punktmassensystems zu bestimmen, entwickelt man infinitesimale Verschiebungen der Atome in einer Taylor-Reihe. Bei Verwendung redundanzfreier innerer Koordinaten gilt

$$V = \frac{1}{2} \sum_{i} \sum_{j} F_{ij} R_{i} R_{j} + \frac{1}{3!} \sum_{i} \sum_{j} \sum_{k} F_{ijk} R_{i} R_{j} R_{k} + \frac{1}{4!} \sum_{i} \sum_{j} \sum_{k} \sum_{l} F_{ijkl} R_{i} R_{j} R_{k} R_{l} + \dots$$
(2.12)

Im Gleichgewichtszustand wird die potentielle Energie als Null definiert und als Minimalwert angenommen, woraus sich

$$\frac{\partial V}{\partial R_i} = 0 = F_i \tag{2.13}$$

ergibt. Die F werden als Potential- oder Kraftkonstanten bezeichnet:

$$F_{ij} = \left(\frac{\partial^2 V}{\partial R_i \partial R_j}\right) \tag{2.14}$$

$$F_{ijk} = \left(\frac{\partial^3 V}{\partial R_i \partial R_j \partial R_k}\right) \tag{2.15}$$

$$F_{ijkl} = \left(\frac{\partial^4 V}{\partial R_i \partial R_j \partial R_k \partial R_l}\right) \tag{2.16}$$

Unter Verwendung der harmonischen Näherung können alle Glieder dritter und höherer Ordnung vernachlässigt werden. Somit ergibt sich für die potentielle Energie mit \mathbf{F}_R als der auf innere Koordinaten bezogenen Kraftkonstantenmatrix

$$2V = \vec{R}^T \mathbf{F}_R \vec{R}$$
$$= \vec{x}^T \mathbf{B}^T \mathbf{F}_R \mathbf{B} \vec{x}$$
(2.17)

Durch Einsetzen von Gleichung 2.2 in diese Gleichung erhält man

$$2V = \vec{q}^T \mathbf{F}_q \vec{q} \tag{2.18}$$

mit

$$\mathbf{F}_q = m^{-\frac{1}{2}} \mathbf{B}^T \mathbf{F}_R m^{-\frac{1}{2}} \tag{2.19}$$

Durch Einsetzen der Gleichungen 2.2 und 2.18 in die Newtonsche Bewegungsgleichung

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial T}{\partial \dot{x}_i} + \frac{\partial V}{\partial x_i} = 0 \tag{2.20}$$

erhält man die Differentialgleichung

$$\ddot{\vec{q}} + \mathbf{F}_q \vec{q} = 0 \tag{2.21}$$

Unter Verwendung des allgemeinen Lösungsansatzes für diese Differentialgleichungen

$$\vec{q}_i = A_i \cos\left(\sqrt{\lambda_i} t + \varphi_i\right) \quad i = 1, 2, \dots, 3N$$
 (2.22)

mit A_i , λ_i und φ_i als geeignet gewählte Konstanten erhält man das Eigenwertproblem

$$\left(\mathbf{F}_{q} - \vec{\lambda}\mathbf{E}\right)\mathbf{A} = 0 \qquad (2.23)$$

mit λ_i als den Eigenwerten und der Amplitudenmatrix **A**.

Die triviale Lösung mit allen \mathbf{A}_i gleich Null ist nicht von Interesse, so daß sich das Eigenwertproblem zu

$$\det |\mathbf{F}_q - \vec{\lambda} \mathbf{E}| = 0 \tag{2.24}$$

vereinfacht. Diese Gleichung ist nun die so genannte Säkulargleichung, deren Eigenwerte λ_i sich durch Diagonalisierung der \mathbf{F}_q -Matrix bestimmen lassen. Die Wellenzahlen $\tilde{\nu}_i$ der Grundschwingungen berechnen sich aus den Eigenwerten λ_i nach

$$\tilde{\nu}_i^2 = \frac{\lambda_i}{4\pi^2 c^2}$$
 bzw. $\tilde{\nu}_i = 1302.83\sqrt{\lambda_i} \quad [\text{ cm}^{-1}]$ (2.25)

Um die numerische Lösung des Problems zu erleichtern, werden die massengewichteten kartesischen Koordinaten \vec{q} in massengewichtete kartesische Symmetriekoordinaten \vec{q}_s umgewandelt. Dies geschieht mit der Transformationsmatrix $\mathbf{U}: \vec{q}_s = \mathbf{U}\vec{q}$. Somit ergibt sich aus der Kraftkonstantenmatrix \mathbf{F}_q

$$\mathbf{F}_{q_s} = \mathbf{U}\mathbf{m}^{-\frac{1}{2}}\mathbf{B}^T\mathbf{F}_R\mathbf{B}\mathbf{m}^{-\frac{1}{2}}\mathbf{U}^T$$
(2.26)

Die Kraftkonstantenmatrix \mathbf{F}_{q_s} ist danach blockdiagonalisiert

$$\mathbf{F}_{q_s} = \begin{pmatrix} \bullet & & 0 \\ \bullet & & \\ & \bullet & \\ 0 & \bullet & \bullet \end{pmatrix}$$
(2.27)

Jetzt gehören die Eigenvektoren der verschiedenen Symmetrierassen zu verschiedenen voneinander unabhängigen Unterräumen des 3N-dimensionalen Raumes. Die Säkulargleichung kann nun durch schrittweise Diagonalisierung der einzelnen Unterräume gelöst werden.

2.1.3 Jacobi-Matrix

Um die Abhängigkeiten der Frequenzen von den Kraftkonstanten F_i zu erhalten, benötigt man die Jacobi-Matrix, welche die Ableitungen der Frequenzen nach den Kraftkonstanten enthält.

$$\mathbf{J} = \begin{pmatrix} \frac{\partial \tilde{\nu}_1}{\partial F_1} & \cdots & \frac{\partial \tilde{\nu}_1}{\partial F_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial \tilde{\nu}_n}{\partial F_1} & \cdots & \frac{\partial \tilde{\nu}_n}{\partial F_m} \end{pmatrix}$$
(2.28)

Zur Berechnung der Elemente der Jacobi-Matrix sind noch weitere Rechnungen notwendig.

Zur Diagonalisierung der \mathbf{F}_{q_s} -Matrix kann man die Eigenvektorenmatix \mathbf{L}_{q_s} verwenden

$$\mathbf{L}_{q_s}^T \mathbf{F}_{q_s} \mathbf{L}_{q_s} = \Lambda \tag{2.29}$$

wobei Λ die Diagonalmatrix der Eigenwerte λ_i bezeichnet. Die Überführung der kartesischen Symmetriekoordinaten $\vec{q_s}$ in die den Bewegungsformen des Moleküls entsprechenden Normalkoordinaten \vec{Q} wird mit Hilfe der Eigenvektorenmatrix \mathbf{L}_{q_s} durchgeführt:

$$\vec{Q} = \mathbf{L}_{q_s} \vec{q_s} \tag{2.30}$$

Eine Änderung der Kraftkonstante F_i um d F_i ändert die \mathbf{F}_{q_s} -Matrix um d F_{q_s}

$$\mathrm{d}F_{q_s} = \sum_i (A_{q_s})_i \mathrm{d}F_i \tag{2.31}$$

mit $(A_{q_s})_i$ als dem Anteil der Kraftkonstante F_i am Wert vom F_{q_s} . Wenn man annimmt, daß sich die Eigenvektoren bei infinitesimalen Änderungen der F_i nicht ändern, folgt aus den beiden letzten Gleichungen:

$$d\lambda_{i} = \left(\mathbf{L}_{q_{s}}^{T}\sum_{h}(A_{q_{s}})_{h}dF_{h}\mathbf{L}_{q_{s}}\right)_{ii}$$
$$= \sum_{h}\left(\mathbf{L}_{q_{s}}^{T}(A_{q_{s}})_{h}\right)_{ii}dF_{h}$$
(2.32)

Nun lassen sich die Elemente der Jacobi-Matrix \mathbf{J}_{ih} nach

$$\mathbf{J}_{ih} = \frac{\partial \tilde{\nu}_i}{\partial F_h} = \frac{N_A \cdot 10^5}{8\pi^2 c^2 \tilde{\nu}_i} \left(\mathbf{L}_{q_s}^T (A_{q_s})_h \mathbf{L}_{q_s} \right)_{ii}$$
(2.33)

berechnen. Bei $N_A \cdot 10^5$ handelt es sich um einen Skalierungsfaktor um relative Atommassen und die Kraftkonstanten in N· cm⁻¹ angeben zu können.

2.1.4 L_X -Matrix

Die Angabe der Auslenkungen der Atome in kartesischen Koordinaten machen es einfacher, sich Schwingungen bildlich vorzustellen. Hierzu verwendet man die L_X -Matrix, die sich nach

$$\mathbf{L}_X = \mathbf{m}^{-\frac{1}{2}} \mathbf{U}^T \mathbf{L}_{q_s} \tag{2.34}$$

berechnet. Hierbei stellen die Spalten der Matrix die Projektion der Normalkoordinaten im kartesischen Raum dar.

2.1.5 Potentialenergieverteilung

Nachdem bei einem nicht-linearen Molekül für die potentielle Schwingungsenergie

$$2V = \sum_{i=1}^{3N-6} \lambda_i Q_i^2 \tag{2.35}$$

gilt, beträgt die Energie einer Schwingung

$$2E_{i} = \lambda_{i}Q_{i}^{2}$$

$$= (\mathbf{L}_{q_{s}}^{T}\mathbf{F}_{q_{s}})_{ii}Q_{i}^{2}$$

$$= \sum_{h} \left(\mathbf{L}_{q_{s}}^{T}(A_{q_{s}})_{h}\mathbf{L}_{q_{s}}\right)F_{h}Q_{i}^{2}$$
(2.36)

Der Beitrag einer Kraftkonstanten F_h zur potentiellen Schwingungsenergie berechnet sich nach:

$$2E'_{h} = \left(\mathbf{L}_{q_{s}}^{T}(A_{q_{s}})_{h}\mathbf{L}_{q_{s}}\right)F_{h}Q_{i}^{2}$$
$$= \mathbf{J}_{ih}\frac{8\pi^{2}c^{2}\tilde{\nu}_{i}}{N_{A}\cdot10^{5}}F_{h}Q_{i}^{2}$$
(2.37)

Eine Erweiterung dieser Gleichung mit λ_i , Einsetzen der Definition von λ_i aus Gleichung 2.25 und Erweitern mit $N_A \cdot 10^5$ ergibt

$$\frac{2E'_h}{2E_i} = \mathbf{J}_{ih} \frac{2F_h}{\tilde{\nu}_i} \tag{2.38}$$

Daraus folgt, daß der relative Anteil PED_{ih} der Kraftkonstanten F_h an der potentiellen Energie der Schwingung i in % sich durch

$$\operatorname{PED}_{ih} = \frac{\mathbf{J}_{ih}F_h}{\tilde{\nu}_i} \cdot 200 \qquad [\%] \qquad (2.39)$$

beschreiben läßt. Somit ist es möglich, die Anteile der Kraftkonstanten an einer Schwingung zu bestimmen

Das hier vorgestellte Vorgehen entspricht dem Vorgehen des Programms NORKO nach Shimanouchi et al. [82]. Dieses Programm wurde im Arbeitskreis Bleckmann weiterentwickelt [10, 12, 52, 76, 77] wobei insbesondere auf Dr. Schwittek [80] hingewiesen werden muß, der den Optimierungsalgorithmus *simulated annealing* implementiert hat (siehe 2.2.1). Die vorliegende Arbeit hat eine allgemeine Schnittstelle zur Implementation verschiedener Optimierungsalgorithmen implementiert.

2.2 Optimierungsalgorithmen

Ganz allgemein kann bei Optimierungsproblemen von Kraftkonstanten in Molekülen von dem mathematische Problem ausgegangen werden, ein Minimum der Funktion

$$F = \sum_{i} (\nu_i^{\text{berechnet}}(f_i) - \nu_i^{\text{gemessen}})^2$$
(2.40)

mit f_i als harmonische Kraftkonstanten und ν_i als Schwingungsfrequenzen zu finden. Diese Gleichung kann von verschiedenen Optimierungsalgorithmen auf unterschiedliche Weise minimiert werden. Im folgenden werden die zwei im Rahmen dieser Arbeit eingesetzten Optimierer in den ihnen zugrunde liegenden Algorithmen vorgestellt. Die Implementation der Algorithmen findet sich in 3.4.4.

2.2.1 Simulated Annealing [16, 36]

Das Verfahren des simulated annealing wurde von verschiedenen Personen unabhängig voneinander entwickelt und veröffentlicht (1983 Kirkpatrick et al [36] und 1985 Cerny [16]).

Dieses Optimierungsverfahren beruht auf Prozessen, die analog in sich abkühlenden Metallschmelzen beobachtet wurden. In der Simulation wird von einer Starttemperatur T_0 ausgehend die Schmelze abgekühlt. Abhängig von der Abkühlgeschwindigkeit wird entweder das globale Minimum erreicht oder nur ein lokales Minimum. Je höher die Abkühlgeschwindigkeit ist, desto wahrscheinlicher wird es, nur ein lokales Minimum zu erreichen. Somit muß man für den Algorithmus Parameter wählen, die einerseits eine möglichst hohe Rechengeschwindigkeit ermöglichen (schnelle Abkühlung), andererseits aber mit hoher Wahrscheinlichkeit das globale Minimum erreichen (langsame Abkühlung). Der Algorithmus beruht nun darauf, das System schrittweise "abzukühlen" und dem System in jedem Schritt ausreichend Zeit zu geben, wieder ein thermodynamisches Gleichgewicht einzustellen. Der gesamte Algorithmus wird im folgenden graphisch dargestellt: Unter dem in der Graphik erwähnten Metropolis-Kriterium versteht man die Abfrage, ob der Wert $p = \exp(F_{\text{neu}} - F_{\text{alt}}/T)$ kleiner ist als eine Zufallszahl $p' \in [0, 1]$. Wenn dies der Fall ist, wird der neue Kraftkonstantensatz übernommen, obwohl F_{neu} größer ist als F_{alt} . Damit kann der Algorithmus aus lokalen Minima ausbrechen. Da durch T geteilt wird, ist die Wahrscheinlichkeit, daß ein ungünstigerer Kraftkonstantensatz übernommen wird bei hoher Temperatur am größten, da dann im allgemeinen kleinere Werte für p erhalten werden. Die genaue Beschreibung des implementierten Algorithmus mit den Verbesserungen nach Goffe et al. [31] findet sich in 3.4.4.2.1.

Abbildung 2.1: Algorithmus der Optimierung mit simulated annealing

2.2.2 Simplex-Verfahren

Das Simplex-Verfahren beruht auf einem geometrischen Problemlösungsansatz. Hierbei definieren die Nebenbedingungen der zu optimierenden Gleichung Hyperebenen, die den Raum halbieren. Lösungen der Optimierungsaufgabe liegen innerhalb des Raumes, der von allen Hyperebenen definiert wird. Einer der Eckpunkte des so von den Hyperebenen erzeugten Simplex im Raum ist das gesuchte Optimum. Der Algorithmus sieht nun vor, im n-dimensionalen Fall eine (n-1)-dimensionale Hyperebene aus dem Unendlichen zu nähern, wobei die Form der (n-1)-dimensionalen Hyperebene durch die zu optimierende Gleichung bestimmt wird. Der erste Schnittpunkt der sich nähernden Hyperebene mit dem Simplex stellt das gesuchte Optimum dar.

2.3 Quantenmechanische Verfahren

In diesem Kapitel werden die beiden verwendeten Verfahren zur Berechnung der Molekülorbitale kurz umrissen. Zuerst wird das Hartree–Fock Verfahren erläutert, anschließend finden sich einige Anmerkungen zur Dichtefunktionaltheorie.

2.3.1 Beschreibung von Vielteilchenproblemen

Die zeitunabhängige Schrödingergleichung ist eine Eigenwertgleichung, die für Mehrteilchensysteme analytisch nicht lösbar ist. Deshalb wird auf verschiedene Approximationsverfahren zurückgegriffen.

2.3.2 Die adiabatische Näherung

Die Dichtefunktionalmethode bedient sich bei der Berechnung von Moleküleigenschaften, wie auch die Hartree-Fock Näherung, der adiabatischen Näherung. Da die Masse der Elektronen um den Faktor 1836 kleiner ist als die Masse eines Kernteilchens kann davon ausgegangen werden, daß sich die Elektronen bei einer bestimmten Kernkonfiguration so anordnen, wie es die Schrödingergleichung für feste Atomlagen vorschreibt. Die Elektronenbewegung folgt der Kernbewegung also adiabatisch. Die als Störung des Elektronenhamiltonoperators \hat{H}_0 angesehene kinetische Energie der Kerne in der Gleichung

$$\hat{H} = \hat{H}_0 + \hat{T}_{\text{Kerne}} \tag{2.41}$$

wird im folgenden völlig vernachlässigt. Im Eigenwertproblem der Elektronen tauchen die Koordinaten der Kerne nur noch als Variablen auf

$$\hat{H}_{0}\psi_{n}(\vec{r},\vec{R}) = E_{n}(\vec{R})\psi_{n}(\vec{r},\vec{R})$$

$$n = \text{Quantenzahlen der Elektronenzustände}$$

$$\vec{r} = \text{Ortskoordinaten der Elektronen}$$

$$\vec{R} = \text{Ortskoordinaten der Kerne}$$

$$(2.42)$$

Der Elektronenhamiltonoperator, in dem die kinetische Energie der Elektronen und die Kern/Elektron, Elektron/Elektron und Kern/Kern Wechselwirkungen enthalten sind, ergibt sich somit zu

$$\hat{H}_{0} = \sum_{i} \left(-\frac{1}{2} \Delta_{i} - \sum_{k} \frac{Z_{k}}{|\vec{r_{i}} - \vec{R_{k}}|} \right) + \sum_{i,j,i < j} \frac{1}{|\vec{r_{i}} - \vec{r_{j}}|} + \sum_{k,l,k < l} \frac{Z_{k} Z_{l}}{|\vec{R_{k}} - \vec{R_{l}}|}$$
(2.43)

mit:

i, j : Elektronen k, l : Kerne Z : Kernladungszahl

Problematisch ist hauptsächlich der zweite Term, bei dem es sich um einen Zweiteilchenoperator für die Elektronen handelt. Vereinfachungen in der Theorie werden hier ansetzen, da Kern/Kern und Kern/Elektron Wechselwirkungen analytisch lösbar sind.

2.3.3 Die Hartree–Fock Methode

Der im vorherigen Abschnitt erwähnte Zweiteilchenoperator, der besagt, daß die Bewegung eines Elektrons immer auch eine Auswirkung auf die anderen Elektronen hat, wird in der Hartree– Fock Methode vereinfacht. Es wird davon ausgegangen, daß sich die Wirkungen der Elektronen aufeinander mitteln lassen und somit durch ein Potential ersetzt werden können. Dadurch vereinfacht sich der elektronische Hamiltonoperator auf eine Summe von Einteilchenoperatoren, wodurch die Gesamtwellenfunktion ein Produkt aus Einteilchenwellenfunktionen wird.

Wenn man, um das Pauliprinzip zu berücksichtigen, als Ansatz für die Gesamtwellenfunktion eine Slaterdeterminante verwendet und dann den Erwartungswert des Hamiltonoperators $E = \langle \hat{H}_0 \rangle$ für diesen Ansatz bestimmt, erhält man, nach Anwendung des Variationsprinzipes, die Hartree-Fock Gleichungen. Die Lösung dieser Gleichungen stellt die bestmögliche Einteilchennäherung dar

$$\epsilon_{i}\psi_{i} = \left\{-\frac{1}{2}\Delta + v(\vec{r})\right\}\psi_{i}(\vec{r}) + \left\{\int d^{3}r'\frac{1}{|\vec{r} - \vec{r'}|}\sum_{j \neq i} |\psi_{j}(\vec{r'})|^{2}\right\}\psi_{i}(\vec{r}) \\ - \left\{\int d^{3}r'\frac{1}{|\vec{r} - \vec{r'}|}\sum_{j \neq i}\psi_{i}^{*}(\vec{r'})\psi_{i}(\vec{r'})\right\}\psi_{j}(\vec{r})\delta_{s_{i}}\delta_{s_{j}}(\vec{r})$$
(2.44)

Diese Gleichung besteht aus drei Termen. Term 1 stellt quasi eine Schrödingergleichung für ein Teilchen im Kernpotential dar, Term 2 beschreibt die mittlere Ladungsverteilung und Term 3,

17

der sogenannte Austauschterm, stellt ein nichtlokales, von der Wellenfunktion ψ_i abhängiges Potential dar. Da dieser Austauschterm für jedes Elektron anders ist, führte Slater ein mittleres , für alle Elektronen gleichermaßen wirksames, Austauschpotential $u_x \sim \rho_{el}^{1/3}$ ein [84]. Diese Gleichungen stellen ein selbstkonsistentes Problem dar, wofür die Terme 2 und 3 verantwortlich sind.

2.3.4 Die Dichtefunktionaltheorie

2.3.4.1 Das Theorem von Hohenberg und Kohn

Wenn sich Elektronen in einem äußeren Potential $v(\vec{r})$ bewegen, das im Fall von Molekülen oder Festkörpern durch die Kerne erzeugt wird, gilt für den Hamiltonoperator:

$$\hat{H} = \hat{T} + \hat{V} + \hat{U} \tag{2.45}$$

mit

 \hat{T} : Operator der kinetischen Energie der Elektronen

 \hat{V} : Potentielle Energie der Elektronen im Potentialfeld der Kerne

 \hat{U} : Operator der potentiellen Energie (Elektronenwechselwirkung)

Hier ist die potentielle Energie der Elektronen im Potentialfeld der Kerne folgendermaßen definiert:

$$\hat{V} = \int d^3 r \rho(\vec{r}) v(\vec{r}) \qquad (2.46)$$

Der Hamiltonoperator und damit auch die Lösungen der Schrödingergleichung und der Grundzustand hängen damit vom externen Potential ab. Hohenberg und Kohn zeigten 1964 durch Widerspruch [46]:

Der Grundzustand eines wechselwirkenden, inhomogenen Elektronengases bei vorgegebenem externen Potential wird eindeutig beschrieben durch die Elektronendichte $\rho(\vec{r})$.

Der Vielteilchengrundzustand ist also ein eindeutiges Funktional der Elektronendichte $\rho(\vec{r})$.

In weiteren Arbeiten konnte der oben genannte Beweis bzw. das zugrundeliegende Theorem, welche sich in der ursprünglichen Form nur auf einen nicht entarteten Grundzustand bezogen, auf entartete Grundzustände erweitert werden [2, 30, 48]. Eine Erweiterung des Theorems auf nichtlokale externe Potentiale wurde von Gilbert [37] und Donnely et. al. [28] durchgeführt.

2.3.4.2 Die Kohn–Sham–Gleichungen

Nach dem Theorem von Hohenberg und Kohn läßt sich die Grundzustandsenergie bei vorgegebenem Potential durch Variation der Energie nach der Elektronendichte bestimmen. Das zu minimierende Energiefunktional lautet:

$$E_{v(\vec{r})}[\rho(\vec{r})] = \int d^3r \rho(\vec{r})v(\vec{r}) + \frac{1}{2} \int d^3r d^3r' \frac{\rho(\vec{r})\rho(\vec{r'})}{|\vec{r} - \vec{r'}|} + G[\rho(\vec{r})]$$
(2.47)

Das Funktional $G[\rho(\vec{r})]$ enthält per Definition die kinetische Energie, die Austausch- und die Korrelationsenergie. Dieses Funktional läßt sich aufteilen in

$$G[\rho(\vec{r})] = T_s[\rho(\vec{r})] + E_{xc}[\rho(\vec{r})]$$
(2.48)

$$T_s[\rho(\vec{r})] = \int d^3r \rho(\vec{r}) t_s \rho(\vec{r}) \qquad : \text{Energie nichtwechselwirkender Elektronen} \qquad (2.49)$$

$$t_s[\rho(\vec{r})] = \frac{3}{10} (3\pi^2 \rho(\vec{r}))^{2/3}$$
(2.50)

Hierbei bedeutet $T_s[\rho(\vec{r})]$ die kinetische Energie eines Systems nichtwechselwirkender Elektronen der Dichte $\rho(\vec{r})$, $E_{xc}[\rho(\vec{r})]$ die Austausch- und Korrelationsenergie eines wechselwirkenden Systems zuzüglich der Differenz der kinetischen Energie zwischen einem wechselwirkenden und einem nichtwechselwirkenden System. Dies führt bei Anwendung der Funktionalableitung unter Teilchenzahlerhaltung zur Extremalbedingung

$$\int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 r' + v(\vec{r}) + \frac{\delta E_{xc}[\rho(\vec{r})]}{\delta \rho(\vec{r})} + \frac{\delta T_s[\rho(\vec{r})]}{\delta \rho(\vec{r})} = \mu$$
(2.51)

Wenn man ein effektives Potential definiert, ist dessen Extremalbedingung für das nichtwechselwirkende Elektronengas mit der Gleichung (2.51) formal identisch:

$$v_{\text{eff}}[\rho(\vec{r})] \equiv \phi + \frac{\delta E_{xc}[\rho(\vec{r})]}{\delta \rho(\vec{r})}$$
(2.52)

In ϕ sind die Anteile $v(\vec{r})$ und $\int \frac{\rho(\vec{r}')}{|\vec{r}-\vec{r}'|} d^3r'$ enthalten. Durch die Lösung der Kohn–Sham-Einteilchen-Gleichungen

$$\left(-\frac{1}{2}\Delta + v_{\text{eff}}[\rho(\vec{r})]\right)\psi_i(\vec{r}) = \epsilon_i\psi_i(\vec{r})$$
(2.53)

erhält man eine selbstkonsistente Dichte.

Die das Potential des nächsten Iterationsschrittes bestimmende Elektronendichte erhält man aus

$$\rho(\vec{r}) = \sum_{i=1}^{n} |\psi_i(\vec{r})|^2$$
(2.54)

2.3.4.3 Die Lokale Dichte Approximation (LDA)

Bei der lokalen Dichte Approximation (LDA) stellt man die Austausch-Korrelationsenergie durch die Austausch-Korrelationsenergie pro Elektron eines homogenen Elektronengases dar:

$$E_{xc} = \int \epsilon_{xc} [\rho(\vec{r})] \rho(\vec{r}) d^3r \qquad (2.55)$$

Das Austauschkorrelationspotential pro Volumen ist durch ϵ_{xc} gegeben. Es wird davon ausgegangen, daß sich das gesamte System an jedem beliebigen Ort wie ein freies Elektronengas konstanter Dichte verhält. Diese Approximation, die besonders in Kernnähe an ihre Grenzen stößt, liefert auch in Fällen recht stark variierender Elektronendichte erstaunlich gute Ergebnisse. Für ϵ_{xc} stehen verschiedene auf Berechnungen am freien Elektronengas beruhende Parametrisierungen zur Verfügung.

2.3.4.4 Becke Lee Yang Paarpotential B3Lyp

In dieser Arbeit wird das B3Lyp [7] Funktional verwendet. Hierbei handelt es sich um ein Hybridorbital mit 3 Parametern¹. Das Funktional läßt sich durch folgende Gleichung beschreiben

$$E_{xc} = E_{xc}^{LDA} + A(E_x^{exact} - E_x^{LDA}) + BE_x^{B_{88}} + CE_c^{PW_{91}}$$
(2.56)

¹Becke's drei Parameter Hybrid Funktional mit Perdew 86

Hierbei sind E_{xc}^{LDA} und E_x^{LDA} die Austausch- und Korrelationsterme der LDA-Näherung. Bei E_x^{exact} handelt es sich um die exakte Austauschenergie. Den Becke Austausch nach der GGA-Näherung beschreibt $E_x^{B_{88}}$, während $E_c^{PW_{91}}$ die Korrelationsenergie nach Perdew und Wang [66] wiedergibt. Die genauen Zahlenwerte für A, B und C wurden anhand experimenteller Daten ermittelt.

2.4 Wibergfragmente

Um aus den berechneten HF-Energien Bildungsenthalpien zu bestimmen, wird auf die Gruppenäquivalentmethode nach K. B. Wiberg [64, 92] zurückgegriffen. Diese Gruppenäquivalente werden im folgenden "Wibergfragmente" [39, 63] genannt.

Wibergfragmente lassen sich aus der experimentell ermittelten Bildungsenthalpie $\Delta_f H_{\text{Subst}}^{\text{exp}}$, der HF-Energie der Verbindung $(E_{\text{Subst}}^{\text{HF}})$ und schon ermittelten Fragmenten $E_{\text{i}}^{\text{Frag}}$ nach

$$n_i E_i^{\text{Frag}} = E_{\text{Subst}}^{\text{HF}} - \sum_{j \neq i} n_j E_j^{\text{Frag}} - \Delta_f H_{\text{Subst}}^{\text{exp}}$$
(2.57)

bestimmen [64, 92]. Hierbei geben n_i und n_j die Zahl der vorhandenen Fragmente in der Verbindung an.

Als Ausgangssubstanz für die Berechnung der Fragmente bietet sich Ethan an, da es nur aus zwei Methyl-Fragmenten besteht. Aus vorheriger Gleichung ergibt sich also für das Ethanfragment:

$$E_{\rm i}^{\rm Frag} = \frac{E_{\rm Ethan}^{\rm HF} - \Delta_f H_{\rm Ethan}^{\rm exp}}{2}$$
(2.58)

Um weitere Fragmente zu berechnen, müssen Verbindungen gewählt werden, die jeweils nur ein unbekanntes Fragment enthalten. Durch Auflösen von Gleichung 2.57 nach der Bildungsenthalpie erfolgt die Berechnung der Bildungsenthalpie $\Delta_f H_{\text{Subst}}^{\text{ber}}$ der gesuchten Substanz, wenn alle Fragmente bekannt sind:

$$\Delta_f H_{\text{Subst}}^{\text{ber}} = E_{\text{Subst}}^{\text{HF}} - \sum_i n_i E_i^{\text{Fraq}}$$
(2.59)

Während sich rein aus *ab initio*-Berechnungen stammende Bildungsenergien auf eine Temperatur von 0 K beziehen, enthalten die mit Hilfe von Wibergfragmenten ermittelten Bildungsenthalpien experimentelle Energieanteile². Sie beziehen sich auf eine Temperatur von 25°C. Im Rahmen dieser Arbeit wurden Wibergfragmente verwendet, um aus den berechneten HF-Energien³ der untersuchten Zinn-Silizium-Organyle direkt vergleichbare Bildungsenthalpien zu erhalten. Somit wird ein energetischer Vergleich zwischen verschiedenen Molekülen ermöglicht. Verschiedene Reaktionsmöglichkeiten können abgeschätzt werden

²Schwingungsenergie wie die Nullpunktschwingung und Translationsenergie

³Die HF-Energien sind abhängig von der Zahl der Orbitale, weshalb die HF-Energien verschiedener Moleküle durch die verschiedene Anzahl der Orbitale nicht vergleichbar sind

2.5 Wahl der Programmiersprachen

Die Programme dieser Arbeit sollten für die Betriebssystemfamilie Microsoft Windows (95/98, NT4.0, 2000) entwickelt werden.

2.5.1 Delphi

Die Programme, die im Laufe der Entstehung dieser Arbeit entwickelt wurden, sollten leicht bedienbar, auch für den Nichtcomputerfachmann, gestaltet werden. Hierdurch ergab sich zwingend die Verwendung einer graphischen Benutzeroberfläche. Somit standen unter Windows mehrere Programmiersprachen zu Auswahl, welche nicht nur eine textbasierte Bedienung ermöglichen. Da Berechnungen durchgeführt werden sollten, war die vom fertigen Programm erzielbare Rechengeschwindigkeit ein entscheidendes Kriterium. Interpretersprachen wie Visual-Basic schieden somit von vorn herein aus, übrig blieben damit Compilersprachen wie Delphi und Visual-C. Weiterhin sollte in den Programmen eine Datenbank verwendet werden, die möglicherweise dezentral verwaltet und gepflegt werden wird. Somit war eine Integration von Datenbankzugriffen in der Programmiersprache notwendig. Dies bot zum Zeitpunkt des Beginns dieser Arbeit nur die Programmiersprache Delphi von Inprise (vormals Borland). Bei Delphi handelt es sich um eine Weiterentwicklung der Programmiersprache Turbo-Pascal aus gleichem Hause. Delphi bietet eine einfache Erstellung einer graphischen Benutzeroberfläche, gute Integration vieler Datenbanksysteme und eine Rechengeschwindigkeit, die mit der der Sprache C vergleichbar ist. Momentan werden Delphi und C++ auch für das Betriebssystem Linux umgesetzt, Testversionen [49] einer integrierten Entwicklungsumgebung sind bereits verfügbar. Die Delphiversion ist für Ende 2000, die C++-Version für Mitte 2001 angekündigt. Wenn also bei der Programmierung keine speziellen Windowsbibliotheken verwendet werden, ist eine leichte Portierbarkeit gegeben. Da es schon zum Zeitpunkt des Begins dieser Arbeit Hinweise auf diese Portierung gab, wurde für die graphische Ausgabe innerhalb der Programme OpenGL [6,18] gewählt. OpenGL ist eine Graphikbibliothek, die für nahezu alle Betriebssysteme vorliegt. Eine Portierung auf eine Linuxversion von Delphi sollte also mit minimalem Aufwand möglich sein.

2.5.2 VRML

Bei VRML [41] (Virtual Reality Modeling Language) handelt es sich um eine interpretierende Programmiersprache zur Beschreibung dreidimensionaler Räume. Es sind sowohl statische Räume als auch Räume mit Interaktionsmöglichkeiten und Animationen möglich. Als eine Be-
schreibungssprache werden Objekte in den dreidimensionalen Räumen nicht als Ansammlung von farbigen Punkten, sondern z.B. als Objekt "Kugel" (sphere) bezeichnet. Dies reduziert einerseits die Datenmenge, da nur angegeben wird, daß an Position XYZ eine Kugel mit Radius r existiert und keine graphische Repräsentation der Kugel gespeichert werden muß, andererseits wird damit erst eine stufenlose Größenanpassung der Objekte möglich. Eine Beschreibungssprache delegiert somit die Verantwortung für die konkrete Darstellung an das darstellende Programm, sie ist somit schon inhärent plattformunabhängig. Diese Plattformunabhängigkeit war im Rahmen dieser Arbeit ein wichtiges Argument zur Verwendung von VRML, da somit die erzeugten Schwingungen (WinNork) bzw. Reaktionsanimationen (VisuChem) auch auf Computern betrachtet werden können, die nicht das Betriebssystem Windows verwenden. Üblicherweise sind Betrachter für VRML-Dateien als Zusatzprogramme (Plugins) für herkömmlich Webbrowser ausgeführt. Aus diesem Grund ist es leicht möglich, die erzeugten VRML-Dateien im World-Wide-Web zur Verfügung zu stellen. Reaktionsanimationen und Schwingungsdarstellungen, die mit den in dieser Arbeit beschriebenen Programmen erzeugt wurden, sind somit sehr gut geeignet, in HTML-basierten Lernumgebungen verwendet zu werden. In der Lernumgebung LUNA-CT [9], die während der Entstehungszeit dieser Arbeit im Arbeitskreis Bleckmann entstand, werden zahlreiche Animationen verwendet, die mit den in dieser Arbeit beschriebenen Programmen erzeugt wurden. Sie dienen der Veranschaulichung textuell schlecht vermittelbarer Zusammenhänge, haben also didaktisch große Vorteile.

Ein weiterer Vorteil vom VRML ist relativ einfache Programmierung der Animationen. Bewegungen basieren auf einer Kombination von Interpolatoren und Pipelines. Die Pipelines, auch Routen genannt, sorgen jeweils dafür, daß die Werte, die ein Objekt ausgibt, bei einem anderen Objekt als Eingabewerte eintreffen. So wird z.B. die Ausgabe des Zeitgebers an einen Interpolator geliefert, der interpolierte Wert (dies kann eine Position im Raum oder auch eine Skalierung sein) wird dann an das darzustellende Objekt (dies kann eine Kugel, ein Zylinder oder auch eine Zusammensetzung einfacher Objekte zu einem komplexen Objekt sein) weitergegeben. Somit ist es möglich, ein Atom einmal zu definieren, während sämtliche Änderungen durch Interpolatoren an das Objekt weitergegeben werden. Dies hat auch den Vorteil, daß Änderungen an einer Stelle (darzustellendes Objekt oder Interpolatorobjekt) keine Auswirkungen auf andere Stellen hat (eine Änderung der Farbe eines Atoms hat keine Auswirkung auf seine Bewegung, einen solchen Zusammenhang sollte es auch nicht geben).

VRML ermöglicht auch die Integration von Skripten, was viele Steuermechanismen erst möglich macht. So haben die erzeugten VRML-Dateien die Möglichkeit, skriptgesteuert die Animation zu stoppen oder neu zu starten. Leider sind Skripten zwar Teil der Definition der Sprache VRML, aber es ist nicht definiert, welche der verschiedenen Skriptsprachen verwendet werden können. Dies liegt in der Verantwortung der Programmierer des jeweiligen VRML-Betrachters. Verschiedene Betrachter verwenden verschiedene Skriptsprachen, so daß durch dieses Vorgehen die Plattformunabhängigkeit teilweise aufgehoben wird. Dies stellt allerdings keine gravierende Einschränkung dar, da der COSMO-Betrachter [19], für den die in dieser Arbeit verwendeten Skripten ausgelegt sind, für nahezu jedes Betriebssystem zu Verfügung steht. Die kleine Einschränkung der Plattformunabhängigkeit wurde in Kauf genommen, da die Alternative eine signifikante Einschränkung des Bedienungskomforts gewesen wäre.

Kapitel 3

Das Programm WinNork

3.1 Aufgaben des Programms

Abbildung 3.1: Das Programm WinNork

WinNork ist ein Programm, mit dem eine Normalkoordinatenanalyse [20] an einzelnen Molekülen durchgeführt werden kann. Sämtliche Daten können im Programm eingegeben werden oder direkt im Hilfe Datensatz mit eines ASCII-Editors geändert werden. Die für die Normalkoordinatenanalyse benötigten Kraftkonstanten befinden sich in einer durch den Benutzer änderbaren Datenbank.

Berechnete Frequenzen können, wenn auch die Berechnung der XYZ-Auslenkungen (LX-Matrix) aktiviert wurde, in ihren jeweiligen Schwingungen animiert visualisiert werden. Eine Ausgabe der Schwingungsform als VRML-Datei vervollständigt das Programm.

Im folgenden wird zuerst die Menustruktur beschrieben, anschließend wird näher auf das verwendete Datenformat und die Funktionsweise des Programms eingegangen.

WinNork beruht in seiner Funktionsweise auf dem Programm NORKO [10, 12, 52, 76, 77, 82] welches von Dipl.-Chem S. Lichtenhagen im Rahmen seiner Diplomarbeit in die Programmiersprache C übertragen wurde (NORKO2) [57]. Hierbei wurden auch bei heutigen Computern unnötige Konstrukte entfernt.

Im Rahmen dieser Arbeit wurde das Eingabeformat grundlegend erneuert und vereinfacht, es wird in dieser neuen Form schon in obiger Diplomarbeit eingesetzt. Ein komplette Beschreibung des Eingabeformates findet sich in 3.4.2.

Im Gegensatz zu den rein textbasierten älteren Versionen von NORKO setzt WinNork konsequent auf eine graphische Unterstützung des Benutzers. Alle Teile der Normalkoordinatenanalyse, von der Eingabe der Daten bis zur Visualisierung der Ergebnisse sind in einer graphischen Benutzeroberfläche integriert. Erleichtert wird die Erstellung neuer simulierter Spektren durch die integrierte Kraftkonstantendatenbank, welche die Auswahl der notwendigen Kraftkonstanten durch die Integration von Formelbildern, in denen die für die Kraftkonstante signifikanten Molekülteile farblich kodiert sind, erleichtert. Die Möglichkeit der Ausgabe der visualisierten Schwingungen in einem Betriebssystemunabhängigen, netzbasierten Format (VRML) rundet die Einsatzmöglichkeiten von WinNork ab.

3.2 Das Hauptfenster

1	WinNork -	Glycerinaldehyd				
Da	tei Editieren	n Start Visualisieru	ng <u>H</u> ilfe			
N	ormal Co	ordinate Prog	gram			
-						
Ι.						
G	lycerina	ldehyd				
l c	artesian	Coordinates:				
_			-			
c		0.092720	-0.051380	1.003310	0	
C		-0.045700	0.104960	-0.546120	0	
C		-0.911520	-1.035300	-1.140820	0	
0		0.656530	1.146980	1.555610	0	
0		-0.677520	1.353850	-0.854620	0	
0		-0.453370	-2.057320	-1.616220	0	
H		1.614430	1.105700	1.306120	0	
H		-0.310960	1.963790	-0.164200	0	
H		0.680830	-0.942980	1.244960	0	
H		-0.900350	-0.164780	1.446950	0	
H		0.957340	0.047150	-0.992530	0	
H		-1.996200	-0.838660	-1.089770	0	
F	orce Con	stants:				
-						
Ľ						

Abbildung 3.2: WinNork – Hauptmenu

3.2.1 Menupunkt Datei

Dieses Menu enthält alle Menupunkte, die für die Kommunikation des Programms mit der Außenwelt notwendig sind.

Der Menupunkt *Neu* ist nur wählbar, wenn schon ein Datensatz zur Normalkoordinatenanalyse geöffnet ist. Nach Anwahl dieses Menupunktes werden alle im Speicher befindlichen Daten gelöscht, die Variablen neu initialisiert und der Eingabedialog geöffnet. Wenn *Öffnen* gewählt wird, wird ein Auswahldialog zur Eingabe des Dateinamens angezeigt. Nach Auswahl einer gültigen Datei (Datensatzbeschreibung in 3.4.2) werden eventuell im Speicher befindliche Daten gelöscht und der neue Datensatz geladen. Dies ist näher in 3.4.3 beschrieben.

Auch Speichern und Speichern unter sind nur wählbar, wenn schon ein Datensatz geöffnet ist. Durch diese beiden Menupunkte wird allerdings nicht den Datensatz gespeichert. Dies geschieht bei Notwendigkeit automatisch nach jeder Änderung an den Stammdaten. Gespeichert wird hier die Ausgabe im oben sichtbaren Berechnungsfenster, um eine spätere Auswertung zu ermöglichen. In diesem Fenster sind sämtliche berechneten Daten (LX-Matrix, PED, ...) und die Stammdaten (Molekülname, Koordinaten, Z-Matrix, ...) zu finden. Dieses Fenster kann, ob es nun sichtbar ist oder nicht, mit *Drucken* auch ausgedruckt werden, die Einstellung der Druckparameter ist unter *Druckereinrichtung* zugänglich.

Das Programm kann durch Auswahl von Beenden geschlossen werden.

Mit Hilfe des Menupunktes *Einstellungen* kommt man in ein Untermenu, welches Zugang zu den Grundeinstellungen des Programms bietet.

Atom	Red	Green	Blue	Radius	Masse
Н	1.0000	1.0000	1.0000	0.7600	1.0079
He	1.0000	0.0000	0.0000	1.0000	4.0026
Li	0.0000	0.0000	0.0000	1.0000	6.9410
Be	0.0000	0.0000	0.0000	1.0000	9.0122
В	1.0000	0.5019	0.2500	1.6600	10.8110
С	0.5500	0.5500	0.5500	1.5444	12.0110
N	0.5600	0.5600	1.0000	1.6000	14.0067
0	0.9400	0.0000	0.0000	1.2080	15.9994
F	0.5000	1.0000	1.0000	1.4180	18.9984
Ne	1.0000	1.0000	1.0000	1.6000	20.1790

optionen finden sich die Grundeinstellungen für die Visualisierung der Atome in diesem Programm sowie Angaben über Massen für die Berechnung der Kraftkonstanten. Fehler in diesen Daten führen zu starken Abweichungen in den

Im Dialog Atom-

Abbildung 3.3: WinNork – Atomoptionen

berechneten Schwingungen. Einstellbar sind hier die Farbe des Atoms als RGB-Wert (Bereich [0,1]), der Radius in Å und die Masse des Atoms in g mol⁻¹.

Unter Bindungsoptionen sind jeweils Paare von Atomen und Abstände zu finden, ab denen das Programm bei diesem Atompaar von einer Bindung ausgeht. Die hier getroffenen Grundeinstellungen können im jeweiligen Einzelfall geändert werden und dienen nur der Erleichterung, da somit nicht alle Bindungen per Hand vorgegeben werden müssen. In diesem Dialog können die Bindungsabstände eingestellt sowie neue Atompaare/Bindungsabstände erstellt und nicht mehr benötigte gelöscht werden.

Bindungsoptionen

Bindungsoptionen

Bindung		Abstand [Å]	-
C-H		1.1400 -	
C-C		1.5400	
C-0		1.3400	
N-H		1.2500	
P-H		1.4700	
0-H		0.9500	
S-H		1.3200	
F-H		1.0900	
СІ-Н		1.3600	
Br-H		1.3600	
I-H		1.3600	
C-N		1.2500	
C-P		1.7000	•
	Neu	<u>A</u> bbruch <u>D</u> K	

Abbildung 3.4: WinNork – Bindungsoptionen

DataForm									
Lineare D	eformationer	n T	Out-Of-Plan	e Ì	Torsio	nen Ì			
Vib	orationen		Deformationen			i			
Atom_1	Atom_2	Kraftko	nstante	Abst	and				
) C	С		5.38046	1	.537314				
С	С	5	.599274	1	.537574				
С	С	5	.663513	1	.537574				
L C	Н	4	.690698	1	.084991				
	H	4	.745991	1	.083397				
						51			
	i 🕨	►	+ -	-	- 1	8			
l etzte Änder	una: 2520	00 10.7	ID-25						
Atom 1 Al	tom 2 Kra	aftkonsta	ante [mdvn/Å]	At	ostand (Å)				
						104 4			
			5.3804	6	1.537	7314			
Kraftkonsta	Kraftkonstante aus Ethan. In Ethan optimiert.								
		Date	endank import	ieren		·			

Abbildung 3.5: WinNork – Datenbank

Mit Hilfe dieses Dialoges ist es möglich, die Datenbank der Kraftkonstanten zu pflegen. Es ist möglich, falsche Datensätze zu löschen oder zu korrigieren, neue Datensätze einzufügen sowie eine zusätzliche Kraftkonstantendatenbank zu importieren. Hierbei werden doppelte Datensätze automatisch vermieden, so daß auch das mehrfache importieren derselben Datenbank nicht zu einer nicht mehr wartbaren eigenen Datenbank führt. Durch diesen Mechanismus ist es möglich, Kraftkonstantendatenbanken für spezielle Problemstellungen für alle Nutzer verfügbar zu machen. Als Datenbank wird eine Paradox-Datenbank verwendet, prinzipiell sind aber auch andere Datenbanksysteme verwendbar. Paradox-Datenbanken sind bei Verwendung von Delphi die Default-Datenbanken.

Dieser Dialog liefert eine Liste aller im Plugin-Verzeichnis vorhandenen Optimierer. Nach Anwahl des jeweiligen Optimierers werden die in der Optimierer-DLL Informationen einkodierten (Optimierername, Programmierer, Erstellungsdatum, Version, Optimiererbeschreibung) und der tatsächliche Dateiname des Optimierers angezeigt. Die Verwendung verschiedener Optimierer ermöglicht, wird um bei

Verfügbare Opt	limierer						
Simulated Anne	aling						
Informationen:							
Name:	Simulated Annealing						
Programmierer:	Dirk Hövener						
Datum:	2000-04-26						
Version:	1.0 beta						
Beschreibung:	Diese Methode optimiert durch eine simulierte Abkühlung, Sehr robust. Literatur: Goffe, Ferrier and Rogers, "Global Optimization of Statistical Functions with Simulated Annealing", Journal of Econometrics, vol. 60, no. 1/2, Jan./Feb. 1994, pp. 65-100.						
Pfad:	D:\home\dirkh\Delphi\DelphiProgs\Norko\Plugins\SimAnneal.dll						
	Abbildung 3.6: WinNork – Optimierer						

verschiedenen Problemstellungen auf das jeweilige Problem angepasste Optimierer einsetzen zu können. Dies kann im Einzelfall zu deutlich höheren Rechengeschwindigkeiten führen. Auch ist eine Kombination aus einem schnellen Optimierer, der die Lage des globalen Minimums findet und eines hochwertigen Optimierers, der die endgültige Position im globalen Minimum aufsucht, denkbar.

3.2.2 Menupunkt Editieren

Der Menupunkt *Editieren* ermöglicht den Zugang zur Änderung der Daten und zur Reduzierung der Kraftkonstanten. Im folgenden werden zuerst die Möglichkeiten zur Änderung der Daten erläutert, anschließend wird auf das Konzept der Reduzierung der Kraftkonstanten eingegangen.

Der Einstellungsdialog ist als Dialog mit einer variablen Anzahl von Tabs ausgeführt, wobei jeder einzelne Tab für bestimmte Einstellmöglichkeiten vorgesehen ist.

Eingabe			
Allgemein Atome Vibrationen Deform	nationen Out-Of-Plane Torsionen Z-Matrix		
leblare	Glucerinaldehud		
Jobivame			
B-Matrix drucken			
AXSM-Matrix drucken			
Z-Matrix drucken			
Kartesische Koordinaten ausgeben			
Kraftkonstanten ausgeben			
Symmetrierassen			
U-Matrix ausgeben			
BU-Matrix ausgeben			
PED ausgeben			
Jacobimatrix ausgeben			
LX-Matrix ausgeben			
Unit-Matrix ausgeben			
		Abbruch	OK

Abbildung 3.7: WinNork – Editieren der allgemeinen Daten

Im ersten Tab ist der Jobname einzutragen und anzugeben, welche Ausgaben und Berechnungen durchgeführt werden sollen. Die Durchführung der Berechnung der LX-Matrix ist unbedingt zur Visualisierung nötig, da in der LX-Matrix die Verschiebungen der einzelnen Atome im kartesischen Raum zu finden sind.

	0.0927200	L0 0E12000		
~		-0.0513000	1.0033100	12.0100
~	-0.0457000	0.1049600	-0.5461200	12.0100
C	-0.9115200	-1.0353000	-1.1408200	12.0100
D	0.6565300	1.1469800	1.5556100	16.0000
C	-0.6775200	1.3538500	-0.8546200	16.0000
D	-0.4533700	-2.0573200	-1.6162200	16.0000
-	1.6144300	1.1057000	1.3061200	1.0080
-	-0.3109600	1.9637900	-0.1642000	1.0080
4	0.6808300	-0.9429800	1.2449600	1.0080
4	-0.9003500	-0.1647800	1.4469500	1.0080
4	0.9573400	0.0471500	-0.9925300	1.0080
4	-1.9962000	-0.8386600	-1.0897700	1.0080

Abbildung 3.8: WinNork – Editieren der Atompositionsdaten

Der Tab zum Editieren der Atompositionen ist nur sichtbar, wenn ein Jobname angegeben wurde, damit der Datensatz eindeutig bezeichnet ist.

In die Tabelle werden die Atome mit ihrer XYZ-Position und ihrer Masse eingetragen. Beim Atomnamen ist eine an das Atomsymbol anschließende Ganzzahl erlaubt, die das Atom eindeutig zu charakterisieren hilft. Die angehängte Ganzzahl wird für alle Berechnungen ignoriert.

In diesem Tab können weitere Atome hinzugefügt (*Neues Atom*) oder gelöscht (Benutzung der mittleren Maustaste auf dem zu löschenden Atom) werden, alle Atomdaten verworfen (*Daten löschen*) und ein Satz Atomdaten aus einer XYZ-Datei geladen (*XYZ-Datei laden*) werden. Das Format dieser XYZ-Datei ist in B.1 erläutert.

Nach Eingabe alle Atome kann hier die Berechnung der Bindungen (*Berechnen*) gestartet werden. Damit werden die Vibrationen aus den Atomabständen berechnet. Eingeschaltet wird die automatische Berechnung aller weiteren Wechselwirkungen beim nächsten Laden der Datei.

Die Schaltflächen haben wechselnde Bedeutungen und Aufschriften.

Atom 1	Atom 2	Kraftkonstante	
1 (C)	2 (C)	C-C (4.261000)	_
2 (C)	3 (C)	C-C (4.261000)	
6 (O)	3 (C)	C-O (5.090000)	
5 (0)	2 (C)	C-O (5.090000)	
4 (O)	1 (C)	C-O (5.090000)	
9 (H)	1 (C)	С-Н (4.688000)	
10 (H)	1 (C)	С-Н (4.688000)	
11 (H)	2 (C)	С-Н (4.688000)	
12 (H)	3 (C)	С-Н (4.688000)	
7 (H)	4 (O)	O-H (6.440000)	
8 (H)	5 (O)	O-H (6.440000)	
		Neue Schw	vingu

Abbildung 3.9: WinNork – Editieren der Valenzdaten

Der Tab für die Valenzschwingungen ist nur sichtbar, wenn für das Molekül schon welche definiert worden sind.

Alle hier angegebenen Schwingungen stellen gleichzeitig die Bindungen des Moleküls dar. Angegeben in der Tabelle dieses Tab sind die beiden Atome, zwischen denen die Bindung ausgebildet ist, und die Kraftkonstante der Schwingung. Die durch Benutzung des Buttons *Berechnen* erzeugten Bindungen beruhen auf den Definitionen der Bindungsabstände unter *Einstellun*gen |Atome. Da die Angabe der Bindungsabstände dort nicht notwendigerweise vollständig ist, können noch neue Bindungen definiert werden oder irrtümlich erstellte gelöscht werden durch Benutzung der mittleren Maustaste auf der zu löschenden Bindung.

Wenn neue Atome oder neue Bindungen hinzugekommen sind, muß nun der Datensatz gesichert werden, damit die Berechnung der weiteren Schwingungen durchgeführt werden kann und diesen Schwingungen Kraftkonstanten zugeordnet werden können.

Atom 1	Atom 2	Atom 3	Kraftkonstante
6 (O)	3 (C)	12 (H)	H-C-O (0.961000)
6 (O)	3 (C)	2 (C)	C-C-O (1.182000)
12 (H)	3 (C)	2 (C)	H-C-C (0.718000)
1 (C)	2 (C)	3 (C)	C-C-C (1.071000)
5 (0)	2 (C)	1 (C)	C-C-O (1.182000)
5 (0)	2 (C)	3 (C)	C-C-O (1.182000)
5 (0)	2 (C)	11 (H)	H-C-O (0.961000)
3 (C)	2 (C)	11 (H)	H-C-C (0.718000)
11 (H)	2 (C)	1 (C)	H-C-C (0.718000)
4 (0)	1 (C)	9 (H)	H-C-O (0.961000)
4 (0)	1 (C)	10 (H)	H-C-O (0.961000)
4 (0)	1 (C)	2 (C)	C-C-O (1.182000)
9 (H)	1 (C)	10 (H)	H-C-H (0.471000)
10 (H)	1 (C)	2 (C)	H-C-C (0.718000)
9 (H)	1 (C)	2 (C)	H-C-C (0.718000)
- ()			

Abbildung 3.10: WinNork – Editieren der Deformations- bis Torsionsdaten

Die Tabs für weitere Kraftkonstanten des Moleküls sind nur sichtbar, wenn in dem Molekül die jeweiligen Schwingungen vorhanden sind. Dies trifft z.B. auf die Linearen Deformationen sehr selten zu.

Die Berechnung der hier möglichen Wechselwirkungen ist vollständig, so daß in diesen Tabellen nur die Kraftkonstanten geändert werden können. Das Hinzufügen oder Löschen von Schwingungen ist nicht möglich, da dies zu einer unvollständigen und damit fehlerhaften Z-Matrix führen würde.

Abbildung 3.11: WinNork – Editieren der Z-Matrixdaten

In diesem letzten Tab ist die komplette Z-Matrix des Moleküls zugänglich. Die Buchstaben am Rand geben an, welche Arten von Schwingungen miteinander Wechselwirken: V - Valenzschwingungen, D - Deformationsschwingungen, L - Lineare Deformationsschwingungen, O - Out-Of-Plane-Schwingungen, T - Torsionsschwingungen. Veränderbar sind aus praktischen Gründen nur die Hauptdiagonale und die Werte unterhalb der Hauptdiagonalen, da die Hauptdiagonale eine Spiegelebene darstellt. Mit der linken Maustaste kann eine andere Kraftkonstante gewählt, mit der mittleren eine Wechselwirkung gelöscht werden. Soll für verschiedene Wechselwirkungen die gleiche Kraftkonstante gewählt werden, zum Beispiel weil es sich mehrfach um eine C-C Wechselwirkung mit gleicher Umgebung handelt, so muß dies hier per Hand erfolgen. Geänderte Felder werden eingefärbt, um leichter entscheiden zu können, ob eine spezielle Wechselwirkung bereits geändert wurde oder nicht.

Wenn in der Z-Matrix mehrere äquivalente Kraftkonstanten zusammengefasst wurden, so sind die nunmehr nicht mehr verwendeten Kraftkonstanten trotzdem noch im Datensatz vorhanden. Hier hilft nun die Kraftkonstantenreduzierung, da ein manuelles Entfernen nicht benötigter Kraftkonstanten sehr zeitaufwendig und fehleranfällig ist. Die Kraftkonstantenreduzierung bewirkt, daß nichtgenutzte Kraftkonstantennummern freigegeben werden und am Ende die Kraftkonstanten von 1 bis n durchnumeriert sind. Dieses Vorgehen erhöht auch signifikant die Lesbarkeit der Eingabedatei.

Für das Sortieren wird der Bubble-Sort-Algorithmus verwendet, da er einfach zu implementieren ist und keine wesentliche Verlangsamung der Sortierfunktion verursacht. Den größten Teil der Zeit zum Reduzieren der Kraftkonstanten ist das Betriebssystem mit Dateioperationen (Laden/Speichern) beschäftigt.

3.2.3 Menupunkt Start

Dieser Menupunkt ermöglicht den Start der Berechnungen zur Normalkoordinatenanalyse und das Einschalten der Textausgaben.

Durch Anwahl von *Berechnung starten* wird die eigentliche Normalkoordinatenanalyse durchgeführt. Wenn im Datensatz der Parameter Optimize den Wert True hat, wird hier die Möglichkeit gegeben, den Datensatz zu optimieren, ansonsten wird die Normalkoordinatenanalyse direkt mit dem vorgegebenen Kraftkonstanten durchgeführt. Die Optimierung wird unter 3.4.4 erläutert.

Wenn die Ausgaben angezeigt werden sollen, muß der Menupunkt Ausgabe Anzeigen selektiert sein. Hier geht es nur um die Anzeige der Ausgabe, die auch später noch eingeschaltet werden kann. Bei eingeschalteter Anzeige benötigen Berechnungen, die Ausgaben tätigen, mehr Zeit als bei ausgeschalteter Anzeige. Aus diesem Grund wird die Anzeige während der Berechnung kurzfristig deaktiviert.

3.2.4 Menupunkt Visualisierung

Durch die Anwahl dieses Menupunktes wird das Graphikfenster geöffnet und die animierte Visualisierung der Moleküls gestartet.

3.2.5 Menupunkt Hilfe

Abbildung 3.12: WinNork – Info-Dialog

Unter diesem Menupunkt findet sich der bei Windowsprogrammen übliche Informationsdialog. Hier kann die Versionsnummer des Programms eingesehen werden, welche bei Fragen zu einzelnen Programmpunkten wichtig ist.

3.3 Das Graphikfenster

Abbildung 3.13: WinNork – Das Graphikfenster

Im Graphikfenster kann das dargestellte Molekül mit folgenden Befehlen manipuliert werden gedrückte linke Maustaste \Rightarrow Rotation bei Mausbewegung gedrückte rechte Maustaste \Rightarrow Translation bei Mausbewegung gedrückte linke Maustaste und Shift-Taste \Rightarrow Größenänderung bei Mausbewegung

Tabelle 3.1: Molekülmanipulationsmöglichkeiten in WinNork

3.3.1 Menupunkt Darstellung

WinNork ermöglicht die Darstellung der Moleküle auf verschiedene Arten. Mit der Einstellung *Spacefill* werden die Atome mit ihrem vollen, unter den Atomoptionen eingestellten, Radius dargestellt. Das Ergebnis ist eine Darstellung ähnlich dem Kalottenmodell, wobei bei einem herkömmlichen Kalottenmodell keine Animation der Atome möglich ist.

Abbildung 3.14: WinNork – Spacefill Darstellung

Nach Auswahl von *Sticks* werden Atome und Bindungen im Radius der Bindungen dargestellt. Die graphische Ausgabe entspricht somit dem Stäbchenmodell mit abgerundeten Enden. Der Radius der Bindungen ist unter Einstellungen definiert, wobei sich der voreingestellte Wert von 0.05 Å als am günstigsten erwiesen hat, da hier ein vernünftiges Verhältnis zwischen Bindungsradius und Atomabständen besteht.

Abbildung 3.15: WinNork – Sticks Darstellung

Abbildung 3.16: WinNork – Ball and Sticks Darstellung

In der Einstellung *Ball and Sticks* entspricht die graphische Darstellung dem Kugel/Stab-Modell. Die Bindungen werden mit dem unter Einstellungen definierten Bindungsradius gezeichnet, die Atomradien werden, der besseren Übersichtlichkeit halber, mit einem ebenfalls unter Einstellungen einstellbaren Verkleinerungsfaktor skaliert. Der vorgegebene Faktor von 25% (Faktor 0.25) hat sich als am Besten zur Darstellung geeignet erwiesen, da hier am besten die Größe der Atome des Moleküls abgeschätzt werden kann bei

gleichzeitiger guter Übersicht über das Gesamtmolekül. Für große Moleküle müssen der Bindungsradius und der Verkleinerungsfaktor möglicherweise noch kleiner eingestellt werden, um nicht den Überblick über das Gesamtmolekül zu verlieren.

Jeweils additiv zu den zwei vorangegangenen Menupunkten kann mit Van der Waal's (additiv) im Van der Waal's Radius eine Punktwolke eingeblendet werden, um sich über den tatsächlichen Raumbedarf des Moleküls klar zu werden. Dies ist deshalb nötig, weil der Atomradius mit einem Verkleinerungsfaktor skaliert wird, der im Normalfall kleiner als 1 ist (Voreinstellung: 0.25, siehe 3.3.1). Bei Auswahl von Spacefillwird ein eventuell additiv eingeblendeter Van der Waal's Radius deaktiviert, da hier die Atome ja schon die ihrem

Abbildung 3.17: WinNork – Van der Waal's Darstellung

Van der Waal's Radius entsprechende Ausdehnung aufweisen. Eine zusätzliche Darstellung als Punktwolke wäre also nicht zu sehen, würde aber die Animationsgeschwindigkeit beeinflussen, da die notwendigen graphischen Berechnungen auch an diesen nicht sichtbaren Elementen ausgeführt werden müssen. Mit *Rotation zurücksetzen* und *Verschiebung zurücksetzen* können sämtliche Rotationen und Verschiebungen, die am Molekül durchgeführt wurden, zurückgesetzt werden, damit wieder ein eindeutiger Ausgangszustand für die Darstellung gegeben ist.

Der nächste Menupunkt, *Einstellungen*, beeinflussen die Darstellung des Moleküls im Graphikfenster. Hier sind sämtliche graphischen Optionen zusammengefasst.

Optionen	
Normalwerte Licht	
Bindungsradius in Å	0.050 🔀
Atomverkleinerung in Prozent	25 🌠
Schwingungstempo	10.0 🏂
Abbruch	ок

Abbildung 3.18: WinNork – Visualisierungseinstellungen I

Unter dem Tab *Normalwerte* finden sich die Einstellungen für den Bindungsradius in Å, den prozentualen Atomverkleinerungsfaktor und das Schwingungstempo. Der hier einstellbare Wert für das Schwingungstempo ist abhängig vom verwendeten Computer (Prozessor, Graphikhardware), dem zu visualisierenden Molekül und den persönlichen Vorlieben, wie schnell ein Molekül schwingen sollte. Der hier angegebene Wert ist somit dimensionslos und kann nur interaktiv angepasst werden, da sich eine Änderung dieses Wertes unmittelbar auf die gleichzeitig stattfindende Schwingungsvisualisierung im Graphikfenster auswirkt. In diesem Teil des Dialogs sind die Beleuchtungseinstellungen zusammengefasst. Es sind bis zu 8 Lichtquellen möglich, die als Punktlichtquellen ausgebildet sind. Jede Lichtquelle kann einzeln ein- und ausgeschaltet werden und hat eine eigene Position und Farbe. Die Position, angegeben als XYZ-Koordinate, darf Werte zwischen -20 Å und +20 Å annehmen. Die Farbe ist als RGB-Wert auf den Bereich [0,1] abgebildet.

Abbildung 3.19: WinNork – Visualisierungseinstellungen II

Mit Hilfe des Menupunktes Als VisuChem-Film speichern kann die gerade angewählte Schwingungsform in das Program VisuChem (siehe 4) exportiert werden. Auf diesem Wege ist es dann möglich, Zwischenpunkte in die Schwingung einzufügen und einen AVI-Film zu erzeugen. Erzeugt wird eine erweitertes XYZ-Datei (siehe B.2) mit dem Dateinamen des Datensatzes, an den die aktuelle Frequenz angehängt ist.

Die zweite Möglichkeit der externen Visualisierung ergibt sich nach Anwahl von *VRML-Ausgabe*. Dieser Menupunkt erlaubt die Ausgabe der Schwingung als VRML-Datei [41]. Somit ist die Schwingungsanimation plattformübergreifend verfügbar. Nach Anwahl dieses Menupunktes wird in einem Dialog nach Zykluszeit und Titel der VRML-Datei gefragt, anschließend muß in einer Dialogbox der gewünschte Dateiname eingegeben werden. Genaueres zu den erzeugten VRML-Dateien findet sich unter 3.4.5.

Das Graphikfenster wird durch Visualisierung beenden beschlossen

3.4 Funktionsweise

3.4.1 Shortcuts

Um dem fortgeschrittenen Benutzer die Nutzung des Programms zu erleichtern, wurden für viele Befehle Tastatur-Shortcuts festgelegt.

Shortcut	Menu	Menupunkt
Ctrl-N	Hauptmenu	Neu
Ctrl-O	Hauptmenu	Öffnen
Ctrl-S	Hauptmenu	Speichern
Ctrl-P	Hauptmenu	Drucken
Ctrl-A	Hauptmenu	Einstellungen / Atome
Ctrl-B	Hauptmenu	Einstellungen / Bindungen
Ctrl-Q	Hauptmenu	Beenden
Ctrl-C	Hauptmenu	Berechnung starten
F 12	Hauptmenu	Ausgabe anzeigen
Ctrl-V	Hauptmenu	Schwingung
Ctrl-F	Visualisierungsmenu	Spacefill
Ctrl-S	Visualisierungsmenu	Sticks
Ctrl-B	Visualisierungsmenu	Ball and Sticks
Ctrl-V	Visualisierungsmenu	Van der Waal's (additiv)
Ctrl-R	Visualisierungsmenu	Rotation zurücksetzen
Ctrl-M	Visualisierungsmenu	Verschiebung zurücksetzen
Ctrl-P	Visualisierungsmenu	Einstellungen
Ctrl-Q	Visualisierungsmenu	Visualisierung beenden

Tabelle 3.2: Shortcuts in WinNork

3.4.2 Datenformat der Eingabedatei

Die vollständigen Beispieldateien sind im Anhang (B.3 und B.4) aufgeführt. In diesem Kapitel sind die Dateien nur verkürzt angegeben.

Im Folgenden werden das alte NORKO-Datenformat und das neue WinNork-Datenformat beschrieben und die Unterschiede zwischen beiden Formaten erläutert.

Ein grundlegendes Problem des alten Formates ist seine Starrheit. Die einzelnen Positionen der Daten in der Eingabedatei sind genau festgelegt, das Auslassen oder Hinzufügen eines Leerzeichen kann zu Fehlern führen, die schwer zu finden sind. Doppeldefinitionen sind unter Umständen gar nicht zu finden. Änderungen sind nicht auf einfache Art durchzuführen, da es schwierig ist, die jeweilige Position der zu ändernden Daten zu bestimmen. Das folgende Bei-

spiel beschreibt eine Eingabedatei für Glycerinaldehyd. Die Nummerierung ist nicht Teil der Eingabedatei, sie dient dazu, im folgenden auf einzelne Zeilen verweisen zu können.

01:	1					
02:0	Glycerinalde	hyd				
03:	1					
04:	12 33 15	33 0 0	1			
05:	11 17 0	1 4 12				
06:	6.440000	5.090000	4.688000	4.261000	0.760000	0.961000
07:	1.182000	0.718000	0.471000	1.200000	0.026000	0.024000
08:	0.517290	11.505000	1.071000			
09:	0-н	C-0	С-Н	C-C	С-О-Н	H-C-0
10:	C-C-0	H-C-C	Н-С-Н	H-C-O(ald)	C-Otor	C-Ctor
11:	C-H,C,O-opl	C=0	C-C-C			
12:	0.092722	-0.051380	1.003317	0		
13:	-0.045702	0.104968	-0.546120	0		
14:	-0.911528	-1.035306	-1.140822	0		
15:	0.656530	1.146980	1.555618	0		
10						

17:	-0.4	1533	374	-2.	0573	324	-	-1.	616	229	()								
18:	1.6	5144	135	1.	105	702		1.	306	120	()								
19:	-0.3	3109	969	1.9	963	797	-	-0.	164	201	()								
20:	0.6	5808	333	-0.9	9429	983		1.	244	963	()								
21:	-0.9	9003	357	-0.	164	789		1.	446	954	()								
22:	0.9	9573	349	0.0	047:	153	-	-0.	992	532	()								
23:	-1.9	9962	204	-0.8	8386	660	-	-1.	089	776	()								
24:	12.0	0110	000	12.	0110	000	1	12.	011	000	1	15.9	9994	400	15.9	9994	100	1	5.999	9400
25:	5: 1.007940		940	1.0	0079	940	1.007940		1.007940			1.007940			1.007940					
26:	1	2	2	3	6	3	5	5	2	4	1	L	9	1	10	1	11	2	12	3
27:	7	4	8	5	-1															
28:	6	3	12	6	3	2	12	2	3	2	1	L	2	3	5	2	1	5	2	3
29:	5	2	11	3	2	11	11	1	2	1	Ļ	1	1	9	4	1	10	4	1	2
30:	9	1	10	10	1	2	ç	9	1	2	7	7	4	1	8	5	2	-1		
31:	3	2	6	12	-1															
32:	2	3	3	3	1	3	1	1	3	-1										
33:	3	2	6	12	1	5	11	L	2	1	3	3	5	11	4	9	10	5	2	8
34:	1	3	11	4	1	7	2	2	9	10	-1	L								
35:	1 1	4	1.0	00000	2	2	4	1.	000	000	3	3	2	1.0	00000	4	4	2	1.000	0000
36:	55	2	1.0	00000	6	6	3	1.	000	000	7	7	3	1.0	00000	8	8	3	1.000	0000
37:	99	3	1.0	00000	10	10	1	1.	000	000	11	11	1	1.0	00000	12	12	6	1.000	0000
38:	13 13	7	1.0	00000	14	14	8	1.	000	000	15	15	15	1.0	00000	16	16	7	1.000	0000
39:	17 17	7	1.0	00000	18	18	6	1.	000	000	19	19	8	1.0	00000	20	20	8	1.000	0000
40:	21 21	6	1.0	00000	22	22	6	1.	000	000	23	23	7	1.0	00000	24	24	9	1.000	0000
41:	25 25	8	1.0	00000	26	26	8	1.	000	000	27	27	5	1.0	00000	28	28	5	1.000	0000
42:	29 29	13	1.0	00000	30	30	12	1.	000	000	31	31	12	1.0	00000	32	32	11	1.000	0000
43:	33 33	11	1.0	00000																
44:	A1 1	on	ly o	ne syn	nme	try	rac	ce												
45:	33	0	0	1	0	1														

In den ersten drei Zeilen finden sich die Anzahl der zu berechnenden Moleküle, der Name der Substanz und die Symmetrierasse. Die nächste Zeile enthält Angaben über die Atomanzahl (12), Anzahl der inneren Koordinaten (33), Anzahl der Kraftkonstanten (15), Zahl der Einträge in der Kraftkonstantenmatrix (33) und die Druckoptionen für die B-Matrix, AXSM-Matrix und die Kraftkonstanten (0,0,1). Hier steht die Null jeweils dafür, daß die entsprechenden Daten nicht ausgegeben werden, bei eins werden die Daten ausgegeben. Informationen über die inneren Koordinaten finden sich in Zeile fünf. Nacheinander stehen hier die Zahl der Änderung der Bindungslängen (11), Bindungswinkel (17), linearen Bindungswinkel (0), Out-Of-Plane-Winkel (1) und Torsionswinkel (4). Den Abschluß bildet die Zahl der Atome in der Einheitszelle (12).

Die nächsten sechs Zeilen enthalten alle Kraftkonstanten und ihre Bezeichnungen. Sie werden in der Reihenfolge ihres Auftretens durchnumeriert.

Im Anschluß an die Definition der Kraftkonstanten werden die kartesischen Koordinaten (Zeilen 12 - 23) und die Atommassen (Zeilen 24 und 25) aufgeführt. Die Zahl hinter den kartesischen Koordinaten gibt für Gitterberechnungen einen Transformationsindex an.

In Zeile fünf wird die jeweilige Anzahl der inneren Koordinaten angegeben, ab Zeile 26 werden die inneren Koordinaten definiert. Zeile 26 und 27 enthalten Angaben über die Bindungslängenänderungen durch Angabe der Atompaare, zwischen denen die Änderungen vorkommen. Im obigen Beispiel werden also Bindungen zwischen den Atomen 1 und 2, 2 und 3, 3 und 6 usw. definiert. Der Abschluß dieser wie aller Definitionen ist durch -1 gegeben. Analog hierzu werden in den Zeilen 28 bis 30 Änderungen der Bindungswinkel angegeben. Hier ist natürlich die Angabe von drei Atomen notwendig, so daß im obigen Beispiel als erstes eine Anderung des Bindungswinkels des Atoms 3 mit den Atomen 6 und 12 definiert ist. Da die Anzahl der linearen Bindungswinkel mit null angegeben wurde, entfällt die Definition der linearen Bindungswinkel komplett. Es folgt die Definition der Out-Of-Plane-Winkel. Hierbei wird zuerst das Zentralatom, dann die drei Liganden angegeben. Die Definition der Torsionswinkel-Anderungen ist komplizierter, da die Anzahl der Liganden am jeweiligen Zentralatom variabel ist. Aus diesem Grunde werden in der ersten Zeile paarweise die Anzahl der Liganden der einzelnen Torsionswinkeländerungen definiert. Im vorliegenden Beispiel heißt das, daß bei der ersten Torsionswinkeländerung das erste Atom zwei, das zweite Atom drei Liganden hat. Die nächsten beiden Zeilen enthalten dann die Daten der Torsionen, indem zuerst die beiden Atome genannt werden (3 und 2), die die Achse der Torsion bilden, anschließend werden die Liganden der beiden Atome genannt (6 und 12 für Atom 3; 1, 5 und 11 für Atom 2).

Nach der Definition der inneren Koordinaten wird die Kraftkonstanten-Matrix \mathbf{F} definiert. Hier wird für jeden Eintrag die Zeilen- und Spaltennummer, die Nummer der Kraftkonstante und ein Faktor für die Kraftkonstante angegeben (dieser wird im allgemeinen auf 1.0 gesetzt).

Nach der Angabe eines frei wählbaren Textes zur Beschreibung der Symmetrieklasse in Zeile 44 folgt in Zeile 45 die Anzahl der Atome in der Symmetrieklasse. Sollte die Symmetrieklasse gleich eins sein, so steht hier die Zahl der inneren Koordinaten. Den Rest der Zeile bilden weitere Druckoptionen für U- und BU-Matrix, PED, PED+Jacobi und die Jacobi-Matrix selbst. Wie man sieht, ist das alte Format nicht anwenderfreundlich, ohne Handbuch ist ein Verständnis bzw. die Erstellung einer Datei kaum möglich. Das neue Format, welches im folgenden beschrieben werden soll, löst diese Probleme.

Für das neue Format wurden verschiedene Anforderungen definiert, die das zu schaffende Format entscheidend beeinflussen. Als erste Forderung an das neue Format soll die Erweiterbarkeit genannt werden. Wenn dem Programm neue Teile hinzugefügt werden, darf die Erweiterung der Eingabedatei keine Auswirkungen auf schon bestehende Programmteile haben. Des weiteren sollte die Reihenfolge der Daten keinen Einfluss haben. Die Daten der Eingabedatei sollten nach Möglichkeit im Klartext lesbar sein und selbsterklärende Bezeichnungen führen. Die Verwendung propietärer Zeichensätze ist selbstverständlich auszuschließen, da sonst keine Portierbarkeit der Datensätze zwischen verschiedenen Betriebssystemen mehr möglich ist.

Da die Entwicklung von WinNork unter Windows erfolgte, wäre es außerdem von Vorteil, wenn ein Format verwendet würde, für das schon Ein- und Ausleseroutinen in Bibliotheken vorhanden wären.

Diese Forderungen können durch Verwendung des Formates der .INI-Dateien von Windows erfüllt werden. Hier werden die Daten in thematischen Blöcken (Datensektionen) zusammengefasst. Der Beginn einer Sektion ist durch den Sektionsnamen in eckigen Klammern gekennzeichnet. In den Blöcken sind die Daten in der Form *Variablenname=Wert* angegeben. Somit ergibt sich für die obigen Forderungen:

- Erweiterbarkeit: Das Anfügen weiterer Datensektionen ändert weder die Daten in anderen Sektionen noch ist eine Vermischung der Daten möglich.
- Reihenfolge: Es ist egal, an welcher Stelle der Eingabedatei eine bestimmte Datensektion steht. Die Reihenfolge der Variablennamen in der Sektion ist frei wählbar.
- Klartext: Es handelt sich um eine Datei im DOS-Textformat, kann also (nach Konvertierung) auf jedem Computer gelesen werden.
- Selbsterklärend: Die Variablennamen sind frei wählbar, können also so gewählt werden, daß sofort klar wird, was die Variablenwerte bedeuten.
- Propietäre Zeichen: Da die Variablennamen frei wählbar sind, kann die Verwendung propietärer Zeichen durch Eigenbeschränkung auf den ASCII-Zeichensatz vermieden werden.
- Ein- und Ausleseroutinen: Für Windows sind diese Routinen schon vorhanden und müssen nicht selbst programmiert werden. Entsprechende Routinen in C wurden von Dipl.-Chem. Stephan Lichtenhagen im Rahmen seiner Diplomarbeit geschaffen [57]. Dies betrifft nur

das physikalische Auslesen der Daten aus der Datei, also die Unterscheidung der einzelnen Bereiche der Datei und Erkennung der Variablendefinitionen in den Bereichen. Eigene Ein- und Ausleseroutinen, die die erhaltenen Daten interpretieren, müssen durchaus noch programmiert werden.

Leerzeilen in der Datei werden ignoriert. Textvariablen werden unverändert vom Gleicheitszeichen bis zum Ende der Zeile übernommen, bei numerischen Variablen können zur besseren Lesbarkeit Leerzeichen eingefügt werden, diese werden ignoriert. Die Schreibweise der Variablennamen (Groß-/Kleinschreibung) ist irrelevant.

Die folgende Eingabedatei stellt das gleiche Molekül dar, wie oben in alten Format angegeben. Die Datei ist stark gekürzt, um Platz zu sparen, die verwendeten Formate sind auch so gut zu erkennen. Dies zeigt auch gleich einen Nachteil des neuen Formates: Die Eingabedatei um einem Faktor von mindestens drei größer als eine Eingabedatei im alten Format. Dies ist aber begründet in der Forderung nach guter Lesbarkeit. Es resultiert keine Einschränkung, da die Eingabedatei größtenteils automatisch erstellt wird und Platz auf Datenträgern heute in genügendem Maße zur Verfügung steht.

[Output] JobName=Glycerinaldehyd PrintBMatrix=True PrintAXSMMatrix=True PrintCartCoordinates=True PrintForceConstants=True PrintZMatrix=True CalculateZMatrix=False

Im [Output] Block finden sich allgemeine Angaben zum Molekül. Unter JobName kann ein beschreibender Text zum Molekül eingegeben werden, die anderen Variablen kontrollieren die Ausgabe bei Berechnungen. CalculateZMatrix hat dann den Wahrheitswert "True", wenn die Z-Matrix beim Laden selbstständig berechnet werden soll. Dies ist dann der Fall, wenn eine neue Datei angelegt wurde oder bei einer existierenden Datei die Bindungsdefinitionen geändert wurden.

[Atoms] NumberOfAtoms=12 NumberOfAtomsInMolecule=12

```
Atom_1_XYZ=0.09272 -0.05138 1.00331
Atom_2_XYZ=-0.04570 0.10496 -0.54612
...
Atom_1_Mass=12.0110
Atom_2_Mass=12.0110
...
Atom_1_Name=C
Atom_2_Name=C
...
NextAtomIndex_1=0
NextAtomIndex_2=0
...
```

Im Block [Atoms] sind alle Informationen zu den Atomen des Moleküls zusammengefasst: Die Anzahl der Atome im Molekül (NumberOfAtomsInMolecule), evtl. davon abweichend die Anzahl der Atome (NumberOfAtoms), wenn mehr als ein Molekül in der Einheitszelle vorhanden ist, die kartesischen Koordinaten der Atome, ihre Massen und Namen sowie der Transformationsindex (NextAtomIndex) bei Gitterberechnungen.

```
[ForceConstants]
NumberOfForceConstants=15
F_1=6.440000
```

```
F_2=5.090000
...
Name_1=0-H
Name_2=C-0
...
```

Hier sind die Anzahl der Kraftkonstanten, ihre Namen und numerischen Werte zu finden.

```
[Vibrations]
NumberOfBondVibrations=11
Vibration_1=1 2
Vibration_2=2 3
...
```

Die Zahl der Bindungen und die Definition der verknüpften Atome befinden sich in diesem Block.

```
[Deformations]
NumberOfDeformations=17
Deformation_1=6 3 12
Deformation_2=6 3 2
...
```

Ähnlich dem Block [Vibrations] sind im Block [Deformations] die Winkeländerungen zusammengefasst. Die zweite Zahl einer jeden Deformation gibt das Zentralatom an, die beiden anderen Zahlen die Liganden.

[LinearDeformations] NumberOfLinearDeformations=0

In diesem Molekül treten keine linearen Deformationen auf, ansonsten ist dieser Block in derselben Weise wie der Block [Deformations] aufgebaut.

```
[OutOfPlane]
NumberOfOutOfPlaneVibrations=1
OutOfPlane_1=3 2 6 12
```

Die erste der vier Zahlen gibt immer das Zentralatom an, die anderen drei seine Liganden bei den out-of-plane Schwingungen.

```
[Torsions]
NumberOfTorsions=4
FirstAtom_1=3
SecondAtom_1=2
Ligands_FirstAtom_1= 6 12
Ligands_SecondAtom_1= 1 5 11
...
```

Hier wird die Definition einer Schwingung aus Lesbarkeitsgründen auf vier Zeilen verteilt. Zuerst werden die beiden Atome (FirstAtom bzw. SecondAtom) angegeben, die die Achse der Torsion bilden, anschließend werden die Liganden definiert (Ligands_FirstAtom bzw. Ligands_SecondAtom). Die Anzahl der Liganden muß im Gegensatz zum alten Format nicht explizit angegeben werden.

```
[ZMatrix]
NumberOfZElementsNotZero=33
ForceConstantNumber_1_1=4
ForceConstantNumber_2_2=4
..
```

Die Variablennamen definieren, welches Element der Z-Matrix gemeint ist, der Wert der Variablen kennzeichnet die Nummer der Kraftkonstante.

[SymmetryRace_1] PrintUMatrix=True PrintBUMatrix=True PrintPED=True PrintJAC=True PrintLX=True UnitMatrix=True NameOfRace=A1

Ähnlich dem alten Format folgt am Ende die Definition der Symmetrieklasse und der jeweiligen Druckoptionen, allerdings in direkt lesbarer Form.

Diese Eingabedatei ist nicht mit Angaben zur Optimierung versehen. Für Optimierungen kommen noch weitere Blöcke hinzu.

[OptParams] Optimize=True BZDF_1=3040 BZDF_2=3000 ... LB_1=0.0005 LB_2=0.0005 .. UB_1=14.499

UB_2=10.504

••

Im allgemeinen Optimierungsblock sind die Daten zusammengefasst, die jeder Optimierer benötigt: Die Angabe, ob überhaupt optimiert werden soll, die Zielfrequenzen (BZDF, Anzahl: 3N, 5 bzw. 6 Zielfrequenzen sind auf den Wert Null zu setzen) und die Grenzen, innerhalb derer die Optimierer die Kraftkonstanten ändern dürfen (LB: lower bond, untere Grenze; UB: upper bond, obere Grenze).

Im Gegensatz zur NORKO-Version von Dipl.-Chem. Stephan Lichtenhagen (NORKO2 [57]), welcher nur simulated annealing als Optimierer implementiert hat, werden von WinNork weitere Angaben zur Optimierung, die spezifisch für den jeweiligen Optimierer sind, in einem Block gespeichert, dessen Name vom Optimierer angegeben wird (Dieser Name wird beim Start von WinNork ausgelesen). In NORKO2 wurden die Optimierungsangaben zum simulated annealing noch im allgemeinen Optimierungsblock gespeichert. Hier soll kein Beispiel eines Optimierers angegeben werden, die Parameter der Optimierer sind bei den Beschreibungen der Optimierer (3.4.4) zu finden.

Wie zu erkennen ist, ist das neue Eingabeformat auch ohne Anleitung zu lesen und zu editieren. Fehler sind leichter zu erkennen, Fehler wegen nicht genauer Ausrichtung auf einzelne Spalten sind nicht möglich.

Block	Variable	Vorbelegung			
Output	Jobname	"not defined"			
	PrintBMatrix	False			
	PrintAXSMMatrix	False			
	PrintCartCoordinates	False			
	PrintForceConstants	False			
	PrintZMatrix	False			
	CalculateZMatrix	False			
Atoms	NumberOfAtoms	0			
	${\it Number Of Atoms In Molecule}$	NumberOfAtoms			
	Atom_ <i>i</i> _Name	"XX"			
	Atom_ <i>i</i> _XYZ	0 0 0			
	Atom_ <i>i</i> _Mass	0			
	$\mathrm{NextAtomIndex}_i$	0			
ForceConstants	NumberOfForceConstants	0			
	F_i	0			
	Name_i	"no name"			
Vibrations	NumberOfBondVibrations	0			
	Vibration_i	0 0			
Deformations	NumberOfDeformations	0			
	$Deformation_i$	0 0 0			
LinearDeformations	NumberOfLinearDeformations	0			
	${\rm LinearDeformation}_i$	0 0 0			
OutOfPlane	Number Of Out Of Plane Vibrations	0			
	$OutOfPLane_i$	$0 \ 0 \ 0 \ 0$			
Torsions	NumberOfTorsions	0			
	$FirstAtom_i$	0			
	SecondAtom_ i	0			
	Ligands_FirstAtom_ i	0 0 0 0			
	${\it Ligands_SecondAtom_}\ i$	0 0 0 0			
ZMatrix	NumberOfZElementsNotZero	0			
	$ForceConstantNumber_i_j$	-1			

Sollten Angaben in der Datei fehlen, so werden sie mit folgenden Standardwerten initialisiert:

Fortsetzung auf nächster Seite

Fortsetzung		
Block	Variable	Vorbelegung
Symmetry	NumberOfSymmetryRaces	1
SymmetryRace_ i	Number Of Symmetry Coordinates	0
	PrintUMatrix	False
	PrintBUMatrix	False
	PrintPED	False
	PrintJAC	False
	PrintLX	False
	UnitMatrix	False
	Number Of UE lements Not Zero	0
	UMatrix_ <i>i_j</i>	0
OptParams	Optimize	False
	LB_i	LB^1
	UB_i	UB^1
	BZDF_i	0
	OutputFile	"not defined"

Tabelle 3.3: Standardwerte

¹Die Grenzen sind abhängig vom Wert der zu diesen Grenzen gehörenden Kraftkonstanten F: Wenn F < 0.05, dann ist LB = -3 * F; UB = 3 * F; für F > 0.05 gilt LB = F - 1 und UB = F + 1.

3.4.3 Ladevorgang WinNork

Wenn eine Datei im WinNork-Format geladen wird, finden nacheinander folgende Vorgänge statt:

- 1. Auswahl der zu öffnenden Datei
- 2. Wenn schon eine Datei geöffnet war: Freigabe alles allozierten Speichers, Löschen aller Ausgaben, Einstellung der Wählbarkeit der Menupunkte auf Startwerte
- Offnen der zu ladenden Datei, Einstellung der Ausgabedatei, Setzen der Wählbarkeit der Menupunkte nach Notwendigkeit
- 4. Initialisierung aller notwendigen Variablen
- 5. Auslesen der Eingabedatei: Ausgabeparameter, Atome (Koordinaten und Massen), Kraftkonstanten, Z-Matrix, Optimierungsparameter. Sollten einzelne Daten in der Datei nicht vorhanden sein, so werden die in 3.4.2 aufgeführten Standardwerte gewählt.
- 6. Überprüfung der verschiedenen Schwingungsformen, wenn nicht die Berechnung der Wechselwirkungen gewählt sein sollte. Bei Fehler erfolgt Abbruch der Laderoutine.
- 7. Allozierung mehrerer Speicherbereiche, die für die Frequenzberechnungen benötigt werden. Bei Fehler erfolgt Abbruch der Laderoutine.
- 8. Sollte die Berechnung der Wechselwirkungen gewählt sein, werden diese jetzt berechnet und die Routine beendet.
- 9. Kontrollausgaben im gewünschten Rahmen
- 10. Wählbarkeit des Menupunktes Frequenzberechnung einschalten
- 11. Pfad zur geladen Datei in der Registry abspeichern
- 12. Schließen der geladenen Datei

3.4.4 Optimierung mit WinNork

Verfügbare Optimierer							
Simulated Anne	aling						
Informationen:							
Name:	Simulated Annealing						
Programmierer:	Dirk Hövener						
Datum:	2000-04-26						
Version:	1.0 beta						
Beschreibung:	Diese Methode optimiert durch eine simulierte Abkühlung. Sehr robust. Literatur: Goffe, Ferrier and Rogers, "Global Optimization of Statistical Functions with Simulated Annealing", Journal of Econometrics, vol. 60, no. 1/2, Jan./Feb. 1994, pp. 65-100.						
Pfad:	D:\home\dirkh\Delphi\DelphiProgs\Norko\Plugins\SimAnneal.dll						

Abbildung 3.20: WinNork – Optimierung mit WinNork

Es ist in WinNork möglich, verschiedene Optimierungsalgorithmen zu verwenden. Welcher Algorithmus konkret verwendet werden kann, hängt davon ab, welche Optimierer installiert sind, da die jeweils möglichen Optimierer DLL ausgeführt sind als beim Programmstart und einem speziellen Ordinner gesucht und von dort geladen werden. Somit ist eine Erweiterung der verfügbaren Optimierer durch

einfaches hineinkopieren in den Ordner möglich. Im folgenden werden die im Rahmen dieser Arbeit implementierten Optimierer beschrieben und die allgemeine Vorgehensweise bei der Eigenimplementation beschrieben.

V OptimizerForm Zu verwendender Opl	timierer		
Simulated Annealing			<u> </u>
Untere Grenze	Vorgabe	Obere Grenze	
5.20000	5.50000 (-C-C-)	5.50000	
4.65000	4.75017 (H-C-)	4.80000	
0.48000	0.49913 (H-C-H)	0.56000	
0.85000	0.92388 (H-C-C-)	0.95000	
0.50000	4.76671 (-C-C-C-)	7.50000	
0.30000	1.40226 (C-C (tor))	2.50000	
0.00050	0.60000 (V/V -C-H/-C-H)	0.60000	
0.00050	0.38189 (V/V -C-H/-C-H)	0.60000	
Zielfreguenz		•	
2250.00			
3200.00			
3100.00			
3000.00			
2950.00			
2330.00			
2900.00			
2900.00			
2900.00 2800.00 2850.00			
2900.00 2800.00 2650.00			

3.4.4.1 Allgemeingültige Optimierungsparameter

Abbildung 3.21: WinNork – Allgemeiner Optimierungsdialog

big, die Frequenzen werden sortiert. Die Anwahl des OK-Buttons ist nur möglich, wenn in allen drei Bereichen zumindest ein Minimum an Daten eingegeben wurde. Nach der Anwahl des OK-Buttons wird noch gefragt, ob die soeben eingegebenen Daten gespeichert werden sollen und anschließend ist eine Datei zu bestimmen, in die die Ausgaben des Optimierers mitprotokolliert werden.

Bei diesem Dialog handelt es sich um den allgemeinen Dialog, der bei allen Optimierern gleich ist. Als erstes kann hier der Optimierer ausgewählt werden, der für diese Optimierung verwendet werden soll. Anschließend folgt eine Liste der Eingangskraftkonstanten. Hier muß eine obere und eine untere Grenze angegeben werden, welche bei der Optimierung durch den Optimierer bei der Anpassung der Kraftkonstanten nicht unter- bzw. überschritten werden darf. Damit der Optimierer die Kraftkonstanten zielgerichtet anpassen kann, folgt danach eine Liste, in der die Zielfrequenzen eingegeben werden müssen. Für jede mögliche Schwingungsform (3N - 6)muß hier eine Frequenz eingegeben werden. Die Reihenfolge ist belie-
3.4.4.2 Simulated Annealing

Einstellungen Si	imulated Ann	ealing									
Ausgabe				Abbrue	chkriterium —				ptimierungsschritte	e bei gleicher Tempera	itur
C Alle 1000 Sc C Alle 1000 Sc C Jeder Schritt	chritte wichtige I chritte wichtige I : / Alle Informati	nformationen u nformationen u onen	ind Schrittweite	EPS		0.50		%	NT (5040 Schritte,	/Opt) 3	*
🗖 Maximale Zahl v	von Schritten —			Zahl v	on Optimierun	gsschritten unt	er Abbruchkrite	rium 🚽 🗖 At	bkühlungsfaktor n	nach NT Schritten	
MAXEVL		10000000	1	NEPS	6	4		F	RT	0.70	%
ПК	– Aktuell (00:0)1:14)			mperatur				nfängliche Startsc	chrittweite	
	Schritte	1.00000000	39 (14.0 [1/s])			1.0		1	A .0	0.5	•
Stop	ÉPS	0.00000000	00			1.0			/1911	0.5	/+
0.20000 0.20000 0.20000 ***** END **** AUF Schritt 1000	0.20000 0.20000 0.60000 DE DER STAR RUF VON SA	0.2000 0.2000 TROUTINE	0 0.2000 0 0.2000)0 0.21)0 0.21	0000 0. 0000 0.	20000	0.20000 0.20000	0.20000	0.20000 0.20000	0.20000 0.20000	-
+++++ 74-16-											
0.00 900.00 1420.00 3100.00	0.00 920.00 1450.00 3200.00	0.00 1050.00 1460.00 3250.00	0.00 1065.00 1470.00	0.00 1145.00 1490.00	0.00 1160.00 2650.00	700.00 1320.00 2800.00	720.00 1330.00 2900.00	750.00 1360.00 2950.00	0 780.00 0 1380.00 0 3000.00		
***** Aktuel	le geordne.	te Frequen	zen:								
0.00	0.00	0.00	0.00	0.00	0.00	699.35	721.28	749.24	4 782.49		
900.76	922.05	1043.73	1063.91	1143.19	2661 56	1264.53	2897 00	1353.7	3 1394.33 7 2000 PE		
3096.21	3199.47	3245.74	1403.44	1421.33	2001.30	6131.63	2097.00	4740.4	, 2222.03		•

Abbildung 3.22: WinNork – Optimierer: Simulated Annealing

Allgemeines zum verwendeten Algorithmus findet sich in 2.2.1, der implementierte Algorithmus ist in 3.4.4.2.1 beschrieben.

Die Ausgabe dieser DLL erfolgt in einem in die Oberfläche integrierten Fenster, über diesem Fenster befinden sich die Bedienelemente. Als Ausgabe werden nur die jeweils aktuellen Daten angezeigt, die vollständigen Ausgaben finden sich in der erzeugten Datei. Dies gilt unabhängig vom verwendeten Ausgabeparameter. Dieser Parameter wirkt zum größten Teil nur auf die Ausgabe in die Datei, lediglich die Häufigkeit der Aktualisierungen der Daten im Fenster lässt sich beeinflussen.

In oberen Teil sind durch entsprechende Bedienelemente die acht Parameter änderbar. Rechts neben den Buttons zum Starten und Stoppen werden während der Optimierung laufend die durch Berechnungen genutzte Zeit, der aktuelle Schritt, die Schritte pro Sekunde, die aktuelle Temperatur und die Abweichung des aktuellen Optimierungsschrittes vom bisherigen globalen Minimum angezeigt.

Die Berechnung kann zwar unterbrochen werden, ein Neustart an der Stelle, an der unterbrochen wurde, ist jedoch nicht möglich. In Falle einer Unterbrechung werden die nur zum Teil optimierten Kraftkonstanten auch nicht gespeichert, sie liegen also nicht als Datei vor. Sie werden jedoch zurückgegeben und sind in der im Speicher befindlichen Datenstruktur des Datensatzes vorhanden. Eine Berechnung der Schwingungsformen oder eine erneute Optimierung greifen auf diese Daten zurück. Wenn die Daten explizit gelöscht werden sollen, ist ein erneutes Laden des Datensatzes aus der gespeicherten Datei notwendig

Parameter	Bedeutung	$Standardwert^2$
Ausgabe (IPRINT)	Ausgegebene Informationsmenge	0
EPS	Abbruchkriterium der Optimierung	0.5
NEPS	Optimierungsschritte unter Abbruchkriterium	4
Т	Starttemperatur	10.0
NT	Optimierungsläufe ohne Temperaturreduktion	10
RT	Temperaturreduktions faktor	0.85
VMI	Startschrittweite der Optimierung	0.5
MAXEVL	Maximale Anzahl an Berechnungsschritten	10000000

Tabelle 3.4: Parameter Simulated Annealing

3.4.4.2.1 Implementierter Algorithmus nach Goffe et al. [31] Der implementierte Algorithmus soll hier als Pseudocode dargestellt werden:

Einstellen der Startparameter

n	Zahl der zu optimierenden Parameter (x_i)
Х	Startwerte der Parameter (x_i)
V	Startwerte der Parameteränderung (v_i)
EPS	Konvergenzkriterium
RT	Temperaturredunktionsfaktor
Т	(Start-)Temperatur
NEPS	Zahl der Optimierungsläufe, bevor abgebrochen wird, wenn das
	Konvergenzkriterium erreicht ist.
NS	Zahl der Läufe, bevor v_i angepaßt wird. Hier immer 20. Die Gesamtzahl
	der Läufe ergibt einen Optimierungslauf
NT	Zahl der Optimierungsläufe vor der Reduktion von T um RT

 $^{^2 \}mathrm{Dieser}$ Wert hat sich in ausführlichen Versuchen als gut geeignet erwiesen, schnelle und korrekte Optimierungen durchzuführen

Berechne f(X)

 $X_{\text{optimal}} = X$ $f_{\rm optimal} = f$

Wiederhole bis Konvergenz erreicht ist

```
Wiederhole NT mal
      Wiederhole NS mal
            Schleife: Zähle i von 1 bis n
                  x_i = x_i + r * v_i mit r: Zufallszahl [-1;1]
                  Wenn (x_i \text{ außerhalb der Grenzen}) dann
                         erzeuge x_i: Zufallszahl [LB;UB]
                  Berechne f'(X')
                  Wenn (f' > f) dann
                         Teste Metropoliskriterium
                         Wenn (Metropoliskriterium angenommen) dann
                               X = X'; f = f'
                         Ende Wenn
                  Ende Wenn
                  Wenn (f' < f) dann
                         X = X'; f = f'
                  Ende Wenn
                  Wenn (f' < f_{\text{optimal}}) dann
                         X = X'; f = f'
                         X_{\text{optimal}} = X'; f_{\text{optimal}} = f'
                  Ende Wenn
            Ende Schleife
      Ende Wiederhole
      Anpassen von V (Die Hälfte der Tests soll akzeptiert werden)
Ende Wiederhole
Wenn (Änderungen f_{\text{optimal}} in den letzten NEPS Wiederholungen < EPS)
und (abs(f - f') < EPS) dann
      Ausgabe X_{\text{optimal}}, f_{\text{optimal}} und V
      Ermögliche Schleifenabbruch wegen erfüllten Konvergenzkriterium
```

 $X = X_{\text{optimal}}$ (bisheriges Optimum als Startwert für nächsten Lauf) T = RT * T (Temperaturreduktion)

Ende Wenn

Ende Wiederhole

sonst

3.4.4.3 Simplex

instellungen Sir	mplex										
Ausgabe	nritte wichtige Ini : / Alle Informatio	iormationen onen		Abbruc	hkriterium —— /IN	0.0100		ма:	kimale Zahl von COUNT	Schritten	X
OK Schließen	- Aktuell (00:00: Schritte Neustarts Minimalwert	10) 302 5342.2948	2 (30.1 [1/s]) 0 14279627	KONV	rgenztest alle k /GE	(ONVGE Schri	tten	Sta	rtschrittweite EP	0.50	1
**** * * * * * * * * * * * * * * * * *	.*************************************	NACH SIMPLE	********** EX **** *****								A
***** Zielfr 0.00 988.00 2954.00	equenzen: 0.00 1379.00 2954.00	0.00 1379.00 2954.00	0.00 1469.00 2954.00	0.00 1469.00	0.00 1469.00	822.00 1500.00	822.00 1520.00	988.00 2742.00	988.00 2896.00		
***** Aktuel 0.00 993.20 2953.72	le geordne: 0.00 1379.02 2953.72	te Frequen: 0.00 1382.76 2954.31	zen: 0.00 1471.04 2954.31	0.00 1471.04	0.00 1482.37	815.55 1482.37	815.55 1518.41	987.85 2789.22	993.20 2846.41		
Lösung: 4.51392 -0.02999 -0.03493	6.23482 0.03000 0.02156	0.62539 -0.01563	9 0.534 3 0.038	49 1.76 87 -0.02	5559 -0. 2823 0.	10316 -0 02993 0	.09000 .01977	-0.14998 0.04797	0.08998 0.01670	0.03000 0.00883	

Abbildung 3.23: WinNork – Optimierer: SIMPLEX

Der grundsätzliche Ablauf des verwendeten Algorithmus ist in 2.2.2 erläutert. Die Bedienung dieses Moduls erfolgt analog dem Optimierer Simulated Annealing.

Parameter	Bedeutung	Standardwert
Ausgabe (IPRINT)	Ausgegebene Informationsmenge	0
REQMIN	Abbruchkriterium der Optimierung	0.01
KONVGE	Alle KONVGE Optimierungsschritte	
	wird das Abbruchkriterium getestet	1
STEP	Startschrittweite der Optimierung	0.5
KCOUNT	Maximale Anzahl an Berechnungsschritten	1000000

Tabelle 3.5: Parameter SIMPLEX

3.4.4.4 Allgemeines Vorgehen

Ganz allgemein besteht jede zur Optimierung verwendete DLL aus zwei Prozeduren, GetOptimizerData und StartOptimize. GetOptimizerData liefert Informationen zum Optimierer selbst und die erwarteten Parameter, StartOptimize führt die eigentliche Optimierung durch. Zu den Informationen über den Optimierer selbst gehören der Optimierername, des Name des Programmierers, Versionsdatum und Nummer, eine Kurzbeschreibung und ein Name, unter dem die Optimiererparameter im Datensatz gespeichert werden. Bei den Parametern wird zuerst die Anzahl angegeben (maximal 20), anschließend werden der Parametername und dessen Standardbelegung übertragen.

Der Routine StartOptimize wird ein Zeiger übergeben, der auf eine Struktur zeigt, in der der Datensatz inclusive der Parameter zusammengefasst ist. Da sich der Optimierer selbst nicht um die Berechnung der Frequenzen kümmern soll und um die Berechnungsroutinen unabhängig vom Optimierer verbessern zu können, steht hierfür die Bibliothek calc.dll zur Verfügung. Diese Bibliothek erzeugt die Ergebnisse, mit deren Hilfe der Optimierer den Datensatz optimieren kann.

Für die Ausgabe der Ergebnisse ist der Optimierer selbst verantwortlich, die Form der Ausgabe ist nicht festgelegt.

Die Ausgabe in eine Datei wird erwartet, ist aber nicht zwingend vorgeschrieben. Der Dateiname wird als Teil der Struktur, auf die der Zeiger verweist, auf jeden Fall übergeben. Ohne die Angabe eines Dateinamens kann kein Optimierer aufgerufen werden.

Als Startpunkt für eine Eigenimplementation sei auf die im Sourcecode mitgelieferten Optimierer (Simulated Annealing und Simplex) verwiesen, sie geben gute Anhaltspunkte für eigene Projekte ab.

3.4.5 VRML-Ausgabe

Im folgenden wird als Beispiel ein Teil einer VRML-Datei zur Visualisierung der Wasserschwingung bei 1600 cm⁻¹ erläutert. Die komplette Datei mit einer Länge von 18 kB ist auf der beigefügten CD zu finden.

Am Anfang einer jeden VRML-Datei findet sich eine Zeile, die dem ausführendem Program zeigt, daß es sich um eine VRML-Datei handelt.

#VRML V2.0 utf8

Anschließend folgen im allgemeinen die *Worldinfo*, in der neben anderen möglichen Informationen auch der Titel der VRML-Datei zu finden ist und die *Navigationinfo*, in der Anweisungen für die Darstellung des Browsers bzw. durch den Browser zu finden sind. In diesem Falle befinden sich dort spezifische Anweisungen für den Cosmo-Player [19].

```
WorldInfo {
   title "Wasserschwingung bei 1600 cm^{-1}"
}
NavigationInfo{
   type ["EXAMINE" , "ANY"]
}
```

Nachdem einige allgemeine Informationen gegeben wurden, werden Informationen über den eigenen Standort (*Viewpoint*), die Hintergrundfarbe (*Background*) und die Lichtquellen (Hier als Punktlichtquelle angegeben) gegeben.

```
Viewpoint {
  position 0 0 6.75
  description "Normalansicht"
  orientation 0 0 1 0
}
Background {
  skyColor [ 0 0.5 0.5 ]
  groundColor [ 0 0.5 0.5 ]
}
PointLight {
  location 12.0 -12.0
                        12.0
  color 1.00 1.00 1.00
  intensity 0.6
  ambientIntensity 0.3
}
```

Im Anschluß an die globalen Voreinstellungen folgt der erste wichtige Manipulator, der letztendlich dafür sorgt, daß das gesamt Molekül, unabhängig von anderen Teilen wie den Lichtquellen, um den eigenen Nullpunkt gedreht werden kann. Hier wird ein Kugelsensor mit dem Namen *Roll* definiert. Die Änderungen an diesem Kugelsensor werden dann später auf das Molekül übertragen.

```
DEF Roll SphereSensor{
}
```

Nun folgt das eigentliche Molekül. Da das Molekül im ganzen manipuliert werden soll, müssen alle geometrischen Komponenten, aus denen sich das Molekül zusammensetzt, gekapselt werden. Hierzu wird sich in dieser Arbeit eines Transformationsknotens bedient. Dieser Knoten hat den Namen *All* um klarzustellen, daß er das gesamte Molekül umfasst. Mit der *children*-Struktur werden die untergeordneten geometrischen Objekte konkret zusammengefasst.

```
DEF All Transform {
rotation 0 1 0 1.57
translation -0.0000000000000E+0000 0.00000000000E+0000 0
children [
```

Aus Platzgründen wird im folgenden nur jeweils ein Atom und eine Bindung näher ausgeführt, die weiteren sind analog aufgebaut. Zuerst müssen das Atom und die Bindung in einem Transformationsknoten gekapselt werden, damit eine Änderung der Position, der Orientierung und der Größe im Laufe der Animation möglich sind. Anschließend wird außer einer Startrotation noch evtl. eine Startorientierung angegeben und der jeweilige geometrische Knoten (Kugel/Sphere bzw. Zylinder/Cylinder) mit definierten Materialeigenschaften als Unterknoten des Transformationsknotens erzeugt.

```
}
 ]
}
DEF Bond_1 Transform {
                           # Bindung
  translation 0.1512903 -0.5045979 0.0000000
  scale 1.00000000 1.176444381
                                   1.00000000
 rotation 0.0000000 0 -0.3025806
                                   2.8814698
  children[
    Shape {
      appearance Appearance {
        material Material { diffuseColor 0.3 0.3 0.3 }
      }
      geometry Cylinder {
        radius 0.050
        height 1
      }
    }
 ]
}
```

Damit die geometrischen Objekte, die gemeinsam das Molekül bilden, in der Animation auch einer Änderung unterworfen sind, werden so genannte Interpolatoren benötigt. Diese Interpolatoren haben grundsätzlich den gleichen Aufbau. Es wird nur der erste Interpolator vollständig wiedergegeben. Mit einem Namen, der aus offensichtlichen Gründen entsprechend seiner Funktion gewählt wird, wird ein Positions- oder Orientierungsinterpolator definiert, der aus zwei Abschnitten besteht: *key* und *keyvalue*. Die Anzahl der *key*-Werte ist gleich der Anzahl der im *keyvalue*-Feld vorhandenen Vektoren. Dies ist notwendig, da an den jeweiligen Interpolator ein Wert geliefert wird, der in Verbindung mit den *key*-Werten bestimmt, welcher Vektor durch den Interpolator zurückgeliefert wird. Werte, die zwischen zwei *key*-Werte liegen führen in der Ausgabe zu einem Vektor, der linear zwischen den entsprechenden *keyvalue*-Werten interpoliert ist. Zur Definition der Skalierungsänderung muß ein Positionsinterpolator zweckentfremdet werden, da in VRML keine Skalierungsinterpolatoren definiert sind. Die schließenden Klammern in den letzten beiden Zeilen dienen dem Abschluß des, das Molekül kapselnden, Knotens *All*.

DEF Atom_0_position PositionInterpolator {

key [

0.000000

- 0.050000
- 0.100000
- 0.150000
- 0.200000
- 0.250000
- 0.300000
- 0.350000
- 0.400000
- 0.450000
- 0.500000
- 0.550000
- 0.600000
- 0.650000
- 0.700000
- 0.750000
- 0.800000
- 0.850000
- 0.900000
- 0.950000
- 1.000000

]

keyValue [

0.000000	0.0638356	0.0000000
0.000000	0.0510684	0.0000000
0.000000	0.0383013	0.0000000
0.000000	0.0255342	0.0000000
0.000000	0.0127671	0.0000000
0.000000	0.0000000	0.0000000
-0.000000	-0.0127671	0.0000000
-0.000000	-0.0255342	0.0000000
-0.000000	-0.0383013	0.0000000
-0.000000	-0.0510684	0.0000000
-0.000000	-0.0638356	0.0000000

```
-0.0000000 -0.0510684 0.0000000
       -0.0000000 -0.0383013 0.0000000
       -0.0000000 -0.0255342 0.0000000
       -0.000000 -0.0127671
                             0.000000
        0.0000000 0.0000000 0.0000000
       0.000000 0.0127671 0.0000000
        0.000000 0.0255342 0.0000000
        0.0000000 0.0383013 0.0000000
       0.000000 0.0510684 0.0000000
        0.000000 0.0638356 0.0000000
 ]
}
DEF Bond_1_rotation OrientationInterpolator {
 key [
       0.00000
       . . .
       1.000000
 ]
 keyValue [
        0.0000000 0 -0.3025806 2.8814698
        . . .
        0.0000000 0 -0.3025806
                               2.8814698
 ]
}
DEF Bond_1_scale PositionInterpolator {
 key [
       0.00000
       . . .
       1.000000
 ]
 keyValue [
             1 1.1764443811 1
```

```
. . .
              1 1.1764443811 1
  ]
}
DEF Bond_1_position PositionInterpolator {
  key [
       0.00000
        . . .
       1.000000
  ]
  keyValue [
        0.1512903 -0.5045979 0.0000000
         . . .
        0.1512903 -0.5045979 0.0000000
  ]
}
  ]
}
```

Im weiteren Verlauf folgt nun der Steuerknoten, der die Uhr starten und anhalten kann und somit die eigentliche Animation ein- und ausschaltet. Solange die Uhr nicht läuft, ist dieser Knoten durch einen blauen Kegel repräsentiert, sobald die Uhr läuft, ist ein roter Quader zu sehen. Durch die Kapselung als *Billboard* ist gewährleistet, daß immer dieselbe Seite des geometrischen Objektes zum Betrachter zeigt, unabhängig von Rotationsstatus des sich ergebenden virtuellen Raumes.

```
DEF Steuer Transform {
	translation -0.4 -0.4 0.0
	children [
	DEF Group Billboard {
	axisOfRotation 0 0 0
	children [
	DEF Schalter Switch {
	whichChoice 1
```

```
choice [
  Transform {
    translation -2 -1 0
    children[
    DEF SensorStop TouchSensor { }
    Shape {
      appearance Appearance {
        material Material {
          ambientIntensity 0.200
          shininess 0.200
          diffuseColor 1.0 0.0 0.0
          emissiveColor 0.0 0.0 0.0
          specularColor 1.0 0.0 0.0
        }
      }
      geometry Box {size 0.5 0.5 0.5}
    }
    ]
  }
  Transform {
    rotation 0 0 -1 1.5708
    translation -2 -1 0
    children[
    DEF SensorStart TouchSensor { }
    Shape {
      appearance Appearance {
        material Material {
          ambientIntensity 0.200
          shininess 0.200
          diffuseColor 0.0 1.0 1.0
          emissiveColor 0.0 0.0 0.0
          specularColor 0.0 1.0 1.0
        }
      }
      geometry Cone {height 0.5
```


Es folgen in der Datei die Uhr (Timesensor) und das Script, welches das Starten und Stoppen der Uhr ermöglicht.

```
DEF Zeitgeber TimeSensor {
  cycleInterval 2.000
  loop TRUE
  startTime -1
}
DEF Zeitsteuerung Script {
 field
          SFNode
                      aussen1
                                   USE Zeitgeber
 field
          SFNode
                      aussen2
                                   USE Schalter
 eventIn SFTime
                      setStart
 eventIn SFTime
                      setStop
 field
          SFBool
                      laeuft
                                   FALSE
 field
          SFTime
                                   0
                      pause
 eventIn SFTime
                      start
 eventIn SFTime
                      stop
 eventIn SFFloat
                      bruch
 eventOut SFFloat
                      fraction_changed
 directOutput
                      TRUE
 url "vrmlscript:
 function bruch ( frac ) {
    if (laeuft) {
      fraction_changed = frac;
```

```
pause = aussen1.cycleInterval * fraction_changed;
    }
 }
 function stop( stime ) {
    if( laeuft )
    {
        laeuft = FALSE;
        aussen1.enabled = FALSE;
        aussen2.set_whichChoice = 1;
        }
 }
 function start( stime ) {
    if( !laeuft && (pause < (aussen1.cycleInterval - 0.05) ) )
    {
        laeuft = TRUE;
        aussen1.set_startTime = stime - pause;
        aussen1.enabled = TRUE;
                   aussen2.set_whichChoice = 0;
    }
    if( !laeuft && ( pause > 0.05 ) )
    {
        laeuft = TRUE;
        aussen1.set_startTime = stime + pause - aussen1.cycleInterval;
        aussen1.enabled = TRUE;
        aussen2.set_whichChoice = 0;
    }
 }
 II
}
```

Ganz am Ende der Datei stehen die so genannten Routen, in denen bestimmt wird, welche Werte wohin gelangen. Als erstes wird die Ausgabe der Uhr mit dem Zeitsteuerungsscript verbunden. Anschließend werden alle Interpolatoren mit der Ausgabe des Zeitsteuerungsscriptes verknüpft. Danach müssen noch die Ausgaben der Interpolatoren mit den jeweils zu ändernden Daten der Atome und Bindungen verbunden werden. Zu guter Letzt wird noch der Kugelsensor mit dem Kapselobjekt des Moleküls verbunden, um eine freie Rotation des Moleküls zu erlauben. Als letzte Aktion wird der Steuerknoten mit dem Zeitsteuerungsscript verbunden, damit das Betätigen des Steuerknotens überhaupt eine Auswirkung im virtuellen Raum hat.

ROUTE Zeitgeber.fraction_changed TO Zeitsteuerung.bruch

ROUTE Zeitsteuerung.fraction_changed TO Bond_1_position.set_fraction ROUTE Zeitsteuerung.fraction_changed TO Bond_1_rotation.set_fraction ROUTE Zeitsteuerung.fraction_changed TO Bond_1_scale.set_fraction ROUTE Bond_1_position.value_changed TO Bond_1.set_translation ROUTE Bond_1_rotation.value_changed TO Bond_1.set_rotation ROUTE Bond_1_scale.value_changed TO Bond_1.set_scale

ROUTE Zeitsteuerung.fraction_changed TO Bond_2_position.set_fraction ROUTE Zeitsteuerung.fraction_changed TO Bond_2_rotation.set_fraction ROUTE Zeitsteuerung.fraction_changed TO Bond_2_scale.set_fraction ROUTE Bond_2_position.value_changed TO Bond_2.set_translation ROUTE Bond_2_rotation.value_changed TO Bond_2.set_rotation ROUTE Bond_2_scale.value_changed TO Bond_2.set_scale

ROUTE Zeitsteuerung.fraction_changed TO Atom_0_position.set_fraction ROUTE Zeitsteuerung.fraction_changed TO Atom_1_position.set_fraction ROUTE Zeitsteuerung.fraction_changed TO Atom_2_position.set_fraction

ROUTE Atom_0_position.value_changed TO Atom_0.set_translation ROUTE Atom_1_position.value_changed TO Atom_1.set_translation ROUTE Atom_2_position.value_changed TO Atom_2.set_translation

ROUTE Roll.rotation_changed TO All.set_rotation ROUTE SensorStop.touchTime TO Zeitsteuerung.stop ROUTE SensorStart.touchTime TO Zeitsteuerung.start

Kapitel 4

Das Programm VisuChem

4.1 Aufgaben des Programms

Abbildung 4.1: Das Programm VisuChem

Die Aufgabe des Programms VisuChem liegt in der Visualisierung Bewegungen von im molekularen Maßstab. Diese Bewegungen können sowohl Schwingungen als auch Reaktionsmechanismen sein. Die Darstellung im Programm selbst erfolgt mit OpenGL, die Ausgabe der visualisierten Inhalte kann mit VRML [41] als auch über die Berechnung eines Films mit Hilfe von POVRay [70] erfolgen.

Um die jeweils interessanten Molekülteile visualisieren zu können, kann im Programm das dargestellte Molekül beliebig gedreht und verschoben werden.

4.2 Das Hauptfenster

Abbildung 4.2: VisuChem – Das Hauptmenu

Das Hauptfenster ist am Anfang einer Sitzung mit dem Programm recht klein, jedoch werden je nach Notwendigkeit weitere graphische Bedienelemente unterhalb des Menus eingeblendet.

4.2.1 Das Menu Datei

Öffnen			
Dateityp	οκ Ι		
C Einzelbild			
	Abbruch		
Film	Liffe		
	Fille		

Abbildung 4.3: VisuChem Öffnen

Nach Auswahl des Menupunktes *Öffnen* kann gewählt werden, ob ein Einzelbild oder ein Film eingelesen werden soll. Einzelbilder werden im XYZ-Format erwartet [5] (siehe auch B.1), Filme werden in einem erweiterten XYZ-Format erwartet (Siehe B.2). Erst nachdem ein Film oder ein Einzelbild ausgewählt wurde, sind die weiteren Menupunkte im Menu *Bearbeiten* freigegeben.

Da es keine Notwendigkeit für weitere Menupunkte gibt, kann in diesem Menu als weiterer und letzter Menupunkt mit *Beenden* das Programm geschlossen werden.

4.2.2 Das Menu Bearbeiten

Auch das zweite Menu besteht nur aus zwei Menupunkten, *Graphik anzeigen* und *Ausgabe starten*. Der erste dieser beiden Punkte aktiviert die Graphikausgabe. Die Beschreibung des Menus des Graphikfensters erfolgt in 4.3.

📌 Ausgabe		Ausgabe		🏓 Ausgabe	
Ausgabeziel PovRay + VfD	Au	usgabeziel PovRay + VfD		Ausgabeziel VRML	
Ausgabe als		Auflösung © 160 x 120 © 800 x 600		Ausgabe als	
€ [PovRay + VfD (als AVI)]		S20 × 200 C 1024 × 768 S20 × 240 C 1280 × 1024 S12 × 384 C Frei: C G40 × 480	×	C PovRay + ∀fD (als A∨I)	
C VRML (für Webbrowser)		Qualität Antr 1 (schlecht) 7 6 2 6 8 6 6 7 6 6	Aliasing bin AA A=0.3	င [VRML (für Webbrowser]	
[Abbruch	Abbruch	Start		Abbruch

Die Wahl des Ausgabeformates findet in diesem Dialog statt, der durch *Ausgabe starten* aktiviert wird. Zur Wahl stehen die Ausgabe als VRML-Datei [41] und die Berechnung von Bildern mit POVRay [70] und anschließender Berechnung eines AVI-Films aus den gerenderten Bildern.

Abbildung 4.4: VisuChem Ausgabe

4.2.3 Das Menu Optionen

📌 Einstellungen	×
PovRay F:\Programme\POV-Ray for Windows v3.1\bin\pvengine.exe	Browse
PovRay Ini F:\Programme\POV-Ray for Windows v3.1\ini\Pvengine.ini	Browse
Animator F:\Programme\vfd\Vfd.exe	Browse
Video for DOS Animator Parameter Temp*.bmp /A2 /B2	

Abbildung 4.5: VisuChem – Hilfsprogramme

Damit VisuChem seine Aufgabe erfüllen kann, insbesondere das Rendern der Bilder und das Erstellen des AVI-Films, sind Zusatzprogramme notwendig, welche unter *Hilfsprogramme* eingetragen werden. Hier findet man die Pfade zum Programm POVRay, welches zur Berechnung

der Bilder benötigt wird, sowie den Pfad zur Initialisierungsdatei des Programms POVRay. Ebenso findet man hier den Pfad zum verwendeten Animator, der aus der von POVRay berechneten Bitmaps (Endung .bmp) einen Film (Endung .avi) erzeugt. Da prinzipiell nicht nur der in dieser Arbeit verwendete Animator VFD [93] (Video For DOS) verwendet werden kann, müssen auch die jeweils benötigten Optionen angegeben werden.

Die Atomoptionen und die Bindungsoptionen sind analog dem Programm WinNork gestaltet, der einzige Unterschied besteht in den fehlenden Atommassen, da diese in VisuChem nicht benötigt werden. Die bei den Bindungsoptionen getroffenen Grundeinstellungen können im jeweiligen Einzelfall geändert werden und dienen nur der Erleichterung, da somit nicht alle Bindungen per Hand vorgegeben werden müssen.

Auch VisuChem zeigt unter Hilfe den bei Windowsprogrammen übliche Informationsdialog an.

4.3 Das Graphikfenster

Die grundlegende Bedienung des Graphikfensters von VisuChem ist der Bedienung von Win-Nork sehr ähnlich, so daß in diesem Kapitel nur auf die Unterschiede und Erweiterungen eingegangen wird. Für die nicht näher erwähnten Programmteile sei auf 3.3 verwiesen.

4.3.1 Das Menu Darstellung

Mit dem Menupunkt *Einstellungen* wird der Einstellungsdialog erreicht der einige Erweiterungen gegenüber WinNork aufweist, die in der Konzeption des Programms begründet sind. Der Einstellungsdialog ist als Dialog mit 5 Tabs ausgeführt. Die ersten beiden Tabs sind analog WinNork ausgeführt, es fehlt lediglich die hier nicht benötigte Einstellung der Schwingungsgeschwindigkeit. Die Tabs drei bis fünf kommen neu hinzu.

Standard Licht	Bindungen	Zwiscl	nenpunkte	Hintergru	ınd
					_
Atom 1	Atom 2		Bindung a	b×Å	
1	2		1.5		
1	3		1.5		
1	4		Immer		
2	6		Immer		
3	7		Immer		
1			Γ		
				Neu	
		Ał	bruch	ОК	1

Abbildung 4.6: VisuChem – Einstellungen Bindungen

Wenn zwischen bestimmten Atomen andere die Bindungen bei anderen Bindungslängen geschlossen/gebrochen werden sollen, als in den Bindungsoptionen voreingestellt, so können im dritten Tab abweichende Einstellungen vorgenommen werden. Einstellbar sind hier eine abweichende Entfernung in Å, oder das die Bindung zwischen zwei bestimmten Atomen immer bzw. nie eingezeichnet wird. Mit der rechten Maustaste kann eine bestehende besondere Bindungseinstellung gelöscht werden.

Um bei schnellen Änderungen der Atompositionen dennoch einen glatten und sanften Bildübergang in dem zu berechnenden Film zu ermöglichen, können im vierten Tab individuelle Anzahlen von Zwischenpunkten zwischen den Atompositionen angegeben werden. Somit kann zwischen zwei Positionen, die weit auseinander liegen, eine größere Zahl von Zwischenpunkten angegeben werden. Die Zwischenpunkte werden linear zwischen den bekannten Positionen interpoliert.

Sets	Zwischenpunkte
1-2	2
2-3	2
3-4	2
4-5	2
5-6	2
6-7	2
7-8	2
8-9	2

Abbildung 4.7: VisuChem – Einstellungen Zwischenpunkte

Abbildung 4.8: VisuChem – Einstellungen Hintergrund

4.3.2 Shortcuts

Um dem fortgeschrittenen Benutzer die Nutzung des Programms zu erleichtern, wurden auch in VisuChem für viele Befehle Tastatur-Shortcuts festgelegt. Hierbei stimmen die meisten Befehle mit WinNork überein, nur die beiden folgenden Shortcuts haben eine Veränderung gegenüber WinNork erfahren.

Shortcut	Menu	Menupunkt
Ctrl-G	Hauptmenu	Graphik anzeigen
F 2	Hauptmenu	Ausgabe starten

Tabelle 4.1: Shortcuts in VisuChem

4.4 Funktionsweise

4.4.1 Einleseroutine

Die Einleseroutine ist unempfindlich gegenüber Leerzeichen in den Zeilen (diese werden ignoriert) und gegenüber angehängten Leerzeilen. Die in B.1 und B.2 erwähnten Formatvorgaben müssen natürlich erfüllt werden. Die Daten werden in ein internes hauptspeichergebundenes Datenfeld übertragen, um einen schnellen Zugriff zu ermöglichen.

Parallel zum Einlesen der molekülspezifischen XYZ-Daten werden sowohl die grundlegenden Daten (Atomoptionen, Bindungsoptionen, Programmstandorte) als auch molekülspezifische Konfigurationsdaten (Sonderbindungen, Vergrößerung, Rotation, Translation, Lichtquellen, Zwischenpunkte, Bindungsradius, Atomverkleinerungsfaktor) geladen, um anschließend das Gra-

Im diesem letzten Tab kann die Farbe des Hintergrundes eingestellt werden. phikfenster zu öffnen und das Molekül darzustellen. Wenn es sich um einen Film handelt, ist jetzt auch die Möglichkeit gegeben, die einzelnen Atompositionen als Animation zu visualisieren. Wenn in allen Kommentarzeilen der jeweiligen XYZ-Dateien ein Gleichheitszeichen gefunden wird, den nur Ziffern folgen dürfen, so wird dies als eine Energieangabe interpretiert. Der Verlauf der Energieänderung wird zusätzlich graphisch visualisiert.

4.4.2 Ausgaberoutinen

Nachdem alle Einstellungen so ausgeführt sind, daß die gewünschte Ausgabe erzeugt werden kann, wird mit *Ausgabe starten* im Hauptmenu der Ausgabedialog aufgerufen werden. Hier besteht die prinzipielle Wahl zwischen der Ausgabe als VRML [41] und als berechneter AVI-Film.

📌 Ausgabe 📃 🗆 🗙
Ausgabeziel VRML
Zeit für einen Durchlauf der Animation: 20 🏹 sek
Titel:
Abbruch Start

Im für die VRML [41]-Ausgabe zuständigen Teil des Dialoges gibt es nur zwei mögliche Eingaben. Einerseits kann hier eingegeben werden, wie viele Sekunden ein kompletter Durchlauf dauern soll, andererseits kann ein Titeln für die VRML-Datei angegeben werden.

Da die Ausgabe als AVI-Film auf weitere Programme zurückgreifen muß und der resultierende Film nicht mehr unmittelbar geändert werden kann, sind hier die Einstellungsmöglichkeiten vielfältiger. Einstellbar sind hier die Auflösung (die Wahlmöglichkeiten sind alle auf ein vernünftiges Breite/Höhe-Verhältnis ausgelegt, die Auflösung kann aber auch frei gewählt werden), die Berechnungsqualität (POVRay gibt hier Werte zwischen 1 und 11 vor, genaueres kann des Onlinehilfe [68] entnommen wer-

📌 Ausgabe		_ 🗆 ×		
Ausgabeziel F	PovRay + VfD			
– Auflösung –				
C 160 x 120		C 800 x 600		
O 320 x 200		C 1024 x 768		
320 x 240		C 1280 x 1024		
○ 512 x 384		O Frei: x		
C 640 x 480				
- Qualität		AntiAliasing		
C 1 (schlecht) C 7 C 2 C 8		C kein AA		
03 04 05 06	© 10 © 11 (seh	r qut) • AA=0.3		
		Abbruch Start		

den) und die Verwendung von Anti-Aliasing. Näheres zum Anti-Aliasing steht auch wieder in der Online-Hilfe [69], hier soll nur erwähnt werden, daß Anti-Aliasing verwendet wird, um sehr starke Kontraste in Bildern zu mildern und Treppeneffekte zu vermeiden. Solche sehr starken Kontraste treten zum Beispiel auf, wenn ein heller Gegenstand auf einem dunklen Untergrund berechnet wird. Nach Betätigung des Startknopfes wird nach dem Speicherort und Speichernamen der VRML-Datei gefragt oder POVRay und anschließend VFD [93] (Video For DOS) gestartet. Der Film befindet sich am Ende des Vorgangs im gleichen Verzeichnis wie die Eingabedateien.

4.4.3 Bekannte Probleme

Unter Windows NT 4.0 gibt es ein Problem mit VFD, das daher rührt, daß die Eingabeaufforderung in der Grundeinstellung zu kleine Werte für EMS- und XMS-Speicher hat. Eine Änderung der Einstellungen der Datei \WinNT_default auf die jeweils maximal möglichen Werte sorgt dafür, daß keine Probleme mehr mit VFD auftreten.

Kapitel 5

Ergebnisse

5.1 Normalkoordinatenanalyse

Um mit Hilfe von WinNork Schwingungsspektren berechnen zu können, ist eine Anzahl an Kraftkonstanten notwendig. Diese werden bei WinNork in Form einer Datenbank mitgeliefert. Die Kraftkonstanten sind in Laufe dieser Arbeit durch Optimierung der Kraftkonstanten einfacher Moleküle [78] berechnet worden. Ein Großteil der Kraftkonstanten wurde mit dem nach dem simulated-annealing-Algorithmus arbeitenden Optimierer erstellt, um eine bessere Vergleichbarkeit der Zeitbedarfe der Optimierung zu erreichen.

5.1.1 Füllung der Datenbank in WinNork

Die Kraftkonstantendatenbank in WinNork wird auf folgende Weise erstellt:

- 1. Modellierung des Moleküls, anhand dessen die Kraftkonstanten optimiert werden sollen
- Quantenmechanische Optimierung der modellierten Moleküle (B3Lyp [7]/SDD [1,8,21– 27,29,33–35,40,47,51,53,54,56,65,79,85,86,88])
- 3. Extraktion der Atom-Koordinaten als XYZ-File
- 4. Eingabe der Atom-Koordinaten in WinNork
- 5. Reduzierung der verwendeten Kraftkonstanten durch Zusammenfassung äquivalenter Kraftkonstanten

- 6. Optimierung der Kraftkonstanten durch Fitten an realen Spektren¹ [78]
 - Verwendete Startwerte: Simulated Annealing

\mathbf{EPS}	0.5
NEPS	4
Т	50
NT	5
RT	0.85 (bei größeren Molekülen auch $0.5)$
VMI	0.5
MAXEVL	1000000

• Verwendete Startwerte: Simplex

 KCOUNT
 1000000

 REQMIN
 0.01

 KONVGE
 1

 STEP
 0.5

Die folgenden Tabellen enthalten die verwendeten Moleküle, um die Datenbank zu füllen. Da sich aus den einzelnen Molekülen jeweils mehrere Kraftkonstanten in der Datenbank befinden, reichen die Kraftkonstanten dieser Moleküle für einen Großteil der nur Kohlenstoff, Wasserstoff und Sauerstoff enthaltenen Moleküle aus.

Die in den folgenden Tabellen angegeben Zeiten und Optimierungsgeschwindigkeiten beziehen sich auf einen Celeron366, übertaktet auf 416 MHz, 128 MB RAM, Betriebssystem Windows NT 4.0SP6 der alle mögliche Prozessorzeit für die Optimierung zur Verfügung stellt.

¹Die realen Spektren stammen aus einem IR/Raman-Atlas

Molekül	Zahl ungleicher	Schritte	Zeit	End-	Schritte	Schritte	Matrix-	RT
	Kraftkonstanten	[1/Opt]	[d:hh:mm:ss]	temperatur	[Anzahl]	[1/s]	größe	
Methan	6	120	0:00:01:35	0.27566	19800	207.9	10 X 10	0.85
Ethan	22	440	0:00:31:53	0.12231	83600	43.7	$20 \ge 20$	0.85
Ethen	28	560	0:00:15:59	0.10397	109200	113.8	14 X 14	0.85
Ameisensäure	50	1000	0:00:15:59	0.12231	190000	198.0	10 X 10	0.85
Methanol	30	600	0:00:19:37	0.03921	135000	114.7	13 X 13	0.85
Propen	141	2820	0:02:39:12	0.00010	282000	29.5	$24 \ge 24$	0.5
trans-But-2-en	84	1680	0:03:18:26	0.00038	151200	12.7	$34 \ge 34$	0.5
cis-But-2-en	84	1680	0:03:07:24	0.00076	142800	12.7	34 X 34	0.5
Essigsäure	87	1740	0:00:55:32	0.00038	156600	47.0	$20 \ge 20$	0.5
Aceton	53	1060	0:01:55:55	0.0000002	153700	22.1	27 X 27	0.5
Acetaldehyd	63	1260	0:00:21:47	0.00610	88200	67.5	17 X 17	0.5
Benzol	37	740	0:01:26:33	0.00153	59200	11.4	42 X 42	0.5
Methoxybenzol	128	2560	0:18:31:07	0.000003	320000	4.8	55 X 55	0.5
Benzoesäure	163	3260	0:18:26:47	0.00002	358600	5.4	52 X 52	0.5
Phenol	103	2060	0:06:59:11	0.00005	216300	8.6	45 X 45	0.5
Toluol	118	2360	0:11:07:16	0.00019	224200	5.6	52 X 52	0.5
$Ameisens \ddot{a} uremethy lester$	76	1520	0:00:39:11	0.00305	114000	48.5	$20 \ge 20$	0.5

Ergebnisse für Simulated Annealing (Die einzelnen Kraftkonstanten finden sich im Anhang):

Wie man sieht, korreliert die Zahl der Schritte pro Sekunde mit der Größe der Kraftkonstantenmatrix (siehe Abbildung 5.1.1; doppelt logarithmische Auftragung). Hieraus wird klar, das Moleküle, die Daten in die Datenbank liefern sollen, möglichst klein sein sollten, um die benötigte Zeit, bis die Daten zur Verfügung stehen, möglichst zu verkürzen.

Da die Zahl der Schritte pro Optimierungsdurchlauf bis zu einer möglichen Temperaturreduktion (essind fünf Durchläufe bis zur Temperaturreduktion voreingestellt) mit der Zahl der zu optimierenden Kraftkonstanten linear korreliert², ist es vernünftig, äquivalente Kraftkonstanten zusammenzufassen. So werden am Beispiel des Methans aus 52 Kraftkonstanten 6 oder beim Benzol aus

Abbildung 5.1: Korrelation der Matrixgröße mit der Rechengeschwindigkeit

408 Kraftkonstanten 37. Diese Optimierung durch Zusammenfassen äquivalenter Kraftkonstanten sorgt insbesondere bei größeren Molekülen für eine deutliche Beschleunigung, da hier die Geschwindigkeit durch die größere Kraftkonstantenmatrix reduziert wird. Hier ist also die Zahl der Schritte pro Sekunde gering, weshalb die Reduzierung der Schritte pro Optimierungsschritt subjektiv stärker ins Gewicht fällt. Am Beispiel des Benzols wird deutlich, daß sich auf diesem Wege die Geschwindigkeit um den Faktor 11 steigern läßt (37 Kraftkonstanten $\hat{=}$ 740 Schritte pro Optimierung; 408 Kraftkonstanten $\hat{=}$ 8160 Schritte pro Optimierung). Die Zahl der äquivalenten Kraftkonstanten ist vom jeweiligen Molekül und seiner Symmetrie abhängig, so daß nicht in allen Fällen eine so große Reduzierung der Kraftkonstanten und damit eine so deutliche Geschwindigkeitssteigerung möglich ist.

²genauer: der ausgeführte Programmteil ist vom Quadrat der Anzahl der Kraftkonstanten abhängig, jedoch wird die Frequenzberechnung nur in der äußeren von zwei geschachtelten Schleifen ausgeführt. Geschwindigkeitsbestimmend ist die Ausführungsgeschwindigkeit der Frequenzberechnung

Ergebnisse für Simplex (Bei einer kleinen Anzahl an Schritten waren die Startkraftkonstanten nahe bei den Endkraftkonstanten, bei einer großen Schrittanzahl lagen die Startkraftkonstanten weit von den Endkraftkonstanten entfernt, hier weicht das Ergebnis teilweise deutlich vom Ergebnis mit Simulated Annealing ab):

Molekül	Zahl ungleicher	Zeit	Schritte	Matrix-	Schritte	
	Kraftkonstanten	[d:hh:mm:ss]	[1/s]	größe	[Anzahl]	
Aceton	53	00:01:54	21.7	27 X 27	2476	
Methoxybenzol	128	00:15:01	4.7	$55 \ge 55$	4231	
Ethen	28	00:00:03	114.8	$14 \ge 14$	345	
Essigsäure	87	00:02:26	26 44.5		6513	
Ameisensäuremethylester	76	00:00:14	47.4	$20~{\rm X}~20$	664	
Methanol	30	00:00:04	109.6	$13 \ge 13$	439	
Benzol	37	00:02:13	10.8	$42 \mathrm{~X}~42$	1438	
Benzoesäure	163	07:20:35	5.2	$52 \ \mathrm{X} \ 52$	136642	
Phenol	103	00:06:29	8.4	$45 \ge 45$	3258	

5.1.2 Vergleich Simulated Annealing – Simplex

Simulated Annealing hat Vorteile, wenn die Startkraftkonstanten nicht sehr nahe an den voraussichtlichen Endkraftkonstanten liegen. Hier ist eine Optimierung mit Simulated Annealing vorzuziehen, da mit diesem Algorithmus besser das globale Minimum gefunden wird. Sind die Kraftkonstanten nahe den Endkraftkonstanten, so ist der Simplex-Algorithmus deutlich schneller, da hier öfter das Abbruchkriterium getestet wird und die Änderungen der Kraftkonstanten schneller klein werden. Aufgrund der komplexen Wechselwirkungen der Kraftkonstanten untereinander und der starken Wirkung von Änderungen der Kraftkonstanten auf die berechneten Frequenzen ist der Simplex-Algorithmus eher für kleine Moleküle geeignet, deren Startkraftkonstanten nahe bei den Endkraftkonstanten liegen, während Simulated Annealing eher bei großen Molekülen oder unbekannter Güte der Startkraftkonstanten Vorteile hat. Der Vorteil bei Simulated Annealing, das bessere Erreichen des globalen Minimums wird allerdings durch eine deutlich größere Zahl an Schritten und damit einer längeren Optimierungszeit erkauft.

Die Kraftkonstanten der Datenbank wurden ausschließlich mit Simulated Annealing erzeugt, da die Güte der Startkraftkonstanten am Anfang der Berechnung nicht bekannt war und einen entsprechend großen Bereich für die obere und untere Grenze umfassen mußte.

5.1.3 Anwendung von WinNork im Laborkontext

Diastereoselektive Protonierungen können die Synthese von Naturstoffen ermöglichen, die auf anderem Wege nicht oder nur in unbefriedigenden Ausbeuten möglich sind. Hierzu wurde im Lehrstuhl Krause ein Verfahren entwickelt, das auf der Grundlage von Salicylsäureestern diese Protonierung ermöglicht. Hierbei werden die Salicylsäureester polymer gebunden. Am Beispiel einer Reaktionsfolge von M. Mackenstedt [59], ausgehend von 5-Hydroxy-Salicylsäue bis hin zum fertigen, polymer gebundenen Salicylsäurethylester, sollen die Möglichkeiten von WinNork im Laborkontext untersucht werden.

Da es sich bei den berechneten Spektren um reine Linienspektren handelt, sind sie nicht dazu geeignet, Aussagen über die Intensität der berechneten Schwingung zu treffen. Eine Zuordnung der gemessenen Frequenzen zu einzelnen Schwingungsformen ist jedoch auf diese Weise leichter. Auch die Zusammenhänge der einzelnen Schwingungen, die unterschiedlich miteinander koppeln, erschließt sich durch die graphische Ausgabe wesentlich klarer als durch reine zweidimensionale Zeichungen, in denen die Bewegungen der Atome nicht berücksichtigt werden können.

Abbildung 5.2: Bildung des polymer gebundenen Reagens

Zur Berechnung der Frequenzen müssen zuerst die zu berechnenden Moleküle modelliert werden, da die XYZ-Koordinaten in WinNork zur Bestimmung der Valenzen benötigt werden. Nach Einlesen der Koordinaten und Berechnen der Bindungen, werden den einzelnen Molekülstrukturen Kraftkonstanten aus der Datenbank zugewiesen. Anschließend erfolgt die Berechnung der Schwingungen. Das jeweils berechnete Spektrum ist in das real gemessene IR-Spektrum als rotes Linienspektrum eingetragen. Die gemessenen Spektren sind im Anhang E in voller Größe vorhanden.

Abbildung 5.3: Gemessenes Spektrum von 5-Hydroxy-Salicylsäure mit berechneten Spektrum

Es zeigt sich in den für die Interpretation des Spektrums entscheidenden Bereichen eine gute Übereinstimmung zwischen dem gemessenen und dem berechneten Spektrum. Im Bereich unterhalb 1800 Wellenzahlen zeigen sich bei gemessenen Peaks immer deutliche Häufungen der Peaks des Linienspektrums, Während der Bereich zwischen 1800 und 3000 Wellenzahlen keine Linien ergibt. Die Linien bei 3600 Wellenzahlen ergeben sich aus den OH-Gruppen, da die Berechnung nur nicht verbrückte Wasserstoffe berücksichtigt. Im realen, breiten OH-Peak treten die ν (CH)-Schwingungen bei 3025-3030 Wellenzahlen auf. Bei Salicylsäure ist der CO-Peak der Säurefunktion zu tieferen Wellenzahlen verschoben, da sich eine intramolekulare Wasserstoffbrücke zwischen der CO-Doppelbindung der Säurefunktion und der hierzu in o-Stellung befindlichen OH-Gruppe bildet, die von der Berechnung nicht berücksichtigt wird. Ganz allgemein wird die Carbonylfrequenz organischer Säuren mit diesem Modell immer zu hoch berechnet, da die organische Säure real als Dimer auftritt und seine Carbonylfrequenz durch Bildung einer Wasserstoffbrücke mit einem zweiten Säuremolekül erniedrigt wird.

Abbildung 5.4: Gemessenes Spektrum von 5-Hydroxy-Salicylsäureethylesters mit berechneten Spektrum

Dieses Spektrum ist dem vorherigen Spektrum ähnlich und zeigt auch die gleichen Auffälligkeiten in Bezug auf die Carbonylfrequenz. Gut zu sehen sind die neu hinzugekommenen Schwingungen der Ethylgruppe (CH-Schwingung bei ca. 2800 Wellenzahlen). Der kleine Doppelpeak bei ca. 2350 Wellenzahlen im realen Spektrum wird von der Berechnung nicht wiedergegeben, da es sich hier um einen Oberton handelt.

Abbildung 5.5: Gemessenes Spektrum von 5-(p-Vinylbenzyloxy)-Salicylsäureethylester mit berechneten Spektrum

Die Größe dieses Moleküls mit 40 Atomen stellt die derzeitige Grenze dessen dar, was mit der besprochenen Methode bei der derzeitigen Computerleistung vernünftig zu berechnen ist. Bei noch größeren Molekülen wird der Aufwand extrem stark ansteigen, da mit jeder zusätzlichen Hauptkraftkonstante auch die Kraftkonstantenmatrix wächst. Bei Diesem Molekül ergeben sich 107 Haupkraftkonstanten und 1354 Nebenkraftkonstanten, zusammen also 1461 Kraftkonstanten.Diese große Zahl an Kraftkonstanten führt sowohl zu deutlichen Ladezeiten als auch zu Berechnungszeiten im Rahmen von bis zu 20 Minuten. Auch müssen alle 107 Hauptkraftkonstanten ausgesucht und eingegeben werden, was ebenfalls ein nicht zu unterschätzender Zeitfaktor bei Molekülen dieser Größe wird.

Die hinzugekommenen Frequenzen zwischen 2800 und 3000 Wellenzahlen lassen sich mit Hilfe des PED CH-Valenzschwingungen der Etherbrücke (ca. 2800 cm⁻¹) und des Ethylrestes der Estergruppe (oberhalb 2800 cm⁻¹) zuordnen. Die CH-Schwingungen des Vinylrestes finden sich bei 3040 und 3120 cm⁻¹. Die CC-Valenzschwingung des Vinylrestes findet man bei 1800 cm⁻¹, also knapp oberhalb der Carbonylgruppe.

Abbildung 5.6: Gemessenes Spektrum des Copolymers mit berechneten Spektrum

Von diesem Spektrum wird nur das gemessene Spektrum wiedergegeben, da das Polymer zu viele Atome für eine Berechnung in einer heutigen Computerumgebung besitzt. Auch zeigt ein direkter Vergleich des Polymerspektrums mit der Ausgangsverbindung keine wesentlichen Unterschiede, nur die Vinylschwingungen sind aufgrund der Polymerisation nicht mehr zu sehen.

5.2 Quantenmechanische Untersuchungen an Zinn-Silzium-Organylen

Heute werden in der Industrie in vielen Bereichen Polysilane eingesetzt, als Vorstufen für keramische Materialien [3], zur Erzeugung von Siliziumcarbidfasern [94,95], in der Microlithographie/Xerographie [60–62], in der Nutzung ihrer optischen und optoelektronischen Eigenschaften [50,71] oder als Inhibitoren für Polymerisationen wegen der photochemischen Empfindlichkeit der Si-Si Bindungen [4,81,90,91].

Eine der verbleibenden Herausforderungen für die Chemie ist die Frage, wie man die Eigenschaften solcher Polysilane verändern kann, indem man einzelne R_2 Si-Einheiten des Polymers durch andere Organoelementgruppen ersetzt.

Wie schon in der Einleitung erwähnt, weden in der AG von F. Uhlig seit einer Reihe von Jahren Untersuchungen zu zinnmodifizierten Polysilanen des Typs

$$[R_2Sn]_x[R'_2Si]_y$$

durchgeführt. Die im folgenden behandelten oligomeren Stannasilane stellen wichtige Ausgangsbausteine zur Darstellung solcher Si-Sn-Polymere dar.

5.2.1 Wibergfragmente

Um aus den zu berechnenden HF-Energien Bildungsenthalpien zu erhalten, mussten zu den schon vorhandenen Wibergfragmenten [13] noch weitere berechnet werden. Die noch fehlenden Fragmente für Silizium und Lithium wurden, nach Berechnung der HF-Energien mit Gaussian [58] bestimmt:

$$\begin{split} E_{\rm Si}^{\rm Frag} &= -288.8861005 a.u. \\ E_{\rm Li}^{\rm Frag} &= -7.443235553 a.u. \end{split}$$

Alle verwendeten Fragmente sind im Anhang D zusammengefasst.

5.2.2 Berechnungen zur Bestimmung der günstigsten Methoden

Um zu bestimmen, mit welcher quantenmechanischen Methode die besten Ergebnisse erzielt werden, wurden mehrere Vorberechnungen durchgeführt. Hierzu wurden zuerst der Röntgenstruktur von ${}^{t}Bu_{2}(H)Sn-(SiMe_{2})_{2}-Sn(H){}^{t}Bu_{2}$ [87] manuell die Wasserstoffe hinzugefügt, das resultierende Molekül unter Fixierung aller Nichtwasserstoffpositionen optimiert und anschließend erneut optimiert, diesmal unter Freigabe aller Atompositionen. Dieses Vorgehen war notwendig, um für die Wasserstoffe eine vernünftige Ausgangslage für die eigentliche Optimierung zu schaffen, die das unterliegende Gerüst nicht verzerrt. Alle Berechnungen wurden mit den Basissätzen SDD und Lanl2Dz [29,42–44] durchgeführt. Als Berechnungsmethoden kamen sowohl der Hartree-Fock Ansatz (siehe 2.3.3) als auch die Dichtefunktionaltheorie unter Verwendung des B3Lyp-Funktionals [7] zur Anwendung.

Aus dem Vergleich der Valenzbindungsabstände der vier Berechnungen ergibt sich die folgende Tabelle. Hierbei bezeichnen die Zahlen hinter den Atomen die korrespondierenden Atomindizes der Struktur. Die Atomindizes der Wasserstoffe sind nicht eingezeichnet, da die Graphik einerseits so lesbar bleibt, andererseits natürlich die Wasserstoffpositionen nicht verglichen werden können, da sich hierfür aus der Röntgenstruktur keine Positionen ergeben.

Wie aus der Tabelle ersichtlich ist, ergeben sich weder im Vergleich der Basissätze noch in der Berechnungsmethode große Abweichungen von der Röntgenstruktur, die eine der Kombinationen sofort disqualifizieren würden. Zwar gibt es teilweise deutliche Abweichungen im Si-Si und Sn-Si Abstand bei Verwendung des SDD-Basissatzes von bis zu 0.1 Å, diese Abweichungen sind aber zum Teil darauf zurückzuführen, daß die Berechnungen an einem Einzelmolekül in der Gasphase durchgeführt wurden, während die zugrunde liegenden Koordinaten aus einer Röntgenstrukturanalyse stammen, das Molekül also weiteren Zwängen gegenüber der Gasphase ausgesetzt ist. Dies zeigt sich auch darin, daß die Verzerrungen der Molekülgeometrie im Feststoff (man vergleiche den C-C Abstand zwischen C(5) und C(6,19,20)) nicht wiedergegeben werden. Alle Abstände erscheinen äquidistant, da sie in der Gasphase äquivalente Umgebungen aufweisen.

Für die weiteren Berechnungen wurden für alle Moleküle der SDD-Basissatz gewählt, der aus vorherigen Berechnungen von T. Brüggemann [13] bekannt war, das der SDD-Basissatz insbesondere bei zinn- und germaniumhaltigen Verbindungen deutlich bessere HF-Energien zu liefern imstande ist. Als Berechnungsmethode wurden sowohl der Hartree-Fock Ansatz als auch DFT mit dem B3Lyp-Funktional [7] verwendet, um auszuschließen, das in den Berechnungen der li-thiierten Spezies Artefakte der jeweiligen Methoden oder Basissätze die Ergebnisse verfälschen.

Bindung	gslängen in	n Å								
		Röntgen-	B3Lyp	Δr	B3Lyp	Δr	RHF	Δr	RHF	Δr
		struktur	Lanl2dz		SDD		Lanl2dz		SDD	
C(5)	C(6)	1.49	1.552	0.062	1.551	0.061	1.548	0.058	1.547	0.057
	C(19)	1.513	1.553	0.040	1.552	0.039	1.549	0.036	1.549	0.036
	C(20)	1.504	1.551	0.047	1.551	0.047	1.547	0.043	1.546	0.042
C(7)	C(8)	1.515	1.553	0.038	1.552	0.037	1.549	0.034	1.549	0.034
0(1)	C(17)	1.518	1.552	0.034	1.551	0.033	1.548	0.030	1.548	0.030
	C(18)	1.533	1.552	0.019	1.551	0.018	1.547	0.014	1.546	0.013
C(12)	C(13)	1 49	1 552	0.062	1 552	0.062	1 548	0.058	1 547	0.057
0(12)	C(23)	1.513	1.553	0.040	1.553	0.040	1 549	0.036	1 549	0.036
	C(23) C(24)	1.504	1.551	0.047	1.551	0.047	1.547	0.043	1.546	0.042
C(14)	C(15)	1 515	1 553	0.038	1 552	0.037	1 549	0.034	1 549	0 034
0(14)	C(21)	1.518	1.559	0.034	1.551	0.001	1.548	0.030	1.548	0.034
	C(21) C(22)	1.533	1.552	0.019	1.551	0.018	1.547	0.014	1.546	0.013
C:(0)	O(1)	1 020	1 000	0.000	1.000	0.000	1.010	0.019	1.094	0.005
51(2)	C(1)	1.929	1.920	-0.009	1.929	0.000	1.910	-0.015	1.924	-0.005
	C(3)	1.900	1.919	0.015	1.920	0.022	1.910	0.010	1.925	0.017
	SI(9) Sm(4)	2.320	2.319	0.051	2.410	0.088	2.370	0.048	2.420	0.100
	511(4)	2.390	2.042	0.040	2.000	0.070	2.045	0.047	2.071	0.075
Si(9)	C(10)	1.906	1.919	0.013	1.928	0.022	1.916	0.010	1.923	0.017
	C(16)	1.929	1.920	-0.009	1.929	0.000	1.916	-0.013	1.924	-0.005
	Si(2)	2.328	2.379	0.051	2.416	0.088	2.376	0.048	2.428	0.100
	$\operatorname{Sn}(11)$	2.596	2.642	0.046	2.666	0.070	2.642	0.046	2.672	0.076
Sn(4)	C(5)	2.195	2.203	0.008	2.234	0.039	2.192	-0.003	2.216	0.021
	C(7)	2.201	2.204	0.003	2.233	0.032	2.192	-0.009	2.215	0.014
	Si(2)	2.596	2.642	0.046	2.666	0.070	2.643	0.047	2.671	0.075
Sn(11)	C(12)	2.196	2.203	0.007	2.233	0.037	2.192	-0.004	2.216	0.020
- ()	C(14)	2.201	2.204	0.003	2.233	0.032	2.192	-0.009	2.215	0.014
	Si(9)	2.596	2.642	0.046	2.666	0.070	2.642	0.046	2.672	0.076

Abbildung 5.7: Ergebnisse der Bindungslängenberechnungen
5.2.3 Berechnungen zur Aufklärung des Reaktionsverhaltens

Zur Berechnung des Unterschiedlichen Reaktionsverhaltens von ${}^{t}Bu_{2}(H)Sn-(SiMe_{2})_{2}-Sn(H){}^{t}Bu_{2}$ [87] und ${}^{t}Bu_{2}(H)Sn-SiMe_{2}-Sn(H){}^{t}Bu_{2}$ [87] musste zu Anfang der Berechnung ${}^{t}Bu_{2}(H)Sn-SiMe_{2}-Sn(H){}^{t}Bu_{2}$ [87] modelliert und optimiert werden, da für dieses Molekül keine Röntgenstrukturdaten vorlagen.

Für die eigentlichen Berechnungen wurden ein bzw. zwei der am Zinn gebundenen Wasserstoff durch Lithium ersetzt, der Zinn/Wassertstoff-Abstand auf 2.727 Å ausgedehnt, um die Berechnungen nicht durch die notwendige Längenausdehnung zu verlangsamen, und dann mit dem SDD-Basissatz unter Verwendung von HF und DFT bei Freigabe aller Koordinaten optimiert.

Für die berechneten Moleküle wurde aus den HF-Berechnungen die Bildungsenthalphie aus Wibergfragmenten berechnet. Hierbei wurden die in der Tabelle aufgeführten Fragmente in der dort beschriebenen Anzahl eingesetzt.

Verbindung		Fraqme	ente			
	$Methyl^p$	Methyl^q	Si	Sn	Η	Li
$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{H})^{t}\mathrm{Bu}_{2}$ [87]	14	4	1	2	2	0
$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{Li})^{t}\mathrm{Bu}_{2}$ [45]	14	4	1	2	1	1
$^{t}\mathrm{Bu}_{2}(\mathrm{Li})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{Li})^{t}\mathrm{Bu}_{2}$ [45]	14	4	1	2	0	2
$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}$ -(SiMe ₂) ₂ -Sn(H) $^{t}\mathrm{Bu}_{2}$ [87]	16	4	2	2	2	0
$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}$ -(SiMe ₂) ₂ -Sn(Li) $^{t}\mathrm{Bu}_{2}$ [45]	16	4	2	2	1	1
$^{t}\mathrm{Bu}_{2}(\mathrm{Li})\mathrm{Sn}$ -(SiMe ₂) ₂ -Sn(Li) $^{t}\mathrm{Bu}_{2}$ [45]	16	4	2	2	0	2

Abbildung 5.8: Fragmentanzahlen für die berechneten Verbindungen

Die nach Gleichung 2.59 berechneten Bildungsenthalpien ergeben sich zu

Verbindung	HF-Energie [a.u.]	Bildungsenthalpie [kJ mol ^{-1}]
$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{H})^{t}\mathrm{Bu}_{2}$	-1002.3905	-224,65
$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{Li})^{t}\mathrm{Bu}_{2}$	-1009.2680	-236,05
${}^{t}\mathrm{Bu}_{2}(\mathrm{Li})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{Li}){}^{t}\mathrm{Bu}_{2}$	-1016.1450	-245,93
$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\text{-}(\mathrm{SiMe}_{2})_{2}\text{-}\mathrm{Sn}(\mathrm{H})^{t}\mathrm{Bu}_{2}$	-1370.5092	-377,33
$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\text{-}(\mathrm{SiMe}_{2})_{2}\text{-}\mathrm{Sn}(\mathrm{Li})^{t}\mathrm{Bu}_{2}$	-1377.3845	-382,89
$^{t}\mathrm{Bu}_{2}(\mathrm{Li})\mathrm{Sn}\text{-}(\mathrm{SiMe}_{2})_{2}\text{-}\mathrm{Sn}(\mathrm{Li})^{t}\mathrm{Bu}_{2}$	-1384.2638	-398,78

Abbildung 5.9: Bildungsenthalpien aus Wibergfragmenten

	Verbindung		Atomladungen				
		Sn	Н	Li	Sn	Н	Li
	${}^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{H}){}^{t}\mathrm{Bu}_{2}$	1.353	-0.266	_	1.353	-0.266	_
DFT	${}^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{Li}){}^{t}\mathrm{Bu}_{2}$	1.306	-0.272	_	0.562	_	0.711
DF I	${}^{t}\mathrm{Bu}_{2}(\mathrm{Li})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{Li}){}^{t}\mathrm{Bu}_{2}$	0.458	_	0.702	0.458	_	0.702
	$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\text{-}(\mathrm{SiMe}_{2})_{2}\text{-}\mathrm{Sn}(\mathrm{H})^{t}\mathrm{Bu}_{2}$	1.335	-0.270	_	1.335	-0.270	_
	$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\text{-}(\mathrm{SiMe}_{2})_{2}\text{-}\mathrm{Sn}(\mathrm{Li})^{t}\mathrm{Bu}_{2}$	1.336	-0.264	_	0.550	_	0.721
	${}^{t}\mathrm{Bu}_{2}(\mathrm{Li})\mathrm{Sn}\text{-}(\mathrm{SiMe}_{2})_{2}\text{-}\mathrm{Sn}(\mathrm{Li}){}^{t}\mathrm{Bu}_{2}$	0.650	_	0.766	0.650	_	0.766
	Verbindung			Atomla	dungen		
		Sn	Η	Li	Sn	Η	Li
	${}^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{H}){}^{t}\mathrm{Bu}_{2}$	1.494	-0.316	—	1.494	-0.316	_
нг	${}^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{Li}){}^{t}\mathrm{Bu}_{2}$	1.447	-0.325	—	0.658	_	0.738
111	${}^{t}\mathrm{Bu}_{2}(\mathrm{Li})\mathrm{Sn}\operatorname{-SiMe}_{2}\operatorname{-Sn}(\mathrm{Li}){}^{t}\mathrm{Bu}_{2}$	0.614	—	0.721	0.614	_	0.721
	${}^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\text{-}(\mathrm{SiMe}_{2})_{2}\text{-}\mathrm{Sn}(\mathrm{H}){}^{t}\mathrm{Bu}_{2}$	1.478	-0.319	_	1.478	-0.319	_
	$^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn}\text{-}(\mathrm{SiMe}_{2})_{2}\text{-}\mathrm{Sn}(\mathrm{Li})^{t}\mathrm{Bu}_{2}$	1.474	-0.318	_	0.636	_	0.704
	${}^{t}\mathrm{Bu}_{2}(\mathrm{Li})\mathrm{Sn}\text{-}(\mathrm{SiMe}_{2})_{2}\text{-}\mathrm{Sn}(\mathrm{Li}){}^{t}\mathrm{Bu}_{2}$	0.685	_	0.760	0.685	_	0.774

Mit Hilfe einer NBO-Analyse [14, 15, 32, 72–75, 89] der Verbindungen lassen sich die Ladungen an den Reaktionszentren bestimmen.

Abbildung 5.10: NBO-Analyse

Wie deutlich wird, unterscheiden sich die Bildungsenthalpien der einzelnen Litiierungsstufen. Bei der nur ein Silizium enthaltenden Kette ist der Energiegewinn der beiden Lithiierungsstufen mit 11.4 kJ mol⁻¹ bzw. 9.88 kJ mol⁻¹ ungefähr gleich, mit einer extrem kleinen Bevorzugung der ersten Lithiierungsstufe. Bei der zwei Silizium enthaltenen Kette sind die Energiegewinne mit 5,56 kJ mol⁻¹ bzw. 15,89 kJ mol⁻¹ deutlicher unterschiedlich, mit einer Bevorzugung der zweiten Lithiierungsstufe. Dies stimmt mit der Tatsache überein, daß von ${}^{t}Bu_{2}(H)Sn-SiMe_{2}-Sn(H){}^{t}Bu_{2}$ nur die monolithiierte Spezies bekannt ist, während ${}^{t}Bu_{2}(H)Sn-(SiMe_{2})_{2}-Sn(H){}^{t}Bu_{2}$ nach der Reaktion mit Lithium dilithiiert ist. Ein so kleiner Unterschied im Energiegewinn zwischen den einzelnen Lithiirungsstufen reicht aber nicht allein aus, um das völlige Fehlen der zweiten Lithiierungsstufe beim ${}^{t}Bu_{2}(H)Sn-SiMe_{2}-Sn(H){}^{t}Bu_{2}$ tritt vielmehr noch der Effekt auf, daß im Falle der zweifachen Lithiierung der Li-Li Abstand bei einer Ladung von +0.702/+0.721 (DFT/HF) nur 2.685/4.569 Å(DFT/HF; die großen Unterschiede im Abstand beruhen auf einer intramolekularen Drehung des Moleküls um die Sn-Si Bindungen) beträgt. Dieser kleine Abstand dürfte insbesondere bei der DFT- Berechnung nur im Berechnungskontext stabil sein (der Li-Li Abstand ist hier kleiner als der Sn-Li Abstand), bei Raumtemperatur und den damit verbundenen Bewegungen der Moleküle führt dies im Experiment beim Versuch einer zweiten Lithiierung zur Zersetzung des Produktes durch Spaltung der Sn-Si Bindung. Der experimentelle Befund lässt sich also zwanglos aus den quantenmechanischen Berechnungen erklären.

5.2.4 Elektrostatische Potentiale

Eine weitere Erklärung für das Reaktionsverhalten ergibt sich aus dem elektrostatischen Potential der einzelnen Moleküle. Im folgenden werden Graphiken der Moleküle gezeigt, die das elektrostatische Potential als Farbkodierung auf eine Isofläche der Elektronendichte zeigen. Ein eher negatives elektrostatisches Potential wird durch eine Blaufärbung, ein eher positives Potential durch eine Rotfärbung angezeigt. Bei allen Molekülen wurden für die ausgewählte Isofläche und die Farbkodierung die gleichen Werte verwendet, so daß die graphischen Anzeigen vergleichbar sind. Die Farbunterschiede für die Farbkodierung sind so gewählt, daß die unterschiedlichen Potentiale erkannt werden können, sie stellen keine absoluten Potentialangaben dar.

5.2.4.1 ${}^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn-SiMe}_{2}\mathrm{-Sn}(\mathrm{H}){}^{t}\mathrm{Bu}_{2}$

Abbildung 5.11: Elektrostatisches Potential von ${}^t\mathrm{Bu}_2(\mathrm{H})\mathrm{Sn}\text{-}\mathrm{Si}\mathrm{Me}_2\text{-}\mathrm{Sn}(\mathrm{H}){}^t\mathrm{Bu}_2$

Wie man erkennt, gibt es keine signifikanten Unterschiede zwischen der DFT und der HF Berechnung. Das gesamte Molekül ist leicht in sich gedreht, um den Abstand der beiden Wasserstoffe möglichst groß zu halten.

5.2.4.2 ${}^{t}Bu_{2}(H)Sn-SiMe_{2}-Sn(Li){}^{t}Bu_{2}$

Abbildung 5.12: Elektrostatisches Potential von ${}^{t}Bu_{2}(H)Sn-SiMe_{2}-Sn(Li){}^{t}Bu_{2}$

Auch hier ergeben die DFT und die HF Berechnung das gleich Ergebnis. Das Molekül ist in ähnlicher Weise verdreht wie das nicht lithiierte Molekül. Es kommt zu einer Wechselwirkung zwischen dem Lithium und einer CH₃-Gruppe des anderen Zinns, dies führt zu einer Stabilisierung dieser Konfiguration und des Moleküls.

5.2.4.3 ${}^{t}Bu_{2}(Li)Sn-SiMe_{2}-Sn(Li){}^{t}Bu_{2}$

Abbildung 5.13: Elektrostatisches Potential von ^tBu₂(Li)Sn-SiMe₂-Sn(Li)^tBu₂

Diese zwei Berechnungen scheinen auf den ersten Blick sehr unterschiedlich zu sein. Jedoch ergeben beide Berechnungen einen sehr kleinen Li-Li Abstand (DFT: 2.685 Å;HF 4.569 Å), da das Molekül versucht, eine Torsion, die einen größeren Li-Li Abstand ermöglichen würde, zu

vermeiden. Der sehr kleine Li-Li Abstand führt nur im Rahmen der ohne Nullpunktsenergie durchgeführten Rechnung zu einem stabilen Produkt (auch hier waren mehrere Neustarts notwendig, da das Molekül nur unter Schwierigkeiten zu einer stabilen Konfiguration konvergierte). Für reale Bedingungen ist zu erwarten, das sich das Molekül einer zweiten Lithiierung widersetzt und zerfällt. Dies stimmt mit dem tatsächlich beobachteten Verhalten des Moleküls überein. Die erste Lithiierung ist im Experiment zugänglich, beim Versuch einer Zweitlithiierung zerfällt das Molekül unter Lösung der Si-Sn Bindung.

Aus dem Zusammenspiel der unterschiedlichen Energiegewinne bei der Bildungsenthalpie dem berechneten extrem kleinen Li-Li Abstand in der dilthiierten Spezies wird deutlich, daß ${}^{t}\mathrm{Bu}_{2}(\mathrm{H})\mathrm{Sn-SiMe}_{2}-\mathrm{Sn}(\mathrm{H}){}^{t}\mathrm{Bu}_{2}$ nur monolithiiert vorliegen kann.

$\mathbf{5.2.4.4} \quad {}^{t}\mathbf{Bu}_{2}(\mathbf{H})\mathbf{Sn}\text{-}(\mathbf{SiMe}_{2})_{2}\text{-}\mathbf{Sn}(\mathbf{H}){}^{t}\mathbf{Bu}_{2}$

Abbildung 5.14: Elektrostatisches Potential von ${}^t\mathrm{Bu}_2(\mathrm{H})\mathrm{Sn}\text{-}(\mathrm{SiMe}_2)_2\text{-}\mathrm{Sn}(\mathrm{H}){}^t\mathrm{Bu}_2$

Beide Berechnungsmethoden zeigen keinen signifikanten Unterschied in der Molekülgeometrie.

5.2.4.5 ${}^{t}Bu_{2}(H)Sn-(SiMe_{2})_{2}-Sn(Li){}^{t}Bu_{2}$

Abbildung 5.15: Elektrostatisches Potential von ${}^{t}Bu_{2}(H)Sn-(SiMe_{2})_{2}-Sn(Li){}^{t}Bu_{2}$

Beide Berechnungen bestätigen hier eine energetisch ungünstige Vertwistung des Moleküls. Aus der Analyse des elektrostatischen Potentials der DFT-Berechnung ergibt sich eine stabilisierende Wechselwirkung mit der CH₃-Gruppe des benachbarten Siliziums, bei der HF-Berechnung ist eine deutlich kleinere Wechselwirkung aus dem elektrostatischen Potential zu entnehmen.

DFT HF

$\mathbf{5.2.4.6} \quad {}^{t}\mathbf{Bu}_{2}(\mathbf{Li})\mathbf{Sn-}(\mathbf{SiMe}_{2})_{2}\textbf{-}\mathbf{Sn}(\mathbf{Li}){}^{t}\mathbf{Bu}_{2}$

Abbildung 5.16: Elektrostatisches Potential von ^tBu₂(Li)Sn-(SiMe₂)₂-Sn(Li)^tBu₂

Bei diesem Molekül ergeben die beiden Berechnungsmethoden kleine Unterschiede, die aber in jedem Fall zu einer Stabilisierung der dilithiierten Form führt. Bei der Berechnung mit der DFT-Methode ist keine energetisch ungünstige Vertwistung des Moleküls vorhanden, es kommt zu einer deutlichen stabilisierenden Wechselwirkung zwischen dem Lithium und beiden CH₃-Gruppen des jeweils benachbarten Siliziums. Auch bei der HF-Berechnung wird diese Möglichkeit an einer Seite des Moleküls realisiert (zweite Graphik). Die zweite Seite des Moleküls realisiert unter leichter Vertwistung eine stabilisiernde Wechselwirkung mit einer CH₃-Gruppe des benachbarten Siliziums. Auch dies ist noch eine stabilisierende Wechselwirkung, auch wenn sie energentisch etwas ungünstiger ist, als die erste mögliche Form. Im realen Molekül wird es wahrscheinlich eine Schwingung des Moleküls geben, die zu einer leichten Vertwistung und damit einem dauernden Übergang zwischen beiden stabilisierenden Positionen führt. Die deutliche Stabilisierung dieser dilithiierten Formen drückt sich auch in den berechneten Bildungsenthalpie wieder, die zweite Lithierung führt zu einem fast dreimal größeren Energiegewinn als die Erstlithierung. Das experimentelle Ergebnis, daß ${}^{t}Bu_{2}(H)Sn-(SiMe_{2})_{2}-Sn(H){}^{t}Bu_{2}$ bei der Reaktion mit einen Lithiierungsmittel zweimal reagiert ist somit verständlich und sollte auch so erwartet werden.

Literaturverzeichnis

- ANDRAE, D.; HAEUSSERMANN, U.; DOLG, M.; STOLL, H.; PREUSS, H.: In: Theor. Chim. Acta 77 (1990), S. 123
- [2] APPELHOF, C. J.; DAVIDSON, E. R.; KATRIEL, J.: In: Int. J. Quantum Chemistry 19 (1981), S. 293
- [3] AUNER, N.; WEIS, J.: Organosilicon Chemistry From Molecules To Materials. Weinheim : Verlag Chemie, 1994
- [4] AN B. BOURY, R. J. P. C.; LECLERQ, D.; MUTIN, P. H.; PLANEIX, J. M.; VIOUX, A.: In: Organomet. 10 (1991), S. 1457
- BACHRACH, Steven M.: Enhanced web document with Chime XMol $\left[5\right]$ XYZ format. Online-Dokument (HTML-Format). Juni 2000. URL: http://hackberry.chem.trinity.edu/IJC/Text/xmolxyz.html
- [6] BARTH, Rainer ; BEIER, Ekkehard ; PAHNKE, Bettina: Grafikprogrammierung mit OpenGL. Bonn : Addison-Wesley, 1996
- BECKE, A. D.: Density-Functional Thermochemistry. III. The Role of Exact Exchange. In: J. Chem. Phys. 98 (1998), S. 5648–5652
- [8] BERGNER, A.; DOLG, M.; KUECHLE, W.; STOLL, H.; PREUSS, H.: In: Mol. Phys. 80 (1993), S. 1431
- [9] BLECKMANN, Paul ; BRAUNSCHWEIG, Michael ; HÖVENER, Dirk ; LICHTENHAGEN, Stephan ; LIESE, Thorsten ; SCHWITTEK, Christoph: LUNA-CT, Lernumgebung für die Nebenfachausbildung Chemietechnik. 1999. – Die Lernumgebung wurde im Arbeitskreis Bleckmann in den Jahren 1998 und 1999 entwickelt
- [10] BLECKMANN, Paul ; MEIER, W. ; SCHRADER, Bernhard ; TAKAHASHI, H.: In: Ber. Bunsenges. Phys. Chem. 75 (1971), S. 1279

- [11] BÖHLIG, H.; GEISELER, G.: Molekülschwingungen und Kraftkonstanten. In: Nova Acta Leopoldina (1988)
- [12] BOUGEARD, Daniel: Berechnung der Schwingungsspektern des kristallinen Haxamethylbenzols bei 300 und 110 K sowie des Hexamethylprismans, des Hexamathyl-Dewarbenzols sowie ihrer Perfluor-Derivate, Universität Dortmund, Dissertation, März 1972
- [13] BRÜGGEMANN, Tobias: Diplomarbeit, Universität Dortmund, Diplomarbeit, 2000
- [14] CARPENTER, J. E., University of Wisconsin, PhD Thesis, 1987
- [15] CARPENTER, J. E.; WEINHOLD, F.: In: J. Mol. Struct. (Theochem) 41 (1988), S. 169
- [16] CERNY, V.: In: J. Opt. Theorie Apll. 45 (1985), S. 41–51
- [17] CHASE, M. W.: NIST-JANAF: Thermochemical Tables, Forth Edition. 1998 (J. Phys. Chem. Ref. Data, Monograph 9). - 1-1951
- [18] CLAUSSEN, Ute: Programmieren mit OpenGL. Berlin : Springer, 1997
- [19] COMPUTER ASSOCIATES INTERNATIONAL, Inc.: Cosmo Software. Online-Dokument (HTML-Format). Juni 2000. – URL: http://www.cai.com/cosmo/
- [20] CROSS, P. C.; DECIUS, J. C.; WILSON, E. B.: Molecular Vibrations The Theory of Infrared and Raman Vibrational Spektra. New York : McGraw-Hill, 1955
- [21] DOLG, M.; FULDE, P.; KUECHLE, W.; NEUMANN, C.-S.; STOLL, H.: In: J. Chem. Phys. 94 (1991), S. 3011
- [22] DOLG, M.; STOLL, H.; FLAD, H.-J.; PREUSS, H.: In: J. Chem. Phys. 97 (1992), S. 1162
- [23] DOLG, M.; STOLL, H.; PREUSS, H.: In: J. Chem. Phys. 90 (1989), S. 1730
- [24] DOLG, M.; STOLL, H.; PREUSS, H.: In: Theor. Chim. Acta 85 (1993), S. 441
- [25] DOLG, M.; STOLL, H.; PREUSS, H.; PITZER, R. M.: In: J. Phys. Chem. 97 (1993), S. 5852
- [26] DOLG, M.; STOLL, H.; SAVIN, A.; PREUSS, H.: In: Theor. Chim. Acta 75 (1989), S. 173
- [27] DOLG, M.; WEDIG, U.; STOLL, H.; PREUSS, H.: In: J. Chem. Phys. 86 (1987), S. 866
- [28] DONNELY, R. A.; PARR, R. G.: In: J. Chem. Phys. 69 (1978), S. 4431

- [29] Kap. III In: DUNNING, T. H.; HAY, P. J.: Modern Theoretical Chemistry. New York : H. F. Schaefer, 1976, S. 1–28
- [30] ENGLISH, H.; ENGLISH, R.: In: *Physica* 121 (1983), S. 253
- [31] FERRIER, Gary D.; GOFFE, William L.; ROGERS, John: Global Optimization of Statistical Functions with Simulated Annealing. In: *Journal of Econometrics* 60 (1994), Jan., Nr. 1, S. 65–100
- [32] FOSTER, J. P.; WEINHOLD, F.: In: J. Amer. Chem. Soc. 102 102 (1980), S. 7211
- [33] FUENTEALBA, P. ; PREUSS, H. ; STOLL, H. ; V. SZENTPALY, L.: In: Chem. Phys. Lett. 89 (1989), S. 418
- [34] FUENTEALBA, P. ; STOLL, H. ; V. SZENTPALY, L. ; SCHWERDTFEGER, P. ; PREUSS, H.: In: J. Phys. B 16 (1983), S. 1323
- [35] FUENTEALBA, P.; V. SZENTPALY, L.; PREUSS, H.; STOLL, H.: In: J. Phys. B 18 (1985),
 S. 1287
- [36] GELATT, C. D.; KIRKPATRICK, S.; VECCHI, M. P.: In: Science 220 (1983), S. 671–680
- [37] GILBERT, T. L.: In: Phys. Rev. 312 (1975), S. 2111
- [38] GOOD, W. D.: In: J. Chem. Thermodyn. 2 (1970), S. 237–244
- [39] HABIBOLLAHZADEH, Dariush; GRICE, M. E.; CONCHA, Monica C.; MARRAY, Jane S.; POLITZER, Peter: In: J. Comp. Chem. 16(5) (1995), S. 654–658
- [40] HAEUSSERMANN, U. ; DOLG, M. ; STOLL, H. ; PREUSS, H.: In: Mol. Phys. 78 (1993), S. 1211
- [41] HASE, Hans-Lothar: Dynamische Virtuelle Welten mit VRML 2.0. Heidelberg : dpunkt Verlag für digitale Technologie GmbH, 1997 (iX Editition)
- [42] HAY, P. J.; WADT, W. R.: In: J. Chem. Phys. 82 (1985), S. 270
- [43] HAY, P. J.; WADT, W. R.: In: J. Chem. Phys. 82 (1985), S. 299
- [44] HAY, W. R. Wadt P. J.: In: J. Chem. Phys. 82 (1985), S. 284
- [45] HERMANN, Uwe: Synthese und Strukturen Ketten- und Ringförmiger Silicium-Zinn-Verbindungen, Universität Dortmund, Diplomarbeit, 2000

- [46] HOHENBERG, P.; KOHN, W.: In: Phys. Rev. 136 (1964), S. 864
- [47] IGEL-MANN, G.; STOLL, H.; PREUSS, H.: In: Mol. Phys. 65 (1988), S. 1321
- [48] Indiana University (Veranst.): The 1966 Midwest Conf. Theor. Physics Bloomington, 1966
- [49] INPRISE/BORLAND. Kylix. http://www.borland.com/kylix/
- [50] KAJZAR, F.; MESSIER, J.; ROSILIO, C.: In: J. Appl. Phys. 60 (1986), S. 3040
- [51] KAUPP, M.; V. R. SCHLEYER, P.; STOLL, H.; PREUSS, H.: In: J. Chem. Phys. 94 (1991), S. 1360
- [52] KELLER, Detlef: Simulation von Infrarot- und Ramanschwingungesspektren organischer Verbindungen (Biphenyl, Quadratsäure) an verteilten Rechnersystemen, Universität Dortmund, Diplomarbeit, Feb. 1990
- [53] KUECHLE, W.; DOLG, M.; STOLL, H.; PREUSS, H.: In: Mol. Phys. 74 (1991), S. 1245
- [54] KUECHLE, W. ; DOLG, M. ; STOLL, H. ; PREUSS, H.: In: J. Chem. Phys. 100 (1994), S. 7535
- [55] LAPPERT, M. F.; PEDLEY, J. B.; SIMPSON, J.; SPALDING, T. R.: In: J. Org. Chem. 29 (1971), S. 195–207
- [56] LEININGER, T. ; NICKLASS, A. ; STOLL, H. ; DOLG, M. ; SCHWERDTFEGER, P.: In: J. Chem. Phys. 105 (1996), S. 1052
- [57] LICHTENHAGEN, Stephan: Schwingungsdynamische Untersuchungen der Peptidbindung in Proteinen mit Hilfe der Normalkoordinatenanalyse, Universität Dortmund, Diplomarbeit, Aug. 1998
- [58] M. J. FRISCH, G. W. TRUCKS, H. B. SCHLEGEL, G. E. SCUSERIA, M. A. ROBB, J. R. CHEESEMAN, V. G. ZAKRZEWSKI, J. A. MONTGOMERY, JR., R. E. STRATMANN, J. C. BURANT, S. DAPPRICH, J. M. MILLAM, A. D. DANIELS, K. N. KUDIN, M. C. STRAIN, O. FARKAS, J. TOMASI, V. BARONE, M. COSSI, R. CAMMI, B. MENNUCCI, C. POMELLI, C. ADAMO, S. CLIFFORD, J. OCHTERSKI, G. A. PETERSSON, P. Y. AYALA, Q. CUI, K. MOROKUMA, D. K. MALICK, A. D. RABUCK, K. RAGHAVACHARI, J. B. FORESMAN, J. CIOSLOWSKI, J. V. ORTIZ, B. B. STEFANOV, G. LIU, A. LIASHENKO, P. PISKORZ, I. KOMAROMI, R. GOMPERTS, R. L. MARTIN, D. J. FOX, T. KEITH, M.

A. AL-LAHAM, C. Y. PENG, A. NANAYAKKARA, C. GONZALEZ, M. CHALLACOMBE,
P. M. W. GILL, B. JOHNSON, W. CHEN, M. W. WONG, J. L. ANDRES, C. GONZALEZ,
M. HEAD-GORDON, E. S. REPLOGLE, AND J. A. POPLE: *Gaussian 98, Revision A.6.*Gaussian, Inc., Pittsburgh PA, 1998

- [59] MACKENSTEDT, Marc: 2000. private Mitteilungen
- [60] MILLER, R. D.; MACDONNALD, S. A.: In: J. Imag. Sci. 31 (1987), S. 43
- [61] MILLER, R. D.; MICHL, J.: In: Chem. Rev 89 (1989), S. 1359
- [62] MILLER, R. D.; RABOLT, J. F.; SOORIYAKUMARAN, R.; FLEMMING, W.; FICKES, G. N. ; FARMER, B. L.; KUZMANY, H.: In: Inorg. and Organomet. Polymers ACS Sympos. Ser. (1984), S. 4
- [63] MOLE, Susan J.; ZHOU, Xuefeng; LIU, Ruifeng: In: J. Phys. Chem. 100 (1996), S. 14665–14671
- [64] MUSTAFA, R. I.; VON RAGU UND SCHLEYER, Paul: In: J. Comp. Chem. 6(3) (1985), S. 157–167
- [65] NICKLASS, A. ; DOLG, M. ; STOLL, H. ; PREUSS, H.: In: J. Chem. Phys. 102 (1995), S. 8942
- [66] PERDEW, J. P.; WANG, Y.: In: Phys. Rev. (1993), S. 13244
- [67] PITTAM, D. A.; PILCHER, G.: In: J. Chem. Soc. Faraday Trans. 1 64 (1972), S. 2224–2229
- [68] POVRAY, Team: POVRay 3.1g Documentation. Online-Hilfe (Windows Hilfe Format). Mai 1999. – Quality Settings
- [69] POVRAY, Team: POVRay 3.1g Documentation. Online-Hilfe (Windows Hilfe Format). Mai 1999. – Anti-Aliasing Options
- [70] POVRAY, Team: POVRay 3.1g for Windows. Programm. Mai 1999. URL: http://www.povray.org
- [71] RABOLT, J.; BAUMERT, J. C.; BJORKLUND, G. C.; JUNDT, D. H.; JURICH, M. C.; LOOSER, H.; MILLER, R. D.; SOORIYAKUMARAN, R.; SWALEN, J. D.; TWIEG, R. J.: In: J. Appl. Phys. Lett. (1989), S. 53
- [72] REED, A. E.; CURTISS, L. A.; WEINHOLD, F.: In: Chem. Rev. 88 (1988), S. 899

- [73] REED, A. E.; WEINHOLD, F.: In: J. Chem. Phys. 78 78 (1983), S. 4066
- [74] REED, A. E.; WEINHOLD, F.: In: J. Chem. Phys. (1983), S. 1736
- [75] REED, A. E.; WEINSTOCK, R. B.; WEINHOLD, F.: In: J. Chem. Phys. 83 83 (1985), S.
 735
- [76] SCHACHTSCHNEIDER, J. Vibrational Analysis of Polyatomic Molecules. 1964
- [77] SCHNEIDER, Jean R.: Messung und Berechnung der Infrarot- und Raman-aktiven Molekülund Gitterschwingungen des kristallinen Melamins, Universität Dortmund, Dissertation, Juli 1974
- [78] SCHRADER, Bernhard: Raman-, Infrared Atlas of Organic Compounds. Weinheim : VCH-Verlags Gesellschaft, 1989
- [79] SCHWERDTFEGER, P. ; DOLG, M. ; SCHWARZ, W. H. E. ; BOWMAKER, G. A. ; BOYD, P.
 D. W.: In: J. Chem. Phys. 91 (1989), S. 1762
- [80] SCHWITTEK, Christoph: Quantenchemische Untersuchungen metallorganischer Verbindungen, ihrer Strukturen und Reaktionen, Universität Dortmund, Dissertation, Feb. 2000
- [81] SEYFERTH, D.; LANG, H.: In: Organomet. 10 (1991), S. 551
- [82] SHIMANOUSHI, T. Computer Program for Normal Coordinate Treatment of Polyatomic Molecules. University of Tokio. 1968
- [83] SIMÕES, Martinho: "http://webbook.nist.gov/chemistry/om/". Private communications mit NIST
- [84] SLATER, J. C.: In: *Phys. Rev.* 88 (1951), S. 385
- [85] STOLL, H.; FUENTEALBA, P.; SCHWERDTFEGER, P.; FLAD, J.; V. SZENTPALY, L.; PREUSS, H.: In: J. Chem. Phys. 81 (1984), S. 2732
- [86] V. SZENTPALY, L. ; FUENTEALBA, P. ; PREUSS, H. ; STOLL, H.: In: Chem. Phys. Lett. 93 (1982), S. 555
- [87] UHLIG, F. ; KAYSER, C. ; KLASSEN, R. ; HERMANN, U. ; BRECKER, L. ; SCHÜRMANN,
 M. ; RUHLANDT-SENGE, K. ; ENGLICH, K.: In: Z. Naturforsch. 54b (1999), S. 278

- [88] WEDIG, U.; DOLG, M.; STOLL, H.; PREUSS, H.; VEILLARD, Ed. A. (Hrsg.): Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry. Reidel and Dordrecht, 1986. – 79 S
- [89] WEINHOLD, F.; CARPENTER, J. E.: The Structure of Small Molecules and Ions. Plenum 227, 1988
- [90] WEST, R.; WOLFF, A. R.: In: Appl. Organomet. Chem. 1 (1987), S. 7
- [91] WEST, R.; WOLFF, A. R.; PETERSON, D. J.: In: J. Radiat. Curing 139 (1986), S. 35
- [92] WIBERG, Kenneth B.: In: J. Comp. Chem. 5(2) (1984), S. 197–199
- [93] WILLIAMSON, Bob. Video for DOS, Release 1.7. Programm. 1995
- [94] YAJIMA, S.; HAYASHI, J.; OMORI, M.: In: Chem. Lett. (1975), S. 931
- [95] YAJIMA, S.; OKAMURA, K.; HAYASHI, J.: In: Chem. Lett. (1975), S. 1209

Anhang A

Verwendete Computer

Bei der Programmierung und Anwendung von WinNork und VisuChem wurde ein Computer mit einem Intel Celeron366 Prozessor, übertaktet auf 416 MHz, mit 128 MB RAM und dem Betriebssystem Windows NT 4.0SP6 verwendet. Für die quantenmechanischen Berechnungen wurde der arbeitskreiseigene Linuxcluster verwendet. In diesem Cluster befinden sich PC's mit AMD Athlon Prozessoren (500 und 650 Mhz) mit 64 oder 128 MB RAM. Das Betriebssystem beruht auf der SuSE Linux 6.4 Distribution.

Anhang B

Dateiformate

B.1 XYZ-Format

Der Aufbau einer XYZ-Datei sieht wie folgt aus:

- 1. Zeile: Anzahl der Atome im Molekül, Ganzzahl
- 2. Zeile: Kommentarzeile, Kann leer sein, muß aber vorhanden sein
- 3. Zeile und folgende: Atomdaten im Format:
 - Atomtyp als Atomsymbol oder Ordnungszahl erlaubt
 - X-Koordinate: Realzahl (Dezimalseparator: .)
 - Y-Koordinate: Realzahl (Dezimalseparator: .)
 - Z-Koordinate: Realzahl (Dezimalseparator: .)

Zwischen den Atomdaten muß sich mindestens ein Leerzeichen oder Tab befinden.

B.2 Erweitertes XYZ-Format

Das erweiterte XYZ-Format ist in der Art erweitert, als daß hier mehrere XYZ-Dateien direkt aneinander gefügt sind. Somit sind die einzelnen Positionen eines Films in einer Datei zusammenfaßbar. Zwischen den aneinander gefügten XYZ-Dateien sind keine Leerzeilen erlaubt, Leerzeilen am Ende der Datei sind ebenfalls nicht erlaubt. Die Zeilenendemarkierung muß das Format CR+LF haben (Dos-Format), das Unix-Format (nur LF) ist nicht möglich.

In VisuChem werden, bei Vorhandensein eines Gleichheitszeichens in der Kommentarzeile, die weiteren Zeichen als eine Energie interpretiert. Diese Werte werden graphisch aufbereitet und können somit den Verlauf der Energie in Abhängigkeit der Atompositionen zeigen. Somit ist zum Beispiel der Energieverlauf einer Reaktion visualisierbar.

Beispiel einer erweiterten XYZ-Datei:

```
7
Energy= -274.9
С
  0.000000
            0.000000
                       0.00000
  0.000000 0.000000
                       1.304300
0
  3.000000 0.000000
                       0.000000
0
  0.000000 -0.958866 -0.463006
Η
H -0.041520 0.902444 -0.569081
Η
  0.244070
            0.832094
                       1.737194
  3.083669 -0.924068
Η
                       0.331533
7
Energy= -272.8
  0.00000
С
            0.000000
                       0.000000
0
  0.000000
            0.000000
                       1.305438
0
  2.950000
            0.000000
                       0.00000
Η
  0.000000 -0.958859 -0.462690
H -0.049105 0.901796 -0.569230
  0.251423
             0.831248
                       1.735301
Η
Η
   3.025480 -0.913629
                       0.360279
7
Energy= -271.3
  0.000000
            0.000000
С
                       0.00000
  0.000000
            0.000000
0
                       1.306901
  2.900000
0
            0.000000
                       0.000000
Η
  0.000000 -0.958797 -0.462683
H -0.057171 0.901261 -0.569083
  0.264135
            0.828466
                       1.734280
Η
Η
  2.971181 -0.907080
                       0.376522
```

B.3 Eingabedatei für Glycerinaldehyd

[Output]

JobName=Glycerinaldehyd PrintBMatrix=True PrintAXSMMatrix=True PrintCartCoordinates=True PrintForceConstants=True PrintZMatrix=True CalculateZMatrix=False

[Atoms]

NumberOfAtoms=12 NumberOfAtomsInMolecule=12 Atom_1_XYZ=0.09272 -0.05138 1.00331 Atom_2_XYZ=-0.04570 0.10496 -0.54612 Atom_3_XYZ=-0.91152 -1.03530 -1.14082 Atom_4_XYZ=0.65653 1.14698 1.55561 Atom_5_XYZ=-0.67752 1.35385 -0.85462 Atom_6_XYZ=-0.45337 -2.05732 -1.61622 Atom_7_XYZ=1.61443 1.10570 1.30612 Atom_8_XYZ=-0.31096 1.96379 -0.16420 Atom_9_XYZ=0.68083 -0.94298 1.24496 Atom_10_XYZ=-0.90035 -0.16478 1.44695 Atom_11_XYZ=0.95734 0.04715 -0.99253 Atom_12_XYZ=-1.99620 -0.83866 -1.08977 Atom 1 Mass=12,0110 Atom_1_Name=C Atom_2_Mass=12.0110 Atom_2_Name=C Atom_3_Mass=12.0110 Atom_3_Name=C Atom_4_Mass=15.9994 Atom_4_Name=0 Atom_5_Mass=15.9994 Atom_5_Name=0 Atom_6_Mass=15.9994 Atom 6 Name=0 Atom_7_Mass=1.0079 Atom_7_Name=H Atom_8_Mass=1.0079 Atom_8_Name=H Atom_9_Mass=1.0079 Atom_9_Name=H Atom_10_Mass=1.0079 Atom_10_Name=H Atom_11_Mass=1.0079 Atom_11_Name=H Atom_12_Mass=1.0079 Atom_12_Name=H NextAtomIndex_1=0 NextAtomIndex_2=0

NextAtomIndex_3=0 NextAtomIndex_4=0 NextAtomIndex_5=0 NextAtomIndex_6=0 NextAtomIndex_7=0 NextAtomIndex_8=0 NextAtomIndex_9=0 NextAtomIndex_10=0 NextAtomIndex_11=0 NextAtomIndex_12=0 [ForceConstants] NumberOfForceConstants=15 F_1=6.440000 F_2=5.090000 F_3=4.688000 F_4=4.261000 F_5=0.760000 F_6=0.961000 F_7=1.182000 F_8=0.718000 F_9=0.471000 F_10=1.200000 F_11=0.026000 F_12=0.024000 F_13=0.517290 F_14=11.505000 F_15=1.071000 Name_1=0-H Name_2=C-0 Name_3=C-H Name_4=C-C Name_5=C-O-H Name_6=H-C-O Name_7=C-C-O Name_8=H-C-C Name_9=H-C-H Name_10=H-C-O(ald) Name_11=C-Otor Name_12=C-Ctor Name_13=C-H,C,O-opl Name_14=C=0 Name_15=C-C-C [Vibrations]

NumberOfBondVibrations=11 Vibration_1=1 2 Vibration_2=2 3 Vibration_3=6 3 Vibration_4=5 2

Vibration_5=4 1 Vibration_6=9 1 Vibration_7=10 1 Vibration_8=11 2 Vibration_9=12 3 Vibration_10=7 4 Vibration_11=8 5 [Deformations] NumberOfDeformations=17 Deformation_1=6 3 12 Deformation_2=6 3 2 Deformation_3=12 3 2 Deformation_4=1 2 3 Deformation_5=5 2 1 Deformation_6=5 2 3 Deformation_7=5 2 11 Deformation_8=3 2 11 Deformation_9=11 2 1 Deformation_10=4 1 9 Deformation_11=4 1 10 Deformation_12=4 1 2 Deformation_13=9 1 10 Deformation_14=10 1 2 Deformation_15=9 1 2 Deformation_16=7 4 1 Deformation_17=8 5 2 [LinearDeformations] NumberOfLinearDeformations=0 [OutOfPlane] NumberOfOutOfPlaneVibrations=1 OutOfPlane_1=3 2 6 12 [Torsions] NumberOfTorsions=4 FirstAtom_1=3 $SecondAtom_1=2$ Ligands_FirstAtom_1= 6 12 Ligands_SecondAtom_1= 1 5 11 FirstAtom_2=2 SecondAtom_2=1 Ligands_FirstAtom_2= 3 5 11 Ligands_SecondAtom_2= 4 9 10 FirstAtom_3=5 $\texttt{SecondAtom}_3=2$ Ligands_FirstAtom_3= 8 Ligands_SecondAtom_3= 1 3 11 FirstAtom_4=4 SecondAtom_4=1 Ligands_FirstAtom_4= 7 Ligands_SecondAtom_4= 2 9 10

[ZMatrix]

NumberOfZElementsNotZero=33 ForceConstantNumber_1_1=4 ForceConstantNumber_2_2=4 ForceConstantNumber_3_3=2 ForceConstantNumber_4_4=2 ForceConstantNumber_5_5=2 ForceConstantNumber_6_6=3 ForceConstantNumber_7_7=3 ForceConstantNumber_8_8=3 ForceConstantNumber_9_9=3 $ForceConstantNumber_10_10=1$ ForceConstantNumber_11_11=1 ForceConstantNumber_12_12=6 ForceConstantNumber_13_13=7 ForceConstantNumber_14_14=8 ForceConstantNumber_15_15=15 ForceConstantNumber_16_16=7 ForceConstantNumber_17_17=7 ForceConstantNumber_18_18=6 ForceConstantNumber_19_19=8 ForceConstantNumber_20_20=8 ForceConstantNumber_21_21=6 ForceConstantNumber_22_22=6 ForceConstantNumber_23_23=7 ForceConstantNumber_24_24=9 ForceConstantNumber_25_25=8 ForceConstantNumber_26_26=8 ForceConstantNumber_27_27=5 ForceConstantNumber_28_28=5 ForceConstantNumber_29_29=13 ForceConstantNumber_30_30=12 ForceConstantNumber_31_31=12 ForceConstantNumber_32_32=11 ForceConstantNumber_33_33=11 ForceConstantFaktor_1_1=1 ForceConstantFaktor_2_2=1 ForceConstantFaktor 3 3=1 ForceConstantFaktor_4_4=1 ForceConstantFaktor_5_5=1 ForceConstantFaktor_6_6=1 ForceConstantFaktor_7_7=1 ForceConstantFaktor_8_8=1 ForceConstantFaktor_9_9=1 ForceConstantFaktor_10_10=1 ForceConstantFaktor_11_11=1 ForceConstantFaktor_12_12=1 ForceConstantFaktor_13_13=1 ForceConstantFaktor_14_14=1 ForceConstantFaktor_15_15=1 ForceConstantFaktor_16_16=1 ForceConstantFaktor_17_17=1

ForceConstantFaktor_18_18=1 ForceConstantFaktor_19_19=1 ForceConstantFaktor_20_20=1 ForceConstantFaktor_21_21=1 ForceConstantFaktor_22_22=1 ForceConstantFaktor_23_23=1 ForceConstantFaktor_24_24=1 ForceConstantFaktor_25_25=1 ForceConstantFaktor_26_26=1 ForceConstantFaktor_27_27=1 ForceConstantFaktor_28_28=1 ForceConstantFaktor_29_29=1 $ForceConstantFaktor_30_30=1$ ForceConstantFaktor_31_31=1 ForceConstantFaktor_32_32=1 ForceConstantFaktor_33_33=1

[SymmetryRace_1] PrintUMatrix=True PrintBUMatrix=True PrintPED=True PrintJAC=True UnitMatrix=True NameOfRace=A1

B.4 Reduzierte Eingabedatei für Methan

[Output] JobName=Methan PrintBMatrix=True PrintAXSMMatrix=True PrintZMatrix=True PrintCartCoordinates=True PrintForceConstants=True CalculateZMatrix=False

[SymmetryRace_1] NameOfRace=A1 PrintUMatrix=True PrintBUMatrix=True PrintPED=True PrintJAC=True PrintLX=True UnitMatrix=True

[Atoms] NumberOfAtoms=5 NumberOfAtomsInMolecule=5 Atom_1_Name=H Atom_1_Mass= 1.0080 Atom_1_XYZ=0.6255000 0.6255000 0.6255000 NextAtomIndex_1=0 Atom_2_Name=C Atom_2_Mass= 12.0100 Atom_2_XYZ=0.0000000 0.0000000 0.0000000 NextAtomIndex_2=0 Atom_3_Name=H Atom_3_Mass= 1.0080 Atom_3_XYZ=-0.6255000 -0.6255000 0.6255000 NextAtomIndex_3=0 Atom_4_Name=H Atom_4_Mass= 1.0080 Atom_4_XYZ=-0.6255000 0.6255000 -0.6255000 NextAtomIndex_4=0 Atom_5_Name=H Atom_5_Mass= 1.0080 Atom_5_XYZ=0.6255000 -0.6255000 -0.6255000 NextAtomIndex_5=0

[Vibrations] NumberOfBondVibrations=4 Vibration_1=1 2 Vibration_2=2 3 Vibration_3=2 4 Vibration_4=2 5

[Deformations]

 NumberOfDeformations=6

 Deformation_1=1
 2
 3

 Deformation_2=1
 2
 4

 Deformation_3=1
 2
 5

 Deformation_5=3
 2
 5

 Deformation_6=4
 2
 5

[LinearDeformations] NumberOfLinearDeformations=0

[OutOfPlane] NumberOfOutOfPlaneVibrations=0

[Torsions] NumberOfTorsions=0

[ZMatrix]

ForceConstantNumber_1_1=1 ForceConstantNumber_2_2=1 ForceConstantNumber_3_3=1 ForceConstantNumber_4_4=1 ForceConstantNumber_5_5=2 ForceConstantNumber_6_6=2 ForceConstantNumber_7_7=2 ForceConstantNumber_8_8=2 ForceConstantNumber_9_9=2 ForceConstantNumber_9_9=2 ForceConstantNumber_10_10=2 NumberOfZElementsNotZero=10

[ForceConstants] NumberOfForceConstants=2 F_1=4.745993 F_2=0.513137 Name_1=H-C-Name_2=H-C-H

[OptParams] Optimize=True BZDF_1=3040 BZDF_2=3000 BZDF_3=2950 BZDF_4=2840 BZDF_5=1340 BZDF_6=1340 BZDF_6=1310 BZDF_8=1310 BZDF_9=1310 BZDF_10=0 BZDF_11=0 BZDF_12=0 BZDF_13=0 BZDF_14=0 BZDF_15=0 LB_1=0.0005 LB_2=0.0005 UB_1=14.499 UB_2=10.504 [SimulatedAnnealing] IPRINT=0 NEPS=4 EPS=0.01 T=0.1 NT=2 RT=0.50 VMI=0.1 MAXEVL=100000

Anhang C

Kraftkonstantendatenbank

Die computergestützte Version der Datenbank enthält Molekülbilder, um die jeweils benötigte Kraftkonstante leichter bestimmen zu können. Ebenso kann ein kurzer Kommentar abgespeichert werden, z.B. Die Summenformel oder der verwendete Optimierer.

C.1 Valenzkraftkonstanten

Atom 1	Atom 2	Kraftkonstante	Beschreibung
		$[\rm N~cm^{-1}~]$	
С	С	4.174	Einfachbindung aus Propen
\mathbf{C}	С	4.417	Einfachbindung aus Acetaldehyd
\mathbf{C}	С	4.488	Aromatische Bindung aus Phenol
\mathbf{C}	С	4.550	Aromatische Bindung aus Benzol
\mathbf{C}	С	4.556	Einfachbindung aus Aceton
\mathbf{C}	С	4.750	Einfachbindung aus Benzoesäure
\mathbf{C}	С	4.987	Einfachbindung aus trans-But-2-en
\mathbf{C}	С	5.174	Einfachbindung aus Toluol
\mathbf{C}	С	5.424	Einfachbindung aus cis-But-2-en
С	С	5.600	Einfachbindung aus Essigsäure
С	С	6.234	Einfachbindung aus Ethan

Atom 1	Atom 2	Kraftkonstante	Beschreibung
		$[\rm N~cm^{-1}~]$	
С	С	6.446	Doppelbindung aus trans-But-2-en
С	С	7.277	Doppelbindung aus cis-But-2-en
С	С	8.049	Doppelbindung aus Propen
С	С	8.837	Doppelbindung aus Ethen
С	Н	4.266	Einfachbindung aus Acetaldehyd
С	Н	4.505	Einfachbindung aus Methanol
С	Н	4.514	Einfachbindung aus Ethan
С	Н	4.525	Einfachbindung aus Toluol
С	Н	4.530	Einfachbindung aus trans-But-2-en
С	Н	4.541	Einfachbindung aus Ameisensäuremethylester
С	Н	4.587	Einfachbindung aus cis-But-2-en
С	Н	4.610	Einfachbindung aus Acetaldehyd
С	Н	4.614	Einfachbindung aus trans-But-2-en
С	Н	4.620	Einfachbindung aus Methoxybenzol
С	Н	4.630	Einfachbindung aus cis-But-2-en
С	Н	4.646	Einfachbindung aus Propen
С	Н	4.675	Einfachbindung aus Ameisensäure
С	Н	4.700	Einfachbindung aus Propen
С	Н	4.716	Einfachbindung aus Propen
С	Н	4.739	Einfachbindung aus Ameisensäuremethylester
С	Н	4.825	Einfachbindung aus Aceton
С	Н	4.836	Einfachbindung aus Essigsäure
С	Н	4.901	Einfachbindung aus Methan
С	Н	4.968	Einfachbindung aus Benzol
С	Н	5.000	Einfachbindung aus Toluol
С	Н	5.050	Einfachbindung aus Ethen
С	Н	5.085	Einfachbindung aus Methoxybenzol
С	Н	5.125	Einfachbindung aus Phenol
С	Н	5.168	Einfachbindung aus Propen
С	0	4.600	Einfachbindung aus Methoxybenzol
С	0	5.266	Einfachbindung aus Ameisensäuremethylester
С	Ο	5.291	Einfachbindung aus Phenol

Atom 1	Atom 2	Kraftkonstante	Beschreibung
		$[\rm N~cm^{-1}~]$	
С	0	5.569	Einfachbindung aus Ameisensäuremethylester
\mathbf{C}	Ο	5.710	Einfachbindung aus Methanol
\mathbf{C}	Ο	5.852	Einfachbindung aus Methoxybenzol
\mathbf{C}	Ο	7.000	Einfachbindung aus Benzoesäure
\mathbf{C}	Ο	7.000	Doppelbindung aus Benzoesäure
\mathbf{C}	Ο	7.662	Einfachbindung aus Ameisensäure
\mathbf{C}	Ο	8.103	Doppelbindung aus Acetaldehyd
\mathbf{C}	Ο	8.424	Einfachbindung aus Essigsäure
\mathbf{C}	Ο	8.953	Doppelbindung aus Essigsäure
\mathbf{C}	Ο	8.775	Doppelbindung aus Aceton
\mathbf{C}	Ο	9.688	Doppelbindung aus Ameisensäuremethylester
\mathbf{C}	Ο	13.523	Doppelbindung aus Ameisensäure
Н	Ο	7.216	Einfachbindung aus Ameisensäure
Н	Ο	7.220	Einfachbindung aus Phenol
Н	Ο	7.238	Einfachbindung aus Benzoesäure
Η	Ο	7.244	Einfachbindung aus Essigsäure
Н	Ο	7.380	Einfachbindung aus Methanol

Tabelle C.1: Valenzkraftkonstantendatenbank

C.2 Deformationskraftkonstanten

Atom 1	Atom Z	Atom 2	Kraftkonstante	Beschreibung
			$[\rm N~cm^{-1}~]$	
С	С	С	1.263	Propen
С	\mathbf{C}	С	1.409	Methoxybenzol
С	\mathbf{C}	С	1.782	Toluol
С	\mathbf{C}	С	1.797	Benzoesäure
С	\mathbf{C}	С	1.825	Benzoesäure
С	С	С	2.071	Phenol

Atom 1	Atom Z	Atom 2	Kraftkonstante	Beschreibung
			$[\rm N~cm^{-1}~]$	
С	С	С	2.165	Aceton
С	С	С	2.215	trans-But-2-en
С	\mathbf{C}	С	3.010	Benzol
С	С	Η	0.202	Benzol
С	С	Н	0.205	Methoxybenzol
С	\mathbf{C}	Η	0.214	Benzoesäure
С	С	Н	0.223	Toluol
С	С	Н	0.229	Phenol
С	С	Н	0.500	trans-But-2-en
С	С	Н	0.519	Acetaldehyd
С	С	Н	0.534	Ethan
С	С	Н	0.550	cis-But-2-en
С	С	Н	0.607	Aceton
С	\mathbf{C}	Η	0.653	trans-But-2-en
С	\mathbf{C}	Η	0.665	Essigsäure
С	\mathbf{C}	Η	0.701	trans-But-2-en
С	С	Н	0.704	cis-But-2-en
С	С	Н	0.708	Toluol
С	С	Н	0.733	Ethen
С	С	Н	0.761	Propen
С	С	Н	0.786	Acetaldehyd
С	С	Н	0.954	Propen
С	С	Н	1.059	Propen
С	\mathbf{C}	Η	1.120	Propen
С	\mathbf{C}	Η	1.332	trans-But-2-en
С	\mathbf{C}	0	0.581	Phenol
С	С	0	0.929	Essigsäure
С	С	0	0.971	Essigsäure
С	С	0	1.033	Acetaldehyd
С	С	0	1.100	Methoxybenzol
С	С	0	1.469	Aceton
\mathbf{C}	С	Ο	1.500	Benzoesäure

124

Atom 1	Atom Z	Atom 2	Kraftkonstante	Beschreibung
			$[\rm N~cm^{-1}~]$	
С	С	0	1.500	Benzoesäure
Н	\mathbf{C}	Н	0.304	Propen
Η	С	Н	0.408	Ethen
Н	С	Н	0.465	Acetaldehyd
Η	С	Η	0.467	Ameisensäuremethylester
Η	С	Η	0.472	Toluol
Η	С	Н	0.500	Methan
Η	С	Н	0.513	Methanol
Н	С	Н	0.518	Essigsäure
Η	С	Η	0.519	Methoxybenzol
Η	С	Η	0.533	trans-But-2-en
Η	С	Η	0.569	Aceton
Н	С	0	0.252	${\it Ame is ens} \ddot{a} ure methyle ster$
Η	С	0	0.407	Acetaldehyd
Η	С	0	0.756	Ameisensäuremethylester
Η	С	0	0.765	Ameisensäuremethylester
Η	С	0	0.820	Ameisensäure
Η	С	0	0.978	Methoxybenzol
Н	С	0	1.162	Methanol
Н	С	0	1.237	Ameisensäure
0	С	0	1.586	Ameisensäuremethylester
0	С	0	1.679	Benzoesäure
0	С	0	1.970	Essigsäure
0	С	0	3.311	Ameisensäure
С	0	С	1.983	Ameisensäuremethylester
С	0	С	2.5	Methoxybenzol
С	0	Н	0.775	Ameisensäure
С	0	Н	0.778	Phenol
С	0	Н	0.830	Benzoesäure
С	0	Н	0.845	Essigsäure
С	0	Н	0.909	Methanol

Tabelle C.2: Deformationskraftkonstantendatenbank

Atom Z	Atom 1	Atom 2	Atom 3	Kraftkonstante	Beschreibung
				$[\rm N~cm^{-1}~]$	
С	С	С	С	1.278	Benzoesäure
С	С	С	С	1.445	Toluol
С	С	С	Н	0.283	Propen
С	С	С	Η	0.368	Methoxybenzol
С	С	С	Η	0.394	Benzol
С	С	С	Η	0.440	Phenol
С	С	С	Н	0.458	Benzoesäure
С	С	С	Н	0.533	Toluol
С	С	С	Н	0.597	cis-But-2-en
С	С	С	Н	0.891	trans-But-2-en
С	С	С	Ο	0.907	Methoxybenzol
С	С	С	0	1.500	Phenol
\mathbf{C}	С	С	0	1.819	Aceton
С	С	Η	Η	0.418	Ethen
С	С	Η	Η	0.488	Propen
С	С	Η	0	0.955	Acetaldehyd
С	С	0	0	0.493	Essigsäure
С	С	0	Ο	0.733	Benzoesäure
С	Н	Ο	Ο	0.385	Ameisensäuremethylester
С	Н	0	0	0.439	Ameisensäure

C.3 Out-of-plane Kraftkonstanten

Tabelle C.3: Out-of-plane-Kraftkonstantendatenbank

C.4 Torsionskraftkonstanten

Atom 1	Liganden 1	Atom 2	Liganden 2	Kraftkonstante	Beschreibung
				$[\rm N~cm^{-1}~]$	
С	СН	С	СС	0.300	Toluol
С	СН	С	СС	0.609	Benzoesäure
С	СН	С	СН	0.540	Benzol
				Η	Fortsetzung auf nächster Seite

Fort	setzung
------	---------

Atom 1	Liganden 1	Atom 2	Liganden 2	Kraftkonstante	Beschreibung
				$[\rm N~cm^{-1}~]$	
С	СН	С	СН	0.683	Methoxybenzol
С	СН	С	СH	0.734	Phenol
С	СН	С	СH	0.800	Benzoesäure
С	СН	С	СH	0.896	Toluol
С	СН	С	СH	1.194	trans-But-2-en
С	СН	С	СH	1.347	cis-But-2-en
С	СН	С	СО	0.700	Methoxybenzol
С	СН	С	НН	1.079	Propen
С	НН	С	НН	1.009	Ethen
С	ННН	С	СС	1.138	Toluol
С	ННН	С	СН	1.080	trans-But-2-en
С	ННН	С	СН	1.169	cis-But-2-en
С	ННН	С	СН	1.388	Propen
С	ННН	С	СО	2.073	Aceton
С	ННН	С	ННН	1.766	Ethan
С	ННН	С	ОН	1.480	Acetaldehyd
С	ННН	С	0 0	1.540	Essigsäure
С	0 0	С	СС	1.886	Benzoesäure
С	C C	Ο	С	0.900	Methoxybenzol
С	СС	Ο	Н	0.305	Phenol
С	СО	Ο	Н	0.824	Essigsäure
С	СО	Ο	Н	1.059	Benzoesäure
С	ННН	Ο	С	0.349	Ameisensäuremethylester
С	ННН	Ο	Н	0.157	Methanol
С	ННН	Ο	0	0.562	Methoxybenzol
С	ОН	Ο	\mathbf{C}	0.507	Ameisensäuremethylester
С	ОН	Ο	Н	0.264	Ameisensäure

 $Tabelle \ C.4: \ Torsionskraftkonstantendatenbank$

Anhang D

Wibergfragmente

Alle Fragmente sind nur für HF-Berechnungen in Verbindung mit dem SDD-Basissatz [1,8,21-27,29,33-35,40,47,51,53,54,56,65,79,85,86,88] verwendbar.

Fragment	$E_{\rm i}^{\rm Fraq}$ [a.u.]	Ausgangsverbindung
$Methyl^p$	-39.5872346 [13]	Ethan [67]
$Methyl^s$	-37.8623256 [13]	Propan [67]
$Methyl^q$	-37.8623256 [13]	2,2-Dimethylpropan [38]
Sn	-3.304070963 [13]	Tetramethylstannan [55]
Si	-288.8861005	Tetramethylsilan [17]
Li	-7,443235553	Ethyllithium [83]
Н	-0.57003926 [13]	Methan [39]

Tabelle D.1: Verwendete Wibergfragmente

Anhang E

Spektren

Hier befindet sich die in 5.1.3 verkleinert abgebildeten Spektren ohne eingezeichnete Linien des berechneten Spektrums.

Verwendetes Spektrometer: Bruker IFS 66

E.1 5-Hydroxy-Salicylsäure

Abbildung E.1: Gemessenes Spektrum 5-Hydroxy-Salicylsäure

E.2 5-Hydroxy-Salicylsäureethylester

Abbildung E.2: Gemessenes Spektrum 5-Hydroxy-Salicylsäureethylester

Abbildung E.3: Gemessenes Spektrum 5-(p-Vinylbenzyloxy)-Salicylsäureethylester

E.4 Copolymer

Abbildung E.4: Gemessenes Spektrum Copolymer

E.5 Danksagung

Ich danke Herrn Prof. Dr. P. Bleckmann für die stete Unterstützung und Förderung bei der Erstellung dieser Arbeit.

Herrn Prof. Dr. A. Geiger danke ich für die Übernahme des Zweitgutachtens.

Den Mitgliedern des Arbeitskreises Bleckmann danke ich für das gute Arbeitsklima und die Kollegialität.

Herrn Dipl.-Chem. Tobias Brüggemann danke ich insbesondere für seine Mühe beim Korrekturlesen dieser Arbeit.

Meinen Eltern danke ich für das Verständnis und die Geduld während der Erstellung dieser Arbeit.