Darstellung von Sauerstoff-Heterocyclen durch rhodiumkatalysierte Tandem-Hydroformylierung von ungesättigten Alkoholen

Dissertation

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) des Fachbereichs Chemie der Universität Dortmund

vorgelegt von

Rafael Roggenbuck aus Gelsenkirchen

Dortmund 2001

Referent:

Korreferent:

Tag der mündlichen Prüfung:

Prof. Dr. P. Eilbracht Prof. Dr. N. Krause

19. Juli 2001

Die vorliegende Arbeit entstand auf Anregung und unter Leitung von Herrn Prof. Dr. P. Eilbracht in der Zeit vom Juli 1998 bis Juni 2001 am Lehrstuhl für Organische Chemie I der Universität Dortmund.

Mein herzlicher Dank gilt Herrn Prof. Dr. P. Eilbracht für die Vergabe der interessanten und herausfordernden Aufgabenstellung, die große Freiheit bei der Durchführung der Arbeit, sowie für zahlreiche Anregungen und Diskussionen.

Herrn Prof. Dr. N. Krause danke ich für die freundliche Übernahme des Korreferates.

Mein besonderer Dank gilt Frau E. van Haren und Frau M. Hanstein für die Darstellung zahlreicher Ausgangsverbindungen, ohne die diese umfangreiche Arbeit nicht hätte durchgeführt werden können.

Weiterhin danke ich Herrn J. Türk für seine engagierte experimentelle Unterstützung im Rahmen seines Wahlpflichtpraktikums.

Für die Ausführung der analytischen und spektroskopischen Arbeiten danke ich desweiteren den Mitarbeitern der Gemeinsamen Einrichtungen und der Organischen Chemie der Universität Dortmund, insbesondere Frau A. Bokelmann, Herrn Priv. Doz. Dr. B. Costisella, Frau A. Danzmann, Herrn M. Hüffner, Herrn D. Köpke und Herrn P. Urschel.

Für die gute Zusammenarbeit im Rahmen einer Kooperation und die zahlreichen Diskussionen bedanke ich mich herzlich bei Herrn Priv. Doz. Dr. B. Schmidt und Herrn H. Wildemann.

Nicht zuletzt möchte ich mich bei allen Kolleginnen und Kollegen im Arbeitskreis und im Fachbereich bedanken, die auf vielfältige Art zum Gelingen dieser Arbeit beigetragen haben. Insbesondere waren Herr A. Schmidt, Herr Dr. C. Kranemann, Herr Dr. C. Hollmann, Herr Dr. C. Buß, Herr K.-S. Müller, Herr F. Koc, Frau S. Fresu, Herr S. Scognamillo, Herr G. Angelovski, Herr A. M. Schmidt, Herr M. Keränen und Frau S. Kuhl durch ihre Diskussions- und Hilfsbereitschaft eine große Unterstützung.

1 Ei	nleitung und Problemstellung	1
2 TI	heoretischer Teil	9
2.1	Darstellung von unterschiedlichen Perhydrofuro[2,3-b]furan- und	
	Perhydrofuro[2,3-b]pyran-Systemen	9
2.1.1	Allgemeines	9
2.1.2	2 Darstellung verschiedener 2-Alken-1,5-diole	11
2.1.3	B Hydroformylierung der 2-Alken-1,5-diole	
2.1.4	Hydroformylierung von 2-Alkin-1,5-diolen	
2.1.5	Darstellung symmetrischer 3-Alken-1,6-diole	
2.1.6	5 Darstellung unsymmetrischer 3-Alken-1,6-diole	
2.1.7	Hydroformylierung symmetrischer 3-Alken-1,6-diole	30
2.1.8	B Hydroformylierung unsymmetrischer 3-Alken-1,6-diole	
2.2	Tetrahydrofuransubstituierte Fünf- oder Sechsring-Hemiacetale	
2.2.1	Allgemeines	
2.2.2	2 Darstellung verschiedener Tetrahydrofuranylalkenole	
2.2.3	Hydroformylierung der Tetrahydrofuranylalkenole	39
2.3	Reaktionen von Divinylglykolen und Bisallylglykolen	42
2.3.1	Allgemeines	42
2.3.2	2 Darstellung einfacher Divinylglykole	
2.3.3	B Hydroformylierung einfacher Divinylglykole	
2.3.4	Darstellung einfacher Bisallylglykole	
2.3.5	Hydroformylierung einfacher Bisallylglykole	52
2.4	Darstellung benzanellierter bicyclischer Acetale	56
2.4.1	Allgemeines	56
2.4.2	Synthese verschiedener o-Hydroxyphenylalkenole	57
2.4.3	Synthese von 2-Hydroxynaphthylalkenolen	58
2.4.4	Synthese von <i>o</i> -Hydroxyarylalkenolen	59
2.4.5	Hydroformylierung von o-Hydroxyphenylalkenolen	59
2.4.6	6 Hydroformylierung von 2-Hydroxynaphthylalkenolen	63

2.4.7	Hydroformylierung von 4-Methoxy-2-Hydroxyphenylalkenolen	64
2.5 R	eaktionen von 3-Methylen-1,5-diolen	65
2.5.1	Allgemeines	65
2.5.2	Darstellung von 3-Methylen-1,5-diolen	66
2.5.3	Hydroformylierung von 2,6-Dimethyl-4-methylenheptan-2,6-diol	67
2.6 Da	arstellung von spirocyclischen O-Heterocyclen	68
2.6.1	Allgemeines	68
2.6.2	Versuch der Darstellung von 2-Vinyl-und 2-Allyl-lactolen	69
2.6.3	Umsetzung von (2S*, 4S*)-2-Allyl-4-methyltetrahydro-2 <i>H</i> -pyran-2-ol	70
2.6.4	Hydroformylierung von Bisvinyl- und Bisallylcarbinolen	72
2.6.5	Kombination von Ringschlussmetathese und Hydroformylierung	73
2.6.6	Darstellung monocyclischer Substrate mittels Ringschlussmetathese	73
2.6.7	Hydroformylierung der Allylalkohole aus der Ringschlussmetathese	75
3 Zus	ammenfassung und Ausblick	78
4 Exp	perimenteller Teil	87
4.1 A	lgemeine Bemerkungen	87
4.1.1	Spektroskopische und analytische Methoden	87
4.1.2	Chromatographische Methoden	
4.1.3	Allgemeine Arbeitsweisen	
4.1.4	Ausgangsmaterialien und Reagenzien	89
4.2 Da	arstellung von Perhydrofuro[2,3- <i>b</i>]furanen	90
4.2.1	Darstellung verschiedener 2-Alken-1,5-diole	90
4.2.2	Hydroformylierung der 2-Alken-1,5-diole	101
4.3 Da	arstellung von Perhydrofuro[2,3- <i>b</i>]pyranen	112
4.3.1	Darstellung symmetrischer 3-Alken-1,6-diole	112
4.3.2		
	Darstellung unsymmetrischer 3-Alken-1,6-diole	116
4.3.3	Darstellung unsymmetrischer 3-Alken-1,6-diole Hydroformylierung symmetrischer 3-Alken-1,6-diole	116 126

4.4	Te	trahydrofuransubstituierte Fünf- und Sechsringhemiacetale	137				
4.4	4.1	Darstellung von Tetrahydrofuran-2-carbaldehyd	137				
4.4	4.2	Darstellung von Tetrahydrofuranylalkenolen	139				
4.4	4.3	Hydroformylierung der Tetrahydrofuranylalkenole	144				
4.5	Re	aktionen von Divinylglykolen	152				
4.5	5.1	Darstellung einfacher Divinylglykole	152				
4.5	5.2	Hydroformylierung der Divinylglykole	158				
4.6	Re	aktionen von Bisallylglykolen	165				
4.6	5.1	Darstellung einfacher Bisallylglykole	165				
4.6	5.2	Hydroformylierung der Bisallylglykole	167				
4.7	Da	rstellung benzanellierter bicyclischer Acetale	172				
4.7	7.1	Darstellung verschiedener o-Hydroxyphenylalkenole	172				
4.7	7.2	Darstellung von 2-Hydroxy-naphthyl-alkenolen	176				
4.7	7.3	Darstellung von 4-Methoxy-2-hydroxyphenylalkenolen					
4.7	7.4	Hydroformylierung der o-Hydroxyphenylalkenole					
4.7	7.5	Hydroformylierung der 2-Hydroxy-naphthyl-alkenole					
4.7	7.6	Hydroformylierung der 4-Methoxy-2-hydroxyphenylalkenole	196				
4.8	Re	aktionen von 3-Methylen-1,5-diolen	198				
4.8	8.1	Darstellung von 3-Methylen-1,5-diolen	198				
4.8	8.2	Hydroformylierung der 3-Methylen-1,5-diole	199				
4.9	Da	rstellung von Spiro-Oxaheterocyclen	200				
4.9	9.1	Versuche zur Darstellung von 2-Alkenyllactolen	200				
4.9	9.2	Darstellung von 1,1-Bisalkenyl-butan-1,4-diolen	201				
4.9	9.3	Darstellung von 1,1-Bisalkenyl-pentan-1,5-diolen	202				
4.9	9.4	Umsetzung von (2 <i>S</i> *, 4 <i>S</i> *)-2-Allyl-4-methyltetrahydro-2 <i>H</i> -pyran-2-ol	203				
4.9	9.5	Hydroformylierung von 1,1-Bisalkenyl-butan-1,4-diolen					
4.9	9.6	Hydroformylierung von 1,1-Bisalkenyl-pentan-1,5-diolen	206				
4.10	Da	arstellung spirocyclischer Di- und Tetrahydropyrane	207				
4.1	10.1	Hydroformylierung von Vinyldihydro- und Vinyltetrahydropyranen	207				

5	Anhang218
	Daten zur Kristallstruktur von (5 <i>S</i> *, 6 <i>R</i> *)-1,7-Dioxadispiro[4.0.4.4]tetradecan-2,8-
	dion (69)
6	Literatur

Abkürzungen und Symbole

AAV	Allgemeine Arbeitsvorschrift
Abb.	Abbildung
abs.	absolut
Ac	Acetyl
acac	Acetylacetonato
bs	breit stark, breites Singulett (IR, NMR)
Bu	Butyl
cm	Zentimeter
cod	1,5-Cyclooctadien
COSY	Correlated Spectroscopy
Cq	quartäres Kohlenstoffatom (¹³ C-NMR)
d	Dublett (NMR)
dd	Dublett von Dubletts (NMR)
δ	Chemische Verschiebung
DHP	Dihydropyran
DIBAH	Diisobutylaluminiumhydrid
DMSO-d ₆	Hexadeuterodimethylsulfoxid
EI	Elektronenstoßionisation
Et	Ethyl
Eu(hfc) ₃	Tris-[3-(heptafluorpropyl-hydroxymethylen)-(+)-camphorato]-
	europium (chirales Shift-Reagenz, NMR)
FID	Flammenionisationsdetektor
FT	Fouriertransformation
GC	Gaschromatographie
h	Stunde
IR	Infrarotspektroskopie
J	Kopplungskonstanten (NMR)
КОН	Kaliumhydroxid
LM	Lösemittel
m	mittelstark (IR), Multiplett (NMR)
М	Molarität

\mathbf{M}^+	Molekülmasse (MS)
Me	Methyl
ml	Milliliter
min	Minute
<i>m</i> -CPBA	meta-Chlorperbenzoesäure
MTBE	Methyl-tert-butylether
NMO	N-Methylmorpholinoxid
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Effect Spectroscopy
\widetilde{v}	Wellenzahl (IR)
o-DPPB	ortho-Diphenyphosphanylbenzoat
p	Druck
PE	Petrolether
Ph	Phenyl
ppm	parts per million
<i>p</i> -TsOH	para-Toluolsulfonsäure
q	Quartett (NMR)
RFT	Rückflusstemperatur
RT	Raumtemperatur
S	stark (IR), Singulett (NMR)
Sdp.	Siedepunkt
Schmp.	Schmelzpunkt
sept	Septett
t	Reaktionszeit, Triplett (NMR)
Т	Temperatur
THF	Tetrahydrofuran
TPAP	Tetrapropylammoniumperruthenat
V	Versuch
vs	sehr stark (IR)
W	schwach (IR)

1 Einleitung und Problemstellung

Die Hydroformylierung (Oxo-Reaktion) von Olefinen hat sich seit ihrer Entdeckung 1938 durch *Roelen*¹ zu einem der größten industriellen Prozesse im Bereich der homogenen Katalyse entwickelt.² In einer atomökonomischen Transformation³ entstehen aus preisgünstigen Ausgangsverbindungen unter Übergangsmetallkatalyse primär die Oxo-Aldehyde. Als Edukte finden dabei Olefine aus der Petrochemie, vor allem Propen und Ethylen, sowie Synthesegas Verwendung. Als Übergangsmetallkatalysatoren wurden früher vor allem Kobalt-Verbindungen verwendet. Heute werden diese, aufgrund ihrer höheren Reaktivität, vermehrt durch Rhodium-Verbindungen ersetzt.⁴ Neben der homogen katalysierten Reaktionsführung sind auch heterogenisierte Katalysatoren⁵ oder Reaktionen in 2-phasigen Systemen⁶ Alternativen. Neuere Varianten, bisher jedoch nur im Labormaßstab verwendet, sind die Reaktionen in *"Ionic Liquids"*⁷ oder in überkritischem CO₂ als Lösemittel.⁸

Die Hydroformylierung ist vor allem in der Darstellung von Basischemikalien wichtig. Die Oxo-Aldehyde sind dabei jedoch selten die Endprodukte, sondern stellen wichtige reaktive Zwischenprodukte Herstellung Alkoholen, Carbonsäuren, zur von Aldolkondensationprodukten, Aminen sowie einer Vielzahl anderer Produkte durch entsprechende Folgereaktionen dar.⁴ Es kann und wird nahezu die gesamte Bandbreite der Chemie der reaktiven Carbonylfunktion ausgenutzt.⁹ Doch damit ist das Potential dieser interessanten Reaktion zur C-C-Bindungsknüpfung noch lange nicht erschöpft. Neben der bedeutenden industriellen Anwendung hat die Hydroformylierung bisher in der Organischen Synthese nur relativ wenig Anwendung gefunden. Dieses ist teilweise in der manchmal schwierig zu kontrollierenden Selektivität der Reaktion begründet. In den letzten Jahren sind jedoch eine Reihe exzellenter Lösungen für Probleme der Chemo-, Regio-, Diastereo- und Enantioselektivität veröffentlicht worden.^{10,11} Diese basieren in den meisten Fällen auf Modifizierungen des Katalysatorsystems, vor allem durch Verwendung unterschiedlichster Phosphin-¹² und Phosphit-Liganden.^{13,14} Ein weiterer sehr wichtiger Punkt als genereller Trend in der Organischen Chemie ist die Entwicklung von sequenziellen Reaktionen, die auch als Tandem- oder Domino-Reaktionen bezeichnet werden.¹⁵ Die Vorteile solcher Tandem-Reaktionen liegen auf der Hand. Die mehrstufige Sequenz von Transformationen wird dabei in einer Eintopfprozedur ohne Wechsel der

Reaktionsbedingungen und ohne Zufügen weiterer Reagenzien durchgeführt. Durch diese Art der Reaktionsführung entfallen die Reinigungsoperationen für die Zwischenprodukte, was große ökologische und ökonomische Vorteile durch Zeit-, Energie- und Materialersparnis zur Folge hat. Gelingt es nun, die Vorteile der Hydroformylierung mit den Vorteilen einer Tandem-Reaktionsführung zu verbinden, so ist dieser Prozess in vielen Fällen konventionellen Synthese überlegen. Daher befindet sich dieses Gebiet in einer rasanten Entwicklung und inzwischen sind eine Reihe der oben bereits erwähnten Folgereaktionen des Oxo-Aldehyds als Tandem-Reaktionen, mit einer oder mehreren Hydroformylierungen als Schlüsselschritt, realisiert.^{11c,16} Die Bandbreite an denkbaren Tandem-Prozessen ergibt sich aus den möglichen Reaktionen für Carbonylverbindungen,⁹ in diesem Fall, denen der primär generierten Aldehydfunktionalität (Abb. 1).

Abb. 1: Mögliche Tandem-Hydroformylierungs-Reaktionen

Zum einen kann der Oxo-Aldehyd unter den reduktiven Reaktionsbedingungen einer Hydrierung zum primären Alkohol unterliegen, welcher dann mit noch nicht reduziertem Aldehyd unter Bildung von Acetalen oder mit Kohlenmonoxid zu Ameisensäureestern weiterreagieren kann.² Zum anderen kann der Oxo-Aldehyd mit zugesetzten Nukleophilen wie Alkoholen, Aminen und anderen Verbindungen mit Carbanionenreaktivität umgesetzt werden.

Mit *N*-Nukleophilen können in einer sogenannten Hydroaminomethylierungsreaktion Amine dargestellt werden. Dabei wird die Hydroformylierung in Gegenwart eines Amins durchgeführt, welches mit dem intermediär gebildeten Oxo-Aldehyd im Sinne einer

reagiert.¹⁷ Aminierung Einsatz Durch primärer reduktiven und sekundärer Aminkomponenten sind sekundäre und tertiäre Amine darstellbar,¹⁸ wird Ammoniak als Aminkomponente verwendet, sind auch primäre Amine erhältlich.¹⁹ Es können sogar Nitro-Aromaten eingesetzt werden, die unter den reduktiven Reaktionsbedingungen zu den werden.²⁰ Durch entsprechenden Aminen umgesetzt ringschließende Bishydroaminomethylierung von α, ω -Diolefinen in Anwesenheit primärer α, ω -Diamine sind auch Polyazamakrocyclen verschiedenster Ringgrößen in guten Ausbeuten darstellbar.²¹

Es sind mehrere Beispiele der Reaktion mit C-Nukleophilen bekannt, deren wichtigster Vertreter die Aldolreaktion ist. Die α -Methylengruppe des Aldehydes selbst kann nach Enolisierung als Nukleophil wirken und zum Beispiel mit einem zweiten Aldehyd-Molekül eine intermolekulare Aldolreaktion eingehen.^{2,16} Dabei können die Aldolprodukte direkt unter den Hydroformylierungsbedingungen gebildet werden. Das wichtigste, durch diese Sequenz hergestellte, industrielle Produkt ist 2-Ethylhexanol.⁴ Die Hydroformylierung von ungesättigten Carbonylverbindungen mit anschließender intramolekularer Aldolreaktion der intermediären Dicarbonylverbindungen kann zum gezielten Aufbau von carbocyclischen Produkten verwendet werden. Diese Reaktion kann auch in einer *Mukaiyama*-Variante ausgehend von ungesättigten Silylenolethern durchgeführt werden.²² Seit kurzem sind eine Reihe weiterer interessanter Tandem-Varianten mit C-Nukleophilen veröffentlicht. *Breit*²³ berichtet von einer Tandem-Hydroformylierungs-Wittig-Reaktion in der stabilisierte Phosphor-Ylide eingesetzt werden. Je nach verwendetem Ylid werden α,β -ungesättigte Ester, α,β -ungesättigte Ketone oder gesättigte Ketone erhalten. *Hoffmann*²⁴ gelang die Tandem-Hydroformylierung-Allylborierung-Hydroformylierung

von Alkoxyallylboronaten und *N*-Allyl- γ -Amidoallylboronaten, welche zu anellierten *O*und *N*-Heterocyclen führen (Abb. 2).

Abb. 2: Tandem-Hydroformylierung-Allylborierung-Hydroformylierung nach Hoffmann²⁴

Bei der Umsetzung der Alkoxyallylboronate kommt es dabei aufgrund der langen Reaktionszeit von drei Tagen zur Bildung der Enolether durch Dehydratisierung der Hemiacetale.

Eine ebenfalls bemerkenswerte Variante ist die Tandem-Hydroformylierung-Carbonyl-En-Hydroformylierungs-Reaktion von 1,5-Dienen zu Hexahydro-4-*H*-chromenen (Abb. 3).²⁵ Hierbei werden, aus einfachen offenkettigen Verbindungen, durch eine rhodiumkatalysierte Tandem-Hydroformylierung-Carbonyl-En-Reaktion intermediär Monoterpene gebildet.^{26,27} Durch eine weitere sequenzielle Hydroformylierung-Acetalisierung-Dehydratisierung werden die Hexahydro-4*H*-chromene erhalten.^{28,29}

Abb. 3: Tandem-Hydroformylierung-Carbonyl-En-Hydroformylierung von 1,5-Dienen²⁵

Die beiden letzten Varianten enthalten einen sehr wichtigen Teilschritt, nämlich die Reaktion der Oxo-Aldehyde mit *O*-Nukleophilen. Die direkte Bildung von Acetalen in Gegenwart von Alkoholen ist vielfach beschrieben (Abb. 4).² Dabei wird die Bildung der Acetale durch die Gegenwart einer Säure oder einer Lewissäure beschleunigt.

Abb. 4: Hydroformylierung von Olefinen mit nachfolgender intermolekularer Acetalisierung

Die selektive Bildung von Acetalen aus Olefinen kann ebenso durch Verwendung von Triethylorthoformiat oder 2,2-Dimethoxypropan anstelle von Alkoholen erreicht werden.³⁰ Die Darstellung von Acetalen unter Hydroformylierungsbedingungen ist aber nicht auf unfunktionalisierte Olefine beschränkt. Die Reaktion wurde auch an einer Vielzahl von

Substraten mit funktionellen Gruppen, z. B. Alkoholen, Ketonen, Estern, Nitrilen, Aminen sowie an Dihydrofuranen und an Glykalen durchgeführt.^{30,31,32,33}

Die intramolekulare Acetalisierung von Carbonylfunktionen ist eine vielfach verwendete Reaktion zum Aufbau von O-Heterocyclen, da Hydroxyaldehyde im Allgemeinen spontan cyclisieren, wenn sich ein spanungsfreies Fünf- oder Sechsring-Lactol bilden kann.³⁴ Außerdem kann die Reaktion verwendet werden, um den Aldehyd für spätere Synthesezwecke zu modifizieren oder die reaktive Aldehydfunktion zu schützen. Bei der intensiv untersuchten Hydroformylierung von einfachen Allyl- und Homoallylalkoholen werden die Hydroxyaldehyde erhalten, welche zu den cyclischen Hemiacetalen weiterreagieren und vereinzelt nach Dehydratisierung die Enolether bilden (Abb. 5).^{28,29,35,36}

Abb. 5: Hydroformylierung von einfachen Allyl- und Homoallylalkoholen

Die Umsetzung von Allylalkoholen mit Cobalt-Katalysatoren, ergibt als Hauptprodukt den durch Doppelbindungsisomerisierung und Tautomerisierung entstandenen entsprechenden Aldehyd.^{37,38} Diese Isomerisierung kann durch Einsatz von Rhodium-Katalysatoren mit Phosphinzusatz unterdrückt werden.³⁹ Als Nebenprodukte werden bei Rhodium-³⁷ und Cobalt-Katalysatoren⁴⁰ in kleinen Mengen die entsprechenden Lactone beobachtet. Das Verhältnis der linearen und verzweigten Produkte kann durch verschiedene Faktoren, wie z. B. die Katalysatorsysteme, die Kohlenmonoxid-/Wasserstoffpartialdrücke, den Gesamtdruck und die Reaktionstemperatur beeinflusst werden.⁴¹

Abb. 6: Tandem-Hydroformylierung-Acetalisierung von Allylalkoholen

Dabei werden die *n*-Hydroformylierungsprodukte im Gleichgewicht mit den cyclischen Hemiacetalen,³⁴ die *iso*-Produkte im Gleichgewicht mit den intermolekularen Acetalisierungsprodukten⁴² erhalten (Abb. 6).

Sekundäre Allylalkohole reagieren entsprechend und die Produkte liegen ebenfalls bevorzugt in Form der Hemiacetale vor.^{34b} Tertiäre Allylalkohole ergeben selektiv die *n*-Hydroformylierungsprodukte und bilden wiederum die cyclischen Hemiacetale.^{28,37} Neben Alkylsubstituenten werden auch Arylsubstituenten toleriert.⁴³ Große Alkylsubstituenten können allerdings die Cyclisierung verhindern.³⁷

Für die Verwendung von Homoallylalkoholen gelten prinzipiell die gleichen Aussagen. Die *n*-Hydroformylierungsprodukte können jedoch zu Tetrahydropyranderivaten, die *iso*-Produkte zu Tetrahydrofuranderivaten cyclisieren.

*Kitsos-Rzychon*⁴⁴ hat verschiedene substituierte Homoallylalkohole mit einem quartären Zentrum in Allylposition einer Tandem-Hydroformylierung unterzogen (Abb. 7). Dabei wurden in Ausbeuten von 43-95 % die spirocyclischen Hemiacetale, Enolether oder Gemische beider Produkte erhalten.

Abb. 7: Darstellung von 1-Oxaspiro[n.5]alkanen⁴⁴

Die Tandem-Hydroformylierung-Acetalisierung ist aber nicht auf aliphatische Systeme beschränkt. Es können auch *o*-Alkenylphenole eingesetzt werden, welche dann Benzofurane, -pyrane, -oxepine ergeben.^{35,43,45}

Abb. 8: Tandem-Hydroformylierung-Acetalisierung von o-Alkenylphenolen

Abb. 9: Tandem-Hydroformylierung-Acetalisierung von o-Alkenylphenolen

Schließlich kann auch eine Bildung von bicyclischen Acetalen unterschiedlicher Ringgröße durch Hydroformylierung cyclischer ungesättigter Alkohole erfolgen.⁴⁶

Abb. 10: Darstellung überbrückter bicyclischer Acetale

Die Produkte der Hydroformylierung von Hydroxyolefinen können mannigfach zu Folgeprodukten transformiert werden. Die gebildeten Hemiacetale können durch Hydrierung in Diole umgewandelt werden, die interessante Vorläufer für Ether und Harze sind.⁴⁷ Ebenso ist eine Oxidation der Lactole zu den entsprechenden Lactonen möglich.^{10,48} Diese wiederum sind Bestandteil des Kohlenstoffgerüstes vieler Naturstoffe oder stehen weiteren Transformationen zur Verfügung.⁴⁹ Außerdem können Reaktionen an der Doppelbindung der Enolether durchgeführt werden, dieses können z. B. Epoxidierung, Dihydroxylierung oder Allylsubstitution sein.

Im Gegensatz zur Verwendung der gezeigten einfachen Allyl- und Homoallylalkohole in Tandem-Hydroformylierungsreaktionen gibt es jedoch bisher keine systematischen Untersuchungen zur Hydroformylierung von Hydroxyolefinen, wenn diese mehrere Olefinoder Hydroxyfunktionalitäten mit gleicher oder ähnlicher Reaktivität tragen.

Durch Verwendung solcher Ausgangsmaterialien sollten die verschiedensten auch in Naturstoffen vorkommenden Möglichkeiten zur Verknüpfung von *O*-Heterocyclen realisierbar sein (Abb. 11). Dieses können ringanellierte Systeme sein,⁵⁰ 2,5-substituierte

Tetrahydrofuran und Tetrahydropyransysteme,^{49,51} überbrückte bicyclische Acetale,⁵² aber auch Spiroverbindungen.⁵³

Abb. 11: Einige Naturstoffe mit unterschiedlich verknüpften O-Heterocyclen

Ziel der vorliegenden Arbeit ist es nun, methodische Untersuchungen zur Reaktivität von Hydroxyolefinen mit mehreren Olefin- und/oder Hydroxyfunktionen durchzuführen. Diese Olefin- oder Hydroxyfunktionalitäten können sich dabei sowohl an aliphatischen als auch an aromatischen Systemen befinden. Die Olefine können intern, terminal oder 1,1-disubstituiert sein und die Hydroxyfunktionen können sich sowohl in Allyl- als auch in Homoallylstellung befinden.

Die Anzahl der Freiheitsgrade für die Substrate ist also beliebig hoch. Um eine gewisse Ordnung in das System zu bringen, erfolgt eine Einteilung der Reaktionen in Kategorien der möglichen Reaktionsprodukte. Dabei ist die Art der möglichen Verknüpfung der gebildeten *O*-Heterocyclen das entscheidende Kriterium. Daneben wird die Reaktion von Hydroxyolefinen an bereits auf andere Art und Weise vorgeformten *O*-Heterocyclen untersucht.

2 Theoretischer Teil

2.1 Darstellung von unterschiedlichen Perhydrofuro[2,3-*b*]furanund Perhydrofuro[2,3-*b*]pyran-Systemen

2.1.1 Allgemeines

Ringanellierte bicyclische Acetale sind struktureller Bestandteil einer Vielzahl von Naturstoffen aber auch von synthetisch hergestellten Substanzen, deren Form auf strukturbasiertem Design beruhen.⁵⁴ Die biologische Aktivität dieser Substanzen, die nur wenig von den verschiedenen Oxidationsstufen dieser Einheit,⁵⁰ jedoch stark von der Position der Ring-Sauerstoffe, der Ringgröße und deren Stereochemie abhängt,⁵⁴ macht diese Art von Oxabicyclen zu häufigen Zielstrukturen in Totalsynthesen.⁵⁵ Eine Auswahl von Molekülen, die eine solche Acetal-Struktureinheit tragen, ist in Abb. 11 und Abb. 12 dargestellt.

Abb. 12: Beispiele für Substanzen mit ringanellierter bicyclischer Acetaleinheit

Eine wichtige Gruppe sind die Diterpene vom Clerodan-Typ mit ihrer fraßhemmenden Wirkung auf Insekten und ihrer antibakteriellen Wirkung.⁵⁰ Eine weitere Gruppe von Molekülen sind die Aflatoxine z. B. Aflatoxin B_2 , die wichtige Mykotoxine sind, mit ihrer sehr starken Toxizität und Karzinogenität.⁵⁶ Der nichtpeptidische Ligand für den HIV-1 Protease-Inhibitor-Komplex und Alboatrin sind Beispiele für Acetale mit anellierten Fünfund Sechsringen.⁵⁴

Aufgrund des schon erwähnten großen Interesses an solchen Struktureinheiten gibt es bereits eine große Anzahl von Syntheserouten. Die meisten der bis heute veröffentlichten Methoden zur Synthese von 2,8-Dioxabicyclo[3.3.0]octan- und 2,9-Dioxabicyclo[4.3.0]nonan-Einheiten nutzen die interoder intramolekulare Cyclisierung an einem bereits vorgeformten Tetrahydrofuran- oder Tetrahydropyranring. Dies können Dehydratisierung,⁵⁷ Radikal-Cyclisierung,⁵⁸ Iodcycloveretherung,^{54,59} dipolare Cycloaddition,⁶⁰ intramolekulare Carbozinkierung,⁶¹ intramolekulare Carbenoid-Insertion⁶² oder metallvermittelte Cyclisierungsreaktionen sein.⁶³ Zwei weitere Methoden sind die oxidative Cycloaddition von 1.3-Dicarbonyl-Verbindungen an cyclische Enolether⁶⁴ und die Tandem-Hydroborierung-Oxidation von Methylendiolen.⁶⁵ Vor allem diese letzte Reaktion und die Synthese von Perhydrofuro[2,3-*b*]furanen ausgehend von di-*O*-silvlierten Dihydroxyaldehyden von *de Groot* et al.⁶⁶ führten zu der Überlegung, eine neue Route zu diesen Strukturen zu entwickeln, die über einen Hydroformylierungsschritt führt. Es sollte möglich sein, die für die Cyclisierungsreaktion zu den bicyclischen Acetalen benötigten Dihydroxyaldehyde durch die Hydroformylierung intern ungesättigter Diole darzustellen, ohne dass intermediäres Schützen der beiden Hydroxyfunktionen notwendig ist.

Abb. 13: Reaktiossequenz zur Bildung von Perhydro[2,3-*b*]furanen und Perhydro-[2,3-*b*]pyranen mittels Tandem-Hydroformylierung-Acetalisierung

Nach Hydroformylierung der Dihydroxyolefine I zu den Aldehyden II, sollte es spontan zur Bildung der Hemiacetale III kommen, die wegen der entstehenden Fünf- bzw. Sechsringe gegenüber den offenen Hydroxyaldehyden II bevorzugt sind.³⁴ Diese Hemiacetale III wiederum können aufgrund der sauren Eigenschaften des Katalysatorsystems in einer Kondensationsreaktion mit der zweiten Hydroxyfunktion den Ringschluss zum bicyclischen Acetal vollziehen und so in einer Tandem-Hydroformylierungs-Acetalisierungs-Reaktion zu den gewünschten Endprodukten **IV** führen (Abb. 13).

Die ersten Untersuchungen gelten der Darstellung von Perhydrofuro[2,3-*b*]furanen aus möglichst einfach darzustellenden 2-Alken-1,5-diolen. Wie im Folgenden gezeigt wird, sind bereits eine Reihe von Synthesen für 2-Alken-1,5-diole bekannt.

2.1.2 Darstellung verschiedener 2-Alken-1,5-diole

Für die Darstellung der 2-Alken-1,5-diole gibt es je nach gewünschtem Substitutionsmuster verschiedene Strategien. Durch einfache Reduktion des käuflichen Glutaconsäuredimethylesters (1) mit DIBAH erhält man in 75 % Ausbeute 2-Penten-1,5-diol (2a) (Abb. 14, V1).⁶⁷ Der Glutaconsäuredimethylester (1) und somit auch das 2-Penten-1,5-diol (2a) liegt als ein 6:1-Gemisch der *cis-/trans*-Isomere vor. Für die Hydroformylierung spielt die Konfiguration der Doppelbindung aber keine Rolle, denn beide Isomere ergeben das gleiche Produkt. Allerdings ist bekannt, dass interne *cis*-Olefine aus sterischen Gründen etwas schneller reagieren als interne *trans*-Olefine.²

Abb. 14: Darstellung von 2-Penten-1,5-diol (2a)

Die Darstellung substituierter 2-Alken-1,5-diole ist allgemein durch Reaktion von metallorganischen Reagenzien mit Carbonylverbindungen möglich. In der vorliegenden Arbeit werden hauptsächlich symmetrische Ketone verwendet, um keine zusätzlichen Stereozentren zu generieren. So sind zum Beispiel durch die Addition von Acetyliden, generiert aus Alkinolen, an Carbonylverbindungen verschiedene 2-Alkin-1,5-diole darstellbar. Diese können je nach verwendetem Alkinol und verwendeter Carbonylverbindung gleiche oder unterschiedliche Substituenten in der C1- und C5-Position tragen.⁶⁸ Durch nachfolgende Hydrierung der Dreifachbindung mit Lindlar-Katalysator sind die entsprechenden 2-Alken-1,5-diole zu erhalten (Abb. 15).⁶⁹

Abb. 15 und Tab. 1: Darstellung der 2-Alkin-1,5-diole 6a-c

Vers.	Edukt	R ³	R ⁴	Keton	\mathbb{R}^1	\mathbb{R}^2	Produkt	Ausbeute ^{a)} [%]
V 2	3 a	Н	Н	4a	Me	Me	6a	52
V 3	3 a	Н	Н	4b	-(CI	-(CH ₂) ₅ -		67
V 4	3 b	Me	Ph	4 c	Me	Ph	6с	44

^{a)} isolierte Ausbeuten

Die Ergebnisse der Reaktionen von 3-Butin-1-ol (**3a**) und 2-Phenyl-4-pentin-2-ol (**3b**) mit verschiedenen Ketonen sind in Abb. 15 und Tab. 1 aufgeführt. Beim Einsatz von KOH als Base und Aceton (**4a**), Cyclohexanon (**4b**) oder Acetophenon (**4c**) werden die gewünschten Alkindiole **6a-c** in guten Ausbeuten von bis zu 67 % erhalten (V 2-4).

Im Falle des Alkindiols **6c**, handelt es sich um ein erstes Beispiel für 2-Alken-1,5-diole mit gleichen Substituenten in C1- und in C5-Position. Solche 2-Alkin-1,5-diole, mit gleichen Substituenten in beiden Positionen, sind auch einstufig nach *Gaudemar*⁷⁰ durch Di-Grignard-Reaktion von Propargylbromid mit zwei Äquivalenten der Carbonylverbindung zu generieren. Dabei wird das Di-Grignard-Reagenz **5** durch Reaktion von Propargylmagnesiumbromid und Ethylmagnesiumbromid erhalten (Abb. 16). Die Ergebnisse dieser Reaktionen des Di-Grignard-Reagenzes **5** mit verschiedenen Carbonylverbindungen sind in Tab. 2 (V 5-7) aufgeführt.

$$Br + Br \xrightarrow{Mg} BrMgC \equiv CCH_2MgBr + CH_3CH_3$$

Abb. 16: Generierung des Di-Grignard-Reagenzes 5

Vers.	Edukt	Keton	\mathbf{R}^1	\mathbf{R}^2	Produkt	Ausbeute ^{a)} [%]
V 5	5	4a	Me	Me	6d	28
V 6	5	4 b	-(CH ₂) ₅ -		6e	17
V 7	5	4d	Н	Ph	6f	19

Tab. 2: Darstellung der 2-Alkin-1,5-diole 6d-f

^{a)} isolierte Ausbeuten

Die mäßigen isolierten Ausbeuten der Reaktionen von 17-28 % sind auf Probleme in der Aufarbeitung zurückzuführen. Die Rohausbeuten befinden sich im Bereich von 50-60 %. Die Hydrierung der Alkindiole **6a-f** mit Lindlar-Katalysator⁶⁹ (V 8-13) zu den entsprechenden *cis*-konfigurierten Alkendiolen **2b-g** verläuft mit guten bis sehr guten Ausbeuten von 84-98 % (Tab. 3).

Vers.	Edukt	\mathbf{R}^1	\mathbf{R}^2	R ¹⁽³⁾	R ²⁽⁴⁾	Produkt	Ausbeute ^{a)} [%]
V 8	6a	Me	Me	Н	Н	2b	84
V 9	6b	-(CH ₂) ₅ -		Н	Н	2c	95
V 10	6c	Me	Ph	Me	Ph	2d	97
V 11	6d	Me	Me	Me	Me	2e	86
V 12	6e	-(CI	-(CH ₂) ₅ -		H ₂) ₅ -	2f	89
V 13	6f	Н	Ph	Н	Ph	2g	98

Tab. 3: Hydrierung der 3-Alkin-1,5-diole **6a-f**

^{a)} isolierte Ausbeuten

Eine weitere Methode ist die Aren-katalysierte Lithiierung von 1,3-Dichlorpropen (**7**) nach *Yus*.⁷¹ Diese ergibt nach Reaktion mit den entsprechenden Carbonylverbindungen als Nukleophilen die gewünschten 2-Alken-1,5-diole in einem Schritt (Abb. 17). Die Reaktion mit Cyclopentanon (**4e**) verläuft allerdings wenig selektiv und das Produkt **2h** ist nicht zu isolieren (V 14).

Abb. 17: Darstellung von 2-Alken-1,5-diolen nach Yus⁷¹

Nach der Synthese der 2-Alken-1,5-diole **2a-f** auf unterschiedlichen Wegen, werden diese Substrate nun in der Hydroformylierung eingesetzt. Dort muss sich erweisen, inwieweit die Darstellung von Perhydrofuro[2,3-*b*]furanen möglich ist und welche Faktoren die Reaktion beeinflussen.

2.1.3 Hydroformylierung der 2-Alken-1,5-diole

Für erste Studien und Optimierungsversuche der Reaktionsbedingungen wird das unsubstituierte 2-Penten-1,5-diol (**2a**) eingesetzt. Die Reaktivität von Doppelbindungen unter Hydroformylierungsbedingungen nimmt von terminalen zu 1,2-disubstituierten, also internen Doppelbindungen, stark ab.^{2,11c} Da die 2-Alken-1,5-diole über eine interne Doppelbindung verfügen, sind für die Hydroformylierung relativ hohe Drücke und Reaktionstemperaturen zu verwenden. In Abb. 18 und Tab. 4 sind die Reaktionsbedingungen und Produkte einiger dieser Optimierungsversuche aufgeführt (V 15-18).

Abb. 18: Optimierungsversuche zur Hydroformylierung von 2-Penten-1,5-diol (2a)

Vers.	p(CO)/p(H ₂)	Т	t	LM	Ausbeute ^{a)} [%]			
	[bar]	[°C]	[h]		8a	9a	10a	11a
V 15	90 / 20	110	70	Toluol	4		59 (52)	
V 16*	45 / 15	120	20	THF	15	6		23 (14)
V 17*	45 / 15	120	20	Dioxan	35 (17)	34 (21)		7 (7)
V 18*	45 / 15	120	20	CH_2Cl_2	72 (29)			

Tab. 4: Einige Optimierungsversuche zur Hydroformylierung von 2-Penten-1,5-diol (2a)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten; Kat.: [Rh(cod)Cl]₂; * 3 Äq. PPh₃

In Toluol unter hohem Druck, langer Reaktionszeit und ohne Zusatz von Liganden, erhält man 2-Pentan-1,5-diol $(10a)^{72}$ als Hauptprodukt. Das gewünschte Perhydrofuro[2,3-*b*]furan (**8a**)⁶⁶ wird nur in Spuren gebildet. Toluol scheint als Lösemittel für die Reaktion wenig geeignet, da sich sowohl die Edukte als auch die Produkte nur schlecht lösen. Darüber, wie dies unter den Hydroformylierungsbedingungen bei hoher Temperatur und hohem Druck aussieht, kann jedoch keine Aussage getroffen werden.

Es ist bekannt, dass durch Zusatz von Phosphinen die Hydrierung der Doppelbindung unterdrückt werden kann.^{2,6} So wird bei einem geringeren Gesamtdruck von 60 bar CO/H_2 (3:1) mit PPh₃ als Ligand in polareren Lösungsmitteln gearbeitet. Aber auch unter diesen Bedingungen liefert die Reaktion in THF schlechte Ergebnisse. Es ist zwar kein Hydrierprodukt mehr zu beobachten, jedoch sind die Ausbeuten an **8a** gering. Als Hauptprodukt wird Tetrahydropyran-2-ol (**11a**)⁷³ und als Nebenprodukt 3-Hydroxymethyl-tetrahydropyran-2-ol (**9a**) als Gemisch zweier Diastereomere gebildet.

Diese Produkte zeigen eine Problematik bei der Hydroformylierung der 2-Alken-1,5-diole mit primärer oder sekundärer Hydroxyfunktion auf. Wie schon unter Kobalt-Katalyse bei einfachen Allylalkoholen beobachtet, können diese eine übergangsmetallkatalysierte Isomerisierung eingehen und zum Aldehyd tautomerisieren.³⁹ Bei den tertiären Alkoholen ist dieses nicht möglich. Manchmal kann die Isomerisierung ausgenutzt werden, um die gewünschten Produkte zu erhalten.⁷⁴ Meistens ist sie aber unerwünscht, weil es zu einer Vielfalt an Nebenprodukten führen kann. Der gebildete Hydroxyaldehyd **2a'** befindet sich mit dem Hemiacetal **11a** im Gleichgewicht, wobei dieses allerdings sehr weit auf der rechten Seite liegt (Abb. 19).

Abb. 19: Bildung von 11a durch übergangsmetallkatalysierte Isomerisierung von 2a

Das zweite Problem besteht darin, dass die Doppelbindung der 2-Alken-1,5-diole nicht symmetrisch substituiert ist. Beide Positionen der Doppelbindung werden mit der ungefähr gleichen Wahrscheinlichkeit hydroformyliert. Dies führt jedoch zu unterschiedlichen Produkten. Bei Reaktion in C3-Position bildet sich das Produkt 8a, bei Reaktion in C2-Position dagegen das 3-Hydroxymethyl-tetrahydropyran-2-ol (9a). Bei diesem wird ein durch weitere Kondensation möglicher Vierring nicht mehr gebildet (Abb. 18). Besonders deutlich wird dies in Versuch V 17 mit Dioxan als Lösemittel, in dem 8a und 9a in praktisch gleichen Anteilen gebildet werden. Hier tritt das Isomerisierungsprodukt 11a nur noch in geringen Anteilen auf. Wechselt man von Dioxan zu Dichlormethan als Lösemittel, man von den denkbaren Produkten nur noch das so erhält erwünschte Perhydrofuro[2,3-b]furan (8a) in einer Ausbeute von 72 %, sowie einige nicht identifizierte Nebenprodukte in geringen Anteilen. Die geringen isolierten Ausbeuten lassen sich durch Verluste bei der Aufarbeitung aufgrund des relativ niedrigen Siedepunktes des Produktes 8a erklären. Die Reaktionsbedingungen der Versuche V 17 bzw. V 18 werden nach den Optimierungsversuchen als bestmöglich angesehen und von hier an für die weiteren Reaktionen der Substrate dieses Typs als Standardbedingungen festgelegt.

Die beiden Fünfringe im Perhydrofuro[2,3-*b*]furan (**8a**) sind erwartungsgemäß *cis*-verknüpft. Eine *trans*-Verknüpfung der Ringe mit den beiden Sauerstoffatomen im Ring würde eine zu große Spannung erzeugen. Die Zuordnung dieser *cisoiden* Konfiguration erfolgt NMR-spektroskopisch. Man erhält eine ³*J*-Kopplungskonstante von 5.0 Hz für die beiden Brückenkopf-Protonen, was im Zusammenhang mit der *Karplus*-Beziehung^{75,115} für den Diederwinkel der beiden Protonen zu einer *cis*-Konfiguration führt. Das gleiche gilt für alle folgenden Perhydrofuro[2,3-*b*]furane.

Als nächstes steht die Anwendung der gewonnenen Erkenntnisse beim Übergang zu den substituierten 2-Alken-1,5-diolen an. Da sich der Einfluss des Lösemittels zu diesem Zeitpunkt noch nicht erklären lässt und eine Vorhersage der Ergebnisse der Reaktionen in Dioxan oder Dichlormethan nicht möglich ist, werden die weiteren Substrate jeweils in beiden Lösemitteln umgesetzt. Ein allgemeines Schema für die Hydroformylierung der

2-Alken-1,5-diole **2a-g** und ein Teil der dabei gebildeten Produkte ist in Abb. 20 dargestellt.

Abb. 20: Hydroformylierung der 2-Alken-1,5-diole 2a-g

Man sieht, dass die Reaktionen der 2-Alken-1,5-diole **2a-g** selten selektiv zu den Perhydrofuro[2,3-*b*]furanen verlaufen. Im Weiteren sollen die Ergebnisse dieser Reaktionen und der Einfluss der verschiedenen Faktoren diskutiert werden.

Als erstes wird das nur in C1-Position substituierte *cis*-2-Methyl-3-hexen-2,6-diol (2b) untersucht. Wie man anhand der Versuche V 19-20 in Tab. 5 sieht, ergeben sich in beiden Lösemitteln unter den gleichen Reaktionsbedingungen wieder verschiedene Ergebnisse. In Dioxan erhält man das 2,2-Dimethyl-(3aS*, 6aR*)-perhydrofuro[2,3-b]furan (8b) in bis zu 38 % Ausbeute und es kann in Spuren das Isomerisierungsprodukt 6,6-Dimethyltetrahydropyran-2-ol (11b) detektiert werden, sowie eine Vielzahl anderer nicht identifizierter Produkte.

						Ausbeute ^{a)} [%]		
Vers.	\mathbf{R}^{1}	\mathbf{R}^2	\mathbf{R}^{3}	\mathbf{R}^4	LM	8 b	11b	
V 19	Me	Me	Н	Н	Dioxan	38 (31)	3	
V 20	Me	Me	Н	Н	CH_2Cl_2	14	59	

Tab. 5: Hydroformylierung von *cis*-2-Methyl-3-hexen-2,6-diol (2b)

^{a)} gaschromatographisch bestimmt, im Klammern isolierte Ausbeuten

In Dichlormethan ergibt sich ein gegenteiliges Ergebnis. Hier überwiegt klar das Isomerisierungsprodukt **11b** mit bis zu 59 % Ausbeute und das Perhydrofuro[2,3-*b*]furan

8b wird nur als Nebenprodukt in 14 % Ausbeute beobachtet. Die Reaktion verläuft weniger selektiv als am unsubstituierten System **2a**, was wahrscheinlich auf Eliminierungs- und Folgereaktionen des tertiären Alkohols zurückzuführen ist. Darüber, ob das zweite mögliche Hydroformylierungsprodukt gebildet wird, kann keine eindeutige Aussage gemacht werden, da viele der Nebenprodukte nicht isoliert und identifiziert werden konnten. Falls es aber eines der Nebenprodukte ist, so wird es nur in geringen Mengen gebildet, was darauf hinweist, dass die beiden Alkylreste die Hydroformylierung bevorzugt in die C3-Position dirigieren.

Für das nächste 2-Alken-1,5-diol **2c** mit dem sterisch noch anspruchsvolleren Cyclohexyl-Ring ist das Verhalten in beiden Lösungsmitteln nahezu gleich (Tab. 6, V 21-22). Man erhält ($3aS^*$, $6aR^*$)-Perhydrofuro[2,3-*b*]furan-2-spiro-1'-cyclohexan (**8c**) in bis zu 34 % Ausbeute. Als einziges isoliertes Nebenprodukt erhält man 1-Oxaspiro[5.5]undec-2-en (**13**)⁴⁴ in bis zu 12 % Ausbeute (Abb. 21).

Abb. 21: Hydroformylierung von 1-(1-Hydroxycyclohexyl)-1-buten-4-ol (2c)

Der Enolether **13** wird wahrscheinlich wie **11a,b** durch Isomerisierung des Eduktes **2c** zum Aldehyd und Bildung des entsprechenden Hemiacetals, danach aber mit anschließender Dehydratisierung, gebildet (vgl. Abb. 19). Die Ergebnisse der Reaktion von **2c** sind somit mit denen für **2b** vergleichbar.

						Ausbeute ^{a)} [%]			
Vers.	\mathbf{R}^1	\mathbf{R}^2	\mathbb{R}^3	\mathbf{R}^4	LM	8c	13		
V 21	-(CH	H ₂) ₅ -	Н	Η	Dioxan	34 (16)	12		
V 22	-(CH ₂) ₅ -		Н	Η	CH_2Cl_2	23 (11)	12		

Tab. 6:Hydroformylierung von 1-(1-Hydroxycyclohexyl)-1-buten-4-ol (2c)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Geht man nun zu den in C1- und C5-Position substituierten 2-Alken-1,5-diolen über, so sehen die Ergebnisse der Reaktion nochmals etwas anders aus (Tab. 7, V 23-24). Für die Umsetzung von 2,6-Diphenyl-3-hepten-2,6-diol (**2d**) erhält man unter den Standard-Reaktionsbedingungen 2,6-Dimethyl-2,6-diphenyl-5,6-dihydro-2*H*-pyran (**12d**) als 1:1-Diastereomerengemisch durch intramolekulare Etherbildung. Es kann kein anderes Produkt aus dem Reaktionsgemisch identifiziert werden. Wird der Versuch bei niedrigerer Temperatur und längerer Reaktionszeit durchgeführt, so erhält man **12d** sogar als einziges Produkt in bis zu 65 % Ausbeute.

Vers.	p(CO)/(H ₂)	Т	t	R ¹	\mathbf{R}^2	R ³	\mathbf{R}^4	LM	Ausbeute ^{a)} [%]
	[bar]	[°C]	[h]						12d
V 23	45 / 15	120	20	Me	Ph	Me	Ph	Dioxan	(21)
V 24	45 / 15	110	70	Me	Ph	Me	Ph	Dioxan	65 (31)

Tab. 7: Hydroformylierung von 2,6-Diphenyl-3-hepten-2,6-diol (2d)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Anscheinend verhindern die sterisch anspruchsvollen Substituenten die Hydroformylierung der Doppelbindung. Dass die Doppelbindung im Ring nach der Etherbildung nicht angegriffen wird, lässt sich mit der weiter verringerten Reaktivität dieser Doppelbindung im Gegensatz zu Doppelbindungen in offenkettigen Substraten erklären.² Wird der Raumbedarf der Substituenten verringert, indem z. B. wie bei **2e** nur Methylgruppen als Substituenten vorhanden sind, so findet die Hydroformylierung und Acetalbildung wieder problemlos statt. Man erhält 2,2,5,5-Tetramethyl-perhydrofuro[2,3-*b*]furan (**8e**)⁷⁶ in bis zu 48 % Ausbeute (Tab. 8, V 25-26) und in Dioxan wird als Nebenprodukt 7-Hydroxy-3,7-dimethyloctanal (**14**)⁷⁷ gebildet (Abb. 22).

						Ausbeute ^{a)} [%]		
Vers.	\mathbb{R}^1	\mathbf{R}^2	R ³	\mathbb{R}^4	LM	8e	14	
V 25	Me	Me	Me	Me	Dioxan	30 (20)	21 (8)	
V 26	Me	Me	Me	Me	CH_2Cl_2	48		

Tab. 8: Hydroformylierung von cis-2,6-Dimethyl-3-hepten-2,6-diol (2e)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Abb. 22: Möglicher Weg zur Bildung von Hydroxyaldehyd 14

Die Bildung des Hydroxyaldehyds 14 kann auf verschiedenen Wegen erfolgt sein. Am wahrscheinlichsten ist eine Eliminierung der Hydroxygruppe in Allylstellung zur Doppelbindung unter Bildung eines konjugierten Diens, mit nachfolgender Hydroformylierung und Hydrierung. Von konjugierten Dienen ist bekannt, dass sie unter Hydroformylierungsbedingungen zu gesättigten Aldehyden umgesetzt werden.⁷⁸ Bei erneut erhöhter sterischer Hinderung durch zwei Cyclohexylgruppen im cis-1,3-Bis-(1-hydroxycyclohexyl)-prop-1-en (2f) ergibt sich wieder das vorherige Bild. Es findet keine Umsetzung zum erwarteten Produkt statt, sondern man beobachtet in bis zu 15 % Ausbeute das Hydrierprodukt 1,3-Bis-(1-hydroxycyclohexyl)-propan (10f) (Abb. 20, V 27).⁷⁹ Außerdem wird das restliche Ausgangsmaterial zurückerhalten.

Als letztes Substrat in dieser Reihe wird *cis*-1,5-Diphenyl-pent-2-en-1,5-diol (2g) als 1:1-Diastereomerengemisch eingesetzt (Tab. 9, V 28-29). Es liegen sekundäre Hydroxyfunktionen vor, somit sollten Eliminierungsreaktionen eine untergeordnete Rolle spielen. In Dichlormethan als Lösemittel wird ein Gemisch von zwei Diastereomeren in 55 % Ausbeute erhalten, die säulenchromatographisch getrennt werden können (Abb. 23).

Abb. 23: Bildung der beiden diastereomeren Perhydrofuro[2,3-b]furane (2R, 5S)-8g und $(2R^*, 5R^*)$ -8g

Man erhält (2R, 5S)-2,5-Diphenyl-hexahydrofuro[2,3-b]furan ((2R, 5S)-**8g**) in 10 % und $(2R^*, 5R^*)$ -2,5-Diphenyl-hexahydrofuro[2,3-b]furan $((2R^*, 5R^*)$ -**8g**) in 27 % isolierter Ausbeute. Aus dem 1:1-Diastereomerengemisch von **2g** sollte ein 1:1-Gemisch der entsprechenden Perhydrofuro[2,3-b]furane mit *cis*- und *trans*-ständigen Phenylgruppen gebildet werden. Das Isomer (2S, 5R)-2,5-Diphenyl-hexahydrofuro[2,3-b]furan ((2S, 5R)-**8g**) wird jedoch nicht beobachtet, wodurch sich das Verhältnis der isolierten Diastereomere von ungefähr 2:1 erklärt. Die Ausbeute für dieses System liegt somit zwischen denen für die Systeme mit tertiären und primären Alkoholen. In Dioxan verläuft die Reaktion unselektiver und beide Diastereomere werden in insgesamt 17 % Ausbeute gebildet.

						Ausbeute ^{a)} [%]				
Vers.	\mathbf{R}^{1}	\mathbf{R}^2	\mathbb{R}^3	\mathbf{R}^4	LM	(2 <i>R</i> , 5 <i>S</i>)-8g	(2 <i>R</i> *, 5 <i>R</i> *)-8g			
V 28	Η	Ph	Η	Ph	Dioxan	7	10			
V 29	Η	Ph	Η	Ph	CH_2Cl_2	15 (10)	40 (27)			

Tab. 9: Hydroformylierung von 1,5-Diphenyl-pent-2-en-1,5-diol (2g)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

In der folgenden Tab. 10 sind zum besseren Vergleich noch einmal die besten erreichten Ausbeuten an Perhydrofuro[2,3-*b*]furanen für die Umsetzungen der 2-Alken-1,5-diole **2a-g** zusammengefasst.

Vers.	Edukt	R ¹	\mathbf{R}^2	R ³	\mathbb{R}^4	LM	Produkt	Ausbeute ^{a)} [%]
V 18	2a	Н	Η	Η	Н	CH_2Cl_2	8a	72 (29)
V 19	2b	Me	Me	Н	Н	Dioxan	8b	38 (31)
V 21	2c	-(Cł	H ₂) ₅ -	Н	Н	Dioxan	8c	34 (16)
V 24	2d	Me	Ph	Me	Ph	Dioxan/CH ₂ Cl ₂	8d	b)
V 26	2e	Me	Me	Me	Me	CH_2Cl_2	8e	48 (20)
V 27	2f	-(Cł	H ₂) ₅ -	-(Cł	H ₂) ₅ -	Dioxan/CH ₂ Cl ₂	8 f	c)
V 29	2g	Н	Ph	Н	Ph	CH_2Cl_2	8g	55 (37) ^{d)}

Tab. 10: Tandem-Hydroformylierung-Acetalisierung der 2-Alken-1,5-diole 2a-g

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten; ^{b)} nur intramolekulare Etherbildung;

^{c)} nur Hydrierprodukt; ^{d)} Diastereomerengemisch (2.7 : 1.0)

Wie man aus den Ergebnissen ersehen kann, ist die Bildung der Perhydrofuro[2,3-b]furane durch Hydroformylierung und in situ Acetalisierung in Ausbeuten von bis zu 72 % Jedoch scheint es nötig zu sein, für jedes Substrat individuelle möglich. Reaktionsbedingungen durch Optimierung festzulegen, um bestmögliche Ausbeuten zu erhalten. Es ergibt sich deutlich, dass die Anzahl und der Raumbedarf der Substituenten an den Carbinol-Kohlenstoffen einen großen Einfluß auf die Reaktivitäten der 2-Alken-1,5diole unter den Hydroformylierungsbedingungen und somit auf die Bildung der verschiedenen Produkte hat. Durch die Einführung zweier Alkylreste an den jeweiligen Carbinol-Kohlenstoffatomen wird die Reaktivität der Hydroxyfunktionen erhöht und sekundäre oder tertiäre Alkohole zeigen gegenüber den primären Alkoholen eine gesteigerte Tendenz zur Eliminierung. Diese ist besonders groß, wenn sich die Hydroxygruppe in Allylstellung zur Doppelbindung befindet. Primäre und sekundäre Alkohole (V 18, 29) ergeben somit selektivere Reaktionen und bessere Ausbeuten als die Substrate mit tertiären Alkoholen. Weiterhin sind die Substituenten in der Lage, bei genügend großer sterischer Hinderung, die Hydroformylierung der Doppelbindung ganz zu unterbinden (V 23-24, 27). Ein Dirigieren der Hydroformylierung in die C3-Position durch sterisch anspruchsvolle Substituenten in C1-Position scheint möglich zu sein, so dass bevorzugt das Furo[2,3-b]furan gebildet werden kann. Dioxan und Dichlormethan haben sich als die besten Lösemittel für die Reaktion erwiesen. Es ist jedoch nicht immer vorauszusagen, welches der beiden Lösemittel die besseren Ergebnisse liefert. Die Effekte der Lösemittel müssten noch anhand weiterer Experimente untersucht werden.

2.1.4 Hydroformylierung von 2-Alkin-1,5-diolen

Werden Alkine unter Hydroformylierungsbedingungen mit Rhodium-Katalysatoren umgesetzt, so entstehen als Endprodukte im Allgemeinen die gesättigten Aldehyde.⁸⁰ Diese können im Falle interner Alkine durch Hydrierung der intermediär gebildeten ungesättigten Aldehyde, oder wie im Fall terminaler Alkine, durch die Hydroformylierung eines Alkens nach vorgeschalteter Alkin-Hydrierung entstehen.⁸⁰ *Wuts* nutzte diese Reaktion bei der Synthese von Spironolacton,⁸¹ bei der aus dem terminalen Alkin und einer Hydroxygruppe nach Hydroformylierung das entsprechende *spiro*-Fünfring-Lactol entstand. *Buchwald* berichtet von der rhodiumkatalysierten Hydroformylierung innerer Alkine unter milden Bedingungen zu α , β -ungesättigten Aldehyden.⁸² Wenn die Reaktion an internen

Alkindiolen genauso abläuft, so sollte eine Bildung der Furofurane aus den entsprechenden Alkindiolen möglich sein, ohne diese vorher unter heterogener Katalyse in die Alkendiole umwandeln zu müssen. Damit ließe sich ein weiterer Schritt bei einigen der Eduktsynthesen einsparen und in die Reaktionssequenz einbinden.

Als Substrat wird 1-(1-Hydroxycyclohexyl)-but-1-in-4-ol (**6b**) verwendet und unter den Standard-Reaktionsbedingungen für die vorher verwendeten 2-Alken-1,5-diole umgesetzt (Abb. 24, V 30). Es wird allerdings nicht das Perhydrofuro[2,3-*b*]furan **8c** isoliert, sondern man erhält 3-(2-Hydroxyethyl)-1-oxaspiro[4.5]-dec-3-en-2-on (**15**) sowie 3-(2-Hydroxyethyl)-1-oxaspiro[4.5]-decan-2-on (**16**) in Ausbeuten von 18 % bzw. 33 %. Das Lacton **15** wird durch Carbonylierung des Alkindiols **6b** in C3-Position und **16** durch nachfolgende Hydrierung der Doppelbindung von **15** gebildet.

Abb. 24: Bildung der Spirolactone **15** und **16** durch rhodiumkatalysierte Cyclocarbonylierung des Alkindiols **6b**

Die übergangsmetallkatalysierte Cyclocarbonylierung von Alkenolen und Propargylalkoholen zu ungesättigten Furanonen mit Palladium- und Rhodium-Katalysatoren ist gut untersucht. Die Verwendung von Palladium-Katalysatoren überwiegt dabei.⁸³

Mit Rhodium sind nur wenige Reaktionen bekannt, so wurden z. B. interne Alkine mit $Rh_4(CO)_{12}$ unter Wassergas-Shift-Bedingungen zu den entsprechenden 3,4-disubstituierten Furanonen umgesetzt.⁸⁴ Auch Propargylalkoholderivate mit Trialkylsilylgruppen am terminalen Kohlenstoffatom wurden unter Hydroformylierungsbedingungen mit $Rh_4(CO)_{12}$ zu 3-Silyl-2(5*H*)-furanonen umgesetzt (Abb. 25).⁸⁵

Bei allen Reaktionen dieses Typs werden jedoch stets ungesättigte Furanone erhalten, im Gegensatz zu den gesättigten Furanonen, die bei den obigen Reaktionen der Alkindiole unter Hydroformylierungsbedingungen erhalten werden.

Abb. 25: Carbonylierung von Alkinen und Alkinolen⁸³⁻⁸⁵

Um nun zu überprüfen ob diese Reaktion nur ein singuläres Ergebnis ist oder einem allgemeinen Reaktionsschema entspricht, wurde als nächstes 2,6-Dimethyl-3-heptin-2,6-diol (**6d**) eingesetzt (Abb. 26, V 31). Man erhält unter den gleichen Reaktionsbedingungen wiederum das Lacton **17** in 50 % isolierter Ausbeute. Das ungesättigte Produkt wird nicht beobachtet.

Abb. 26: Cyclocarbonylierung von 2,6-Dimethyl-3-heptin-2,6-diol (6d)

Es scheint also wirklich ein allgemeines Konzept zu sein, tertiäre 2-Alkin-1,5-diole unter Hydroformylierungsbedingungen rhodiumkatalysiert in einer Carbonylierungsreaktion mit nachfolgender Hydrierung zu den gesättigten Butyrolactonen umsetzen zu können.

Es dürfte sich lohnen diese Reaktion der 2-Alkin-1,5-diole weiter zu untersuchen. Ausgehend von sehr einfach darzustellenden Ausgangsmaterialien ist so die einfache Synthese von interessanten Molekülen möglich.⁸³⁻⁸⁵ Dabei ist interessant zu erfahren, ob die zweite Hydroxygruppe im Substrat essentiell ist, z. B. um den Katalysator zu komplexieren und welche Reste im Molekül toleriert werden. Außerdem sollte untersucht werden, ob es möglich ist, die nachfolgende Hydrierung der 2(5H)-Furanone zu unterbinden. Dieses könnte vielleicht durch einen geringeren Wasserstoffpartialdruck, einen geringeren Gesamtdruck oder andere Phosphin- oder Phosphit-Liganden erreicht werden.

2.1.5 Darstellung symmetrischer 3-Alken-1,6-diole

Die Methoden zur Darstellung der 3-Alken-1,6-diole sind prinzipiell die gleichen wie für die 2-Alken-1,5-diole. Die einfachste Darstellung ist die des unsubstituierten Substrates durch Reduktion der käuflichen (*E*)-3-Hexen-1,6-dicarbonsäure (**18**) mit LiAlH₄.⁸⁶ Man erhält (*E*)-3-Hexen-1,6-diol (**19**) in 57 % Ausbeute (Abb. 27, V 32).

Abb. 27: Darstellung von (E)-3-Hexen-1,6-diol (19)

3-Alken-1,6-diole mit gleichen Substituenten in C1- und C6-Position kann man auf verschiedenen Wegen erhalten. Eine Methode ist die Veresterung der Dicarbonsäure **18** und nachfolgende Grignard-Reaktion (Abb. 28).

Abb. 28: Darstellung von (E)-2,7-Dimethyl-oct-4-en-2,7-diol (21)

Die Veresterung, z. B. mit Ethanol, zum (*E*)-3-Hexen-1,6-dicarbonsäureethylester^{86b} (**20**) verläuft mit einer Ausbeute von 99 %, die nachfolgende Grignard-Reaktion mit Methyliodid ergibt das (*E*)-2,7-Dimethyl-oct-4-en-2,7-diol (**21**) in 61 % (V 33-34).⁸⁷ Will man Furopyrane mit spiroanellierten Ringen als Substituenten erhalten, hilft einem dieser Weg nicht weiter. Hier bietet sich eine Reaktion ausgehend von 1,4-Dichlor-2-buten (**22**)

an. Eine doppelte Grignard-Reaktion ist in der Literatur nicht beschrieben, aber eine arenkatalysierte Lithiierung und nachfolgende Reaktion mit Elektrophilen zu den 3-Alken-1,6-diolen von *Yus*.⁸⁸ Ein Nachteil dieser Methode ist, dass neben den 1,4-substituierten auch die 1,2-substituierten Produkte gebildet werden (Abb. 29).

Abb. 29: Darstellung von 3-Alken-1,6-diolen nach Yus⁸⁸

Bei der Reaktion unter Barbier-Bedingungen mit Cyclohexanon (**4b**) als Elektrophil (V 35) erhält man ein Gemisch aus *cis*-1,4-Bis-(1-hydroxycyclohexyl)-but-2-en (**23a**), 3,4-Bis-(1-hydroxycyclohexyl)-but-1-en (**24a**) und 3-(1-Hydroxycyclohexyl)-but-1-en (**25a**).⁸⁹ Letzteres wurde von *Yus* nicht beobachtet. Die beiden Regioisomere **23a** und **24a** entstehen in ungefähr gleichen Anteilen, bei einer Gesamtausbeute von 70 %. Für die Reaktion mit Benzaldehyd (**4d**) sieht das Ergebnis ähnlich aus (V 36). Man erhält ein Gemisch der beiden Regioisomere *cis*-1,6-Diphenylhex-3-en-1,6-diol (**23b**)⁹⁰ und 1,4-Diphenyl-2-vinyl-butan-1,4-diol (**24b**) in 69 % Ausbeute. Eine säulenchromatographische Trennung der beiden Regioisomere ist schwierig, somit ist diese Methode kaum geeignet größere Mengen an 3-Alken-1,6-diolen herzustellen.

Abb. 30: Mögliche Darstellung von symmetrischen 3-Alken-1,6-diolen nach Yus⁹¹

Dieses Problem wäre vielleicht durch die Verwendung von 1,4-Dichlor-2-butin (**26**) zu umgehen, da hier nur ein Regioisomer gebildet wird (Abb. 30). Allerdings sind die Ausbeuten dieser Reaktion wesentlich schlechter und das 1,4-Dichlor-2-butin (**26**) ist wesentlich teurer, daher wurde dieser Weg nicht beschritten.⁹¹

Eine weitere mögliche Methode zur Darstellung der 3-Alken-1,6-diole ist die gekreuzte Metathese von Homoallylalkoholen.⁹² Dabei ist der Einsatz hochsubstituierter unsymmetrischer Olefine angesichts des zu erwartenden komplexen Produktspektrums wenig sinnvoll. Wird jedoch nur ein einziger Homoallylalkohol mit sich selbst umgesetzt, so ist nur die Bildung eines symmetrischen 3-Alken-1,6-diols zu erwarten. Als einziges Nebenprodukt entsteht das flüchtige Ethylen. Die Reaktion ist wenig stereoselektiv und es wird ein Gemisch der *cis*- und *trans*-Produkte erhalten. Dieses stört, wie bei den 2-Alken-1,5-diolen, für die weitere Umsetzung in der Hydroformylierung nicht.

Abb. 31: Darstellung symmetrischer 3-Alken-1,6-diole mittels Kreuzmetathese von Homoallylalkoholen

Es ist bekannt, dass die Kreuzmetathese relativ langsam verläuft und einen hohen Bedarf an Katalysator hat.93 So sind im allgemeinen Katalysatormengen größer 15 mol-% und Reaktionszeiten größer 20 h typisch für diese Umsetzungen. Auf diese Art wurden unter anderem auch Ferrocenylalkohole erhalten. Bei der Darstellung von 1,4-Bis-(1-hydroxycyclohexyl)-but-2-en (23a) aus dem Homoallylalkohol 27 auf diesem Weg, werden 12 mol-% an Grubbs-Metathese-Katalysator⁹⁴ 28 benötigt (V 37). Nach ca. 4 h wurde die Reaktion bei noch nicht vollständigem Umsatz abgebrochen. Das 3-Alken-1,6-diol 23a wird in 53 % Ausbeute (87 % bezogen auf den Umsatz) erhalten. Dies ist ein günstiger Fall, ansonsten wird die Synthese durch den hohen Bedarf an Katalysator zu teuer, um sie in größerem Maßstab durchzuführen. Ein weiteres Problem ist die vollständige Abtrennung des Katalysators vom Produkt. Es ist durchaus möglich, dass Reste des Katalysators bei der Hydroformylierung stören können.
2.1.6 Darstellung unsymmetrischer 3-Alken-1,6-diole

Um unsymmetrische 3-Alken-1,6-diole, also solche mit verschiedenen Substituenten in C1- und C6-Position zu generieren, bietet sich folgende Methode an (Abb. 32). Propargylbromid wird in einer Grignard-Reaktion mit Carbonylverbindungen zu den entsprechenden Alkinolen **3c-f** umgesetzt und diese direkt oder nach Schützen als THP-Ether mit Epoxiden umgesetzt. Die entstandenen 3-Alkin-1,6-diole **30a-d** werden mit Lindlar-Katalysator, eventuell nach Entschützen der Hydroxyfunktion, zu den *cis*-3-Alken-1,6-diolen **31a-d** hydriert.

Abb. 32: Mögliche Wege zur Darstellung von unsymmetrischen 3-Alken-1,6-diolen 31a-d

Die Alkinole **3c-f** werden in zufriedenstellenden Ausbeuten erhalten. Als Nebenprodukte entstehen die Bisaddukte **6d,e,g**, da aus dem Propargylmagnesiumbromid durch Reaktion mit sich selbst teilweise die Di-Grignard-Verbindung **5** entsteht. Die Ergebnisse sind in Abb. 33 und Tab. 11 (V 38-41) zusammengefasst.

Abb. 33 und Tab. 11: Darstellung der Alkinole 3c-f

Vers.	Keton	\mathbf{R}^1	\mathbf{R}^2	Alkinol	Ausbeute ^{a)} [%] Alkindiol		Ausbeute ^{a)} [%]
V 38	4a	Me	Me	3c	46	6d	15
V 39	4 e	-(CH	H ₂) ₄ -	3d	44	6g	23
V 40	4b	-(CH	H ₂) ₅ -	3e	49	6e	16
V 41	4d	Η	Ph	3f	61	6f	

^{a)} isolierte Ausbeuten

Es ist bekannt, dass der Angriff lithiumorganischer Verbindungen an Epoxide regioselektiv am weniger substituierten Kohlenstoffatom und mit hoher *trans*-Selektivität erfolgt.⁹⁵ Da Epoxide aber wenig elektrophil sind, wird zur Reaktivitätssteigerung eine Lewissäure, z. B. BF₃·OEt₂ zugegeben, welche einen Komplex mit dem Oxiran bildet. Wenn stabilisierende Reste für positive Ladungen vorhanden sind z. B. Phenyl, oder wenn das Epoxid an beiden Positionen unterschiedlich substituiert ist, können Abweichungen von der normalen Regioselektivität auftauchen.⁹⁶ Um solche Probleme zu umgehen und weil man aus den entsprechenden Alkindiolen **30a-d** nach Hydroformylierung ringanellierte Produkte erhalten kann, wird Cyclohexenoxid (**29**) als symmetrisches Epoxid gewählt. Auf das Schützen der Hydroxyfunktion der Alkinole wird verzichtet, da in einem Vergleichsversuch das geschützte und das ungeschützte Alkinol jeweils ähnliche Ausbeuten ergeben haben. So können zwei Stufen in der Synthese eingespart werden. Die Reaktion mit dem Acetylid als Nukleophil verläuft in guten Ausbeuten (Abb. 34). Die Ergebnisse der Öffnungsreaktionen des Epoxids **29** sind in Tab. 12 (V 42-45) zusammengefasst.

Abb. 34: Darstellung der Alkindiole 30a-d

	U				
Vers.	Alkinol	\mathbb{R}^1	\mathbf{R}^2	Alkindiol	Ausbeute ^{a)} [%]
 V 42	3c	Me	Me	30 a	74 (40)
V 43	3d	-(C)	H ₂) ₄ -	30b	(17)
V 44	3 e	-(C)	H ₂) ₅ -	30c	66 (51)
V 45	3 f	Н	Ph	30d	45 (29)

Tab. 12: Darstellung der Alkindiole 30a-d

^{a)} gaschromatographisch bestimmt, isolierte Ausbeuten in Klammern

Nachfolgend werden die gebildeten Alkindiole **30a-d** mit Lindlar-Katalysator in sehr guten Ausbeuten größer 93 % zu den entsprechenden Alkendiolen **31a-d** hydriert (Abb. 35, V 46-49).

Abb. 35: Hydrierung der Alkindiole 30a-d

2.1.7 Hydroformylierung symmetrischer 3-Alken-1,6-diole

Ausgehend von den Erfahrungen bei der Hydroformylierung der 2-Alken-1,5-diole sollte die Hydroformylierung der 3-Alken-1,6-diole unter den gleichen Reaktionsbedingungen ablaufen. Beim unsubstituierten oder den in C1- und C6-Position gleich substituierten Substraten sollte die Reaktion aufgrund der Symmetrie außerdem selektiver sein, weil beide Positionen der Doppelbindung für die Hydroformylierung äquivalent sind. Da die Hydroxyfunktionen in Homoallylposition sind, ist die Isomerisierungstendenz geringer. Außerdem sind die Substituenten durch die zusätzliche CH₂-Gruppe weiter voneinander und von der Doppelbindung entfernt. Dies hat zur Folge, dass die Hydroformylierung auch von sterisch anspruchsvollen Substituenten nicht mehr behindert werden dürfte.

Als erstes wird das unsubstituierte Substrat (*E*)-3-Hexen-1,6-diol (**19**) eingesetzt. Die Ergebnisse der Versuchsoptimierung sind in Abb. 36 und Tab. 13 dargestellt. Je nach Reaktionsbedingungen kann das Furo[2,3-b]pyran **32a**, sowie die Zwischenprodukte der Reaktionssequenz erhalten werden.

Abb. 36 und Tab. 13: Optimierungsversuche zur Hydroformylierung von (*E*)-3-Hexen-1,6-diol (**19**)

Vers.	p(CO)/p(H ₂)	Т	t	LM	Ausbeute ^{a)} [%]			
	[bar]	[°C]	[h]		32a	33	34,35	36
V 50	90 / 20	110	70	Dioxan	43 (12)		18	34
V 51 ^{b)}	45 / 15	120	20	Dioxan	70 (70)	14 (14)		
V 52 ^{c)}	45 / 15	120	20	Dioxan	63 (60)	5		
V 53 ^{b)}	45 / 15	120	16	Dioxan	66		34	
V 54 ^{b)}	45 / 15	120	20	THF	54 (54)	12		
V 55 ^{b)}	45 / 15	120	20	CH_2Cl_2	92 (90)	(6)		

^{a)} gaschromatographisch bestimmt, isolierte Ausbeuten in Klammern; Katalysator: [Rh(cod)Cl]₂,
^{b)} 3 Äq. PPh₃; ^{c)} 3 Äq. P(OPh)₃

Wie man sieht, erhält man bei relativ hohen Drücken und ohne Zusatz eines Phosphinoder Phosphit-Liganden einen hohen Anteil an Hydrierprodukt **36** (V 50). Werden die Standard-Reaktionsbedingungen wie bei den 2-Alken-1,6-diolen und PPh₃ oder P(OPh)₃ als Ligand verwendet (V 51-52), so erhält man bereits hohe Anteile an Furopyran **32a** bzw. an Aldehyd **33**. Wird die Reaktionszeit etwas verkürzt (V 53) ist noch ein relativ großer Anteil an nicht zum Furopyran **32a** cyclisiertem Pyranol **34** oder Furanol **35** zugegen. Diese liegen als nicht zu trennendes Gemisch von jeweils zwei Diastereomeren vor. Der Wechsel des Lösemittels zum THF führt auch hier zu etwas schlechteren Ausbeuten und mehr Nebenprodukten. Verwendet man Dichlormethan, so erhält man mit einer Ausbeute von 90 % das (3a*S**, 7a*R**)-Perhydrofuro[2,3-*b*]pyran⁹⁷ (**32a**) und zu 6 % das 5-Hydroxy-2(2-hydroxyethyl)-pentanal (**33**) als einziges Nebenprodukt. Es werden also die gleichen Reaktionsbedingungen wie für die 2-Alken-1,5-diole als Standard festgelegt. Die vorherigen Vermutungen in Bezug auf die hohe Selektivität der Reaktion werden bestätigt. Als weitere Produkte werden hauptsächlich die Intermediate der Tandem-Reaktion isoliert. Diese sind wie **34** und **35** in einer nachgeschalteten Stufe säurekatalysiert in das Endprodukt transformierbar (V 56).

Die Ergebnisse für die Umsetzungen aller symmetrischen 3-Alken-1,6-diole in Abb. 37 und Tab. 14 dargestellt.

Abb. 37 und Tab. 14: Tandem-Hydroformylierung symmetrischer 3-Alken-1,6-diole

Vers.	Edukt	R ¹	\mathbf{R}^2	R ³	\mathbf{R}^4		Ausbeute ^{a)} [%]		Ausbeute ^{a)} [%]
V 55 ^{b)}	19	Η	Н	Н	Н	32a	92 (90)	33a	(6)
V 57 ^{b)}	21	Me	Me	Me	Me	32b	96 (84)		
V 58 ^{c)}	21	Me	Me	Me	Me	32b	19 (11)	37	50 (21)
V 59 ^{b)}	23a	-(CH	H ₂) ₅ -	-(Cł	H ₂) ₅ -	32c	74 (67)		
V 60 ^{c)}	23a	-(Cł	H ₂) ₅ -	-(Cł	H ₂) ₅ -	32c	19		
V 61 ^{b)}	23b	Η	Ph	Н	Ph	32d	$40(11)^{d}$		

^{a)} gaschromatographisch bestimmt, isolierte Ausbeuten in Klammern; ^{b)} in Dioxan; ^{c)} in CH_2Cl_2 ; ^{d)} Diastereomerengemisch (1.7 : 1.4 : 1.0)

Im Gegensatz zum unsubstituierten (*E*)-3-Hexen-1,6-diol (**19**) erhält man für (*Z*)-2,7-Dimethyl-4-octen-2,7-diol (**21**) die besten Ergebnisse in Dioxan als Lösemittel. Auch hier wird 2,2,6,6-Tetramethyl-($3aS^*$, $7aR^*$)-perhydrofuro[2,3-*b*]pyran (**32b**) in sehr guter Ausbeute von 96 % erhalten (V 57). Wird die Reaktion in Dichlormethan als Lösemittel durchgeführt, so erhält man **32b** nur als Nebenprodukt mit 19 % Ausbeute (V 58). Das Hauptprodukt dieser Reaktion ist 2,2-Dimethyl-5-(2-methyl-1-propenyl)-tetrahydrofuran (**37**)⁹⁸ in 50 % Ausbeute (Abb. 38).

Abb. 38: Möglicher Weg zur Bildung von 37

Das Produkt **37** entsteht wahrscheinlich durch Protonierung und Abspaltung einer Hydroxyfunktion, Isomerisierung der Doppelbindung und Cyclisierung durch nukleophilen Angriff der zweiten Hydroxygruppe auf das gebildete delokalisierte Carbokation mit nachfolgender Deprotonierung.

Beim Übergang zu 23a (V 59), erhält man ein sehr interessantes Ergebnis. Als Hauptprodukt wird auch hier das rac-Dispiro[cyclohexan-1,2'-perhydrofuro[2,3-b]pyran-6',1''-cyclohexan] (32c) in hoher Ausbeute gebildet. Verglichen mit den ersten beiden Substraten geht die Ausbeute nur leicht zurück. Man muss dieses Ergebnis aber auch im Vergleich mit der Hydroformylierung des gleichsubstituierten (Z)-1,3-Bis-(1-hydroxycyclohexyl)-prop-2-en (2f) sehen (V 27). Bei diesem wurde nur eine Hydrierung der Doppelbindung beobachtet und keine Hydroformylierung. Das bestätigt die bereits dort aufgestellte Hypothese, dass die sterische Hinderung des Substrates durch die Substituenten, sowohl durch deren Größe als auch deren Abstand zur Doppelbindung, die Reaktivität des Substrates stark beeinflusst. Wird das Edukt 23a aus der Metathesereaktion (V 37) in Dichlormethan umgesetzt, so verläuft die Reaktion langsamer. Nach der gleichen Zeit ist erst ein Umsatz von 30 % erreicht, es werden aber keine Nebenprodukte beobachtet (V 60). Ob für diesen geringen Umsatz das Dichlormethan oder Reste des Metathese-Katalysators verantwortlich sind kann nicht beurteilt werden.

Für das 3-Alken-1,6-diol (**23b**) mit seinen sekundären Hydroxygruppen wird das entsprechende Perhydrofuro[2,3-*b*]pyran **32d** als Gemisch aus drei Diastereomeren im Verhältnis 1.7 : 1.4 : 1.0 erhalten (V 61). Die Gesamtausbeute ist geringer als für die anderen Furopyrane. Dies ist insofern ein wenig unerwartet, als für das analoge 2-Alken-1,5-diol **2g** eine der höchsten Ausbeuten in dieser Reihe erzielt wurde. Ein Grund für die

geringe Ausbeute ist die Isomerisierung des Substrates zum 1,6-Diphenyl-6-hydroxyhexanon (**38**), welches das Substrat der Hydroformylierung entzieht (Abb. 39). Die Isomerisierung hätte durch die Verwendung des Rhodiumkatalysators und PPh₃ als Ligand unterdrückt werden sollen.³⁹

Abb. 39: Bildung von 38 durch Isomerisierung

2.1.8 Hydroformylierung unsymmetrischer 3-Alken-1,6-diole

Im letzten Teil dieses Abschnitts wird die Hydroformylierung der unsymmetrischen 3-Alken-1,6-diole **31a-d** betrachtet. Hierbei ist zu beachten, dass die Hydroformylierung wieder an beiden Positionen der Doppelbindung stattfinden kann, was zu unterschiedlichen Produkten führt. So können theoretisch die Produkte **39a-d** und **40a-d** (Abb. 40) in gleichen Anteilen gebildet werden. Eine leichte Bevorzugung der Hydroformylierung in Position **B** aus sterischen Gründen, aufgrund des Cyclohexylsubstituenten, ist möglich.

Abb. 40: Mögliche Produkte der Hydroformylierung unsymmetrischer 3-Alken-1,6-diole

Die Ergebnisse der Hydroformylierung der Substrate **31a-d** unter den gleichen Reaktionsbedingungen wie für die symmetrischen 3-Alken-1,6-diole sind in Abb. 41 und Tab. 15 dargestellt. Die Hauptprodukte der Reaktion sind nicht die Perhydrofuro[2,3-*b*]pyrane **39a-d** und **40a-d**, sondern die durch Isomerisierung und Umlagerung entstehenden Hydroxyketone **41a-d**.

Abb. 41 und Tab. 15: Reaktion der unsymmetrischen 3-Alken-1,6-diole 31a-d

				Ausbeute ^{a)} [%]	Ausbeute ^{a)} [%]
Vers.	Substrat	\mathbf{R}^{1}	\mathbf{R}^2	39, 40	41
V 62	31 a	Me	Me		44 (14)
V 63	31b	-(C	H ₂) ₄ -		54 (17)
V 64	31c	-(C	H ₂) ₅ -	$(39)^{c)}$	
V 65 ^{b)}	31c	-(C	H ₂) ₅ -	14	29 (23)
V 66	31d	Н	Ph		27 (18)

^{a)} gaschromatographisch bestimmt, isolierte Ausbeuten in Klammern; Katalysator:[Rh(cod)Cl]₂; 3 Äq. PPh₃, Dioxan, 120 °C, 20 h, ^{b)} in CH₂Cl₂; ^{c)} 1.8:1.0-Isomerengemisch

Lediglich für die Reaktion von **31c** in Dioxan konnten aus dem Produktgemisch die beiden möglichen Perhydrofuro[2,3-*b*]pyrane **39c**, **40c** als nicht zu trennendes 1.8:1.0-Isomerengemisch gemäß Abb. 40 in 39 % Ausbeute isoliert werden. Wird die Reaktion in Dichlormethan durchgeführt so ist das Hauptprodukt ebenfalls das Hydroxyketon **41c**.

Die Ergebnisse dieses Abschnittes zeigen, dass die Darstellung anellierter fünf- und sechsgliedriger O-Heterocyclen via Tandem-Hydroformylierung-Acetalisierung intern ungesättigter Diole prinzipiell möglich ist. Bei einigen Substraten erhält man sogar exzellente Ergebnisse. Die Ausbeuten und Selektivitäten dieser Reaktion hängen jedoch stark von der Struktur der Substrate ab. Es sind hauptsächlich sterische Kriterien, die bestimmen ob die Hydroformylierung überhaupt ablaufen kann. Weiterhin ist der Substitutionsgrad der Carbinol-Kohlenstoffe wichtig. Primäre sekundäre und Hydroxyfunktionen neigen weniger zu Eliminierungsreaktionen als tertiäre und geben somit weniger Nebenprodukte. Schließlich ist noch die Symmetrie des Substrates zu nennen. Wenn das Substrat symmetrisch ist und nur ein Produkt entstehen kann, so sind die Ausbeuten am höchsten. Die Tandem-Hydroformylierung-Acetalisierung symmetrischer 3-Alken-1,6-diole zu Perhydrofuro[2,3-*b*]pyranen verläuft somit sehr selektiv und in hohen Ausbeuten, während alle anderen Systeme, die mehrere Reaktionsmöglichkeiten besitzen unter den gleichen Bedingungen nur mäßige bis gute Ausbeuten liefern. Dort müssten zur Ausbeute- und Selektivitätssteigerung die Reaktionsbedingungen für jedes Substrat einzeln optimiert werden.

2.2 Tetrahydrofuransubstituierte Fünf- oder Sechsring-Hemiacetale

2.2.1 Allgemeines

2,5-disubstituierte Tetrahydrofurane oder 2,6-disubstituierte Tetrahydropyrane treten häufig in Naturstoffen auf.⁴⁹ *Kitsos-Rzychon*³⁵ hat bereits einige Untersuchungen zur Hydroformylierung von Allyl- und Homoallylalkoholen mit Furansubstituenten durchgeführt. Eines der dabei auftretenden Probleme war die geringe Selektivität bei der Hydroformylierung terminaler, einfach substituierter Doppelbindungen.² So wurden beim Einsatz des Homoallylalkohols **42** Gemische der Fünf- und Sechsringhemiacetale **43** und **44** erhalten (Abb. 42). Da in Naturstoffen und Polyether-Antibiotika vor allem Tetrahydrofurane und Tetrahydropyrane enthalten sind, müssten außerdem die Furaneinheiten nachträglich hydriert werden, was zu Problemen mit verschiedenen, möglicherweise im Molekül vorhandenen, reduzierbaren Funktionalitäten führen könnte.

Abb. 42: Hydroformylierung des Furanylalkenols 42^{35}

Um diese Probleme der nachträglichen Hydrierung des Furansystems zu umgehen, sollen bei den folgenden Untersuchungen Tetrahydrofuranylalkenole als Ausgangsmaterialien eingesetzt werden.

Zur Steigerung der Regioselektivität der Hydroformylierung können zwei Konzepte verfolgt werden. Zum einen können Substrate eingesetzt werden, die in α -Position zur

Doppelbindung ein quartäres Kohlenstoffatom tragen. Durch die hierbei fehlenden allylischen Protonen wird die übergangsmetallkatalysierte Isomerisierung unterdrückt und die Hydroformylierung erfolgt aufgrund sterischer Einflüsse hoch *n*-selektiv. Durch die geminalen Alkylgruppen in α -Position wird zudem die Cyclisierung unterstützt (*Thorpe-Ingold*-Effekt).⁹⁹ Bei Substraten mit einer 1,1-disubstituierten Doppelbindung erfolgt die Hydroformylierung nach der Regel von *Keulemans*¹⁰⁰ ebenfalls hoch selektiv am unsubstituierten Terminus der Doppelbindung.¹⁰¹ Das zweite Konzept ist die Verwendung von Liganden für das Katalysatorsystem. Insbesondere der Zusatz von Phosphin- und Phosphit-Liganden ist in der Literatur beschrieben.^{2,12-14} Diese bilden in situ mit dem Katalysatorsystems zu einer selektiveren Reaktion in *n*-Position führen. Ein sehr effektiver Ligand ist das zweizähnige Diphosphit BIPHEPHOS (**45**) (Abb. 43).¹⁰²

Dieser Ligand ermöglicht eine Hydroformylierung bei sehr milden Reaktionsbedingungen und mit hoher *n*-Selektivität. Somit sollte die selektive Bildung von Fünfring-Hemiacetalen aus Allylalkoholen und Sechsring-Hemiacetalen aus Homoallylalkoholen möglich sein.^{11c,82,102,103}

2.2.2 Darstellung verschiedener Tetrahydrofuranylalkenole

Zur Darstellung der Tetrahydrofuranylalkenole muss zuerst Tetrahydrofuran-2-carbaldehyd (**49**) ausgehend von Furfural (**46**) dargestellt werden (Abb. 44, V 67-69).¹⁰⁴ Dies gelingt in einer Gesamtausbeute von 54 % über alle drei Stufen.

Abb. 44: Darstellung von Tetrahydrofuran-2-carbaldehyd (49)

Nachfolgend wird der Tetrahydrofuran-2-carbaldehyd (**49**) mit verschiedenen ungesättigten Halogeniden unter Grignard-Bedingungen mit Magnesium oder Barbier-Bedingungen mit Zink umgesetzt (Abb. 45, V 68-76).

Abb. 45 und Tab. 16: Darstellung der Tetrahydrofuranylalkenole 50a-d

Vers.	Metall	R	AlCl ₃ ^{a)}	Alkohol	Ausbeute ^{b)}	Diastereomere
					[%]	
V 70	Mg	Vinyl	-	50a	49	1:1-Gemisch
V 71	Mg	Vinyl	+	50a	19	1.7:1-Gemisch
V 72	Mg	Allyl	-	50b	73	1:1-Gemisch
V 73	Zn	Allyl	+	50b		kompl. Produktgemisch
V 74	Mg	Methallyl	-	50c	21	1:1-Gemisch
V 75	Zn	Methallyl	+	50c	7	1.5:1-Gemisch
V 76	Zn	Prenyl	+	50d	33	1 Diastereomer

^{a)} 10 mol-% AlCl₃; ^{b)} isolierte Ausbeuten

Die Tetrahydrofuranylalkenole **50a-d** werden in mäßigen bis guten Ausbeuten von 21-73 % erhalten. Außer beim Einsatz von Prenylbromid werden die besten Ausbeuten mit Magnesium und ohne Zusatz von AlCl₃ erzielt (Abb. 45 und Tab. 16). Durch den Zusatz von AlCl₃ zu den Reaktionsmischungen konnte beim Prenylbromid unter 38

Barbier-Bedingungen erreicht werden, dass nur einer der beiden möglichen diastereomeren Homoallylalkohole gebildet wird.¹⁰⁵ Bei den anderen Reagenzien wird eine solche Diastereoselektivität nicht oder nur ansatzweise beobachtet. Es werden jeweils die Gemische der diastereomeren Alkenole erhalten, die nicht getrennt werden können. Die Diastereoselektivität der Reaktion mit Prenylbromid lässt sich mit Hilfe des *Cram*'schen Chelat-Modells erklären.¹⁰⁶ So ist bei der Bildung des Alkenols **50d** eine intermediäre Bildung eines Chelat-Komplexes des Aluminiums mit dem Tetrahydrofuran-2-carbaldehyd (**49**) wahrscheinlich (Abb. 46).

Abb. 46: Diastereoselektive Bildung von 50d

Bei Einsatz von Vinyl- und Methallylchlorid ist eine Diastereoselektion immerhin ansatzweise zu erkennen, beim Allylbromid erhält man unter Zusatz von AlCl₃ nur ein komplexes Produktgemisch. Die geringe Diastereoselektivität bei diesen Reagenzien lässt sich somit wahrscheinlich mit der zu geringen sterischen Hinderung der angreifenden Nukleophile und des Substrates erklären.

2.2.3 Hydroformylierung der Tetrahydrofuranylalkenole

Die Hydroformylierung von 1-(Tetrahydrofuran-2-yl)-prop-2-en-1-ol (**50a**) mit Rh(acac)(CO)₂ und BIPHEPHOS (**45**) als Katalysatorsystem unter milden Bedingungen (Dioxan, 60 °C, 20 h, 10 bar CO, 10 bar H₂) führt in guter Ausbeute von 64 % zum Octahydro-[2,2']-bifuranyl-5-ol (**51a**). Man erhält ein nicht zu trennendes Gemisch von vier Diastereomeren im Verhältnis 1.0 : 1.2 : 1.2 : 2.2. Eine Dehydratisierung des Hemiacetals zum Enolether wird unter den milden Reaktionsbedingungen nicht beobachtet. Zur besseren Charakterisierung wird das Gemisch der Lactole **51a** nach *Nozaki*¹⁰ mit Ag₂CO₃ zu den entsprechenden Lactonen oxidiert. Das Gemisch der beiden diastereomeren Lactone **52a** wird in 91 % Ausbeute erhalten (Abb. 47).¹⁰⁷ Die Ergebnisse der

Hydroformylierungsreaktionen der Tetrahydrofuranylalkenole **50a-d** (V 77-81) und der nachfolgenden Oxidationen (V 82-85) der Lactole **51a-d** sind in Abb. 47 und Tab. 17 zusammengefasst.

Abb. 47 und Tab. 17: Hydroformylierung der Allyl- und Homoallylalkohole 50a-d

Vers.	Substrat	p(CO)/p(H ₂)	Т	t	Ausbeute ^{a)} [%]	Vers.	Ausbeute ^{a)} [%]
		[bar]	[°C]	[h]	51		52
V 77	50a	10 / 10	60	20	64	V 82	91
V 78	50b	10 / 10	60	40	89 ^{b)}	V 83	$71 + 73^{d}$
V 79	50c	40 / 40	80	20	93 ^{c)}	V 84	$60 + 64^{d}$
V 80	50d	10 / 10	60	20	90	V 85	93
V 81	50d	30 / 20	80	20	93 ^{c)}		

^{a)} isolierte Ausbeuten; ^{b)} in Dichlormethan; ^{c)} ohne BIPHEPHOS; ^{d)} die Oxidation der getrennten Diastereomerenpaare wurde jeweils einzeln durchgeführt, Ausbeute ist bezogen auf die getrennten Isomere

Für den Homoallylalkohol 1-(Tetrahydrofuran-2-yl)-but-3-en-1-ol (**50b**) erhält man unter den gleichen Reaktionsbedingungen ebenfalls ein Gemisch der vier möglichen diastereomeren Sechsring-Hemiacetale in 89 % Ausbeute. Diese können mittels Säulenchromatographie in jeweils zwei Diastereomerenpaare getrennt werden, die einzeln in guten Ausbeuten zu den entsprechenden Lactonen **52b** oxidiert werden (V 83).

Für 3-Methyl-1-(tetrahydrofuran-2-yl)-but-3-en-1-ol (50c) ist wie bereits vorher erwähnt der Einsatz von BIPHEPHOS (45) für die n-selektive Hydroformylierung nicht nötig. Da 1,1-disubstituierte Doppelbindung vorliegt, aber eine deren Reaktivität unter Hydroformylierungsbedingungen stark herabgesetzt ist, müssen harschere Reaktionsbedingungen verwendet werden. Bei einer Reaktionstemperatur von 80 °C und einem Synthesegasdruck von 80 bar (CO/H2 1:1) erhält man 4-Methyl-6-(tetrahydrofuran2-yl)-tetrahydropyran-2-ol (**51c**) als Gemisch aus acht Diastereomeren, welche mittels Säulenchromatographie in zwei Sätze zu je vier Diastereomeren getrennt werden können. Nach Oxidation der beiden Sätze mit Ag_2CO_3 erhält man jeweils zwei der zugehörigen Lactone **52c** in 60 bzw. 64 % Ausbeute (V 84).

Wird der einzelne diastereomere Homoallylalkohol 2,2-Dimethyl-(1-tetrahydrofuran-2-yl)but-3-en-1-ol (**50d**) unter den milden Reaktionsbedingungen mit BIPHEPHOS-Zusatz umgesetzt, so erhält man auch nur die zwei möglichen Diastereomere von 5,5-Dimethyl-6tetrahydrofuran-2-yl-tetrahydropyran-2-ol (**51d**) in einer Ausbeute von 90 %. Um die vorher erwähnte Wirksamkeit des dialkylsubstituierten quartären Kohlenstoffatoms in α -Position zur Doppelbindung zu demonstrieren, wird die Reaktion auch ohne BIPHEPHOS (**45**) bei einer Reaktionstemperatur von 80 °C und einem Synthesegasdruck von 50 bar (CO/H₂ 3:2) durchgeführt. Auch unter diesen Bedingungen erhält man das Lactol **51d** in sehr guter Ausbeute von 93 %. Nach Oxidation (V 85) erhält man nur noch ein einzelnes Diastereomer von 5,5-Dimethyl-6-tetrahydrofuran-2-yl-tetrahydropyran-2-on (**52d**). Die Konfiguration kann mittels NOE-Experimenten ermittelt werden (Abb. 48).

Abb. 48: Hydroformylierung von 2,2-Dimethyl-(1-tetrahydrofuran-2-yl)-but-3-en-1-ol (47d)

Die Hydroformylierung Allyloder Homoallylalkoholen einem von mit Tetrahydrofuransubstituenten am Carbinol-Kohlenstoff zu Bis-Tetrahydrofuran- oder Tetrahydrofuran-Tetrahydropyran-Einheiten verläuft somit mit guten bis sehr guten Ausbeuten. Dabei sind die Ausbeuten für den Allylalkohol wie schon bei Kitsos-Rzychon geringer als für die Homoallylalkohole.³⁵ Die Steuerung der Regioselektivität der Hydroformylierung in die n-Position, sei es substrat- oder ligandgesteuert, ist sehr gut möglich. Die iso-Produkte der Reaktion werden nicht beobachtet. Man müsste jedoch wie beim 2,2-Dimethyl-(1-tetrahydrofuran-2-yl)-but-3-en-1-ol (51d) die Reaktion mit

diastereomerenreinen Substraten durchführen, um von vornherein eine geringere Anzahl an Stereozentren im Produkt zu erzeugen. Was an diesen Systemen außerdem noch untersucht werden müsste, ist die Steuerung der Diastereo- und Enantioselektivität der Reaktion, da in der Tandem-Hydroformylierung-Acetalisierung mindestens ein, bei den Homomethallylsystemen sogar zwei neue Stereozentren generiert werden. Da bei der Reaktion grundsätzlich alle möglichen Diastereomere in praktisch gleichen Anteilen gebildet werden, wird die Anzahl der Isomere dabei sehr groß. Ohne weitere Möglichkeiten der Steuerung schränkt das die Einsatzgebiete dieser Reaktion ein. Diese Experimente sind vor allem als einleitende Untersuchungen für den nächsten Abschnitt durchgeführt worden.

2.3 Reaktionen von Divinylglykolen und Bisallylglykolen

2.3.1 Allgemeines

Nach den Ergebnissen des vorherigen Abschnittes stellt sich nun die Frage, ob es auch möglich ist, beide Ringe gleichzeitig mittels einer Tandem-Hydroformylierung-Acetalisierung aufzubauen.

Als Substrate für eine solche Reaktion müssen Divinylglykole oder Bisallylglykole eingesetzt werden. Durch die Erhöhung der Anzahl der reaktiven Funktionalitäten im Molekül besteht natürlich die Möglichkeit, dass die Selektivität der Reaktion stark abnimmt. Durch den Einsatz des BIPHEPHOS-Liganden sollten wieder selektiv die *n*-Hydroformylierungsprodukte gebildet werden. Allerdings bestehen nach der Hydroformylierungs-Reaktion theoretisch verschiedene Möglichkeiten zwei der Ringverknüpfung (Abb. 49).

Abb. 49: Mögliche Produkte der Hydroformylierung von Divinylglykol und Bisallylglykol 42 Denkbar sind für diese Reaktion sowohl die ringanellierten Produkte, als auch die Bis-Tetrahydrofuran- und Bis-Tetrahydropyranprodukte. Welche dieser Produkte bevorzugt werden, lässt sich nicht ohne weiteres vorhersagen und muss sich in der Praxis erweisen, da nach den *Baldwin*-Regeln sowohl die Cyclisierungen nach 5-6-exo-trig als auch die Cyclisierungen nach 6-7-endo-trig bevorzugt sind.¹⁰⁸ Daher werden einige einfache Substrate synthetisiert und diese in der Hydroformylierung eingesetzt.

2.3.2 Darstellung einfacher Divinylglykole

Für erste Untersuchungen zur Hydroformylierung der zweifach ungesättigten Glykole wird 1,5-Hexadien-3,4-diol (**54**) durch reduktive Kupplung von Acrolein (**53**) in 37 % Ausbeute dargestellt (Abb. 50, V 86).¹⁰⁹

Abb. 50: Darstellung von 1,5-Hexadien-3,4-diol (54) und Trennung der Diastereomere¹⁰⁹

Da eine Trennung des *meso*-Isomers **54a** und des *d*,*l*-Isomers **54b** nicht ohne weiteres möglich ist, wird das Reaktionsgemisch mit Dimethoxypropan quantitativ zu den 2,2-Dimethyl-4,5-divinyl-1,3-dioxolanen (**55a,b**) umgesetzt (V 87).¹¹⁰ Diese können säulenchromatographisch getrennt werden. Nach Hydrolyse der Acetale mit Salzsäure erhält man die diastereomeren Divinylglykole *meso*-1,5-Hexadien-3,4-diol (**54b**) (V 88-89).

Das Substratmuster für diese Reaktion ist stark eingeschränkt (Abb. 51). Wird die Doppelbindung am terminalen Ende substituiert (Molekül **A**), so kann keine regioselektive Hydroformylierung mehr garantiert werden, außerdem würden zwei zusätzliche Stereozentren generiert.

Abb. 51: Möglichkeiten der Substratmodifikation

Ähnliches gilt für Molekül **B**. Auch hier würden zwei zusätzliche Stereozentren generiert. Allerdings wäre hier die Regioselektivität der Hydroformylierung nach der Regel von *Keulemans* gesichert.¹⁰⁰ Für weitere Modifikationen bleiben also nur die Positionen am C3- und C4-Atom übrig (Molekül **C**). Die bekannten Naturstoffe besitzen in diesen Positionen der Tetrahydrofuraneinheit manchmal Methyl- oder Ethyl-Substituenten (Abb. 11). Aus diesem Grund wird 3,4-Dimethyl-1,5-hexadien-3,4-diol (**57**) mittels Grignard-Reaktion aus 2,3-Butandion (**56**) dargestellt (Abb. 52, V 90).¹¹¹

Abb. 52: Darstellung von 3,4-Dimethyl-1,5-hexadien-3,4-diol (57)

Die Diastereomere lassen sich allerdings auch nach Umsetzung zum Dioxolan nicht trennen. 3,4-Dimethyl-1,5-hexadien-3,4-diol (**57**) wird somit später nur als Diastereomerengemisch in der Hydroformylierung eingesetzt. Als Substrat für den Vertreter einer nicht natürlich vorkommenden Struktureinheit soll 1,2-Divinyl-cyclohexan-1,2-diol (**60**) dargestellt werden (Abb. 53).

Abb. 53: Darstellung von 1,2-Divinyl-cyclohexan-1,2-diol (60)

Dies geschieht in zwei Stufen, da in der ersten Reaktion nur eine Carbonylgruppe umgesetzt wird und sich 2-Hydroxy-2-vinyl-cyclohexanon (**59**) bildet (V 91).¹¹² Dieses wird nochmals mit Vinylmagnesiumchlorid zum Diol **60** umgesetzt (V 92). Das *meso-* und das *d,l-*Isomer sind säulenchromatographisch zu trennen. Zur Absicherung der Konfiguration wird ein Teil des vermuteten *meso-*Isomers **60a**, analog zum Divinylglykol **54a,b**, zum Dioxolan **61** umgesetzt und NMR-spektroskopisch untersucht (V 93). Anhand der Signale für die Methylgruppen im ¹H-NMR, lässt sich eine Aussage über die Konfiguration treffen. Bei zwei Signalen, wie in diesem Fall, liegt das *meso-*Isomer vor.¹¹³

2.3.3 Hydroformylierung einfacher Divinylglykole

Als Reaktionsbedingungen für die Hydroformylierung der Divinylglykole werden aus den gleichen Gründen, wie schon im vorherigen Abschnitt, die milden Bedingungen unter Verwendung des BIPHEPHOS-Liganden gewählt. Die Ergebnisse der Experimente sind in Abb. 54 und Tab. 18 dargestellt.

Vers.	Substrat	LM	Ausbeute ^a	^{ı)} [%]	
V 94	54a,b	Dioxan	62a,b	66	
V 95	54a	Dioxan	62a	58	
V 96	54b	Dioxan	62b	84	

Abb. 54 und Tab. 18: Hydroformylierung von 1,5-Hexadien-3,4-diol (54a,b)

^{a)} isolierte Ausbeuten

Um die Versuchsbedingungen zu testen, wird zuerst Gemisch aus *meso-* und d,l-1,5-Hexadien-3,4-diol (**54a,b**) eingesetzt (V 94). Man erhält in einer isolierten Ausbeute von 66 % ein Gemisch aus sechs diastereomeren Lactolen. Aus deren IR- und NMR-Spektren ist jedoch nicht auf Anhieb zu erkennen, welche der nach Abb. 49

möglichen Produkte gebildet werden. Das Gemisch der Lactole wird mit Ag₂CO₃ zu den entsprechenden Lactonen oxidiert (V 97). Dadurch wird zum einen die Anzahl der Diastereomere durch Planarisierung zweier Stereozentren auf zwei verringert. Weiterhin sollte zum Beispiel anhand der Banden im IR-Spektrum sofort zu erkennen sein, welches Produkt gebildet wurde.

Man erhält nach fraktionierender Kristallisation 32 % an meso-Octahydro-[2,2']bifuranyl-5,5'-dion (63a) und 31 % an *d*,*l*-Octahydro-[2,2']bifuranyl-5,5'-dion (63b).¹¹⁴ Dieses ist im IR-Spektrum durch die für Fünfring-Lactole typische Bande bei 1774 cm⁻¹ zu erkennen. Für Sechsring-Lactole liegt diese Bande bei niedrigeren Wellenzahlen.¹¹⁵ Es werden also die 5,5'-verknüpften Tetrahydrofuran-Einheiten und nicht die ringanellierten Sechsring-Lactole gebildet. Die 5-exo-trig Cyclisierung ist somit gegenüber der 6-endo-trig Cyclisierung klar bevorzugt. Zur Überprüfung wurden die Diastereomeren meso-54a und d,l-54b auch nochmals einzeln umgesetzt und die Diastereomerengemische der entsprechenden Lactole in 58 % bzw. 84 % Ausbeute erhalten (V 95-96).

Setzt man nun das nicht zu trennende Diastereomerengemisch von 3,4-Dimethyl-1,5hexadien-3,4-diol (57) unter den gleichen Bedingungen um, so erhält man folgendes Ergebnis (Abb. 55 und Tab. 19, V 98-99).

Abb. 55 und Tab. 19: Hydroformylierung von 3,4-Dimethyl-1,5-Hexadien-3,4-diol (57a,b)

Vers.	p(CO)/p(H ₂)	Т	t	LM	Ausbeute ^{a)} [%]	
	[bar]	[°C]	[h]		<i>rac</i> -64	65
V 98	10 / 10	60	20	Dioxan	47 (27)	
V 99	10 / 10	60	20	CH_2Cl_2	(50)	(47)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Nach der Reaktion in Dioxan kann zuerst nur ein einziges Produkt in 27 % Ausbeute isoliert werden. Dieses ist das tricyclische Produkt rac-1,2-Dimethyl-6,10,11trioxatricyclo[2.2.1.1^{2,5}]undecan (*rac*-64) welches durch eine weitere Kondensationsreaktion aus dem intermediär gebildeten Bislactol entstanden ist. Der 46

Versuch wurde nochmals in Dichlormethan durchgeführt und diesmal wurde *rac*-64 nach der filtrativen Säule in 50 % Ausbeute isoliert. Das zweite Produkt 2,2'-Dimethyloctahydro-[2,2']-bifuranyl-5,5'-diol (65) wurde in 47 % Ausbeute als Gemisch zweier Diastereomere erhalten (Abb. 55, V 98).

Die Konfiguration von *rac*-64 kann mittels NMR-Shift-Experimenten bestätigt werden. Ist der Tricyclus aus dem *meso*-Diastereomer 57a entstanden, so dürfte auch im Produkt nur die *meso*-Form vorliegen und bei den Shift-Experimenten sollte keine Aufspaltung der Signale zu sehen sein. Wird der Tricyclus 64 hingegen aus dem *d*,*l*-Diastereomer 57b gebildet, so besteht das Produkt aus zwei Enantiomeren, deren Signale im ¹H-NMR unter Umständen aufspalten.

Abb. 56: Ergebnisse der NMR-Shift-Experimente von rac-64

Da im ¹H-NMR-Spektrum des Tricyclus *rac*-**64** sowohl das Signal der Acetalprotonen (ein Dublett von Dubletts) als auch das Signale der Methylgruppen (ein Singulett) separiert ist, werden diese beobachtet. Als chirales Shift-Reagenz wird Eu(hfc)₃ verwendet. Bereits nach der ersten Zugabe des Reagenzes erkennt man für das Singulett der Methylgruppen eine Aufspaltung in zwei Signale bei gleichzeitiger Linienverbreiterung der Signale. Anstelle

des Dubletts von Dubletts der Acetalprotonen sind zwei breite Singuletts ohne Kopplungen zu sehen (Abb. 56). Es ist nicht davon auszugehen, dass durch unsymmetrische Komplexierung (auch eines achiralen Shift-Reagenzes) bei der *meso*-Form ebenfalls eine Aufspaltung der Signale bewirkt wird. Somit kann dieses Ergebnis als Beweis dafür angesehen werden, dass *rac*-64 aus dem *d*,*l*-Isomer 57b gebildet wird. Dies ist durchaus nicht verwunderlich, da sich so die Sauerstoffatome der Tetrahydrofuranringe möglichst weit voneinander entfernen, was aufgrund der Coulomb-Wechselwirkung am günstigsten ist. Das Bislactol 65 hingegen wird aus dem *meso*-Isomer gebildet. Hier ist eine Annäherung der beiden Hydroxyfunktionen aufgrund der dipolaren Wechselwirkungen der Sauerstoffatome in den Tetrahydrofuranringen erschwert, so dass diese nicht unter Wasserabspaltung zum Tricyclus reagieren können.

Die Oxidation der Lactole mit Ag_2CO_3 oder auch nach der Methode von Ley^{48} mit TPAP/NMO gelingt nicht und eine nachfolgende Reduktion mit Et₃SiH und Amberlyst 15 (V 100) führt zu 2,2'-Dimethyloctahydro-[2,2']-bifuranyl-5'-on (**66**), einem Produkt mit einer reduzierten und einer oxidierten Hydroxygruppe.

Abb. 57: Versuch der Reduktion des Rohgemisches von 65

Nach dem Auftreten des Tricyclus *rac*-64 für stellt sich nun die Frage, ob auch für 1,2-Divinyl-cyclohexan-1,2-diol (60) ein entsprechendes cyclisches Produkt aus dem *d*,*l*-Isomer gebildet wird und ob das *meso*-Isomer wiederum zum Bislactol reagiert. Wie beim vorherigen Substrat wird zuerst das Gemisch aus 60a,b eingesetzt. Der schon erwartete Tetracyclus 67 kann nach säulenchromatographischer Aufreinigung in 36 % Ausbeute isoliert werden (Tab. 20, V 101). Ist das Bislactol gebildet worden, so geht dieses wahrscheinlich wie schon bei 3,4-Dimethyl-1,5-hexadien-3,4-diol (57) bei der Aufarbeitung verloren.

Abb. 58: Hydroformylierung von *d*,*l*-1,2-Divinyl-cyclohexan-1,2-diol (60a)

			Ausbeute ^{a)} [%]		
Vers.	Substrat	LM	<i>rac</i> -67	68	
V 101	60a,b	Dioxan	80 (36)		
V 102	60b	Dioxan	(94)		
V 103	60a	THF		80 (37)	

Tab. 20: Hydroformylierung von 1,2-Divinyl-cyclohexan-1,2-diol (60a,b)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Aus diesem Grund werden sowohl das *meso*-Isomer **60a** als auch das *d,l*-Isomer **60b** separat umgesetzt. Aus dem reinen *d,l*-1,2-Divinyl-cyclohexan-1,2-diol (**60b**) wird diesmal in einer exzellenten Ausbeute von 94 % der Tetracyclus *rac*-**67** isoliert (Abb. 58, V 102). Wie aus den theoretischen Überlegungen zu erwarten, wird aus der Reaktion des reinen *meso*-1,2-Divinyl-cyclohexan-1,2-diol (**60a**) das Bislactol **68** in einer Ausbeute von 37 % als 1:1-Diastereomerengemisch isoliert. Auch hier ist die mäßige isolierte Ausbeute auf Aufarbeitungsverluste zurückzuführen.

Abb. 59: Hydroformylierung von meso-1,2-Divinyl-cyclohexan-1,2-diol (60a)

Nach Oxidation des Bislactols mit Ag_2CO_3 wird das tricyclische *meso-(5S*, 6R*)-1,7-*Dioxadispiro[4.0.4.4]tetradecan-2,8-dion (**69**) in einer Ausbeute von 72 % als kristalliner Feststoff erhalten (V 104). Zur Bestätigung der Konfiguration wurde eine Röntgenstrukturanalyse des Bislactons angefertigt (Abb. 60).¹¹⁶ Die Ergebnisse der Tandem-Hydroformylierung-Acetalisierung von 1,2-Divinyl-cyclohexan-1,2-diol (**60a,b**) untermauern somit auch die Überlegungen, die für 3,4-Dimethyl-1,5-hexadien-3,4-diol (**57**) angestellt wurden.

Abb. 60: Kristallstruktur von *meso-*($5S^*$, $6R^*$)-1,7-Dioxadispiro[4.0.4.4]tetradecan-2,8dion (**69**)

*Paquette*¹¹⁷ hat ähnliche Systeme mit Tetrahydrofuranringen an einem Sechsring untersucht, um aus ihnen eine neue Klasse von Komplexbildnern für Kationen darzustellen. Dabei ergab sich für das *trans*-Isomer ein Mangel an konformativer Dynamik, wobei das Gleichgewicht deutlich auf der Seite des linken Konformers liegt. Dieses ist, wie man sieht, ohne Probleme befähigt unter Wasserabspaltung den Tetracyclus **67** zu bilden (Abb. 61).

Abb. 61: Konfiguration des trans-Isomers nach Paquette¹¹⁷

Beim *cis*-Isomer gibt es dagegen keine Bevorzugung eines Konformers. Man kann deutlich erkennen, dass die Hydroxyfunktionen sich für eine weitere Kondensation nicht nahe genug kommen können. Deshalb ist für das *cis*-Isomer zu erwarten, dass man nach Hydroformylierung die Bislactole erhält (Abb. 62).

Abb. 62: Konfiguration des *cis*-Isomers nach *Paquette*¹¹⁷

Als Schlussfolgerung aus diesen Ergebnissen kann man sagen, dass der Aufbau von zwei Tetrahydrofuran-Einheiten via Tandem-Hydroformylierung-Acetalisierung ausgehend von Divinylglykolen in guten bis sehr guten Ausbeuten verläuft. Die wie oben angesprochen ebenfalls möglichen ringanellierten Produkte (Abb. 49) werden nicht beobachtet. Dies die 5-exo-trig-Cyclisierung in allen Fällen zeigt, dass gegenüber der 6-endo-trig-Cyclisierung bevorzugt ist. Man ist also nicht darauf angewiesen, wie im vorherigen Abschnitt einen Ring vorzugeben. Das unsubstituierte 1,5-Hexadien-3,4-diol (54a,b) und die *meso*-Isomere der 3,4-disubstituierten Divinylglykole reagieren ausschließlich zu den Bislactolen 65 und 68. Die d_l -Isomere, forciert durch die Substituenten, unterliegen einer Folgereaktion und ergeben unter Wasserabspaltung die entsprechenden tri- und tetracyclischen Systeme rac-64 und rac-67.

2.3.4 Darstellung einfacher Bisallylglykole

Nach den erfreulichen Ergebnissen für die Divinylglykole sollen nun die vergleichbaren Bisallylglykole dargestellt und umgesetzt werden. Das unsubstituierte 1,7-Octadien-4,5diol (72) kann durch Barbier-Reaktion einer wässrigen Glyoxal-Lösung (70) mit Diallylzinndibromid (71) dargestellt werden (Abb. 63, V 105).¹¹⁸ Man erhält 72¹¹⁹ als *d,l-/meso*-Diastereomerengemisch (2.4:1.0) in einer Ausbeute von 61 %. Die Diastereomere können auch nach Umsetzung zum Dioxolan nicht getrennt werden.¹²⁰

Abb. 63: Darstellung von 1,7-Octadien-4,5-diol (72)

4,5-Dimethyl-1,7-octadien-4,5-diol $(73)^{121}$ erhält man in 21 % Ausbeute mittels Grignard-Reaktion aus 2,3-Butandion (56) mit Allylmagnesiumbromid, als nicht zu trennendes *d*,*l*-/*meso*-Diastereomerengemisch (2.0:1.0) (Abb. 64, V 106).

Abb. 64: Darstellung von 4,5-Dimethyl-1,7-octadien-4,5-diol (73)

1,2-Bisallyl-1,2-cyclohexandiol (**75**) schließlich erhält man, wie schon das Divinylderivat **60** in einer zweistufigen Grignard-Reaktion, in einer Gesamtausbeute von 51 % als 1:1-Diastereomerengemisch (Abb. 65, V 107-108).¹¹² Das *meso*-Isomer **75a** und das *d*,*l*-Isomer **75b** sind säulenchromatographisch zu trennen.

Abb. 65: Darstellung von 1,2-Bisallyl-1,2-cyclohexandiol (75)

2.3.5 Hydroformylierung einfacher Bisallylglykole

Die Umsetzung von 1,7-Octadien-4,5-diol (72) wird unter den gleichen Reaktionsbedingungen wie für die Divinylglykole durchgeführt (Abb. 66 und Tab. 21).

Abb. 66 und Tab. 21: Hydroformylierung von 1,7-Octadien-3,4-diol (72)

Vers.	p(CO)/p(H ₂)	Т	t	LM	Ausbeute ^{a)} [%]	
	[bar]	[°C]	[h]		76	77
V 109	10 / 10	60	20	Dioxan	(44)	
V 110	10 / 10	60	20	CH_2Cl_2		(25)

^{a)} isolierte Ausbeuten; Katalysator: Rh(acac)(CO)₂, 4 Äq. BIPHEPHOS

Man erhält für die Reaktion in Dioxan wie erwartet Octahydro[2,2']bipyran-6,6'-diol (**76**) in 44 % Ausbeute (Abb. 66, V 109). Da man ein Gemisch aus vier Diastereomeren im Verhältnis 4.0 : 2.1 : 1.4 : 1.0 erhält, wird wieder eine Oxidation mit Ag₂CO₃ zu den Lactonen durchgeführt (V 111). Man erhält in einer Ausbeute von 96 % Octahydro[2,2']bipyran-6,6'-dion (**78**) als 1.5:1.0-Gemisch der *d,l-/meso*-Isomeren. Führt man aber die Umsetzung in Dichlormethan aus (V 110), so erhält man als einziges isoliertes Produkt in 25 % Ausbeute 4-(6,8-Dioxabicyclo[3.2.1]oct-7-yl)-butyraldehyd (**77**) als 3:1-Diastereomerengemisch (Abb. 67).

Abb. 67: Hydroformylierung von 1,7-Octadien-4,5-diol (72) in Dioxan

Es werden also nicht beide Sechsringe parallel aufgebaut, sondern nach Bildung des einen Hemiacetals reagiert dieses mit der zweiten Hydroxyfunktion zum Acetal und der andere Aldehyd kann keine intramolekulare Ringschlussreaktion mehr eingehen.

4,5-Dimethyl-1,7-octadien-4,5-diol (73), Für welches als 2:1-Gemisch der d,l-/meso-Isomeren eingesetzt wird, ist es unerheblich, in welchem Lösungsmittel die Reaktion durchgeführt wird. Man erhält nur 4-(1,7-Dimethyl-6,8-dioxabicyclo[3.2.1]oct-7yl)-butyraldehyd (79) in bis zu 97 % Ausbeute als nicht zu trennendes 2:1-Diastereomerengemisch (Abb. 68, V 112-113).

Abb. 68 und Tab. 22: Hydroformylierung von 4,5-Dimethyl-1,7-octadien-4,5-diol (73)

Vers.	Vers. $p(CO)/p(H_2)$		t	LM	Ausbeute ^{a)} [%]
	[bar]	[°C]	[h]		79
V 112	10 / 10	60	20	Dioxan	83 (62) ^{b)}
V 113	10 / 10	60	20	CH_2Cl_2	97 (97) ^{b)}

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten; ^{b)} 2:1-Diastereomerengemisch

Ähnliches gilt für die Umsetzung von 1,2-Bisallylcyclohexan-1,2-diol (**75**). Man erhält bei Einsatz des Diastereomerengemisches als einziges isoliertes Produkt 4-(7,12-Dioxatricyclo[6.3.1.0^{1,6}]-dodec-6-yl)-butyraldehyd (**80**) als ein Diastereomer in 21 % Ausbeute (V 114).

Abb. 69: Hydroformylierung von 1,2-Bisallylcyclohexan-1,2-diol (75)

			Ausbeu	te ^{a)} [%]
Vers.	Substrat	LM	80	81
V 114	75a,b	Dioxan	50 (21)	
V 115	75b	Dioxan	komplexes Pro	oduktgemisch
V 116	75a	Dioxan	57 (9)	40 (6)

Tab. 23: Hydro	oformylierung vo	on 1,2-Bisallylo	cyclohexan-1,2-	diol (75)
		· , · · · .	· . · · · ,	

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Da man nur ein Diastereomer erhält, liegt die Vermutung nahe, dass nur eines der beiden Substratisomere zum Produkt **80** und das andere zu nicht isolierten Produkten führt. Somit ist die Umsetzung laut NMR-Spektrum bezogen auf das eine Isomer quantitativ.

Die Isomere des Substrates **75** wurden getrennt und einzeln umgesetzt, um diese Ergebnis zu bestätigen und herauszufinden, welches der Isomere zum Acetal reagiert. Für **75b** erhält man ein komplexes Produktgemisch, aus dem keine Substanz zu isolieren ist (V 115). Im Reaktionsgemisch des *meso*-Isomers **75a** hingegen kann 4-(7,12-Dioxatricyclo[6.3.1.0^{1,6}]-dodec-6-yl)-butyraldehyd (**80**) in einer Ausbeute von 57 % detektiert werden (V 116). Als Nebenprodukt erhält man 6-Propenyl-7,12-dioxatricyclo[6.3.1.0^{1,6}]dodecan (**81**) mit einer isomerisierten Doppelbindung. Diese wird unter den Reaktionsbedingungen mit BIPHEPHOS (**45**) nur sehr langsam hydroformyliert.

Mit dem relativ rigiden Sechsring als Rückgrat kann anscheinend nur das *meso*-Isomer **75a** unter intramolekolarer Acetalisierung das bicyclische Gerüst aufbauen, während das *d*,*l*-Isomer **75b** ein komplexes Produktgemisch ergibt.

Anders als bei den Divinylglykolen, wo die erwünschten Bis-Tetrahydrofuran-Einheiten aufgebaut wurden, scheint ist es bei den Bisallylglykolen günstiger zu sein, ein bicyclisches Acetal-Gerüst aufzubauen, als Bis-Tetrahydropyran Einheiten. Diese werden nur beim unsubstituierten 1,7-Octadien-4,5-diol (72) und auch nur bei Umsetzung in Dioxan erhalten. Diese Bildung der bicyclischen Acetale scheint, wie schon die weitere Cyclisierung bei den Bis-Tetrahydrofuransystemen durch die Alkylsubstituenten forciert zu werden. Dabei ist vor allem das jeweilige Cyclohexanderivat mit seinem relativ rigiden Gerüst sehr gut in der Lage, die Unterschiede in den Reaktionen zwischen den *meso*- und d,l-Isomeren aufzuzeigen.

Um die durch Tandem-Hydroformylierung-Acetalisierung gebildeten Tetrahydrofuranole und Tetrahydropyranole in solche Strukturen umzuwandeln, wie sie bei Naturstoffen wie z. B. den Acetogeninen vorkommen,⁴⁹ müssen entsprechende Folgereaktionen gefunden werden (Abb. 70).

Abb. 70: Häufiges Strukturelement der Acetogenine⁴⁹

In der Literatur ist für die Umwandlung von Lactolen in cyclischen Ether mit einer Hydroxyfunktion in α -Position zum Ether noch keine direkte Methode bekannt. Allerdings kann durch eine *Mukaiyama*-Aldol-Typ Reaktion des acetylierten Lactols **83** mit Silyloxyfuranen **82** ein Lacton **84** dargestellt werden, welches z. B. durch Reduktion die entsprechende Struktur **85** liefern könnte (Abb. 71).¹²²

Abb. 71: *Mukaiyama*-Aldol-Typ Reaktion von Lactolen mit Silyloxyfuranen¹²²

2.4 Darstellung benzanellierter bicyclischer Acetale

2.4.1 Allgemeines

Wenn, wie im vorherigen Abschnitt dargestellt, die Synthese bicyclischer Acetale durch Tandem-Hydroformylierung-Acetalisierung terminal ungesättigter 1,2-Diole möglich ist, so sollte diese Reaktion auch mit 1,3-Diolen möglich sein. Das entsprechende Strukturelement ist in einer Vielzahl von Naturstoffen vorhanden. In diesen ist das bicyclische Acetal in den meisten Fällen benzanelliert. Viel Arbeit wurde in die Synthesen von Averufin (**86a**) und Nidurufin (**86b**) investiert, welche z. B. als Intermediate in der Biosynthese von Aflatoxinen auftreten (Abb. 72).¹²³

Abb. 72: Averufin (86a) und Nidurufin (86b)

Man müsste also in der Tandem-Hydroformylierung-Acetalisierung von 1-(2-Hydroxyphenyl)-allylalkoholen und -homoallylalkoholen ausgehen, um solche Strukturelemente zu erhalten (Abb. 73).

Abb. 73: Mögliche Darstellung benzanellierter bicyclischer Acetale

Bisher veröffentlichte Methoden zum Aufbau solcher Strukturen sind die Reaktion von Naphthol mit 2,5-Dimethoxytetrahydrofuran oder 2-Ethoxy-2,3-dhydro-4*H*-pyran,¹²⁴ Hydroxyalkylierung von Phenolen mit 5-Oxohexanal,¹²⁵ Grignard-Reaktion von 5-Brompentan-2-on-ethylenketal mit Salicylaldehyd (**87a**)¹²⁶ und intramolekulares Abfangen des Palladiumatoms in der Heck-Reaktion von Chlor-(*o*-hydroxyphenyl)-quecksilber(II) mit cyclischen Enolethern durch die phenolische Hydroxygruppe.¹²⁷ Vor allem letztere Methode hat den Nachteil, dass äquimolare Mengen an Pd-Acetat und giftigen Quecksilbersalzen verwendet werden.

2.4.2 Synthese verschiedener *o*-Hydroxyphenylalkenole

Um diese theoretischen Überlegungen zu überprüfen, wurden einige unterschiedlich substituierte *o*-Hydroxyphenylalkenole synthetisiert. Dazu werden Salicylaldehyd (**87a**) und *o*-Hydroxyacetophenon (**87b**) mit verschiedenen ungesättigten Halogeniden in Grignard-Reaktionen umgesetzt (Abb. 74 und Tab. 24, V 117-124).^{43,128,129} Die Darstellung der Alkohole **88a-h** gelingt in guten Ausbeuten von bis zu 97 %.

Abb. 74 und Tab. 24: Darstellung von *o*-Hydroxyphenylalkenolen **88a-h**

V	ers.	Carbonylverb.	Μ	n	\mathbf{R}^{1}	\mathbf{R}^2	\mathbf{R}^3	Alkohol	Ausbeute ^{a)} [%]
V	117	87a	Mg	0	Н	-	Η	88a	97
V	118	87a	Mg	1	Н	Η	Η	88b	73
V	119	87a	Mg	1	Н	Н	Me	88c	24
V	120	87a	Mg	1	Н	Me	Η	88d	56
V	121	87b	Zn	0	Me	-	Η	88e	76
V	122	87b	Mg	1	Me	Н	Η	88f	81
V	123	87b	Mg	1	Me	Н	Me	88g	89
V	124	87b	Mg	1	Me	Me	Н	88h	56

^{a)} isolierte Ausbeuten

2.4.3 Synthese von 2-Hydroxynaphthylalkenolen

Da auch Verbindungen mit Substituenten am Phenylring umgesetzt werden sollen, wird 2-Hydroxy-naphthalincarbaldehyd (**89**) mit Vinyl- und Allylgrignard-Reagenzien umgesetzt (Abb. 75, V 125-126).¹³⁰

Abb. 75: Darstellung von o-Hydroxynaphthylalkenolen 90a,b

2.4.4 Synthese von *o*-Hydroxyarylalkenolen

Aus 4-Methoxyphenol (91) wird in einer klassischen *Reimer-Tiemann*-Reaktion der entsprechende Aldehyd 92 in 67 % Ausbeute dargestellt (V 127).¹³¹ Auch dieser wird mit Vinyl- und Allylgrignard-Reagenzien zu den entsprechenden Alkenolen 93a,b in guten bis sehr guten Ausbeuten umgesetzt (Abb. 76, V 128-129).

Abb. 76: Darstellung der (2-Hydroxy-4-Methoxy-phenyl)-alkenole 93a,b

2.4.5 Hydroformylierung von *o*-Hydroxyphenylalkenolen

Zur Hydroformylierung von *o*-Propenylphenolen gibt es bereits einige Untersuchungen von *Jackson*.⁴³ Die Reaktion unter anderem von **88a,e** wurde mit Rhodium(II)acetat und PPh₃ in Ethylacetat, bei 60 °C und 28 bar Synthesegas für 20 h durchgeführt. Dabei wurden die entsprechenden 5-(2-Hydroxyphenyl)-tetrahydrofuran-2-ole **95a,e** in Ausbeuten von 70 % bzw. 95 % als 1:1-Diastereomerengemische erhalten. Ziel ist es nun, bei der Reaktion nicht auf der Stufe der Hemiacetale **95a-h** stehenzubleiben, sondern in einem Schritt bis zu den bicyclischen Acetalen zu gelangen (Abb. 77, Abb. 78). Für die Substrate mit einer monosubstituierten terminalen Doppelbindung werden die in den vorherigen Abschnitten getesteten Standard-Reaktionsbedingungen bei Einsatz des BIPHEPHOS-Liganden verwendet. Für die Substrate **88c,g** mit der weniger reaktiven 1,1-disubstituierten Doppelbindung werden andere Bedingungen gewählt, die jeweils angegeben sind. Betrachtet man zuerst die Ergebnisse der Reaktion der stufe des Hemiacetals stehenbleibt, wenn auch in teilweise sehr guten Ausbeuten. Bei verkürzter Reaktionszeit wird für **88b** sogar der Aldehyd als Produkt erhalten.

Abb. 77: Hydroformylierung der sekundären Allyl- und Homoallylalkohole 88a-d

								Ausbeute ^{a)} [%]		[%]
Vers.	Edukt	n	\mathbf{R}^1	\mathbf{R}^2	R ³	LM	Säure ^{b)}	94	95	96
V 130	88a	0	Η	-	Η	Dioxan			87	
V 131						CH_2Cl_2			55	
V 132						Dioxan	<i>p</i> -TsOH	komplex	es Produkt	gemisch
V 133						Dioxan	Phthals.			80
V 135	88b	1	Η	Н	Η	Dioxan			18	
V 136						Dioxan ^{c)}		80		
V 137						CH_2Cl_2				87
V 138						Dioxan	<i>p</i> -TsOH			83
V 139	88c	1	Η	Н	Me	$CH_2Cl_2^{d)}$		27		
V 140	88d	1	Η	Me	Η	CH_2Cl_2				85

Tab. 25: Hydroformylierung der sekundären o-Hydroxyphenylalkenole 88a-d

^{a)} isolierte Ausbeuten; ^{b)} 5 mol-%; ^{c)} 16 h; ^{d)} Rh(acac)(CO)₂, 100 °C, 70 h, 40 bar CO, 40 bar H₂

Wechselt man das Lösemittel und geht zu Dichlormethan über, so erhält man für **88b** und **88d** die Oxocine **96b** und **96d** in sehr hohen Ausbeuten (V 137, 140). Dieses Ergebnis kann vielleicht damit begründet werden, dass das Dichlormethan nicht an den Katalysator koordiniert. Dieser hat somit verglichen mit der Reaktion in Dioxan eine geringere Elektronendichte und somit eine höhere Acidität. Weiterhin könnten Säurespuren im Dichlormethan mit dafür verantwortlich sein, dass die Acetale gebildet werden. Für **88a**

bleibt die Reaktion trotzdem beim Hemiacetal **95a** und für **88c** sogar beim Aldehyd **94c** stehen (V 131, 139). Es ist aber möglich die entsprechenden Hemiacetale nachträglich säurekatalysiert mit *p*-TsOH in guten Ausbeuten größer 80 % zu den Acetalen zu cyclisieren (V 134). Es stellt sich nun die Frage ob die Bildung der Acetale auch in einem Schritt durch Zugabe der Säure in den Druckbehälter möglich ist. Für **88a** erhält man bei der Hydroformylierung in Anwesenheit von 5 mol-% *p*-TsOH zuerst ein komplexes Produktgemisch (V 132). Nimmt man stattdessen die weniger acide Phthalsäure, so wird das Oxepin **96a** in 80 % Ausbeute gebildet (V 133). Diese einstufige Reaktionsführung ist somit der zweistufigen überlegen. Gleiches gilt für die Reaktion von **88b**, mit einer Ausbeute von 83 % in Anwesenheit von *p*-TsOH. Für **88c** erhält man jeweils komplexe Produktgemische. Für **88d** wurde die Reaktion mit Säurezusatz nicht durchgeführt, da sich das gewünscht Acetal schon in Dichlormethan in sehr guten Ausbeuten gebildet hat.

Nach diesen sehr guten Ergebnissen für die sekundären Alkohole, bei denen die bicyclischen Acetale **96a,b,d** in Ausbeuten von 80-87 % gebildet wurden, stellt sich als nächstes die Frage, ob die tertiären *o*-Hydroxyalkenole **88e-h** in gleicher Weise reagieren. Möglicherweise treten aber auch wieder Probleme durch Eliminierung auf, zumal die Hydroxygruppe sich in Benzylstellung befindet und somit eine positive Ladung sehr gut kompensiert werden kann. Die Ergebnisse dieser Reaktionen sind in Abb. 78 und Tab. 26 zusammengefasst.

Abb. 78: Hydroformylierung der tertiären o-Hydroxyphenylalkenole 88e-h

								Ausbeute ^{a)} [%]		[%]
Vers.	Edukt	n	\mathbf{R}^1	\mathbf{R}^2	\mathbf{R}^3	LM	Säure ^{b)}	95	96	97
V 141	88e	0	Me	-	Η	Dioxan		88		
V 142						CH_2Cl_2			68	24
V 143						Dioxan	<i>p</i> -TsOH		24	71
V 144						Dioxan	Phthals.		96	
V 146	88f	1	Me	Н	Н	Dioxan		62		
V 147						CH_2Cl_2			88	
V 148						Dioxan	<i>p</i> -TsOH		88	
V 150	88g	1	Me	Н	Me	Dioxan ^{c)}		30	61	
V 151						$CH_2Cl_2^{\ c)}$			60	30
V 152						Dioxan ^{c)}	p-TsOH			88
V 154	88h	1	Me	Me	Η	CH_2Cl_2		71		

Tab. 26: Hydroformylierung der tertiären o-Hydroxyphenylalkenole 88e-h

^{a)} isolierte Ausbeuten; ^{b)} 5 mol-%; ^{c)} Rh(acac)(CO)₂, 100 °C, 70 h, 40 bar CO, 40 bar H₂

Unter den gleichen Reaktionsbedingungen wie für die sekundären Alkohole ergeben die tertiären Alkohole in Dioxan hauptsächlich die Hemiacetale 95e-h in Ausbeuten bis zu 88 %. Probleme durch Nebenreaktionen treten noch nicht auf. Beim Wechsel des Lösemittels zu Dichlormethan erhält man für 88e ein 3:1-Gemisch aus dem Acetal 96e und Chromen 97e¹³² (V 142), während für 88f ausschließlich das Acetal 96f (V 145) und für 88h weiterhin ausschließlich das Hemiacetal 95h (V 154) in jeweils guten bis sehr guten Ausbeuten erhalten werden. Für 88g wird neben dem Acetal 96g ebenfalls das Chromen 97g gefunden (V 151).¹³³ Die Chromene bilden sich durch intramolekulare Cyclisierung und Eliminierung der benzylischen Hydroxygruppe. Wie aufgrund dieser Chromenbildung schon erwartet führt der Zusatz einer Säure zur Reaktion nicht automatisch zu den gewünschten bicyclischen Acetalen, sondern die Chromenbildung tritt verstärkt auf. Bei der Verwendung von 5 mol-% p-TsOH ergeben sich für 88e und 88g die Chromene 97e,g als Hauptprodukte in bis zu 88 % Ausbeute (V 143, 152). Für 88e führt der Wechsel von p-TsOH zur schwächeren Phthalsäure zur ausschließlichen Bildung des Acetals in 96 % Ausbeute (V 144). Für 88f erhält man auch mit p-TsOH in hoher Ausbeute nur das Acetal 96f (V 148). Da aber auch im Falle der tertiären Alkohole 88e-h wie bei den sekundären Substraten 88a-d eine nachträgliche säurekatalysierte Cyclisierung in hohen Ausbeuten möglich ist (V 145, 149, 153, 155), könnte man in Fällen bei denen die Chromenbildung als Nebenreaktion auch ohne Säurezusatz auftritt, zu einer zweistufigen Reaktionsführung übergehen. Die durch Tandem-Hydroformylierung-Acetalisierung gebildeten Hemiacetale zeigen keine Tendenz unter sauren Bedingungen zu den Enolethern zu eliminieren, sondern sie cyclisieren mit der phenolischen Hydroxygruppe. So kann auch aus **95h** das Acetal **96h** gewonnen werden (V 155).

Im Folgenden soll noch das Verhalten der 2-Hydroxynaphthylalkenole **90a,b** und 4-Methoxy-2-Hydroxyphenylalkenole **93a,b** untersucht werden.

2.4.6 Hydroformylierung von 2-Hydroxynaphthylalkenolen

Abb. 79 und Tab. 27: Hydroformylierung von 90a,b

					Ausbeute ^{a)} [%]		
Vers.	Substrat	n	LM	Säure ^{b)}	98	99	
V 156	90a	0	Dioxan		(92)		
V 158	90b	1	CH_2Cl_2		48 (37)		
V 159	90b	1	Dioxan	p-TsOH	35 (14)	15 (10)	

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten; ^{b)} 5 mol-% bar H₂

Für den naphthylsubstituierten Allylalkohol 90a erhält man unter den Standardbedingungen in Dioxan das Hemiacetal **98a** in 92 % Ausbeute als 1:1-Diastereomerengemisch,¹²⁴ welches säurekatalysiert in 99 % Ausbeute in das Acetal 99a umgewandelt werden kann (V 156-157). Für den Homoallylalkohol 90b, welcher in Dichlormethan und in Dioxan mit p-TsOH umgesetzt wird, sind die Ausbeuten schlechter, aber es wird bevorzugt das Hemiacetal 98b als 1:1-Diastereomerengemisch gebildet (V 158-159).
2.4.7 Hydroformylierung von 4-Methoxy-2-Hydroxyphenylalkenolen

Für die Alkenole **93a,b** erhält man in Dichlormethan und ohne Säurezusatz in guten Ausbeuten als einziges Produkt jeweils die bicyclischen Acetale **100a,b** (Abb. 80 und Tab. 28, V 161-162). Dies kann wahrscheinlich neben dem Einfluss des Lösemittels auch auf die Aktivierung des Aromaten und somit auch den Einfluss der phenolischen Hydroxygruppe durch den Methoxysubstituenten zurückgeführt werden.

Abb. 80 und Tab. 28: Hydroformylierung von 93a,b

Vers.	Substrat	n	LM	Säure	Ausbeut	e^{a} [%]
V 161	93a	0	CH_2Cl_2		100a	61
V 162	93b	1	CH_2Cl_2		100b	56

^{a)} isolierte Ausbeuten

Die Reaktion kann somit auch auf Substrate mit größerem aromatischen System und Aromaten mit aktivierenden Substituenten ausgedehnt werden. Eine Frage, die noch geklärt werden müsste, ist die Reaktion von Substraten mit desaktivierenden Substituenten am Aromaten. Hier wird möglicherweise der Ringschluss zum bicyclischen Acetal durch die verringerte Nukleophilie der phenolischen Hydroxygruppe verhindert. Ein weiteres Problem in Bezug auf Naturstoffe ist, dass diese oftmals am Acetal-Kohlenstoffatom eine Methylgruppe anstelle eines Protons tragen. Diese kann aber durch die Hydroformylierung nicht eingeführt werden, da das Acetal-Kohlenstoffatom aus dem Kohlenmonoxid stammt. Die Methylgruppe müsste also nachträglich eingeführt werden.

2.5 Reaktionen von 3-Methylen-1,5-diolen

2.5.1 Allgemeines

Eine weitere mögliche Form der Verknüpfung von *O*-Heterocyclen sind überbrückte bicyclische Acetale, bei denen die kurze Brücke durch ein Kohlenstoffatom gebildet wird. Als Beispiel soll das 2,8-Dioxabicyclo[3.3.1]nonan-Gerüst dienen, welches z. B. in der Pflanze *Swertia japonica* Makino in Form der Semburine¹³⁴ vorkommt oder als Aglykon von Secologanin erhalten wurde.¹³⁵ Die intermediären 3,4-Dihydro-2*H*-pyrane **103a,b** sind die sogenannten Swertiole (Abb. 85).

Abb. 81: Ausschnitt der vermuteten Biosynthese der Semburine 104

Ein wichtiges Intermediat in der vermuteten Biosynthese der Semburine ist der Dihydroxyaldehyd **101**. Solche Dihydroxyaldehyde lassen sich durch Hydroformylierung von 3-Methylen-1,5-diolen **105** darstellen.

Abb. 82: Hydroformylierung von 3-Methylen-1,5-diolen zu Dihydroxyaldehyden

Gemäß der vermuteten Biosynthese der Semburine (Abb. 81) sollten diese also auch durch Tandem-Hydroformylierung-Acetalisierung von 3-Methylen-1,5-diolen darstellbar sein.

2.5.2 Darstellung von 3-Methylen-1,5-diolen

Eine einfache Methode zur Darstellung symmetrischer 3-Methylen-1,5-diole ist die naphthalinkatalysierte Lithiierung von 3-Chlor-2-chlormethylpropen (**107a**) in einer Barbier-Reaktion mit Carbonylverbindungen nach *Yus*.¹³⁶ Zur Darstellung von 3-Methylen-1,5-diolen mit unterschiedlichen Substituenten muss 2-Chlormethyl-3-(2-methoxyethyloxy)-propen (**107b**) in einer sequenziellen Reaktion verwendet werden, bei der erst die Kohlenstoff-Chlor-Bindung bei -78 °C lithiiert wird und mit der ersten Carbonylkomponente reagiert. Danach wird durch Erwärmen auf -30 °C die Kohlenstoff-Sauerstoff-Bindung gespalten und wieder die lithiierte Spezies gebildet, welche mit der zweiten Carbonylkomponente reagiert.¹³⁷

Abb. 83: Darstellung von 3-Methylen-1,5-diolen nach Yus¹³⁶

Als Modellsubstrat für erste Untersuchungen zur Tandem-Hydroformylierung-Acetalisierung von 3-Methylen-1,5-diolen wird das symmetrische 2,6-Dimethyl-4methylenheptan-2,6-diol (**109**) gewählt. Dieses wird durch Reaktion von 3-Chlor-2chlormethylpropen (**107a**) mit Aceton (**4a**) in 47 % Ausbeute erhalten (Abb. 84, V 163).

Abb. 84: Darstellung von 2,6-Dimethyl-4-methylenheptan-2,6-diol (109)

2.5.3 Hydroformylierung von 2,6-Dimethyl-4-methylenheptan-2,6-diol

Die Hydroformylierung von **109** mit der 1,1-disubstituierten Doppelbindung wird zuerst mit $[Rh(cod)Cl]_2$ bei 120 °C in Dioxan für 20 h durchgeführt. Die Ergebnisse der Reaktionen sind in Tab. 29 aufgeführt. Als Produkte erhält man den Aldehyd **110** und 1-(2,2-Dimethyl-3,4-dihydro-2*H*-pyran-4-yl)-2-methylpropan-2-ol (**111**) in 17 % bzw. 23 % GC-Anteilen (Abb. 85).

Abb. 85: Hydroformylierung von 2,6-Dimethyl-4-methylenheptan-2,6-diol (109)

Beides sind Analoga zu den Intermediaten in der Biosynthese der Semburine. Der Umsatz der Reaktion ist allerdings mit 77 % unvollständig. Der Rest sind unidentifizierte Nebenprodukte.

		p(CO)/p(H ₂)	Т	t	Umsatz ^{a)}	Ausber	ıte ^{a)} [%]
Vers.	Kat.	[bar]	[°C]	[h]	[%]	110	111
V 164	[Rh(cod)Cl] ₂	40 / 40	120	20	77	17	23 (22)
V 165	$Rh(acac)(CO)_2$	40 / 40	100	20	30		20
V 166	Rh(acac)(CO) ₂	40 / 40	100	70	100	21 (7)	56 (22)

Tab. 29: Hydroformylierung von 2,6-Dimethyl-4-methylen-heptan-2,6-diol (109)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Wird $Rh(acac)(CO)_2$ als Katalysatorvorläufer verwendet und bei Temperaturen von 100 °C gearbeitet, so läuft die Reaktion bei 20 Stunden Reaktionszeit nur mit einem Umsatz von

30 % und liefert mit einer größeren Selektivität das 1-(2,2-Dimethyl-3,4-dihydro-2*H*pyran-4-yl)-2-methylpropan-2-ol (**111**). Eine Verlängerung der Reaktionszeit auf drei Tage führt zu vollständigem Umsatz. Dabei werden der Aldehyd **110** und das Pyran **111** in insgesamt 77 % GC-Ausbeute gebildet. Das gewünschte bicyclische Acetal **112** konnte in keinem der Fälle beobachtet werden. Eine nachträgliche säurekatalysierte Cyclisierung von **111** mit *p*-TsOH zum 3,3,7,7-Tetramethyl-2,8-dioxabicyclo[3.3.1]nonan (**112**) sollte möglich sein, da die Swertiole unter gleichen Bedingungen in die Semburine transformierbar sind.¹³⁴

Bei der Durchführung des Versuches war allerdings auch nach einigen Stunden keine Umsetzung zu erkennen. Das Ausgangsmaterial wurde zum größten Teil zurückerhalten. Der Rest des Substrates hat wahrscheinlich unter den sauren Bedingungen die tertiäre Hydroxyfunktion eliminiert und zu einer Mehrzahl von Folgeprodukten geführt. So ist es bisher nicht gelungen aus 2,6-Dimethyl-4-methylenheptan-2,6-diol (**109**) durch Tandem-Hydroformylierung-Acetalisierung das 3,3,7,7-Tetramethyl-2,8-dioxabicyclo[3.3.1]nonan (**112**) darzustellen. Weitere Versuche zur Darstellung von Molekülen dieser Substanzklasse, auch mit anderen Substituenten, wären sicher reizvoll.

2.6 Darstellung von spirocyclischen *O*-Heterocyclen

2.6.1 Allgemeines

Die Entwicklung von synthetischen Methoden zur selektiven Bildung von Spirobicyclen ist seit vielen Jahren von großem Interesse.¹³⁸ Dabei sind gerade die Spiroketale wichtige Bausteine von Naturstoffen.⁵³ Allerdings muss die Verknüpfung von *O*-Heterocyclen nicht notwendigerweise zu einem Spiroketal führen, die Verknüpfungsstelle der Ringe kann sich anderen Positionen befinden. Erste Untersuchungen zur Darstellung auch an spiroverknüpfter Ketale wurden bereits von Kitsos-Rzychon durchgeführt.⁴⁴ Dazu wurde $(2S^*, 4S^*)$ -2-Allyl-4-methyltetrahydro-2*H*-pyran-2-ol (114)durch Tieftemperatur-Grignard-Reaktion aus 4-Methyl- δ -valerolacton (113)¹³⁹ dargestellt.¹⁴⁰ Dieses wurde unter verschiedenen Bedingungen hydroformyliert. Neben rac-115 als 6:1-Diastereomerengemisch in bis zu 28 % Ausbeute, wurden auch Produkte durch Hydrierung, Isomerisierung und Aldolkondensation beobachtet (Abb. 86).

Abb. 86: Hydroformylierung von $(2S^*, 4S^*)$ -2-Allyl-4-methyltetrahydro-2*H*-pyran-2-ol $(114)^{44}$

Im folgenden Abschnitt soll diese Reaktion unter Verwendung des BIPHEPHOS-Liganden untersucht werden. Außerdem sollen, falls möglich, aus γ -Butyrolacton (**119**) und δ -Valerolacton (**120**) die entsprechenden Tetrahydrofuranole und Pyranole **121** bzw. die offenkettigen Hydroxyaldehyde **122** gebildet und umgesetzt werden.

2.6.2 Versuch der Darstellung von 2-Vinyl-und 2-Allyl-lactolen

Das Lactol ($2S^*$, $4S^*$)-2-Allyl-4-methyltetrahydro-2H-pyran-2-ol (**114**) wird bei einer Reaktionstemperatur von -78 °C in einer Ausbeute von 14 % erhalten (Abb. 86, V 167). Die anderen Lactone ergeben unter den gleichen Reaktionsbedingungen keinen Umsatz. Bei erhöhten Reaktionstemperaturen von -60 bis 0 °C erhält man jeweils die Bisaddukte als einziges Produkt. Mit Vinylmagnesiumchlorid erhält man auch bei einer Reaktionstemperatur von -78 °C nur die Bisaddukte (Abb. 87).

Abb. 87: Darstellung der Carbinole 123a,b und 124a,b

Die direkte Darstellung der Monoaddukte des γ -Butyrolactons (119) und δ -Valerolactons (120) ist nicht möglich und auch eine nachträgliche Umwandlung der Bisaddukte zum Monoaddukt mit *t*-BuOK in DMF nach der Methode von *Snowden*¹⁴¹ am Beispiel von 123b gelingt nicht (Abb. 88).

Abb. 88: Versuch der Darstellung der Monoaddukte nach Snowden¹⁴¹

Die Bisaddukte **123a,b** und **124a,b** sind ebenfalls interessante Substrate für die Tandem-Hydroformylierung. Sie können durch gezielte Reaktion in hohen Ausbeuten von 66-98 % gewonnen werden (Abb. 87, V168-171). Ihre Reaktionen werden im Abschnitt 2.6.4 untersucht.

2.6.3 Umsetzung von (2*S**, 4*S**)-2-Allyl-4-methyltetrahydro-2*H*-pyran-2-ol

Die Verbindung $(2S^*, 4S^*)$ -2-Allyl-4-methyltetrahydro-2*H*-pyran-2-ol (**114**) wurde zum einen zur Probe unter den gleichen Bedingungen umgesetzt wie von *Kitsos-Rzychon*,⁴⁴ zum anderen unter den mit BIPHEPHOS (**45**) schon vorher verwendeten Reaktionsbedingungen (Tab. 30).

Tab. 30:Hydroformylierung von $(2S^*, 4S^*)$ -2-Allyl-4-methyltetrahydro-2*H*-pyran-2-ol(114)

Vers.	p(CO)/p(H ₂)	Т	t	Ausbeu	te ^{a)} [%]
	[bar]	[°C]	[h]	115	127
V 170	80 / 20	80	20	27	
V 171 ^{b)}	10 / 10	60	20		41

^{a)} isolierte Ausbeuten; ^{b)} 4 Äq. BIPHEPHOS

Das Ergebnis der Hydroformylierung von **114** ohne BIPHEPHOS (**45**) kann mit einer Ausbeute von 27 % nachvollzogen werden. Mit BIPHEPHOS (**45**) erhält man allerdings als einziges isoliertes Produkt 2-(3-Hydroxy-1-methyl-propyl)-cyclohex-2-enon (**127**) in 41 % Ausbeute. Dieses ist ein mögliches Intermediat des von *Kitsos-Rzychon* postulierten Mechanismus zur Bildung des Aldolproduktes **118** (Abb. 89).

Abb. 89: Mechanismus zur Bildung des Aldolkondensationsproduktes 118

Durch die Verwendung von BIPHEPHOS (**45**) als Ligand und die milden Reaktionsbedingungen wird die Hydrierung der Doppelbindung unterdrückt und somit ist es möglich, dieses Intermediat der Reaktionssequenz zu isolieren und so den postulierten Mechanismus zur Bildung von **118** zu bestätigen. Die intramolekulare Aldolkondensation als Folgereaktion der Hydroformylierung wurde bereits früher von *Sattelkau*¹⁴² beobachtet und genauere Untersuchungen zur gezielten Tandem-Hydroformylierung-Aldolreaktion wurden von *Hollmann*¹⁴³ durchgeführt und sind Bestandteil weiterführender Arbeiten.¹⁴⁴ Um die Tandem-Hydroformylierung-Acetalisierung von 2-Alken-2-lactolen besser untersuchen zu können, müssten diese eine erhöhte Tendenz besitzen, in der cyclischen Form des Lactols **121** vorzuliegen als in der offenen Form des Hydroxyketons **122**. So kann eine mögliche intramolekulare Aldolreaktion unterdrückt und die Bildung des Spiroketals forciert werden. Dazu müssten Lactole verwendet werden, die aus substituierten Lactonen ähnlich wie 4-Methyl-δ-valerolacton (**113**) dargestellt werden, da bei diesen dann das Gleichgewicht vorwiegend auf der Seite der cyclischen Form liegt. Interessant wäre hier vor allem die Verwendung von Lactonen aus der Kohlehydratchemie.

2.6.4 Hydroformylierung von Bisvinyl- und Bisallylcarbinolen

Für die Hydroformylierung der vierfach funktionalisierten Carbinole **123a,b** und **124a,b** ist zu erwarten, dass unter Verwendung von BIPHEPHOS (**45**) jeweils beide Olefinfunktionen im Molekül *n*-hydroformyliert werden und jeweils ein Aldehyd mit der tertiären Hydroxyfunktion intramolekular ein Hemiacetal bildet (Abb. 90). Eine weitere intramolekulare Reaktion des Hemiacetals mit der zweiten Hydroxyfunktionalität ist zwar möglich, scheint jedoch unwahrscheinlich, da sieben- bzw. achtgliedrige Ringe gebildet werden müssten. Unter diesen Umständen dürfte auch eine erhebliche Konkurrenz zu intermolekularen Reaktionen bestehen.

Abb. 90: Produkte der Hydroformylierung der Carbinole 123a,b und 124a,b

Die Ergebnisse der Versuche sind in Tab. 31 zusammengefasst (V 174-177). Unerwartet werden tatsächlich die überbrückten bicyclischen Acetale **131a,b** und **132a** nach weiterer Kondensationsreaktion der primären Hydroxyfunktion mit der Hydroxyfunktion des Hemiacetals gebildet. Dabei sind die GC-Ausbeuten mit bis zu 93 % sehr gut, die säulenchromatographische Reinigung der Substanzen gelingt allerdings nur unter hohen Verlusten. Für **124b** wird aus unbekannten Gründen nur ein komplexes Produktgemisch erhalten, aus dem keine Substanz isoliert werden kann.

Vers.	Substrat	n	m	Produkt	Ausbeute ^{a)} [%]
V 174	123a	1	0	131a	80 (20)
V 175	123b	1	1	131b	93 (45)
V 176	124a	2	0	132a	75 (41)
V 177	124b	2	1	132b	kompl. Produktgemisch

Tab. 31: Hydroformylierung der Carbinole 123a,b und 124a,b

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

2.6.5 Kombination von Ringschlussmetathese und Hydroformylierung

Eine andere Synthesemethode für einen neuen Zugang zur Spiroverknüpfung von Lactonen mit Pyran-Systemen ist der zweistufige Aufbau der beiden *O*-Heterocyclen mittels rutheniumkatalysierter Olefinmetathese und rhodiumkatalysierter Tandem-Hydroformylierung-Acetalisierung als Schlüsselschritte.

Abb. 91: Allgemeines Schema zum Aufbau spirocyclischer Verbindungen

Diese Arbeiten wurden in Kooperation mit B. Schmidt und H. Wildemann durchgeführt,^{145,146} Synthese der monocyclischen Substrate die die für die Hydroformylierungsreaktionen mittels Ringschlussmetathese¹⁴⁷ durchgeführt haben. Die Ringschlussmetathese ist seit Einführung der Katalysatorvorläufer durch Schrock¹⁴⁸ und Grubbs¹⁴⁹ eine der effektivsten Cyclisierungsreaktionen. Sie wurde dabei in der Synthese Spirocyclen bei der Bildung beider Ringe durch von sowohl doppelte Ringschlussmetathese,¹⁵⁰ als auch bei der Bildung eines Ringes an einem monocyclischen Substrat eingesetzt.¹⁵¹

2.6.6 Darstellung monocyclischer Substrate mittels Ringschlussmetathese

Ohne näher auf die einzelnen Reaktionen zur Darstellung der Substrate einzugehen, sollen hier nur die Synthesewege skizziert werden. Eine Variante für die Synthese von Pyran-Derivaten mit *exo*-Vinyl-Einheit ist die Ringschlussmetathese von Divinylcarbinolen des Typs **133a,b** zu den Dihydropyranen **134a,b** (Abb. 92).¹⁴⁵

Die Dihydropyrane **136** werden durch analoge Reaktion von **135** erhalten (Abb. 89).¹⁴⁶

Abb. 93: Darstellung der monocyclischen Substrate 136 mittels Ringschlussmetathese

Ein alternativer Weg zu den monocyclischen Vorläufern **142a,b** ist in Abb. 94 aufgezeigt.¹⁵² Für die Folgereaktionen wurden jeweils die Hauptdiastereomere $(3S^*, 4S^*, 6R^*)$ -**140a** und $(1S^*, 4S^*, 6R^*)$ -**139b** isoliert und weiterverwendet.

Abb. 94: Darstellung der monocyclischen Substrate 142a,b mittels Ringschlussmetathese

2.6.7 Hydroformylierung der Allylalkohole aus der Ringschlussmetathese

Die Synthese der spirocyclischen Verbindungen geschieht nun mittels Tandem-Hydroformylierung-Acetalisierung der Allylalkoholfunktionalität der monocyclischen Substrate. Es wird wieder unter den Standard-Reaktionsbedingungen für die Verwendung des BIPHEPHOS-Liganden gearbeitet. Dieser stellt die regio- und chemoselektive *n*-Hydroformylierung der exocyclischen Doppelbindung unter milden Reaktionsbedingungen sicher. Die Hydroformylierung der endocyclische Doppelbindung erfordert wesentlich harschere Reaktionsbedingungen und wird deshalb nicht angegriffen.¹⁵³

Die Ergebnisse für die Reaktionen von **134a** und **134b** sind in Abb. 95 dargestellt. Unter diesen Reaktionsbedingungen werden die Hemiacetale **143a,b** nahezu quantitativ gebildet, was durch Signale im ¹³C-NMR-Spektrum im Bereich von 99 ppm angezeigt wird (V 178, 180). Es können kein Edukt und auch keine Nebenprodukte durch Bildung des verzweigten Aldehyds beobachtet werden. Das Rohgemisch der Hemiacetale wird zu den Lactonen **144a** und **144b** oxidiert (V 179, 181). Die Oxidation der Hemiacetale zu den Lactonen kann wieder mit Ag₂CO₃ oder TPAP/NMO durchgeführt werden, welche Methode jeweils angewendet wurde ist dem Experimentellen Teil zu entnehmen.

Abb. 95: Tandem-Hydroformylierung-Acetalisierung von **134a,b** und nachfolgende Oxidation der Hemiacetale **144a,b**

Man erhält die säulenchromatographisch zu trennenden Lactone $(2S^*, 3S^*)$ -144a und $(2S^*, 3R^*)$ -144a in insgesamt 81 % sowie $(2S^*, 3S^*)$ -144b und $(2S^*, 3R^*)$ -144b in insgesamt 52 % Ausbeute über beide Schritte.

Als nächstes werden $(3R^*, 6S^*)$ -**136** und $(3S^*, 6S^*)$ -**136** getrennt als einzelne Diastereomere eingesetzt. Dabei werden die einzelnen Isomere der entsprechenden Lactone

(5*R**, 8*S**)-**146** und (5*S**, 8*S**)-**146** nach zwei Stufen in 54-58 % Ausbeute erhalten (Abb. 96, V 182-185).

Abb. 96: Tandem-Hydroformylierung-Acetalisierung von **136** und nachfolgende Oxidation der Hemiacetale **145**

Zum Schluss wird die diastereomerenreine Verbindung $(3R^*, 4S^*, 6R^*)$ -142 mit einem gesättigten Pyranring und zwei als Benzylether geschützten Alkoholfunktionen eingesetzt. Unter den gleichen Reaktionsbedingungen wie zuvor wird das Lacton $(5R^*, 8R^*, 10S^*)$ -148a in einer Ausbeute von 80 % erhalten (Abb. 97).

Abb. 97: Tandem-Hydroformylierung-Acetalisierung von (3*R**, 4*S**, 6*R**)-**142a** und nachfolgende Oxidation der Hemiacetale **147a**

142b wird als Regioisomerengemisch (4.5:1) eingesetzt. Man erhält ($5R^*$, $8R^*$, $10S^*$)-**148b** und ($5S^*$, $6R^*$, $9S^*$)-**148b** als Regioisomerengemisch, welches säulenchromatographisch getrennt wird (Abb. 98).

Abb. 98: Tandem-Hydroformylierung-Acetalisierung von **142b** und nachfolgende Oxidation der Hemiacetale **147b**

Diese Ergebnisse zeigen, dass es gelungen ist einen neuen Zugang zu bicyclischen Spiroverbindungen zu entwickeln, bei denen eine Lactoneinheit mit einem sechsgliedrigen Oxacyclus verknüpft ist. Dabei werden anders als im vorherigen Abschnitt, in dem von Lactolen ausgegangen wurde, keine Spiroketale gebildet, sondern es ist möglich das Lacton an jede andere Position des Pyranringes anzubinden. Die Syntheseroute basiert auf einer Ringschlussmetathese und einer Tandem-Hydroformylierungs-Acetalisierung-Sequenz. Es ist möglich, durch Verwendung des **BIPHEPHOS-Liganden** in der Hydroformylierungsreaktion zwischen der exocyclischen und der endocyclischen Doppelbindung zu differenzieren und so spirocyclische Dihydropyrane zugänglich zu machen.

3 Zusammenfassung und Ausblick

In der vorliegenden Arbeit sollte die Tandem-Hydroformylierung-Acetalisierung von Hydroxyolefinen zur Darstellung von *O*-Heterocyclen untersucht werden. Bisher sind vor allem die Reaktionen von Substraten mit jeweils einer Olefin- und einer Hydroxyfunktionalität untersucht worden. Daher wurde eine systematische Untersuchung der Reaktionen von Substraten mit mehreren dieser Funktionalitäten bzw. von Hydroxyolefinen mit einem bereits auf andere Art und Weise vorgeformten *O*-Heterocyclus als Substituenten vorgenommen. Dabei wurde eine Vielzahl von Verknüpfungsmöglichkeiten der gebildeten *O*-Heterocyclen realisiert. So wurde ein einfacher Zugang zu Strukturelementen geschaffen, die in vielen Substanzen mit biologischer Aktivität und somit synthetischer Relevanz vorhanden sind.

Zunächst wurde die Reaktion von intern ungesättigten Diolen untersucht. Bei der Umsetzung von 2-Alken-1,5-diolen **2a-g** werden diastereoselektiv in bis zu 72 % Ausbeute die gewünschten Perhydrofuro[2,3-*b*]furane **8a-g** gebildet (Abb. 99).

Abb. 99: Bildung von Perhydrofuro[2,3-b]furanen 8a-g aus 2-Alken-1,5-diolen 2a-g

Werden anstelle von 2-Alken-1,5-diolen die entsprechenden Alkinverbindungen eingesetzt, so erhält man rhodiumkatalysiert unter Hydroformylierungsbedingungen gesättigte Lactone **16** und **17**, die durch Cyclocarbonylierung und Hydrierung des Alkins analog zu palladiumkatalysierten Carbonylierungen entstehen (Abb. 100).

Abb. 100: Bildung von Lactonen durch rhodiumkatalysierte Cycloarbonylierung von 2-Alkin-1,5-diolen unter Hydroformylierungsbedingungen

Der Übergang zu den symmetrischen 3-Alken-1,6-diolen vereinfacht die Reaktion erheblich, da keine Regioselektivitätsprobleme bei der Hydroformylierung mehr bestehen. Außerdem ist durch die zusätzliche CH₂-Gruppe der Abstand der Substituenten zur Doppelbindung groß genug, so dass auch bei großen Substituenten keine Probleme mit der Hydroformylierung mehr auftreten. Man erhält die Perhydrofuro[2,3-*b*]pyrane (**32a-d**) in sehr guten Ausbeuten von bis zu 96 %.

Abb. 101: Bildung der Perhydrofuro[2,3-*b*]pyrane **32a-d** aus 3-Alken-1,6-diolen

Versucht man diese Reaktion auf unsymmetrische 3-Alken-1,6-diole zu übertragen, so gelingt dieses nur bedingt.

Abb. 102: Bildung der regioisomeren Perhydrofuro[2,3-b]pyrane 39c, 40c

Die beiden möglichen Perhydrofuro[2,3-*b*]pyrane **39c**, **40c** werden nur im Fall von **31c** erhalten (Abb. 102). Ansonsten werden unter gleichen Reaktionsbedingungen aus **31a-d** durch Dehydratisierung, Isomerisierung und Hydratisierung die Hydroxyketone **41a-d** (Abb. 103) gebildet.

 $R = Me, -(CH_2)_4 -, -(CH_2)_5 -, Ph$

Abb. 103: Bildung der Hydroxyketone **41a-d** aus den unsymmetrischen 3-Alken-1,6-diolen **31a-d**

Ein weiters interessantes Strukturelement sind zwei jeweils in C2-Position verknüpfte Tetrahydrofuran- oder Tetrahydropyranringe. Als einführende Untersuchungen zu diesem Strukturelement wurde die Tandem-Hydroformylierung-Acetalisierung an verschiedenen Tetrahydrofuranylalkenolen **50a-d** durchgeführt. Die regioselektive Bildung der *n*-Aldehyde, aus denen beim Allylalkohol selektiv der Tetrahydrofuranring und bei den Homoallylalkoholen selektiv der Tetrahydropyranring gebildet wird, kann zum einen katalysatorgesteuert durch Einsatz von BIPHEPHOS (**45**), einem sterisch anspruchsvollen Diphosphit, zum anderen substratgesteuert durch ein quartäres Zentrum in α -Position zu Doppelbindung erreicht werden.

Abb. 104: Tandem-Hydroformylierung-Acetalisierung von **50a-d** mit nachfolgender Oxidation

Die Tetrahydrofuran- und Tetrahydropyranderivate werden in sehr guten Ausbeuten von bis zu 93 % erhalten, wobei der vorgeformte Tetrahydrofuransubstituent unter den Reaktionsbedingungen stabil ist. Da bei der Tandemreaktion mindestens ein neues Stereozentrum generiert wird und die Auftrennung und Charakterisierung der isomeren Lactole sich als schwierig erweist, erfolgt eine Oxidation zu den entsprechenden Lactonen **52a-d**, die ebenfalls Raum für weitere Transformationen lassen (Abb. 104).

Bei der Übertragung dieser Reaktion auf Divinylglykole als Substrate besteht neben der Bildung der Bistetrahydrofuranole auch die Möglichkeit der Bildung von ringanellierten Bistetrahydropyranolen (Abb. 49), je nachdem mit welcher der beiden vorhandenen Hydroxyfunktion die intermediär gebildeten Aldehyde reagieren. Die Bildung der Tetrahydrofuraneinheiten wird klar bevorzugt. Dabei entsteht für das unsubstituierte 1,5-Hexadien-3,4-diol (**54**) ein Diastereomerengemisch der Bistetrahydrofuranole **62** (Abb. 105).

Abb. 105: Tandem-Hydroformylierung-Acetalisierung von **54a,b** mit nachfolgender Oxidation

Sind in C3- und C4-Position des Substrates Substituenten vorhanden, so bilden sich aus dem *meso*-Isomer die Bistetrahydrofuranole, während sich aus dem *d,l*-Isomer durch eine weitere Kondensation der Hydroxygruppen der Lactole jeweils ein Trioxatricyclus bildet. Die Reaktionen verlaufen sehr selektiv und in hohen Ausbeuten, wobei sich die Isolierung der Bislactole aber als schwierig erweist. Die Bislactole werden zur besseren Charakterisierung zu den jeweiligen Bislactonen oxidiert.

Abb. 106: Reaktionen der Divinylglykole 57, 60

Der nächste Schritt ist der Übergang zu den Bisallylglykolen, die gleiches Verhalten wie bei den Divinylglykolen vorausgesetzt, zu den Bistetrahydropyranolen führen sollten. Für das unsubstituierte Substrat 1,7-Octadien-4,5-diol (72) wird dieses auch tatsächlich in bis zu 44 % Ausbeute bei der Reaktion in Dioxan erhalten. Oxidation ergibt wieder das Bislacton 78 (Abb. 107).

Abb. 107: Tandem-Hydroformylierung-Acetalisierung von 72

Für die Substrate mit Methyl- oder Cyclohexylsubstituent in C4/C5-Position ergeben sich allerdings andere Produkte. Durch die Substituenten scheint die Bildung der überbrückten bicyclischen Acetale gegenüber der Bildung der Bis-Tetrahydropyranole stark begünstigt zu sein. Somit wird eine der beiden gebildeten Aldehydfunktionen intramolekular durch ein 1,2-Diol als Acetal geschützt (Abb. 108).

Abb. 108: Tandem-Hydroformylierung-Acetalisierung der Bisallylglykole

Für das methylsubstituierte Glykol **73** ist das Acetal das einzige Produkt. Für **75** mit Cyclohexylrückgrat reagiert das *cis*-Isomer **75a** analog, das *trans*-Isomer **75b**, bei dem der Cyclohexylrest eine ungünstigere wannenähnliche Konformation einnehmen müsste, ergibt dagegen nur ein komplexes Produktgemisch.

Da es energetisch sehr günstig ist, einen Aldehyd intramolekular als Acetal zu schützen, sollte dies auch mit 1,3-Diolen möglich sein. Da in der Literatur entsprechende Strukturen an aliphatischen aber insbesondere auch an aromatischen Systemen vorkommen, wird die Reaktion an Allyl- und Homoallylalkoholen **88a-h** mit 2-Hydroxyphenyl-Rest in C1-Position getestet (Abb. 109). Auch hier wird die *n*-selektive Hydroformylierung durch Verwendung des BIPHEPHOS-Liganden gewährleistet. Dabei ist das Endprodukt abhängig vom Lösemittel, in dem die Reaktion durchgeführt wird. In Dioxan führt die Reaktion, wenn auch in guten bis sehr guten Ausbeuten i. Allg. nur zum Hemiacetal oder zum Aldehyd.

Abb. 109: Tandem-Hydroformylierung-Acetalisierung der o-Hydroxyarylalkenole

Diese können dann nachträglich in einer säurekatalysierten Reaktion in die gewünschten überbrückten bicyclischen benzanellierten Acetale überführt werden. Wird die Reaktion in Dichlormethan oder in Dioxan unter Zusatz von katalytischen Mengen Säure (*p*-TsOH, Phthalsäure) durchgeführt, so wird in den meisten Fällen in sehr guter Ausbeute das Acetal in einem Schritt erhalten. Dabei wird ein Naphthylsystem ebenso toleriert, wie ein Methoxy-Substituent am Phenylrest. Im Unterschied zu den auf diese Art und Weise gebildeten Acetalen tragen die Naturstoffe am Acetal-Kohlenstoffatom oftmals eine Methylgruppe anstelle des aciden Protons. Diese Methylgruppe kann, da das Acetal-Kohlenstoffatom aus dem Kohlenmonoxid stammt, nicht mit der Hydroformylierung eingeführt werden.

Die Tandem-Hydroformylierung-Acetalisierung von 3-Methylen-1,5-diolen sollte zu einem 2,8-Dioxabicyclo[3.3.1]nonan-Gerüst führen, wie es in den Semburinen vorkommt.

Abb. 110: Reaktion des 3-Methylen-1,5-diols 109

Bei der Reaktion von 2,6-Dimethyl-4-methylenheptan-2,6-diol (**109**) erhält man jedoch nicht das Acetal **112** als Endprodukt sondern 1-(2,2-Dimethyl-3,4-dihydro-2*H*-pyran-4-yl)-2-methylpropan-2-ol (**111**), welches eines der Intermediate der gedachten Reaktionssequenz ist und ein Analogon zu den Swertiolen (Abb. 110). Eine nachträgliche säurekatalysierte Cyclisierung, wie sie bei der Umwandlung der Swertiole in die Semburine durchgeführt wurde, gelingt allerdings nicht.

Eine weitere Art der Verknüpfung von O-Heterocyclen als Spiroverbindungen sollte unter anderem durch die Tandem-Hydroformylierung-Acetalisierung von Lactolen mit Vinyloder Allylsubstituent in C2-Position realisiert werden. Dazu wurde die zunächst die bereits von *Kitsos-Rzychon*⁴⁴ durchgeführte Reaktion von $(2S^*, 4S^*)$ -2-Allyl-4-methyltetrahydro-2*H*-pyran-2-ol (**113**) einmal unter gleichen Reaktionsbedingungen nachvollzogen und einmal unter Reaktionsbedingungen mit BIPHEPHOS (**45**) getestet (Abb. 111). Bei der ersten Reaktion wird die Spiroketal **115** in 27 % Ausbeute erhalten, bei der Reaktion mit BIPHEPHOS erhält man als einziges isoliertes Produkt 2-(3-Hydroxy-1-methyl-propyl)cyclohex-2-enon (**127**) in 41 % Ausbeute durch Aldolreaktion. Durch dieses Produkt, bei dem die Hydrierung der Doppelbindung durch das BIPHEPHOS (**45**) unterdrückt wird, kann der von *Kitsos-Rzychon*⁴⁴ postulierte Mechanismus zur Bildung des Nebenproduktes **118** experimentell bestätigt werden.

Abb. 111: Reaktionen von 114 unter verschiedenen Hydroformylierungsbedingungen

Die Tandem-Hydroformylierung-Acetalisierung der Carbinole **123a,b** und **124a,b** führt zu den bicyclischen Acetalen **131a,b** und **132a**, bei denen eine der beiden generierten Aldehydfunktionen durch die beiden Hydroxyfunktionen geschützt wird. Dabei werden in hoher Ausbeute sieben- und achtgliedrige Ringe gebildet (Abb. 112).

Abb. 112: Hydroformylierung der Carbinole 123a,b und 124a,b

Weitere interessante Pyranderivate sind spirocyclische Systeme, bei denen beide Ringe keine Ketalstruktur aufweisen, sondern sich das Lactol oder Lacton in 3-, 4- oder 5-Position des Pyrans befindet. Es ist gelungen, solche Strukturen durch zweistufige Synthese mit einer Ringschlussmetathese und einer Hydroformylierung als Schlüsselschritte darzustellen. Die Hydroformylierung der Vinylpyranole verläuft unter den Reaktionsbedingungen für die Verwendung von BIPHEPHOS (**45**) praktisch quantitativ. Dabei wird bei den Systemen, die neben der exocyclischen Vinylgruppe auch noch eine

endocyclische Doppelbindung besitzen sehr gut differenziert. Es werden keine Nebenreaktionen beobachtet. Außerdem werden verschiedene Reste wie Alkyl-, Aryl- und -O-Benzyl-Gruppen toleriert.

Abb. 113: Darstellung spirocyclischer Dihydropyranderivate

Die Ergebnisse dieser Arbeit zeigen, dass die Tandem-Hydroformylierung-Acetalisierung von Hydroxyolefinen zu *O*-Heterocyclen ein großes synthetisches Potential besitzt. Dabei konnte die Chemo- und Regioselektivität der Reaktion verschiedenster Arten von Hydroxyolefinen vorhergesagt und dazu verwendet werden, gezielt eine große Zahl verschiedener Strukturelemente aufzubauen. Diese könnten in weiteren Folgereaktionen zu komplexeren Strukturbausteinen von Naturstoffen umgewandelt werden. Durch die Verwendung der Tandemvariante konnten die entsprechenden Struktureinheiten aus einfachen und preiswerten Edukten mit relativ geringen Materialaufwand erzeugt werden. Daraus ergeben sich viele Ansatzpunkte zur weiteren Verwendung dieser Sequenzen in der Darstellung von Systemen, die verschiedene Arten von unterschiedlich verknüpften *O*-Heterocyclen enthalten können. Weitere Untersuchungen zur enantio- und diastereoselektiven Synthese sollten unternommen werden.

4 Experimenteller Teil

4.1 Allgemeine Bemerkungen

4.1.1 Spektroskopische und analytische Methoden

Kernresonanzspektren werden mit den Geräten DPX 300, DRX 400, DRX 500 der Fa. Bruker, Karlsruhe und AS 600 der Fa. Varian, aufgenommen. Falls nicht ausdrücklich vermerkt wurden die Proben in deuteriertem Chloroform bei Raumtemperatur gemessen. Die chemische Verschiebung der Signale wird entweder auf TMS als internem Standard oder auf die Eigenresonanz des verwendeten Lösemittels bezogen. Die Aufnahme der ¹³C-NMR Spektren erfolgt ¹H-breitbandentkoppelt. Die Multiplizitäten der ¹³C-Signale werden mit Hilfe einer DEPT 135 Pulssequenz ermittelt. Zur Zuordnung der Signale werden in vielen Fällen H,H-, C,H- und long range C,H-Korrelationsspektren (COSY) sowie zur Ermittlung der Konfiguration einiger Verbindungen auch NOE-Experimente durchgeführt. Signale im ¹H-NMR Spektrum, deren beobachtete Multiplizität nicht der erwarteten für ein Spektrum erster Ordnung entspricht sind mit einem Sternchen (*) gekennzeichnet.

Die **Infrarot-Spektren** werden mit Hilfe des Nicolet Impact 400D FT-IR-Gerätes in Verbindung mit dem Programm OMNIC gemessen. Flüssige Substanzen werden als Film zwischen NaCl-Platten, Feststoffe als KBr-Pressling vermessen.

Massenspektren werden mit dem Gerät 8200 der Firma Finnigan aufgenommen, die Ionisierung der Substanzen erfolgt durch Elektronenstoßionisation (EI, 70 eV).

Für die **GC-MS-Kopplung** wird ein ION-TRAP (Mod. 800) der Fa. Finnigan (EI, 70 eV) in Verbindung mit dem Aerographen 8521-a (CP-Sil-5(CB), 25 m) der Fa. Dani eingesetzt.

Die **CHN-Elementaranalyse** wird mit der Verbrennungsapparatur CHNS-932 der Firma Leco, St. Joseph, Mi., USA, durchgeführt.

Die Bestimmung der **Schmelzpunkte** fester Substanzen erfolgt mit einer Schmelzpunktapparatur der Fa. Büchi. Die ermittelten Werte sind nicht korrigiert.

87

4.1.2 Chromatographische Methoden

Zur **gaschromatographischen Analyse** wird eine Gaschromatograph GC 9130 der Fa. Fisons Instruments (15 m CP-Sil-19(CB)-Kapillare) verwendet. Die Detektion erfolgt mit Hilfe eines Flammenionisationsdetektors.

Die **analytische Dünnschichtchromatographie** wird mit DC-Aluminium-Fertigplatten Kieselgel 60 F_{254} der Fa. Merck bzw. Macherey-Nagel sowie Aluminiumoxid 60 F_{254} neutral der Fa. Merck mit den jeweils angegebenen Lösemitteln durchgeführt.

Die **säulenchromatographischen Trennungen** erfolgen an Kieselgel 60 (Korngröße 0.063-.0200 mm) der Fa. Merck bzw. Macherey-Nagel oder Aluminiumoxid N (Aktivität III) der Fa. ICN Biochemicals. Filtrative Säulen zur Katalysatorabtrennung werden mit Aluminiumoxid B Aktivität II-III der Firma Merck durchgeführt.

4.1.3 Allgemeine Arbeitsweisen

Die in dieser Arbeit beschriebenen Reaktionen werden in handelsüblichen Normschliff-Glasapparaturen durchgeführt. Für Reaktionen, die eine inerte Atmosphäre erfordern, wird unter Argon 4.6 gearbeitet. Dazu wird die Apparatur vor dem Befüllen evakuiert, mit einem Heizgerät ausgeheizt und mit dem Schutzgas befüllt. Das Befüllen der Apparatur wird im Argongegenstrom vorgenommen. Die verwendeten Lösemittel werden, falls erforderlich, nach den Standardmethoden getrocknet¹⁵⁴ und unter Argon aufbewahrt.

Ausgangssubstanzen werden, falls erforderlich, durch Destillation oder Umkristallisation gereinigt. Die aus dem Handel bezogenen Chemikalien werden ohne vorherige Reinigungsoperationen eingesetzt.

Druckreaktionen werden in Labordruckbehältern der Fa. Berghof, Enningen (250 ml mit PTFE-Einsatz) oder in von der institutseigenen Werkstatt hergestellten Druckbehältern (70 ml, ohne Einsatz) durchgeführt. Die angegebenen Temperaturen beziehen sich auf die Voreinstellung an der Heizkalotte. Die tatsächliche Temperatur im Inneren des Druckbehälters kann geringer sein. Die angegebenen Drücke werden direkt nach Aufpressen der Gase bei Raumtemperatur abgelesen.

4.1.4 Ausgangsmaterialien und Reagenzien

Die als Katalysatorvorläufer eingesetzte Rhodiumverbindungen [Rh(cod)Cl]₂ wird nach Literaturvorschriften dargestellt.¹⁵⁵ Der Katalysatorvorläufer Rh(acac)(CO)₂ wurde als Spende von der Degussa-Hüls AG, Frankfurt am Main, zur Verfügung gestellt. Der Ligand BIPHEPHOS (**45**) wird nach Literaturvorschriften dargestellt.¹⁰²

Die Verbindungen **134a,b**, **136**, **142a,b** wurden von Herrn PD Dr. B. Schmidt und Herrn Dipl. Chem. H. Wildemann im Rahmen einer Kooperation zur Verfügung gestellt.¹⁵²

AAV I: Allgemeine Arbeitsvorschrift für Reaktionen in Druckbehältern

Das Edukt, der Katalysator und der Ligand werden eingewogen und zusammen mit dem Lösemittel und einem Magnetrührkern in den Druckbehälter gegeben. Der Druckbehälter wird verschlossen und durch Aufpressen von ca. 20 bar Argon und nachfolgendem Entspannen gespült. Danach wird der gewünschte Druck an Kohlenmonoxid und Wasserstoff aufgepresst und die Heizkalotte und der Magnetrührer eingeschaltet. Nach Beendigung der Reaktion werden Heizung und Rührer ausgeschaltet und der Druckbehälter zum Abkühlen aus der Kalotte genommen. Der abgekühlte Druckbehälter wird langsam entspannt, mit Argon gespült und das Reaktionsgemisch wird entnommen. Dieses wird über eine kurze Säule (8.0 x 2.5 cm) mit basischem Aluminiumoxid und ca. 100 ml MTBE sowie ca. 60 ml Ethanol eluiert. Beide Fraktionen werden getrennt gesammelt und das Lösemittel entfernt. Falls die entsprechenden Produkte weiter aufgereinigt werden müssen, wird eine säulenchromatographische Trennung an Kieselgel mit verschiedenen Lösemittelgemischen durchgeführt, welche bei den jeweiligen Versuchen angegeben sind.

4.2 Darstellung von Perhydrofuro[2,3-*b*]furanen

4.2.1 Darstellung verschiedener 2-Alken-1,5-diole

V1 Darstellung von 2-Penten-1,5-diol (2a)

Ansatz:	3.16 g	(20 mmol)	Glutaconsäuredimethylester (1) (cis-/trans (1: 6.6))
	80 ml	(80 mmol)	DIBAH (1 M in Hexan)
	15 ml		abs. CH ₂ Cl ₂

Durchführung:

80 ml (80 mmol) einer 1 M Lösung von DIBAH in Hexan werden in einem 250 ml Zweihalskolben mit Rückflusskühler und Tropftrichter vorgelegt und auf 0 °C abgekühlt. Man tropft 3.16 g (20 mmol) Glutaconsäuredimethylester (1) gelöst in 15 ml abs. CH_2Cl_2 in 20 min hinzu und lässt innerhalb von drei Stunden auf RT aufwärmen. Danach wird mit 80 ml Methanol gequencht und die entstandenen Salze werden abfiltriert. Man wäscht mit 80 ml heißem Methanol nach. Das Lösemittel wird am Rotationsverdampfer entfernt und der Rückstand säulenchromatographisch gereinigt (Aluminiumoxid N, CH_2Cl_2 / MeOH (9:1)). Man erhält 1.54 g (15 mmol, 75 %) eines Gemisches von *cis-/trans*-2-Penten-1,5-diol (**2a**) ($C_5H_{10}O_2$, 102.13 g/mol) als farbloses Öl, das nicht getrennt werden konnte. Die spektroskopischen Daten entsprechen denen in der Literatur.⁶⁷

V 2 Darstellung von 2-Methyl-3-hexin-2,6-diol (6a)

Ansatz:	3.40 g	(49 mmol)	3-Butin-1-ol (3a)
	5.60 g	(98 mmol)	abs. Aceton (4a)
	10.00 g	(178 mmol)	wasserfreies KOH
	60 ml		abs. Diethylether

Durchführung:

Zu 3.40 g (49 mmol) 3-Butin-1-ol (**3a**) in 30 ml abs. Diethylether wird unter Eiskühlung und kräftigem Rühren 10.00 g (178 mmol) gemörsertes wasserfreies KOH zugegeben. Innerhalb von drei Stunden werden 5.60 g (98 mmol) abs. Aceton (**4a**) gelöst in 30 ml abs. Diethylether zugetropft. Man verdünnt mit weiteren 50 ml abs. Diethylether und rührt über Nacht bei RT. Danach hydrolysiert man mit 150 ml Wasser. Die Phasen werden getrennt und die wässrige Phase mit Diethylether (3 x 30 ml) extrahiert. Die vereinigten organischen 90

Phasen werden mit 5 %-iger Essigsäure (2 x 50 ml) gewaschen und über K_2CO_3 getrocknet. Nach Entfernung des Lösemittel erhält man 4.40 g eines hellgelben Öles. Nach Kugelrohrdestillation $(1.10^{-2} \text{ mbar} / 130 \text{ °C})$ erhält man 3.27 g (25.4 mmol, 52 %) 2-Methyl-3-hexin-1-ol (6a) als farblosen Feststoff.^{68a}

Spektroskopische Daten: 2-Methyl-3-hexin-1-ol (6a)

(C₇H₁₂O₂, 128.17 g/mol, Schmp.: 66 °C)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.50 (s, 6H, 2 x -CH₃), 2.45 (t, 2H, ${}^{3}J = 6.0$ Hz, \equiv CCH₂), 3.32 (bs, 1H, -OH), 3.52 (bs, HC OH 1H, -OH), 3.71 (t, 2H, ${}^{3}J = 6.0$ Hz, -CH₂OH). 13 C-NMR

 $(100 \text{ MHz}, \text{ CDCl}_3)$: δ [ppm] = 22.9 (CH₂), 31.5 (2 x CH₃), 60.8 (CH₂), 65.0 (C_a), 79.2 $(C_{q,acetyl.})$, 86.9 $(C_{q,acetyl.})$. **IR** (Pressling, KBr), \tilde{v} $[cm^{-1}] = 3355$ (s), 3346 (s), 2978 (s), 2936 (m), 2886 (w), 2250 (w), 1695 (w), 1366 (m), 1237 (m), 1165 (s), 1070 (m), 1055 (m), 1042 (m), 953 (s).

V 3)

Ansat

Darstellung von	1-(1-Hydroxy	cyclohexyl)-1	-butin-4-ol (6b
-----------------	--------------	---------------	-----------------

atz:	3.50 g	(50 mmol)	3-Butin-1-01 ($3a$)
	9.80 g	(100 mmol)	Cyclohexanon (4b)
	11.20 g	(200 mmol)	wasserfreies KOH
	160 ml		abs. Diethylether
	100 IIII		abs. Dieutytethe

Durchführung: analog V 2

- Aufarbeitung: Man erhält 10.60 g eines hellgelben Feststoffes. Es wird aus 10 ml Ethylacetat umkristallisiert.
- Ausbeute: 5.70 g (33.6 mmol, 67 %) 1-(1-Hydroxycyclohexyl)-1-butin-4-ol (**6b**) als farbloser Feststoff.

Spektroskopische Daten: 1-(1-Hydroxycyclohexyl)-1-butin-4-ol (6b)

(C₁₀H₁₆O₂, 168.24 g/mol, Schmp.: 103° C)

¹**H-NMR** (400 MHz, CD₃OD): δ [ppm] =1.18-1.28 (m, 2H, -CH₂-, HO OH Ring), 1.46-1.68 (m, 6H, 3 x -CH₂-, Ring), 1.80-1.84 (m, 2H, -CH₂-, Ring), 2.41 (t, 2H, ${}^{3}J = 6.9$ Hz, C₀-CH₂-), 3.62 (t, 2H, ${}^{3}J =$ 6.9 Hz, -CH₂OH). ¹³C-NMR (100 MHz, CD₃OD): δ [ppm] = 23.5 (CH₂), 24.48 (2 x CH₂),

26.4 (CH₂), 41.1 (2 x CH₂), 61.9 (CH₂), 69.1 (C_q), 81.9 (C_{q,acetyl}), 86.2 (C_{q,acetyl}). **IR** (Pressling, KBr), \tilde{v} [cm⁻¹] = 3302 (s), 2944 (s), 2930 (s), 2857 (m), 2232 (w), 1451 (m), 1065 (s), 1039 (s). **MS** (EI, 70 eV): m/z (%) = 168 (M⁺, 6), 150 (3), 139 (9), 135 (14), 125 (65), 112 (12), 95 (10), 81 (15), 67 (16), 55 (100). **Elementaranalyse**: berechnet: **C**: 71.4 % **H**: 9.6 %, gefunden: **C**: 71.2 % **H**: 9.6 %.

V 4 Darstellung von 2,6-Diphenylhept-3-in-2,6-diol (6c)

Ansatz:5.60 g(35 mmol)2-Phenyl-4-pentin-2-ol (3b)8.40 g(70 mmol)Acetophenon (4c)7.80 g(140 mmol)wasserfreies KOH50 mlabs. Diethylether

Durchführung: analog V 2

Aufarbeitung: Säulenchromatographische Aufarbeitung des Rückstandes an Kieselgel mit PE/MTBE (2:1) als Eluent.

Ausbeute:4.36 g (15.6 mmol, 44 %) eines nicht zu trennenden1:1-Diastereomerengemisches an 2,6-Diphenylhept-3-in-2,6-diol (6c).

Spektroskopische Daten: 2,6-Diphenylhept-3-in-2,6-diol (6c)

(C19H20O2, 280.37 g/mol), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.61 (s, 6H, 2 x -CH₃), 1.64 (s, 3H, -CH₃), 1.66 (s, 3H, -CH₃), 2.71 (d, 1H, ${}^{2}J$ = 3.5 Hz, -CHH'), 2.75 (d, 1H, ${}^{2}J$ = 3.5 Hz, -CHH'), 2.80 (d, 1H, ${}^{3}J$ = 9.3 Hz, -CHH'), 2.84 (d, 1H, ${}^{3}J$ = 9.3 Hz, -CHH'), 2.97 (bs, 1H, -OH), 3.06 (bs, 1H, -OH), 3.47 (bs, 1H, -OH), 3.56 (bs, 1H, -OH), 7.21-7.48 (m, 20H, CH_{arom}). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 29.2 (CH₃), 29.3 (CH₃), 33.2 (CH₃), 33.3 (CH₃), 34.7 (CH₂), 34.8 (CH₂), 69.8 (2 x C_q), 73.7 (C_q), 73.8 (C_q), 81.7 (C_{q.acet}), 81.4 (C_{q.acet}), 87.1 (C_{q.acet}), 87.1 (C_{q.acet}), 124.8 (3 x CH_{arom}), 124.8 (2 x CH_{arom}), 124.9 (3 x CH_{arom}), 124.9 (2 x CH_{arom}), 126.9 (CH_{arom}), 127.0 (CH_{arom}), 127.4 (CH_{arom}), 127.4 (CH_{arom}), 128.1 (2 x CH_{arom}), 128.1 (2 x CH_{arom}), 128.2 (2 x CH_{arom}), 145.7 (C_{q.arom}), 145.8 (C_{q.arom}), 146.5 (C_{q.arom}), 146.5 (C_{q.arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3396 (vs), 3086 (w), 3060 (w), 3027 (w), 3977 (s), 2930 (m), 2829 (w), 2248 (w), 1601 (m), 1446 (m), 1365 (m), 1094 (m), 1070 (s).

AAV II: Allgemeine Arbeitsvorschrift für die Di-Grignard-Reaktion von Propargylbromid mit Aldehyden und Ketonen⁷⁰

In einem Dreihalskolben wird eine bestimmte Menge an Mg-Spänen mit einer vorgegebenen Menge an abs. Diethylether überschichtet. Man gibt etwas Quecksilber(II)chlorid zu, tropft etwas frisch destilliertes Propargylbromid hinzu und erwärmt leicht bis die Reaktion beginnt. Die Reaktionsmischung wird im Eisbad gekühlt und das restliche Propargylbromid gelöst in einer bestimmten Menge an abs. Diethylether innerhalb von einer Stunde zugetropft. Nach Beendigung der Zugabe wird eine weitere Stunde bei 0 °C gerührt. Das Ethylbromid-Grignardreagenz wird analog dargestellt. Bei 0 °C wird das Ethylmagnesium-bromid zum Propargylmagnesiumbromid zugegeben und es wird je eine Stunde bei 0 °C und bei Raumtemperatur gerührt. Anschließend wird für 15 min unter Rückfluss erhitzt. Das Di-Grignardreagenz 5 scheidet sich dabei als ölige obere Phase ab. Nun kühlt man die Reaktionsmischung erneut im Eis/Kochsalz-Bad auf -10 °C ab und tropft die Carbonylverbindung, gelöst in einer bestimmten Menge an abs. Diethylether, innerhalb von einer Stunde zu. Es wird je eine Stunde bei 0 °C und bei Raumtemperatur gerührt, danach eine Stunde unter Rückfluss erhitzt. Man hydrolysiert vorsichtig mit Eiswasser und verd. Salzsäure. Es wird filtriert und der Rückstand mit etwas Diethylether gewaschen. Die organische Phase wird abgetrennt und die wässrige Phase dreimal mit Diethylether extrahiert. Man trocknet die vereinigten organischen Phasen über MgSO₄ und entfernt das Lösemittel. Das Rohprodukt wird wie bei den einzelnen Versuchen angegeben aufgereinigt.

V 5 Darstellung von 2,6-Dimethyl-3-heptin-2,6-diol (6d)

Ansatz:	10.90 g	(100 mmol)	Ethylbromid
	14.90 g	(100 mmol)	Propargylbromid (80-% in Toluol)
	6.00 g	(250 mmol)	Mg-Späne
	11.60 g	(200 mmol)	Aceton (4a)
	130 ml		abs. Diethylether
	0.10 g		HgCl ₂

Durchführung: analog AAV II

Aufarbeitung: Das Rohprodukt wird im Ölpumpenvakuum fraktionierend destilliert (2.3·10⁻² mbar / 72 °C) Ausbeute: 4.34 g (28 mmol, 28 %) 2,6-Dimethyl-3-heptin-2,6-diol (**6d**)¹⁵⁶

Spektroskopische Daten: 2,6-Dimethyl-3-heptin-2,6-diol (6d)

(C₉H₁₆O₂, 156.23 g/mol, Schmp.: 58 °C)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.30 (s, 6H, 2 x -CH₃), 1.51 (s, 6H, 2 x -CH₃), 2.36 (s, 2H, -CH₂-), 2.57 (bs, 1H, -OH), 3.11 (bs, HO 1H, -OH). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 28.6 (2 x CH₃), 31.6 (2 x CH₃), 34.1 (CH₂), 65.0 (C_q), 70.1 (C_q), 78.8 (C_{q,acetyl}), 88.2 (C_{q,acetyl}). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 3398 (vs), 2981 (s), 2932 (m), 2908 (m), 2239 (w), 1380 (m), 1364 (m), 1244 (m), 1168 (s), 1153 (s). **MS** (EI, 70 eV): m/z (%) = 123 (M⁺ - 2 x -OH, 5), 123 (14), 80 (100), 65 (3), 59 (45), 43 (54). **Elementaranalyse**: berechnet: **C**: 69.2 % **H**: 10.3 %, gefunden: **C**: 69.0 % **H**: 10.2 %.

V 6 Darstellung von 1,3-Bis-(1-hydroxycyclohexyl)-1-propin (6e)

Ansatz:	10.90 g	(100 mmol)	Ethylbromid
	11.90 g	(100 mmol)	Propargylbromid
	6.00 g	(250 mmol)	Mg-Späne
	19.60 g	(200 mmol)	Cyclohexanon (4b)
	130 ml		abs. Diethylether
	0.10 g		$HgCl_2$

Durchführung: analog AAV II

Aufarbeitung: Man erhält ca. 15 g eines orangeroten viskosen Öles. Dieses wird in 50 ml n-Hexan gelöst und zum Auskristallisieren in den Kühlschrank gestellt.
Man saugt den ausgefallenen Feststoff ab und wäscht zweimal mit je 10 ml n-Hexan und trocknet den farblosen kristallinen Feststoff. Das Rohprodukt (6.50 g) wird aus 10 ml Ethylacetat umkristallisiert.

Ausbeute: 4.00 g (17 mmol, 17 %) 1,3-Bis-(1-hydroxycyclohexyl)-1-propin (**6e**).^{70,157}

Spektroskopische Daten: 1,3-Bis-(1-hydroxycyclohexyl)-1-propin (6e)

(C₁₅H₂₄O₂, 236.36 g/mol, Schmp.: 112 °C)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.22-1.29 (m, 2H, HO -CH₂-, Ring), 1.45-1.71 (m 16H, 8 x -CH₂-, Ring), 1.85-1.91 (m, 2H, -CH₂-, Ring), 2.27 (bs, 1H, -OH), 2.38 (s, 2H, =C-CH₂), OH 2.93 (bs, 1H, -OH). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 22.2 (2 x CH₂, Ring), 23.4 (2 x CH₂, Ring), 25.2 (CH₂, Ring), 25.6 (CH₂, Ring), 33.1 (CH₂, =C-CH₂), 36.8 (2 x CH₂, Ring), 40.1 (2 x CH₂, Ring), 68.6 (C_q), 70.62 (C_q), 80.4 (C_{q,acetyl}), 87.3 (C_{q,acetyl}). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 3333 (s), 3266 (s), 2929 (s), 2850 (s), 2232 (w), 1451 (m), 1432 (m), 1151 (m), 1069 (s), 985 (m), 965 (m). **GC-MS** (70 eV, EI): m/z (%) = 219 (M⁺ - OH, 82), 201 (100), 175 (6), 159 (6), 145 (6), 132 (6), 120 (60), 105 (66), 100 (17), 91 (27), 81 (53). **Elementaranalyse**: berechnet: **C**: 76.2 % **H**: 10.2 %, gefunden: **C**: 76.0 % **H**: 10.1 %.

V 7 Darstellung von 1,5-Diphenylpent-2-in-1,5-diol (6f)

Ansatz:	10.90 g	(100 mmol)	Ethylbromid
	11.90 g	(100 mmol)	Propargylbromid
	6.00 g	(250 mmol)	Mg-Späne
	26.50 g	(250 mmol)	Benzaldehyd (4d)
	100 ml		abs. Diethylether
	0.10 g		HgCl ₂

Durchführung: analog AAV II

Aufarbeitung: analog V 6

Ausbeute: 4.77 g (18.9 mmol, 19 %) 1,5-Diphenylpent-2-in-1,5-diol (**6f**). Die spektroskopischen Daten stimmen mit denen der Literatur überein.^{70,158}

AAV III: Allgemeine Arbeitsvorschrift für Hydrierungen mit Lindlar-Katalysator

In einem Standkolben wird das entsprechende Alkindiol in einer bestimmten Menge an Ethanol gelöst und eine entsprechende Menge an Lindlar-Katalysator (5 % Pd auf CaCO₃) zugegeben. Der Kolben wird mehrmals auf 200 mbar evakuiert und mit Wasserstoff unter Normaldruck bei Raumtemperatur gesättigt. Danach wird langsam bei Raumtemperatur

gerührt. Nach Aufnahme der vorher berechneten theoretischen Menge an Wasserstoff wird die Reaktion abgebrochen und der Katalysator über eine Glasfritte (D 4) abfiltriert. Das Ethanol wird am Rotationsverdampfer entfernt und das Rohprodukt wird, falls nötig säulenchromatographisch an Kieselgel aufgereinigt.⁶⁹

V 8 Darstellung von *cis*-2-Methyl-3-hexen-2,6-diol (2b)

Ansatz:	3.10 g	(24 mmol)	2-Methyl-3-hexin-2,6-diol (6a)
	500 mg		Lindlar-Katalysator (5 % Pd auf CaCO ₃)
	100 ml		Ethanol
	580 ml	(24 mmol)	Wasserstoff

Durchführung: analog AAV III

Aufarbeitung: Das Rohprodukt wird säulenchromatographisch an Kieselgel mit CH₂Cl₂/EtOH (6:1) als Eluent aufgereinigt.

Ausbeute: 2.64 g (20 mmol, 84 %) *cis*-2-Methyl-3-hexen-2,6-diol (**2b**).^{68b}

Spektroskopische Daten: *cis*-2-Methyl-3-hexen-2,6-diol (2b)

 $(C_7H_{14}O_2, 130.19 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.35 (s, 6H, -CH₃), 2.59 (m, 2H, =CHCH₂-), 3.42 (bs, 1H, -OH), 3.65 (t, 2H, ³J = 5.9 Hz, HO -CH₂OH), 5.36 (dt, 1H, ³J = 11.8, 8.4 Hz, =CH-CH₂-), 5.64 (d, 1H, ³J = 11.8 Hz, =CH-C_q). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 30.4 (CH₂), 31.4 (2 x CH₃), 61.0 (CH₂), 71.5 (C_q), 125.8 (CH), 139.7 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3334 (s), 3009 (m), 2972 (s), 2929 (s), 2877 (m), 1697 (w), 1655 (w), 1462 (m), 1361 (s), 1155 (s), 1051 (s), 957 (s), 884 (m). **GC-MS** (70 eV, EI): m/z (%) = 113 (M⁺ - OH, 7), 95 (100), 82 (4), 67 (6), 55 (4).

V 9 Darstellung von *cis*-1-(1-Hydroxycyclohexyl)-1-buten-4-ol (2c)

Ansatz:4.20 g(25 mmol)1-(1-Hydroxycyclohexyl)-1-butin-4-ol (6b)500 mgLindlar-Katalysator (5 % Pd auf CaCO3)125 mlEthanol580 ml(25 mmol)Wasserstoff

Durchführung: analog AAV III

Aufarbeitung: Es verbleibt ein hellgelbes Öl. Säulenchromatographische Reinigung an Kieselgel mit MTBE als Eluent.

Ausbeute: 4.06 g (23.8 mmol, 95 %) cis-1-(1-Hydroxycyclohexyl)-1-buten-4-ol (**2c**) als farbloses Öl.^{68c}

Spektroskopische Daten: *cis*-1-(1-Hydroxycyclohexyl)-1-buten-4-ol (2c)

 $(C_{10}H_{18}O_2, 170.25 \text{ g/mol})$

¹**H-NMR** (400 MHz, CD₃OD): δ [ppm] = 1.22-1.86 (m, 10H, -CH₂-), 2.60 (dt, 2H, ³J = 8.1, 5.9 Hz, -CH₂-), 3.31 (bs, 2H, 2 x -OH), 3.66 (t, 2H, ³J = 5.9 Hz, -CH₂OH), 5.41 (dt, 1H, ³J =

11.8, 8.1 Hz, =CHCH₂-), 5.67 (d, 1H, ${}^{3}J$ = 11.8 Hz, C_q-CH=). ¹³C-NMR (100 MHz, CD₃OD): δ [ppm] = 22.3 (2 x CH₂), 25.3 (CH₂), 30.9 (2 x CH₂), 39.4 (CH₂), 60.8 (CH₂), 72.2 (C_q), 127.0 (CH), 138.8 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3347 (s), 3009 (w), 2931 (s), 2858 (m), 1651 (w), 1449 (m), 1082 (s). **GC-MS** (70 eV, EI): m/z (%) = 170 (M⁺, 17), 155 (11), 152 (11), 137 (20), 125 (53), 109 (100), 95 (27), 81 (75), 67 (24), 55 (96), 3 (45).

V 10 Darstellung von *cis*-2,6-Diphenylhept-3-en-2,6-diol (2d)

Ansatz:	4.25 g	(15.2 mmol)	2,6-Diphenylhept-3-in-2,6-diol (6c)
	500 mg		Lindlar-Katalysator (5 % Pd auf CaCO ₃)
	80 ml		Ethanol
	340 ml	(15.2 mmol)	Wasserstoff

Durchführung: analog AAV III

 Aufarbeitung: Säulenchromatographische Reinigung des Rohproduktes an Kieselgel mit MTBE/PE (30/60) (1:1) als Eluent ergibt einen farblosen Feststoff.
 Ausbeute: 4.19 g (14.7 mmol, 97 %) *cis*-2,6-Diphenylhept-3-en-2,6-diol (2d) als 1:1-Diastereomerengemisch.¹⁵⁹ Spektroskopische Daten: *cis*-2,6-Diphenylhept-3-en-2,6-diol (2d) (C₁₉H₂₂O₂, 282.38 g/mol, Schmp.: 121 °C), 1:1-Diastereomerengemisch ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.47 (s, 3H, -CH₃), НQ 1.52 (s, 3H, -CH₃), 1.59 (s, 3H, -CH₃), 1.62 (s, 3H, -CH₃), 2.47 (ddd, 2H, ${}^{3}J = 15.0$, 7.0 ${}^{4}J = 1.4$ Hz, -CH₂-), 2.61 (ddd, бн 2H, ${}^{3}J = 15.0$, 10.0 ${}^{4}J = 1.4$ Hz, -CH₂-), 3.26 (bs, 2H, -OH), 4.08 (bs, 2H, -OH), 5.19 (ddd, 1H, ${}^{3}J = 11.5$, 10.0, 7.0 Hz, =CH-CH₂), 5.44 (ddd, 1H, ${}^{3}J = 11.8, 9.0, 8.3 \text{ Hz}, =CH-CH_{2}), 5.97 \text{ (d, 1H, } {}^{3}J = 11.5 \text{ Hz}, -CH=CH-CH_{2}-), 6.01 \text{ (d, 1H, }$ ${}^{3}J = 11.8$ Hz, -CH=CH-CH₂-), 7.17-7.51 (20H, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 28.9 (CH₃), 30.8 (CH₃), 32.8 (CH₃), 33.2 (CH₃), 41.7 (2 x CH₂), 74.1 (2 x C_a), 74.2 (C_a), 74.5 (C_a), 124.7 (2 x CH_{arom}), 124.8 (3 x CH_{arom}), 124.9 (2 x CH_{arom}), 125.0 (3 x CH_{arom}), 126.0 (CH_{olefin}), 126.4 (CH_{olefin}), 126.5 (3 x CH_{arom}), 126.6 (CH_{arom}), 128.1 (6 x CH_{arom}), 140.5 (CH_{olefin}), 140.6 (CH_{olefin}), 147.2 (C_a, arom), 148.2 (C_a, arom), 148.7 $(C_{0,arom})$, 148.9 $(C_{0,arom})$. **IR** (Pressling, KBr), $\tilde{\nu} [cm^{-1}] = 3346$ (s), 3088 (w), 3063 (w), 3027 (w), 2976 (m), 2925 (w), 1492 (m), 1445 (m), 1371 (m), 1068 (m), 764 (m), 700 (s). **MS** (EI, 70 eV): m/z (%) = 264 (M⁺ - OH, 5), 249 (21), 222 (2), 144 (100), 129 (84), 127 (30), 121 (30), 105 (33), 77 (11), 70 (16), 67 (15). Elementaranalyse: berechnet: **C**: 80.3 % **H**: 7.1 %, gefunden: **C**: 80.5 % **H**: 7.5 %.

Eine Zuordnung der Diastereomere konnte auch durch COSY-Experimente nicht erreicht werden.

V 11 Darstellung von *cis*-2,6-Dimethyl-3-hepten-2,6-diol (2e)

Ansatz:	3.25 g	(21 mmol)	2,6-Dimethyl-3-heptin-2,6-diol (6d)
	500 mg		Lindlar-Katalysator (5 % Pd auf CaCO ₃)
	100 ml		Ethanol
	510 ml	(21 mmol)	Wasserstoff

Durchführung: analog AAV III

Ausbeute: 2.80 g (17.7 mmol, 86 %) *cis*-2,6-Dimethyl-3-hepten-2,6-diol (**2e**) (C₉H₁₈O₂, 158.25 g/mol, Schmp.: 71 °C) als farbloser Feststoff. Eine weitere Aufreinigung ist nicht nötig. Die spektroskopischen Daten stimmen mit denen der Literatur überein.⁹⁰

V 12 Darstellung von *cis*-1,3-Bis-(1-hydroxycyclohexyl)-1-propen (2f)

Ansatz:	3.90 g	(16.5 mmol)	1,3-Bis(1-hydroxycyclohexyl)-1-propin (6e)
	500 mg		Lindlar-Katalysator (5 % Pd auf CaCO ₃)
	100 ml		Ethanol
	380 ml	(16.5 mmol)	Wasserstoff

Durchführung: analog AAV III

Aufarbeitung: Säulenchromatographische Reinigung an Kieselgel mit MTBE als Eluent.

Ausbeute: 3.49 g (14.6 mmol, 89%) 1,3-Bis-(1-hydroxycyclohexyl)-1-propen (**2f**) $(C_{15}H_{26}O_2, 238.37 \text{ g/mol})$ als *cis-/trans*-Gemisch (2.0 : 1.5). Die spektroskopischen Daten entsprechen denen der Literatur.⁷¹

V 13 Darstellung von *cis*-1,5-Diphenylpent-2-en-1,5-diol (2g)

Ansatz:	4.55 g	(18.0 mmol)	1,5-Diphenylpent-2-en-1,5-diol (6f)
	500 mg		Lindlar-Katalysator (5 % Pd auf CaCO ₃)
	100 ml		Ethanol
	490 ml	(18.0 mmol)	Wasserstoff

Durchführung: analog AAV III

Aufarbeitung:Esverbleiben4.85geinesgelbenviskosenÖles.Säulenchromatographische Reinigung an Kieselgel mit MTBE/PE (30/60)(2:1) als Eluent ergibt einen farblosen Feststoff.

Ausbeute: 4.55 g (17.7 mmol, 98 %) *cis*-1,5-Diphenylpent-2-en-1,5-diol (**2g**) als nicht zu trennenden 1:1-Diastereomerengemisch.¹⁶⁰

Spektroskopische Daten: *cis*-1,5-Diphenylpent-2-en-1,5-diol (2g)

(C $_{17}H_{18}O_2$, 254.33 g/mol, Schmp.: 82 °C), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 2.36-2.42 (m,

1H, -CH₂-), 2.52-2.59 (m, 1H, -CH₂-), 2.71-2.82 (m, 2H,

-CH₂-), 3.03 (bs, 1H, -OH), 3.46 (bs, 1H, -OH), 3.59 (bs,

1H, -OH), 3.74 (bs, 1H, -OH), 4.63 (dd, 1H, ${}^{3}J = 9.2$.

3.7 Hz, -CHOH), 4.75 (t, 1H, ${}^{3}J = 5.5$ Hz, -CHOH), 5.35

(d, 1H, ${}^{3}J = 8.5$ Hz, -CHOH), 5.44 (d, 1H, ${}^{3}J = 8.5$ Hz, -CHOH), 5.40-5.47 (m, 1H,

ŠН

OH
-CH=CH-), 5.59-5.80 (m, 3H, -CH=CH-), 7.21-7.32 (m, 20H, CH_{arom}). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 36.8 (CH₂), 37.7 (CH₂), 68.7 (CH), 69.2 (CH), 72.8 (CH), 73.00 (CH), 125.7 (2 x CH_{arom}), 125.8 (2 x CH_{arom}), 125.9 (2 x CH_{arom}), 126.6 (CH_{olefin}), 126.9 (CH_{arom}), 127.2 (CH_{arom}), 127.3 (CH_{arom}), 127.5 (CH_{arom}), 127.6 (CH_{arom}), 128.1 (CH_{olefin}), 128.7 (3 x CH_{arom}), 128.3 (2 x CH_{arom}), 128.4 (2 x CH_{arom}), 128.4 (2 x CH_{arom}), 135.6 (CH_{olefin}), 135.4 (CH_{olefin}), 143.1 (2 x Cq_{arom}), 143.5 (Cq_{arom}), 144.1 (Cq_{arom}). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 3301 (vs), 3082 (w), 3062 (w), 3028 (w), 3013 (w), 2974 (w), 2942 (w), 2892 (w), 1453 (m), 1060 (m), 1023 (m), 887 (m), 762 (s). **MS** (EI, 70 eV): m/z (%) = 254 (M⁺, 1), 236 (7), 130 (100), 115 (15), 107 (30), 79 (26), 77 (20), 55(2). Eine Zuordnung der Diastereomere konnte auch durch COSY-Experimente nicht erreicht werden.

V 14 Versuch der Darstellung von 1,3-Bis-(1-hydroxycyclopentyl)-propen (2h)

Ansatz:2.84 g(20 mmol)1,3-Dichlorpropan (7) (techn.)3.36 g(40 mmol)Cyclopentanon (4e)972 mg(140 mmol)Lithium-Pulver256 mg(2.0 mmol)Naphthalin100 mlabs. THF

Durchführung:

Nach einer Vorschrift von Yus^{71} werden 972 mg (140 mmol) Lithium-Pulver und 256 mg (2.0 mmol) Naphthalin in 80 ml abs. THF suspendiert und 15 min bei RT gerührt. Man kühlt auf 0 °C und tropft eine Lösung von 2.84 g (20 mmol) 1,3-Dichlorpropan (7) und 3.36 (40 mmol) Cyclopentanon (4e) in 20 ml abs. THF langsam zu. Nach einer Stunde wird mit 60 ml Wasser hydrolysiert. Man extrahiert mit Diethylether (3 x 100 ml) und trocknet die vereinigten organischen Phasen über MgSO₄. Nach Entfernen des Lösemittels erhält man 3.0 g Rohprodukt. 1,3-Bis-(1-hydroxycyclopentyl)-propen (2h) kann jedoch auch nach säulenchromatographischer Aufarbeitung an Kieselgel mit MTBE/Cyclohexan (1:1) nicht isoliert werden.

4.2.2 Hydroformylierung der 2-Alken-1,5-diole

V 15-18 Hydroformylierung von 2-Penten-1,5-diol (2a)

 Ansatz:
 512 mg (5.0 mmol)
 2-Penten-1,5-diol (**2a**)

 12 mg (0.5 mol-%)
 $[Rh(cod)Cl]_2$

 40 mg (3.0 mol-%)
 PPh_3

 10 ml abs. Solvens

Reaktionsbedingungen: s. Tab. 32

Durchführung: analog AAV I

Aufarbeitung: Säulenchromatographische Reinigung an Kieselgel mit MTBE als Eluent.

Vers.	p(CO)/p(H ₂)	Т	t	LM		Ausbeu	te^{a)} [%]	
	[bar]	[°C]	[h]		8 a	9a	10a	11a
V 15	90 / 20	110	70	Toluol	4		59 (52)	
V 16*	45 / 15	120	20	THF	15	6		23 (14)
V 17*	45 / 15	120	20	Dioxan	35 (17)	34 (21)		7 (7)
V 18*	45 / 15	120	20	CH_2Cl_2	72 (29)			

Tab. 32: Einige Optimierungsversuche zur Hydroformylierung von 2-Penten-1,5-diol (2a)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Ausbeute (V 18): 163 mg (1.43 mmol, 29 %) Perhydrofuro[2,3-*b*]furan (**8a**). Die spektroskopischen Daten entsprechen denen der Literatur.⁶⁶

Spektroskopische Daten: Perhydrofuro[2,3-*b*]furan (8a)

(C₆H₁₀O₂, 114.14 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.70-1.76 (m, 2H, 2 x CHH'), 2.05-2.15 (m, 2H, 2 x CHH'), 2.82-2.89 (m, 1H, -CH-), 3.89 (m, 4H, 2 x -CH₂-O), 5.70 (d, 1H, ³J = 5.0 Hz, -OCHO-). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 32.2 (2 x CH₂), 42.1 (CH), 67.8 (2 x CH₂), 109.1 (CH). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 2949 (s), 2872 (s), 1016 (s). **GC-MS** (70 eV, EI): m/z (%) = 115 (M⁺ + 1, 100), 97 (35), 84 (40), 67 (39), 55 (42). **Elementaranalyse**: berechnet:

C: 63.1 % **H**: 8.8 %, gefunden: **C**: 62.3 % **H**: 9.0 %.

Spektroskopische Daten: 3-Hydroxymethyl-tetrahydropyran-2-ol (**9a**) (C₆H₁₂O₃, 132.16 g/mol), 1:1-Diastereomerengemisch ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 1.51- 1.90 (m, 8H, 2 x -CH₂-), 3.44-4.02 (m, 12H, -CH-, -CH₂-, -OH), 4.55 (bs, 1H, -CH₂-OH), 5.20 (bs, 1H, -CH₂-OH), 5.25 (bs, 1H, -OCHO-), 5.82 (bs, 1H, -OCHO-). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 20.5 (CH₂), 24.5 (CH₂), 24.5 (CH₂), 24.6 (CH₂), 41.1 (CH), 43.7 (CH), 60.0 (CH₂), 63.5 (CH₂), 64.0 (CH₂), 65.5 (CH₂), 93.1 (CH), 98.8 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3383 (vs), 2937 (s), 2881 (s), 1074 (s), 1022 (m). **GC-MS** (70 eV, EI): m/z (%) = 133 (M⁺ + 1, 4), 115 (78), 97 (100), 85 (18), 67 (9).

Spektroskopische Daten: Pentan-1,5-diol (**10a**) (C₅H₁₂O₂, 104.15 g/mol) Die spektroskopischen Daten stimmen mit denen der Literatur überein.⁷²

Spektroskopische Daten: Tetrahydropyran-2-ol (**11a**) (C₅H₁₀O₂, 102.13 g/mol) Die spektroskopischen Daten stimmen mit denen in der Literatur überein.⁷³

V 19-20 Hydroformylierung von *cis*-2-Methyl-3-hexen-2,6-diol (2b)

Ansatz:	651 mg	(5.0 mmol)	cis-2-Methyl-3-hexen-2,6-diol (2b)
	24 mg	(1.0 mol-%)	[Rh(cod)Cl] ₂
	40 mg	(3.0 mol-%)	PPh ₃
	10 ml		abs. Solvens

Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H_2

Durchführung: analog AAV I

Aufarbeitung: Säulenchromatographische Reinigung an Kieselgel mit MTBE als Eluent.

i						Ausbeut	te ^{a)} [%]
Vers.	\mathbf{R}^1	\mathbf{R}^2	R ³	\mathbf{R}^4	LM	8b	11b
V 19	Me	Me	Н	Н	Dioxan	38 (31)	3
V 20	Me	Me	Н	Н	CH_2Cl_2	14	(59)

Tab. 33: Hydroformylierung von *cis*-2-Methyl-3-hexen-2,6-diol (2b)

^{a)} gaschromatographisch bestimmt, im Klammern isolierte Ausbeuten

Ausbeute (V 19): 217 mg (1.53 mmol, 31 %) 2,2-Dimethyl-(3a*S**, 6a*R**)perhydrofuro[2,3-*b*]furan (**8b**)

Spektroskopische Daten: 2,2-Dimethyl-($3aS^*$, $6aR^*$)-perhydrofuro[2,3-*b*]furan (**8b**) (C₈H₁₄O₂, 142.20 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.18 (s, 3H, -CH₃), 1.36 (s, 3H, -CH₃), 1.45 (dd, 1H, ³J = 8.7 Hz, ²J = 12.7 Hz, -CHH'-), 1.68 (dd, 1H, ³J = 4.8 Hz, ²J = 12.2 Hz, -CHH'-), 1.99 (m, 1H, -CHH'-), 2.04 (dd, 1H, ³J = 9.4 Hz, ²J = 12.7 Hz, -CHH'-), 3.00 (m, 1H, -CH-), 3.91 (m, 2H, H) = 0.00 MHz - CDCl > 5.67 (d, 1H, ³L = 5.2 Hz - OCHO) = 13C NMB (100 MHz - CDCl > 5.67 (d, 1H, ³L = 5.2 Hz - OCHO) = 100 (d, 1H, ³L = 5.2 Hz - OCHO) = 100 (d, 1H, ³L = 5.2 Hz - OCHO) = 100 (d, 1H, ³L = 5.2 Hz - OCHO) = 100 (d, 1H, ³L = 5.2 Hz - OCHO) = 100 (d, 1H, ³L = 5.2 Hz - OCHO) = 100 (d, 1H, ³L = 5.2 Hz - OCHO) = 100 (d, 1H, ³L

-OCH₂-), 5.67 (d, 1H, ${}^{3}J$ = 5.2 Hz, -OCHO-). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 27.9 (CH₃), 28.5 (CH₃), 32.3 (CH₂), 43.0 (CH₂), 43.2 (CH₂), 65.7 (CH₂), 82.2 (C_q), 108.9 (CH). IR (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2968 (s), 2930 (s), 2870 (m), 1454 (m), 1367 (s), 1020 (s). GC-MS (70 eV, EI): m/z (%) = 143 (M⁺ + 1, 95), 127 (100), 107 (8), 96 (22), 81 (64), 74 (2), 69 (20), 65 (8), 55 (44).

Spektroskopische Daten: 6,6-Dimethyl-tetrahydropyran-2-ol (11b)

(C7H14O2, 130.19 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.23 (s, 3H, -CH₃), 1.29 (s, 3H, -CH₃), 1.20-1.44 (m, 3H, -CH₂-), 1.61-1.85 (m, 3H, -CH₂-), 4.11 (bs, 1H, -OH), 5.01 (dd, 1H, ³*J* = 8.7, 2.5, CHOH). ¹³**C-NMR** (100 MHz, CDCl₃):

δ [ppm] = 18.4 (CH₂), 23.9 (CH₃), 31.0 (CH₃), 32.6 (CH₂), 35.5 (CH₂), 74.2 (C_q), 91.76 (CH). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3406 (bs), 2972 (s), 2938 (s), 2873 (m), 1461 (m), 1234 (m), 1206 (m), 1118 (s), 1074 (s), 1032 (s), 1002 (m), 968 (s). **GC-MS** (70 eV, EI): m/z (%) = 113 (M⁺ - 17, 42), 95 (100), 69 (12), 59 (40), 56 (18). **Elementaranalyse**: berechnet: **C**: 67.6 % **H**: 9.9 %, gefunden: **C**: 66.8 % **H**: 9.9 %.

V 21-22 Hydroformylierung von 1-(1-Hydroxycyclohexyl)-1-buten-4-ol (2c)

 Ansatz:
 680 mg
 (4.0 mmol)
 1-(1-Hydroxycyclohexyl)-1-buten-4-ol (2c)

 10 mg
 (1.0 mol-%)
 [Rh(cod)Cl]₂

 32 mg
 (3.0 mol-%)
 PPh₃

 10 ml
 abs. Solvens

Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H_2

Durchführung: analog AAV I

Aufarbeitung: Säulenchromatographische Reinigung an Kieselgel mit MTBE als Eluent.

						Ausbeute ^{a)} [%]			
Vers.	\mathbf{R}^{1}	\mathbf{R}^2	\mathbf{R}^{3}	\mathbf{R}^4	LM	8c	12		
V 21	-(CH	H ₂) ₅ -	Н	Н	Dioxan	34 (16)	12		
V 22	-(Cł	H ₂) ₅ -	Н	Н	CH_2Cl_2	23 (11)	12		

Tab. 34: Hydroformylierung von 1-(1-Hydroxycyclohexyl)-1-buten-4-ol (2c)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Ausbeute (V 21): 120 mg (0.64 mmol, 16 %) (3a*S**, 6a*R**)-Perhydrofuro[2,3-*b*]furan-2-spiro-1'-cyclohexan (**8c**).

Spektroskopische Daten:

(3aS*, 6aR*)-Perhydrofuro[2,3-b]furan-2-spiro-1'-cyclohexan (8c)

 $(C_{11}H_{18}O_2, 182.26 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.29-1.75 (m, 12H, -CH₂-), 1.90-2.02 (m, 1H, -CH₂-), 2.10 (dd, 1H, ${}^{3}J$ = 9.7 Hz, ${}^{2}J$ = 12.7 Hz, -CH₂-), 2.93 (dtt, 1H, ${}^{3}J$ = 9.7, 8.7, 5.0 Hz, -CH₂-CH-), 3.85-3.95 (m, 2H, -OCH₂-), 5.68 (d, 1H, ${}^{3}J$ = 5.0 Hz, -OCHO-). ¹³**C-NMR** (100 MHz,

CDCl₃): δ [ppm] = 23.4 (CH₂), 23.8 (CH₂), 25.67 (CH₂), 32.6 (CH₂), 37.0 (CH₂), 38.2 (CH₂), 41.3 (CH₂), 42.5 (CH), 65.8 (CH₂), 84.4 (C_q), 108.5 (CH). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 2931 (s), 2858 (s), 1449 (m), 1020 (s). **GC-MS** (70 eV, EI): m/z (%) = 183 (M⁺ + 1, 10), 165 (12), 153 (13), 139 (84), 126 (31), 121 (22), 111 (7), 98 (11), 93 (17), 83 (63), 79 (4), 67 (30), 55 (100). **Elementaranalyse**: berechnet: **C**: 72.5 % **H**: 10.0 %, gefunden: **C**: 72.1 % **H**: 9.8 %.

Spektroskopische Daten: 1-Oxaspiro[5.5]undec-2-en (13)

 $(C_{11}H_{16}O, 152.24 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.28-1.76 (m, 14H), 4.60 (dt, 1H, ³*J* = 6.0, 3.5 Hz, -O-CH=C*H*-), 6.30 (d, 1H, ³*J* = 6.0 Hz). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 17.1 (CH₂), 21.7 (2 x CH₂), 26.0 (CH₂), 31.9 (CH₂), 34.7 (2 x CH₂), 73.9 (C_q), 99.1 (CH), 142.0 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3057 (m), 2933 (vs), 2852 (s), 1649 (m), 1446 (m), 1246 (m), 1068 (s). **GC-MS** (70 eV, EI): m/z (%) = 152 (M⁺, 77), 135 (100), 121 (19), 109 (5), 95 (24), 81 (79), 67 (39), 53 (14). Die spektroskopischen Daten stimmen mit denen in der Literatur überein.⁴⁴

V 23-24 Hydroformylierung von 2,6-Diphenylhept-3-en-2,6-diol (2d)

Ansatz:	706 mg	(2.5 mmol)	2,6-Diphenylhept-3-en-2,6-diol (2d)
	6 mg	(1.0 mol-%)	[Rh(cod)Cl] ₂
	20 mg	(3.0 mol-%)	PPh ₃
	10 ml		abs. Dioxan

Reaktionsbedingungen: s. Tab. 35

Durchführung: analog AAV I

Aufarbeitung: Säulenchromatographische Reinigung an Kieselgel mit PE(30/60)/MTBE (5:1) als Eluent.

Tab. 35: Hydroformylierung von 2,6-Diphenyl-3-hepten-2,6-diol (2d)

Vers.	p(CO)/p(H ₂)	Т	t	LM	Ausbeute ^{a)} [%]
	[bar]	[°C]	[h]		12d
V 23	45 / 15	120	20	Dioxan	(21)
V 24	45 / 15	110	70	Dioxan	65 (31)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Ausbeute (V 24): 206 mg (0.78 mmol, 31 %) 2,6-Dimethyl-2,6-diphenyl-5,6-dihydro-2*H*-pyran (**12d**) als nicht zu trennendes 1:1-Diastereomerengemisch.

Spektroskopische Daten: 2,6-Dimethyl-2,6-diphenyl-5,6-dihydro-2H-pyran (12d)

(C₁₉H₂₀O, 264.37 g/mol), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.16 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), 1.61 (s, 3H, CH₃), 1.68 (s, 3H, CH₃), 1.94-2.56 (m, 4H, 2 x -CH₂-), 5.97-6.04 (m, 2H, 2 x -CH=),

6.33 (d, 1H, ${}^{3}J$ = 10.3 Hz, -CH=), 6.48 (d, 1H, ${}^{3}J$ = 10.5 Hz, -CH=), 7.11-7.59 (m, 20H, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 28.9 (CH₃), 30.1 (CH₃), 30.2 (CH₃), 33.2 (CH₃), 34.8 (CH₂), 35.7 (CH₂), 74.4 (C_q), 74.4 (C_q), 74.6 (C_q), 75.3 (C_q), 121.4 (CH),

122.3 (CH), 124.9 (3 x CH_{arom}), 125.4 (2 x CH_{arom}), 125.5 (3 x CH_{arom}), 126.1 (CH_{arom}), 126.5 (CH_{arom}), 126.5 (CH_{arom}), 127.6 (CH_{arom}), 127.8 (2 x CH_{arom}), 128.0 (3 x CH_{arom}), 128.1 (2 x CH_{arom}), 128.2 (CH_{arom}), 131.8 (CH), 133.2 (CH), 147.3 (C_{q,arom}), 147.3 (C_{q,arom}), 148.7 (C_{q,arom}), 149.0 (C_{q,arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3084 (w), 3056 (w), 3031 (m), 2976 (m), 2926 (m), 2862 (w), 1598 (m), 1493 (m), 1445 (m), 1219 (m), 1070 (s). **GC-MS** (70 eV, EI): m/z (%) = 264 (M⁺, 2), 249 (95), 231 (6), 222 (8), 187 (14), 145 (55), 129 (63), 105 (100), 91 (9), 77 (13). **Elementaranalyse**: berechnet: **C**: 86.3 % **H**: 7.6 %, gefunden: **C**: 85.9 % **H**: 7.8 %.7

Eine Zuordnung der Diastereomere konnte auch durch COSY-Experimente nicht erreicht werden.

V 25-26 Hydroformylierung von cis-2,6-Dimethyl-3-hepten-2,6-diol (2e)

Ansatz:	633 mg	(4.0 mmol)	<i>cis</i> -2,6-Dimethyl-3-hepten-2,6-diol (2e)
	10 mg	(0.5 mol-%)	[Rh(cod)Cl] ₂
	32 mg	(3.0 mol-%)	PPh ₃
	10 ml		abs. Solvens

Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H₂

Durchführung: analog AAV I

Tab. 36: Hydroformylierung von *cis*-2,6-Dimethyl-3-hepten-2,6-diol (2e)

						Ausbeute ^{a)} [%]		
Vers.	\mathbf{R}^{1}	\mathbf{R}^2	\mathbf{R}^3	\mathbf{R}^4	LM	8e	14	
V 25	Me	Me	Me	Me	Dioxan	30 (20)	21 (8)	
V 26	Me	Me	Me	Me	CH_2Cl_2	48		

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Aufarbeitung:	Säulenchromatographische	Reinigung	von	535	mg	Rohprodukt	an
	Kieselgel mit MTBE/Cyclol	hexan (1:1)	als El	uent.			

Ausbeute (V 25): 139 mg (0.81 mmol, 20 %) 2,2,5,5-Tetramethylperhydrofuro[2,3-*b*]furan (**8e**) und 54 mg (0.31 mmol, 8 %) 7-Hydroxy-3,7-dimethyloctanal (**14**) Spektroskopische Daten: 2,2,5,5-Tetramethyl-perhydrofuro[2,3-*b*]furan (**8e**) (C₁₀H₁₈O₂, 170.25 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.21 (s, 6H, 2 x -CH₃), 1.41 (s, 6H, 2 x -CH₃), 1.70 (dd, 2H, ³*J* = 5.3 Hz, ²*J* = 12.6 Hz, 2 x -CHH'-), 2.01 (dd, 2H, ³*J* = 9.5 Hz, ²*J* = 12.6 Hz, 2 x -CHH'-), 3.02 (m, 1H, -CH₂-CH-), 5.67 (d, 1H, ³*J* = 5.7 Hz, -OCHO-). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 28.2 (2 x CH₃), 29.3 (2 x CH₃), 44.5 (CH), 44.9 (2 x CH₂), 83.2 (2 x C_q), 109.3 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2969 (s), 2874 (m), 1456 (m), 1381 (m), 1366 (m), 1090 (s), 1024 (s). **GC-MS** (70 eV, EI): m/z (%) = 171 (M⁺ + 1, 60), 153 (100), 137 (12), 124 (9), 109 (40), 95 (58), 79 (8), 67 (26), 56 (25). **Elementaranalyse**: berechnet: **C**: 69.7 % **H**: 11.7 %, gefunden: **C**: 69.8 % **H**: 11.3 %. Die spektroskopischen Daten stimmen mit denen der Literatur überein.⁷⁶

Spektroskopische Daten: 7-Hydroxy-3,7-dimethyloctanal (14)

Die spektroskopischen Daten stimmen mit denen der Literatur überein.⁷⁷

V 27 Hydroformylierung von *cis*-1,3-Bis-(1-hydroxycyclohexyl)-prop-1-en (2f)

Ansatz:	596 mg	(2.5 mmol)	cis-1,3-Bis-(1-hydroxycyclohexyl)-prop-1-en (2f)
	6 mg	(1.0 mol-%)	[Rh(cod)Cl] ₂
	20 mg	(3.0 mol-%)	PPh ₃
	10 ml		abs. Dioxan

Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H_2

Durchführung: analog AAV I

Aufarbeitung: Das Produkt kristallisiert aus.

```
Ausbeute:90 mg (0.38 mmol, 15 %) 1,3-Bis-(1-hydroxycyclohexyl)-propan (10f), derRest ist nicht umgesetztes Edukt 2f.
```

Spektroskopische Daten: 1,3-Bis-(1-hydroxycyclohexyl)-propan (**10f**) (C₁₅H₂₈O₂, 240.39 g/mol, Schmp.: 119 °C) ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.20-1.62 (m, 26H, 13 x -CH₂-). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 16.12 (2 x CH₂), 22.2 (4 x CH₂), 25.8 (2 x CH₂), 37.4 (4 x CH₂), 42.8 (CH₂), 71.5 (2 x C_q). **IR** (Pressling, KBr), \tilde{v} [cm⁻¹] = 3380 (bs), 2931 (s), 2858 (s), 1444 (m), 1112 (m), 962 (m). **GC-MS** (70 eV, EI): m/z (%) = 240 (M⁺, 1), 223 (5), 205 (100), 163 (9), 149 (17), 135 (15), 123 (46), 109 (30), 99 (27), 81 (70), 67 (42). Die spektroskopischen Daten stimmen mit denen der Literatur überein.⁷⁹

V 28-29 Hydroformylierung von *cis*-1,5-Diphenyl-pent-2-en-1,5-diol (2g)

Ansatz:	636 mg	(2.5 mmol)	<i>cis</i> -1,5-Diphenyl-pent-2-en-1,5-diol (2g)
	6 mg	(1.0 mol-%)	[Rh(cod)Cl] ₂
	20 mg	(3.0 mol-%)	PPh ₃
	10 ml		abs. Solvens

Reaktionsbedingungen: $120 \degree C$, 20 h, 45 bar CO, $15 bar H_2$

Durchführung: analog AAV I

Aufarbeitung: Säulenchromatographische Reinigung an Kieselgel mit PE (30/60)/MTBE (3:1) als Eluent.

Tab. 37: Hydroformylierung von 1,5-Diphenyl-pent-2-en-1,5-diol (2g)

					Ausbeute ^{a)} [%]				
Vers.	\mathbf{R}^1	\mathbf{R}^2	\mathbf{R}^{3}	\mathbf{R}^4	LM	(2 <i>R</i> , 5 <i>S</i>)-8g	(2 <i>R</i> *, 5 <i>R</i> *)-8g		
V 28	Η	Ph	Н	Ph	Dioxan	7	10		
V 29	Н	Ph	Н	Ph	CH_2Cl_2	15 (10)	40 (27)		

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Ausbeute (V 29): 64 mg (0.24 mmol, 10 %)

(2*R*, 5*S*)-2,5-Diphenylhexahydrofuro[2,3-*b*]furan,

177 mg (0.66 mmol, 27 %)

 $(2R^*, 5R^*)$ -2,5-Diphenyl-hexahydrofuro[2,3-*b*]furan.

Spektroskopische Daten: (2*R*, 5*S*,)-2,5-Diphenylhexahydrofuro[2,3-*b*]furan ((2*R*, 5*S*)-8g) ($C_{18}H_{18}O_2$, 266.34 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.77 (m, 2H, 2 x -CH_{cis}H'-), 2.46 (m, 2H, 2 x -CHH'_{trans}), 2.98-3.07 (m, 1H, -CHR₂), 5.15 (t, 2H, ³J = 7.4 Hz, 2 x -CHPh-), 5.89 (d, 1H, ³J = 5.6 Hz, -OCHO-), 7.20-7.36 (m, 10H, CH_{arom}). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 39.5 (2 x CH₂), 44.3 (CH), 82.3

(2 x CH), 110.2 (CH), 125.8 (4 x CH_{arom}), 127.2 (2 x CH_{arom}), 128.2 (4 x CH_{arom}), 142.2 (2 x C_{q,arom}).

Spektroskopische Daten:

 $(2R^*, 5R^*)$ -2,5-Diphenylhexahydrofuro[2,3-*b*]furan ((2R^*, 5R^*)-8g)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.70 (ddd, 1H,

 ${}^{3}J = 9.0, 3.0 \text{ Hz}, {}^{2}J = 12.6 \text{ Hz}, -CH_{cis}\text{H}'-), 1.89 (ddd, 1\text{H}, {}^{3}J = 8.0, 1.8 \text{ Hz}, {}^{2}J = 12.6 \text{ Hz}, -CH\text{H}'_{trans}-), 2.08 (dd, 1\text{H}, {}^{3}J = 8.0, \text{Hz}, {}^{2}J = 12.6 \text{ Hz}, -CH_{cis}\text{H}'-), 2.60 (ddd, 1\text{H}, {}^{3}H_{cis})$

 ${}^{3}J = 9.0, 3.0 \text{ Hz}, {}^{2}J = 12.6 \text{ Hz}, -CHH'_{trans}$), 3.12 (m, 1H, -CHR₂-), 4.93 (dd, 1H, ${}^{3}J = 9.0, 3.0 \text{ Hz}, -OCHPh-$), 5.15 (dd, 1H, ${}^{3}J = 8.0, 1.8 \text{ Hz}, -OCHPh-$), 6.00 (d, 1H, ${}^{3}J = 5.3 \text{ Hz}, -OCHO-$), 7.26-7.36 (m, 10H, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 40.1 (CH₂), 41.2 (CH₂), 44.2 (CH), 78.9 (CH), 80.3 (CH), 109.2 (CH), 125.5 (2 x CH_{arom}), 126.0 (2 x CH_{arom}), 127.5 (CH_{arom}), 127.6 (CH_{arom}), 128.3 (2 x CH_{arom}), 128.4 (2 x CH_{arom}), 140.7 (C_{q,arom}), 141.7 (C_{q,arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3086 (w), 3062 (w), 3029 (w), 2932 (m), 2869 (m), 1604 (w), 1494 (m), 1450 (m), 1102 (m), 1057 (m), 1020 (s). **MS** (EI, 70 eV): m/z (%) = 266 (M⁺, 13), 238 (3), 220 (3), 188 (3), 162 (63), 160 (12), 120 (14), 117 (17), 105 (100), 91 (29), 77 (23), 51 (7). **Elementaranalyse**: berechnet: **C**: 81.2 % **H**: 6.8 %, gefunden: **C**: 80.3 % **H**: 7.0 %.

V 30 Hydroformylierung von 1-(1-Hydroxycyclohexyl)-but-1-in-4-ol (6b)

Ansatz:	765 mg	(4.5 mmol)	1-(1-Hydroxycyclohexyl)-but-1-in-4-ol (6b)
	11 mg	(0.5 mol-%)	[Rh(cod)Cl] ₂
	36 mg	(3.0 mol-%)	PPh ₃
	10 ml		abs. Dioxan

Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H₂

Durchführung: analog AAV I

- Aufarbeitung: Säulenchromatographische Aufarbeitung an Kieselgel mit MTBE als Eluent.
- Ausbeute: 161 mg (0.82 mmol, 18 %) 3-(2-Hydroxyethyl)-1-oxaspiro[4.5]-dec-3-en-2-on (15) und 297 mg (1.50 mmol, 33 %) 3-(2-Hydroxyethyl)-1oxaspiro[4.5]-decan-2-on (16).

Spektroskopische Daten: 3-(2-Hydroxyethyl)-1-oxaspiro[4.5]-dec-3-en-2-on (15)

 $(C_{11}H_{16}O_3,\,196.25~g/mol)$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.36-1.62 (m, 10H, -CH₂-), 2.50 (bs, 1H, -OH), 2.52 (s*, 2H, -CH₂-CH₂-OH), 4.84 (d*, 2H, -CH₂-CH₂-OH), 7.32 (s, 1H, -CH=). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 22.1 (2 x CH₂), 25.5 (CH₂), 37.5 (2 x CH₂), 70.6 (CH₂), 71.0 (C_q), 130.4 (C_q), 148.1 (CH), 175.8 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3460 (bs), 3093 (w), 2935 (s), 2859 (s), 1750 (vs), 1652 (m), 1448 (m), 1347 (m), 1066 (s), 1046 (s). **GC-MS** (70 eV, EI): m/z (%) = 197 (M⁺ + 1, 27), 179 (100), 133 (8), 81 (22), 55 (9).

Spektroskopische Daten: 3-(2-Hydroxyethyl)-1-oxaspiro[4.5]-decan-2-on (16)

(C₁₁H₁₈O₃, 198.26 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.38-1.78 (m, 12H, 6 x CH₂), 2.09 (m, 1H, CH*H*'CH₂OH), 2.38 (dd, 1H, ³*J* = 12.8, 9.3 Hz, C_q-CH*H*'-), 2.72 (bs, 1H, -OH), 2.92 (m, 1H, CH), 3.70-3.76 (m, 1H, -C*H*H'OH), 3.81-3.86 (m, 1H, -CH*H*'OH). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 22.5 (CH₂), 24.8 (CH₂), 33.6 (CH₂), 35.7 (CH₂), 37.8 (CH), 38.2 (2 x CH₂), 39.8 (CH₂), 60.6 (CH₂), 84.8 (C_q), 179.5 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3534 (vs), 2935 (s), 2862 (s), 1770 (s), 1450 (m), 1210 (s), 1053 (m), 964 (m). **MS** (EI, 70 eV): m/z (%) = 198 (M⁺, 3), 180 (1), 168 (19), 155 (100), 136 (13), 113 (23), 99 (70), 81 (43), 67 (35), 55 (96), 41 (57). **Elementaranalyse**: berechnet: **C**: 66.6 % **H**: 9.2 %, gefunden: **C**: 66.4 % **H**: 9.1 %.

V 31 Hydroformylierung von 2,6-Dimethyl-3-heptin-2,6-diol (6d)

Ansatz:	469 mg	(3.0 mmol)	2,6-Dimethyl-3-heptin-2,6-diol (6d)
	7 mg	(0.5 mol-%)	[Rh(cod)Cl] ₂
	24 mg	(3.0 mol-%)	PPh ₃
	10 ml		abs. Dioxan

Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H₂

Durchführung: analog AAV I

Aufarbeitung: 571 mg Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE als Eluent gereinigt.

Ausbeute: 278 mg (1.50 mmol, 50 %) 3-(2-Hydroxy-2-methyl-propyl)-5,5-dimethyldihydro-furan-2-on (**17**).

Spektroskopische Daten:

3-(2-Hydroxy-2-methyl-propyl)-5,5-dimethyl-dihydro-furan-2-on (17)

(C₁₀H₁₈O₃, 186.25 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.27 (s, 3H, -CH₃), 1.28 (s, 3H, -CH₃), 1.41 (s, 3H, -CH₃), 1.47 (s, 3H, -CH₃), 1.59 (dd, 1H, ³*J* = 7.3 Hz, ²*J* = 14.4 Hz, -CHH'-), 1.82 (t*, 1H, ³*J* = 12.6 Hz,

-CHH'-), 2.13 (dd, 1H, ${}^{3}J = 5.5$, ${}^{2}J = 14.4$ Hz, -CHH'-), 2.41 (dd, 1H, ${}^{3}J = 9.0$, ${}^{2}J = 12.6$ Hz, -CHH'-), 2.82 (bs, 1H, -OH), 3.03 (dddd, 1H, ${}^{3}J = 12.6$, 9.0, 7.3, 5.5 Hz, -CH-). 13 **C-NMR** (100 MHz, CDCl₃): δ [ppm] = 26.7 (CH₃), 28.8 (CH₃), 29.3 (CH₃), 30.2 (CH₃), 37.4 (CH), 43.4 (CH₂), 44.3 (CH₂), 69.7 (C_q), 83.0 (C_q), 180.0 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3462 (bs), 2974 (s), 2935 (m), 1760 (s), 1456 (m), 1386 (m), 1286 (m), 1178 (m), 960 (m). **GC-MS** (70 eV, EI): m/z (%) = 187 (M⁺ + 1, 14), 169 (100), 151 (13), 125 (21), 107 (23), 81 (25), 59 (84).

4.3 Darstellung von Perhydrofuro[2,3-*b*]pyranen

4.3.1 Darstellung symmetrischer 3-Alken-1,6-diole

V 32 Darstellung von (*E*)-3-Hexen-1,6-diol (19)

Ansatz:	7.20 g	(50 mmol)	(<i>E</i>)-3-Hexen-1,6-dicarbonsäure (18)
	13.50 g	(360 mmol)	LiAlH ₄
	280 ml		abs. THF

Durchführung:

Zu einer Suspension von 13.50 g (360 mmol) LiAlH₄ in 120 ml abs. THF werden 7.20 g (50 mmol) (*E*)-3-Hexen-1,6-dicarbonsäure (**18**) gelöst in 160 ml abs. THF langsam zugetropft. Man erhitzt 26 Stunden unter Rückfluss. Die Reaktionsmischung wird nach dem Abkühlen mit verd. Schwefelsäure neutralisiert und nach erfolgter Hydrolyse filtriert. Der Feststoff wird mit zweimal 100 ml Diethylether gewaschen. Man extrahiert die wässrige Phase mit Diethylether (3 x 80 ml) und trocknet die vereinigten organischen Phasen über MgSO₄. Es wird filtriert und das Lösemittel am Rotationsverdampfer entfernt. Nach Kugelrohrdestillation (3·10⁻² mbar / 150 °C) des Rückstandes erhält man 3.29 g (28 mmol, 57 %) (*E*)-3-Hexen-1,6-diol (**19**) (C₆H₁₂O₂, 116.16 g/mol) als farbloses Öl. Die spektroskopischen Daten stimmen mit denen der Literatur überein.⁸⁶

V 33 Darstellung von (*E*)-3-Hexen-1,6-dicarbonsäureethylester (20)

Ansatz:	7.20 g	(50 mmol)	(<i>E</i>)-3-Hexen-1,6-dicarbonsäure (18)
	125 ml		abs. Ethanol
	320 ml		abs. Toluol
	1 ml		H ₂ SO ₄ (konz.)

Durchführung:

7.20 g (50 mmol) (*E*)-3-Hexen-1,6-dicarbonsäure (**18**) werden mit 125 ml Ethanol und 1 ml H₂SO₄ (konz.) in 320 ml Toluol für 48 h am Wasserabscheider unter Rückfluss erhitzt, bis sich die theoretisch berechnete Menge an Wasser abgeschieden hat. Nach dem Abkühlen wird mit festem K_2CO_3 neutralisiert und mit Diethylether (5 x 100 ml) extrahiert. Man trocknet über MgSO₄, filtriert und entfernt das Lösemittel am 112 Rotationsverdampfer. Man erhält 9.91 g (49.5 mmol, 99 %) an (*E*)-3-Hexen-1,6dicarbonsäureethylester (**20**) ($C_{10}H_{16}O_4$, 200.24 g/mol). Die spektroskopischen Daten stimmen mit denen der Literatur überein.^{86b}

V 34 Darstellung von (*E*)-2,7-Dimethyl-oct-4-en-2,7-diol (21)

Ansatz:5.00 g(25 mmol)(E)-3-Hexen-1,6-dicarbonsäureethylester (20)3.00 g(125 mmol)Mg-Späne18.50 g(130 mmol)Methyliodid65 mlabs. Diethylether

Durchführung:

3.00 g (125 mmol) Magnesiumspäne werden vorgelegt und mit 5 ml abs. Diethylether überschichtet. 18.50 g (130 mmol) Methyliodid gelöst in 30 ml abs. Diethylether werden innerhalb von 1 h zugetropft und es wird 2 h bei RT gerührt. 5.00 g (25 mmol) (*E*)-3-Hexen-1,6-dicarbonsäureethylester (**20**) gelöst in 30 ml abs. Diethylether werden innerhalb von 1 h zugetropft und es wird 2 h unter Rückfluss erhitzt. Man kühlt auf RT ab und hydrolysiert mit 50 ml Wasser und 30 ml ges. NH₄Cl-Lösung. Die Phasen werden getrennt und die wässrige Phase wird mit Diethylether (6 x 50 ml) extrahiert. Man trocknet über MgSO₄, filtriert und entfernt das Lösemittel am Rotationsverdampfer. Man erhält 2.61 g (15 mmol, 61 %) an (*E*)-2,7-Dimethyl-oct-4-en-2,7-diol (**21**) als farblosen Feststoff (C₁₀H₂₀O₂, 172.25 g/mol). Die spektroskopischen Daten stimmen mit denen der Literatur überein.⁸⁷

V 35 *cis*-1,4-Bis-(1-hydroxycyclohexyl)-but-2-en (23a)

Ansatz:	2.50 g	(20 mmol)	trans-1,4-Dichlor-2-buten (22)
	3.93 g	(40 mmol)	Cyclohexanon (4b)
	0.97 g	(140 mmol)	Lithium-Pulver
	0.26 g	(2.0 mmol)	Naphthalin
	100 ml		abs. THF

Durchführung:

0.97 g (140 mmol) Lithium-Pulver und 0.26 g (2 mmol) Naphthalin werden in 50 ml abs. THF suspendiert. Die Lösung färbt sich grün-braun. Man kühlt auf -78 °C und tropft innerhalb von 1 h ein Gemisch aus 3.93 g (40 mmol) Cyclohexanon (**4b**) und 2.50 g (20 mmol) *trans*-1,4-Dichlor-2-buten (**22**) gelöst in 20 ml abs. THF bei -78 °C zu. Es wird weitere 2 h bei 78 °C gerührt, dann mit 20 ml Wasser hydrolysiert und mit 60 ml verd. Salzsäure neutralisiert. Die wässrige Phase wird mit Diethylether extrahiert (3 x 100 ml). Die vereinigten organischen Phasen werden mit 15 ml ges. Na₂CO₃-Lsg. gewaschen und über MgSO₄ getrocknet. Nach Entfernung des Lösemittels erhält man 4.97 g Rohprodukt. Nach säulenchromatographischer Aufarbeitung erhält man 487 mg (1.93 mmol, 10 %) *cis*-1,4-Bis-(1-hydroxycyclohexyl)-but-2-en (**23a**) als farblosen Feststoff, 1.44 g (5.70 mmol, 29 %) 3,4-Bis-(1-hydroxycyclohexyl)-but-1-en (**25a**) in Ausbeuten von 12 % bestimmt aus dem ¹H-NMR des Rohgemisches.

Spektroskopische Daten: cis-1,4-Bis-(1-hydroxycyclohexyl)-but-2-en (23a)

(C₁₆H₂₈O₂, 252.40 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.15-1.23 (m, 2H, -CH₂-), 1.31-1.57 (m, 18H, -CH₂-), 1.78 (bs, 2H, 2 x -OH), 2.12 (dd, 4H, ³*J* = 4.3, 2.5 Hz, -CH₂-CH=), 5.51 (dt, 2H, ³*J* = 4.3, 2.5 Hz, -CH=). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 22.2 (4 x CH₂), 25.8 (2 x CH₂), 37.4 (4 x CH₂), 45.6 (2 x CH₂), 71.0 (2 x C_q), 129.3 (2 x CH). **IR** (Pressling, KBr), \tilde{v} [cm⁻¹] = 3430 (vs), 3010 (w), 2933 (s), 2858 (m), 1632 (w), 1621 (w), 1609 (w), 1458 (m), 1262 (m), 1038 (m), 974 (m), 959 (m). **MS** (EI, 70 eV): m/z

 $(\%) = 252 (M^+, 1), 234 (1), 136 (100), 121 (13), 99 (67), 81 (50), 67 (12), 55 (19).$ Elementaranalyse: berechnet: C: 76.2 % H: 11.1 %, gefunden: C: 75.6 % H: 10.7 %.

Spektroskopische Daten: 3,4-Bis-(1-hydroxycyclohexyl)-but-1-en (**24a**) (C₁₆H₂₈O₂, 252.40 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.09-1.72 (m, 21H), 1.86 (dd, 1H, ³*J* = 14.5, 3.2 Hz, -CHH'-), 2.04 (bs, 2H, 2 x -OH), 2.31 (dt, 1H, ³*J* = 10.1, 3.2 Hz, -CH-)5.11 (ddd, 2H, ³*J* = 16.8, 10.1, ²*J* = 2.0 Hz, =CH₂), 5.80 (dt, 1H, ³*J* = 16.8, 10.1 Hz, -CH=). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 21.6 (CH₂), 21.8 (CH₂), 22.2 (CH₂), 22.3 (CH₂), 25.8 (CH₂), 25.8 (CH₂), 30.6 (CH₂), 33.1 (CH₂), 35.6 (CH₂), 27.8 (CH₂), 38.4 (CH₂), 50.2 (CH), 71.8 (C_q), 72.6 (C_q), 117.2 (CH₂), 141.7 (CH). **IR** (Pressling, KBr), \tilde{v} [cm⁻¹] = 3388 (vs), 3073 (m), 2937 (s), 2857 (s), 1642 (w), 1447 (s), 1263 (m), 1151 (m), 1137 (m), 967 (s), 911 (s). **MS** (EI, 70 eV): m/z (%) = 252 (M⁺, 1), 234 (3), 210 (1), 191 (4), 136 (100), 107 (24), 99 (93), 81 (65), 67 (19), 55 (26). **Elementaranalyse**: berechnet: **C**: 76.2 % **H**: 11.2 %, gefunden: **C**: 75.9 % **H**: 10.8 %.

3-(1-Hydroxycyclohexyl)-but-1-en (25a)

(C10H18O, 154.25 g/mol)

Die spektroskopischen Daten entsprechen denen in der Literatur.⁸⁹

V 36 *cis*-1,6-Diphenylhex-3-en-1,6-diol (23b)

Ansatz:	2.50 g	(20 mmol)	trans-1,4-Dichlor-2-buten (22)
	4.25 g	(40 mmol)	Benzaldehyd (4d)
	1.35 g	(195 mmol)	Lithium-Pulver
	0.26 g	(2.0 mmol)	Naphthalin
	100 ml		abs. THF

Durchführung: analog V 35

Aufarbeitung: 5.37 g Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent aufgearbeitet.

Ausbeute: 3.7 g (13.8 mmol, 69 %) eines Gemisches der beiden Regioisomere 23b und 24b. Durch nochmalige Trennung können 273 mg (1.02 mmol, 5 %) eines Gemisches aus zwei Diastereomeren an *cis*-1,6-Diphenylhex-3-en-1,6-diol (23b) als farbloser Feststoff isoliert werden.⁹⁰

Spektroskopische Daten: *cis*-1,6-Diphenylhex-3-en-1,6-diol (**23b**)

(C₁₈H₂₀O₂, 268.36 g/mol, Schmp.: 92 °C), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 2.22 (bs, 4H, -OH), 2.41-2.48 (m, 8H, -CH₂-), 4.65 (t, 4H, ³*J* = 7.6 Hz -CHOH), 4.67 (t, 4H, ³*J* = 7.5 Hz -CHOH), 5.47-5.53 (m, 4H, -CH=CH-), 7.14-7.36 (m, 20H,

CH_{arom}). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 42.6 (2 x CH₂), 42.7 (2 x CH₂), 73.2 (2 x CH), 73.3 (2 x CH), 125.7 (4 x CH_{arom}), 125.8 (4 x CH_{arom}), 127.4 (2 x CH_{arom}), 127.5 (2 x CH_{arom}), 128.4 (8 x CH_{arom}), 129.9 (2 x CH_{olefin}), 130.0 (2 x CH_{olefin}), 143.8 (2 x C_{q,arom}), 143.9 (2 x C_{q,arom}). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 3367 (bs), 3083 (w), 3059 (w), 3030 (w), 2926 (m), 2888 (m), 1606 (m), 1452 (m), 1051 (s), 960 (m), 759 (s), 699 (vs). **GC-MS** (70 eV, EI): m/z (%) = 269 (M⁺ + 1, 1), 233 (21), 144 (97), 129 (100), 107 (90), 91 (12), 79 (83), 66 (27). **Elementaranalyse**: berechnet: **C**: 80.5 % **H**: 7.5 %, gefunden: **C**: 80.2 % **H**: 7.0 %.

V 37 Darstellung von 1,4-Bis-(1-hydroxycyclohexyl)-but-2-en (23a)

Ansatz: 425 mg (3.0 mmol) 3-(1-Hydroxycyclohexyl)-propen (27) 300 mg (12 mol-%) Grubbs-Katalysator (28) 40 ml Toluol

Durchführung:

425 mg (3.0 mmol) und 300 mg (12 mol-%) Grubbs-Katalysator (**28**) werden 4 h unter Rückfluss erhitzt. Das Rohprodukt wird an Kieselgel mit MTBE/Cyclohexan (1:2) als Eluent aufgereinigt. Man erhält 200 mg (0.8 mmol, 53 % (87 %) bezogen auf den Umsatz von ca. 60 %) 1,4-Bis-(1-hydroxycyclohexyl)-but-2-en (**23a**). Spektroskopische Daten siehe (V 35).

4.3.2 Darstellung unsymmetrischer 3-Alken-1,6-diole

V 38 4-Methylpent-1-in-4-ol (3c)

Ansatz:	11.90 g	(100 mmol)	3-Brompropin (80 Gew% in Toluol)
	5.81 g	(100 mmol)	Aceton (4a)
	2.43 g	(100 mmol)	Mg-Späne
	0.10 g		HgCl ₂
	100 ml		abs. Diethylether

Durchführung:

2.43 g (100 mmol) Mg-Späne und 0.10 g $HgCl_2$ werden in 15 ml abs. Diethylether vorgelegt. Man tropft langsam 3-Brompropin hinzu bis die Reaktion beginnt. Der Rest

wird gelöst in 45 ml abs. Diethylether bei 0 °C innerhalb von 1 h zugetropft. Nach beendeter Zugabe rührt man 30 min bei 0 °C und 30 min bei RT. Es wird erneut auf 0 °C gekühlt und 5.81 g (100 mmol) Aceton (**4a**) gelöst in 40 ml abs. Diethylether langsam zugetropft. Nach beendeter Zugabe wird eine Stunde bei RT gerührt und 30 min unter Rückfluss erhitzt. Man hydrolysiert mit 80 ml ges. NH₄Cl-Lsg. und filtriert von den ausgefallenen Salzen ab. Die Phasen werden getrennt und die wässrige Phase mit Diethylether (3 x 50 ml) extrahiert. Die vereinigten organischen Phasen werden mit 15 ml ges. NaCl-Lsg. gewaschen und über MgSO₄ getrocknet. Nach Entfernung des Lösemittels am Rotationsverdampfer erhält man 7.70 g Rohprodukt. Durch Kugelrohrdestillation des Rückstandes (10 mbar / 70 °C) erhält man 5.65 g (46 mmol, 46 %) an 4-Methylpent-1-in-4-ol (**3c**) als farblose Flüssigkeit (80 Gew.-% in Toluol). Aufgrund des ähnlichen Siedepunktes ist eine destillative Abtrennung des Produktes vom Toluol nicht möglich. Als Nebenprodukt entsteht 2,6-Dimethyl-3-heptin-2,6-diol (**6d**) in einer Ausbeute von ca. 15 %. Die spektroskopischen Daten entsprechen denen der Literatur bzw. in (V 5).¹⁶¹

V 39 1-(2-Propinyl)-cyclopentanol (3d)

Ansatz:	11.90 g	(100 mmol)	3-Brompropin (80 Gew% in Toluol)
	8.41 g	(100 mmol)	Cyclopentanon (4e)
	2.43 g	(100 mmol)	Mg-Späne
	0.10 g		HgCl ₂
	100 ml		abs. Diethylether

Durchführung: analog V 38

Aufarbeitung: 9.02 g Rohprodukt werden fraktionierend mittels Kugelrohrdestillation $(1 \cdot 10^{-1} \text{ mbar} / 100 \text{ }^{\circ}\text{C} \text{ und } 0.5 \cdot 10^{-1} \text{ mbar} / 200 \text{ }^{\circ}\text{C})$ aufgereinigt.

Ausbeute: 5.41 g (44 mmol, 44 %) 1-(2-Propinyl)-cyclopentanol (**3d**) und 2.40 g (11.5 mmol, 23 %) 1,3-Bis(1-hydroxycyclopentyl)-propin (**6g**). Die spektroskopischen Daten für **3d** entsprechen denen in der Literatur.¹⁶¹

Spektroskopische Daten: 1,3-Bis(1-hydroxycyclopentyl)-propin (**6g**) (C₁₃H₂₀O₂, 208.30 g/mol) ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.60-1.86 (m, 12H, HO -CH₂-), 1.90-1.94 (m, 4H, -CH₂-), 2.48 (s, 2H, -CH₂C≡), 2.67 (bs, 2H, 2 x -OH). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 23.3 (2 x CH₂), 24.0 (2 x CH₂), 31.7 (2 x CH₂), 39.1 (CH₂), 42.4 (2 x CH₂), 74.4 (C_q), 80.2 (C_q), 81.1 (C_{q+acetyl}), 86.2 (C_{q+acetyl}). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 3277 (bs), 2966 (s), 2875 (m), 2238 (w), 1443 (m), 1224 (m), 998 (s). **MS** (EI, 70 eV): m/z (%) = 190 (M⁺ - 18, 1), 161 (8), 133 (4), 106 (100), 91 (31), 85 (32), 67 (26), 55 (17).

V 40 1-(2-Propinyl)-cyclohexanol (3e)

Ansatz:	11.90 g	(100 mmol)	3-Brompropin (80 Gew% in Toluol)
	9.82 g	(100 mmol)	Cyclohexanon (4b)
	2.43 g	(100 mmol)	Mg-Späne
	0.10 g		HgCl ₂
	100 ml		abs. Diethylether

Durchführung: analog V 38

Aufarbeitung: 9.58 g Rohprodukt werden mittels fraktionierender Kugelrohrdestillation $(2 \cdot 10^{-2} \text{ mbar} / 100 \text{ }^{\circ}\text{C} \text{ und } 2 \cdot 10^{-2} \text{ mbar} / 200 \text{ }^{\circ}\text{C})$ aufgereinigt.

Ausbeute:6.83 g (49 mmol, 49 %) 1-(2-Propinyl)-cyclohexanol (3e) und 1.86 g(7.9 mmol, 16 %)1,3-Bis(1-hydroxycyclohexyl)-propin(6e)Diespektroskopischen Daten entsprechen denen in der Literatur bzw. in V 6.162

V 41 1-Phenyl-3-butin-1-ol (3f)

Ansatz:	11.90 g	(100 mmol)	3-Brompropin (80 Gew% in Toluol)
	10.20 g	(96 mmol)	Benzaldehyd (4d)
	2.43 g	(100 mmol)	Mg-Späne
	0.10 g		HgCl ₂
	100 ml		abs. Diethylether

Durchführung: analog V 38 Aufarbeitung: 10.80 g Rohprodukt werden mittels Kugelrohrdestillation (0.5 mbar / 150 °C) aufgereinigt. Ausbeute: 8.59 g (59 mmol, 61 %) an 1-Phenyl-3-butin-1-ol (**3f**). Die spektroskopischen Daten entsprechen denen der Literatur.^{140,162} V 42 2-(4-Hydroxy-4-methylpent-1-inyl)-cyclohexanol (30a) 1.75 g (15.0 mmol) 4-Methylpent-1-in-4-ol (3c) (84 Gew.-% in Toluol) Ansatz: 982 mg (10.0 mmol) Cyclohexenoxid (29) 1.9 ml (15.0 mmol) BF₃·OEt₂ 12.0 ml (30.0 mmol) *n*-BuLi (2.5 M in Hexan) 50 ml abs. THF

AAV IV: Allgemeine Arbeitsvorschrift für die Öffnung von Epoxiden mit Acetyliden

1.75 g (15.0 mmol) 4-Methylpent-1-in-4-ol (**3c**) (84 Gew.-% in Toluol) werden in 30 ml abs. THF gelöst und auf -78 °C gekühlt. Man gibt 12.0 ml (30 mmol) *n*-BuLi mittels einer Spritze hinzu und rührt 20 min. Danach werden 1.9 ml (15 mmol) BF₃·OEt₂ mittels einer Spritze zugegeben und weitere 20 min. gerührt. Man tropft anschließend 982 mg (15 mmol) Cyclohexenoxid (**29**) gelöst in 20 ml abs. THF hinzu. Es wird weitere 1 ½ h bei -78 °C gerührt und danach mit 40 ml ges. NH₄Cl-Lsg. gequencht. Man lässt auf RT aufwärmen, trennt die Phasen und extrahiert die wässrige Phase mit Diethylether (3 x 30 ml). Die vereinigten organischen Phasen werden mit 15 ml ges. NaCl-Lsg. gewaschen und über MgSO₄ getrocknet. Nach Entfernung des Lösemittels erhält man 2.89 g Rohprodukt (GC-Ausbeute 49 %). Nach säulenchromatographischer Aufreinigung an Kieselgel mit MTBE als Eluent erhält man 790 mg (4.0 mmol, 27 %) an 2-(4-Hydroxy-4-methylpent-1-inyl)-cyclohexanol (**30a**).

Spektroskopische Daten: 2-(4-Hydroxy-4-methylpent-1-inyl)-cyclohexanol (30a)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.17-1.41 (m, 3H, -CH₂-), 1.30 (s, 6H, 2 x -CH₃), 1.62-1.77 (m, 2H, -CH₂-), 1.95-2.03 (m, 2H, -CH₂-), 2.18-2.24 (m, 1H, -CH₂-), 2.37 (d, OH 1H, ${}^{3}J = 2.0$ Hz), 2.45 (s, 2H, C_qCH₂COH), 3.43 (dt, 1H, ${}^{3}J = 10.0$, 4.0 Hz, -CHOH). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 24.2 (CH₂), 24.8 (CH₂), 28.5 (CH₃), 28.6 (CH₃); 31.3 (CH₂), 33.3 (CH₂), 34.3 (CH₂), 38.9 (CH), 69.9 (C_q), 73.8 (CH), 78.8 (C_{q,acetyl}), 84.7 (C_{q,acetyl}). IR (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3370 (bs), 2972 (s), 2933 (vs), 2858 (s), 1449 (m), 1419 (m), 1363 (m), 1234 (m), 1202 (m), 1151 (m), 1081 (m), 1069 (m), 981 (m). GC-MS (70 eV, EI): m/z (%) = 179 (M⁺ - 17, 100), 161 (29), 145 (4), 137 (6), 119 (14), 105 (25), 92 (22), 81 (15), 67 (16), 59 (32).

V 43 2-[3-(1-Hydroxycyclopentyl)-prop-1-inyl]-cyclohexanol (30b)

 Ansatz:
 2.48 g
 (20.0 mmol)
 1-(2-Propinyl)-cyclopentanol (3d)

 1.47 mg
 (15.0 mmol)
 Cyclohexenoxid (29)

 2.5 ml
 (20.0 mmol)
 BF₃·OEt₂

 20.0 ml
 (40.0 mmol)
 n-BuLi (2.0 M in Hexan)

 50 ml
 abs. THF

Durchführung: analog AAV IV

Aufarbeitung: 4.06 g Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/CH (2:1) als Eluent aufgereinigt.

Ausbeute: 555 mg (2.50 mmol, 17 %) 2-[3-(1-Hydroxycyclopentyl)-prop-1-inyl]cyclohexanol (**30b**) als farbloses Öl.

Spektroskopische Daten: 2-[3-(1-Hydroxycyclopentyl)-prop-1-inyl]-cyclohexanol (**30b**) (C₁₄H₂₂O₂, 222.33 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.15-1.41 (m, 6H, -CH₂-), 1.61-2.02 (m, 12H, -CH₂-, -OH), 2.17-2.23 (m, 1H, -CH-C_q), 2.47 (d, 2H, ²J = 2.3 Hz, -C_q-CH₂-), 3.41 (m, 1H, -CHOH). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 24.1

(2 x CH₂), 24.2 (CH₂), 24.8 (CH₂), 26.5 (CH₂), 31.3 (CH₂), 31.8 (CH₂), 33.2 (CH₂), 39.0 (CH), 39.1 (CH₂), 73.8 (CH), 79.3 (C_q), 81.0 (C_q), 83.8 (C_q). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3364 (bs), 2930 (s), 2849 (s), 1452 (m), 1108 (s), 1084 (s), 1010 (m). **GC-MS** (70 eV, EI): m/z (%) = 222 (M⁺, 2), 204 (1), 189 (2), 175 (5), 161 (9), 147 (5), 133 (5), 117 (7), 105 (33), 91 (100), 79 (42), 67 (52), 51 (9).

V 44 1-[3-(2-Hydroxycyclohexyl)-prop-2-inyl]-cyclohexanol (30c)

Ansatz:	2.07 g	(15.0 mmol)	1-(2-Propinyl)-cyclohexan-1-ol (3e)
	982 mg	(10.0 mmol)	Cyclohexenoxid (29)
	1.9 ml	(15.0 mmol)	$BF_3 \cdot OEt_2$
	12.0 ml	(30.0 mmol)	<i>n</i> -BuLi (2.5 M in Hexan)
	40 ml		abs. THF

Durchführung: analog AAV IV

- Aufarbeitung: 3.47 g Rohprodukt werden zweimal säulenchromatographisch an Kieselgel mit MTBE als Eluent aufgereinigt.
- Ausbeute: 1.19 g (5.1 mmol, 51 %) 1-[3-(2-Hydroxycyclohexyl)-prop-2-inyl]cyclohexanol (**30c**) als farbloser Feststoff.

Spektroskopische Daten: 1-[3-(2-Hydroxycyclohexyl)-prop-2-inyl]-cyclohexanol (**30c**) (C₁₅H₂₄O₂, 236.36 g/mol, Schmp.: 75 °C)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.15-1.79 (m, 18H, -CH₂-), 1.95-2.03 (m, 2H, -CH₂-), 2.18-2.24 (m, 1H, -CHC=), 2.35 (d, 2H, ²J = 2.2 Hz, =CCH₂-C_q), 3.42 (dt, 1H, ³J = 9.9, 3.8 Hz, -CHOH). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] =

22.2 (2 x CH₂), 24.3 (CH₂), 24.8 (CH₂), 25.6 (CH₂), 31.3 (CH₂), 33.1 (CH₂), 33.2 (CH₂), 36.8 (CH₂), 36.8 (CH₂), 39.0 (CH₂), 70.5 (C_q), 73.8 (CH), 78.4 (C_{q+acetyl}), 84.9 (C_{q+acetyl}). **IR** (Pressling, KBr), \tilde{v} [cm⁻¹] = 3383 (bs), 2933 (vs), 2858 (s), 1448 (m), 1263 (w), 1066 (m), 981 (m). **GC-MS** (70 eV, EI): m/z (%) = 236 (M⁺, 2), 218 (3), 175 (8), 161 (3), 147 (4), 129 (3), 119 (7), 105 (23), 99 (21), 91 (70), 81 (100), 67 (11). **Elementaranalyse**: berechnet: **C**: 76.2 % **H**: 10.2 %, gefunden: **C**: 75.8 % **H**: 10.3 %.

V 45 2-(4-Hydroxy-4-phenylbut-1-inyl)-cyclohexanol (30d)

Ansatz:	2.19 g	(15.0 mmol)	1-Phenyl-3-butin-1-ol (3d)
	982 mg	(10.0 mmol)	Cyclohexenoxid (29)
	1.9 ml	(15.0 mmol)	$BF_3 \cdot OEt_2$
	12.0 ml	(30.0 mmol)	<i>n</i> -BuLi (2.5 M in Hexan)
	50 ml		abs. THF

Durchführung: analog AAV IV

- Aufarbeitung: 4.20 g Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent aufgereinigt.
- Ausbeute:1.09 g (4.5 mmol, 45 %) 2-(4-Hydroxy-4-phenylbut-1-inyl)-cyclohexanol(30d) als farbloser Feststoff.

OH

 ÕH

Spektroskopische Daten: 2-(4-Hydroxy-4-phenylbut-1-inyl)-cyclohexanol (30d)

(C₁₆H₂₀O₂, 244.33 g/mol, Schmp.: 80-81 °C)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.12-1.33 (m, 4H,

-CH₂-), 1.60-1.65 (m, 1H, -CH₂-), 1.71-1.76 (m, 1H, -CH₂-), 1.90-1.99 (m, 2H, -CH₂-, Ring), 2.12-2.17 (m, 1H, -CH-C=),

2.40 (bs, 2H, 2 x -OH), 2.65 (dd, 2H, ${}^{3}J = 6.5$, 2,0 Hz, -CH₂-),

3.33 (dt, 1H, ${}^{3}J = 9.5$, 3.8 Hz, -CHOH), 4.84 (dt, 1H, ${}^{3}J = 6.5$, 2.0 Hz, -CHOH), 7.28-7.40 (m, 5H, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 24.3 (CH₂), 24.9 (CH₂), 29.8 (CH₂), 31.2 (CH₂), 33.1 (CH₂), 39.0 (CH), 72.6 (CH), 73.8 (CH), 78.5 (C_{q,acetyl}), 84.6 (C_{q,acetyl}), 125.7 (2 x CH_{arom}), 127.9 (CH_{arom}), 128.4 (2 x CH_{arom}), 142.8 (C_{q,arom}). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 3406 (bs), 3086 (w), 3062 (w), 3030 (w), 2933 (s), 2859 (s), 1450 (m), 1058 (s), 700 (s). **GC-MS** (70 eV, EI): m/z (%) = 244 (M⁺, 1), 225 (10), 197 (6), 183 (10), 141 (10), 128 (6), 115 (6), 107 (30), 91 (65), 79 (100). **Elementaranalyse**: berechnet: **C**: 78.7 % **H**: 8.3 %, gefunden: **C**: 78.6 % **H**: 8.0 %.

V 46 2-(4-Hydroxy-4-methylpent-1-enyl)-cyclohexanol (31a)

Ansatz:	668 mg	(3.4 mmol)	2-(4-Hydroxy-4-methylpent-1-inyl)-cyclohexanol
			(30a)
	100 mg		Lindlar-Katalysator (5 % Pd auf CaCO ₃)
	20 ml		Ethanol
	82 ml	(3.4 mmol)	Wasserstoff

Durchführung: analog AAV III

- Aufarbeitung: 665 mg Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE als Eluent aufgereinigt.
- Ausbeute: 645 mg (3.3 mmol, 96%) 2-(4-Hydroxy-4-methylpent-1-enyl)cyclohexanol (**31a**).

Spektroskopische Daten: 2-(4-Hydroxy-4-methylpent-1-enyl)-cyclohexanol (**31a**) (C₁₂H₂₂O₂, 198.31 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.10-1.35 (m, 4H, -CH₂-), 1.23 (s, 3H, -CH₃), 1.27 (s, 3H, -CH₃), 1.61-1.66 (m, 2H, -CH₂-), 1.74-1.78 (m, 1H, -CH₂-), 1.98-2.03 (m, 1H, -CH₂-), 2.11-2.16 (ddd, 1H, ³*J* = 13.9, 6.7, 1.4 Hz, -CH₂-), 2.25-2.34 (m, 1H, -CH₂-), 2.43 (dd, 1H, ³*J* = 13.9, 9.8 Hz, -CH-), 2.51 (bs, 2H, 2 x -OH), 3.21-3.27 (ddd, 1H, ³*J* = 9.8, 9.8, 4.4 Hz, -CHOH), 5.38 (tt*, 1H, ³*J* = 9.5, 1.2 Hz, -CH=), 5.63 (dddd, 1H, ³*J* = 15.9, 9.5, 9.3, 6.6 Hz, -CH=). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 24.8 (CH₂), 25.1 (CH₂), 28.3 (CH₃), 30.5 (CH₃), 21.5 (CH₂), 34.3 (CH₂), 41.0 (CH₂), 44.1 (CH), 70.7 (C_q), 73.7 (CH), 126.7 (CH), 135.7 (CH). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3373 (bs), 3007 (w), 2968 (m), 2929 (s), 2856 (s), 1448 (m), 1088 (m), 1047 (m), 792 (m). **GC-MS** (70 eV, EI): m/z (%) = 199 (M⁺ + 1, 1), 181 (5), 163 (100), 147 (4), 122 (19), 107 (17), 93 (21), 81 (25), 67 (22), 59 (55), 55 (14). **Elementaranalyse**: berechnet: **C**: 72.7 % **H**: 11.2 %, gefunden: **C**: 72.9 % **H**: 11.2 %.

V 47 2-[3-(1-Hydroxycyclopentyl)-prop-1-enyl]-cyclohexanol (31b)

Ansatz:	540 mg	(2.43 mmol)	2-[3-(1-Hydroxycyclopentyl)-prop-1-inyl]-cyclo-
			hexanol (30b)
	50 mg		Lindlar-Katalysator (5 % Pd auf CaCO ₃)
	30 ml		Ethanol
	55 ml	(2.43 mmol)	Wasserstoff

Durchführung: analog AAV III

Aufarbeitung: Das Rohprodukt wird säulenchromatographisch an Kieselgel mit MTBE als Eluent aufgereinigt.

Ausbeute:527 mg (2.35 mmol, 97 %) 2-[3-(1-Hydroxycyclopentyl)-prop-1-enyl]-
cyclohexanol (**31b**) als farblose Flüssigkeit.

Spektroskopische Daten: 2-[3-(1-Hydroxycyclopentyl)-prop-1-enyl]-cyclohexanol (**31b**) (C₁₄H₂₄O₂, 224.33 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.02-1-23 (m, 5H), 1.45-1.78 (m, 10H), 1.92-1.96 (m, 1H), 2.12 (dd, 1H, ³*J* =6.5, ²*J* = 14.0 Hz, -CH₂-), 2.25 (ddt, 1H, ³*J* = 10.8, 10.6, 3.0, -CH-), 2.40 (bs, 2H, 2 x -OH), 2.52 (dd, 1H, ³*J* = 9.5, ²*J* = 14.0 Hz, -CH₂-), 3.14-3.20 (m, 1H, -C*H*-OH), 5.30 (t*, 1H, ³*J* = 10.6 Hz, -CH=CH-), 5.55-5.62 (m, 1H, -CH=CH-). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 23.5 (CH₂), 23.7 (CH₂), 24.8 (CH₂), 25.0 (CH₂), 31.6 (CH₂), 34.3 (CH₂), 38.6 (CH₂), 39.1 (CH₂), 40.5 (CH₂), 44.2 (CH), 73.8 (CH), 81.8 (C_q), 127.2 (CH_{olefin}), 135.6 (CH_{olefin}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3364 (bs), 3003 (m), 2931 (s), 2856 (s), 1448 (m), 1091 (s), 1055 (m). **GC-MS** (70 eV, EI): m/z (%) = 224 (M⁺, 3), 207 (6), 189 (10), 175 (5), 149 (8), 122 (18), 107 (12), 98 (12), 93 (20), 81 (36), 67 (52), 55 (100).

V 48 1-[3-(2-Hydroxycyclohexyl)-prop-2-enyl]-cyclohexanol (31c)

Ansatz:	1.05 g	(3.0 mmol)	1-[3-(2-Hydroxycyclohexyl)-prop-2-inyl]-
			cyclohexanol (30c)
	100 mg		Lindlar-Katalysator (5 % Pd auf CaCO ₃)
	30 ml		Ethanol
	75 ml	(3.0 mmol)	Wasserstoff

Durchführung: analog AAV III

Aufarbeitung: Das Rohprodukt wird säulenchromatographisch an Kieselgel mit MTBE als Eluent aufgereinigt.

Ausbeute: 1.05 g 1-[3-(2-Hydroxycyclohexyl)-prop-2-enyl)-cyclohexanol (**31c**) als farbloses Öl.

Spektroskopische Daten: 1-[3-(2-Hydroxycyclohexyl)-prop-2-enyl)-cyclohexanol (**31c**) (C₁₅H₂₆O₂, 238.37 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.12-1.32 (m, 4H, -CH₂-, Ring), 1.44-1.65 (m, 12H, -CH₂-, Ring), 1.74-1.78 (m, 1H, -CH₂-, Ring), 1.98-2.04 (m, 1H, -CH₂-, Ring), 2.19 (ddd, 1H, ³J = 14.8, 6.8, 1.2 Hz, -CH-CH=), 2.29-2.37 (m, 2H, =CH-CH₂-), 2.40 (bs, 2H, 2 x -OH), 3.24 (dt, 1H, ${}^{3}J = 9.8$, 4.5 Hz, -CHOH), 5.38 (dd, 1H, ${}^{3}J = 11.0$, 10.3 Hz, -CH=CH-), 5.64 (dt, 1H, ${}^{3}J = 11.0$, 6.8 Hz, -CH=CH-). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 22.6 (CH₂), 22.8 (CH₂), 25.2 (CH₂), 25.5 (CH₂), 26.2 (CH₂), 32.0 (CH₂), 34.7 (CH₂), 36.8 (CH₂), 39.1 (CH₂), 40.1 (CH₂), 44.6 (CH), 72.0 (C_q), 74.2 (CHOH), 126.5 (CH_{olefin}), 136.2 (CH_{olefin}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3356 (bs), 3007 (m), 2941 (s), 2854 (s), 1454 (m), 1270 (m), 1077 (m), 1042 (m), 858 (m). **GC-MS** (70 eV, EI): m/z (%) = 238 (M⁺, 1), 220 (2), 203 (2), 191 (2), 177 (2), 133 (2), 122 (13), 107 (27), 93 (44), 79 (100), 67 (12). **Elementaranalyse**: berechnet: **C**: 75.6 % **H**: 11.0 %, gefunden: **C**: 75.0 % **H**: 10.9 %.

V 49 2-(4-Hydroxy-4-phenylbut-1-enyl)-cyclohexanol (31d)

Ansatz:	1.21 g	(4.95 mmol)	2-(4-Hydroxy-4-phenylbut-1-inyl)-cyclohexanol
			(30d)
	100 mg		Lindlar-Katalysator (5 % Pd auf CaCO ₃)
	40 ml		Ethanol
	110 ml	(4.95 mmol)	Wasserstoff

Durchführung: analog AAV III

Aufarbeitung: Das Rohprodukt wird säulenchromatographisch an Kieselgel mit MTBE als Eluent aufgereinigt.
Ausbeute: 1.14 g (4.63 mmol, 93 %) 2-(4-Hydroxy-4-phenylbut-1-enyl)-cyclohexanol (31d) als farbloses Öl.

Spektroskopische Daten: 2-(4-Hydroxy-4-phenylbut-1-enyl)-cyclohexanol (31d)

(C₁₆H₂₂O₂, 246.35 g/mol), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.05-1.30 (m, 8H, -CH₂-), 1.50-1.65 (m, 4H, -CH₂-), 1.68-1.77 (m, 2H, -CH₂-), 1.88-1.98 (m, 2H, -CH₂-), 2.20-2.33 (m, 3H, -CH₂-), 2.45 (dt, 1H, ${}^{3}J$ = 14.0, 5.0 Hz, -CH-), 2.59-2.68 (m, 1H, -CH₂-), 2.75 (ddd, 1H, ${}^{3}J$ = 14.0, 8.5, 5.3 Hz, -CH-), 3.15-3.20 (m, 2H, -CHOH), 3.31 (bs, 4H, -OH), 4.64 (dd, 1H, ${}^{3}J$ = 10.0, 3.3 Hz, -CHOH), 4.85 (t, 1H, ${}^{3}J$ = 5.3 Hz, -CHOH), 5.26-5.38 (m, 3H, -CH=CH-), 5.61 (dt, 1H, ${}^{3}J$ = 10.5, 5.3 Hz, -CH=CH-), 7.21-7.37 (m, 10H, CH_{arom}). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 24.7 (2 x CH₂), 25.0 (2 x CH₂), 31.5 (2 x CH₂), 34.2 (CH₂), 34.5 (CH₂), 36.5 (CH₂), 38.3 (CH₂), 44.0 (CH), 44.3 (CH), 72.7 (CH), 73.4 (CH), 73.5 (2 x CH), 125.7 (4 x CH_{arom}), 125.8 (CH_{arom}), 127.0 (CH), 127.3 (CH), 127.6 (CH), 128.1 (2 x CH_{arom}), 128.3 (2 x CH_{arom}), 135.6 (CH), 135.7 (CH), 143.9 (C_{q,arom}),144.7 (C_{q,arom}). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3386 (bs), 3062 (w), 3003 (w), 2929 (s), 2856 (s), 1492 (w), 1450 (m), 1261 (m), 1083 (s), 1056 (s), 700 (m). **GC-MS** (70 eV, EI): m/z (%) = 246 (M⁺, 1), 228 (2), 210 (4), 195 (1), 181 (1), 168 (2), 156 (2), 143 (2), 128 (4), 122 (15), 107 (27), 93 (32), 79 (100), 67 (14). **Elementaranalyse**: berechnet: **C**: 78.0 % **H**: 9.0 %, gefunden: **C**: 78.3 % **H**: 9.1 %.

4.3.3 Hydroformylierung symmetrischer 3-Alken-1,6-diole

V 50-55 Hydroformylierung von (*E*)-3-Hexen-1,6-diol (19)

Ansatz:	500 mg	(4.3 mmol)	(<i>E</i>)-3-Hexen-1,6-diol (19)
	11 mg	(0.5 mol-%)	[Rh(cod)Cl] ₂
	40 mg	(3.5 mol-%)	PPh ₃
	10 ml		abs. Solvens

Reaktionsbedingungen:s. Tab. 38Durchführung:analog AAV I

Tab. 38: Optimierungsversuche zur Hydroformylierung von (E)-3-Hexen-1,6-diol (19)

Vers.	p(CO)/p(H ₂)	Т	t	LM		Ausbeut	te ^{a)} [%]	
	[bar]	[°C]	[h]		30 a	31	34,35	36
V 50	90 / 20	110	70	Dioxan	43 (12)		18	34
V 51 ^{b)}	45 / 15	120	20	Dioxan	70 (70)	14 (14)		
V 52 ^{c)}	45 / 15	120	20	Dioxan	63 (60)	5		
V 53 ^{b)}	45 / 15	120	16	Dioxan	66		34	
V 54 ^{b)}	45 / 15	120	20	THF	54 (54)	12		
V 55 ^{b)}	45 / 15	120	20	CH_2Cl_2	92 (90)	(6)		

^{a)} gaschromatographisch bestimmt, isolierte Ausbeuten in Klammern; ^{b)} 3 Äq. PPh₃; ^{c)} 3 Äq. P(OPh)₃

Ausbeute (V 55): Man erhält 500 mg (3.90 mmol, 90 %) (3a*S**, 7a*R**)-Perhydrofuro[2,3-*b*]pyran (**32a**), eine weitere Aufreinigung ist nicht notwendig. Spektroskopische Daten: (3a*S**, 7a*R**)-Perhydrofuro[2,3-*b*]pyran (**32a**) (C₇H₁₂O₂, 128.17 g/mol) ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.33-1.41 (m, 1H, -CH*H*-), 1.65-.176 (m, 1H, -CH*H*-), 1.80-1.90 (m, 3H, -CH*H*-), 1.95-2.05 (m, 1H, -CH-), 3.44 (ddd, 1H, ³*J* = 14.0, 2.5 Hz, ²*J* = 11.8 Hz, O-CH*H*'-), 3.86 (m, 1H, O-C*H*H'-) 3.83-3.94 (m, 2H, O-CH₂-) 4.15 (ddd, 1H, ³*J* = 8.5, 3.5 Hz, ²*J* = 8.5 Hz, O-C*H*H'-), 4.98 (d, 1H, ³*J* = 3.8 Hz, -OCHO-). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 20.5 (CH₂), 23.4 (CH₂), 26.4 (CH₂), 37.7 (CH), 64.2 (CH₂), 67.8 (CH₂), 101.2 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2937 (s), 2891 (s), 1454 (m) 1086 (s), 1050 (s). **GC-MS**

(70 eV, EI): m/z (%) = 129 (M⁺ + 1, 100), 127 (85), 111 (44), 83 (40), 70 (60), 67 (72), 55 (36). Elementaranalyse: berechnet: C: 65.6 % H: 9.4 %, gefunden: C: 65.2 % H: 9.6 %.

Spektroskopische Daten: 5-Hydroxy-2-(2-hydroxyethyl)-pentanal (33)

(C₇H₁₄O₃, 146.19 g/mol)

(C₇H₁₄O₃, 146.19 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.35-1.44 (m, 2H, -CH₂-), 1.54-1.70 (m, 4H, -CH₂-), 2.44-2.48 (m, 1H, -CHCHO), 3.01 (bs, 2H, 2 x -OH) 3.58-3.63 (m, 4H, 2 x -CH₂OH), 9.75 (d, 1H, ³*J* = 1.8 Hz, -CHO). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 21.6 (CH₂), 25.0 (CH₂), 32.1 (CH₂), 43.6 (CH), 61.9 (CH₂), 63.9 (CH₂), 202.9 (CHO). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3388 (s), 2936 (s), 2862 (s), 2725 (w), 1724 (vs), 1462 (m), 1379 (m), 1120 (s), 1028 (s). **GC-MS** (70 eV, EI): m/z (%) = 147 (M⁺ + 1, 1), 99 (88), 81 (100), 70 (15), 55 (44).

Spektroskopische Daten: 3-(2-Hydroxyethyl)-tetrahydropyran-2-ol (34) und

3-(3-Hydroxypropyl)-tetrahydrofuran-2-ol (**35**)

O VIC OH

Die NMR-Spektren des Gemisches sind nicht auswertbar und deshalb werden nur das IR- und Massenspektrum angegeben. **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3364 (vs), 2937 (s), 2881 (m), 1454 (m), 1436 (m), 1073 (s), 1054 (s), 1031 (s), 1009 (s), 979 (m). **GC-MS** (70 eV, EI): m/z (%) = 147 (M⁺ + 1, 1), 129 (90), 111 (43), 93 (14), 83 (25), 71 (20), 67 (100), 54 (52).

V 56 Säurekatalysierte Cyclisierung von 3-(2-Hydroxyethyl)-tetrahydropyran-2-ol (34) und 3-(3-Hydroxypropyl)-tetrahydrofuran-2-ol (35)

Ansatz:	400 mg	(2.8 mmol)	(34, 35)
	20 mg	(400 mmol)	<i>p</i> -TsOH
	50 ml		abs. Toluol

Durchführung:

400 mg (2.8 mmol) des Gemisches von 3-(2-Hydroxyethyl)-tetrahydropyran-2-ol (**34**) und 3-(3-Hydroxypropyl)-tetrahydrofuran-2-ol (**35**) werden in 50 ml abs. Toluol mit 20 mg *p*-Toluolsulfonsäure 7 h unter Rückfluss erhitzt. Nach dem Abkühlen wird die Reaktionslösung mit Wasser (2 x 10 ml) gewaschen. Die wässrige Phase wird mit Diethylether extrahiert (3 x 20 ml). Man trocknet die vereinigten organischen Phasen über MgSO₄, filtriert und entfernt das Lösemittel und erhält 350 mg (2.73 mmol, 98 %) (3a*S**, 7a*R**)-Perhydrofuro[2,3-*b*]pyran (**32a**). Spektroskopische Daten siehe (V 55).

V 57-58 Hydroformylierung von (Z)-2,7-Dimethyl-4-octen-2,7-diol (21)

Ansatz:	603 mg	(4.0 mmol)	(<i>Z</i>)- 2,7-Dimethyl-4-octen-2,7-diol (21)
	10 mg	(0.5 mol-%)	[Rh(cod)Cl] ₂
	36 mg	(3.5 mol-%)	PPh ₃
	10 ml		abs. Solvens

Reaktionsbedingungen: $120 \degree C$, 20 h, 45 bar CO, $15 bar H_2$

Durchführung: analog AAV I

Aufarbeitung Das Rohprodukt wird säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent aufgearbeitet.

		Ausbeu	te ^{a)} [%]
Vers.	LM	32b	37
V 57	Dioxan	96 (84)	
V 58	CH_2Cl_2	19 (11)	50 (21

Tab. 39:Hydroformylierung von (Z)- 2,7-Dimethyl-4-octen-2,7-diol (21)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Ausbeute (V 57): 544 mg (2.96 mmol, 84 %) 2,2,6,6-Tetramethyl-(3a*S**, 7a*R**)perhydrofuro[2,3-*b*]pyran (**32b**).

Spektroskopische Daten:

2,2,6,6-Tetramethyl-(3a*S**, 7a*R**)-perhydrofuro[2,3-*b*]pyran (**32b**)

(C₁₁H₂₀O₂, 184.26 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.19 (s, 3H, -CH₃), 1.22 (s, 3H, -CH₃), 1.23 (s, 3H, -CH₃), 1.41 (s, 3H, -CH₃), 1.27 (m, 1H, -CHH'-), 1.56-1.69 (m, 3H, -CHH'-), 1.91 (t, 1H, ³J = 12.0 Hz, -CHH'-), 1.94-2.04 (m, 1H, -CHH'-), 2.30 (m_c, 1H, -CH-), 5.16 (d,

1H, ${}^{3}J = 3.8$ Hz, -OCHO-). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 20.4 (CH₂), 22.2 (CH₃), 29.3 (CH₃), 30.2 (CH₂), 30.7 (CH₃), 31.3 (CH₃), 37.5 (CH), 39.1 (CH₂), 72.6 (C_q), 82.3 (C_q), 98.5 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2970 (s), 2932 (s), 2870 (m), 1456 (m), 1381 (m), 1365 (m), 1124 (m), 1103 (m), 1080 (m), 1067 (s), 1026 (s), 993 (s). **GC-MS** (70 eV, EI): m/z (%) = 185 (M⁺ + 1, 32), 183 (18), 167 (100), 149 (20), 133 (5), 123 (8), 111 (37), 98 (26), 82 (21), 67 (15), 56 (17). **Elementaranalyse**: berechnet: **C**: 71.7 % **H**: 10.9 %, gefunden: **C**: 72.1 % **H**: 10.9 %.

Die Zuordnung der Signale im NMR erfolgt durch COSY-Experimente.

Spektroskopische Daten: 2,2-Dimethyl-5-(2-methyl-1-propenyl)-tetrahydrofuran $(37)^{98}$ (C₁₀H₁₈O, 154.25 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.25 (s, 6H, 2 x -CH₃), 1.61-1.67 (m, 1H, -C*H*H'-), 1.65-1.83 (m, 2H, -CH₂-), 1.69 (s, 3H, -CH₃), 1.71 (s, 3H, -CH₃), 1.98-2.06 (m, 1H, -CH*H*'-), 4.63 (dt, 1H, ³*J* = 8.8, 5.7 Hz, CH-O-), 5.18 (d, 1H, ³*J* = 8.8 Hz, C_q=CH). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 18.0 (CH₃), 25.7 (CH₃), 28.2 (CH₃), 29.2 (CH₃), 33.1 (CH₂), 39.0 (CH₂), 75.0 (CH), 80.1 (C_q), 126.7 (CH), 135.0 (C_q). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 2969 (s), 2930 (m), 2871 (m), 1677 (w), 1456 (m), 1377 (m), 1364 (m), 1144 (m), 1034 (s). **GC-MS** (70 eV, EI): m/z (%) = 154 (M⁺, 9), 137 (100), 121 (2), 99 (14), 85 (6), 81 (27), 69 (13), 55 (18).

V 59-60 Hydroformylierung von (Z)-1,4-Bis-(1-hydroxycyclohexyl)-but-2-en (23a)

 Ansatz:
 360 mg (1.43 mmol) (Z)-1,4-Bis-(1-hydroxycyclohexyl)-but-2-en (23a)

 4 mg (0.5 mol-%) [Rh(cod)Cl]₂

 12 mg (3.0 mol-%) PPh₃

 10 ml
 abs. Solvens

Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H₂

Durchführung: analog AAV I

Aufarbeitung Das Rohprodukt wird säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent aufgearbeitet.

Tab. 40: Hydroformylierung von (Z)-1,4-Bis-(1-hydroxycyclohexyl)-but-2-en (23a)

			Ausbeute ^{a)} [%]
Vers.	LM	Umsatz [%]	32b
V 59	Dioxan	100	74 (67)
V 60*	CH_2Cl_2	30	19

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten; * Edukt aus V 37

Ausbeute (V 59): 255 mg (0.96 mmol, 67 %) an Dispiro[cyclohexan-1,2'perhydrofuro[2,3-*b*]pyran-6',1''-cyclohexan] (**32c**).

Spektroskopische Daten:

Dispiro[cyclohexan-1,2'-perhydrofuro[2,3-b]pyran-6',1''-cyclohexan] (32c)

 $(C_{17}H_{28}O_2, 264.41 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.24-1.80 (m, 25H), 1.85-1.94 (m, 1H), 2.13-2.19 (m, 1H, -CH-), 5.09 (d, 1H, ³*J* = 3.8 Hz, -OCHO-). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 19.9 (CH₂), 21.6 (CH₂), 21.7 (CH₂), 24.1 (CH₂), 24.2 (CH₂), 25.4 (CH₂), 26.1

(CH₂), 28.7 (CH₂), 30.7 (CH₂), 36.8 (CH₂), 37.3 (CH), 38.0 (CH₂), 39.9 (CH₂), 40.5 (CH₂), 130

73.6 (C_q), 84.5 (C_q), 97.0 (CH). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 2939 (s), 2857 (s), 1448 (s), 1362 (m), 1316 (m), 1244 (m), 1205 (m), 1153 (s), 1125 (s), 1095 (s), 1069 (s), 1049 (s), 1012 (s), 989 (s). **MS** (EI, 70 eV): m/z (%) = 264 (M⁺, 100), 246 (11), 221 (10), 208 (11), 193 (3), 151 (93), 138 (47), 122 (28), 95 (16), 81 (34), 67 (27). **Elementaranalyse**: berechnet: **C**: 77.2 % **H**: 10.7 %, gefunden: **C**: 77.5 % **H**: 10.6 %.

V 61 Hydroformylierung von *cis*-1,6-Diphenyl-3-hexen-1,6-diol (23b)

Ansatz: 430 mg (1.6 mmol) *cis*-1,6-Diphenyl-3-hexen-1,6-diol (**23b**) 4 mg (0.5 mol-%) [Rh(cod)Cl]₂ 17 mg (4.0 mol-%) PPh₃ 10 ml abs. Dioxan

Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H₂

Durchführung: analog AAV I

Aufarbeitung: 387 mg Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent aufgearbeitet.

Ausbeute: 98 mg (0.35 mmol, 22 %) 2,6-Diphenyl-(3a*S**, 7a*R**)perhydrofuro[2,3-*b*]pyran (**32d**) als Diastereomerengemisch (1.0 : 1.4 : 1.7) und 128 mg (0.48 mmol, 30 %) 6-Hydroxy-1,6-diphenyl-hexan-1-on (**38**).

Spektroskopische Daten: 2,6-Diphenyl-(3a*S**, 7a*R**)-perhydrofuro[2,3-*b*]pyran (**32d**) (C₁₉H₂₀O₂, 280.37 g/mol), 3 Diastereomere

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.60-2.55 (m, 21H, -CH₂-, -CHR-), 4.45 (dd, 1H, ${}^{3}J$ = 10.6, 2.8 Hz, -CHPh), 4.91 (dd, 1H, ${}^{3}J$ = 10.8, 2.8 Hz, -CHPh), 5.02 (dd, 1H, ${}^{3}J$ = 8.2, 6.5 Hz, -CHPh), 5.06 (dd, 1H, ${}^{3}J$ = 9.5, 3.3 Hz, -CHPh), 5.38 (dd, 1H, ${}^{3}J$ = 9.5, 6.3 Hz, -CHPh),

5.44 (d, 1H, ${}^{3}J$ = 3.5 Hz, -OCHO-), 5.49 (dd, 1H, ${}^{3}J$ = 9.2, 3.0 Hz, -CHPh), 5.54 (d, 1H, ${}^{3}J$ = 4.5 Hz, -OCHO-), 5.79 (d, 1H, ${}^{3}J$ = 4.0 Hz, -OCHO-), 7.23-7.48 (30H, CH_{arom}). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 23.0 (CH₂), 24.7 (CH₂), 25.2 (CH₂), 27.6 (CH₂), 29.3 (CH₂), 30.6 (CH₂), 34.1 (CH₂), 34.7 (CH), 34.9 (CH), 36.5 (CH), 37.9 (CH₂), 40.2 (CH₂), 72.3 (CH), 72.5 (CH), 76.7 (CH), 76.8 (CH), 78.4 (CH), 81.0 (CH), 101.5 (CH), 102.8 (CH), 102.8 (CH), 125.0 (2 x CH_{arom}), 125.3 (CH_{arom}), 125.5 (2 x CH_{arom}), 125.8 (CH_{arom}), 125.9 (2 x CH_{arom}), 126.1 (CH_{arom}), 126.2 (CH_{arom}), 126.9 (CH_{arom}), 127.1 (2 x CH_{arom}), 127.3 (CH_{arom}), 127.4 (2 x CH_{arom}), 128.0 (CH_{arom}), 128.2 (3 x CH_{arom}), 128.3 (6 x CH_{arom}), 128.4 (2 x CH_{arom}), 128.5 (2 x CH_{arom}), 142.0 (C_{q,arom}), 142.1 (C_{q,arom}), 143.7 (C_{q,arom}), 143.8 (2 x C_{q,arom}), 144.1 (C_{q,arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3085 (w), 3061 (m), 3028 (w), 3005 (w), 2937 (s), 1721 (m), 1603 (m), 1493 (s), 1450 (s), 1086 (s), 1063 (s), 1036 (s), 990 (S), 754 (s), 699 (s). **GC-MS** (70 eV, EI): m/z (%) = 279 (M⁺ - 1, 65), 263 (100), 245 (16), 233 (10), 202 (6), 176 (16), 157 (60), 143 (22), 130 (29), 117 (28), 104 (76), 91 (37), 77 (26), 55 (10). **Elementaranalyse**: berechnet: **C**: 81.4 % **H**: 7.2 %, gefunden: **C**: 80.6 % **H**: 7.1 %.

Spektroskopische Daten: 6-Hydroxy-1,6-diphenyl-hexan-1-on (38)¹⁶³

(C₁₈H₂₀O₂, 268.35 g/mol, Schmp.: 97 °C)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.38-2.02 (6H, 3)

x -CH₂-), 2.95 (t, 2H, ${}^{3}J = 7.3$ Hz, -CH₂-), 4.69 (t, 1H, ${}^{3}J = 6.7$, 2.0 Hz, -CH-OH), 7.25-7.54 (m, 8H, CH_{arom}), 7.93 (m_c, 2H, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ

[ppm] = 24.0 (CH₂), 25.5 (CH₂), 38.4 (CH₂), 38.8 (CH₂), 74.3 (CH), 125.6 (CH_{arom}), 125.8 (CH_{arom}), 125.9 (CH_{arom}), 127.5 (CHarom), 128.0 (CH_{arom}), 128.3 (CH_{arom}), 128.4 (CH_{arom}), 128.5 (CH_{arom}), 128.6 (CH_{arom}), 132.9 (CH_{arom}), 136.9 (C_{q,arom}), 144.7 (C_{q,arom}), 200.3 (C_q). **IR** (Pressling, KBr), \tilde{v} [cm⁻¹] = 3403 (bs), 3084 (m), 3059 (m), 3029 (m), 2934 (s), 2866 (m), 1682 (s), 1596 (m), 1578 (m), 1451 (s), 1023 (s), 1002 (s), 912 (s), 753 (s). **GC-MS** (70 eV, EI): m/z (%) = 269 (M⁺ + 1, 7), 251 (11), 207 (45), 191 (12), 162 (17), 145 (35), 133 (81), 120 (28), 105 (73), 91 (14), 77 (100), 55 (32).

- 4.3.4 Hydroformylierung unsymmetrischer 3-Alken-1,6-diole
- V 62 Hydroformylierung von 2-(4-Hydroxy-4-methylpent-1-enyl)-cyclohexanol (31b)
- Ansatz:
 295 mg
 (1.5 mmol)
 2-(4-Hydroxy-4-methylpent-1-enyl)-cyclohexanol

 (31a)
 4 mg
 (0.5 mol-%)
 [Rh(cod)Cl]₂

 16 mg
 (3.0 mol-%)
 PPh₃

 10 ml
 abs. Dioxan
- Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H_2
- Durchführung: analog AAV I
- Aufarbeitung: 336 mg Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:2) als Eluent aufgearbeitet.
- Ausbeute: 43 mg (0.22 mmol, 14 %) an 1-(2-Hydroxycyclohexyl)-4-methylpentan-2on (**41a**).¹⁶⁴

Spektroskopische Daten: 1-(2-Hydroxycyclohexyl)-4-methylpentan-2-on (41a)

 $(C_{12}H_{22}O_2, 198.31 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.91 (d, 3H, ³J = 6.8 Hz, -CH₃), 0.92 (d, 3H, ³J = 6.8 Hz, -CH₃), 1.19-1.28 (m, 4H, -CH₂-), 1.59-1.82 (m, 4H, -CH₂-), 1.97-2.00 (m, 1H, -CH₂-), 2.14 (sept*,

1H, ${}^{3}J = 6.8$ Hz, $-CH(CH_{3})_{2}$), 2.26 (dd, 1H, ${}^{3}J = 16.7$, 6.1 Hz, $-CH_{-}$), 2.32 (d, 2H, ${}^{3}J = 7.0$ Hz, $-CH_{2}$ -), 2.40 (bs, 1H, -OH), 2.75 (dd, 1H, ${}^{3}J = 16.7$, 6.1 Hz, $-CH_{2}$ -), 3.14 (dt, 1H, ${}^{3}J = 9.8$, 4.3 Hz, -CHOH). ${}^{13}C-NMR$ (100 MHz, $CDCl_{3}$): δ [ppm] = 22.4 (CH₃), 22.5 (CH₃), 24.5 (CH), 24.9 (CH₂), 25.4 (CH₂), 31.8 (CH₂), 36.0 (CH₂), 41.2 (CH), 47.8 (CH₂), 52.3 (CH₂), 75.1 (CH), 212.33 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3383 (bs), 2930 (s), 2859 (m), 1703 (s), 1058 (s), 1035 (s). **GC-MS** (70 eV, EI): m/z (%) = 199 (M⁺ + 1, 60), 181 (100), 165 (3), 137 (4), 123 (4), 113 (2), 98 (40), 81 (40), 67 (15), 57 (52).

V 63	Hydroformylierung		von	2-[3-(1-Hydroxycyclopentyl)-propenyl]-
	cyclohe	xanol (31b)		
Ansatz:	430 mg	(1.92 mmol)	2-[3-(1-H	ydroxycyclopentyl)-propenyl]-
			cyclohexa	anol (31b)
	5 mg	(0.5 mol-%)	[Rh(cod)	$C1]_{2}$
	16 mg	(3.0 mol-%)	PPh ₃	
	10 ml		abs. Diox	an

Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H₂

Durchführung: analog AAV I

Aufarbeitung: 493 mg Rohprodukt (GC-Ausbeute: 54 %) werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent aufgearbeitet.

Ausbeute: 72 mg (0.32 mmol, 17 %) an 1-Cyclopentyl-3-(2-hydroxy-cyclohexyl)propan-2-on (**41b**).

Spektroskopische Daten: 1-Cyclopentyl-3-(2-hydroxy-cyclohexyl)-propan-2-on (**41b**) (C₁₄H₂₄O₂, 224.33 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.92-1.30 (6H, -CH₂-), 1.53-1.84 (12H, -CH₂-), 1.97-2.00 (m, 1H, -CH₂-), 2.10 (bs, 1H, -OH), 2.22 (quint*, 1H, ³*J* = 7.5 Hz, -C*H*(CH₂)₄), 2.28 (dd, 1H, ³*J* = 16.8, 6.0 Hz, -CH₂-), 2.74 (dd, 1H, ³*J* = 16.8, 6.0 Hz, -CH₂-), 3.14 (dt, 1H, ³*J* = 10.0, 4.3 Hz, -CHOH).¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 24.9 (3 x CH₂), 25.4 (CH₂), 31.9 (CH₂), 32.5 (CH₂), 32.6 (CH₂), 35.5 (CH), 36.0 (CH₂), 41.3 (CH), 47.6 (CH₂), 49.7

(CH₂), 75.3 (CH), 213 (C_q). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3434 (bs), 2932 (s), 2857 (s), 1708 (s), 1448 (m), 1059 (s). **GC-MS** (70 eV, EI): m/z (%) = 225 (M⁺ + 1, 58), 207 (100), 138 (5), 123 (5), 111 (12), 98 (82), 81 (50), 67 (24), 55 (63).

V 64-65	Hydroformylierung	von	1-[3-(2-Hydroxycyclohexyl)-prop-2-enyl]-
	cyclohexanol (31c)		

Ansatz:	230 mg	(0.97 mmol)	1-[3-(2-Hydroxycyclohexyl)-prop-2-enyl]-			
			cyclohexanol (31c)			
	3 mg	(0.5 mol-%)	[Rh(cod)Cl] ₂			
	11 mg	(3.0 mol-%)	PPh ₃			
	10 ml		abs. Solvens			

Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H_2

Durchführung: analog AAV I

Aufarbeitung: 264 mg Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:4) als Eluent aufgearbeitet.

Ausbeute: nicht 93 mg (0.37)mmol, 39 %) eines zu trennenden 1.8:1.0-Isomerengemisches Decahydro-1,9-dioxa-fluoren-8-spiroan 1'cyclohexan (39c) und Decahydro-1,9-dioxa-cyclopenta[b]naphthalin-3spiro-1'-cyclohexan (40c).

Tab. 41:Hydroformylierung von 1-[3-(2-Hydroxycyclohexyl)-prop-2-enyl]-cyclohexanol(31c)

Vers.	Substrat	\mathbf{R}^{1}	\mathbf{R}^2	Ausbeute ^{a)} [%]		Ausbeute ^{a)} [%]	
V 64 ^{b)}	29c	-(CH	H ₂) ₅ -	39c, 40c	$(39)^{d}$	38c	
V 65 ^{c)}	29 c	-(CH ₂) ₅ -		39c, 40c	14	41c	29 (23)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten; ^{b)} in Dioxan; ^{c)} in CH_2Cl_2 ; ^{d)} 1.8:1.0-Isomerengemisch

Spektroskopische Daten: Decahydro-1,9-dioxa-fluoren-8-spiro-1'cyclohexan (**39c**) und Decahydro-1,9-dioxa-cyclopenta[*b*]naphthalin-3-spiro-1'-cyclohexan (**40c**)

 $(C_{16}H_{26}O_2, 250.38 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.93-1.00 (m, 1H, -CH₂-), 1.18-1.85 (44H, -CH, -CH₂-), 1.92-1.95 (m, 1H, -CH₂-), 2.07-2.10 (m, 1H, -CH-), 2.17-2.20 (m, 1H, -CH-), 3.48 (dt, 1H, ${}^{3}J$ = 10.3, 3.3 Hz, -CH-O-), 3.98 (dt, 1H, ${}^{3}J$ = 7.0, 6.5 Hz, -CH-O-), 5.27 (d, 1H, ${}^{3}J$ = 4.0 Hz, -OCHO-), 5.30 (d, 1H, ${}^{3}J$ = 4.0 Hz, -OCHO-). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 22.2 (CH₂), 23.0 (CH₂), 23.4 (CH₂), 23.54 (CH₂), 23.6 (CH₂), 23.8 (CH₂), 24.9

(23), 138 (36), 119 (32), 108 (30), 95 (33), 79 (52), 67 (68), 55 (100). **Elementaranalyse**: berechnet: **C**: 76.8 % **H**: 10.5 %, gefunden: **C**: 76.8 % **H**: 10.4 %.

Spektroskopische Daten: 1-Cyclohexyl-3-(2-hydroxy-cyclohexyl)-propan-2-on (**41c**) $(C_{15}H_{26}O_2, 238.37 \text{ g/mol}, \text{Schmp.: 72 °C})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.82-1.28 (m, 8H, -CH₂), 1.65-1.88 (m, 10H, -CH₂-), 1.97-20.5 (m, 3H, -CH₂-, -OH), 2.27 (dd, 1H, ${}^{3}J$ = 16.8, 6.0 Hz, -CH₂), 2.31 (d*, 2H, ${}^{3}J$ = 16.5 Hz,

OHo

-CH₂-C_q-), 2.73 (dd, 1H, ${}^{3}J$ = 16.8, 6.3 Hz, -CH-), 3.14 (dt, 1H, ${}^{3}J$ = 9.8, 4.5 Hz, -CH-OH). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 24.9 (CH₂), 25.5 (CH₂), 26.0 (2 x CH₂), 26.2 (CH₂), 31.9 (CH₂), 33.1 (CH₂), 33.2 (CH₂), 33.9 (CH), 36.0 (CH₂), 41.2 (CH), 48.1 (CH₂), 51.1 (CH₂), 75.3 (CH), 212.4 (C_q). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 3340 (bs), 2920 (s), 2851 (s), 1697 (s), 1446 (m), 1424 (m), 1409 (m), 1078 (s), 1058 (m), 1037 (m), 1024 (m). **GC-MS** (70 eV, EI): m/z (%) = 239 (M⁺ + 1, 36), 221 (55), 207 (8), 138 (4), 125 (9), 109 (5), 98 (100), 81 (41), 67 (23), 55 (72). **Elementaranalyse**: berechnet: **C**: 75.6 % **H**: 11.0 %, gefunden: **C**: 75.1 % **H**: 11.0 %.

V 66 Hydroformylierung von 2-(4-Hydroxy-4-phenylbut-1-enyl)-cyclohexanol (31d)

Ansatz: 493 mg (2.0 mmol) 2-(4-Hydroxy-4-phenylbut-1-enyl)-cyclohexanol (31d) 5 mg (0.5 mol-%) [Rh(cod)Cl]₂ 21 mg (4.0 mol-%) PPh₃ 10 ml abs. Dioxan Reaktionsbedingungen: 120 °C, 20 h, 45 bar CO, 15 bar H₂

Durchführung: analog AAV I 136

 Aufarbeitung:
 387 mg Rohprodukt werden säulenchromatographisch an Kieselgel mit

 MTBE/Cyclohexan (2:1) als Eluent aufgearbeitet.

Ausbeute: 88 mg (0.36 mmol, 18 %) 1-Phenyl-3-(2-hydroxy-cyclohexyl)-propan-2-on (41d)

Spektroskopische Daten: 1-Phenyl-4-(2-hydroxy-cyclohexyl)-butan-2-on (41d)

 $(C_{16}H_{22}O_2, 246.35 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.94-2.32 (13H, -CH₂-), 2.68-2.96 (4H, -CH-, -OH), 7.16-7.54 (5H, CH_{arom}). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 21.0 (CH₂), 24.9 (CH₂), 25.4 (CH₂), 29.7 (CH₂), 31.8 (CH₂), 35.6 (CH₂), 38.8

(CH₂), 45.0 (CH), 74.4 (CH), 128.0 (2 x CH_{arom}), 128.3 (CH_{arom}), 128.5 (2 x CH_{arom}), 132.9 (C_{q,arom}). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3450 (bs), 3063 (m), 3028 (m), 2929 (s), 2858 (s), 1708 (s), 1448 (s), 1035 (s), 700 (s). **GC-MS** (70 eV, EI): m/z (%) = 246 (M⁺, 5), 210 (15), 195 (7), 128 (4), 122 (15), 107 (22), 93 (32), 77 (100), 67 (18).

4.4 Tetrahydrofuransubstituierte Fünf- und Sechsringhemiacetale

4.4.1 Darstellung von Tetrahydrofuran-2-carbaldehyd

V 67 Darstellung von Furfurylidendiacetat (47)

Ansatz:	51.00 g	(0.5 mol)	Acetanhydrid
	48.00 g	(0.5 mol)	Furfural (46)
	0.05 ml		konz. H ₂ SO ₄
	0.20 g		Na-Acetat

Durchführung:

51.00 g (0.5 mol) Acetanhydrid werden vorgelegt und mit 0.05 ml konz. H_2SO_4 versetzt. Man kühlt auf 10 °C und tropft unter kräftigem Rühren 48.00 g (0.5 mol) Furfural (**46**) hinzu. Die Reaktionsmischung erwärmt sich dabei auf ca. 40 °C und färbt sich schwarz. Es wird 24 h bei RT gerührt und anschließend 0.20 g Na-Acetat hinzugegeben. Man destilliert nun fraktionierend im Wasserstrahlvakuum. Die Vorfraktionen mit den Edukten, die für eine weitere Reaktion wieder eingesetzt werden können, destillieren bis zu einer Kopftemperatur von 120 °C. Das Produkt destilliert ab 120 °C. Man erhält 74.37 g (375 mmol, 75 %) an Furfurylidendiacetat (**47**) ($C_9H_{10}O_5$, 198.18 g/mol, Schmp. 52 °C). Die spektroskopischen Daten stimmen mit denen der Literatur überein.¹⁶⁵

V 68 Tetrahydrofurfurylidendiacetat (48)

Ansatz:	74.37 g	(375 mmol)	Furfurylidendiacetat (47)
	1.00 g		Pd/C (10 %)
	200 ml		Ethanol
	18.01	(375 mmol)	Wasserstoff

Durchführung: analog AAV III

Ausbeute: 72.08 g (356 mmol, 95 %) an Tetrahydrofurfurylidendiacetat (**48**).

Spektroskopische Daten: Tetrahydrofurfurylidendiacetat (48)

(C₉H₁₄O₅, 202.21 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.82-2.02 (m, 4H, -CH₂-), 2.11 (s, 3H, -CH₃), 2.12 (s, 3H, -CH₃), 3.82-3.92 (m, 2H, -CH₂-), 4.12 (dt, 1H, ${}^{3}J$ = 7.5, 5.5 Hz, -O-CH-), 6.75 (d, 1H, ${}^{3}J$ = 5.5 Hz, -OCHO-). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 20.8 (CH₃), 20.9 (CH₃), 25.7 (CH₂), 26.6

(CH₂), 69.2 (CH₂), 77.4 (CH), 89.3 (CH), 168.9 (C_q), 169.0 (C_q). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 2979 (m), 2878 (m), 1767 (s), 1435 (w), 1373 (m), 1244 (s), 1205 (s), 1011 (s). **MS** (EI, 70 eV): m/z (%) = 201 (M⁺ - 1, 8), 171 (8), 143 (9), 99 (44), 85 (91), 71 (27), 43 (100). **Elementaranalyse**: berechnet: **C**: 53.5 % **H**: 7.0 %, gefunden: **C**: 53.5 % **H**: 6.9 %.

V 69 Tetrahydrofuran-2-carbaldehyd (49)

Ansatz: 47.12 g (238 mmol) Tetrahydrofurfurylidendiacetat (**48**) 19.15 g (479 mmol) NaOH 100 ml Wasser Durchführung:

47.12 g (238 mmol) Tetrahydrofurfurylidendiacetat (**48**) werden vorgelegt und auf 0 °C gekühlt. Innerhalb von 1 h werden 19.15 g (479 mmol) NaOH gelöst in 100 ml Wasser, die ebenfalls auf 0 °C gekühlt sind, unter kräftigem Rühren zugetropft. Es wird eine weitere Stunde bei 0 °C und 30 min bei RT gerührt. Anschließend extrahiert man die Reaktionslösung mit 20 ml Diethylether, um nicht umgesetzte Reste des Eduktes zu entfernen. Dann wird mit CH₂Cl₂ extrahiert (5 x 100 ml). Die vereinigten organischen Phasen werden mit 20 ml ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Nach Entfernung des Lösemittels am Rotationsverdampfer erhält man 21.19 g (212 mmol, 91 %) an Tetrahydrofuran-2-carbaldehyd (**49**) (C₅H₈O₂, 100.12 g/mol). Es ist keine weitere Reinigung nötig. Die spektroskopischen Daten entsprechen denen in der Literatur.¹⁶⁶

4.4.2 Darstellung von Tetrahydrofuranylalkenolen

V 70-71 1-(Tetrahydrofuran-2-yl)-prop-2-en-1-ol (50a)

Ansatz:	3.00 g	(30 mmol)	Tetrahydrofuran-2-carbaldehyd (49)
	21.3 ml	(36 mmol)	Vinylmagnesiumchlorid-Lsg. (1.7 M in THF)
	50 ml		abs. THF

Durchführung:

21.3 ml (36 mmol) einer Vinylmagnesiumchlorid-Lsg. werden in einem Kolben mit Rückflusskühler und Tropftrichter unter Argon vorgelegt und auf 0 °C gekühlt. 3.00 g (30 mmol) Tetrahydrofuran-2-carbaldehyd (**49**) gelöst in 50 ml abs. THF werden bei 0 °C zugetropft und 1 h bei gleicher Temperatur gerührt. Anschließend wird 2 bei RT gerührt und 30 min unter Rückfluss erhitzt. Die Lösung wird mit ges. NH₄Cl-Lsg. hydrolysiert und mit Diethylether extrahiert (3 x 50 ml). Die vereinigten organischen Phasen werden mit ges. NaCl-Lsg. gewaschen und über MgSO₄ getrocknet. Das Lösemittel wird am Rotationsverdampfer entfernt. Eine weitere Aufreinigung ist nicht notwendig. Man erhält 1.89 g (14.7 mmol, 49 %) eines nicht zu trennenden 1:1-Diastereomerengemisches an 1-(Tetrahydrofuran-2-yl)-prop-2-en-1-ol (**50a**) als farblose Flüssigkeit.¹⁶⁷

	0	`	J	J / F		
Vers.	Metall	AlCl ₃ ^{a)}	Alkohol	Ausbeute ^{b)} [%]	Diastereomere	
V 70	Mg	-	50a	49	1:1-Gemisch	
V 71	Mg	+	50a	19	1.7:1-Gemisch	

Tab. 42: Darstellung von 1-(Tetrahydrofuran-2-yl)-prop-2-en-1-ol (50a)

^{a)} 10 mol-%; ^{b)} isolierte Ausbeuten

Spektroskopische Daten: 1-(Tetrahydrofuran-2-yl)-prop-2-en-1-ol (50a)

(C₇H₁₂O₂, 128.17 g/mol), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): Diastereomer a: δ [ppm] = 1.60-1.75 (m, 1H, -CH₂-), 1.79-1.95 (m, 2H, -CH₂-), 1.91-1.94 (m, 1H, -CH₂-), 3.78-3.96 (m, 2H, -CH₂-O-), 3.75-3.85 (m, 1H, -CH-O-), 3.89-3.97 (m, 1H, -CHOH), 5.21 (dd, 1H, ${}^{3}J$ = 10.5 Hz, ${}^{2}J$ = 1.5 Hz, =CHH_{cis}), 5.36 (dd, 1H, ${}^{3}J$ = 16.6 Hz, ${}^{2}J$ = 1.5 Hz, =CHH_{trans}), 5.85 (dd, 1H, ${}^{3}J$ = 16.6, 10.5Hz, CH=CH₂); Diastereomer b: δ [ppm] = 1.81-1.97 (m, 4H, -CH₂-CH₂-), 3.77-3.92 (m, 2H, -CH₂-O-), 3.86-3.95 (m, 1H, -CH-O-), 4.30 (m, 1H, -CHOH), 5.20 (dd, 1H, ${}^{3}J$ = 10.3 Hz, ${}^{2}J$ = 1.8 Hz, =CHH_{cis}), 5.34 (dd, 1H, ${}^{3}J$ = 17.0 Hz, ${}^{2}J$ = 1.8 Hz, =CHH_{trans}), 5.81 (dd, 1H, ${}^{3}J$ = 17.0, 10.3Hz, CH=CH₂). ¹³C-NMR (100 MHz, CDCl₃): Diastereomer a: δ [ppm] = 26.1 (CH₂), 27.6 (CH₂), 68.4 (CH₂), 75.3 (CH), 81.9 (CH), 116.8 (CH₂), 137.1 (CH); Diastereomer b: δ [ppm] = 25.2 (CH₂), 26.1 (CH₂), 68.9 (CH), 73.6 (CH), 81.7 (CH), 116.4 (CH₂), 136.6 (CH). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3433 (vs), 3079 (w), 2979 (s), 2868 (s), 1064 (s), 994 (m), 924 (m). **GC-MS** (70 eV, EI): m/z (%) = 127 (M⁺ - 1, 1), 111 (100), 71 (36). **Elementaranalyse**: berechnet: **C**: 65.6 % **H**: 9.4 %, gefunden: **C**: 65.6 % **H**: 9.1 %.

Die Zuordnung der Signale erfolgte mittels COSY-Experimenten.

V 72-73 1-(Tetrahydrofuran-2-yl)-but-3-en-1-ol (50b)

Ansatz:	5.00 g	(50 mmol)	Tetrahydrofuran-2-carbaldehyd (49)
	7.26 g	(60 mmol)	Allylbromid
	1.46 g	(60 mmol)	Mg-Späne
	75 ml		abs. Diethylether

Durchführung:

7.26 g (60 mmol) Allylbromid gelöst in 40 ml abs. Diethylether werden langsam bei 0 $^{\circ}$ C zu 1.46 g (60 mmol) Mg-Spänen in 10 ml abs. Diethylether zugetropft und so die

Allylgrignard-Lsg. hergestellt. Danach werden 5.00 g (30 mmol) Tetrahydrofuran-2carbaldehyd (**49**) gelöst in 25 ml abs. Diethylether bei 0 °C zugetropft. Man rührt 30 min bei RT und erhitzt 2 h unter Rückfluss. Es wird mit 40 ml ges. NH₄Cl-Lsg. und 20 ml 10 %-iger HCl-Lsg. hydrolysiert und die Phasen werden getrennt. Die wässrige Phase wird mit Diethylether extrahiert (4 x 80 ml) und die vereinigten organischen Phasen werden mit je 10 ml ges. Na₂CO₃-Lsg. und NaCl-Lsg. gewaschen. Man trocknet über MgSO₄ und entfernt das Lösemittel am Rotationsverdampfer. Das Rohprodukt wird chromatographisch an Kieselgel mit MTBE als Eluent gereinigt. Man erhält 5.17 g (36.4 mmol, 73 %) eines nicht zu trennenden 1:1-Diastereomerengemisches an 1-(Tetrahydrofuran-2-yl)-but-3-en-1ol (**50b**) als farbloses Öl.

Vers.	Metall	AlCl ₃ ^{a)}	Alkohol	Ausbeute ^{b)}	Diastereomere
V 72	Mg	-	50b	73	1:1-Gemisch
V 73	Zn	+	50b		kompl. Produktgemisch

Tab. 43: Darstellung von 1-(Tetrahydrofuran-2-yl)-but-3-en-1-ol (50b)

^{a)} 10 mol-%; ^{b)} isolierte Ausbeuten

Spektroskopische Daten: 1-(Tetrahydrofuran-2-yl)-but-3-en-1-ol (50b)

(C₈H₁₄O₂, 142.20 g/mol), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.60-1.69 (m, 1H, -CH₂-), 1.84-1.95 (m, 7H, -CH₂), 2.20-2.31 (m, 4H, -CH₂-CH=), 2.41 (bs, 2H, -OH), 3.48-3.53 (m, 1H, -CH₂O-, -OCH-, -CHOH), 3.74-3.89 (m, 7H, -OH), 3.74-3.89 (m, 7H), -OH), -OH),

OH Our

-CH₂O-, -OCH-, -C*H*OH), 5.08-5.17 (m, 4H, =CH₂), 5.81-5.95 (m, 2H, -CH=). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 25.0 (CH₂), 26.0 (CH₂), 26.2 (CH₂), 27.8 (CH₂), 37.7 (CH₂), 38.3 (CH₂), 68.1 (CH₂), 68.5 (CH₂), 71.4 (CH), 73.2 (CH), 81.6 (CH), 81.7 (CH), 117.2 (CH₂), 117.5 (CH₂), 134.6 (CH), 134.7 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3444 (vs), 3075 (m), 2976 (s), 2872 (s), 1641 (m), 1434 (m), 1063 (s), 914 (s). **GC-MS** (70 eV, EI): m/z (%) = 143 (M⁺ + 1, 42), 125 (19), 107 (5), 101 (61), 97 (7), 79 (7), 71 (100), 55 (11). **Elementaranalyse**: berechnet: **C**: 67.6 % **H**: 9.9 %, gefunden: **C**: 67.0 % **H**: 9.7 %.

Eine Zuordnung der Diastereomere konnte auch durch COSY-Experimente nicht erreicht werden.

V 74-75 3-Methyl-1-(tetrahydrofuran-2-yl)-but-3-en-1-ol (50c)

Ansatz:	3.00 g	(30 mmol)	Tetrahydrofuran-2-carbaldehyd (49)
	3.26 g	(36 mmol)	β-Methallylchlorid
	875 mg	(36 mmol)	Mg-Späne
	25 ml		abs. THF

Durchführung: analog V 72-73

Aufarbeitung: 2.74 g Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent aufgereinigt.

Ausbeute:0.98 g (6.3 mmol, 21 %) 3-Methyl-1-(tetrahydrofuran-2-yl)-but-3-en-1-ol(50c) als 1:1-Diastereomerengemisch.

Tab. 44: Darstellung von 3-Methyl-1-(tetrahydrofuran-2-yl)-but-3-en-1-ol (50c)

Vers.	Metall	AlCl ₃ ^{a)}	Alkohol	Ausbeute ^{b)} [%]	Diastereomere
V 74	Mg	-	50c	21	1:1-Gemisch
V 75	Zn	+	50c	7	1.5:1-Gemisch

^{a)} 10 mol-%; ^{b)} isolierte Ausbeuten

Spektroskopische Daten: 3-Methyl-1-(tetrahydrofuran-2-yl)-but-3-en-1-ol (50c)

(C₉H₁₆O₂, 156.23 g/mol), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.65-1.72 (m, 0.5 H), 1.78 (s, 1.5H, -CH₃), 1.79 (s, 1.5 H, -CH₃), 1.85-1.95 (m, 3.5H), 2.11-2.25 (m, 2H), 3.59-3.65 (m, 0.5H), 3.74-3.93 (m, 3.5H), 4.82 (s, 1H, =C*H*H[']), 4.86 (s, 1H, =CH*H*[']). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 22.4 (CH₃), 22.5 (CH₃), 25.3 (CH₂), 26.0 (CH₂), 26.3 (CH₂), 28.0 (CH₂), 41.8 (CH₂), 42.3 (CH₂), 68.3 (CH₂), 68.5 (CH₂), 69.8 (CH), 71.6 (CH), 81.9 (CH), 82.0 (CH), 113.1 (CH₂), 113.2 (CH₂), 142.4 (C_q), 142.4 (C_q). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3443 (bs), 3074 (w), 2971 (s), 2943 (s), 2912 (s), 2874 (s), 1647 (m), 1445 (m), 1375 (m), 1065 (s), 888 (m). **GC-MS** (70 eV, EI): m/z (%) = 157 (M⁺ + 1, 1), 139 (4), 123 (12), 109 (7), 100 (100), 83 (43), 71 (91), 67 (22), 58 (38), 55 (57). **Elementaranalyse**: berechnet: **C**: 68.2 % **H**: 10.3 %, gefunden: **C**: 68.1 % **H**: 10.1 %.

V 76	2,2-Dimethyl-1-(tetrahydrofuran-2-yl)-but-3-en-1-o	ol (50d)
------	--	----------

Ansatz:	3.00 g	(30 mmol)	Tetrahydrofuran-2-carbaldehyd (49)
	4.90 g	(33 mmol)	Prenylbromid
	2.15 g	(33 mmol)	Zn-Staub
	0.13 g	(1.0 mmol)	AlCl ₃
	60 ml		abs. THF

Durchführung:

In einem 250 ml Dreihalskolben mit Rückflusskühler werden unter Argonatmosphäre 2.15 g (33 mmol) Zn-Staub und 0.13 g (1 mmol) AlCl₃ in 50 ml abs. THF vorgelegt. 4.90 g (33 mmol) Prenylbromid gelöst in 10 ml abs. THF werden innerhalb von 1 h langsam bei RT zugetropft. Danach werden 3.00 g (30 mmol) Tetrahydrofuran-2-carbaldehyd (**49**) innerhalb von 10 min zugetropft und es wird weitere 20 min gerührt. Die Lösung wird auf 60 ml 10 %-ige HCl-Lsg. gegossen und mit Diethylether extrahiert (3 x 100 ml). Die vereinigten organischen Phasen werden mit ges. NaCl-Lsg. gewaschen und über MgSO₄ getrocknet. Das Lösemittel wird am Rotationsverdampfer entfernt und der verbleibende Rückstand wird säulenchromatographisch aufgearbeitet. Die Trennung erfolgt an Kieselgel mit MTBE/Cyclohexan (1:5) als Eluent. Man erhält 1.60 g (9.9 mmol, 33 %) 2,2-Dimethyl-1-tetrahydrofuran-2-yl-but-3-en-1-ol (**50d**) als farblose Flüssigkeit.

Spektroskopische Daten: 2,2-Dimethyl-1-tetrahydrofuran-2-yl-but-3-en-1-ol (**50d**) (C₁₀H₁₈O₂, 170.25 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.05 (s, 3H, -CH₃), 1.06 (s, 3H, -CH₃), 1.72-1.96 (m, 4H, -2 x -CH₂-), 2.56 d, 1H, ³J = 7.8 Hz, -OH), 3.18 (dd, 1H, ³J = 7.8, 3.0 Hz, -CHOH), 3.81 (m, 2H, -OCH₂-), 3.93 (m, 1H, -OCH-), 5.01 (d, 2H, ³J = 11.0, =CH₂), 5.03 (d, 2H, ³J = 17.3, =CH₂), 5.89 (dd, 1H, ³J = 17.3, 11.0 Hz, -CH=). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 22.0 (CH₃), 24.6 (CH₃), 26.1 (CH₂), 30.7 (CH₂), 41.3 (C_q), 68.7 (CH₂), 77.5 (CH), 79.1 (CH), 112.3 (CH₂), 145.4 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3529 (vs), 3081 (m), 2971 (s), 2873 (m), 1100 (s), 1057 (s), 912 (m). **GC-MS** (70 eV, EI): m/z (%) = 171 (M⁺ + 1, 7), 153 (6), 137 (20), 113 (6), 101 (19), 93 (6), 83 (16), 71 (45), 67 (7), 55 (100). **Elementaranalyse**: berechnet: **C**: 70.6 % **H**: 10.7 %, gefunden: **C**: 70.5 % **H**: 10.7 %.

4.4.3 Hydroformylierung der Tetrahydrofuranylalkenole

V 77 Hydroformylierung von 1-(Tetrahydrofuran-2-yl)-prop-2-en-1-ol (50a)

Ansatz:

513 mg	(4.0 mmol)	1-(Tetrahydrofuran-2-yl)-prop-2-en-1-ol (50a)
10 mg	(1 mol-%)	$Rh(acac)(CO)_2$
126 mg	(4 mol-%)	BIPHEPHOS
10 ml		abs. CH ₂ Cl ₂

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute: 405 mg (2.56 mmol, 64 %) Octahydro-[2,2']-bifuranyl-5-ol (51a) als nicht zu trennendes Gemisch von vier Diastereomeren im Verhältnis 1.0 : 1.2 : 1.2 : 2.2. Eine weitere Reinigung ist nicht nötig.

Spektroskopische Daten: Octahydro-[2,2']-bifuranyl-5-ol (51a)

(C₈H₁₄O₃, 158.20 g/mol), vier Diastereomere

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.59-2.09 (m, 32H, -CH₂-),

3.76-4.15 (m, 16H, -CH₂-O-; -OCH-CHO-), 5.43 (m, 2H, -CHOH), 5.60 (m, 2H, -CHOH). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 23.5

(CH₂), 25.0 (CH₂), 25.4 (CH₂), 25.7 (CH₂), 25.8 (CH₂), 25.9 (2 x CH₂), 26.1 (CH₂), 27.6 (CH₂), 27.9 (CH₂), 28.0 (CH₂), 28.1 (CH₂), 32.6 (CH₂), 32.8 (CH₂), 34.3 (CH₂), 34.4 (CH₂), 68.4 (CH₂), 68.5 (CH₂), 68.5 (CH₂), 68.7 (CH₂), 80.1 (CH), 80.4 (CH), 80.8 (CH), 81.2 (CH), 81.3 (2 x CH), 81.5 (CH), 81.7 (CH), 98.4 (CHOH), 98.5 (CHOH), 98.7 (CHOH), 98.8 (CHOH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3406 (bs), 2951 (s), 2874 (s), 1461 (m), 1284 (m), 1193 (m), 1056 (s), 980 (s). **GC-MS** (70 eV, EI): m/z (%) = 158 (M⁺, 1), 141 (100), 123 (4), 97 (83), 85 (5), 71 (2).

V 78 Hydroformylierung von 1-(Tetrahydrofuran-2-yl)-but-3-en-1-ol (50b)

 Ansatz:
 569 mg
 (4.0 mmol)
 1-(Tetrahydrofuran-2-yl)-but-3-en-1-ol (50b)

 10 mg
 (1 mol-%)
 Rh(acac)(CO)_2

 126 mg
 (4 mol-%)
 BIPHEPHOS

 10 ml
 abs. CH₂Cl₂

Reaktionsbedingungen: $60 \degree C$, 40 h, 10 bar CO, $10 bar H_2$

Durchführung: analog AAV I

- Ausbeute:616 mg (3.58 mmol, 89 %) 6-(Tetrahydrofuran-2-yl)-tetrahydropyran-2-ol(51b) als Gemisch von vier Diastereomeren im gleichen Verhältnis.
- Aufarbeitung: Das Gemisch der vier Isomere kann säulenchromatographisch an Kieselgel mit MTBE als Eluent in je zwei Diastereomerenpaare aufgetrennt werden.

Spektroskopische Daten: 6-(Tetrahydrofuran-2-yl)-tetrahydropyran-2-ol (51b)

(C₉H₁₆O₃, 172.23 g/mol), vier Diastereomere

¹**H-NMR** (400 MHz, CDCl₃): Diastereomerenpaar a: δ [ppm] = OH 1.18-2.03 (m, 20H, -CH₂-), 3.08 (bs, 2H, 2 x -OH), 3.42-3.47 (m, 1H, -CH-O-), 3.72-3.88 (m, 5H, -CH-O-, -CH₂-O-), 3.98-4.02 (m, 2H, -CH-O-), 4.73 (dd, 1H, ³J = 9.2, 1.8 Hz, -CHOH), 5.32 (s*, 1H,

CHOH); Diastereomerenpaar b: δ [ppm] = 1.24-1.99 (m, 20H, 5 x -CH₂-), 3.08 (bs, 2H, 2 x -OH), 3.40-3.45 (m, 1H, -CH-O-), 3.70-3.92 (m, 7H, -CH-O-, -CH₂-O-), 4.76 (dd, 1H, ${}^{3}J$ = 9.2, 1.8 Hz, -CHOH), 5.36 (s*, 1H, CHOH). 13 C-NMR (100 MHz, CDCl₃): Diastereomerenpaar a: δ [ppm] = 17.0 (CH₂), 21.7 (CH₂), 25.7 (CH₂), 26.6 (2 x CH₂), 27.0 (CH₂), 27.3 (CH₂), 29.8 (2 x CH₂), 32.6 (CH₂), 68.3 (CH₂), 68.4 (CH₂), 70.0 (CH), 78.0 (CH), 81.1 (CH), 81.4 (CH), 91.7 (CH), 96.4 (CH); Diastereomerenpaar b: δ [ppm] = 17.0 (CH₂), 21.7 (CH₂), 25.6 (2 x CH₂), 26.2 (CH₂), 27.2 (CH₂), 27.7 (2 x CH₂), 29.5 (CH₂), 32.2 (CH₂), 68.0 (CH₂), 68.1 (CH₂), 71.1 (CH), 78.6 (CH), 81.1 (CH), 81.7 (CH), 91.5 (CH), 96.2 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3396 (vs), 2945 (s), 2869 (s), 1459 (m), 1441 (m), 1071 (s), 1033 (s), 983 (m). **GC-MS** (70 eV, EI): m/z (%) = 172 (M⁺, 2), 155 (51), 137 (5), 126 (5), 111 (6), 101 (30), 83 (9), 71 (100), 55 (35). **Elementaranalyse**: berechnet: **C**: 62.8 % **H**: 9.4 %, gefunden: **C**: 62.7 % **H**: 9.3 %.

Die Zuordnung der Signale erfolgte unter Zuhilfenahme von COSY-Experimenten. Zur besseren Charakterisierung werden diese Diastereomere mit Ag_2CO_3 zu den entsprechenden Lactonen oxidiert.

V 79 Hydroformylierung von 3-Methyl-1-(tetrahydrofuran-2-yl)-but-3-en-1-ol (50c)

Ansatz: 312 mg (2.0 mmol) 3-Methyl-1-(tetrahydrofuran-2-yl)-but-3-en-1-ol (50c) 5 mg (1.0 mol-%) Rh(acac)(CO)₂ 10 ml abs. Dioxan

Reaktionsbedingungen: $80 \degree C$, 20 h, 40 bar CO, 40 bar H₂

Durchführung: analog AAV I

Ausbeute: 347 mg (1.86 mmol, 93 %) 4-Methyl-6-(tetrahydrofuran-2-yl)tetrahydropyran-2-ol (**51c**) als Gemisch aus 8 Diastereomeren.

Aufarbeitung: Das Gemisch kann säulenchromatographisch an Kieselgel mit MTBE als Eluent in zwei Fraktionen zu je vier Diastereomeren (94 mg und 71 mg) aufgetrennt werden.

Spektroskopische Daten des Diastereomerengemisches:

4-Methyl-6-(tetrahydrofuran-2-yl)-tetrahydropyran-2-ol (51c)

(C₁₀H₁₈O₃, 186.25 g/mol), acht Diastereomere

Die NMR-Spektren des Gemisches sind nicht auszuwerten. **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3406 (bs), 2951 (s), 2872 (m), 1456 (m), 1066 (s), 995 (m). **MS** (EI, 70 eV): m/z (%) = 186 (M⁺, 1), 168 (5), 140 (3), 115 (60), 97 (17), 84 (6), 71 (100), 43 (59). **Elementaranalyse**: berechnet: **C**: 64.5 % **H**: 9.7 %, gefunden: **C**: 64.9 % **H**: 9.7 %.

 $\int_{0}^{\infty} \int_{0}^{1} \int_{0$

OH

Zur besseren Charakterisierung erfolgt Oxidation zu den Lactonen mit Ag₂CO₃.

V 80-81 Hydroformylierung von 2,2-Dimethyl-(1-tetrahydrofuran-2-yl)-but-3-en-1ol (50d)

```
      Ansatz a:
      420 mg
      (2.50 mmol)
      2,2-Dimethyl-(1-tetrahydrofuran-2-yl)-but-3-en-1-ol

      (50d)
      (50d)

      6.5 mg
      (1 mol-%)
      Rh(acac)(CO)_2

      80 mg
      (4 mol-%)
      BIPHEPHOS

      10 ml
      abs. Dioxan
```

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute: 449 mg (2.24 mmol, 90 %) 5,5-Dimethyl-6-tetrahydrofuran-2-yltetrahydropyran-2-ol (**51d**) als nicht zu trennendes 1:1-Diastereomerengemisch.

Ansatz b: 336 mg (2.0 mmol) 2,2-Dimethyl-(1-tetrahydrofuran-2-yl)-but-3-en-1-ol (50d)

5 mg	(1 mol-%)	$Rh(acac)(CO)_2$
10 ml		abs. Dioxan

Reaktionsbedingungen: 80 °C, 20 h, 30 bar CO, 20 bar H₂

Durchführung: analog AAV I

Ausbeute: 371 mg (1.85 mmol, 93 %) 5,5-Dimethyl-6-tetrahydrofuran-2-yltetrahydropyran-2-ol (**51d**) als nicht zu trennendes 1:1-Diastereomerengemisch.

Spektroskopische Daten: 5,5-Dimethyl-6-tetrahydrofuran-2-yl-tetrahydropyran-2-ol (**51d**) (C₁₁H₂₀O₃, 200.28 g/mol, Schmp.: 106 °C), 1:1-Diastereomeregemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.94 (2 x s, 6H, -CH₃), 1.04 (s, 3H, -CH₃), 1.06 (s, 3H, -CH₃), 1.20 (m_c, 1H, -CH₂-), 1.39-1.94 (m, 15H, -CH₂-), 3.12 (d, 1H, -O-CH-), 3.54 (bs, 1H, -OH), 3.67-3.75 (m, 4H, -O-CH-, -O-CH₂-), 3.85-3.95 (m, 3H, -O-CH-, -O-CH₂-), 3.99 (bs, 1H, -OH), 4.73 (t, 1H, ${}^{3}J$ = 6.0 Hz, -CHOH),

5.36 (d*, 1H, ${}^{3}J$ = 2.5 Hz, -CHOH). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 19.9 (CH₃), 21.0 (CH₃), 25.6 (CH₂), 25.6 (CH₂), 26.6 (CH₂), 29.4 (CH₂), 27.4 (CH₃), 28.2 (CH₃), 29.5 (CH₂), 29.8 (CH₂), 32.1 (C_q), 32.4 (C_q), 33.9 (CH₂), 38.2 (CH₂), 67.8 (CH₂), 68.0 (CH₂), 76.9 (2 x CH), 77.9 (2 x CH), 78.1 (2 x CH), 84.2 (2 x CH), 91.4 (CH), 96.8 (CH). **IR** (Pressling, KBr), \tilde{v} [cm⁻¹] = 3443 (s), 3364 (s), 2948 (s), 2873 (m), 1454 (m), 1366 (m), 1136 (s), 1099 (s), 1061 (s), 1000 (s). **MS** (EI, 70 eV): m/z (%) = 200 (M⁺, 1), 182 (4), 172 (2), 154 (5), 129 (58), 111 (41), 101 (24), 83 (33), 71 (100), 57 (28), 43 (59). **Elementaranalyse**: berechnet: **C**: 66.0 % **H**: 10.1 %, gefunden: **C**: 66.0 % **H**: 9.8 %.

Eine Zuordnung der Diastereomere konnte auch mittels COSY-Experimenten nicht erreicht werden.

AAV V: Allgemeine Arbeitsvorschrift für die Oxidation mit Ag₂CO₃¹⁰

In einem Zweihalskolben mit Rückflusskühler wird eine entsprechende Menge des Lactols mit zwei Äquivalenten an Silber(I)carbonat in ca. 10 ml abs. Benzol / mmol Lactol für 30 h unter Rückfluss erhitzt. Die Reaktion wird mittels Dünnschichtchromatographie kontrolliert. Wenn die Reaktion beendet ist, wird auf RT abgekühlt und mit ca. 1 g Celite / 2 mmol Ag₂CO₃ versetzt. Man rührt 10 min und filtriert den Niederschlag ab. Das Lösemittel wird am Rotationsverdampfer entfernt und das Rohprodukt mittels Säulenchromatographie an Kieselgel mit MTBE oder MTBE/Cyclohexan aufgereinigt.

V 82 Oxidation von Octahydro-[2,2']-bifuranyl-5-ol (51a) mit Ag₂CO₃

Ansatz:	200 mg	(1.26 mmol)	Octahydro-[2,2']-bifuranyl-5-ol (51a)
	690 mg	(2.50 mmol)	Ag_2CO_3
	10 ml		abs. Benzol

Durchführung: analog AAV V

Ausbeute: 180 mg (1.15 mmol, 91 %) Octahydro-[2,2']-bifuranyl-5-on (52a) als hellgelbes Öl. Es liegt ein nicht zu trennendes Gemisch der *d,l-/meso-*Isomere im Verhältnis von 1.5 : 1.0 vor. Die Zuordnung erfolgt durch COSY-Experimente und Vergleich mit Literaturdaten.^{107,122a}

Spektroskopische Daten: Octahydro-[2,2']-bifuranyl-5-on (52a)

(C₈H₁₂O₃, 156.18 g/mol), zwei Diastereomere

¹**H-NMR** (400 MHz, CDCl₃): *d*,*l*-Isomer: δ [ppm] = 1.86-2.60 (m, 8H, 4 x -CH₂-), 3.77-3.85 (m, 2H, -CH₂-O-), 3.95-3.98 (m, 1H, -OCH-), 4.48-4.52 (ddd, 1H, ³*J* = 8.0, 5.3, 3.0 Hz, -OCH-); *meso*-Isomer: δ [ppm] = 1.70-2.70 (m, 8H, 4 x -CH₂-), 3.83-3.90 (m, 2H, -CH₂-O-), 3.97-4.00 (m, 1H, -OCH-), 4.41-4.46 (dt, 1H, ³*J* = 6.8, 6.0 Hz, -OCH-). ¹³**C-NMR** (100 MHz, CDCl₃): *d*,*l*-Isomer: δ [ppm] = 24.5 (CH₂), 26.0

(CH₂), 27.6 (CH₂), 28.1 (CH₂), 69.0 (CH₂), 80.4 (CH), 81.2 (CH), 177.6 (C_q); *meso*-Isomer: δ [ppm] = 23.8 (CH₂), 25.6 (CH₂), 27.8 (CH₂), 28.1 (CH₂), 68.7 (CH₂), 79.6 (CH), 81.6 (CH), 177.1 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2963 (s), 2905 (m), 1781 (m), 1413 (m), 1265 (s), 1017 (s), 867 (s). **GC-MS** (70 eV, EI): m/z (%) = 157 (M⁺ + 1, 33), 139 (9), 111 (4), 97 (60), 71 (100), 55 (5). **Elementaranalyse**: berechnet: **C**: 61.5 % **H**: 7.7 %, gefunden: **C**: 60.9 % **H**: 7.7 %.

V 83 Oxidation von 6-(Tetrahydrofuran-2-yl)-tetrahydropyran-2-ol (52b) mit Ag₂CO₃

Beide Diastereomerenpaare aus Versuch V 78 werden getrennt umgesetzt.

Ansatz a)	167 mg	(0.97 mmol)	6-(Tetrahydrofuran-2-yl)-tetrahydropyran-2-ol (52b)
	535 mg	(1.94 mmol)	Ag ₂ CO ₃
	10 ml		abs. Benzol
Ansatz b)	210 mg	(1.22 mmol)	6-(Tetrahydrofuran-2-yl)-tetrahydropyran-2-ol (52b)
	673 mg	(2.44 mmol)	Ag ₂ CO ₃
	10 ml		abs. Benzol

Durchführung: analog AAV V

Aufarbeitung: Die Rohprodukte werden säulenchromatographisch an Kieselgel mit MTBE als Eluent aufgearbeitet.

Ausbeute: Ansatz a) 117 mg (0.69 mmol, 71 %) und Ansatz b) 151 mg (0.89 mmol, 73 %) 6-(Tetrahydrofuran-2-yl)-tetrahydropyran-2-on (**52b**)

Spektroskopische Daten: 6-(Tetrahydrofuran-2-yl)-tetrahydropyran-2-on (52b)

(C₉H₁₄O₃, 170.21 g/mol), zwei Diastereomere

¹**H-NMR** (400 MHz, CDCl₃): Diastereomer a: δ [ppm] = 1.48-1.58 (ddd, 1H, J = 10.8, 10.8, 7.8, 5.3 Hz, -CH₂-), 1.71-1.93 (m, 5H, -CH₂-), 1.97-2.05 (m, 2H, -CH₂-), 2.40 (ddd, 1H, J = 15.8, 9.1, -CH₂-), 1.97-2.05 (m, 2H, -CH₂-), 2.40 (ddd, 1H, J = 15.8, 9.1, -CH₂-), 2.53 (dddd, 1H, J = 15.8, 6.5, 5.3, 1.3 Hz), 3.72 (ddd, 1H, J = 7.8, 6.5, 1.3 Hz, O-CH₂-), 3.82 (dt*, 1H, J = 10.8, 6.5 Hz, -OCH-), 4.11 (ddd, 1H, J = 10.8, 6.5, 3.5 Hz, -OCH-). Diastereomer b: δ [ppm] = 1.71-1.96 (m, 8H, CH₂-), 2.35-2.44 (m, 1H, -CH₂-) 2.48-2.55 (m, 1H, -OCH₂-), 3.70-3.75 (m, 1H, -OCH₂-), 3.77-3.82 (m, 1H, 3.90 (ddd, 1H, J = 10.0, 6.8, 3.5 Hz, -OCH-), 4.21-4.25 (m, 1H, -OCH-). ¹³C-NMR (100 MHz, CDCl₃): Diastereomer a: δ [ppm] = 18.1 (CH₂), 24.8 (CH₂), 25.6 (CH₂), 27.8 (CH₂), 29.7 (CH₂), 68.7 (CH₂), 80.1 (CH), 82.0 (CH), 171.3 (C_q). Diastereomer b: δ [ppm] = 18.4 (CH₂), 24.6 (CH₂), 25.9 (CH₂), 27.3 (CH₂), 29.8 (CH₂), 68.9 (CH₂), 79.7 (CH), 81.3 (CH), 171.4 (C_q). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 2955 (s), 2875 (s), 1738 (vs), 1463 (m), 1445 (m), 1345 (m), 1242 (s), 1164 (m), 1048 (s), 932 (m). **GC-MS** (70 eV, EI): m/z (%) = 171 (M⁺ + 1, 65), 153 (13), 109 (3), 97 (2), 71 (100), 55 (14).

Die Konfiguration der Lactone kann auch mittels NOESY-Experimenten nicht eindeutig ermittelt werden.

V 84 Oxidation von 4-Methyl-6-(tetrahydrofuran-2-yl)-tetrahydropyran-2-ol (51c) mit Ag₂CO₃

Die beiden Fraktionen aus V 79 mit jeweils vier Diastereomeren werden getrennt umgesetzt.

Ansatz a)	94 mg	(0.50 mmol)	4-Methyl-6-(tetrahydrofuran-2-yl)-tetrahydropyran-2-
			ol (51c)
	275 mg	(1.00 mmol)	Ag_2CO_3
	10 ml		abs. Benzol
Ansatz b)	71 mg	(0.38 mmol)	4-Methyl-6-(tetrahydrofuran-2-yl)-tetrahydropyran-2-
			ol (51c)
	210 mg	(0.76 mmol)	Ag_2CO_3
	10 ml		abs. Benzol

Durchführung: analog AAV V

Aufarbeitung: Die Rohprodukte werden säulenchromatographisch an Kieselgel mit MTBE als Eluent aufgearbeitet.

Ausbeute: Ansatz a) 70 mg (0.38 mmol, 76 %) und Ansatz b) 42 mg (0.23 mmol, 60 %) 4-Methyl-6-(tetrahydrofuran-2-yl)-tetrahydropyran-2-on (**52c**) jeweils als Gemisch zweier Diastereomere. Spektroskopische Daten: 4-Methyl-6-(tetrahydrofuran-2-yl)-tetrahydropyran-2-on (52c)

(C10H16O3, 184.25 g/mol), Ansatz a), zwei Diastereomere

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.98 (d, 3H, ³J = 6.0 Hz, -CH₃), 1.02 (d, 3H, ³J = 6.5 Hz, -CH₃), 1.60 (ddd, 1H, ³J = 11.5, 6.7, 4.7 Hz, -CH₂-), 1.82-2.12 (m, 15H), 2.52 (dd, 1H, ³J = 16.0, 5.0 Hz, -CH₂-), 2.62 (dd, 1H, ³J = 12.0, 2.0 Hz, -CH₂-), 3.68-3.74 (m, 2H,

-CH₂-O-), 3.78-3.85 (m, 4H, -CH₂-O-, -CH-O-), 4.11 (ddd, 1H, ${}^{3}J = 9.3$, 6.3, 3.0 Hz, -CH-O-), 4.19 (ddd, 1H, ${}^{3}J = 8.3$, 7.0, 4.5 Hz, -CH-O-). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 21.1 (CH₃), 21.6 (CH₃), 23.5 (CH), 25.6 (2 x CH₂), 26.4 (CH), 27.8 (CH₂), 28.2 (CH₂), 31.7 (CH₂), 33.8 (CH₂), 37.7 (CH₂), 38.2 (CH₂), 68.7 (2 x CH₂), 79.1 (CH), 79.5 (CH), 80.4 (CH), 82.0 (CH), 171.0 (C_q), 171.7 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2960 (s), 2928 (s), 2873 (m), 1747 (m), 1618 (w), 1253 (s), 1072 (s), 812 (s). **MS** (EI, 70 eV): m/z (%) = 184 (M⁺, 1), 166 (1), 126 (9), 111 (4), 83 (44), 71 (100), 55 (19), 43 (18). **Elementaranalyse**: berechnet: **C**: 65.3 % **H**: 8.8 %, gefunden: **C**: 65.4 % **H**: 8.6 %.

Spektroskopische Daten: 4-Methyl-6-(tetrahydrofuran-2-yl)-tetrahydropyran-2-on (**52c**) $(C_{10}H_{16}O_3, 184.25 \text{ g/mol})$, Ansatz b), zwei Diastereomere

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.98 (d, 3H, ${}^{3}J$ = 6.3 Hz, -CH₃), 0.99 (d, 3H, ${}^{3}J$ = 6.8 Hz, -CH₃), 1.42-1.55 (m, 2H, -CH₂-), 1.87-2.09 (m, 13H), 2.30 (m_c, 1H, -CH-), 2.51-2.61 (m, 2H, -CH₂-), 3.69-3.81 (m, 4H, -CH₂-O-), 3.86-3.90 (m, 2H, -CH-O-), 4.22 (dt, 1H, ${}^{3}J$ = 12.0, 3.3 Hz, -CH-O-), 4.32 (ddd, 1H, ${}^{3}J$ = 8.0, 5.0, 3.0 Hz, -CH-O-). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 21.2 (CH₃), 21.5 (CH₃), 23.9 (CH), 25.9 (CH₂), 26.0 (CH₂), 26.5 (CH), 27.1 (CH₂), 28.1 (CH₂), 32.6 (CH₂), 33.2 (CH₂), 37.8 (CH₂), 38.3 (CH₂), 68.9 (CH₂), 69.0 (CH₂), 78.4 (CH), 79.5 (CH), 80.33 (CH), 81.4 (CH), 171.1 (C_q), 171.8 (C_q). Eine Zuordnung der relativen Konfiguration konnte auch mittels NOESY-Experimenten nicht erreicht werden.

V 85 Oxidation von 5,5-Dimethyl-6-tetrahydrofuran-2-yl-tetrahydropyran-2-ol (51d) mit Ag₂CO₃

Ansatz: 212 mg (1.06 mmol) 5,5-Dimethyl-6-tetrahydrofuran-2-yl-tetrahydropyran-2-ol (**51d**) 585 mg (2.12 mmol) Ag_2CO_3 15 ml abs. Benzol Durchführung: analog AAV V

- Aufarbeitung: 245 mg Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent gereinigt.
- Ausbeute: 196 mg (0.99 mmol, 93 %) 5,5-Dimethyl-6-tetrahydrofuran-2-yltetrahydropyran-2-on (**52d**) als farbloses Öl.

Spektroskopische Daten: 5,5-Dimethyl-6-tetrahydrofuran-2-yl-tetrahydropyran-2-on (**52d**) (C₁₁H₁₈O₃, 198.26 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.01 (s, 3H, -CH₃), 1.06 (s, 3H, -CH₃), 1.34-1.41 (m, 1H, -CH₂-), 1.68-1.74 (m, 1H, CH₂), 1.87-2.09 (m, 4H, -CH₂-), 2.43-2.49 (m, 2H, -CH₂-CO), 3.69 (dd, 2H, ³*J* = 7.3, 5.4 Hz, -CH₂-O-), 3.80 (d, 1H, ³*J* = 1.0 Hz, -CH-O-), 4.13 (t*, 1H, ³*J* = 7.3 Hz,

-CH-O-). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 25.2 (CH₃), 25.9 (CH₂), 26.4 (CH₃), 27.4 (CH₂), 29.7 (CH₂), 31.4 (CH₂), 31.7 (C_q), 69.4 (CH₂), 76.3 (CH), 88.1 (CH), 171.6 (C_q). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 2965 (s), 2874 (m), 1736 (s), 1473 (m), 1370 (m), 1167 (s), 1010 (m). **MS** (EI, 70 eV): m/z (%) = 198 (M⁺, 1), 180 (1), 165 (1), 142 (1), 129 (8), 113 (4), 99 (4), 81 (2), 71 (100), 55 (13), 43 (30). **Elementaranalyse**: berechnet: **C**: 66.6 % **H**: 9.2 %, gefunden: **C**: 66.3 % **H**: 8.9 %.

4.5 Reaktionen von Divinylglykolen

4.5.1 Darstellung einfacher Divinylglykole

V 86 Darstellung von 1,5-Hexadien-3,4-diol (54a,b)

Ansatz:	11.20 g	(200 mmol)	Acrolein (53)
	26.00 g	(400 mmol)	Zn-Staub
	18.60 g		konz. Essigsäure
	120 ml		Ethanol (98 %)

Durchführung:

In einem 250 ml Dreihalskolben mit Rückflusskühler, Tropftrichter und Innenthermometer werden 11.20 g (200 mmol) Acrolein (**53**) und 26.00 g (400 mmol) Zn-Staub in 120 ml Ethanol (98 %) auf 0 °C gekühlt. 18.6 g Essigsäure (konz.) werden so zugetropft, dass die

Temperatur 0 °C nicht übersteigt. Es wird weitere 10 h bei 0 °C gerührt und über Nacht auf RT aufgewärmt. Man saugt ab und wäscht den Rückstand zweimal mit 20 ml Ethanol. Das Lösemittel wird am Rotationsverdampfer entfernt, der Rückstand wird mit 80 ml Wasser aufgenommen und viermal mit je 30 ml Diethylether extrahiert. Man trocknet über MgSO₄, filtriert und entfernt den Diethylether am Rotationsverdampfer. Nach Destillation des Rückstandes (97 °C / 20 mbar) erhält man 4.20 g (37 mmol, 37 %) eines 1:1-Gemisches von *meso-* und *d,l-*1,5-Hexadien-3,4-diol (**54a,b**) als farblose Flüssigkeit.¹⁰⁹

Spektroskopische Daten: meso- und d,l-1,5-Hexadien-3,4-diol (54a,b)

(C₆H₁₀O₂, 114.14 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 3.37 (bs, 2H, -OH), 3.43 (bs, 2H, -OH), 3.98 (m_c, 2H, -CH-, *d*,*l*), 4.20 (m_c, 2H, -CH-, *meso*), 5.23 (d, 2H, ${}^{3}J$ = 10.0 Hz, CH_{2,cis}, *d*,*l*), 5.24 (d, 2H, ${}^{3}J$ = 10.5 Hz, CH_{2,cis}, *meso*), 5.33 (d, 2H, ${}^{3}J$ = 17.3 Hz, CH_{2,trans}, *meso*), 5.34 (d, 2H, ${}^{3}J$ = 17.3 Hz, CH_{2,trans}, *d*,*l*), 5.80-5.92 (m, 4H, CH, *meso/d*,*l*). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 75.3 (2 x CH, *meso*), 75.7 (2 x CH, *d*,*l*), 117.2 (4 x CH₂, *meso/d*,*l*), 135.8 (2 x CH, *meso*), 136.5 (2 x CH, *d*,*l*). **IR** (Film,

NaCl), $\tilde{\nu} \text{ [cm}^{-1}\text{]} = 3386 \text{ (s)}$, 3082 (m), 3018 (m), 2984 (s), 2885 (m), 1646 (m), 1427 (s), 1257 (m), 1118 (s), 1033 (s), 991 (m), 926 (m).

Die Zuordnung der Signale im NMR-Spektrum erfolgt über COSY-Experimente.

Zur Trennung der beiden Isomere werden die Diole mit 2,2-Dimethoxypropan in die entsprechenden Acetale überführt.

V 87 Darstellung von 2,2-Dimethyl-4,5-divinyl-1,3-dioxolan (55a,b)

Ansatz:	9.12 g	(80 mmol)	<i>meso-/d,l-</i> 1,5-Hexadien-3,4-diol (54a,b)
	10.42 g	(100 mmol)	2,2-Dimethoxypropan
	40 mg		p-Toluolsulfonsäure
	50 ml		abs. Toluol

Durchführung:

9.12 g (80 mmol) *meso-/d,l-*1,5-Hexadien-3,4-diol (**54a,b**) werden mit 10.42 g (100 mmol) 2,2-Dimethoxypropan und 40 mg *p*-Toluolsulfonsäure in 50 ml abs. Toluol gelöst und in einer Apparatur mit Wasserabscheider 16 h unter Rückfluss erhitzt. Die Reaktionslösung

wird nach dem Abkühlen mit 10 ml NaHCO₃-Lsg. gewaschen. Man trocknet über K_2CO_3 , filtriert und entfernt das Lösemittel. Die Umsetzung ist quantitativ. Die spektroskopischen Daten stimmen mit denen der Literatur überein.¹⁰⁹

5.0 g des Rückstandes werden säulenchromatographisch an Kieselgel mit PE(30/60)/MTBE (10:1) als Eluent getrennt. Man erhält 1.30 g *meso-*2,2-Dimethyl-4,5-divinyl-1,3-dioxolan (**55a**), 0.70 g *d*,*l*-2,2-Dimethyl-4,5-divinyl-1,3-dioxolan (**55b**) und 1.20 g als Mischfraktion von **55a,b**.

V 88-89 Hydrolyse von *meso-/d,l-2,2-Dimethyl-4,5-divinyl-1,3-dioxolan* (55a,b)

meso-Isomer:

Ansatz:	1.25 g	(8.1 mmol)	meso-2,2-Dimethyl-4,5-divinyl-1,3-dioxolan (55a)
	10 ml		Methanol
	10 ml		0.1 N Salzsäure

Durchführung:

1.25 mg (8.1 mmol) *meso*-2,2-Dimethyl-4,5-divinyl-1,3-dioxolan (**55a**) werden gelöst in 10 ml Methanol mit 10 ml 0.1 N Salzsäure 2 h unter Rückfluss erhitzt. Man neutralisiert mit Na₂CO₃-Lsg. und extrahiert mit Diethylether (6 x 10 ml). Es wird über MgSO₄ getrocknet, filtriert und das Lösemittel am Rotationsverdampfer entfernt. Man erhält 498 mg (4.4 mmol, 54 %) *meso*-1,5-Hexadien-3,4-diol (**54a**). Spektroskopische Daten siehe (V 86).

d,*l*-Isomer:

Ansatz: 660 mg (4.3 mmol) *d*,*l*-2,2-Dimethyl-4,5-divinyl-1,3-dioxolan (**55b**) 7 ml Methanol 7 ml 0.1 N Salzsäure

Durchführung: analog V 88

Ausbeute:Man erhält 230 mg (2.0 mmol, 47 %) d,l-1,5-Hexadien-3,4-diol (54b).Spektroskopische Daten siehe (V 86).

V 90 Darstellung von 3,4-Dimethyl-hexa-1,5-dien-3,4-diol (57)

Ansatz: 5.20 g (60 mmol) 2,3-Butandion (56) 80 ml (135 mmol) Vinylmagnesiumchlorid (1.7 M)

Durchführung:

80 ml (135 mmol) Vinylmagnesiumchlorid-Lösung (1.7 M) werden vorgelegt und auf -20 °C gekühlt. Man tropft 5.20 g (60 mmol) 2,3-Butandion (**56**) innerhalb von 1 h hinzu und rührt 3 d bei RT. Es wird mit 50 ml ges. NH₄Cl-Lösung hydrolysiert. Man trennt die Phasen und extrahiert die wässrige Phase mit Diethylether (3 x 30 ml). Die vereinigten organischen Phasen wird über NaSO₄ getrocknet, das Lösemittel am Rotationsverdampfer entfernt und der Rückstand im Vakuum (103 °C / 20 mbar) destilliert. Man erhält 5.00 g (35 mmol, 59 %) eines 1:1-Gemisches von *meso-/d,l-3*,4-Dimethyl-1,5-hexadien-3,4-diol (**57a,b**).

Spektroskopische Daten: *meso-/d*,*l*-3,4-Dimethyl-1,5-hexadien-3,4-diol (**57a,b**)

(C₈H₁₄O₂, 142.20 g/mol), zwei Diastereomere

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.26 (s, 6H, -CH₃), 1.30 (s, 6H, -CH₃), 2.40 (bs, 2H, -OH), 2.50 (bs, 2H, -OH), 5.17 (dd, 2H, ³*J* = 10.8 Hz, ²*J* = 1.6 Hz, =C*H*H'), 5.18 (dd, 2H, ³*J* = 11.0 Hz, ²*J* = 1.6 Hz, =C*H*H'), 5.32 (dd, 2H, ³*J* = 17.3 Hz, ²*J* = 1.6 Hz, =CH*H*'), 5.33 (dd, 2H, ³*J* = 17.9 Hz, ²*J* = 1.6 Hz, =CH*H*'), 6.01 (dd, 2H, ³*J* = 17.9, 11.0 Hz, -CH=), 6.01 (dd, 2H, ³*J* = 17.3, 10.8 Hz, -CH=). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 22.1 (2 x CH₃), 22.7

ОН

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 22.1 (2 x CH₃), 22.7 (2 x CH₃), 71.1 (2 x C_q), 76.9 (2 x C_q), 114.0 (2 x CH₂), 114.3 (2 x CH₂), 141.0 (2 x CH), 141.5 (2 x CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3456 (vs), 3088 (w), 3020 (w), 2986 (s), 2939 (w), 1643 (w), 1554 (m), 1414 (m), 1369 (s), 1114 (s), 1076 (s), 997 (s), 924 (s). **GC-MS** (70 eV, EI): m/z (%) = 143 (M⁺ + 1, 1), 135 (1), 125 (100), 115 (2), 107 (54), 97

(16), 81 (42), 71 (6), 66 (2), 55 (24).

V 91 Darstellung von 2-Hydroxy-2-vinylcyclohexanon (59)

Ansatz: 11.20 g (100 mmol) 1,2-Cyclohexandion (**58**) 120 ml (200 mmol) Vinylmagnesiumchlorid (1.7 M) Durchführung: analog V 90

Aufarbeitung: Der Rückstand im Vakuum (105 °C/ 20 mbar) destilliert.

Ausbeute: 6.05 g (42 mmol, 42 %) 2-Hydroxy-2-vinylcyclohexanon (59)

Spektroskopische Daten: 2-Hydroxy-2-vinylcyclohexanon (**59**)

(C₈H₁₂O₂, 140.18 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.62-1.80 (m, 2H, -CH₂-), 1.80-1.89 (m, 2H, -CH₂-), 2.11-2.18 (m, 1H, -CH₂-), 2.25-2.30 (m, 1H, -CH₂-), 2.53-2.58 (m, 2H, -CH₂-), 3.91 (bs, 1H, -OH), 5.27 (dd, 1H, ${}^{3}J = 10.6$, ${}^{2}J = 1.0$ Hz, =C*H*H'_{cis}), 5.44 (dd, 1H, ${}^{3}J = 17.0$, ${}^{2}J = 1.0$ Hz, =CH*H*'_{trans}), 6.17 (dd, 1H, ${}^{3}J = 17.0$, 10.6 Hz, -CH=). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 22.4 (CH₂), 27.7 (CH₂), 38.4 (CH₂), 41.2 (CH₂), 79.3 (C_q), 116.6 (CH₂), 137.3 (CH), 211.3 (C_q, C=O). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3486 (s), 3083 (w), 3032 (w), 2946 (s), 2865 (m), 1719 (s), 1642 (m).

V 92 Darstellung von 1,2-Divinyl-1,2-cyclohexandiol (60)

Ansatz:	6.00 g	(43 mmol)	2-Hydroxy-2-vinylcyclohexanon (59)
	57 ml	(96 mmol)	Vinylmagnesiumchlorid (1.7 M)

Durchführung: analog V 90

Ausbeute:6.10 g (36 mmol, 84 %) eines 1:1-Diastereomerengemisches von meso-1,2-Divinyl-1,2-cyclohexandiol(60a)undd,l-1,2-Divinyl-1,2-cyclohexandiol (60b).

Aufarbeitung: Die Trennung der beiden Diastereomere gelingt s

üulenchromatographisch.
Eine Probe von 2.60 g wird an Kieselgel mit PE (30/60)/MTBE (1:1) als
Eluent getrennt. Man erh

ält 796 mg 60a und 792 mg 60b und eine
Mischfraktion von 850 mg.

meso-1,2-Divinyl-1,2-cyclohexandiol (60a)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.47-1.53 (m, 2H, -CH₂-), 1.56-1.62 (m, 2H, -CH₂-), 1.67-1.73 (m, 2H, -CH₂-), 1.81-1.87 (m, 2H, -CH₂-), 5.17 (dd, 2H, ³*J* = 10.8 Hz, ²*J* = 1.5 Hz, =C*H*H'), 5.36 (dd, 2H, ³*J* = 17.1 Hz, ²*J* = 1.5 Hz, =CHH'), 6.12 (dd, 2H, ³*J* = 17.1, 10.8 Hz, -CH=). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 21.5 (2 x CH₂), 34.4 (2 x CH₂), 75.8 156 $(2 \times C_q)$, 114.2 (2 x CH₂), 140.6 (2 x CH). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3436 (s), 3086 (w), 3023 (w), 2936 (s), 2863 (m), 1639 (m), 1450 (m), 1337 (m), 990 (s), 925 (s).

Spektroskopische Daten: *d*,*l*-1,2-Divinyl-1,2-cyclohexandiol (**60b**) (C₁₀H₁₆O₂, 168.24 g/mol) ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.45-1.69 (m, 6H, -CH₂-), 1.94-2.00 (m, 2H, -CH₂-), 5.21 (ddd, 4H, ³*J* = 17.5, 11.5 Hz, ²*J* = 1.5 Hz, =CH₂), 6.16 (dd, 2H, ³*J* = 17.5, 11.5 Hz, -CH=). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 20.7 (2 x CH₂), 33.2 (2 x CH₂), 75.2 (2 x C_q), 114.4 (2 x CH₂), 142.0 (2 x CH). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3478 (s), 3087 (w), 2935 (s), 2862 (m), 1638 (w), 995 (s).

Zur Absicherung der Konfiguration der Isomeren wird eine Probe des angenommenen *meso*-Diastereomers mit Dimethoxypropan acetalisiert.¹²⁰

V 93 Acetalisierung von *meso-*1,2-Divinyl-1,2-cyclohexandiol (60a)

Ansatz:	960 mg	(5.7 mmol)	meso-1,2-Divinyl-1,2-cyclohexandiol (60a)
	833 mg	(8.0 mmol)	Dimethoxypropan
	20 mg		<i>p</i> -TsOH
	20 ml		abs. Toluol

Durchführung: analog V 87 Ausbeute: 408 mg (1.96 mmol, 34 %) 2,2-Dimethyl-3a, 7a-divinylhexahydrobenzo[1,3]dioxol (**61**)

Spektroskopische Daten: 2,2-Dimethyl-3*a*, 7*a*-divinyl-hexahydrobenzo[1,3]dioxol (**61**) (C₁₃H₂₀O₂, 208.30 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.42-1.47 (m, 2H, -CH₂-), 1.47 (s, 3H, -CH₃), 1.59 (s, 3H, -CH₃), 1.62-1.69 (m, 4H, -CH₂-), 1.84-1.86 (m, 2H, -CH₂-), 5.09 (dd, 2H, ³J = 10.8 Hz, ²J = 1.8 Hz, 2 x =CHH'), 5.34 (dd, 2H, ³J = 17.3 Hz, ²J = 1.8 Hz, 2 x =CHH'), 6.00 (dd, 2H, ³J = 17.3, 10.8 Hz, 2 x -CH=). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 19.5 (2 x CH₂),

29.0 (CH₃), 30.0 (CH₃), 33.9 (2 x CH₂), 83.7 (2 x C_a), 108.0 (C_a), 113.2 (2 x CH₂), 140.7

(2 x CH). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3091 (w), 3062 (w), 2984 (m), 2936 (s), 2863 (m), 1641 (w), 1450 (m), 1377 (s), 1367 (s), 1208 (s), 1019 (s), 923 (s). **MS** (EI, 70 eV): m/z (%) = 208 (M⁺, 8), 193 (15), 181 (9), 150 (15), 133 (27), 123 (33), 95 (49), 79 (30), 67 (26), 55 (100).

4.5.2 Hydroformylierung der Divinylglykole

V 94-96 Hydroformylierung von 1,5-Hexadien-3,4-diol (54)

Ansatz:	200 mg	(1.75 mmol)	1,5-Hexadien-3,4-diol (54)
	5 mg	(1.0 mol-%)	Rh(acac)(CO) ₂
	55 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. Dioxan

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Tab. 45: Hydroformylierung von 1,5-Hexadien-3,4-diol (54a,b)

Vers.	Substrat	LM	Ausbeute ^{a)} [⁴		
V 94	54a,b	Dioxan	62a,b	66	
V 95	54a	Dioxan	62a	58	
V 96	54b	Dioxan	62b	84	

^{a)} isolierte Ausbeuten

Ausbeute (V 94): 200 mg (1.15 mmol, 66 %) *meso-/d,l*-Octahydro-[2,2']bifuranyl-5,5'diol (**62a,b**)

meso-Octahydro-[2,2']bifuranyl-5,5'-diol (62a)

(C₈H₁₄O₄, 174.20 g/mol, Schmp.: 123-124 °C), zwei Diastereomere

¹**H-NMR** (400 MHz, DMSO-d₆): δ [ppm] = 1.39-1.78 (m, 16H), HO₁ 4.61-4.64 (m, 2H, -OCH-CHO-), 5.01-5.03 (m, 2H, -OCH-CHO-), 6.05-6.09 (m, 2H, -CHOH), 6.43-6.47 (m, 2H,

" OH

-CHOH). ¹³C-NMR (100 MHz, DMSO-d₆): δ [ppm] = 24.8 (CH₂), 24.9 (CH₂), 28.9 (CH₂), 29.0 (CH₂), 31.0 (CH₂), 31.5 (CH₂), 33.0 (CH₂), 33.5 (CH₂), 68.6 (CH), 69.5 (CH), 74.9 (CH), 75.7 (CH), 90.7 (2 x CH), 96.4 (2 x CH). **MS** (EI, 70 eV): m/z (%) = 174 (M⁺, 6),

156 (9), 138 (9), 130 (12), 110 (10), 100 (10), 87 (100), 69 (32), 57 (27), 55 (11). **Elementaranalyse**: berechnet: **C**: 55.2 % **H**: 8.1 %, gefunden: **C**: 55.3 % **H**: 8.2 %.

V 97 Oxidation von *meso-/d,l*-Octahydro-[2,2']bifuranyl-5,5'-diol (62a,b) mit Ag₂CO₃

Ansatz: 32	20 mg	(1.84 mmol)	<i>meso-/d,l</i> -Octahydro-[2,2']bifuranyl-5,5'-diol (62a,b)
	2.75 g	(10.0 mmol)	Ag ₂ CO ₃
	2.00 g		Celite
	15 ml		abs. Benzol

Durchführung: analog AAV V

Aufarbeitung: Man erhält 240 mg eines farblosen Feststoffes als Rohprodukt. Durch fraktionierende Kristallisation aus 3 ml Isopropanol erhält man 101 mg (0.59 mmol, 32 %) an *meso*-Octahydro-[2,2']bifuranyl-5,5'-dion (63a) und 97 mg (0.57 mmol, 31 %) *d*,*l*-Octahydro-[2,2']bifuranyl-5,5'-dion (63b). Die Zuordnung erfolgt anhand von COSY-Experimenten und Literaturdaten.¹¹⁴

Spektroskopische Daten: *meso-/d,l*-Octahydro-[2,2']bifuranyl-5,5'-dion (**63a,b**) (C₈H₁₀O₄, 170.16 g/mol) ¹**H-NMR** (400 MHz, CDCl₃): (*meso*) δ [ppm] = 2.04-2.14 (m, 2H, -CH₂-, H_β), 2.35-2.45 (m, 2H, -CH₂-, H_α), 2.55-2.70 (m, 4H, 2 x C_q-CH₂-), 4.59 (m_c, 2H, -O-CH-). (*d*,*l*) δ [ppm] = 2.22-2.32 (m, 2H, -CH₂-, H_β), 2.35-2.45 (m, 2H, -CH₂-, H_α), 2.50-2.75 (m, 4H, 2 x C_q-CH₂-), 4.62 (m_c, 2H, -O-CH-). ¹³**C-NMR** (100 MHz, CDCl₃): (*meso*) δ [ppm] = 23.0 (2 x CH₂), 27.7 (2 x CH₂), 79.7 (2 x CH), 176.0 (2 x C_q). (*d*,*l*) δ [ppm] = 23.7 (2 x CH₂), 27.7 (2 x CH₂), 79.8 (2 x CH), 176.3 (2 x C_q). **IR** (Pressling, KBr), \tilde{v} [cm⁻¹] = 2973 (m), 2955 (m), 2935 (m), 1774 (s), 1193 (s), 1144 (s). **MS** (EI, 70 eV): m/z (%) = 171 (M⁺ + 1, 100), 153 (32), 143 (10), 125 (33), 111 (18), 107 (1), 97 (6), 85 (62), 69 (2), 57 (29).

V 98 Hydroformylierung von 3,4-Dimethyl-1,5-hexadien-3,4-diol (57)

 Ansatz:
 710 mg
 (5.0 mmol)
 3,4-Dimethyl-1,5-hexadien-3,4-diol (57)

 13 mg
 (1.0 mol-%)
 Rh(acac)(CO)₂

 157 mg
 (4.0 mol-%)
 BIPHEPHOS

 10 ml
 abs. Solvens

Reaktionsbedingungen: s. Tab. 46

Durchführung: analog AAV I

Tab. 46: Hydroformylierung von 3,4-Dimethyl-1,5-Hexadien-3,4-diol (57)

Vers.	p(CO)/p(H ₂)	Т	t	LM	Ausbeut	te ^{a)} [%]
	[bar]	[°C]	[h]		<i>rac</i> -64	65
V 98	10 / 10	60	20	Dioxan	47 (27)	
V 99	10 / 10	60	20	CH_2Cl_2	(50)	(47)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Ausbeute (V 99): Mit MTBE als Eluent erhält man 463 mg (2.50 mmol, 50 %) *d,l*-1,2-Dimethyl-6,10,11-trioxatricyclo[2.2.1.1^{2,5}]undecan **64** und mit EtOH als Eluent 477 mg (2.36 mmol, 47 %) an *meso*-2,2'-Dimethyloctahydro[2,2']-bifuranyl-5,5'-diol (65) bezogen auf das eingesetzte Isomerengemisch.

Spektroskopische Daten: d,l-1,2-Dimethyl-6,10,11-trioxatricyclo[2.2.1.1^{2,5}]undecan (64) (C₁₀H₁₆O₃, 184.24 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.30 (s, 6H, 2 x CH₃), 1.40-1.48 (m, 2H, -CH₂-), 2.04-2.29 (m, 6H, -CH₂-), 5.57 (dd, 2H, ³*J* = 6.8, 1.1 Hz, -OCHO-). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 23.0 (2 x CH₃), 30.6 (2 x CH₂), 36.5 (2 x CH₂), 91.3 (2 x C_q), 101.6 (2 x CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2982 (s), 2961 (s), 2870 (m), 1458 (m), 1202 (m), 1098 (s), 965 (s). **MS** (EI, 70 eV): m/z (%) = 184 (M⁺, 4), 150 (1), 138 (1), 127 (9), 109 (2), 95 (4), 84 (100), 72 (6), 55 (8), 43 (47). **Elementaranalyse**: berechnet: **C**: 65.2 % **H**: 8.8 %, gefunden: **C**: 65.3 % **H**: 8.7 %.

Spektroskopische Daten: *meso*-2,2'-Dimethyloctahydro-[2,2']-bifuranyl-5,5'-diol (**65**) (C₁₀H₁₈O₄, 202.25 g/mol)

Da 65 nur schwer zu reinigen ist, können die NMR-Spektren nicht ausgewertet werden.

IR (Film, NaCl), \tilde{v} [cm⁻¹] = 3418 (bs), 2977 (s), 2876 (m), 1455 HO₂ (s), 1376 (s), 1202 (s), 1087 (s), 989 (s), 959 (s). GC-MS (70 eV, EI): m/z (%) = 203 (M⁺ + 1, 2), 167 (100), 129 (66), 108 (19), 83 (40), 55 (31).

Eine Oxidation des Rohgemisches von *meso-*2,2'-Dimethyloctahydro-[2,2']-bifuranyl-5,5'diol (**65**) mit Ag₂CO₃ oder mit TPAP gelingt nicht, darum wird versucht das Rohgemisch der Oxidationsversuche zum Bis-Tetrahydrofuran zu reduzieren.

V 100 Versuch der Reduktion des Rohgemisches aus Versuch V 98

Ansatz: 263 mg (1.30 mmol) *meso*-2,2'-Dimethyloctahydro-[2,2']-bifuranyl-5,5'diol (**65**)

605 mg	(5.20 mmol)	Et ₃ SiH
650 mg		Amberlyst 15
10 ml		CH_2Cl_2

Durchführung:

263 mg (1.30 mmol) *meso*-2,2'-Dimethyloctahydro-[2,2']-bifuranyl-5,5'-diol (**65**), 605 mg (5.20 mmol) Et₃SiH und 650 mg Amberlyst 15 werden in 10 ml Dichlormethan 5 h bei RT gerührt und der Reaktionsverlauf wird mittel DC-Kontrolle verfolgt. Nach beendeter Reaktion wird abfiltriert, mit CH₂Cl₂ gewaschen und das Lösemittel entfernt. Man erhält 246 mg Rohprodukt (GC-Anteil: 65 %). Nach säulenchromatographischer Aufreinigung an Kieselgel mit MTBE/Cyclohexan (1:1) erhält man 77 mg (0.42 mmol, 32 %) an 2,2'-Dimethyloctahydro-[2,2']-bifuranyl-5'-on (**66**).

Spektroskopische Daten: 2,2'-Dimethyloctahydro-[2,2']-bifuranyl-5'-on (66)

 $(C_{10}H_{16}O_3,\,184.24~g/mol)$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.25 (s, 3H, -CH₃), 1.41 (s, 3H, -CH₃), 1,67 (ddd, 1H, ³*J* = 12.3, 8.3, 4.0 Hz, -CH₂-), 1.82-2.05 (m, 4H, -CH₂-), 2.28 (ddd, 1H, ³*J* = 12.8, 10.0, 7.3 Hz, -CH₂-), 2.61 (m, 2H, -CH₂-), 3.82 (dt, 1H, ³*J* = 8.0, 7.8 Hz, -OCH₂-), 3.93 (ddd, 1H, ³*J* = 8.3, 4.8, 4.8 Hz, -OCH₂-). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 21.9 (CH₃), 23.3 (CH₃), 26.1 (CH₂), 29.4 (CH₂), 29.6 (CH₂), 33.5 (CH₂), 68.5 (CH₂), 86.5 (C_q), 90.6 (C_q), 177.0 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2977 (m), 2944 (m), 2875 (m), 1770 (vs), 1456 (m), 1383 (m), 1265 (m), 1161 (m), 1084 (m), 1044 (m), 946 (m). **GC-MS** (70 eV, EI): m/z (%) = 185 (M⁺ + 1, 21), 169 (38), 151 (9), 141 (100), 125 (62), 123 (87), 99 (25), 85 (100), 71 (25), 55 (24). **Elementaranalyse:** berechnet: **C**: 65.2 % **H**: 8.8 % gefunden: **C**: 65.0 % **H**: 8.7 %.

V 101-103 Hydroformylierung von meso-/d,l-1,2-Divinylcyclohexan-1,2-diol (60a,b)

V 102 *meso-*1,2-Divinylcyclohexan-1,2-diol (60a):

 Ansatz:
 970 mg
 (5.8 mmol)
 meso-1,2-Divinylcyclohexan-1,2-diol (60a)

 15 mg
 (1.0 mol-%)
 Rh(acac)(CO)_2

 181 mg
 (4.0 mol-%)
 BIPHEPHOS

 10 ml
 abs. THF

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Aufarbeitung: Säulenchromatographische Reinigung an Kieselgel mit MTBE als Eluent.

Ausbeute:485 mg (2.12 mmol, 37 %) ($5S^*$, $6R^*$)-1,7-Dioxadispiro[4.0.4.4]tetra-
decan-2,8-diol (**67**) als 2.8:1.0-Diastereomerengemisch.

V 103 *d*,*l*-1,2-Divinylcyclohexan-1,2-diol (**60b**):

Ansatz:	792 mg	(4.7 mmol)	<i>d</i> , <i>l</i> -1,2-Divinylcyclohexan-1,2-diol (60b)
	12 mg	(1.0 mol-%)	Rh(acac)(CO) ₂
	155 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. Dioxan

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute: Nach der filtrativen Säule über Aluox mit MTBE erhält man 923 mg (4.4 mmol, 94 %) 5,14,15-Trioxatetracyclo[7.4.1.1.0^{1,9}]pentadecan (**67**).

			Ausbeute ^{a)} [%]		
Vers.	Substrat	LM	67	68	
V 101	60a,b	Dioxan	80 (36)		
V 102	60b	Dioxan	(94)		
V 103	60a	THF		80 (37)	

Tab. 47: Hydroformylierung von 1,2-Divinyl-cyclohexan-1,2-diol (**60a,b**)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

5,14,15-Trioxatetracyclo[7.4.1.1.0^{1,9}]pentadecan (**67**)

 $(C_{12}H_{18}O_3, 210.27 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.17-1.26 (m, 2H), 1.37 (dt, 2H, ³J = 12.6, 6.0 Hz), 1.65-1.76 (m, 6H), 1.99-2.26 (m, 6H), 5.53 (dd, 2H, ³J = 6.0, 1.5 Hz, -OCHO-) ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 23.6

(2 x CH₂), 29.8 (2 x CH₂), 35.6 (2 x CH₂), 36.1 (2 x CH₂), 91.1 (2 x C₀),

101.1 (2 x CH). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 2939 (s), 2864 (s), 1455 (s), 1268 (m), 1201 (s), 1154 (s), 1089 (s), 1049 (s), 972 (s). **MS** (EI, 70 eV): m/z (%) = 210 (M⁺, 45), 192 (5), 182 (10), 164 (7), 153 (27), 136 (13), 110 (100), 97 (33), 84 (38), 67 (13), 55 (25). **Elementaranalyse:** berechnet: **C**: 68.5 % **H**: 8.6 %, gefunden: **C**: 68.4 % **H**: 8.4 %.

Spektroskopische Daten: (5S*, 6R*)-1,7-Dioxadispiro[4.0.4.4]tetradecan-2,8-diol (68)

 $(C_{12}H_{20}O_4, 228.29 \text{ g/mol}), 2.8:1.0$ -Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.30-2.19 (m, 32H), 5.23

(bs, 4H, 2 x -OH), 5.31-5.47 (m, 4H, 2 x -CHOH). ¹³C-NMR (100

MHz, CDCl₃): δ [ppm] = 28.2 (4 x CH₂), 28.3 (4 x CH₂), 30.6 HOWM

 $(4 \text{ x CH}_2), 33.9 (4 \text{ x CH}_2), 87.8 (2 \text{ x C}_q), 88.4 (2 \text{ x C}_q), 98.3$

(2 x CH), 98.8 (2 x CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3354 (vs), 2918 (s), 2860 (s), 1444 (m), 1057 (s). **GC-MS** (70 eV, EI): m/z (%) = 228 (M⁺, 2), 210 (13), 193 (100), 175 (7), 136 (6), 110 (50), 97 (18), 84 (15), 67 (10), 55 (19).

∽ОН

Zur besseren Charakterisierung wird eine Oxidation des Bislactols zum Lacton mit Ag₂CO₃ durchgeführt.

V 104 Oxidation von (5*S**, 6*R**)-1,7-Dioxadispiro[4.0.4.4]tetradecan-2,8-diol (68)

Ansatz: 300 mg (1.31 mmol) (5*S**, 6*R**)-1,7-Dioxadispiro[4.0.4.4]tetradecan-2,8diol (**68**) 1.65 g (5.98 mmol) Silber(I)carbonat 15 ml abs. Benzol

Durchführung: analog AAV V

Aufarbeitung: Man erhält 260 mg hellgelbe Kristalle als Rohprodukt. Nach Umkristallisation aus 20 ml Diethylether erhält man 212 mg (0.95 mmol, 72 %) an $(5S^*, 6R^*)$ -1,7-Dioxadispiro[4.0.4.4]tetradecan-2,8-dion (**69**) als farblose Kristalle. Von diesen wird eine Röntgenstrukturanalyse angefertigt.¹¹⁶

Spektroskopische Daten: $(5S^*, 6R^*)$ -1,7-Dioxadispiro[4.0.4.4]tetradecan-2,8-dion (69)

(C₁₂H₁₆O₄, 224.25 g/mol, Schmp. 120 °C)

¹**H-NMR** (400 MHz, DMSO-d₆): δ [ppm] = 1.46-1.76 (m, 6H),

1.87-1.95 (m, 2H), 2.00-2.18 (m, 4H), 2.50-2.61 (m, 2H), 2.71-2.81

(m, 2H). ¹³C-NMR (100 MHz, DMSO-d₆): δ [ppm] = 21.0 (2 x σ

CH₂), 26.4 (2 x CH₂), 28.1 (2 x CH₂), 33.0 (2 x CH₂), 87.8 (2 x C_q),

176.0 (2 x C_q). **IR** (Pressling, KBr), \tilde{v} [cm⁻¹] = 2954 (s), 2940 (s), 2881 (m), 2863 (s), 1770

(vs), 1448 (m), 1280 (s), 1251 (s), 1193 (s), 1128 (s), 1035 (s), 983 (s), 925 (s). MS (EI, 70 eV): m/z (%) = 224 (M⁺, 16), 206 (15), 178 (12), 162 (5), 150 (4), 124 (100), 111 (71), 96 (27), 83 (19), 67 (13), 55 (45). Elementaranalyse: berechnet: C: 64.3 % H: 7.2 %, gefunden: C: 64.2 % H: 7.2 %.

4.6 Reaktionen von Bisallylglykolen

4.6.1 Darstellung einfacher Bisallylglykole

V 104 Darstellung von 1,7-Octadien-4,5-diol (72)

Ansatz:	18.20 g	(150 mmol)	Allylbromid
	10.40 g	(75 mmol)	Glyoxal (70) (40 %-ige wässr. Lsg.)
	17.80 g	(150 mmol)	Zinn (gepulv.)
	0.50 g	(2 mmol)	Hg(II)Cl ₂
	0.20 g	(2 mmol)	NEt ₃
	150 ml		abs. Toluol

Durchführung:

17.80 g (150 mmol) Zinnstaub werden in 150 ml abs. Toluol vorgelegt und 0.50 g Hg(II)Cl₂ zugegeben. Man erhitzt 30 min unter Rückfluss, lässt abkühlen und gibt 0.20 g NEt₃ hinzu. Das Allylbromid wird langsam zugetropft und dann 2.5 h unter Rückfluss erhitzt. Die Innentemperatur der Reaktionslösung steigt dabei von 103 °C auf 111 °C. Dies zeigt das Ende der Reaktion an. Der Feststoff wird unter Argon über eine Fritte abfiltriert und das Toluol über eine Brücke in eine mit flüssigem Stickstoff gekühlte Vorlage abdestilliert. Zum Rückstand werden 10.40 g (75 mmol) der Glyoxal-Lsg. (70) und 100 ml Wasser gegeben. Dabei erwärmt sich die Reaktionsmischung auf 50 °C. Es wird drei Tage bei RT gerührt und anschließend mit 100 ml ges. NH₄-Lsg. hydrolysiert. Man extrahiert mit Diethylether (3 x 100 ml) und trocknet die organische Phase über MgSO₄. Das Lösemittel wird am Rotationsverdampfer entfernt. Man erhält 6.50 g (46 mmol, 61 %) d,l-/meso-1,7-Octadien-4,5-diol (72) $(C_8H_{14}O_2,$ 142.20 g/mol) als 2.4:1-Diastereomerengemisch. Die spektroskopischen Daten entsprechen denen der Literatur.¹²⁰

V 106 Darstellung von 4,5-Dimethylocta-1,7-dien-4,5-diol (73)

 Ansatz:
 12.90 g
 (150 mmol)
 2,3-Butandion (56)

 42.30 g
 (350 mmol)
 Allylbromid

 9.12 g
 (375 mmol)
 Mg-Späne

 150 ml
 abs. Diethylether

Durchführung: analog V 72

Ausbeute: 5.44 g (32 mmol, 21 %) *d,l-/meso*-4,5-Dimethylocta-1,7-dien-4,5-diol (**73**) (2:1-Diastereomerengemisch). Die spektroskopischen Daten entsprechen denen der Literatur.¹²¹

V 107 2-Allyl-2-hydroxycyclohexanon (74)

Ansatz:	3.36 g	(30.0 mmol)	1,2-Cyclohexandion (58)
	10.90 g	(90.0 mmol)	Allylbromid
	2.19 g	(90.0 mmol)	Mg-Späne
	100 ml		abs. Diethylether

Durchführung: analog V 72

Ausbeute: 2.98 g (19.3 mmol, 64 %) 2-Allyl-2-hydroxycyclohexanon (**75**). Die spektroskopischen Daten entsprechen denen der Literatur.¹¹²

V 108 1,2-Bisallyl-1,2-cyclohexandiol (75)

Ansatz:	2.93 g	(19.0 mmol)	2-Allyl-2-hydroxycyclohexanon (74)
	7.26 g	(60.0 mmol)	Allylbromid
	1.46 g	(60.0 mmol)	Mg-Späne
	80 ml		abs. Diethylether

Durchführung: analog V 72

Ausbeute: 3.00 g (15.3 mmol, 80 %) 1,2-Bisallyl-1,2-cyclohexandiol (74) (1:1-Diastereomerengemisch). Die spektroskopischen Daten stimmen mit der Literatur überein.¹¹²

4.6.2 Hydroformylierung der Bisallylglykole

V 109-110 Hydroformylierung von 1,7-Octadien-4,5-diol (72)

Ansatz: 1.04 g (8.0 mmol) *d,l-/meso-*1,7-Octadien-4,5-diol (**72**) 10 mg (0.5 mol-%) Rh(acac)(CO)₂ 126 mg (2.0 mol-%) BIPHEPHOS 10 ml abs. Solvens

Reaktionsbedingungen: s. Tab. 48 Durchführung: analog AAV I

Tab. 48: Hydroformylierung von 1,7-Octadien-3,4-diol (72)

Vers.	p(CO)/p(H ₂)	Т	t	LM	Ausbeute ^{a)} [%]	
	[bar]	[°C]	[h]		76	77
V 109	10 / 10	60	20	Dioxan	(44)	
V 110	10 / 10	60	20	CH_2Cl_2		(25)

^{a)} isolierte Ausbeuten; Katalysator: Rh(acac)(CO)₂, 4 Äq. BIPHEPHOS

Ausbeute (V 108): 1.48 g Rohprodukt. Umkristallisation aus 10 ml Ethylacetat ergibt 711 mg (3.52 mmol, 44 %) eines nicht zu trennenden 1.0 : 1.4 : 2.1 : 4.1 Diastereomerengemisches an Octahydro[2,2']-bipyran-6,6'-diol (**76**).

Spektroskopische Daten: Octahydro[2,2']bipyran-6,6'-diol (76)

(C10H18O4, 202.25 g/mol, Schmp.: 145-146 °C), vier Diastereomere

¹**H-NMR** (400 MHz, CD₃OD): δ [ppm] = 1.15-1.92 (m, 48H, $_{H}$

-CH₂-), 3.27-3.48 (m, 6H, -OCH-), 3.78-3.96 (m, 2H, -OCH-), 4.42-4.67 (m, 6H, -CHOH), 5.15-5.23 (d*, 2H, -CHOH).

¹³C-NMR (100 MHz, CD₃OD): δ [ppm] = 16.7 (CH₂), 16.8

(CH₂), 16.8 (CH₂), 16.9 (CH₂), 21.4 (CH₂), 21.5 (CH₂), 21.6 (CH₂), 21.6 (CH₂), 25.3 (CH₂), 25.4 (CH₂), (CH₂), 25.6(CH₂), 26.1 (CH₂), 26.3 (CH₂), 26.4 (CH₂), 26.5 (CH₂), 26.7 (CH₂), 29.7 (CH₂), 29.8 (CH₂), 29.9 (CH₂), 30.0 (CH₂), 32.2 (CH₂), 32.3(CH₂), 32.4 (CH₂), 32.4 (CH₂), 32.4 (CH₂), 70.2 (-OCH-), 70.4 (-OCH-), 70.6 (-OCH-), 70.7 (-OCH-), 78.0 (-OCH-), 78.4 (-OCH-), 78.6 (-OCH-), 91.1 (2 x -CHOH), 96.1 (2 x -CHOH), 96.1 (2 x -CHOH), 98.4 (2 x -CHOH). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 3347 (vs), 2943 (m), 2855

(m), 1449 (m), 1368 (m), 1304 (m), 1138 (m), 1076 (m), 1013 (s), 985 (m), 902 (m). MS
(EI, 70 eV): m/z (%) = 202 (M⁺, 1), 184 (9), 167 (6), 156 (7), 138 (19), 113 (20), 101 (45), 84 (100), 71 (18), 67 (28), 57 (87). Elementaranalyse: berechnet: C: 59.4 % H: 9.0 %, gefunden: C: 59.6 % H: 8.8 %.

Spektroskopische Daten: 4-(6,8-Dioxabicyclo[3.2.1]oct-7-yl)-butyraldehyd (77)

(C₁₀H₁₆O₃, 184.24 g/mol), 3:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.42 (m, 20H), 2.49 (dt, 2H, ³*J* = 7.3, 1.6 Hz, CH₂CHO), 2.57 (dt, 2H, ³*J* = 6.8, 1.5 Hz, CH₂CHO), 3.97 (dt, 1, ³*J* = 8.0, 4.0 Hz, CH-O-), 4.06 (dd, 2H, ³*J* = 7.3, 5.5 Hz, CH-O-), 4.10 (s*, 2H, CH-O-), 4.17 (t, 1H, ³*J* = 3.5 Hz, CH-O-), 5.52 (s, 1H, -OCHO-), 9.78 (dt, 2H, ³*J* = 1.6 Hz, CHO), 9.80 (dt, 1H, ³*J* = 1.5 Hz, CHO). ¹³**C-NMR** (100 MHz, CDCl₃): *d*,*l*-Isomer: δ [ppm] = 15.8 (CH₂), 18.1 (CH₂), 28.4 (CH₂), 30.9 (CH₂), 34.7 (CH₂), 43.6 (CH₂), 77.3 (CH), 78.4 (CH), 102.5 (CH), 202.3 (CHO). *meso*-Isomer: δ [ppm] = 15.9 (CH₂), 19.5 (CH₂), 27.7 (CH₂), 30.2 (CH₂), 37.0 (CH₂), 43.6 (CH₂), 75.0 (CH), 79.2 (CH), 101.8 (CH), 202.1 (CHO). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2947 (s), 2874 (m), 2721 (w), 1724 (vs), 1460 (m), 1119 (s), 1016 (m), 883 (m). **GC-MS** (70 eV, EI): m/z (%) = 185 (M⁺ + 1, 1), 167 (1), 149 (1), 137 (3), 123 (2), 109 (5), 95 (15), 91 (22), 79 (100), 67 (90), 55 (38). **Elementaranalyse**: berechnet: **C**: 65.2 % **H**: 8.8 %, gefunden: **C**: 64.9 % **H**: 8.6 %.

V 111 Oxidation von Octahydro[2,2']bipyran-6,6'-diol (76) mit Ag₂CO₃

Ansatz:	250 mg	(1.24 mmol)	Octahydro[2,2']bipyran-6,6'-diol (76)
	1.38 g	(5.0 mmol)	Ag_2CO_3
	15 ml		abs. Benzol

Durchführung: analog AAV V

Aufarbeitung: Umkristallisation aus 10 ml Ethylacetat.

Ausbeute:237 mg (1.19 mmol, 96 %) Octahydro[2,2']bipyran-6,6'-dion (78) einesd,l-/meso-Gemisches (1.5 : 1.0) als farbloser Feststoff.

О

Spektroskopische Daten: Octahydro[2,2']bipyran-6,6'-dion (78)

(C₁₀H₁₄O₄, 198.22 g/mol, Schmp. 143 °C), 1.5:1.0-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): *d*,*l*-Isomer: δ [ppm] = 1.73-1.86

(m, 4H, -CH₂-), 1.89-1.99 (m, 4H, -CH₂-), 2.38-2.47 (m, 2H, -COCH₂-), 2.52-2.60 (m, 2H, -COCH₂-), 4.37-4.40 (m, 2H, 2 x

-OCH-); *meso*-Isomer: δ [ppm] = 1.76-1.86 (m, 4H, -CH₂-),

1.89-1.99 (m, 4H, -CH₂-), 2.38-2.47 (m, 2H, -COCH₂-), 2.52-2.55 (m, 1H, -COCH₂-), 2.57-2.60 (m, 1H, -COCH₂-), 4.32-4.36 (m, 2H, 2 x -OCH-). ¹³C-NMR (100 MHz, CDCl₃): *d*,*l*-Isomer: δ [ppm] = 18.5 (2 x CH₂), 23.4 (2 x CH₂), 29.7 (2 x CH₂), 79.9 (2 x CH), 170.5 (2 x C_q); *meso*-Isomer: δ [ppm] = 18.0 (2 x CH₂), 23.8 (2 x CH₂), 29.6 (2 x CH₂), 80.7 (2 x CH), 170.4 (2 x C_q). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 2963 (s), 2938 (m), 2892 (m), 2872 (m), 1721 (vs), 1446 (m), 1261 (s), 1175 (m), 1096 (s), 1041 (s), 1022 (s), 934 (m). **MS** (EI, 70 eV): m/z (%) = 198 (M⁺, 23), 142 (28), 99 (100), 71 (96), 55 (99). **Elementaranalyse**: berechnet: **C**: 60.6 % **H**: 7.1 %, gefunden: **C**: 60.5 % **H**: 6.9 %.

V 112-113 Hydroformylierung von 4,5-Dimethyl-1,7-octadien-4,5-diol (73)

Ansatz:	530 mg	(3.1 mmol)	<i>d</i> , <i>l</i> -/ <i>meso</i> -4,5-Dimethyl-1,7-octadien-4,5-diol (73)
	8 mg	(1.0 mol-%)	$Rh(acac)(CO)_2$
	98 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. Solvens

Reaktionsbedingungen: s. Tab. 49

Durchführung: analog AAV I

Vers.	p(CO)/p(H ₂)	Т	t	LM	Ausbeute ^{a)} [%]
	[bar]	[°C]	[h]		79
V 112	10 / 10	60	20	Dioxan	83 (62) ^{b)}
V 113	10 / 10	60	20	CH_2Cl_2	97 (97) ^{b)}

Tab. 49:Hydroformylierung von 4,5-Dimethyl-1,7-octadien-4,5-diol (73)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten; ^{b)} 2:1-Diastereomerengemisch

Ausbeute (V 113): 638 mg (3.0 mmol, 97 %) *d,l-/meso-*4-(1,7-Dimethyl-6,8-dioxabicyclo[3.2.1]oct-7-yl)-butyraldehyd (**79**) als 2:1-Diastereomerengemisch.

Spektroskopische Daten:

d,*l*-/meso-4-(1,7-Dimethyl-6,8-dioxabicyclo[3.2.1]oct-7-yl)-butyraldehyd (79)

(C₁₂H₁₂O₃, 212.29 g/mol), 2:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): *d,l*-Diastereomer: δ [ppm] = 1.14 (s, 3H, -CH₃), 1.30 (s, 3H, -CH₃, 1.24-2.05 (m, 10H, -CH₂-), 2.30-2.51 (m, 2H, -CH₂-), 5.41 (bs*, 1H, -CH-), 9.77 (t, 1H, ³*J* = 1.8 Hz, -CHO); *meso*-Diastereomer: δ [ppm] =1.14 (s, 3H, -CH₃), 1.15 (s, 3H, -CH₃), 1.30-2.58 (m, 12H, -CH₂-), 5.44 (bs*, 1H, -CH-), 9.80 (t, 1H, ³*J* = 1.5 Hz, -CHO). ¹³**C-NMR** (100 MHz, CDCl₃): *d,l*-Diastereomer: δ [ppm] = 16.4 (CH₂), 16.6 (CH₂), 17.0 (CH₃), 20.5 (CH₃), 29.3 (CH₂), 32.8 (CH₂), 37.5 (CH₂), 44.3 (CH₂), 81.5 (C_q), 83.1 (C_q), 100.4 (CH), 202.7 (CH); *meso*-Diastereomer: δ [ppm] = 16.6 (CH₂), 17.5 (CH₂), 21.4 (CH₃), 22.6 (CH₃), 29.3 (CH₂), 32.1 (CH₂), 32.6 (CH₂), 44.1 (CH₂), 81.1 (C_q), 83.7 (C_q), 100.3 (CH), 202.2 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2939 (s), 2878 (m), 2847 (w), 2720 (w), 1725 (s), 1463 (m), 1380 (m), 1121 (m), 1098 (s), 936 (s). **MS** (EI, 70 eV): m/z (%) = 212 (M⁺, 1), 197 (1), 179 (1), 169 (1), 141 (35), 109 (6), 98 (100), 83 (11), 69 (11), 55 (16), 43 (81).

Die Zuordnung der Signale im NMR erfolgt durch COSY-Experimente.

V 114-116 Hydroformylierung von 1,2-Bisallylcyclohexan-1,2-diol (75)

Ansatz:	392 mg	(2.0 mmol)	<i>cis-/trans</i> -1,2-Bisallylcyclohexan-1,2-diol (75)
	5 mg	(1.0 mol-%)	Rh(acac)(CO) ₂
	63 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. Dioxan

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Aufarbeitung: 628 mg Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE als Eluent aufgereinigt.

	, 6	ý 5 5	, , ,	-)
			Ausbeur	te^{a} [%]
Vers.	Substrat	LM	80	81
V 114	75a,b	Dioxan	50 (21)	
V 115	75b	Dioxan	komplexes Pro	oduktgemisch
V 116	75a	Dioxan	57 (9)	40 (6)

 Tab. 50:
 Hydroformylierung von 1,2-Bisallylcyclohexan-1,2-diol (75)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Ausbeute (V 114): 98 mg (0.41 mmol, 21 %, (42 % bezogen auf ein Isomer)) *cis*-4-(7,12-Dioxatricyclo[6.3.1.0^{1,6}]-dodec-6-yl)-butyraldehyd (**80**) als farbloser Feststoff.

Spektroskopische Daten:

cis-4-(7,12-Dioxatricyclo[6.3.1.0^{1,6}]-dodec-6-yl)-butyraldehyd (**80**)

(C₁₄H₂₂O₃, 238.32 g/mol, Schmp.: 41 °C)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.25-1.98 (m, 18H),

2.46-2.63 (m, 2H, -CH₂-), 5.51 (bs*, 1H, -CH-), 9.80 (t, 1H,

 ${}^{3}J = 1.6$ Hz, -CHO). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] =

16.5 (CH₂), 17.2 (CH₂), 21.0 (CH₂), 23.2 (CH₂), 28.5 (CH₂), ^{O=}

16.5 (CH₂), 17.2 (CH₂), 21.0 (CH₂), 23.2 (CH₂), 28.5 (CH₂), 29.7 (CH₂), 32.3 (CH₂), 32.9 (CH₂), 33.3 (CH₂), 44.2 (CH₂), 80.5 (C_q), 82.4 (C_q), 100.54 (CH), 202.62 (CHO). **IR** (Pressling, KBr), \tilde{v} [cm⁻¹] = 3429 (bs), 2941 (s), 2869 (m), 2721 (w), 1723 (s), 1459 (m), 1121 (s), 1062 (s), 1035 (s), 1018 (s). **GC-MS** (70 eV, EI): m/z (%) = 239 (M⁺ + 1, 11), 221 (81), 203 (49), 185 (21), 175 (57), 149 (12), 124 (100), 111 (41), 98 (43), 81 (27), 55 (50).

Spektroskopische Daten: 6-Propenyl-7,12-dioxatricyclo[6.3.1.0^{1,6}]dodecan (81)

(C₁₃H₂₀O₂, 208.30 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.10-2.00 (17H, -CH₂-, -CH₃), 5.55 (s, 1H, -OCHO-), 5.70 (d, 1H, d, ${}^{3}J$ = 15.5 Hz, -CH=CH-CH₃), 5.94 (dq, 1H, ${}^{3}J$ = 15.5, 6.5 Hz, -CH=CH-CH₃). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 15.8 (CH₂), 18.3 (CH₃),

20.9 (CH₂), 23.2 (CH₂), 29.9 (CH₂), 32.7 (CH₂), 33.4 (CH₂), 38.1 (CH₂), 79.9 (C_q), 82.4 (C_q), 100.9 (CH), 125.3 (CH), 127.9 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3033 (w), 2935 (s),
2860 (m), 1487 (m), 1450 (m), 1122 (m), 943 (m). **GC-MS** (70 eV, EI): m/z (%) = 208 (M⁺, 20), 190 (44), 162 (40), 151 (53), 133 (51), 124 (100), 105 (58), 91 (76), 79 (82), 67 (52), 55 (20).

4.7 Darstellung benzanellierter bicyclischer Acetale

- 4.7.1 Darstellung verschiedener *o*-Hydroxyphenylalkenole
- V 117 1-(2-Hydroxyphenyl)-prop-2-en-1-ol (88a)

Ansatz:	2.44 g	(20 mmol)	Salicylaldehyd (87a)
	30 ml	(50 mmol)	Vinylmagnesiumchlorid (1.7 M in THF)
	20 ml		abs. THF

Durchführung: analog V 70

Ausbeute: 2.90 g (19.3 mmol, 97 %) 1-(2-Hydroxyphenyl)-prop-2-en-1-ol (**88a**) als hellgelbes Öl. Die spektroskopischen Daten stimmen mit denen in der Literatur überein.⁴³

V 118 1-(2-Hydroxyphenyl)-but-3-en-1-ol (88b)

Ansatz:	2.44 g	(20 mmol)	Salicylaldehyd (87a)
	4.48 g	(40 mmol)	Allylbromid
	2.62 g	(40 mmol)	Zn-Staub
	10 ml		THF

Durchführung:

2.44 g (20 mmol) Salicylaldehyd (**87a**), 4.48 g (40 mmol) Allylbromid und 2.62 g (20 mmol) Zn-Staub werden in einen Kolben gegeben und 1 h bei RT gerührt. Man filtriert von den Zn-Resten ab und extrahiert das Filtrat mit Diethylether (3 x 10 ml). Die vereinigten organischen Phasen werden über MgSO₄ getrocknet und das Lösemittel am Rotationsverdampfer entfernt. Man erhält 2.80 g Rohprodukt, das chromatographisch an Kieselgel mit MTBE/Cyclohexan (1:2) gereinigt wird. Man erhält 2.50 g (15.2 mmol, 76 %) 1-(2-Hydroxyphenyl)-but-3-en-1-ol (**88b**) als hellgelbes Öl. Die spektroskopischen Daten stimmen mit denen der Literatur überein.^{119,168}

V 119 2-(1-Hydroxy-3-methylbut-3-enyl)-phenol (88c)

Ansatz:	6.11 g	(50 mmol)	Salicylaldehyd (87a)
	13.58 g	(150 mmol)	β -Methallylchlorid
	3.65 g	(150 mmol)	Mg-Späne
	100 ml		THF

```
Durchführung: analog V 72
```

Aufarbeitung: 9.56 g Rohprodukt werden zweimal säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent gereinigt.

Ausbeute: 2.16 g (12 mmol, 24 %) 2-(1-Hydroxy-3-methylbut-3-enyl)-phenol (88c).¹²⁸

V 120 2-(1-Hydroxy-2,2-dimethylbut-3-enyl)-phenol (88d)

Ansatz:	6.11 g	(50 mmol)	Salicylaldehyd (87a)
	15.76 g	(150 mmol)	Prenylchlorid
	3.65 g	(150 mmol)	Mg-Späne
	100 ml		THF

Durchführung: analog V 72

Aufarbeitung: 10.87 g Rohprodukt werden mittels Kugelrohrdestillation (2.10⁻² mbar/ 175 °C) gereinigt.

Ausbeute: 5.39 g (28 mmol, 56 %) 2-(1-Hydroxy-2,2-dimethylbut-3-enyl)-phenol (**88d**).

Spektroskopische Daten: 2-(1-Hydroxy-2,2-dimethylbut-3-enyl)-phenol (88d)

 $(C_{12}H_{14}O_2, 192.26 \text{ g/mol}).$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.03 (s, 3H, -CH₃), 1.04 (s, 3H, -CH₃), 2.89 (bs, 1H, -OH), 4.57 (s, 1H, CHOH), 5.20 (ddd, 2H, ³*J* = 17.3, 10.8, ²*J* = 1.2 Hz, =CH₂), 5.89 (dd, 1H, ³*J* = 17.3, 10.8 Hz, -CH=), 6.79 (dt, 1H, ³*J* = 7.5 Hz, ⁴*J* = 1.0 Hz, CH_{arom}), 6.85 (dd, 1H, ³*J* = 8.3 Hz, ⁴*J* = 1.0 Hz, CH_{arom}), 6.91 (dd, 1H, ³*J* = 7.5 Hz, ⁴*J* = 1.5 Hz, CH_{arom}), 7.16 (dt, 1H, ³*J* = 8.3 Hz, ⁴*J* = 1.5 Hz, CH_{arom}), 8.35 (s, 1H, -OH). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 20.1 (CH₃), 24.6 (CH₃), 43.9 (C_q), 82.8 (CH), 115.0 (CH₂), 117.3 (CH_{arom}), 118.6 (CH_{arom}), 122.0 (C_{q,arom}), 128.9 (CH_{arom}), 129.9 (CH_{arom}), 144.7 (CH), 156.4 (C_{q,arom}). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3353 (bs), 3083 (m), 2966 (s), 2864 (m), 1642 (w), 1622 (w), 1591 (m), 1494 (s), 1459 (s), 1245 (s), 1021 (S), 914 (m), 756 (s). **GC-MS** (70 eV, EI): m/z (%) = 192 (M⁺, 12), 174 (100), 159 (78), 141 (13), 131 (85), 115 (22), 107 (12), 91 (27), 77 (32), 65 (13), 51 (27).

V 121 2-(2-Hydroxyphenyl)-but-3-en-2-ol (88e)

Ansatz:	4.08 g	(30 mmol)	<i>o</i> -Hydroxyacetophenon (87b)
	45 ml	(75 mmol)	Vinylmagnesiumchlorid (1.7 M)
	60 ml		abs. THF

Durchführung: analog V 70

Aufarbeitung: Säulenchromatographische Aufreinigung an Kieselgel mit CH₂Cl₂ als Eluent.

Ausbeute: 3.89 g (22 mmol, 73 %) 2-(2-Hydroxyphenyl)-but-3-en-2-ol (**88e**) als hellgelbes Öl. Die spektroskopischen Daten stimmen mit denen der Literatur überein.⁴³

V 122 2-(2-Hydroxyphenyl)-pent-4-en-2-ol (88f)

Ansatz:6.81 g(50 mmol)o-Hydroxyacetophenon (87b)18.15 g(150 mmol)Allylbromid3.65 g(151 mmol)Mg-Späne100 mlabs. Diethylether

Durchführung: analog V 72

- Aufarbeitung: 8.24 g Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:2) als Eluent gereinigt.
- Ausbeute: 7.18 g (40 mmol, 81 %) 2-(2-Hydroxyphenyl)-pent-4-en-2-ol (**88f**) als hellgelbes Öl. Die spektroskopischen Daten stimmen mit denen der Literatur überein.^{119,128}

V 123 2-(2-Hydroxyphenyl)-4-methylpent-4-en-2-ol (88g)

Ansatz:	6.81 g	(50 mmol)	<i>o</i> -Hydroxyacetophenon (87b)
	13.58 g	(150 mmol)	β -Methallylchlorid
	3.65 g	(150 mmol)	Mg-Späne
	100 ml		THF

Durchführung: analog V 72

Aufarbeitung: 10.04 g Rohprodukt werden mittels Kugelrohrdestillation $(2 \cdot 10^{-2} \text{ mbar}/150 \text{ °C})$ gereinigt.

Ausbeute: 8.56 g (45 mmol, 89 %) 2-(1-Hydroxy-1,3-dimethylbut-3-enyl)phenol (**88g**). Die spektroskopischen Daten entsprechen denen der Literatur.^{128,129}

V 124 2-(1-Hydroxy-1,2,2-trimethylbut-3-enyl)-phenol (88h)

Ansatz:6.81 g(50 mmol)o-Hydroxyacetophenon (87b)15.76 g(150 mmol)Prenylchlorid3.65 g(150 mmol)Mg-Späne100 mlTHF

Durchführung: analog V 72

Aufarbeitung: 13.76 g Rohprodukt werden mittels Kugelrohrdestillation $(2 \cdot 10^{-2} \text{ mbar}/180 \text{ }^{\circ}\text{C})$ gereinigt.

Ausbeute: 5.80 g (28 mmol, 56 %) 2-(1-Hydroxy-1,2,2-trimethylbut-3-enyl)-phenol (88h).

Spektroskopische Daten: 2-(1-Hydroxy-1,2,2-trimethylbut-3-enyl)-phenol (**88h**) (C₁₃H₁₈O₂, 206.27 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.08 (s, 3H, -CH₃), 1.09 (s, 3H, -CH₃), 1.65 (s, 3H, -CH₃), 2.71 (s, 1H, -OH), 5.18 (ddd, 2H, ³*J* = 17.6, 11.0, ²*J* = 1.4 Hz, =CH₂), 6.02 (dd, 1H, ³*J* = 17.6, 11.0 Hz, -CH=), 6.76-6.86 (m, 2H, 2 x CH_{arom}), 6.97 (dd, 1H, ³*J* = 8.0 Hz, ⁴*J* = 1.7 Hz, CH_{arom}), 7.05 (ddd, 1H, ³*J* = 8.5, 7.1 Hz, ⁴*J* = 1.7 Hz, CH_{arom}), 9.63 (s, 1H, -OH). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 21.3 (CH₃), 23.3 (CH₃), 26.4 (CH₃), 46.1 (C_q), 83.2 (C_q), 115.0 (CH₂), 117.5 (CH_{arom}), 118.4 (CH_{arom}), 126.3 (C_{q,arom}), 128.8 (CH_{arom}), 129.1 (CH_{arom}), 144.0 (CH), 156.6 (C_{q,arom}). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3322 (bs), 3084 (m), 3061 (m), 2981 (s), 2879 (m), 1635 (m), 1616 (m), 1581 (s), 1491 (s), 1234 (s), 1091 (s), 914 (s), 754 (s). **GC-MS** (70 eV, EI): m/z (%) = 207 (M⁺ + 1, 1), 188 (5), 173 (24), 158 (7), 145 (32), 137 (77), 119 (48), 91 (100), 77 (12), 65 (22), 51 (11). **Elementaranalyse:** berechnet: **C**: 75.7 % **H**: 8.8 %, gefunden: **C**: 75.7 % **H**: 8.8 %.

4.7.2 Darstellung von 2-Hydroxy-naphthyl-alkenolen

V 125 1-(β-Hydroxy-α-naphthyl)-prop-2-en-1-ol (90a)

Ansatz:	4.30 g	(25 mmol)	2-Hydroxynaphthalin-1-carbaldehyd (89)
	32 ml	(55 mmol)	Vinylmagnesiumchlorid (1.7 M in THF)
	30 ml		abs. THF

Durchführung: analog V 70

- Aufarbeitung: 5.15 g Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent gereinigt.
- Ausbeute: 3.56 g 1-(β-Hydroxy-α-naphthyl)-prop-2-en-1-ol (90a) als hellgelber
 Feststoff. Mehrfache Umkristallisation aus Cyclohexan liefert eine analysenreine Probe eines farblosen Feststoffes. Die spektroskopischen Daten stimmen mit der Literatur überein.¹³⁰ Der Rest des Produktes ist nicht von der Verunreinigung zu trennen (63 % Produkt, 37 % Verunreinigung). Das Produkt scheint sich beim Umkristallisieren teilweise zu zersetzen.

V 126 1-(β-Hydroxy-α-naphthyl)-but-3-en-1-ol (90b)

Ansatz:	3.44 g	(20 mmol)	2-Hydroxynaphthalin-1-carbaldehyd (89)
	7.26 g	(60 mmol)	Allylbromid
	1.46 g	(60 mmol)	Mg-Späne
	60 ml		abs. THF

Durchführung: analog V 72

Aufarbeitung: 1.55 g Rohprodukt werden säulenchromatographisch an Kieselgel mit CH₂Cl₂ als Eluent gereinigt.

Ausbeute: 405 mg (1.89 mmol, 9%) $1-(\beta-Hydroxy-\alpha-naphthyl)-but-3-en-1-ol$ (90b).

Spektroskopische Daten: $1-(\beta-Hydroxy-\alpha-naphthyl)$ -but-3-en-1-ol (**90b**)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 2.67 (t*, 2H, ${}^{3}J$ = 7.0 Hz, -CH₂-), 3.11 (bs, 1H, -OH), 5.23-5.30 (m, 2H, =CH₂), 5.73 (t, 1H, ${}^{3}J$ = 6.6 Hz, -CHOH), 5.96 (ddt, 1H, ${}^{3}J$ = 17.3, 10.0, 7.0 Hz, -CH=), 7.10 (d, 1H, ${}^{3}J$ = 8.8 Hz, CH_{aron}), 7.30 (ddd, 1H, *J* = 6.8, 6.8, 1.0 Hz,

CH_{arom}), 7.43 (ddd, 1H, J = 6.8, 6.8, 1.3 Hz, CH_{arom}), 7.65 (t*, 2H, J = 8.8 Hz, CH_{arom}), 7.75 (dd, 1H, J = 8.0, 1.0 Hz, CH_{arom}), 9.25 (s, 1H, -OH).¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 41.2 (CH₂), 71.5 (CH), 116.2 (C_{q,arom}), 119.4 (CH₂), 119.8 (CH_{arom}), 120.7 (CH_{arom}), 122.9 (CH_{arom}), 126.7 (CH_{arom}), 128.7 (C_{q,arom}), 128.9 (CH_{arom}), 129.7 (CH_{arom}), 130.9 (C_{q,arom}), 134.1 (CH), 154.1 (C_{q,arom}). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 3400 (bs), 2963 (m), 2872 (w), 1623 (vs), 1466 (m), 1223 (m), 812 (m). **GC-MS** (70 eV, EI): m/z (%) = 215 (M⁺ + 1, 1), 196 (36), 181 (100), 165 (10), 152 (33), 139 (4), 115 (3), 76 (5), 63 (2). **Elementaranalyse**: berechnet: **C**: 78.5 % **H**: 6.6 %, gefunden: **C**: 78.4 % **H**: 6.4 %.

4.7.3 Darstellung von 4-Methoxy-2-hydroxyphenylalkenolen

V 127 2-Hydroxy-5-methoxy-benzaldehyd (92)

Ansatz:	9.93 g	(80 mmol)	4-Methoxyphenol (91)
	24.00 g	(600 mmol)	NaOH
	100 ml	(566 mmol)	CHCl ₃
	30 ml		Wasser

Durchführung:

9.93 g (80 mmol) 4-Methoxyphenol (**91**) und 24.0 g (600 mmol) NaOH werden gelöst in 30 ml Wasser vorgelegt. Das Reaktionsgemisch wird auf ca. 65 °C erwärmt und das Chloroform innerhalb von 2.5 h zugetropft. Man lässt auf RT abkühlen und säuert mit 60 ml halbkonz. Salzsäure auf pH 2 an. Es wird mit weiteren 50 ml Wasser verdünnt und die Phasen werden getrennt. Die wässrige Phase wird mit Diethylether extrahiert (3 x 50 ml). Die vereinigten organischen Phasen werden über MgSO₄ getrocknet und das Lösemittel am Rotationsverdampfer entfernt. Man erhält 11.32 g eines schwarzen öligen Rohproduktes. Nach chromatographischer Reinigung an Kieselgel mit CH_2Cl_2 als Eluent erhält man 8.13 g (53 mmol, 67 %) an 2-Hydroxy-5-methoxy-benzaldehyd (**92**) (C₈H₈O₃, 152.15 g/mol) als hellgelbes Öl. Die spektroskopischen Daten stimmen mit denen der Literatur überein.¹³¹

V 128 2-(1-Hydroxyprop-2-enyl)-4-methoxyphenol (93a)

Ansatz:	2.43 g	(16 mmol)	2-Hydroxy-5-methoxybenzaldehyd (92)
	23.5 ml	(40 mmol)	Vinylmagnesiumchlorid (1.7 M in THF)
	30 ml		abs. THF

Durchführung: analog V 70

Aufarbeitung: 3.75 g Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE als Eluent gereinigt.

Ausbeute: 2.62 g (14.5 mmol, 91 %) 2-(1-Hydroxyprop-2-enyl)-4-methoxyphenol (93a) als hellgelbes Öl. Die spektroskopischen Daten stimmen mit denen der Literatur überein.⁴³

V 129 2-(1-Hydroxybut-3-enyl)-4-methoxyphenol (93b)

Ansatz: 1.52 g (1)	2-Hydro	xy-5-methoxybenzaldenyd (92)
4.84 g (4	0 mmol) Allylbro	omid
972 mg (4	0 mmol) Mg-Spä	ne
50 ml	abs. TH	F

Durchführung: analog V 72

Aufarbeitung: 2.09 g Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent gereinigt.

Ausbeute: 1.24 g (6.4 mmol, 64 %) 2-(1-Hydroxybut-3-enyl)-4-methoxyphenol (**93b**) als hellgelbes Öl.

Spektroskopische Daten: 2-(1-Hydroxybut-3-enyl)-4-methoxyphenol (**93b**) (C₁₁H₁₄O₃, 194.23 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 2.59-2.67 (m, 2H, -CH₂-), 2.97 (bs, 1H, -OH), 3.74 (s, 3H, -CH₃), 4.82 (t, 1H, -CHOH), 5.22 (dd, 2H, ${}^{3}J$ = 16.0, 11.5 Hz, =CH₂), 5.67-5.88 (m, 1H, -CH=), 6.55 (d, 1H, ${}^{4}J$ = 2.8 Hz, CH_{arom}), 6.67-6.85 (m, 2H, CH_{arom}). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 42.4 (CH₂), 56.2 (CH₃), 74.8 (CH), 113.2 (CH_{arom}), 114.2 (CH_{arom}), 118.1 (CH_{arom}), 119.7 (CH_{2,olefin}), 127.7 (Cq,arom), 134.3 (CH_{olefin}), 149.6 (Cq,arom), 153.2 (Cq,arom). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3406 (bs), 3077 (w), 3033 (w), 2978 (w), 2931 (m), 2835 (w), 1642 (w), 1505 (s), 1434 (m), 1270 (m), 1236 (m), 1203 (m), 1039 (m), 994 (w). **GC-MS** (70 eV, EI): m/z (%) = 194 (M⁺, 15), 176 (66), 161 (100), 153 (43), 145 (37), 133 (16), 125 (77), 115 (41), 110 (35), 93 (22), 77 (45), 65 (40), 51 (38).

4.7.4 Hydroformylierung der *o*-Hydroxyphenylalkenole

V 130-134 Hydroformylierung von 1-(2-Hydroxyphenyl)-prop-2-en-1-ol (88a)

Ansatz:	450 mg	(3.0 mmol)	1-(2-Hydroxyphenyl)-2-propen-1-ol (88a)
	8 mg	(1.0 mol-%)	Rh(acac)(CO) ₂
	94 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. Solvens

Reaktionsbedingungen: $60 \, ^{\circ}\text{C}$, 20 h, 10 bar CO, 10 bar H2Durchführung:analog AAV I

Tab. 51:	Hydroformy	lierung von	1-(2-Hydrox	xyphenyl)-2	-propen-1-ol	(88a)
	~ ~		<hr/>	JI J/	1 1	· · ·

				Ausbeute ^{a)} [%]	l
Vers.	LM	Säure ^{b)}	94a	95a	96a
V 130	Dioxan			77	
V 131	CH_2Cl_2			55	
V 132	Dioxan	<i>p</i> -TsOH	komp	lexes Produktge	misch
V 133	Dioxan	Phthalsäure			80

^{a)} isolierte Ausbeuten; ^{b)} 5 mol-%

Ausbeute (V 130): 417 mg (2.31 mmol, 77 %) 5-(2-8Hydroxyphenyl)-tetrahydrofuran-2-ol
(95a) (1:1-Diastereomerengemisch) als hellgelbes Öl. Die spektroskopischen Daten entsprechen denen der Literatur.⁴³

V 134 Säurekatalysierte Cyclisierung von 5-(2-Hydroxyphenyl)-tetrahydrofuran-2-ol (95a)

Ansatz: 226 mg (1.25 mmol) 5-(2-Hydroxyphenyl)-tetrahydrofuran-2-ol (**95a**) 10 mg (0.05 mmol) *p*-TsOH 15 ml abs. Dioxan

Durchführung:

226 mg (1.25 mmol) 5-(2-Hydroxyphenyl)-tetrahydrofuran-2-ol (**95a**) werden mit 10 mg *p*-TsOH in 15 ml abs. Dioxan 6 h unter Rückfluss erhitzt. Nach dem Abkühlen wird das Reaktionsgemisch mit 50 ml MTBE über eine kurze Säule mit basischen Aluox eluiert. Nach Entfernen des Lösemittels erhält man 162 mg (1.00 mmol, 80 %) an 3,4,5,6-Tetrahydro-2,5-epoxy-2*H*-1-benzoxepin (**96a**) ($C_{10}H_{10}O_2$, 162.19 g/mol) als hellgelbe Flüssigkeit. Die spektroskopischen Daten stimmen mit denen in der Literatur überein.¹²⁷

V 135-138 Hydroformylierung von 1-(2-Hydroxyphenyl)-but-3-en-1-ol (88b)

Ansatz:	650 mg	(4.0 mmol)	1-(2-Hydroxyphenyl)-but-3-en-1-ol (88b)
	10 mg	(1.0 mol-%)	Rh(acac)(CO) ₂
	126 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. Solvens

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Aufarbeitung:SäulenchromatographischeAufarbeitunganKieselgelmitMTBE/Cyclohexan (1:1) als Eluent.

				Ausbeute ^{a)} [%]	
Vers.	LM	Säure ^{b)}	94b	95b	96b
V 135	Dioxan	-		18	
V 136	Dioxan	-	80		
V 137	CH_2Cl_2	-			87
V 138	Dioxan	<i>p</i> -TsOH ^a			83

Tab. 52: Hydroformylierung von 1-(2-Hydroxyphenyl)-but-3-en-1-ol (88b)

^{a)} isolierte Ausbeuten; ^{b)} 5 mol-%

Ausbeute (V 137): 613 mg (3.48 mmol, 87 %) 3,4,5,6-Tetrahydro-2,6-epoxy-2*H*-1benzoxocin (**96b**).

Spektroskopische Daten: 5-Hydroxy-5-(2-hydroxyphenyl)-pentanal (94b)

 $(C_{11}H_{14}O_3, 194.23 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.60-1.65 (m, 1H, -CH₂-), 1.78-1.97 (m, 3H, -CH₂-), 2.30-2.36 (m, 2H, -CH₂-), 4.44 (t, 1H, ³*J* = 7.1 Hz, -CH-OH), 6.84-6.90 (m, 3H, CH_{arom}), 7.21-7.27 (m, 1H, CH_{arom}), 9.65 t, 1H, ³*J* = 1.5 Hz, -CHO).

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 18.2 (CH₂), 34.8 (CH₂), 43.3 (CH₂), 79.7 (CH), 116.9 (CH_{arom}), 120.3 (CH_{arom}), 124.1 (C_{q,arom}), 128.8 (CH_{arom}), 129.6 (CH_{arom}), 154.95 (C_{q,arom}), 201.9 (CHO). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3366 (bs), 3112 (w), 3069 (w), 3040 (w), 2929 (s), 2851 (m), 2725 (m), 1728 (s), 1587 (s), 1488 (s), 1455 (s), 1239 (m), 1063 (s), 1035 (s), 838 (m). **MS** (EI, 70 eV): m/z (%) = 194 (M⁺, 8), 176 (100), 158 (17), 147 (12), 133 (83), 120 (47), 107 (65), 91 (16), 77 (16), 55 (8).

Spektroskopische Daten: 6-(2-Hydroxyphenyl)-tetrahydropyran-2-ol (95b)

(C₁₁H₁₄O₃, 194.23 g/mol), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.42-2.11 (m, 12H, -CH₂-), 3.22 (s, 1H, -OH), 3.69 (d*, 1H, ³*J* = 5.5 Hz, PhCH-O-), 4.68 (dd, 1H, ³*J* = 9.8, 3.0 Hz, PhCH-O-), 4.87 (dd, 1H, ³*J* = 8.3, 4.3 Hz, -OCH-OH), 5.23 (dd, 1H, ³*J* = 8.3, 6.0 Hz, -OCH-OH),

5.47 (s, 1H, -OH), 6.81-6.89 (m, 4H, CH_{arom}), 6.96-7.00 (m, 2H, CH_{arom}), 7.13-7.26 (m, 2H, CH_{arom}), 7.97 (s, 1H, PhOH), 8.06 (s, 1H, PhOH). ¹³C-NMR (100 MHz, CDCl₃):

 δ [ppm] = 17.2 (CH₂), 21.9 (CH₂), 29.5 (CH₂), 30.9 (CH₂), 31.6 (CH₂), 32.1 (CH₂), 72.6 (CH), 79.7 (CH), 92.2 (CH), 97.1 (CH), 117.0 (CH_{arom}), 117.1 (CH_{arom}), 119.8 (CH_{arom}), 119.9 (CH_{arom}), 125.5 (C_{q,arom}), 126.0 (C_{q,arom}), 126.7 (CH_{arom}), 127.1 (CH_{arom}), 128.8 (CH_{arom}), 129.0 (CH_{arom}), 155.0 (C_{q,arom}), 155.2 (C_{q,arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3365 (vs), 3045 (w), 2946 (s), 2865 (m), 1588 (m), 1492 (m), 1456 (m), 1243 (s), 1016 (s). **MS** (EI, 70 eV): m/z (%) = 194 (M⁺, 11), 176 (80), 158 (34), 147 (16), 131 (20), 120 (100), 107 (19), 91 (24), 77 (23), 65 (14), 51 (9). **Elementaranalyse**: berechnet: **C**: 68.0 % **H**: 7.4 %, gefunden: **C**: 67.8 % **H**: 7.4 %.

3,4,5,6-Tetrahydro-2,6-epoxy-2*H*-1-benzoxocin (96b)

 $(C_{11}H_{12}O_2, 176.22 \text{ g/mol})$

Die spektroskopischen Daten stimmen mit denen in der Literatur überein.¹²⁷

V 139 Hydroformylierung von 2-(1-Hydroxy-3-methylbut-3-enyl)-phenol (88c)

Ansatz: 535 mg (3.0 mmol) 2-(1-Hydroxy-3-methylbut-3-enyl)-phenol (88c) 8 mg (1.0 mol-%) Rh(acac)(CO)₂ 10 ml abs. CH₂Cl₂

Reaktionsbedingungen: 90 °C, 20 h, 40 bar CO, 40 bar H₂

Durchführung: analog AAV I

Ausbeute: Der Versuch wurde unter gleichen Bedingungen zweimal durchgeführt. Man erhält insgesamt 895 Rohprodukt. mg Nach säulenchromatographischer Aufarbeitung an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent erhält man 332 mg (1.59 mmol, 27 %) 5-Hydroxy-5-(2-hydroxyphenyl)-3-methyl-pentanal (**94c**) als 1:1-Diastereomerengemisch.

Spektroskopische Daten: 5-Hydroxy-5-(2-hydroxyphenyl)-3-methyl-pentanal (**94c**) (C₁₂H₁₆O₃, 208.26 g/mol), 1:1-Diastereomerengemisch ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.76 (d, 3H, ³J = 3.0 Hz, -CH₃), 0.89 (d, 3H, ³J = 3.0 Hz, -CH₃), 1.62- 2.37 (m, 10H, -CH₂-, -CHCH₃), 4.47-4.54 (m, 2H, -CHOH), 6.73-7.26 (m, 8H, CH_{arom}), 9.53 (s*, 1H, -CHO), 9.65 (s*, 1H, -CHO). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 20.2 (2 x CH₃), 24.7 (2 x CH), 42.3 (CH₂), 42.7 (CH₂), 50.8 182 (CH₂), 50.9 (CH₂), 77.2 (CH), 77.3 (CH), 116.8 (CH_{arom}), 116.9 (CH_{arom}), 124.5 (C_{q,arom}), 125.0 (C_{q,arom}), 128.6 (CH_{arom}), 128.8 (CH_{arom}), 129.6 (CH_{arom}), 129.8 (CH_{arom}), 154.9 (2 x C_{q,arom}), 202.4 (CHO), 202.6 (CHO). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3381 (bs), 3039 (w), 2956 (s), 2931 (s), 2875 (m), 2725 (m), 1720 (s), 1597 (m), 1456 (s), 1236 (s), 1058 (m), 756 (s). **GC-MS** (70 eV, EI): m/z (%) = 190 (M⁺ - 18, 38), 172 (65), 157 (41), 131 (27), 120 (43), 91 (100), 77 (29), 65 (17).

V 140 Hydroformylierung von 2-(1-Hydroxy-2,2-dimethylbut-3-enyl)-phenol (88d)

 Ansatz:
 770 mg
 (4.0 mmol)
 2-(1-Hydroxy-2,2-dimethylbut-3-enyl)-phenol (88d)

 10 mg
 (1.0 mol-%)
 Rh(acac)(CO)_2

 126 mg
 (4.0 mol-%)
 BIPHEPHOS

 10 ml
 abs. CH₂Cl₂

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Aufarbeitung: Säulenchromatographische Reinigung an Kieselgel mit MTBE/Cyclohexan (1:5) als Eluent.

Ausbeute: 698 mg (3.42 mmol, 85 %) 3,4,5,6-Tetrahydro-5,5-dimethyl-2,6-epoxy-2*H*-1-benzoxocin (**96d**).

Spektroskopische Daten:

3,4,5,6-Tetrahydro-5,5-dimethyl-2,6-epoxy-2*H*-1-benzoxocin (**96d**)

 $(C_{13}H_{16}O_2, 204.27 \text{ g/mol})$

1.6 Hz, -OCHO-), 6.81 (d, 2H, ${}^{3}J = 7.8$ Hz, CH_{arom}), 6.90 (dd, 1H, ${}^{3}J = 7.8$, 1.6 Hz, CH_{arom}), 7.17 (dt, 1H, ${}^{3}J = 7.8$, 1.6 Hz, CH_{arom}). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 24.2 (CH₃), 27.4 (CH₃), 27.6 (CH₂), 28.6 (CH₂), 78.2 (CH), 94.1 (CH), 115.2 (CH_{arom}), 118.6 (CH_{arom}), 121.5 (C_{q,arom}), 127.6 (CH_{arom}), 128.4 (CH_{arom}), 152.8 (C_{q,arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3070 (w), 3043 (w), 3028 (w), 2954 (s), 2933 (s), 2867 (m), 1610 (m),

1587 (m), 1489 (s), 1473 (s), 1226 (s), 1124 (s), 989 (s). **MS** (EI, 70 eV): m/z (%) = 204 (M⁺, 77), 175 (8), 161 (4), 148 (100), 133 (38), 120 (24), 105 (23), 91 (13), 77 (11), 51 (9), 41 (12). **Elementaranalyse:** berechnet: **C**: 76.4 % **H**: 7.9 %, gefunden: **C**: 76.3 % **H**: 7.9 %.

V 141-144 Hydroformylierung von 2-(2-Hydroxyphenyl)-but-3-en-2-ol (88e)

Ansatz:	354 mg	(2.0 mmol)	2-(2-Hydroxyphenyl)-but-3-en-2-ol (88e)
	5 mg	(1.0 mol-%)	Rh(acac)(CO) ₂
	68 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. Solvens

Reaktionsbedingungen: $60 \, ^{\circ}\text{C}$, 10 bar CO, 10 bar H2Durchführung:analog AAV I

Tab. 53: Hydroformylierung von 2-(2-Hydroxyphenyl)-but-3-en-2-ol (88e)

Vers.	LM	t	Säure	Ausbeute [%]]
		[h]		95e	96e	97e
V 141	Dioxan	70		88		
V 142	CH_2Cl_2	20			68	24
V 143	Dioxan	20	p-TsOH		24	71
V 144	Dioxan	70	Phthals.		93	

^{a)} isolierte Ausbeuten

Aufarbeitung:394 mg Rohprodukt werden säulenchromatographisch an Kieselgel
mit MTBE/Cyclohexan (1:1) als Eluent gereinigt.

Ausbeute (V 144): erhält man 330 mg (1.87 mmol, 93 %) an 2,3,4,5-Tetrahydro-5methyl-2,5-epoxy-2*H*-1-benzoxepin (**96e**).

5-(2-Hydroxyphenyl)-5-methyl-tetrahydrofuran-2-ol (95e)

(C₁₁H₁₄O₃, 194.23 g/mol)

Die spektroskopischen Daten entsprechen denen der Literatur.⁴³

Spektroskopische Daten: 2,3,4,5-Tetrahydro-5-methyl-2,5-epoxy-2*H*-1-benzoxepin (**96e**) (C₁₁H₁₂O₂, 176.22 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.76 (s, 3H, -CH₃), 1.88-1.97 (m, 1H, -CH₂-), 2.21-2.36 (m, 3H, -CH₂-), 5.91 (dd, 1H, ³*J* = 5.0, 4.0 Hz, -OCHMeO-), 6.75 (dd, 1H, ⁴*J* = 1.0 Hz, ³*J* = 6.0 Hz, CH_{arom}), 6.85 (dt, 1H, ⁴*J* = 1.0 Hz, ³*J* = 6.5 Hz, CH_{arom}), 7.06 (dd, 1H, ⁴*J* = 1.5 Hz, ³*J* = 7.5 Hz, CH_{arom}), (dt, 1H, ⁴*J* = 1.5 Hz, ³*J* = 7.8 Hz, CH_{arom}). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 21.3 (CH₃), 34.4 (CH₂), 41.9 (CH₂), 84.2 (C_q), 100.8 (CH), 116.1 (CH_{arom}), 120.2 (CH_{arom}), 123.0 (CH_{arom}), 128.6 (CH_{arom}), 130.4 (C_{q,arom}), 149.9 (C_{q,arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3068 (w), 3039 (w), 2983 (m), 2952 (m), 2936 (m), 2869 (w), 1610 (m), 1581 (m), 1485 (s), 1217 (s), 999 (s), 956 (s), 752 (s). **MS** (EI, 70 eV): m/z (%) = 176 (M⁺, 71), 161 (15), 147 (100), 132 (96), 119 (41), 107 (28), 91 (55), 77 (37), 65 (20), 51 (27). **Elementaranalyse**: berechnet: **C**: 75.0 % **H**: 6.9 %, gefunden: **C**: 74.8 % **H**: 6.9 %.

4-Methyl-2*H*-1-chromen (**97e**)

(C₁₀H₁₀O, 146.19 g/mol)

Die spektroskopischen Daten entsprechen denen in der Literatur.¹³²

V 145 Säurekatalysierte Cyclisierung von 5-(2-Hydroxyphenyl)-5-methyltetrahydro-furan-2-ol (95e)

 Ansatz:
 200 mg (1.03 mmol)
 5-(2-Hydroxyphenyl)-5-methyltetrahydrofuran-2-ol (95e)

 10 mg (0.05 mmol)
 p-TsOH

 15 ml
 abs. Dioxan

Durchführung: analog V 134

Ausbeute: 146 mg (0.83 mmol, 80 %) 2,3,4,5-Tetrahydro-5-methyl-2,5-epoxy-2*H*-1benzoxepin (**96e**). Spektroskopische Daten siehe (V 144).

V 146-148 Hydroformylierung von 2-(2-Hydroxyphenyl)-pent-4-en-2-ol (88f)

Ansatz:	300 mg	(1.70 mmol)	2-(2-Hydroxyphenyl)-pent-4-en-2-ol (88f)
	5 mg	(1.0 mol-%)	$Rh(acac)(CO)_2$
	53 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. Solvens

Reaktionsbedingungen:60 °C, 20 h, 10 bar CO, 10 bar H_2 Durchführung:analog AAV I

Tab. 54: Hydroformylierung von 2-(2-Hydroxyphenyl)-pent-4-en-2-ol (88f)

				Ausbeute ^{a)} [%]	
Vers.	LM	Säure	95f	96f	97f
V 146	Dioxan		62		
V 147	CH_2Cl_2			88	
V 148	Dioxan	p-TsOH		88	

^{a)} isolierte Ausbeuten

Aufarbeitung:304 mg Rohprodukt werden säulenchromatographisch Kieselgel mitMTBE/Cyclohexan (1:2) als Eluent aufgereinigt.

Ausbeute (V 147): 281 mg (1.50 mmol, 88 %) 3,4,5,6-Tetrahydro-6-methyl-2,6-epoxy-2*H*-1-benzoxocin (**96f**).^{123a}

Spektroskopische Daten: 6-(2-Hydroxyphenyl)-6-methyl-tetrahydropyran-2-ol (**95f**) $(C_{12}H_{16}O_3, 208.26 \text{ g/mol})$, zwei Diastereomere (7:1)

¹**H-NMR** (400 MHz, CDCl₃): Hauptdiastereomer: δ [ppm] = 1.55 (s, 3H, -CH₃), 1.46-1.84 (m, 6H, -CH₂-), 3.61 (d, 1H, ³*J* = 7.3 Hz, -OH), 4.73 (ddd, 1H, ³*J* = 9.8, 7.3, 2.5 Hz, -CHOH), 6.83-6.91 (m, 2H, CH_{arom}), 6.98 (dd, 1H, ³*J* = 7.8, 1.5 Hz, CH_{arom}), 7.16-7.21 (m, 1H,

CH_{*arom*}), 8.94 (s, 1H, PhOH); Nebendiastereomer: δ [ppm] = 1.60 (s, 3H, -CH₃), 1.46-1.90 (m, 6H, 3 x -CH₂-), 3.24 (d, 1H, ${}^{3}J$ = 7.3 Hz, -OH), 5.29 (ddd, 1H, ${}^{3}J$ = 9.8, 7.3, 3.0 Hz, -CHOH), 6.80-7.15 (m, 4H, CH_{*arom*}), 9.08 (s, 1H, PhOH). ¹³C-NMR (100 MHz, CDCl₃): Hauptdiastereomer: δ [ppm] = 18.9 (CH₂), 30.4 (CH₂), 32.5 (CH₂), 32.9 (CH₂), 81.3 (C_q), 93.2 (CH), 117.5 (CH_{*arom*}), 120.0 (CH_{*arom*}), 126.2 (C_{q,*arom*}), 129.1 (CH_{*arom*}), 156.1 (C_{q,*arom*}); Nebendiastereomer: δ [ppm] = 17.5 (CH₂), 26.9 (CH₂), 32.3 (CH₂), 34.1 (CH₂), 77.2 (C_q),} 92.3 (CH), 117.7 (CH_{arom}), 119.6 (CH_{arom}), 124.6 (C_q,*arom*), 128.7 (CH_{arom}), 155.5 (C_q,*arom*). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3318 (vs), 3045 (w), 2927 (s), 2850 (m), 1615 (w), 1582 (m), 1489 (m), 1448 (m), 1240 (m), 1056 (m). **MS** (EI, 70 eV): m/z (%) = 208 (M⁺, 17). 190 (30), 172 (19), 157 (6), 147 (22), 134 (56), 121 (21), 119 825), 107 (11), 84 (80), 77 (12), 69 (29), 56 (100), 41 (62). **Elementaranalyse**: berechnet: **C**: 69.2 % **H**: 7.7 %, gefunden: **C**: 69.0 % **H**: 7.6 %.

Spektroskopische Daten: 3,4,5,6-Tetrahydro-6-methyl-2,6-epoxy-2*H*-1-benzoxocin (**96f**) $(C_{12}H_{14}O_2, 190.24 \text{ g/mol}, \text{Schmp}.: 84-85 \text{ }^{\circ}\text{C})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.50-1.71 (m, 3H, -CH₂-), 1.60 (s, 3H, -CH₃), 1.80-2.02 (m, 3H, -CH₂-), 5.64 (s*, 1H, O-CH-), 6.81-6.88 (m, 2H, CH_{arom}), 6.99 (dd, 1H, ³*J* = 7.5 Hz, ⁴*J* = 1.5 Hz, CH_{arom}), 7.14 (ddd, 1H, ³*J* = 7.5, 6.4 Hz, ⁴*J* = 1.6 Hz, CH_{arom}). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 16.1 (CH₂), 26.7 (CH₃), 31.0 (CH₂), 37.8 (CH₂), 72.2 (C_q), 95.0 (CH), 115.1 (CH_{arom}), 119.8 (CH_{arom}), 123.8 (CH_{arom}), 127.0 (C_{q,arom}), 128.0 (CH_{arom}), 152.7 (C_{q,arom}). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 3057 (w), 3040 (w), 2962 (m), 2878 (m), 1607 (m), 1583 (m), 1498 (s), 1450 (s), 1238 (s), 1101 (m), 1040 (m), 988 (m), 761 (s). **MS** (EI, 70 eV): m/z (%) = 190 (M⁺, 92), 172 (33), 157 (14), 147 (51), 134 (100), 119 (48), 107 (16), 91 (39), 77 (24), 65 (18), 51 (18). **Elementaranalyse**: berechnet: **C**: 75.8 % **H**: 7.4 %, gefunden: **C**: 75.8 % **H**: 7.2 %.

V 149 Säurekatalysierte Cyclisierung von 6-(2-Hydroxyphenyl)-6-methyltetrahydropyran-2-ol (95f)

Ansatz:250 mg (1.20 mmol)6-(2-Hydroxyphenyl)-6-methyl-tetrahydropyran-2-ol (**95f**)10 mg (0.05 mmol)p-TsOH15 mlabs. Dioxan

Durchführung: analog V 132

Ausbeute:200 mg (1.05 mmol, 88 %) 3,4,5,6-Tetrahydro-6-methyl-2,6-epoxy-2H-1-
benzoxocin (96f). Spektroskopische Daten siehe (V 148).

V 150-152 Hydroformylierung von 2-(2-Hydroxyphenyl)-4-methylpent-4-en-2-ol (88g)

 Ansatz:
 577 mg
 (3.0 mmol)
 2-(2-Hydroxyphenyl)-4-methylpent-4-en-2-ol (88g)
 8 mg
 (1.0 mol-%)
 Rh(acac)(CO)_2
 10 ml
 abs. Solvens

Reaktionsbedingungen:s. Tab. 55Durchführung:analog AAV I

Tab. 55: Hydroformylierung von 2-(2-Hydroxyphenyl)-4-methylpent-4-en-2-ol (88g)

Vers.	$p(CO)/p(H_2)$	Т	t	LM	Säure	Au	usbeute ^{a)} ['	%]
	[bar]	[°C]	[h]			95g	96g	97g
V 150	40 / 40	80	70	Dioxan		30	61	
V 151	40 / 40	80	70	$CH_2Cl_2 \\$			60	30
V 152	40 / 40	90	20	Dioxan	p-TsOH			88

^{a)} isolierte Ausbeuten

Aufarbeitung:574 mg Rohprodukt werden säulenchromatographisch an Kieselgel mitMTBE/Cyclohexan (1:2) als Eluent aufgearbeitet.

Ausbeute (V 151): 368 mg (1.8 mmol, 60 %) 3,4,5,6-Tetrahydro-4,6-dimethyl-2,6-epoxy-2*H*-1-benzoxocin (**96g**) (1.7:1.0-Diastereomerengemisch) und 157 mg (0.90 mmol, 30 %) 2,2,4-Trimethyl-2*H*-chromen (**97g**).

Spektroskopische Daten: 6-(2-Hydroxyphenyl)-4,6-dimethyltetrahydropyran-2-ol (95g) (C₁₃H₁₈O₃, 222.29 g/mol), vier Diastereomere

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.98 (16H, CH₃), 1.05-2.74 (32H, -CH-, -CH₂-, -CH₃, -OH), 4.70 (dd, 1H, ${}^{3}J$ = 9.9, 2.2 Hz, CH-OH), 5.15 (dd, 1H, ${}^{3}J$ = 11.9, 2.3 Hz, CH-OH), 5.22 (dd, 1H, ${}^{3}J$ = 9.9, 2.1 Hz, CH-OH), 5.52 (d*, 1H, ${}^{3}J$ = 1.5 Hz, CHOH), 6.78-7.18 (16H, CH_{arom}), 9.06 (s, 1H, -OH), 9.34 (s, 1H, -OH), 9.35 (s, 1H, -OH), 9.38 (s, 1H, -OH). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 20.7 (CH₃), 22.0 (CH₃), 22.3 (CH₃), 22.5 (CH₃), 23.3 (CH₃), 24.9 (CH₃), 25.9 (2 x CH₃, CH), 29.0 (CH), 29.5 (CH),

30.8 (CH), 38.7 (CH₂), 41.3 (CH₂), 41.6 (CH₂), 42.0 (CH₂), 43.6 (2 x CH₂), 44.0 (CH₂), 49.8 (CH₂), 77.7 (C_q), 80.7 (C_q), 81.1 (C_q), 81.9 (C_q), 92.3 (2 x CH), 93.2 (CH), 93.4 (CH), 188

0

Ò.

117.3 (CH_{arom}), 117.4 (CH_{arom}), 117.7 (2 x CH_{arom}), 119.3 (CH_{arom}), 119.6 (2 x CH_{arom}), 119.8 (C_{q,arom}), 120.0 (CH_{arom}), 124.8 (2 x CH_{arom}), 126.2 (CH_{arom}), 126.6 (C_{q,arom}), 128.4 (CH_{arom}), 128.6 (2 x CH_{arom}), 128.7 (CH_{arom}), 129.0 (CH_{arom}), 131.2 (2 x C_{q,arom}), 155.0 (C_{q,arom}), 155.2 (C_{q,arom}), 156.1 (C_{q,arom}), 156.2 (C_{q,arom}). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3315 (bs), 3047 (w), 2952 (s), 2871 (m), 1616 (m), 1581 (m), 1490 (s), 1456 (m), 1240 (s), 1037 (s), 752 (s). **GC-MS** (70 eV, EI): m/z (%) = 223 (M⁺ + 1, 3), 204 (100), 186 (40), 171 (25), 161 (31), 147 (33), 131 (31), 120 (72), 107 (58), 91 (62), 77 (16). **Elementaranalyse**: berechnet: **C**: 70.2 % **H**: 8.2 %, gefunden: **C**: 70.3 % **H**: 8.3 %.

Spektroskopische Daten:

3,4,5,6-Tetrahydro-4,6-dimethyl-2,6-epoxy-2H-1-benzoxocin (96g)

(C₁₃H₁₆O₂, 204.27 g/mol), zwei Diastereomere (1.7:1)

¹**H-NMR** (400 MHz, CDCl₃): Hauptdiastereomer: δ [ppm] = 0.69 (d,

3H, ${}^{3}J = 7.3$ Hz, -CH₃), 1.33-1.50 (m, 2H, -CH₂-), 1.50 (s, 3H, -CH₃), 1.82 (m_c, 1H, -CHCH₃), 2.02-2.14 (m, 2H, -CH₂-), 5.64 (dd,

1H, ${}^{3}J = 6.8$, 4.0 Hz, -OCHO-), 6.72 (dt, 1H, ${}^{3}J = 8.3$, 6.3 Hz,

CH_{arom}), 6.82 (dt, 1H, ${}^{3}J = 7.6$ Hz, ${}^{4}J = 1.4$ Hz, CH_{arom}), 6.97 (dd, 1H, ${}^{3}J = 7.6$ Hz, ${}^{4}J = 1.4$ Hz, CH_{arom}), 7.03-7.09 (m, 1H, CH_{arom}); Nebendiastereomer: δ [ppm] = 0.77 (d, 3H. ${}^{3}J = 6.5$ Hz, -CH₃), 1.36-1.43 (m, 2H, -CH₂-), 1.52 (s, 1. H, -CH₃), 1.56-1.71 (m, 2H, -CH₂-, -CHCH₃), 1.93 (m_c, 1H, -CH₂-), 5.59 (bs* 1H, -OCHO-), 6.72 (dt, 1H, ${}^{3}J = 8.3, 6.3$ Hz, CH_{arom}), 6.76 (dt, 1H, ${}^{3}J = 8.5$ Hz, ${}^{4}J = 1.3$ Hz, CH_{arom}), 6.91 (dd, 1H, ${}^{3}J = 8.5$ Hz, ${}^{4}J = 1.3$ Hz, CH_{arom}), 7.03-7.09 (m, 1H, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): Diastereomer a: δ [ppm] = 20.6 (CH₃), 22.2 (CH), 28.8 (CH₃), 35.4 (CH₂), 45.3 (CH₂), 70.6 (C_q), 94.4 (CH), 116.9 (CHarom), 120.6 (CHarom), 124.4 (CHarom), 127.9 (CHarom), 131.1 ($C_{q,arom}$), 149.3 ($C_{q,arom}$); Diastereomer b: δ [ppm] = 21.6 (CH₃), 22.6 (CH), 26.5 (CH₃), 39.7 (CH₂), 46.7 (CH₂), 72.6 (C_a), 95.1 (CH), 115.2 (CH_{arom}), 119.7 (CH_{arom}), 123.7 (CH_{arom}) , 127.6 $(C_{a,arom})$, 128.0 (CH_{arom}) , 152.2 $(C_{a,arom})$. **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3066 (w), 3037 (w), 2954 (s), 2929 (s), 2871 (m), 1610 (m), 1583 (m), 1487 (s), 1450 (s), 1232 (s), 1089 (s), 979 (s), 752 (s). **GC-MS** (70 eV, EI): m/z (%) = 204 (M⁺, 100), 186 (35), 171 (49), 159 (75), 145 (78), 134 (32), 119 (70), 105 (20), 91 (71), 77 (19), 65 (12). Elementaranalyse: berechnet: C: 76.4 % H: 7.9 %, gefunden: C: 76.5 % H: 8.2 %. Die Zuordnung der Diastereomere erfolgte mittels COSY-Experimenten.

Spektrosk	opische D	aten: 2,2,4-Trin	nethyl-2 <i>H</i> -chromen (97g)
(C ₁₂ H ₁₄ O,	174.24 g/	mol)	
Die spektr	oskopisch	en Daten entsp	rechen denen der Literatur. ¹³³
V 153	Säureka	atalysierte Cyc	lisierung von 6-(2-Hydroxyphenyl)-4,6-
	dimethy	ltetrahydropy	ran-2-ol (95g)
Ansatz:	77 mg	(0.35 mmol)	6-(2-Hydroxyphenyl)-4.6-dimethyltetrahydropyran-2-
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0.00	ol (95g)
	5 mg	(0.025 mmol)	p-TsOH
	5 ml		abs. Dioxan
D 1 (**1		V 122	
Durchfuhr	ung: anal	log V 132	
Ausbeute:	44 1	mg (0.22 mmol	l, 62 %) an 3,4,5,6-Tetrahydro-4,6-dimethyl-2,6-epoxy-
	2 <i>H</i> -	1-benzoxocin (96g). Spektroskopische Daten siehe (V 150).
V 154	Hydrofo	ormylierung vo	on 2-(1-Hydroxy-1,2,2-trimethylbut-3-enyl)-phenol
	(88h)		
Ansatz:	536 mg	(2.6 mmol)	2-(1-Hydroxy-1,2,2-trimethylbut-3-enyl)-phenol
	-		(88h)
	6 mg	(1.0 mol-%)	$Rh(acac)(CO)_2$
	82 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. CH ₂ Cl ₂
Reaktions	bedingung	gen: 60 °C, 20	0 h, 10 bar CO, 10 bar H $_2$
Durchführ	ung: anal	og AAV I	
Aufarbeitu	ung: 565	mg Rohprodu	ikt werden säulenchromatographisch an Kieselgel mit
	MT	BE/Cyclohexar	n (1:1) als Eluent gereinigt.
Ausbeute:	436	mg (1.85 n	nmol, 71 %) 6-(2-Hydroxyphenyl)-5,6,6-trimethyl-
	tetra	ahydropyran-2-0	ol (95h) (13:1-Diastereomerengemisch).

Spektroskopische Daten: 6-(2-Hydroxyphenyl)-5,6,6-trimethyltetrahydropyran-2-ol (95h)

(C₁₄H₂₀O₃, 236.31 g/mol), zwei Diastereomere (13:1)

¹**H-NMR** (400 MHz, CDCl₃): Hauptdiastereomer: δ [ppm] = 0.89 (s, 3H, -CH₃), 0.94 (s, 3H, -CH₃), 1.42-1.48 (m, 1H, -CH₂-), 1.55 (s, 3H, -CH₃), 1.80-1.89 (m, 3H, -CH₂-), 4.11 (s, 1H, -OH), 5.25 (d, 1H, ${}^{3}J$ = 7.3 Hz, OCHOH), 6.76-6.83 (m, 2H, CH_{arom}), 6.96 (dd, 1H, ${}^{3}J$ = 6.8, 1.5 Hz, CH_{arom}), 7.13 (dt, 1H, ${}^{3}J$ = 8.3, 1.5 Hz, CH_{arom}), 10.27 (s, 1H, -OH). Nebendiastereomer (teilweise): δ [ppm] = 0.97 (s, 3H, -CH₃), 1.48 (s, 3H, -CH₃), 3.10 (s, 1H, -OH), 5.58 (d, 1H, ${}^{3}J$ = 7.5 Hz, OCHOH), 9.86 (s, 1H. PhOH). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 20.2 (CH₃), 22.2 (CH₃), 25.9 (CH₃), 29.1

(CH₂), 33.8 (CH₂), 36.8 (C_q), 89.3 (C_q), 91.6 (CH), 117.6 (CH_{arom}), 118.5 (CH_{arom}), 126.4 (C_{q,arom}), 127.4 (CH_{arom}), 128.6 (CH_{arom}), 156.5 (C_{q,arom}). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3406 (bs), 3280 (bs), 3048 (m), 2925 (s), 2877 (m), 1582 (m), 1493 (s), 1038 (s), 1005 (s), 923 (s), 754 (s). **GC-MS** (70 eV, EI): m/z (%) = 237 (M⁺ + 1, 1), 218 (100), 203 (58), 185 (30), 147 (90), 131 (22), 121 (87), 103 (22), 91 (14), 77 (8), 65 (13).

Die Signale in den NMR-Spektren des Nebendiastereomers liegen größtenteils unter denen des Hauptdiastereomers und können deshalb nur teilweise angegeben werden.

V 155 Säurekatalysierte Cyclisierung von 6-(2-Hydroxyphenyl)-5,6,6trimethyltetrahydropyran-2-ol (95h)

 Ansatz:
 60 mg (0.25 mmol)
 6-(2-Hydroxyphenyl)-5,6,6-trimethyl-tetrahydropyran-2-ol (**95h**)

 5 mg (0.025 mmol)
 p-TsOH

 6 ml
 abs. Dioxan

Durchführung: analog V 132

Ausbeute: 42 mg (0.19 mmol, 76 %) an 2,3,4,5-Tetrahydro-4,4,5-trimethyl-2,5epoxy-2*H*-1-benzoxocin (**96h**) als hellgelbe Flüssigkeit. Spektroskopische Daten:

2,3,4,5-Tetrahydro-4,4,5-trimethyl-2,5-epoxy-2*H*-1-benzoxocin (**95h**)

 $(C_{14}H_{18}O_2, 218.30 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.80 (s, 3H, -CH₃), 1.10 (ddd, 1H, ³J = 5.5, 1.1, ²J = 14.5 Hz, -CH₂-), 1.11 (s, 3H, -CH₃), 1.34 (dt, 1H, ³J = 4.8, ²J = 14.0 Hz, -CH₂-), 1.41 (s, 3H, -CH₃), 1.78 (ddt, 1H, ³J = 4.8, 1.8, ²J = 14.0 Hz, -CH₂-), 2.02 (ddt, 1H, ³J = 5.5, 1.8, ²J = 14.0 Hz, -CH₂-), 5.54

(d, 1H, ${}^{3}J = 1.8$ Hz, -OCHO-), 6.73 (m, 2H, CH_{arom}), 6.92 (dd, 1H, ${}^{3}J = 7.8$, ${}^{4}J = 1.7$ Hz, CH_{arom}), 7.07 (dd, 1H, ${}^{3}J = 7.6$, ${}^{4}J = 1.5$ Hz, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 21.2 (2 x CH₃), 26.5 (CH₃), 28.8 (CH₂), 31.2 (CH₂), 36.4 (C_q), 77.3 (C_q), 94.4 (CH), 115.1 (CH_{arom}), 118.7 (CH_{arom}), 126.2 (C_{q,arom}), 126.8 (CH_{arom}), 127.9 (CH_{arom}), 152.4 (C_{q,arom}). IR (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3065 (w), 3038 (w), 2952 (s), 2871 (m), 1609 (m), 1584 (m), 1488 (m), 1454 (m), 1224 (m), 1131 (m), 1037 (m). GC-MS (70 eV, EI): m/z (%) = 218 (M⁺, 95), 201 (9), 161 (19), 149 (78), 132 (16), 119 (100), 105 (9), 91 (58), 77 (10), 65 (23), 55 (18). Elementaranalyse: berechnet: C: 77.0 % H: 8.3 %, gefunden: C: 77.0 % H: 8.3 %.

4.7.5 Hydroformylierung der 2-Hydroxy-naphthyl-alkenole

V 156 Hydroformylierung von 1-(β-Hydroxy-α-naphthyl)-prop-2-en-1-ol (90a)

Ansatz:400 mg (1.26 mmol) $1-(\beta-Hydroxy-\alpha-naphthyl)$ -prop-2-en-1-ol (**90a**)5 mg (1 mol-%)Rh(acac)(CO)_263 mg (4 mol-%)BIPHEPHOS10 mlabs. Dioxan

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Aufarbeitung:350 mg Rohprodukt werden säulenchromatographisch an Kieselgel mitMTBE/Cyclohexan (1:2) als Eluent aufgereinigt (GC-Ausbeute 98 %).

Ausbeute:246 mg (1.16 mmol, 92 %) 5-(2-Hydroxynaphthalen-1-yl)-tetrahydrofuran-
2-ol (**98a**) als 1:1-Diastereomerengemisch.

Spektroskopische Daten: 5-(2-Hydroxynaphthalen-1-yl)-tetrahydrofuran-2-ol (98a)

(C14H14O3, 230.26 g/mol), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.93 (m_c, 1H, -CH₂-), 2.09 (m_c, 1H, -CH₂-), 2.16-2.38 (m, 2H, -CH₂-), 2.41-2.49 (m, 1H, -CH₂-), 2.71 (m_c, 1H, -CH₂-), 3.30 (bs, 1H, -OH), 4.27 (bs, 1H, -OH), 5.75 (d*,1H, ³J = 3.5 Hz, CH-O-), 5.85 (dd, 1H, ³J = 10.5, 6.0 Hz, -CH-O-), 5.91 (dd, 1H, ³J = 5.3, 2.0 Hz, -CH-OH), 6.13 (dd, 1H, ³J =

8.8, 6.8 Hz, -CH-OH), 7.08 (d, 1H, ${}^{3}J$ = 8.8 Hz, CH_{arom}), 7.11 (d, 1H, ${}^{3}J$ = 9.0 Hz, CH_{arom}), 7.30 (d, 2H, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 1.8 Hz, CH_{arom}), 7.43 (d, 2H, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 1.2 Hz, CH_{arom}), 7.65-7.70 (4H, CH_{arom}), 7.75 (d, 2H, ${}^{3}J$ = 8.0, CH_{arom}), 9.31 (s, 2H, -OH). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 30.0 (CH₂), 32.2 (CH₂), 33.2 (CH₂), 34.1 (CH₂), 78.8 (CH), 80.1 (CH), 98.7 (CH), 99.2 (CH), 114.1 (Cq,arom), 114.4 (Cq,arom), 119.7 (CH_{arom}), 120.0 (CH_{arom}), 121.0 (CH_{arom}), 121.4 (CH_{arom}), 122.8 (CH_{arom}), 122.9 (CH_{arom}), 126.5 (CH_{arom}), 126.6 (CH_{arom}), 128.7 (2 x Cq,arom), 128.8 (2 x CH_{arom}), 129.5 (CH_{arom}), 129.7 (CH_{arom}), 131.4 (Cq,arom), 131.8 (Cq,arom), 153.2 (2 x Cq,arom). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3339 (bs), 3061 (m), 2950 (m), 1622 (s), 1600 (s), 1468 (s), 1405 (s), 1270 (s), 1225 (s), 1149 (s), 1031 (s). **GC-MS** (70 eV, EI): m/z (%) = 231 (M⁺ + 1, 1), 215 (1), 197 (1), 181 (2), 167 (15), 145 (6), 123 (100), 111 (10), 93 (44), 81 (29), 67 (17), 55 (22).

V 157 Säurekatalysierte Cyclisierung von 5-(2-Hydroxynaphthalin-1-yl)tetrahydrofuran-2-ol (98a)

Ansatz: 150 mg (0.65 mmol) 6-(2-Hydroxynaphthalin-1-yl)-tetrahydropyran-2-ol (98a) 5 mg (0.03 mmol) p-TsOH 8 ml abs. Dioxan

Durchführung: analog V 134

Ausbeute: 136 mg (0.64 mmol, 99 %) an 1,2,3,4-Tetrahydro-1,4-epoxynaphth[2,1-*b*]oxepin (**99a**) als hellgelbe Flüssigkeit.¹²⁴ Spektroskopische Daten: 1,2,3,4-Tetrahydro-1,4-epoxy-naphth[2,1-*b*]oxepin (**99a**) (C₁₄H₁₂O₂, 212.25 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 2.17-2.24 (m, 4H, -CH₂-), 5.67 (dd, 1H, ${}^{3}J$ = 4.5, 3.0 Hz, -CH-O-), 5.92 (dd, 1H, ${}^{3}J$ = 3.5, 1.0 Hz, -OCHO-), 6.89 (d, 1H, ${}^{3}J$ = 8.8 Hz, CH_{arom}), 7.23 (dt, 1H, ${}^{3}J$ = 6.9 Hz, ${}^{4}J$ = 1.3, 1.0 Hz, CH_{arom}), 7.35 (ddt, 1H, ${}^{3}J$ = 6.9 Hz, ${}^{4}J$ = 1.3, 1.2 Hz,

CH_{arom}), 7.54 (t, 2H, ${}^{3}J = 8.8$ Hz, CH_{arom}), 7.63 (d, 1H, ${}^{3}J = 8.3$ Hz, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 33.3 (CH₂), 35.5 (CH₂), 74.0 (CH), 100.3 (CH), 117.9 (CH_{arom}), 119.0 C_{q,arom}), 120.4 (CH_{arom}), 123.3 (CH_{arom}), 126.6 (CH_{arom}), 128.5 (C_{q,arom}), 128.7 (CH_{arom}), 128.9 (CH_{arom}), 129.5 (C_{q,arom}), 147.4 (C_{q,arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3060 (w), 2997 (m), 2952 (m), 2862 (w), 1622 (m), 1598 (m), 1514 (m), 1466 (m), 1386 (s), 1236 (s), 1184 (s), 1078 (s), 958 (s), 821 (s). **GC-MS** (70 eV, EI): m/z (%) = 212 (M⁺, 78), 181 (10), 168 (100), 152 (10), 139 (17), 129 (12), 115 (9), 77 (6), 63 (7).

V 158-159 Hydroformylierung von 1-(β-Hydroxy-α-naphthyl)-but-3-en-1-ol (90b)

Ansatz:	428 mg	(2.0 mmol)	$1-(\beta-Hydroxy-\alpha-naphthyl)-but-3-en-1-ol (90b)$
	5 mg	(1.0 mol-%)	Rh(acac)(CO) ₂
	63 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. Solvens

Reaktionsbedingungen: $60 \, ^{\circ}\text{C}$, 20 h, 10 bar CO, 10 bar H2Durchführung:analog AAV I

Tab. 56: Hydroformylierung von 1-(β -Hydroxy- α -naphthyl)-but-3-en-1-ol (**90b**)

			Ausbeute ^{a)} [%]		
Vers.	LM	Säure ^{b)}	98b	99b	
V 158	CH_2Cl_2		48 (37)		
V 159	Dioxan	p-TsOH	35 (14)	15 (10)	

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten; ^{b)} 5 mol-%

Aufarbeitung:296 mg Rohprodukt werden säulenchromatographisch an Kieselgel mitMTBE/Cyclohexan (1:1) als Eluent gereinigt.

Ausbeute (V 156): 183 mg (0.75 mmol, 37 %) 6-(2-Hydroxynaphthalin-1-yl)tetrahydropyran-2-ol (**98b**) als 1:1-Diastereomerengemisch.

OH

.OH

Spektroskopische Daten: 6-(2-Hydroxynaphthalin-1-yl)-tetrahydropyran-2-ol (98b)

(C₁₅H₁₆O₃, 244.29 g/mol), 1:1-Diastereomerengemisch

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.51-1.60 (m, 1H, -CH₂-), 1.67-2.05 (m, 10H, -CH₂-), 2.11-2.23 (m, 1H, -CH₂-), 3.22 (bs, 1H, -OH), 3.79 (bs, 1H, -OH), 4.95 (d*, 1H, ${}^{3}J$ = 9.5 Hz, -CH-O-), 5.43 (dd, 1H, ${}^{3}J$ = 11.0, 2.5 Hz, -CH-O-), 5.58 (s*, 1H, -OCHO-), 6.06 (dd, 1H, ${}^{3}J$ = 10.8, 2.5 Hz, -OCHO-), 7.11 (dd, 2H, ${}^{3}J$ = 8.8, 7.5 Hz,

CH_{arom}), 7.29 (m, 2H, CH_{arom}), 7.42 (m, 2H, CH_{arom}), 7.60 (d, 1H, ${}^{3}J = 8.5$ Hz, CH_{arom}), 7.66 (dd, 2H, ${}^{3}J = 8.8$ Hz, ${}^{4}J = 3.0$ Hz, CH_{arom}), 7.73 (m, 3H, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 17.3 (CH₂), 22.1 (CH₂), 29.6 (CH₂), 30.1 (CH₂), 30.9 (CH₂), 32.1 (CH₂), 69.6 (CH-O), 76.8 (CH-O), 92.5 (CHOH), 97.7 (CHOH), 115.6 (Cq,arom), 116.2 (Cq,arom), 119.6 (CH_{arom}), 119.8 (CH_{arom}), 120.7 (CH_{arom}), 121.0 (CH_{arom}), 122.8 (2 x CH_{arom}), 126.6 (2 x CH_{arom}), 128.6 (Cq,arom), 128.7 (Cq,arom), 128.8 (2 x CH_{arom}), 129.5 (CH_{arom}), 129.6 (CH_{arom}), 130.7 (Cq,arom), 131.0 (Cq,arom), 153.5 (Cq,arom), 153.6 (Cq,arom). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3330 (bs), 3062 (m), 2945 (s), 2866 (m), 1622 (s), 1600 (s), 1469 (s), 1228 (s), 1016 (m), 817 (s), 746 (s). **GC-MS** (70 eV, EI): m/z (%) = 244 (M⁺, 1), 226 (100), 208 (11), 198 (11), 181 (50), 170 (62), 153 (25), 141 (18), 115 (23), 89 (6), 74 (4). **Elementaranalyse**: berechnet: **C**: 73.8 % **H**: 6.6 %, gefunden: **C**: 73.6 % **H**: 6.6 %.

Spektroskopische Daten: 2,3,4,5-Tetrahydro-1,5-epoxy-naphth[2,1-b]oxocin (**99b**)¹²⁴ (C₁₅H₁₄O₂, 226.28 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.42-1.47 (m, 2H, -CH₂-), 1.77-1.92 (m, 3H, -CH₂-), 2.10-2.19 (m, 1H, -CH₂-), 5.44 (d, 1H, ³*J* = 3.5 Hz, -CH-O-), 5.59 (s, 1H, -OCHO-), 6.98 (d, 1H, ³*J* = 9.0 Hz, CH_{arom}), 7.19 (t, 1H, ³*J* = 7.0 Hz, CH_{arom}), 7.32 (t, 1H, ³*J* = 7.0 Hz, CH_{arom}), 7.42 (d, 1H, ³*J* = 9.0 Hz, CH_{arom}), 7.55 (d, 1H, ³*J* = 8.3 Hz,

CH_{arom}), 7.64 (d, 1H, ${}^{3}J$ = 7.0 Hz, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 14.8 (CH₂), 28.9 (CH₂), 32.0 (CH₂), 67.0 (CH), 94.4 (CH), 114.3 (C_{q,arom}), 117.4 (CH_{arom}), 120.5 (CH_{arom}), 123.0 (CH_{arom}), 126.5 (CH_{arom}), 128.3 (CH_{arom}), 128.5 (C_{q,arom}), 128.7 (CH_{arom}), 129.8 (C_{q,arom}), 150.8 (C_{q,arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3062 (w), 2950 (s), 2873 (w), 2846 (w), 1626 (s), 1599 (s), 1516 (s), 1468 (s), 1438 (s), 1399 (s), 1258 (s),

1239 (s), 1126 (s), 1092 (s), 963 (s). **GC-MS** (70 eV, EI): m/z (%) = 226 (M⁺, 100), 208 (10), 198 (12), 181 (50), 170 (55), 153 (21), 141 (22), 128 (10), 115 (16), 89 (3), 63 (3).

V 160 Säurekatalysierte Cyclisierung von 6-(2-Hydroxynaphthalin-1-yl)tetrahydropyran-2-ol (98b)

 Ansatz:
 160 mg (0.65 mmol)
 6-(2-Hydroxynaphthalin-1-yl)-tetrahydropyran-2-ol (98b)

 10 mg (0.05 mmol)
 p-TsOH

 8 ml
 abs. Dioxan

Durchführung: analog V 134

Ausbeute: 125 mg (0.55 mmol, 85 %) 2,3,4,5-Tetrahydro-1,5-epoxynaphth[2,1-*b*]oxocin (**99b**). Spektroskopische Daten siehe (V 159).

- 4.7.6 Hydroformylierung der 4-Methoxy-2-hydroxyphenylalkenole
- V 161 Hydroformylierung von 2-(1-Hydroxyprop-2-enyl)-4-methoxyphenol (93a)

Ansatz:	540 mg	(3.0 mmol)	2-(1-Hydroxyprop-2-enyl)-4-methoxyphenol (93a)
	8 mg	(1.0 mol-%)	$Rh(acac)(CO)_2$
	94 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. CH ₂ Cl ₂

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute: 353 mg (1.84 mmol, 61 %) 2,3,4,5-Tetrahydro-8-methoxy-2,5-epoxy-2*H*-1-benzoxepin (**100a**). Spektroskopische Daten:

2,3,4,5-Tetrahydro-8-methoxy-2,5-epoxy-2*H*-1-benzoxepin (**100a**)

(C₁₁H₁₂O₃, 192.22 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 2.21 (m, 4H, 2 x -CH₂-), 3.74 (s, 3H, -CH₃), 5.06 (t, 1H, ³*J* = 3.5 Hz), 5.91 (m, 1H, -OCHO-), 6.52 (d, 1H, ⁴*J* = 2.3 Hz, CH_{arom}), 6.69 (m, 2H, CH_{arom}). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 33.0 (CH₂), 35.7 (CH₂), 55.7 (CH₃), 77.3 (CH), 100.3 (CH), 110.0 (CH_{arom}), 113.9 (CH_{arom}), 116.6 (CH_{arom}), 127.6 (C_{q,arom}), 143.7 (C_{q,arom}), 153.08 (C_{q,arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3056 (w), 2992 (m), 2952 (m), 2911 (m), 2871 (w), 2833 (m),1494 (s), 1207 (s), 1138 (s), 944 (s), 867 (s). **GC-MS** (70 eV, EI): m/z (%) = 192 (M⁺, 100), 174 (22), 163 (52), 148 (25), 135 (22), 107 (40), 91 (18), 77 (18), 65 (6), 51 (9). **Elementaranalyse**: berechnet: **C**: 68.7 % **H**: 6.3 %, gefunden: **C**: 69.0 % **H**: 6.2 %.

V 162 Hydroformylierung von 2-(1-Hydroxybut-3-enyl)-4-methoxyphenol (93b)

Ansatz:	388 mg	(2.0 mmol)	2-(1-Hydroxybut-3-enyl)-4-methoxyphenol (93b)
	5 mg	(1.0 mol-%)	Rh(acac)(CO) ₂
	63 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. CH ₂ Cl ₂

Reaktionsbedingungen: $60 \,^{\circ}\text{C}$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Aufarbeitung: 416 mg Rohprodukt werden säulenchromatographisch an Kieselgel mit MTBE/Cyclohexan (1:1) als Eluent gereinigt.

Ausbeute: 230 mg (1.12 mmol, 56 %) 3,4,5,6-Tetrahydro-9-methoxy-2,6-epoxy-2*H*-1-benzoxocin (**100b**).

Spektroskopische Daten:

3,4,5,6-Tetrahydro-9-methoxy-2,6-epoxy-2*H*-1-benzoxocin (100b)

(C₁₂H₁₄O₃, 206.24 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.55-1.72 (m, 3H, -CH₂), 1.89-1.94 (m, 2H, -CH₂-), 2.14-2.22 (m, 1H, -CH₂-), 3.75 (s, 3H, -CH₃), 4.92 (d*, 1H, ${}^{3}J$ = 2.7 Hz, -CH-O-), 5.58 (s*, 1H, -OCHO-),

6.46 (d, 1H, ${}^{4}J$ = 2.5 Hz, CH_{arom}), 6.75 (dd, 2H, ${}^{3}J$ = 4.8, 2.8 Hz, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 14.2 (CH₂), 30.9 (CH₂), 31.6 (CH₂), 55.7 (CH₃), 69.7 (CH), 94.4 (CH), 110.1 (CH_{arom}), 114.0 (CH_{arom}), 115.6 (CH_{arom}), 123.6 (C_{q,arom}), 147.0 (C_{q,arom}), 152.8 (C_{q,arom}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3054 (w), 2962 (m), 2873 (m), 2834 (m), 1590 (w), 1496 (m), 1227 (m), 1018 (s), 800 (s). **MS** (EI, 70 eV): m/z (%) = 206 (M⁺, 100), 188 (22), 177 (16), 161 (52), 150 (61), 135 (29), 121 (9), 107 (14), 91 (19), 77 (19), 65 (15). **Elementaranalyse**: berechnet: **C**: 69.9 % **H**: 6.8 %, gefunden: **C**: 69.9 % **H**: 6.9 %.

4.8 Reaktionen von 3-Methylen-1,5-diolen

4.8.1 Darstellung von 3-Methylen-1,5-diolen

V 163 Darstellung von 2,6-Dimethyl-4-methylenheptan-2,6-diol (109)

Ansatz:	2.50 g	(20 mmol)	3-Chlor-2-chlormethylpropen (107a)
	2.32 g	(40 mmol)	abs. Aceton (4a)
	0.84 g	(120 mmol)	Lithium-Pulver
	153 mg	(1.2 mmol)	Naphthalin
	50 ml		abs. THF

Durchführung:

Man legt 0.84 g (120 mmol) Lithium-Pulver und 153 mg (1.2 mmol) Naphthalin vor, gibt 50 ml abs. THF hinzu und kühlt auf -78 °C. Es wird 30 min bei -78 °C gerührt und dann ein Gemisch aus 2.32 g (40 mmol) abs. Aceton (**4a**) und 2.50 g (20 mmol) 3-Chlor-2-chlormethylpropen (**107a**) innerhalb von 20 min zugetropft. Man rührt weitere 5 h bei -78 °C und lässt über Nacht auf RT aufwärmen. Es wird mit 20 ml ges. NH₄Cl-Lösung hydrolysiert und mit 15 ml 2 N Salzsäure neutralisiert. Die Reaktionsmischung wird filtriert und die Phasen werden getrennt. Die wässrige Phase wird mit Diethylether extrahiert (3 x 30 ml). Die vereinigten organischen Phasen werden mit 10 ml Wasser gewaschen, über Na₂SO₄ getrocknet und das Lösemittel am Rotationsverdampfer entfernt. Man erhält als Rohprodukt 2.65 g eines braunen Öles, das langsam kristallisiert. Nach säulenchromatographischer Aufarbeitung an Kieselgel mit MTBE/Cyclohexan (3:1) als Eluent erhält man 1.63 g (9.5 mmol, 47 %) an 2,6-Dimethyl-4-methylenheptan-2,6-diol

(109) als farblosen Feststoff ($C_{10}H_{20}O_2$, 172.27 g/mol, Schmp.: 77 °C). Die spektroskopischen Daten stimmen mit denen der Literatur überein.¹³⁶

4.8.2 Hydroformylierung der 3-Methylen-1,5-diole

V 164-166 Hydroformylierung von 2,6-Dimethyl-4-methylen-heptan-2,6-diol (109)

Ansatz: 957 mg (5.56 mmol) 2,6-Dimethyl-4-methylen-heptan-2,6-diol (**109**) (1.0 mol-%) Katalysator 10 ml abs. Dioxan

Reaktionsbedingungen:s. Tab. 57Durchführung:analog AAV I

Tab. 57: Hydroformylierung von 2,6-Dimethyl-4-methylen-heptan-2,6-diol (109)

Vers.	Kat	p(CO)/(H ₂)	Т	t	Umsatz	Ausbe	ute ^{a)} [%]
		[bar]	[°C]	[h]	[%]	110	111
V 164	[Rh(cod)Cl] ₂	40 / 40	120	20	77	17	23 (22)
V 165	$Rh(acac)(CO)_2$	40 / 40	100	20	30		20
V 166	Rh(acac)(CO) ₂	40 / 40	100	70	100	21	56 (22)

^{a)} gaschromatographisch bestimmt, in Klammern isolierte Ausbeuten

Aufarbeitung:968 mg Rohprodukt werden säulenchromatographisch an Kieselgel mitMTBE/Cyclohexan (1:1) als Eluent aufgearbeitet.

Ausbeute (V 164): 227 mg (1.23 mmol, 22 %) 1-(2,2-Dimethyl-3,4-dihydro-2*H*-pyran-4yl)-2-methylpropan-2-ol (**111**).

Spektroskopische Daten:

1-(2,2-Dimethyl-3,4-dihydro-2*H*-pyran-4-yl)-2-methylpropan-2-ol (111)

 $(C_{11}H_{20}O_2, 184.28 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.23 (s, 3H, -CH₃), 1.27

(s, 6H, 2 x -CH_{3,Ring}), 1.28 (s, 3H, -CH₃), 1.25-1.53 (m, 3H,

-CH₂-), 1.83 (ddd, 1H, J = 13.3, 6.0, 1.8 Hz, -CHH'-Ring), 2.39

(m, 1H, -CH-), 4.61 (dt*, 1H, ${}^{3}J$ = 6.3, 1.8 Hz, -CH=), 6.21 (dd, 1H, ${}^{3}J$ = 6.3, 2.2 Hz,

=CH-O-). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 23.7 (CH₃), 25.4 (CH₃), 29.7 (CH₃), 29.8 (CH₃), 30.4 (CH), 42.1 (CH₂), 49.3 (CH₂), 71.4 (C_q), 73.9 (C_q), 104.7 (CH), 141.3 (CH). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3444 (vs), 3053 (w), 2972 (s), 2927 (s), 1642 (s), 1380 (s), 1202 (s), 1043 (s). **GC-MS** (70 eV, EI): m/z (%) = 185 (M⁺ + 1, 11), 166 (98), 151 (65), 133 (5), 123 (86), 111 (100), 95 (46), 81 (23), 59 (42). **Elementaranalyse**: berechnet: **C**: 71.7 % **H**: 10.9 %, gefunden: **C**: 71.2 % **H**: 10.7 %.

4.9 Darstellung von Spiro-Oxaheterocyclen

4.9.1 Versuche zur Darstellung von 2-Alkenyllactolen

V 167 (2*S**, 4*S**)-2-Allyl-4-methyltetrahydro-2*H*-pyran-2-ol (114)

Ansatz:	21.20 g	(200 mmol)	4-Methyl-δ-valerolacton (113)
	30.60 g	(250 mmol)	Allylbromid
	6.00 g	(246 mmol)	Magnesium-Späne
	90 ml		abs. Diethylether

Durchführung:

Nach einer Vorschrift von *Kocienski*¹⁴⁰ wird aus 30.60 g (250 mmol) Allylbromid und 6.00 g (246 mmol) Mg-Späne das Allylgrignard-Reagenz gebildet und dieses zu einer Lösung von 21.20 g (200 mmol) 4-Methyl- δ -valerolacton (**113**) in 90 ml Diethylether bei -78 °C zugetropft. Das Reaktionsgemisch wird 2 h bei -78 °C und 2 h bei RT gerührt. Man gießt auf 100 g Eis und versetzt mit gesättigter NH₄Cl-Lsg. Die wässrige Phase wird mit Diethylether (3 x 50 ml) extrahiert und die vereinigten organischen Phasen über MgSO₄ getrocknet. Man entfernt das Lösemittel und erhält nach säulenchromatographischer Aufarbeitung an Kieselgel mit MTBE als Eluent 4.37 g (28 mmol, 14 %) (2*S**, 4*S**)-2-Allyl-4-methyltetrahydro-2*H*-pyran-2-ol (**114**). Die spektroskopischen Daten stimmen mit der Literatur überein.¹⁴¹

4.9.2 Darstellung von 1,1-Bisalkenyl-butan-1,4-diolen

V 168 4-Ethenylhex-5-en-1,4-diol (123a)

Ansatz:4.30 g(50 mmol)γ-Butyrolacton (119)60 ml(100 mmol)Vinylmagnesiumchlorid (1.7 M in THF)250 mlabs. THF

Durchführung: analog V 70

Ausbeute: 4.70 g (33 mmol, 66 %) 3-Ethenylhex-5-en-1,4-diol (**123a**).

Spektroskopische Daten: 4-Ethenylhex-5-en-1,4-diol (123a)

 $(C_8H_{14}O_2, 142.20 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.62-1.73 (m, 4H, -CH₂-), 3.30 bs, 2H, -OH), 3.62 (t, 2H, ³J = 5.8 Hz, -CH₂-OH), 5.12 (d, 2H, ^{HO}) ³J = 10.5 Hz, CHH_{cis}=CH-), 5.26 (d, 2H, ³J = 17.3 Hz,

CH*H*_{trans}=CH-), 5.91 (dd, 2H, ³*J* = 17.3, 10.5 Hz, CH₂=C*H*-). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 26.5 (CH₂), 37.6 (CH₂), 62.7 (CH₂), 75.5 (C_q), 112.9 (2 x CH_{2,olefin}), 142.6 (2 x CH_{olefin}). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3365 (bs), 3088 (m), 3011 (m), 2982 (s), 2948 (s), 2876 (m), 1636 (m), 1472 (s), 1446 (s), 1056 (s), 995 (s), 922 (s). **GC-MS** (70 eV, EI): m/z (%) = 143 (M⁺ + 1, 1), 123 (3), 97 (9), 83 (100), 55 (76).

V 169 4-(2-Propenyl)-hept-6-en-1,4-diol (123b)

Ansatz:	2.60 g	(30 mmol)	γ-Butyrolacton (119)
	9.00 g	(75 mmol)	Allylbromid
	1.75 g	(72 mmol)	Mg-Späne
	50 ml		abs. THF

Durchführung: analog V 72

Ausbeute: 4.50 g (26.4 mmol, 88 %) 4-(2-Propenyl)-hept-6-en-1,4-diol (**123b**). Die spektroskopischen Daten stimmen mit denen der Literatur überein.¹⁴¹

4.9.3 Darstellung von 1,1-Bisalkenyl-pentan-1,5-diolen

V 170 5-Ethenylhept-6-en-1,5-diol (124a)

Ansatz:	5.00 g	(50 mmol)	δ-Valerolacton (120)
	60 ml	(100 mmol)	Vinylmagnesiumchlorid (1.7 M in THF)
	250 ml		abs. THF

Durchführung: analog V 70

Ausbeute: 5.50 g (35 mmol, 70 %) an 3-Ethenylhex-5-en-1,4-diol (**124a**).

Spektroskopische Daten: 3-Ethenylhept-6-en-1,5-diol (124a)

(C₉H₁₆O₂, 156.22 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.37-1.46 (m, 1H, -CH₂-), 1.53-1.64 (m, 4H, -CH₂-), 2.03-2.05 (m, 1H, -CH₂-), 3.63 (t, 2H, ³J = 6.4 Hz, -CH₂OH), 5.11 (dd, 2H, ²J = 1.3 Hz, ³J = 10.8 Hz,

CH H_{cis} =CH-), 5.26 (dd, 2H, ²J = 1.3 Hz, ³J = 17.3 Hz, CH H_{trans} =CH-), 5.93 (dd, 2H, ³J = 17.3, 10.8 Hz, CH₂=CH-). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 19.6 (CH₂), 32.7 (CH₂), 40.2 (CH₂), 62.5 (CH₂), 75.9 (C_q), 112.8 (2 x CH_{2,olefin}), 142.7 (2 x CH_{olefin}). IR (Film, NaCl), \tilde{v} [cm⁻¹] = 3366 (bs), 3087 (m), 3010 (m), 2941 (s), 2870 (s), 1639 (m), 1456 (m), 1410 (s), 1070 (s), 1033 (s), 996 (s), 922 (s). GC-MS (70 eV, EI): m/z (%) = 157 (M⁺ + 1, 2), 129 (8), 111 (93), 93 (22), 79 (14), 55 (100).

V 171 5-(2-Propenyl)-oct-7-en-1,5-diol (124b)

Ansatz:	3.00 g	(30 mmol)	δ -Valerolacton (120)
	9.00 g	(75 mmol)	Allylbromid
	1.75 g	(72 mmol)	Mg-Späne
	50 ml		abs. THF

Durchführung: analog V 72

Ausbeute: 5.40 g (29.3 mmol, 98 %) 5-(2-Propenyl)-oct-7-en-1,5-diol (**124b**). Die spektroskopischen Daten stimmen mit denen in der Literatur überein.¹⁴¹

4.9.4 Umsetzung von (2*S**, 4*S**)-2-Allyl-4-methyltetrahydro-2*H*-pyran-2-ol

V 172-173 Hydroformylierung von (2*S**, 4*S**)-2-Allyl-4-methyltetrahydro-2*H*pyran-2-ol (114)

```
Ansatz:489 mg(3.0 \text{ mmol})(2S^*, 4S^*)-2-Allyl-4-methyltetrahydro-2H-<br/>pyran-2-ol (114)5 mg(1.0 \text{ mol-}\%)Rh(acac)(CO)210 mlabs. Dioxan
```

Reaktionsbedingungen:s. Tab. 58Durchführung:analog AAV I

Tab. 58: Hydroformylierung von $(2S^*, 4S^*)$ -2-Allyl-4-methyltetrahydro-2H-pyran-2-ol(114)

Vers.	p(CO)/p(H ₂)	Т	t	Ausbeut	e ^{a)} [%]	
	[bar]	[°C]	[h]	115a,b	127	
V 172	80 / 20	80	20	27		
V 173 ^{b)}	10 / 10	60	20		41	

^{a)} gaschromatographisch bestimmt, ^{b)} 4 Äq. BIPHEPHOS

Aufarbeitung:Säulenchromatographische Aufreinigung an Kieselgel mit MTBE/PE(30/60) (1:9) als Eluent.

Ausbeute (V 170): 133 mg (0.73 mmol, 27 %) ($2S^*$, $6R^*$, $10S^*$)-10-Methyl-1,7dioxaspiro[5.5]undecan-2-ol (**115a**) und ($2R^*$, $6R^*$, $10S^*$)-10-Methyl-1,7-dioxaspiro[5.5]undecan-2-ol (**115b**) als 2.4:1.0-Diastereomerengemisch. Die spektroskopischen Daten stimmen mit der Literatur überein.⁴⁴

Spektroskopische Daten: 2-(3-Hydroxy-1-methyl-propyl)-cyclohex-2-enon (**127**) (C₁₀H₁₆O₂, 168.24 g/mol)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.06 (d, 3H, ³J = 7.0 Hz, -CH₃), 1.41-1.49 (ddt, 1H, J = 18.8, 13.8, 5.3 Hz, -CHH-), 1.67-1.75 (ddt, 1H, J = 19.6, 13.8, 6.0 Hz, -CHH-), 1.94-2.02 (m, 2H, -CH₂-), O 2.40 (dt, 2H, ³J = 5.8, 5.3 Hz, -CH₂-), 2.46 (m, 2H, -CH₂), 2.95 (m_c, 1H,

-CHCH₃), 3.38-3.45 (m, 1H, -CH₂-), 3.52-3.58 (m, 1H, -CH₂-), 6.78 (t, 1H, ${}^{3}J$ = 4.3 Hz, -CH=C_q). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 20.1 (CH₃), 22.8 (CH₂), 26.1 (CH₂), 27.0 (CH), 38.5 (CH₂), 40.6 (CH₂), 60.5 (_{CH2}), 143.9 (C_q,_{olefin}), 144.8 (CH_{olefin}), 200.5 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3435 (s), 3033 (w), 2954 (s), 2933 (s), 2872 (s), 1668 (s), 1456 (s), 1432 (m), 1386 (s), 1173 (s), 1058 (s), 1037 (s), 973 (m). **GC-MS** (70 eV, EI): m/z (%) = 151 (M⁺ - 17, 100), 135 (22), 107 (3).

4.9.5 Hydroformylierung von 1,1-Bisalkenyl-butan-1,4-diolen

V 174 Hydroformylierung von 4-Ethenylhex-5-en-1,4-diol (123a)

Ansatz:	400 mg	(2.9 mmol)	4-Ethenylhex-5-en-1,4-diol (123a)
	8 mg	(1.0 mol-%)	$Rh(acac)(CO)_2$
	91 mg	(4 mol-%)	BIPHEPHOS
	10 ml		abs. Dioxan

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Aufarbeitung: 674 mg Rohprodukt (GC-Ausbeute 80 %) werden säulenchromatographisch an Kieselgel mit MTBE/PE (30/60) (5:1) als Eluent gereinigt.

Ausbeute: 105 mg (0.57 mmol, 20 %) 3-(2,9-Dioxabicyclo[4.2.1]non-6-yl)-propanal (131a).

Spektroskopische Daten: 3-(2,9-Dioxabicyclo[4.2.1]non-6-yl)-propanal (131a)

 $(C_{10}H_{16}O_3,\,184.23 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.59-1.64 (m, 3H, -CH₂-), 1.68-1.74 (m, 2H, -CH₂-), 1.86-1.95 (m, 4H, -CH₂-), 1.99-2.07 (m, 1H, -CH₂-), 2.43-2.58 (m, 2H, -CH₂-), 3.65 (dt, 2H, J = 12.0, 3.4 Hz, -CH₂-), 5.36 (d, 1H, ³J = 3.4 Hz, -OCHO-), 9.76 (t, 1H, ³J = 1.8 Hz,

-CHO). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 27.6 (CH₂), 29.0 (CH₂), 33.6 (CH₂), 36.3 (CH₂), 37.6 (CH₂), 38.9 (CH₂), 62.6 (CH₂), 87.6 (C_q), 101.1 (CH), 202.2 (C_{HO}). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2941 (s), 2718 (w), 1724 (s), 1444 (m), 1120 (s), 1071 (m), 1043 (m),

1015 (m), 946 (m). **MS** (EI, 70 eV): m/z (%) = 184 (M⁺, 12), 127 (46), 112 (56), 85 (95), 84 (100).

V 175 Hydroformylierung von 4-(2-Propenyl)-hept-6-en-1,4-diol (123b)

Ansatz:

1.14 g	(6.7 mmol)	4-(2-Propenyl)-hept-6-en-1,4-diol (123b)
18 mg	(1.0 mol-%)	Rh(acac)(CO) ₂
211 mg	(4 mol-%)	BIPHEPHOS
10 ml		abs. Dioxan

Reaktionsbedingungen: 60 °C, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute:1.96 g Rohprodukt (GC-Ausbeute 93 %) werden säulenchromatographisch
an Kieselgel mit MTBE als Eluent gereinigt.

Ausbeute: 637 mg (3.0 mmol, 45 %) an 4-(2,10-Dioxabicyclo[4.3.1]dec-7-yl)propanal (**131b**).

Spektroskopische Daten: 4-(2,10-Dioxabicyclo[4.3.1]dec-6-yl)-butanal (131b)

 $(C_{12}H_{20}O_3, 212.29 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.31-1.77 (m, 14H, -CH₂-), 2.42-2.47 (ddt, 2H, *J* = 14.8, 7.0, 1.8 Hz, -CH₂-CHO), 3.72-3.76 (m, 2H, -CH₂-O-), 4.90 (bs, 1H, -OCHO-), 9.77 (t, 1H, ³*J* = 1.8 Hz, -CHO). ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 14.7 (CH₂), 16.2 (CH₂), 24.3 (CH₂), 28.7 (CH₂),

31.7 (CH₂), 31.8 (CH₂), 41.3 (CH₂), 44.3 (CH₂), 62.3 (CH₂), 74.5 (C_q), 97.6 (CH), 202.5 (CHO). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 2950 (s), 2873 (s), 2718 (w), 1724 (s), 1463 (m), 1448 (m), 1412 (m), 1356 (m), 1328 (m), 1134 (s), 1080 (m), 1043 (s). **MS** (EI, 70 eV): m/z (%) = 212 (M⁺, 3), 194 (6), 184 (19), 166 (8), 156 (19), 141 (64), 126 (13), 123 (13), 97 (88), 84 (25), 71 (100), 55 (39). **Elementaranalyse**: berechnet: **C**: 67.9 % **H**: 9.5 %, gefunden: **C**: 67.7 % **H**: 9.4 %.

4.9.6 Hydroformylierung von 1,1-Bisalkenyl-pentan-1,5-diolen

V 176 Hydroformylierung von 5-Ethenylhept-6-en-1,5-diol (124a)

 Ansatz:
 440 mg
 (2.8 mmol)
 5-Ethenylhept-6-en-1,5-diol (124a)

 8 mg
 (1.0 mol-%)
 Rh(acac)(CO)_2

 91 mg
 (4 mol-%)
 BIPHEPHOS

 10 ml
 abs. Dioxan

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Aufarbeitung:631mgRohprodukt(GC-Ausbeute75 %)werdensäulenchromatographisch an Kieselgel mit MTBE als Eluent aufgereinigt.

Ausbeute: 226 mg (1.14 mmol, 41 %) 3-(2,10-Dioxabicyclo[5.2.1]dec-7-yl)-propanal (132a).

Spektroskopische Daten: 3-(2,10-Dioxabicyclo[5.2.1]dec-7-yl)-propanal (132a)

 $(C_{11}H_{18}O_3, 198.26 \text{ g/mol})$

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.30-2.04 (m, 14H, -CH₂), O 2.42-2.47 (m, 2H, -CH₂-), 5.10 (d, 1H, ${}^{3}J$ = 4.0 Hz, -OCHO-), 9.75 (t, 1H, ${}^{3}J$ = 1.8 Hz, -CHO). 13 **C-NMR** (100 MHz, CDCl₃): δ [ppm] = 19.5 (CH₂), 29.2 (CH₂), 31.8 (CH₂), 32.3 (CH₂), 36.0 (CH₂), 38.0 (CH₂), 40.2 (CH₂), 63.7 (CH₂), 82.6 (C_q), 101.4 (CH), 201.6 (CHO). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2941 (s), 2870 (m), 2722 (w), 1725 (s), 1182 (m), 1099 (s), 1083 (m), 1043 (s), 1012 (m). **GC-MS** (70 eV, EI): m/z (%) = 199 (M⁺ + 1, 16), 181 (48), 163 (100).

V 177 Hydroformylierung von 5-(2-Propenyl)-oct-7-en-1,5-diol (124b)

Ansatz: 732 g (4.0 mmol) 5-(2-Propenyl)-oct-7-en-1,5-diol (**124b**) 10 mg (1.0 mol-%) Rh(acac)(CO)₂ 126 mg (4 mol-%) BIPHEPHOS 10 ml abs. Dioxan

Reaktionsbedingungen: 60 °C, 20 h, 10 bar CO, 10 bar H₂ Durchführung: analog **AAV I** Ausbeute: Man erhält 875 mg eines komplexen Produktgemisches, aus dem kein Produkt sauber zu isolieren ist.

4.10 Darstellung spirocyclischer Di- und Tetrahydropyrane

4.10.1 Hydroformylierung von Vinyldihydro- und Vinyltetrahydropyranen

V 178-179 (5*S**, 6*S**)-6-Methyl-1,7-dioxaspiro[4,5]dec-9-en-2-on (5*S**, 6*S**)-144a und (5*R**, 6*S**)-6-Methyl-1,7-dioxaspiro[4,5]dec-9-en-2-on (5*R**, 6*S**)-144a

V 178

Ansatz:	1.30 g	(9.3 mmol)	2-Methyl-3-vinyl-3,6-dihydro-2 <i>H</i> -pyran-3-ol (134a)
	12 mg	(0.5 mol-%)	Rh(acac)(CO) ₂
	146 mg	(2.0 mol-%)	BIPHEPHOS
	20 ml		abs. Dioxan

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute: 1.69 g Rohprodukt bestehend aus einem Gemisch aus vier diastereomeren Hemiacetalen **143a** im Verhältnis 3:3:1:1. Die Rohausbeute (bestimmt aus ¹H-NMR) beträgt 98 %.

V 179 Oxidation des Rohgemisches aus V 178 mit Ag₂CO₃

Ansatz:1.69 g(9.3 mmol)Rohgemisch V 1785.11 g(18.6 mmol) Ag_2CO_3 50 mlabs. Benzol

Durchführung: analog AAV V

Aufarbeitung: Säulenchromatographische Trennung an Kieselgel mit MTBE/Cyclohexan (2:1) als Eluent.

Ausbeute: 950 mg (5.7 mmol, 61 %) (5*S**, 6*S**)-**144a** und 310 mg (1.9 mmol, 20 %) (5*R**, 6*S**)-**144a**.
Spektroskopische Daten:

(5S*, 6S*)-6-Methyl-1,7-dioxaspiro[4.5]dec-9-en-2-on ((5S*, 6S*)-144a)

(C₉H₁₂O₃, 168.19 g/mol, Schmp.: 103 °C)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.24 (d, 3H, ${}^{3}J = 6.5$ Hz, -CH₃), 2.01 (m, 1H, -(O)CCH₂CH₂-), 2.12 (m, 1H, -(O)CCH₂CH₂-), 2.56 (ddd, 1H, J = 18.2, 9.8, 6.5 Hz, -(O)CCH₂CH₂-), 2.64 (ddd, 1H, J = 18.2, 10.5, 7.5 Hz, -(O)CCH₂CH₂-), 3.62 (q, 1H, ${}^{3}J = 6.5$ Hz, -CHCH₃), 4.09 (ddd, 1H, ${}^{3}J = 2.0, 0$ 2.0, ${}^{2}J = 17.0$ Hz, -O-CH₂-), 4.22 (ddd, 1H, ${}^{3}J = 3.3, 2.0, {}^{2}J = 17.0$ Hz, -O-CH₂-), 5.74 (ddd, 1H, ${}^{3}J = 10.0$ Hz, ${}^{4}J = 2.0, 2.0$ Hz, -CH=), 6.02 (ddd, 1H, ${}^{3}J = 10.0$ Hz, ${}^{4}J = 3.3, 2.0$ Hz, -CH=). 6.02 (ddd, 1H, ${}^{3}J = 10.0$ Hz, ${}^{4}J = 3.3, 2.0$ Hz, -CH=), 6.02 (ddd, 1H, ${}^{3}J = 10.0$ Hz, ${}^{4}J = 3.3, 2.0$ Hz, -CH=). 13°C-NMR (100 MHz, CDCl₃): δ [ppm] = 13.9 (CH₃), 28.0 (CH₂), 29.9 (CH₂), 64.1 (CH₂), 75.4 (CH), 80.9 (C_q), 126.4 (CH), 130.7 (CH), 176.2 (C_q). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 2998 (s), 1767 (s), 1469 (s), 1377 (s), 1132 (s), 954 (s). **MS** (EI, 70 eV): 168 (M⁺, 100 %). [α]²⁰_D = + 171 ° (c 1.55, CH₂Cl₂). **Elementaranalyse**: berechnet: **C**: 64.3 % **H**: 7.2 %, gefunden: **C**: 64.3 % **H**: 7.2 %.

Spektroskopische Daten:

(5*R**, 6*S**)-6-Methyl-1,7-dioxaspiro[4.5]dec-9-en-2-on ((5*R**, 6*S**)-144a)

(C₉H₁₂O₃, 168.19 g/mol, Schmp.: 102 °C)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.14 (d, 3H, ${}^{3}J$ = 6.5 Hz, -CH₃), 1.93 (ddd, 1H, ${}^{3}J$ = 10.0, 8.6 Hz, ${}^{2}J$ = 13.3 Hz, -(O)CCH₂CH₂-), 2.37 (ddd, 1H, ${}^{3}J$ = 10.0, 4.8 Hz, ${}^{2}J$ = 13.3 Hz, -(O)CCH₂CH₂-), 2.47 (ddd, 1H,

 ${}^{3}J = 10.0, 8.6 \text{ Hz}, {}^{2}J = 18.4 \text{ Hz}, -(O)CCH_{2}CH_{2}-), 2.56 (ddd, 1H, {}^{3}J = 10.0, 4.8 \text{ Hz}, {}^{2}J = 18.4 \text{ Hz}, -(O)CCH_{2}CH_{2}-), 3.71 (q, 1H, J = 6.5 \text{ Hz}, -CH-CH_{3}), 4.06 (dm, 1H, {}^{2}J = 16.8 \text{ Hz}, -O-CH_{2}-), 4.16 (dm, 1H, {}^{2}J = 16.8 \text{ Hz}, -O-CH_{2}-), 5.77 (ddd, 1H, {}^{3}J = 10.3 \text{ Hz}, {}^{4}J = 2.5, 2.0 \text{ Hz}, -CH=), 5.81 (ddd, 1H, {}^{3}J = 10.0 \text{ Hz}, {}^{4}J = 2.5, 1.3 \text{ Hz}, -CH=).$ 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 14.4 (CH₃), 27.1 (CH₂), 29.2 (CH₂), 65.6 (CH₂), 73.8 (CH), 82.5 (C_q), 128.2 (CH), 129.5 (CH), 176.7 (C_q). IR (Presling, KBr), $\tilde{\nu}$ [cm⁻¹] = 2999 (s), 1759 (s), 1227 (s), 1069 (s), 959 (s), 727 (s). MS (EI, 70 eV): 168 (M⁺, 100 %). [α]²⁰_D = + 161 ° (c 1.60, CHCl₃). Elementaranalyse: berechnet: C: 64.3 % H: 7.2 %, gefunden: C: 64.2 % H: 7.1 %. V 180-181 (5*S**, 6*S**)-6-Phenyl-1,7-dioxaspiro[4,5]dec-9-en-2-on (5*S**, 6*S**)-144b und (5*R**, 6*S**)-6-Phenyl-1,7-dioxaspiro[4,5]dec-9-en-2-on (5*R**, 6*S**)-144b

V 180

Ansatz

tz:	0.60 g	(3.0 mmol)	2-Phenyl-3-vinyl-3,6-dihydro-2 <i>H</i> -pyran-3-ol (134b)
	8 mg	(1.0 mol-%)	Rh(acac)(CO) ₂
	96 mg	(4.0 mol-%)	BIPHEPHOS
	10 ml		abs. Dioxan

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute: 0.66 g Rohprodukt bestehend aus einem Gemisch aus vier Diastereomeren Hemiacetalen **143b** im Verhältnis 4:4:1:1. Die Umsetzung ist laut NMR quantitativ.

V 181 Oxidation des Rohgemisches aus V 180 mit Ag₂CO₃

Ansatz:	0.66 g	(3.0 mmol)	Rohgemisch V 180
	1.65 g	(6.0 mmol)	Ag ₂ CO ₃
	20 ml		abs. Benzol

Durchführung: analog AAV V

Aufarbeitung: Die Lactone werden an Kieselgel mit CH₂Cl₂ als Eluent getrennt.

Ausbeute: 260 mg (1.1 mmol, 38 %) (5*S**, 6*S**)-**144b** und 100 mg (0.4 mmol, 14 %) (5*R**, 6*S**)-**144b**.

Spektroskopische Daten:

(5S*, 6S*)-6-Phenyl-1,7-dioxaspiro[4.5]dec-9-en-2-on ((5S*, 6S*)-144b)

(C₁₄H₁₄O₃, 230.26 g/mol, Schmp.: 164 °C)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.49 (m, 1H, (O)CCH₂CH₂-), 2.01 Ph₁₄, O (m, 1H, (O)CCH₂CH₂-), 2.16-2.14 (m, 2H, (O)CCH₂CH₂-), 4.32 (ddd, 1H, ³J = 1.5, 1.5 Hz, ²J = 17.2 Hz, -O-CH₂-), 4.42 (s, 1H, -CHPh), 4.46 (ddd, 1H, ³J = 3.4, 2.0 Hz, ²J = 17.2 Hz, -O-CH₂-), 5.84 (ddd, 1H, ³J = 10.3 Hz, 2.0 Hz, O -CH=), 6.16 (ddd, 1H, ³J = 10.3, 3.4, 1.5 Hz, -CH=), 7.33-7.37 (3H, CH_{arom}), 7.44 (d, 2H, ${}^{3}J = 7.3$ Hz, CH_{arom}). 13 C-NMR (100 MHz, CDCl₃): δ [ppm] = 27.9 (CH₂), 30.0 (CH₂), 66.1 (CH₂), 80.3 C_q), 83.1 (CH), 127.5 (CH_{arom}), 128.4 (2 x CH_{arom}), 128.7 (2 x CH_{arom}), 128.9 (CH_{olefin}), 131.9 (CH_{olefin}), 135.4 (C_{q,arom}), 176.2 (C_q). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 2945 (m), 2831 (m), 1767 (s), 1456 (m), 1201 (s), 1032 (s), 708 (s). **MS** (EI, 70 eV): m/z (%) = 231 (M⁺ + 1, 20), 157 (45), 141 (100). **Elementaranalyse**: berechnet: **C**: 73.0 % **H**: 6.1 %, gefunden: **C**: 72.9 % **H**: 6.1 %.

Spektroskopische Daten:

(5R*, 6S*)-6-Phenyl-1,7-dioxaspiro[4.5]dec-9-en-2-on ((5R*, 6S*)-144b)

(C₁₄H₁₄O₃, 230.26 g/mol, Schmp.: 110 °C)

¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 0.92 (ddd, 1H, ³*J* = 18.1, 10.5 Hz, ²*J* = 10.5 Hz, (O)CCH₂CH₂-), 1.86 (m, 1H, ³*J* = 13.7, 10.5 Hz, ²*J* = 10.7 Hz, (O)CCH₂CH₂-), 2.03 (ddd, 1H, ³*J* = 18.1, 2.4 Hz, ²*J* = 10.7

Ph_{itin}, O

Hz, (O)CCH₂CH₂-), 2.33 (ddd, 1H, J = 13.7, 10.7, 2.4 Hz, (O)CCH₂CH₂-), 4.33-4.40 (2H, -O-CH₂-), 4.67 (s, 1H, CHPh), 5.90 (ddd, 1H, ${}^{3}J = 10.3$ Hz, ${}^{4}J = 2.0$, 2.0 Hz, -CH=), 5.95 (ddd, 1H, ${}^{3}J = 10.3$ Hz, ${}^{4}J = 2.5$, 2.0 Hz, -CH=), 7.29-7.37 (3H, CH_{arom}), 7.41 (d, 2H, ${}^{3}J = 7.3$ Hz, CH_{arom}). 13 C-NMR (150 MHz, CDCl₃): δ [ppm] = 27.9 (CH₂), 28.4 (CH₂), 66.3 (CH₂), 78.5 (CH), 82.5 (C_q), 126.6 (2 x CH_{arom}), 128.0 (CH_{olefin}), 128.3 (CH_{arom}), 128.5 (2 x CH_{arom}), 130.0 (CH_{olefin}), 136.0 (C_{q,arom}), 177.0 (C_q). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 2941 (s), 1778 (s), 1692 (m), 1454 (s), 1092 (s), 1028 (s), 704 (s). **MS** (EI, 70 eV): m/z (%) = 231 (M⁺ + 1, 100), 124 (55), 96 (47). **Elementaranalyse**: berechnet: **C**: 73.0 % **H**: 6.1 %, gefunden: **C**: 72.8 % **H**: 6.2 %.

V 182-183 (5*S**, 8*S**)-8-(4-Methoxyphenyl)-1,7-dioxaspiro[4,5]dec-9-en-2-on (5*S**, 8*S**)-146

V 182

Ansatz: 0.80 g (3.4 mmol) (3*S**, 6*S**)-2-Phenyl-3-vinyl-3,6-dihydro-2*H*-pyran-3ol (**136**) 9 mg (1.0 mol-%) Rh(acac)(CO)₂ 108 mg (4.0 mol-%) BIPHEPHOS 10 ml abs. Dioxan

Reaktionsbedingungen: 60 °C, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute: 835 mg Rohprodukt (3.2 mmol, 93 %), bestehend aus einem Gemisch aus zwei diastereomeren Hemiacetalen (5*S**, 8*S**)-**145** im Verhältnis 1:1. Das Diastereomerengemisch wird mit TPAP/NMO oxidiert.⁴⁸

AAV VI: Oxidationen von Lactolen mit TPAP/NMO

Man legt das Lactol mit 1.5 Äq. an *N*-Methylmorpholinoxid und gepulv. Molsieb (4 Å) 500 mg/mmol in 10 ml/mmol abs. CH_2Cl_2 vor. Nach 5 min gibt man unter Rühren das Tetrapropylammoniumperrhutenat (TPAP) hinzu. Nach beendeter Reaktion (DC-Kontrolle) wird über eine kurze Säule (SiO₂) mit MTBE eluiert.

V 183 Oxidation des Rohgemisches aus V 182 mit TPAP/NMO

Ansatz:	835 mg	(3.2 mmol)	Rohgemisch V 182
	560 mg	(4.8 mmol)	NMO
	56 mg	(5 mol-%)	TPAP
	1.6 g		Molsieb (4 Å)
	30 ml		abs. CH ₂ Cl ₂

Durchführung: analog AAV VI

Ausbeute: Nach Umkristallisieren aus $CH_2Cl_2/Hexan erhält man 480 mg (1.8 mmol, 54 %) an (5<math>S^*$, 8 S^*)-146.

Spektroskopische Daten:

(5S*, 8S*)-8-(4-Methoxyphenyl)-1,7-dioxaspiro[4,5]dec-9-en-2-on ((5S*, 8S*)-146)

(C₁₅H₁₆O₄, 260.29 g/mol, Schmp.: 218 °C)

¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 2.10 (ddd, 1H, ³*J* = 10.0, 7.0 Hz, ²*J* = 13.2 Hz, (O)CCH₂CH₂-), 2.15 (ddd, 1H, ³*J* = 10.0, 7.0 Hz, ²*J* = 13.2 Hz, (O)CCH₂CH₂-), 2.59 (ddd, 1H, ³*J* = 10.0, 7.0 Hz, ²*J* = 18.1 Hz, (O)CCH₂CH₂-), 2.66 (ddd, 1H, ³*J* = 10.0, 7.0 Hz, ²*J* = 18.1 Hz, (O)CCH₂CH₂-), 3.66 (d, 1H, ²*J* = 11.2 Hz, -O-CH₂-), 3.77 (s, 3H, -OMe), 3.97 (d, 1H, ²*J* = 11.2 Hz, -O-CH₂-), 5.03 (s*, 1H, -O-CHPh), 5.90 (d, 1H, ³*J* = 10.3 Hz, -CH=), 6.03 (dd, 1H, ${}^{3}J$ = 10.3, 2.0 Hz, -CH=), 6.87 (d, 2H, ${}^{3}J$ = 8.5 Hz, CH_{arom}), 7.29 (d, 2H, ${}^{3}J$ = 8.5 Hz, CH_{arom}). 13 C-NMR (150 MHz, CDCl₃): δ [ppm] = 28.0 (CH₂), 30.1 (CH₂), 55.2 (CH₃), 69.6 (CH₂), 75.9 (CH), 78.9 (C_q), 113.8 (CH_{olefin}), 126.0 (2 x CH_{arom}), 129.0 (2 x CH_{arom}), 131.0 (C_{q,arom}), 134.0 (CH_{olefin}), 159.6 (C_{q,arom}), 176.6 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2960 (s), 1774 (s), 1594 (s), 1437 (m), 1173 (s), 967 (s). **MS** (EI, 70 eV): m/z (%) = 260 (M⁺, 100), 229 (28), 162 (45), 135 (90). **Elementaranalyse**: berechnet: **C**: 69.2 % **H**: 6.2 %, gefunden: **C**: 68.8 % **H**: 6.2 %.

V 184-185 (5*R**, 8*S**)-8-(4-Methoxyphenyl)-1,7-dioxaspiro[4,5]dec-9-en-2-on (5*S**, 8*S**)-146

V 184

 Ansatz:
 0.50 g
 (2.2 mmol)
 (3R*, 6S*)-2-Phenyl-3-vinyl-3,6-dihydro-2H-pyran-3-ol (136)

 6 mg
 (1.0 mol-%)
 Rh(acac)(CO)_2

 69 mg
 (4.0 mol-%)
 BIPHEPHOS

 10 ml
 abs. Dioxan

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute: 536 mg Rohprodukt (2.0 mmol, 95 %) (5*R**, 8*S**)-**145** 1:1-Diastereomerengemisch. Das Diastereomerengemisch wird mit TPAP/NMO oxidiert.⁴⁸

V 185 Oxidation des Rohgemisches aus V 184 mit TPAP/NMO

 Ansatz:
 536 mg
 (2.0 mmol)
 Rohgemisch V 184

 360 mg
 (3.0 mmol)
 NMO

 36 mg
 (5 mol-%)
 TPAP

 1.0 g
 Molsieb (4 Å)

 20 ml
 abs. CH₂Cl₂

Durchführung: analog AAV VI

Ausbeute: Nach Umkristallisieren aus $CH_2Cl_2/Hexan erhält man 330 mg (1.3 mmol, 58 %) an (5<math>R^*$, 8 S^*)-146.

Spektroskopische Daten:

(5*R**, 8*S**)-8-(4-Methoxyphenyl)-1,7-dioxaspiro[4,5]dec-9-en-2-on ((5*R**, 8*S**)-146)

(C₁₅H₁₆O₄, 260.29 g/mol, Schmp.: 64 °C)

¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 2.18 (ddd, 1H, ³J = 9.8, 9.3 Hz, ²J = 13.2 Hz, (O)CCH₂CH₂-), 2.45 (ddd, 1H, ³J = 8.3, 5.4 Hz, ²J = 13.2 Hz, (O)CCH₂CH₂-), 2.56-2.66 (2H, (O)CCH₂CH₂-), 3.78 (s, 3H, -OMe), 3.79 (d, 1H, ²J = 11.2 Hz, -O-CH₂-), 3.86 (d, 1H, ²J = 11.2 Hz,

-O-CH₂-), 5.10 (s*, 1H, -O-CHPh), 5.93 (d, 1H, ${}^{3}J = 10.7$ Hz, -CH=), 5.96 (d, 1H, ${}^{3}J = 10.7$ Hz, -CH=), 6.87 (d, 2H, ${}^{3}J = 8.3$ Hz, CH_{arom}), 7.21 (d, 2H, ${}^{3}J = 8.3$ Hz, CH_{arom}). ¹³C-NMR (150 MHz, CDCl₃): δ [ppm] = 27.8 (CH₂), 31.3 (CH₂), 55.3 (CH₃), 69.2 (CH₂), 76.0 (CH), 79.3 (C_q), 114.0 (CH_{olefin}), 128.0 (2 x CH_{arom}), 128.7 (2 x CH_{arom}), 131.4 (C_{q,arom}), 132.6 (CH_{olefin}), 159.7 (C_{q,arom}), 176.2 (C_q). **IR** (Pressling, KBr), $\tilde{\nu}$ [cm⁻¹] = 2959 (s), 2838 (m), 1775 (s), 1612 (s), 1514 (s), 1304 (s), 1244 (s), 1032 (s). **MS** (EI, 70 eV): m/z (%) = 260 (M⁺, 76), 162 (61), 135 (100). **Elementaranalyse**: berechnet: **C**: 69.2 % **H**: 6.2 %, gefunden: **C**: 68.9 % **H**: 6.2 %.

V 186-187 (5*R**, 8*R**, 10*S**)-10-Benzyloxy-8-benzyloxymethyl-8-methyl-1,7dioxaspiro[4.5]decan-2-on (148a)

V 186

Ansatz:
$$0.19 \text{ g}$$
 (0.5 mmol) $(3R^*, 4S^*, 6R^*)$ -4-Benzyloxy-6-benzyloxymethyl-6-
methyl-3-vinyl-tetrahydropyran-3-ol (**142a**) 3 mg $(2.0 \text{ mol-}\%)$ Rh(acac)(CO)_2 36 mg $(8.0 \text{ mol-}\%)$ BIPHEPHOS 10 ml abs. Dioxan

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute: 200 mg Rohprodukt (0.5 mmol, 100 %) bestehend aus einem Gemisch aus zwei diastereomeren Hemiacetalen (5*R**, 8*R**, 10*S**)-147a im Verhältnis 1:1. Das Diastereomerengemisch wird mit TPAP/NMO oxidiert.⁴⁸

V 187	Oxidation des Rohgemisches aus V 186 mit TPAP/NMO			
Ansatz:	200 mg	(0.5 mmol)	Rohgemisch V 186	
	90 mg	(3.0 mmol)	NMO	
	9 mg	(5 mol-%)	TPAP	
	250 g		Molsieb (4 Å)	
	5 ml		abs. CH ₂ Cl ₂	

Durchführung: analog AAV VI

Aufarbeitung: Säulenchromatographische Reinigung an Kieselgel mit MTBE als Eluent.

Ausbeute: 0.16 g (0.4 mmol, 80 %) $(5R^*, 8R^*, 10S^*)$ -10-Benzyloxy-8benzyloxymethyl-8-methyl-1,7-dioxaspiro[4.5]decan-2-on (**148a**).

Spektroskopische Daten:

(5*R**, 8*R**, 10*S**)-10-Benzyloxy-8-benzyloxymethyl-8-methyl-1,7-dioxaspiro[4.5]decan-2on (**148a**)

 $(C_{24}H_{28}O_5, 396.49 \text{ g/mol})$

¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 1.21 (s, 3H, -CH₃), 1.72 (ddd, 1H, ³*J* = 10.5, 9.0 Hz, ²*J* = 12.8 Hz, (O)CCH₂CH₂-), 1.82 (dd, 1H, ³*J* = 10.7 Hz, ²*J* = 13.3 Hz, -CH₂-CHOBn), 1.92 (ddd, 1H, ³*J* = 10.5, 4.0 Hz, ²*J* = 12.8 Hz, (O)CCH₂CH₂-), 2.14 (dd, 1H, ³*J* = 4.4 Hz, ²*J* = 13.3 Hz, -CH₂-CHOBn), 2.43 (ddd, 1H, ³*J* = 10.5, 4.0 Hz, ²*J* = 18.0 Hz, (O)CCH₂CH₂-), 2.69 (ddd, 1H, ³*J* = 10.5, 9.0 Hz, ²*J* = 18.0 Hz, (O)CCH₂CH₂-), 3.37 (d, 1H, ²*J* = 9.8 Hz, CH₂OCH₂Ph), 3.50 (d, 1H, ²*J* = 9.8 Hz, CH₂OCH₂Ph), 3.70 (d, 1H,

(d, 1H, ${}^{2}J = 9.8$ Hz, $CH_{2}OCH_{2}Ph$), 3.50 (d, 1H, ${}^{2}J = 9.8$ Hz, $CH_{2}OCH_{2}Ph$), 3.70 (d, 1H, ${}^{2}J = 12.2$ Hz, H6), 3.72 (dd, 1H, ${}^{3}J = 10.7$, 4.4 Hz, -CHOBn), 3.73 (d, 1H, ${}^{2}J = 12.7$ Hz, -O-CH₂-C_q), 4.41 (d, 1H, ${}^{2}J = 12.2$ Hz, -CHOCH*H*Ph), 4.50 (d, 1H, ${}^{2}J = 12.2$ Hz, -CH₂OCH*H*Ph), 4.53 (d, 1H, ${}^{2}J = 12.2$ Hz, -CH₂OCH*H*Ph), 4.67 (d, 1H, ${}^{2}J = 12.2$ Hz, -CHOCH*H*Ph), 7.24-7.37 (10H, CH_{arom}). ¹³C-NMR (150 MHz, CDCl₃): δ [ppm] = 26.1 (CH₃), 27.5 (CH₂), 28.8 (CH₂), 33.5 (CH₂), 68.3 (CH₂), 70.3 (CH₂), 73.5 (CH₂), 74.7 (CH_{arom}), 127.8 (CH_{arom}), 128.4 (4 x CH_{arom}), 137.9 (C_{q,arom}), 138.0 (C_{q,arom}), 176.8 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 2930 (m), 1770 (s), 1727 (m), 1454 (m), 1218 (m), 1077 (s). **Elementaranalyse**: berechnet: **C**: 72.7 % **H**: 7.1 %, gefunden: **C**: 72.4 % **H**: 7.1 %.

V 188-189 (5R*, 8R*, 10S*)-10-Benzyloxy-8-benzyloxymethyl-8-phenyl-1,7-dioxaspiro[4.5]decan-2-on (148b) und (5S*, 6R*, 9S*)-6-Benzyloxy-9-benzyloxymethyl-9-phenyl-1,8-dioxaspiro[4.5]decan-2-on (148b)

V 188

Ansatz: 0.53 g (1.2 mmol) $(3R^*, 4S^*, 6R^*)$ -142	2b und (2 <i>S</i> *, 4 <i>R</i> *, 5 <i>R</i> *)- 142b
(4.5:1-Verhältnis)	
3 mg (1.0 mol-%) $Rh(acac)(CO)_2$	
36 mg (4.0 mol-%) BIPHEPHOS	
10 ml abs. Dioxan	

Reaktionsbedingungen: $60 \degree C$, 20 h, 10 bar CO, 10 bar H₂

Durchführung: analog AAV I

Ausbeute: 530 mg Rohprodukt (1.15 mmol, 96 %) bestehend aus einem Gemisch aus je zwei Diastereomeren der beiden regioisomeren Hemiacetale **147b** im Verhältnis 4:4:1:1. Das Diastereomerengemisch wird mit TPAP/NMO oxidiert.⁴⁸

V 189 Oxidation des Rohgemisches aus V 188 mit TPAP/NMO

Ansatz:	530 mg	(1.2 mmol)	Rohgemisch V 188
	210 mg	(1.8 mmol)	NMO
	21 mg	(5 mol-%)	TPAP
	600 g		Molsieb (4 Å)
	10 ml		abs. CH ₂ Cl ₂

Durchführung: analog AAV VI

Aufarbeitung:SäulenchromatographischeAufarbeitunganKieselgelmitMTBE/Cyclohexan (1:1) als Eluent.

Ausbeute: 0.14 g (0.3 mmol, 44 %) ($5R^*$, $8R^*$, $10S^*$)-10-Benzyloxy-8benzyloxymethyl-8-phenyl-1,7-dioxaspiro[4.5]decan-2-on (**148b**) und 0.03 g (0.07mmol, 10 %) ($5S^*$, $6R^*$, $9S^*$)-6-Benzyloxy-9benzyloxymethyl-9-phenyl-1,8-dioxaspiro-[4.5]decan-2-on (**148b**). Spektroskopische Daten:

(5*R**, 8*R**, 10*S**)-10-Benzyloxy-8-benzyloxymethyl-8-phenyl-1,7-dioxaspiro[4.5]decan-2-on (**148b**)

 $(C_{29}H_{30}O_5, 458.56 \text{ g/mol})$

¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 1.20 (ddd, 1H, ³*J* = 10.5, 8.2 Hz, ²*J* = 13.0 Hz, (O)CCH₂CH₂-), 1.37 (ddd, 1H, ³*J* = 10.5, 4.7 Hz, ²*J* = 13.0 Hz, (O)CCH₂CH₂-), 1.94 (ddd, 1H, ³*J* = 10.7, 4.7 Hz, ²*J* = 17.5 Hz, (O)CCH₂CH₂-), 2.26 (dd, 1H, ³*J* = 9.7 Hz, ²*J* = 13.5 Hz, -CH₂-CHOBn), 2.33 (ddd, 1H, ³*J* = 10.7, 4.7 Hz, ²*J* = 17.5 Hz, (O)CCH₂CH₂-), 2.44 (dd, 1H, ³*J* = 4.2 Hz, ²*J* = 13.5 Hz, -CH₂-CHOBn), 3.40 (d, 1H, ²*J* = 12.2 Hz, -CH₂OCH₂Ph), 3.50 (d, 1H, ²*J* = 12.2 Hz, -CH₂OCH₂Ph), 3.51 (d, 1H, ²*J* = 12.5 Hz, -CH₂OCH₂Ph), 4.19 (d, 1H, ²*J* = 12.5 Hz, -CH₂OCH₂Ph), 4.22 (d, 1H, ²*J* = 12.2 Hz, CHOCH₂Ph), 4.39 (d, 1H, ²*J* = 12.2 Hz, CHOCH₂Ph), 7.08-7.20 (11H,

²J = 12.2 Hz, -CH₂OCH₂Ph), 3.50 (d, 1H, ²J = 12.2 Hz, -CH₂OCH₂Ph), 3.51 (d, 1H, ²J = 10.0 Hz, -O-CH₂-C_q), 3.61 (dd, 1H, ³J = 9.7, 4.2 Hz, -CH-OBn), 4.17 (d, 1H, ²J = 12.5 Hz, -CH₂OCH₂Ph), 4.19 (d, 1H, ²J = 12.5 Hz, -CH₂OCH₂Ph), 4.22 (d, 1H, ²J = 12.2 Hz, CHOCH₂Ph), 4.39 (d, 1H, ²J = 12.2 Hz, CHOCH₂Ph), 7.08-7.20 (11H, CH_{arom}), 7.24 (dd, 2H, ³J = 7.7, 7.7 Hz, CH_{arom}), 7.59 (d, 2H, ³J = 8.0 Hz, CH_{arom}). ¹³C-NMR (150 MHz, CDCl₃): δ [ppm] = 27.8 (CH₂), 28.7 (CH₂), 33.2 (CH₂), 67.9 (CH₂), 70.6 (CH₂), 73.5 (CH₂), 75.6 (CH₂), 76.4 (CH), 78.2 (C_q), 83.4 (C_q), 125.1 (2 x CH_{arom}), 127.1 (CH_{arom}), 127.4 (2 x CH_{arom}), 127.5 (2 x CH_{arom}), 127.6 (CH_{arom}), 127.7 (CH_{arom}), 128.0 (2 x CH_{arom}), 128.3 (2 x CH_{arom}), 128.4 (2 x CH_{arom}), 137.8 (C_{q,arom}), 137.9 (C_{q,arom}), 143.7 (C_{q,arom}), 176.7 (C_q). **IR** (Film, NaCl), $\tilde{\nu}$ [cm⁻¹] = 3068 (m), 3033 (m), 2940 (s), 2870 (m), 1775 (s), 1075 (s). **MS** (EI, 70 eV): m/z (%) = 337 (M⁺ -PhCH₂OCH₂-, 100), 229 (32), 91 (98).

Spektroskopische Daten:

(5*S**, 6*R**, 9*S**)-6-Benzyloxy-9-benzyloxymethyl-9-phenyl-1,8-dioxaspiro[4.5]decan-2-on (148b)

 $(C_{29}H_{30}O_5, 458.56 \text{ g/mol})$ ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 1.36 (ddd, 1H, ³*J* = 10.8, 10.0 Hz, ²*J* = 13.1 Hz, (O)CCH₂CH₂-), 1.69 (ddd, 1H, ³*J* = 10.5, 3.3 Hz, ²*J* = 13.1 Hz, (O)CCH₂CH₂-), 2.05 (ddd, 1H, ³*J* = 10.8, 3.3 Hz, ²*J* = 17.6 Hz, (O)CCH₂CH₂-), 2.31 (d, 1H, ²*J* = 15.0 Hz, -CH₂-OC(O)), 2.43 (ddd, 1H, ³*J* = 10.0, 10.0 Hz, ²*J* = 17.6 Hz, (O)CCH₂CH₂-), 2.49 (dd, 1H, ²*J* = 15.0 Hz, -CH₂-OC(O)), 3.24 (dd, 1H, ³*J* = 10.8, 4.8 Hz, -CHOBn), 3.32 (d, 1H, ${}^{2}J = 10.0$ Hz, $-CH_{2}OCH_{2}Ph$), 3.51 (d, 1H, ${}^{2}J = 10.0$ Hz, $-CH_{2}OCH_{2}Ph$), 3.71 (dd, 1H, ${}^{3}J = 4.8$ Hz, ${}^{2}J = 10.8$ Hz, $-O-CH_{2}$ -), 3.80 (dd, 1H, ${}^{3}J = 10.8$ Hz, ${}^{2}J = 10.8$ Hz, $-O-CH_{2}$ -), 4.03 (d, 1H, ${}^{2}J = 12.3$ Hz, $-CHOCH_{2}Ph$), 4.23 (d, 1H, ${}^{2}J = 12.3$ Hz, $CHOCH_{2}Ph$), 4.35 (d, 1H, ${}^{2}J = 12.3$ Hz, $CH_{2}OCH_{2}Ph$), 4.48 (d, 1H, ${}^{2}J = 12.3$ Hz, $CHOCH_{2}Ph$), 7.06-7.41 (13H, CH_{arom}), 7.58 (d, 2H, ${}^{3}J = 8.6$ Hz, CH_{arom}). ${}^{13}C-NMR$ (150 MHz, $CDCl_{3}$): δ [ppm] = 29.7 (CH₂), 33.1 (CH₂), 39.8 (CH₂), 60.9 (CH₂), 72.2 (CH₂), 74.4 (CH₂), 79.4 (CH), 79.9 (C_q), 80.3 (CH₂), 83.4 (C_q), 127.8 (2 x CH_{arom}), 128.1 (CH_{arom}), 128.2 (2 x CH_{arom}), 128.3 (2 x CH_{arom}), 128.4 (CH_{arom}), 128.5 (CH_{arom}), 128.9 (2 x CH_{arom}), 129.1 (2 x CH_{arom}), 129.2 (2 x CH_{arom}), 139.0 (C_{q,arom}), 139.6 (C_{q,arom}), 141.6 (C_{q,arom}), 175.8 (C_q). **IR** (Film, NaCl), \tilde{v} [cm⁻¹] = 3060 (m), 3030 (m), 2928 (s), 2852 (m), 1778 (s), 1454 (m), 1096 (s). **MS** (EI, 70 eV): m/z (%) = 336 (M⁺ -PhCH₂OCH₃, 86), 91 (98).

5 Anhang

Daten zur Kristallstruktur von $(5S^*, 6R^*)$ -1,7-Dioxadispiro[4.0.4.4]tetradecan-2,8-dion (69)

Kristall:	farblos, Block, 0.4 x 0.39 x 0.26 mm
Wellenlänge:	Mo Kα–Strahlung (0.71073·10 ⁻¹⁰ m)
μ:	0,101 mm ⁻¹
Diffraktometer:	Noniu KappaCCD
$2\theta_{max}$:	54.94 °
N(hkl) _{gemessen} :	2492
Kriterium für <i>I</i> _{obs} , N(<i>hkl</i>) _{gt} :	$I_{\rm obs} > 2\sigma(I_{\rm obs}), 1552$
N(Parameter) _{refined}	210
Programme	SHELXS-97 ^[1] , SHELXL-97 ^[2] , SHELXTL-Plus ^[3]

Tab. 59: Meßtechnische Daten

Tab. 60: Atomkoordinaten

Atom	X	У	Z	
01	-0.10929 (13)	0.25692 (6)	0.66256 (8)	
O2	-0.31510 (15)	0.20079 (7)	0.51315 (9)	
O3	0.19961 (12)	0.24056 (6)	0.83872 (7)	
O4	0.33557 (14)	0.09793 (6)	0.90372 (9)	
C1	0.00572 (16)	0.34628 (8)	0.69944 (10)	
C2	-0.0937 (2)	0.39840 (11)	0.78622 (13)	
C3	0.0278 (2)	0.48509 (12)	0.84106 (14)	
C4	0.2356 (3)	0.45213 (12)	0.89227 (13)	
C5	0.3339 (2)	0.40130 (10)	0.80545 (13)	
C6	0.21556 (16)	0.31332 (8)	0.74988 (10)	
C7	-0.20784 (19)	0.26578 (9)	0.55622 (12)	
C8	-0.1633 (2)	0.36326 (12)	0.50787 (14)	

C9	-0.0009 (2)	0.40806 (10)	0.59203 (11)	
C10	0.32307 (17)	0.16367 (9)	0.83560 (11)	
C11	0.4316 (2)	0.17563 (12)	0.73980 (15)	
C12	0.3215 (2)	0.25662 (11)	0.66823 (13)	
H2A	-0.224 (2)	0.4212 (10)	0.7474 (12)	
H2B	-0.1144 (19)	0.3491 (11)	0.8424 (12)	
H3A	0.031 (2)	0.5369 (12)	0.7847 (14)	
H3B	-0.039 (2)	0.5153 (12)	0.8983 (15)	
H4A	0.315 (2)	0.5066 (12)	0.9262 (14)	
H4B	0.224 (2)	0.4045 (10)	0.9567 (13)	
H5A	0.3528 (19)	0.4472 (9)	0.7453 (12)	
H5B	0.468 (2)	0.3776 (9)	0.8385 (12)	
H8A	-0.284 (3)	0.4032 (12)	0.4994 (14)	
H8B	-0.132 (2)	0.3510 (13)	0.4375 (16)	
H9A	-0.0224 (19)	0.4732 (11)	0.6083 (12)	
H9B	0.121 (2)	0.4062 (9)	0.5663 (12)	
H11A	0.437 (3)	0.1136 (14)	0.7016 (16)	
H11B	0.564 (3)	0.1968 (12)	0.7728 (16)	
H12A	0.400 (2)	0.2985 (11)	0.6353 (12)	
H12B	0.228 (3)	0.2252 (11)	0.6070 (15)	

Literatur

- Sheldrick, G. M., Phase Annealing in Shelx-90: Direct Methods for Large Structures, *Acta Cryst. A* 1990, 46, 467-473.
- [2] Sheldrick, G. M., Shelxl-93: Program for the Refinement of Crystal Structures, Universität Göttingen, 1997.
- [3] Sheldrick, G. M., Shelxtl-Plus: Release 4.1 Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA, 1991.

6 Literatur

- a) Roelen, O., (Chemische Verwertungsgesellschaft, mbH Oberhausen) German Patent DE 849,548 (1938/1952); Roelen, O., (Chemische Verwertungsgesellschaft, mbH Oberhausen) U.S. Patent 2327066 (1943); *Chem. Abstr.* 1944, *38*, 550; b) Roelen, O., *Angew. Chem.* 1948, *A60*, 62.
- a) Pruett, R. L., Adv. Organomet. Chem. 1979, 17, 1-60. b) Falbe, J., Ed. New Synthesis with Carbon Monoxide; Springer, Berlin, 1980. c) Kalck, R.; Peres, Y.; Jenck, J., Adv. Organomet. Chem. 1991, 32, 121-146. d) Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V., Carbonylation - Direct Synthesis of Carbonyl Compounds; Plenum, New York, 1991. e) Cornils, B., Herrmann. W. A.; Kohlpaintner, C. W., Angew. Chem. 1994, 106, 2219-2238. f) Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W., J. Mol. Catal. 1995, 104, 17-85. g) Frohning, C. D.; Kohlpaintner, C. W., In Applied Homogeneous Catalysis with Organometallic Compounds, Vol 1, Cornils, B.; Herrmann, W. A. (Eds.), VCH, Weinheim, Germany, 1996.
- a) Trost, B. M., Science 1991, 254, 1471-1477. b) Trost, B. M., Angew. Chem. 1995, 107, 285-307; Angew. Chem. Int. Ed. Engl. 1995, 34, 259.
- 4. Weissermel, K.; Arpe, H.-J., *Industrielle Organische Chemie*; 4. Aufl., S. 137 *ff.*, VCH, Weinheim, **1994**.
- Hartley, F. R., Supported Metal Complexes: A New Generation of Catalysts; Reidel, Dordrecht, The Netherlands, 1985. b) Stille, J. K., In Catalysis of Organic Reactions; Augustine, R. L., Ed.; Marcel Dekker, New York, 1985. c) Lenarda, M.; Storano, L.; Ganzerla, R., J. Mol. Catal. 1996, 111, 203-237.
- 6. Cornils, B., Angew. Chem. 1995, 107, 1709-1711.
- a) Welton, T., Chem. Rev. 1999, 99, 2071-2083. b) Holbrey, J. D.; Seddon, K. R., Clean Products and Processes 1999, 1, 223-236. c) Keim, W.; Vogt, D.; Waffenschmidt, H.; Wasserscheid, P., J. Catal. 1999, 186, 481-484.
 d) Wasserscheid, P.; Keim, W., Angew. Chem. 2000, 112, 3926-3945; Angew. Chem. Int. Ed. Engl. 2000, 39, 3772-3789. e) Mersch, C., Dissertation, Universität Dortmund, 1999.
- 8. Jessop, P. G.; Leitner, W., *Chemical Synthesis Using Supercritical Fluids*, Wiley-VCH, Weinheim, **1999**.

- 9. Beyer, H.; Walter, W., *Lehrbuch der Organischen Chemie*, 22. Aufl., Hirzel Verlag, Stuttgart, **1991**.
- 10. Nozaki, K.; Li, W.; Horiuchi, T.; Takaya, H., Tetrahedron Lett. 1997, 38, 4611-4614.
- a) Agbossou, F.; Carpentier, J.-F.; Mortreux, A., *Chem. Rev.* 1995, 95, 2485-2506.
 b) Breit, B., *Eur. J. Org. Chem.* 1998, 1123-1134. c) Breit, B.; Seiche, W., *Synthesis* 2001, 1-36.
- a) Osborn, J. A.; Jardine, F. H.; Wilkinson, G.; Young, J. F., *J. Chem. Soc. A* 1966, 1711-1732. b) Unruh, J. D.; Christenson, J. R., *J. Mol. Catal.* 1982, 14, 19-60.
 c) Buhling, A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M., *J. Mol. Catal. A* 1995, 98, 69-80. d) MacDougall, J. K.; Simpson, M. C.; Green, M. J.; Cole-Hamilton, D. J., *J. Chem. Soc. Dalton Trans.* 1996, 1161-1173. e) van Rooy, A.; de Bruijn, J. N. H.; Roobeek, C. F.; Kamer, P. C. J.; van Leeuwen, P. W. N. M., *J. Organomet. Chem.* 1996, 507, 69-73.
- 13. Pruett, R. L.; Smith, J. A.; J. Org. Chem. 1969, 34, 327-330.
- a) Trzeciak, A. M.; Ziólkowski, J. J., *J. Mol. Catal.* 1984, 26, 355-361. b) Trzeciak,
 A. M.; Ziólkowski, J. J.; Aygen, S.; Van Eldik, R., *J. Mol. Catal.* 1986, 34, 337-345.
 c) Trzeciak, A. M.; Ziólkowski, *J. Mol. Catal.* 1986, 34, 213-219. d) Trzeciak, A.
 M.; Ziólkowski, *J. Mol. Catal.* 1987, 43, 13-20.
- a) Ho, T.-L., *Tandem Organic Reactions*; Wiley, New York, **1992**. b) Tietze, L. F.;
 Beifuss, U., *Angew. Chem.* **1993**, *105*, 137-170; *Angew. Chem. Int. Ed. Engl.* **1993**, *32*, 131-164. c) Bunce, R. A., *Tetrahedron* **1995**, *51*, 13103-13159. d) Tietze, L. F., *Chem. Rev.* **1996**, *96*, 115-136.
- Eilbracht, P.; Bärfacker, L.; Buss, C.; Hollmann, C.; Kitsos-Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck, R.; Schmidt, A., *Chem. Rev.* 1999, 99, 3329-3365.
- a) Reppe, W. (IG Farben), DRP, a. I. 74946, 1943. b) Reppe, W., Experienta 1949, 5, 93. c) Reppe, W.; Kindler, W., *Liebigs Ann. Chem.* 1953, 582, 133-161.
- 18. Rische, T.; Eilbracht, P., Synthesis 1997, 1331-1337.
- a) Rische, T.; Kitsos-Rzychon, B. E.; Eilbracht, P., *Tetrahedron* 1998, 54, 2723-2742.
 b) Zimmermann, B.; Herwig, J.; Beller, M., *Angew. Chem.* 1999, 111, 2515-2518; *Angew. Chem. Int. Ed.* 1999, 38, 2372-2375.
- 20. Rische, T.; Eilbracht, P. Tetrahedron 1998, 54, 8441-8450.

- a) Kranemann, C. L., *Dissertation*, Universität Dortmund, 1999. b) Kranemann, C. L.; Costisella, B.; Eilbracht, P., *Tetrahedron Lett.* 1999, 40, 7773-7776.
 c) Kranemann, C. L.; Eilbracht, P., *Eur. J. Org. Chem.* 2000, 2367-2377.
- a) Hollmann, C., Eilbracht, P., *Tetrahedron Lett.* 1999, 40, 4313-4316. b) Hollmann,
 C.; Eilbracht, P., *Tetrahedron* 2000, 56, 1685-1692. c) Hollmann, C., *Dissertation*,
 Universität Dortmund, 2000.
- 23. Breit, B.; Zahn, S. K., Angew. Chem. 1999, 111, 1022-1024.
- 24. a) Hoffmann, R. W.; Brückner, D.; Gerusz, V. J., *Heterocycles* 2000, *52*, 121.
 b) Hoffmann, R. W.; Krüger, J.; Brückner, D., *New. J. Chem.* 2001, *25*, 102-107.
 c) Hoffmann, R. W.; Brückner, D., *New. J. Chem.* 2001, *25*, 369-373.
- 25. Roggenbuck, R.; Eilbracht, P., *Tetrahedron Lett.* 1999, 40, 7455-7456.
 b) Roggenbuck, R., *Diplomarbeit*, Universität Dortmund, 1998.
- 26. Sakai, K.; Oda, O., Tetrahedron Lett. 1972, 4375-4376.
- 27. a) Funakoshi, K.; Togo, N.; Sakai, K., *Tetrahedron Lett.* 1989, *30*, 1095-1098.
 b) Funakoshi, K.; Sakai, K., *Tetrahedron Lett.* 1998, *30*, 4849-4852.
- Chalk, A. J., In *Catalysis of Organic Reactions*, Rylander, P. N., Greenfield, H.; Augustine, R. L., Eds.; Marcel Dekker, New York, **1988**; S. 43-63.
- 29. Sirol, S.; Kalck, Ph., New J. Chem. 1997, 21, 1129-1137.
- 30. a) Fernández, E.; Castillón, S., *Tetrahedron Lett.* 1994, *34*, 2361-2364. b) Parrinello,
 G.; Stille, J. K., *J. Am. Chem. Soc.* 1987, *109*, 7122-7127. c) Soulantica, K.; Sirol, S.;
 Koinis, S.; Pneumatikakis, G.; Kalck, Ph., *J. Organomet. Chem.* 1995, *498*, C10-C13.
- 31. Botteghi, C.; Ganzerla, R.; Lenarda, M.; Moretti, G., J. Mol. Catal. 1987, 40, 129-182.
- a) Garrou, P. E.; Dubois, R. A.; Bremmer, B. J., (Dow Chemical Co.) U.S. Patent
 4,299, 777, 1981; *Chem. Abstr.* 1982, 96, 142289. b) Dubois, R. A.; Garrou, P. E.,
 J. Organomet. Chem. 1983, 241, 69-75.
- 33. a) Polo, A.; Real, J.; Claver, C.; Castillón, S.; Bayón, J. C., *J. Chem. Soc., Chem. Commun.* 1990, 600-601. b) Fernández, E.; Polo, A.; Ruiz, A.; Claver, C.; Castillón, S., *J. Chem. Soc., Chem. Commun.* 1998, 1803-1804. c) Fernández, E.; Ruiz, A.; Claver, C.; Castillón, S.; Polo, A.; Piniella, J. F.; Alvarez-Larena, A., *Organometallics* 1998, *17*, 2857-2864.

- a) Helferich, B., Ber. Dtsch. Chem. Ges. 1919, 52, 1123-1131. b) Trzeciak, A. M.;
 Wolsczak, E.; Ziolkówski, J., J. New. Chem. 1996, 20, 365-370.
- 35. Kitsos-Rzychon, B. E., *Dissertation*, Universität Dortmund, 1998.
- 36. a) Baker, R.; Herbert, R. H., *Nat. Prod. Rep.* 1984, 43, 3309. b) Jaramillo, C.; Knapp, S., *Synthesis* 1994, 1-20.
- 37. Fell, B.; Barl, M., Chem. Ztg. 1977, 101, 343-350.
- 38. Falbe, J.; Schulze-Steinen, H. J.; Korte, F., Chem. Ber. 1965, 98, 836-838.
- 39. Rupilius, W., Dissertation, Techn. Universität Aachen, 1969.
- 40. Falbe, J., Angew. Chem. 1966, 78, 532-544.
- 41. Pittman, C. U., Jr.; Honnick, W. D., J. Org. Chem. 1980, 45, 2132-2139.
- 42. Späth, E.; Lorenz, R.; Freund, E., Chem. Ber. 1943, 76, 1196-1208.
- 43. a) Anastasiou, D.; Jackson, W. R., Aust. J. Chem. 1992, 45, 21-37. b) Anastasiou, D.;
 Jackson, W. R.; McCubbin, Q. J.; Trnacek, A. E., Aust. J. Chem. 1993, 46, 1623-1627.
- 44. Kitsos-Rzychon, B. E., Eilbracht, P., Tetrahedron 1998, 54, 10721-10732.
- 45. Schmidt, A., Dissertation, Universität Dortmund, in Vorbereitung.
- 46. Falbe, J., In *Carbon Monoxide in Organic Synthesis*; Falbe, J., Ed.; Springer-Verlag, Berlin **1970**, *S*. 3 *ff*.
- Smith, W. E.; Chambers, G. R.; Lindberg, R. C.; Cawse, J. N.; Dennis, A. J.; Harrison, G. E.; Bryant, D. R., In *Catalysis of Organic Reactions*; Augustine, R. L., Ed.; Marcel Dekker, New York, **1985**, S. 155 *ff*.
- 48. a) Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D., J. Chem. Soc., Chem. Commun. 1987, 1625-1627. b) Griffith, W. P.; Ley, S. V., Aldrichim. Acta 1990, 23, 13-29.
- 49. a) Boivin, T. L. B., *Tetrahedron* 1987, 43, 3309-3362. b) Hoppe, R.; Scharf, H.-D., *Synthesis* 1995, 1447-1464. c) Zeng, L.; Ye, Q.; Oberlies, N. H.; Shi, G.; Gu, Z.-M.; He, K.; McLaughlin, J. L., *Nat. Prod. Rep.*, 1996, 275-306. d) Alali, F. Q.; Liu, X.-X.; McLaughlin, J. L., *J. Nat. Prod.* 1999, 62, 504-540.
- 50. a) van Beek, T. A.; de Groot, Ae. *Recl. Trav. Chim. Pays-Bas* 1986, *105*, 513-527.
 b) Chen, H.; Tan, R.; Liu, Z. L.; Zhang, Y., *J. Nat. Prod.* 1996, *59*, 668-670. c) Kizu, H.; Sugita, N.; Tomimori, T., *Chem. Pharm. Bull.* 1998, *46*, 988-1000.

- 51. a) Harmange, J.-C.; Figadére, B., *Tetrahedron Asym.* 1993, *4*, 1711-1754. b) Koert, U., *Synthesis* 1995, 115-132.
- 52. Mori, K., Tetrahedron 1989, 45, 3233-3298.
- 53. Perron, F.; Albizati, K. F., Chem. Rev. 1989, 89, 1617-1661.
- Ghosh, A. K.; Kincaid, J. F.; Walters, D. E.; Chen, Y.; Chaudhuri, N. C.; Thompson, W. J.; Culberson, C.; Fitzgerald, P. M. D.; Lee, H. Y.; McKee, S. P.; Munson, P. M.; Duong, T. T.; Darke, P. L. Schleif, W; Zugay, J. A.; Schleif, W. A.; Axel, M. G.; Lin, J.; Huff, J. R., *J. Med. Chem.* 1996, *39*, 3278-3290.
- a) Elliott, M. C, J. Chem. Soc., Perkin Trans. 1 1998, 4175-4200; b) Burns, C. J.;
 Middleton, D. S., Contemp. Org. Synth. 1996, 3, 229.
- Busby, W. F., Jr.; Wogan, G. N., In *Chemical Carcinogens*, 2nd ed.; Searle, C. Ed.; American Chemical Society, Washington, DC, **1984**; Vol. 182, S. 945-1136.
- 57. Kulkarni, M.; Rasne, R., J. Chem. Soc., Perkin Trans. 1 1998, 2479-2480.
- a) Trost, B.; Toste, F. D., J. Am. Chem. Soc. 1999, 121, 3543-3544. b) Mayer, S.;
 Prandi, J.; Bamhoud, T.; Bakkras, S.; Guillou, O., Tetrahedron 1998, 54, 8753-8770.
- 59. a) Jalali, M.; Boussac, G.; Lallemand, J.-Y., *Tetrahedron Lett.* 1983, 24, 4307-4310.
 b) Jalali-Naini, M.; Lallemand, J. Y., *Tetrahedron Lett.* 1986, 27, 497-500.
- 60. Pirrung, M. C.; Lee, Y. R., J. Am. Chem. Soc. 1995, 117, 4814-4821.
- 61. Vaupel, A.; Knochel, P., J. Org. Chem. 1996, 61, 5743-5753.
- 62. Yong, K.; Salim, M.; Capretta, A., J. Org. Chem. 1998, 63, 9828-9833.
- a) Mellon, J. M.; Mohammed, S., *Tetrahedron Lett.* 1991, *32*, 7111-7114. b) Roy, S.
 C.; Mandal, P. K., *Tetrahedron* 1996, *52*, 12495-12498. c) Lee, Y. R.; Kim, B. S.;
 Wang, H. C., *Tetrahedron* 1998, *54*, 12215-12222.
- 64. Rhode, O.; Hoffmann, H. M. R., *Tetrahedron* **2000**, *56*, 6479-6488.
- 65. Lorenzo, E.; Alonso, F.; Yus, M., Tetrahedron 2000, 56, 1745-1757.
- 66. Vader, J.; Sengers, H.; de Groot, A., *Tetrahedron* **1989**, *45*, 2131-2142.
- a) Procopiou, P. A.; Cheny, P. C.; Deal, M. J., J. Chem. Soc. Perkin Trans. 1 1994, 13, 1773-1778. b) de Leon, C. Y.; Ganem, B., Tetrahedron 1997, 53, 7731-7752.
- a) M. F. Shostakovskii, V.M. Vlasov, A. S. Lozhenitsyna, A. A. Gavrilovskaya, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1965, 683-683. b) Medvedeva, A. S.; Favorskaya, T. A.; Vlasov, V. M.; Safronova, L. P., J. Gen. Chem. USSR (engl. Transl.) 1968, 38, 43-45. c) Medvedeva, A. S.; Favorskaya, T. A.; Demina, M. M.;

Safronova, L. P.; Vlasov, V. M., *J. Org. Chem.* USSR **1969**, *5*, 434-436. d) T. J. de Boer, *Recl. Trav. Chim. Pays-Bas* **1969**, *88*, 62-70.

- a) Lindlar, Dubuis Org. Synth. Coll. V, 880-886. b) Rajaram, J.; Narula, A. P. S.; Chawla, H. P. S.; Dev. S., Tetrahedron 1983, 39, 2315-2322. c) McEwen, A. B.; Guttieri, M. J.; Maier, W. F.; Laine, R. M.; Shvo, Y., J. Org. Chem. 1983, 48, 4436-4438.
- 70. Gaudemar, M., Ann. Chem. 1956, 13, 161-213.
- 71. Guijarro, A.; Yus, M., Tetrahedron 1994, 50, 13269-13276.
- 72. Ravikumar, K. S.; Chandrasekaran, S., *Tetrahedron* 1997, 53, 2973-2978.
- 73. Booth, H.; Khedhair, K. A.; Readshaw, S. A. Tetrahedron 1987, 43, 4699-4724.
- a) Beller, M.; Zimmermann, B.; Geissler, H., *Chem. Eur. J.* 1999, *5*, 1301-1304.
 b) Bianchini, C.; Meli, A.; Oberhauser, W., *New. J. Chem.* 2001, *25*, 11-12.
- 75. Haasnoot, C. A: G.; de Leeuw, F. A. A. M.; Altono, C., *Tetrahedron* **1980**, *36*, 2783-2792.
- 76. Alonso, F.; Lorenzo, E.; Yus, M., Tetrahedron Lett. 1997, 38, 2187-2190.
- 77. Fischli, A., Helv. Chim. Acta 1978, 61, 2650-2678.
- a) Fell, B.; Boll, W., *Chem.-Ztg.* 1975, *99*, 452-458. b) Chalchat, J. C.; Garry, R. Ph.;
 Lecomte, E.; Michet, A., *Flavour and Fragrance Journal* 1991, *6*, 179-182.
- a) Bailey, A. S.; Diaper, D. G. M.; Schwemin, M. V. H., *Can. J. Chem.* 1961, *39*, 1147-1152. b) B. D. Costas, C. G. Screttas, *J. Org. Chem.* 1997, *62*, 5575-5577.
- a) Fell, B.; Beutler, M., Erdöl, Kohle, Erdgas, Petrochem. 1976, 29, 149-153. b) Fell,
 B.; Beutler, M., Tetrahedron Lett. 1972, 3455-3456. c) Botteghi, C.; Salomon, C.,
 Tetrahedron Lett. 1974, 4285-4288. d) Tkatchenko, I, In Comprehensive
 Organometallic Chemistry, Vol. 8, Eds., Wilkinson, G.; Stone, F. G. A.; Abel, E.,
 Pergamon Press, Oxford, 1982.
- 81. a) Greenfield, H.; Wotiz, J. H.; Wender, J. Org. Chem. 1957, 22, 542-546. b) Wuts,
 P. G. M.; Ritter, J. Org. Chem. 1989, 54, 5180-5182.
- 82. Johnson, J. R.; Cuny, G. D.; Buchwald, S. L., Angew. Chem. 1995, 107, 1877-1878.
- 83. a) Yu. W.-Y.; Alper, H., J. Org. Chem. 1997, 62, 5684-5687. b) El Ali, B.; Alper, H., Synlett 2000, 2, 161-171.
- a) Joh, T.; Doyama, K.; Fujiwara, K.; Maeshima, K.; Takahashi, S., *Organometallics* **1991**, *10*, 508-513. b) Joh, T.; Doyama, K.; Onitsuka, K.; Shiohara, T.; Takahyshi,

S., Organometallics 1991, 10, 2493-2496. c) Trost, B. M., Fleming, I., In *Comprehensive Organic Synthesis*; Pergamon: Oxford, 1991; Vol. 5, 1136-1138.
d) Joh, T.; Fujiwara, K.; Takahashi, S., *Bull. Chem. Soc. Jpn.* 1993, 66, 978-980.

- 85. Fukuta, Y.; Matsuda, I.; Itoh, K., *Tetrahedron Lett.* **2001**, *42*, 1301-1304.
- 86. a) Eya, B. K.; Otsuke, T.; Kuba, I.; Wood, D. L., *Tetrahedron* 1990, *46*, 2695-2706.
 b) Cantin, M.; Xu, Y.-C.; Deslongchamps, P., *Can. J. Chem.* 1990, *68*, 2144-2152.
- Yasuda, H.; Okamoto, T.; Mashima, K.; Nakamura, A., J. Organomet. Chem. 1989, 363, 61-76.
- 88. Guijarro, A.; Yus, M., Tetrahedron 1994, 50, 7857-7864.
- 89. Katritzky, A. R.; Qi, M., J. Org. Chem. 1997, 62, 4116-4120.
- 90. Wilke, G.; Heimbach, Paul (Studien Kohle GmbH) U.S. Pat. 3832371 (1974), *Chem. Abstr.* 1976, 85, 159629p. Studienges. Kohle mbH FR Pat. 1543086 (1967), *Chem. Abstr.* 1969, 71, 123910v.
- 91. Guijarro, A.; Yus, M., Tetrahedron 1995, 51, 231-234.
- 92. a) Marciniec, B.; Gulinski, J., J. Organomet. Chem. 1984, 266, C19. b) Marciniec, B.; Maciejewski, Gulinski, J.; Rzejak, Z., J. Organomet. Chem. 1989, 362, 273-279.
 c) Marciniec, B.; Pietraszuk, C.; Foltynowicz, Z., J. Organomet. Chem. 1994, 474, 83-87.
- 93. Aeshadri, H.; Lovely, C. J., Organic Lett. 2000, 2, 327-330.
- 94. a) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H., J. Am. Chem. Soc. 1992, 114, 3974-3975. b) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W., J. Am. Chem. Soc. 1993, 115, 9858-9859. c) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H., Angew. Chem. 1995, 107, 2179-2181; Angew. Chem. Int. Ed. Engl. 1995, 34, 2039. d) Schwab, P.; Grubbs, R. H..; Ziller, J. W., J. Am. Chem. Soc. 1996, 118, 100-110.
- 95. a) Fringuelli, F.; Germani, R.; Pizzo; F.; Savelli, G., *Tetrahedron Lett.* 1989, 30, 1427-1428. b) Krause, N., *Metallorganische Chemie*, Spektum-Verlag, Heidelberg-Berlin-Oxford, 1996.
- 96. Yamaguchi, M.; Hirao, I., Tetrahedron Lett. 1983, 24, 391-394.
- 97. Tchelitcheff, P.; Paul, R., Bull. Soc. Chim. Fr. 1954, 672-678.
- 98. Aikawa, T.; Izutani, H.; Shiihara, I.; Sano, H., Tetrahedron. Lett. 1965, 4457-4464.

- a) Jung, M. E.; Gervay, J., J. Am. Chem. Soc. 1991, 113, 224-232. b) Kirby, A. J., J. Adv. Phys. Org. Chem. 1980, 17, 183-278. c) Siegel, H.; Himmele, W., Angew. Chem. 1980, 92, 182-187; Angew. Chem. Int. Ed. Engl. 1980, 19, 178-183.
- 100. Keulemans, A. J. M.; Kwantes, A.; van Bavel, T., *Rec. Trav. Chim.* **1948**, 67, 298-308.
- 101. a) Matsui, Y.; Orchin, M., J. Organomet. Chem. 1983, 246, 57-60. b) Botteghi, C.;
 Cazzolato, L.; Marchetti, M.; Paganelli, S.; Sechi, B., J. Org. Chem. 1995, 60, 6612-6615. c) Botteghi, C.; Cazzolato, L.; Marchetti, M.; Paganelli, S.; Sechi, B., J. Mol. Catal. A 1997, 118, 173-179.
- 102. a) Billing, E.; Abatjoglou, A. G.; Bryant, D. R. U.S. Patent 4769 498, 1988. b) Cuny, G. D.; Buchwald, S. L., *J. Am. Chem. Soc.* 1993, *115*, 2066-2068. c) Cuny, C. D.; Buchwald, S. L., *Synlett* 1995, 519-521. d) van der Veen, L. A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; *Angew. Chem.* 1999, *111*, 349-351, *Angew. Chem. Int. Ed.* 1999, *38*, 336.-338
- Bergmann, D. J.; Campi, E. M.; Jackson, W. R.; Patti, A. F., *Chem. Commun.* 1999, 1279-1280.
- 104. a) Amouroux, R.; Chastrette, F.; Chastrette, M., J. Heterocyclic Chem. 1981, 18, 565-570. b) Amouroux, R.; Eijiar, S.; Chastrette, M., Tetrahedron Lett. 1986, 27, 1035-1038.
- 105. Rautenstrauch, V., Helv. Chim. Acta 1974, 57, 496-508.
- 106. Cram, D. J.; Wilson, D. R., J. Am. Chem. Soc. 1963, 85, 1245-1249.
- 107. Kato, M.; Kageyama, M.; Yoshikoshi, A., J. Chem. Soc. Perkin Trans. 1 1977, 1305-1308.
- 108. Baldwin. J. E., J. Chem. Soc., Chem. Commun. 1976, 734-736.
- 109. Scharf, H.-D.; Plum, H.; Fleischhauer, J.; Schlecker, W., Chem. Ber. 1979, 112, 862-882.
- 110. Carmack, M.; Kelley, C. J., J. Org. Chem. 1968, 33, 2171-2173.
- 111. a) Leriverend, P.; Conia, J.-M., *Bull. Soc. Chim. Fr.* **1970**, 1040-1050. b) Marvell, E.
 N.; Caple, G.; Delphey, C.; Platt, J.; Polston, N.; Tashiro, J., *Tetrahedron* **1973**, *29*, 3797-3806.
- 112. Marvell, E. N.; Cheng, J. C.-P., J. Org. Chem. 1980, 45, 4511-4514.
- 113. Lee, J.-C.; Boojamra, C. G.; Crabtree, R. H., J. Org. Chem. 1993, 58, 3895-3900.

- 114. a) Vekemans, J. A. J. M.; Dapperen, C. W. M.; Claessen, R.; van Koten, A. M. J.;
 Godefroi, E. F., *J. Org. Chem.* **1990**, *55*, 5336-5344. b) Manni, P. E.; Howie, G. A.;
 Katz, B.; Cassady, J. M., *J. Org. Chem.* **1972**, *37*, 2769-2771.
- 115. a) Williams, D. H.; Flemming, I., In *Strukturaufklärung in der Organischen Chemie*,
 5. Aufl., Thieme-Verlag, Stuttgart, 1985. b) Hesse, M.; Meier, H.; Zeeh, B., In *Spektroskopische Methoden in der Organischen Chemie*, 5. Aufl., Thieme-Verlag Stuttgart, 1995.
- 116. Roggenbuck, R.; Schürmann, M.; Preut, H.; Eilbracht, P., Acta Cryst. 2000, C56, e356.
- a) Paquette, L. A.; Negri, J. T.; Rogers, R. D., J. Org. Chem. 1992, 57, 3947-3956.
 b) Branan, B. M.; Paquette, L. A., J. Am. Chem. Soc. 1994, 116, 7658-7667.
 c) Lobben, P. C.; Paquette, L. A., J. Am. Chem. Soc. 1996, 118, 1917-1930.
- 118. Chan, T. H.; Yang, Y.; Li, C. J., J. Org. Chem. 1999, 64, 4452-4455.
- 119. a) Einhorn, C.; Luche, J.-L., J. Organomet. Chem. 1987, 322, 177-184. b) Baylon, C.;
 Heck, M.-P.; Mioskowski, C., J. Org. Chem. 1999, 64, 3354-3360.
- 120. a) Koert, U.; Stein, M.; Wagner, H., *Chem. Europ. J.* 1997, *3*, 1170-1180. b) Ko, S.
 S.; Finan, J. M.; Yonaga, M.; Kishi, Y.; Uemura, D.; Hirata, Y., *J. Am. Chem. Soc.* 1982, *104*, 7364-7367.
- 121. Gewald, R.; Kira, M.; Sakurai, H., Synthesis 1996, 111-115.
- 122. a) Zanardi, F.; Battistini, L.; Rassu, G.; Auzzas, L.; Pinna, L.; Marzocchi, L.; Acquotti, D.; Casiraghi, G., *J. Org. Chem.* 2000, 65, 2048-2064. b) Szlosek, M.; Peyrat, J.-F.; Chaboche, C.; Franck, X.; Hocquemiller, R.; Figadère, B., *New J. Chem.* 2000, 24, 337-342.
- 123. a) Roffey, P.; Sargent, M. V., *Chem. Commun.* 1966, 913-914. b) O'Malley, G. J.;
 Murphy, Jr., R. A.; Cava, M. P., *J. Org. Chem.* 1985, 50, 5533-5537. c) Townsend,
 C. A.; Christensen, S. B.; Davis, S. G., *J. Chem. Soc. Perkin Trans. 1* 1988, 839-861.
- 124. Jonas, J.; Forrest, T. P., J. Org. Chem. 1970, 35, 836-838.
- 125. Castonguay, A.; Brassard, P., Can. J. Chem. 1977, 55, 1324-1332.
- 126. Roffey, P.; Sargent, M. V., Knight, J. A., J. Chem. Soc. C 1967, 2328-2331.
- 127. Holzapfel, C: W.; Williams, D. B. G., Synth. Commun. 1994, 24, 2139-2146.
- 128. Aukrust, I. R.; Noushabadi, M.; Skatteboel, Pol. J. Chem. 1994, 68, 2167-2174.

- 129. Kira, M.; Sato, K.; Sekimoto, K.; Gewald, R.; Sakurai, H., Chem. Lett. 1995, 4, 281-282.
- 130. Hug, R.; Hansen, H.-J.; Schmid, H., Helv. Chim. Acta 1972, 55, 1675-1691.
- 131. a) Wynberg, H.; Meijer, E. W., Org. React. 1982, 28, 1-36. b) Shargi, H.; Tamadon, F., Tetrahedron 1996, 52, 13623-13640.
- 132. Kirkiacharian, B. S.; Danan, A.; Koutsourakis, P. G., Synthesis 1991, 879-881.
- 133. Alberola, A.; Calvo, B.; Ortega, A. G.; Pedrosa, R., J. Chem. Soc, Perkin Trans. 1
 1992, 22, 3075-3080.
- 134. a) Sakai, T.; Nakagawa, Y.; Iwashita, T.; Naoki, H.; Sakan, T., Bull. Chem. Soc. Jpn.
 1983, 56, 3477-3482. b) Nagata, H.; Kawamura, M.; Ogasawara, K., Synthesis 2000, 1825-1834.
- 135. Brown, R. T.; Chapple, C. L., Tetrahedron Lett. 1976, 787-790.
- 136. Gómez, C.; Ramón, D. J.; Yus, M., Tetrahedron 1993, 49, 4117-4126.
- 137. Alonso, F.; Lorenzo, E.; Yus, M., Tetrahedron Lett. 1998, 39, 3303-3306.
- 138. Sannigrahi, M., Tetrahedron 1999, 55, 9007-9071.
- 139. Dummer, W., Dissertation Universität Dortmund, 1985.
- 140. Schmidt, B.; Kocienski, P.; Reid, G., Tetrahedron 1996, 52, 1617-1630.
- Snowden, R. L.; Linder, S. M.; Muller, B. L.; Schulte-Elte, K. H., *Helv. Chim. Acta* 1987, 70, 1879-1885.
- 142. Sattelkau, T., Dissertation Universität Dortmund, 1997.
- 143. Hollmann, C., Dissertation Universität Dortmund, 2000.
- 144. a) Scognamillo, S., *Dissertation Universität Dortmund*, in Vorbereitung. b) Keränen,M., *Dissertation Universität Dortmund*, in Vorbereitung.
- 145. a) Schmidt, B.; Wildemann, H., Synlett, 1999, 1591-1593. b) Schmidt, B.;
 Wildemann, H., J. Org. Chem. 2000, 65, 5817-5822.
- 146. Schmidt, B.; Westhus, M., Tetrahedron 2000, 56, 2421-2426.
- 147. a) Schuster, M.; Blechert, S., Angew. Chem. 1997, 109, 2124-2144; Angew. Chem. Int. Ed. Engl. 1997, 36, 2036-2055. b) Armstrong, S. K., J. Chem. Soc., Perkin Trans. 1 1998, 371-388. c) Fürstner, A., Angew. Chem. 2000, 112, 3140-3172; Angew. Chem. Int. Ed. Engl. 2000, 39, 3012-3043.
- 148. Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M., J. Am. Chem. Soc. 1990, 112, 3875-3886.

- 149. Fu, G. C.; Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W., J. Am. Chem. Soc. 1993, 115, 9856-9857.
- 150. a) Bassindale, M. J.; Hamley, P.; Leitner, A.; Harrity, J. P. A., *Tetrahedron Lett.* **1999**, 40, 3247-3250. b) Wallace, D. J.; Cowden, C. J.; Kennedy, D. J.; Ashwood, M. S.; Cottrell, I. F.; Dolling, U.-H., *Tetrahedron Lett.* **2000**, 41, 2027-2029. c) Wallace, D. J.; Bulger, P. G.; Kennedy, D. J.; Ashwood, M. S.; Cottrell, I. F.; Dolling, U.-H., *Synlett.* **2001**, 357-360. d) Wallace, D. J.; Goodman, J. M.; Kennedy, D. J.; Davies, A. J.; Cowden, C. J.; Ashwood, M. S.; Cottrell, I. F.; Dolling, U.-H.; Reider, P. J., *Org. Lett.* **2001**, *3*, 671-674. e) Schmidt, B.; Wildemann, H., *J. Chem. Soc., Perkin Trans. 1* **2000**, 2916-2925.
- 151. a) Evans, P.; Grigg, R.; Ramzan, M. I.; Sridharan, V.; York, M., *Tetrahedron Lett.*1999, 40, 3021-3024. b) van Hooft, P. A. V.; Leeuwenburgh, M. A.; Overkleeft, H. S.; van der Marel, G. A.; van Boeckel, C. A. A; van Boom, J. H., *Tetrahedron Lett.*1998, 39, 6061-6064. c) van Hooft, P. A. V.; van der Marel, G. A.; van Boeckel, C. A. A; van Boom, J. H., *Tetrahedron Lett.* 2001, 42 1769-1772. d) Holt, D.; J., Barker, W. D.; Jenkins, P. R.; Davies, D. L.; Garrat, S.; Fawcett, J.; Russell, D. R.; Ghosh, S., *Angew. Chem.* 1998, 110, 3486-3488. e) Holt, D.; J., Barker, W. D.; Jenkins, P. R.; Ghosh, S., *J. Org. Chem.* 2000, 65, 482-493. f) Grigg, R.; Sridharan, V.; York, M., *Tetrahedron Lett.* 1998, 39, 4139-4142.
- 152. Schmidt, B.; Costisella, B.; Eilbracht, P.; Roggenbuck, R.; Westhus, M.; Wildemann, H., J. Org. Chem., zur Veröffentlichung eingereicht.
- 153. Polo, A.; Claver, C.; Castillón, C.; Ruiz, A.; Bayón, J. C.; Real, J.; Mealli, C.; Massi,
 D., *Organometallics* 1992, *11*, 3525-3533.
- 154. a) Autorenkollektiv, *Organikum*, 19. Aufl., Dt. Verlag der Wissenschaften Leipzig, Berlin, Heidelberg, 1993. b) Perrin, D. D.; Amarengo, W. L. F.; Perrin, D. R., *Purification of Laboratory Chemicals*, 2. Aufl., Pergamon, London, 1980.
- 155. Giordano, G.; Crabtree, R. H., Inorg. Synth. 1979, 19, 218-219.
- 156. Moreau, J. L.; Gaudemar, M., Bull. Soc. Chim. Fr. 1973, 2729-2731.
- 157. Zeile, K.; Meyer, H., Chem. Ber. 1942, 75, 356-362.
- 158. Neudeck, H.; Schlögl, K., Monatsh. Chem. 1975, 106, 229-259.
- 159. Kawai, Tsutsumi, Nippon Kagaku Zasshi 1960, 81, 109. Chem. Abstr. 1962, 56, 733q.

- 160. D.-L. Chen, C.-J. Li, Tetrahedron. Lett. 1996, 37, 295-298.
- Brown, H. C.; Khire, U. R.; Narla, G.; Racherla, U. S., J. Org. Chem. 1995, 60, 544-549.
- 162. a) Quayle, P.; Rahman, S.; Ward, E. L. M.; Herbert, J., *Tetrahedron Lett.* 1994, 35, 3801-3804. b) Shinokubo, H.; Miki, H.; Yokoo, T.; Oshima, K.; Utimoto, K., *Tetrahedron* 1995, 51, 11681-11692.
- 163. Nonaka, T.; Udagawa, A.; Odo, K., Chem. Lett. 1975, 1261-1266.
- 164. Larcheveque, M. et al., Synthesis 1975, 256-259.
- 165. a) Bertz, R. T., Org. Synth. Coll. Vol IV, 489-491. b) Kochar, K. S.; Bahl, B. S.; Deshpande, R. P.; Rajadhyashsha, S. N.; Pimik, H. W., J. Org. Chem. 1983, 48, 1765-1767.
- 166. Cominetti, F.; Deagostino, A.; Prandi, C.; Venturello, P., *Tetrahedron* **1998**, *54*, 14603-14608.
- Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K., J. Am. Chem. Soc. 1989, 111, 5330-5334.
- 168. Yasuda, M.; Fujibayashi, T.; Baba, A., J. Org. Chem. 1998, 63, 6401-6404.