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Chapter 1

Introduction

In applied econometrics, one is interested in quantifying how much one variable

changes in response to a change in another variable. This is easily done in the

ordinary least squared framework where it is assumed that the expected value

of the squared error terms is the same at any given point. This is the constant

variance assumption also called homoskedasticicy. Financial data however are

known to be conditionally heteroskedastic. At some point in time the con-

ditional variance is greater than at some other points in time. The family

of ARCH models introduced by Engle (1982) and generalized into GARCH

by Bollerslev (1986) are the main focus of this conditional heteroskedasticicy.

They do not consider this conditional heteroskedasticity to be a problem as

such, rather as a variance to be modeled. At the end, not only weaknesses of

least squares are corrected but a forecast for the variance of the error term is

computed.

In the particular case of financial times series (e.g daily data), a stylized fact is

the so called ”volatility clustering”. Some periods are riskier than others and

these risky times are not scattered randomly across the data. There is instead

a degree of autocorrelations. Mandelbrot (1963) said ” ...Large changes tend to

1



2 CHAPTER 1. INTRODUCTION

follow large changes - of either sign - and small changes by small changes...”.

In financial applications where the dependent variable is generally the return

on an asset or portfolio, and the variance of the return represents the risk level

of those returns, the prediction of the latter turns out to be of great inter-

est. Investors require higher returns for holding riskier assets and option pric-

ing theory uses empirically estimated volatilities in the Black-Scholes formula.

It is therefore fundamental to carefully and properly model conditional het-

eroskedasticy for financial time series. The ARCH and GARCH models which

stand for Autoregressive Conditional Heteroskecaticity and Generalized Au-

toregressive Conditional Heteroskedasticity are designed to take care of these

problems.

Estimating ARCH and GARCH models is mainly done through (quasi)maximum

likelihood techniques where a vector is built up of all model parameters and a

likelihood function is constructed depending on this vector. An iterative search

procedure is then used to find the parameters in the model that maximize the

likelihood function. It is usually assumed that the conditional distribution of

the returns is normal.

Previous research on financial market data have described the behavior of the

autocorrelations of the squared and absolute returns series, see Dacorogna,

Muller, R.J, Olsen, and Pictet (1993), Ding and Granger (1996) and Muller,

Dacorogna, R.J, Olsen, and Pictet (1997). They have expressed the desire to

construct a model that closely replicates the autocorrelations of the squared

returns. Furthermore, on figure 1 in Jacquier, Polson, and Rossi (1994), there

are some discrepancies between the autocorrelations of transformations of fitted

returns from MLE and the autocorrelations of the actual fitted returns. An-

other reason for using this estimator is that the true data generating process

can possess extreme nonnormality, in this case applying Maximum Likelihood

methods do not always produce asymptotically efficient parameter estimates
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(see Baillie and Chung (2001), page 632).

As a distribution-free alternative, numerous authors have proposed minimum

distance estimators of the GARCH parameters using either the autocorrela-

tions or the autocovariances of the squared returns. In our particular case, the

parameters of the GARCH(1,1)-model will be estimated from the autocorrela-

tions of the squared process. This method applies a minimum distance estima-

tor (MDE1 ) to the empirical autocorrelations of the GARCH squared process.

In general, in cases where it is difficult to numerically estimate GARCH models

from extreme non normal densities2, the minimum distance estimator can be

an interesting alternative. Furthermore, the MDE generates a model where

the autocorrelations of the fitted squared values are closed to the population

autocorrelations (see e.g. Baillie and Chung (2001), section 5).

In this work, we take this new alternative of distribution free estimation of

GARCH(1,1)-models as given and study its implications in various issues pre-

viously addressed in the GARCH framework. Issues like small sample bias

of estimated GARCH parameters, structural changes and market risk mea-

surements have previously been addressed in the quasi maximum likelihood

estimated GARCH models. We investigate these issues in the specific case in

which the GARCH parameters are directly estimated from the autocorrelations

of the squared process. This approach uses the minimum distance estimator

which estimates the GARCH parameters by minimizing the Mahanalobis gener-

alized distance of a vector of empirical autocorrelations from the corresponding

population autocorrelations.

1will be defined later
2 Soosung and Pereira (2006) discusses the convergence errors of the MLE estimators

under the Bollerslev conditions defined in equation (4.2) .



4 CHAPTER 1. INTRODUCTION

In the following, after the introduction in chapter 1, chapter 2 addresses the

issue of existence of solutions to the GARCH processes. Chapter 3 introduces

the distribution free minimum distance estimation of the simple and often used

GARCH(1,1)-model. Chapter 4 deals with the small sample bias of the esti-

mated persistence in the GARCH(1,1)-model. Chapter 5 addresses the issue of

lag choice in minimum distance estimation of a GARCH(1,1)-model. Chapter

6 looks at the structural change and the estimated persistence, particularly, it

analyzes the effect a growing size deterministic structural breaks in the con-

stant term of the conditional mean equation on the estimated persistence. In

chapter 7, once again, the issue of structural breaks is addressed, in the context

of a fixed break size and growing sample sizes. In the same chapter, we extend

the investigation into the context of stochastic changes in the mean. We study

these specific types of structural changes and its extensions to artificial long

memory. In chapter 8, we look at applications of the GARCH estimates in

risk management. The Value at Risk (VaR) and its coherent alternative, the

expected tail loss (ETL) are described. We discuss their calculations in the

minimum distance estimation framework. Chapter 9 concludes by recapping

the main findings in this thesis and suggests further research questions.



Chapter 2

GARCH models

2.1 Introduction

Uncertainty as measured by risk or volatility is central in any type of financial

analysis. In option pricing theory, the most determinant factor is the volatility

associated with the price of the underlying asset. When calculating standard

market risk measures such as the Value at Risk, we are mostly interested in

the current levels of volatilities. We are namely assessing possible changes in

the value of the portfolio over a very short period of time. In the process of

valuing derivatives, a forecast of volatilities over the whole life of the derivatives

is usually required.

One important stylized fact of financial returns series is that their conditional

volatility changes over time. Figure 2.1 shows the price level and Figure 2.2

shows the innovations, conditional standard deviations and returns of the Ger-

man Deutsche Bank stock and one easily realizes that its volatility is not con-

stant over time. These concepts will be defined in the following section. In

particular one observes in the second figure periods of large movements in

5



6 CHAPTER 2. GARCH MODELS

Figure 2.1: Deutsche Bank stock price from 01/01/95 till 04/08/2005 (2764
observations)

prices alternating with periods in which prices hardly change. This is termed

”volatility clustering”. In the presence of this changing volatility, ARCH and

GARCH are the most used tools in financial risk management. These models

are so popular because not only do they account for volatility clustering but

even more, they account for certain other characteristics such as pronounced

excess kurtosis and fat-tailedness.

2.2 Assumptions

The logarithmic return rt from an asset with price St at time t is defined as

rt = ln(St+1)− ln(St) (2.1)

= E
(
rt|Ft−1

)
+ εt where εt is the error term

= µ(b) + εt, t = 1, 2, 3, ..., N.
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Figure 2.2: Deutsche Bank stock returns from 01/01/95 till 04/08/2005 (2764
observations)
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The σ-field Ft = σ
(
εk, k ≤ t

)
denotes the filtration modeling the informa-

tion set. The GARCH model conditioned on such an information set is het-

eroskedastic (see e.g Greene (2003), page 241). µ is the conditional mean func-

tion with argument b, for example in a regression µ(b) = z′tb, where zt denotes a

set of independent variables. We shall consider this conditional mean function

to be constant to ease our discussion, in particular on structural changes in

chapter 6 and 7. The error term εt, also called disturbances or innovations,

is the quantity of interest. Financial analysts and risk managers are mainly

preoccupied by what makes it vary and how large it can be.

We model this error term as

εt = ηtσt, (2.2)

where ηt is a zero mean unit variance process.

The conditional variance equation σt is assumed to follow the difference equa-

tion

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i with βi ≥ 0 and αj ≥ 0. (2.3)

This is the general GARCH(p,q) specification of Bollerslev (1986), which is

the extension of the ARCH(q)-model of Engle (1982). It allows the conditional

variance to depend not only on the past squared residuals but additionally on

its own past realizations. The quantity δ =
∑q

i=1 αi +
∑p

i=1 βi is defined as

the persistence of this linear GARCH(p,q)-model. It is the most important

parameter and the reason why we at all estimate GARCH model. Depending

on its value for example, multiple periods forecasts of the volatility can be

made. The following section discusses the existence of solutions of the GARCH

process equation.
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2.3 Existence of weakly stationary solutions

of the linear GARCH process equation

This section treats weak stationarity of GARCH models. We start by defining

the concept of weak stationarity.

Definition 1. A stochastic process xt is weakly stationary (or second order

stationary or covariance stationary) if each xt is squared integrable and if for

all t,m ∈ Z, E(xt) and cov(xt, xt+m) are independent of t.

Now we state the weak stationarity theorem for GARCH models:

Theorem 1. (Bollerslev, 1986)

When ω > 0, the GARCH(p,q) model has a weakly stationary solution

if and only if∑p
i=1 βi +

∑q
j=1 αj < 1, with βi ≥ 0 and αj ≥ 0.

Proof:

We start with

εt = ηtσt with ηt ∼ i.i.d. N (0, 1). (2.4)

Then subsequent substitution into the conditional variance (equation (2.3))

yields

σ2
t = ω +

q∑
j=1

αjη
2
t−jσ

2
t−j +

p∑
i=1

βiσ
2
t−i

= ω +

q∑
j=1

αjη
2
t−j

(
ω +

q∑
i=1

αiη
2
t−j−iσ

2
t−j−i +

p∑
i=1

βiσ
2
t−i−j

)
+

p∑
j=1

βj

(
ω +

q∑
i=1

αiη
2
t−j−iσ

2
t−j−i +

p∑
i=1

βiσ
2
t−i−j

)
= ... = ω +

∞∑
k=0

M(t, k).
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where M(t, k) contains all the terms of the form

Πq
i=1αi

ai Πp
j=1βj

bj Πn
l=1η

2
l − Sl

for
q∑

j=1

ai +

p∑
i=1

bj = k,

q∑
j=1

ai = n (2.5)

and Sl, 1 ≤ l ≤ n is a sequence of numbers satisfying

1 ≤ S1 < S2 < ... < Sn ≤ max(kq, (k − 1)q + p).

So, it follows

M(t, 0) = 1,

M(t, 1) =

q∑
j=1

αjη
2
t−j +

p∑
i=1

βi,

M(t, 2) =

q∑
j=1

αjη
2
t−j

( q∑
j=1

αjη
2
t−i−j +

p∑
i=1

βi

)
+

p∑
i=1

βi

( q∑
j=1

αjη
2
t−i−j +

p∑
i=1

βi

)
and generally,

M(t, k + 1) =

q∑
j=1

αjη
2
t−jM(t− j, k) +

p∑
i=1

βiM(t− i, k). (2.6)

Since η2
t is i.i.d. , the moments of M(t, k) do not depend on t, and in particular

E(M(t, k)) = E(M(s, k)) for all k, s, t. (2.7)

From (2.6) and (2.7), we can deduce

E(M(t, k + 1)) =
( q∑

j=1

αj +

p∑
i=1

βi

)
EM(t, k)

.

.

.

=
( q∑

j=1

αj +

p∑
i=1

βi

)k+1 EM(t, 0)

=
( q∑

j=1

αj +

p∑
i=1

βi

)k+1
.
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By combining the above results (in particular (2.4), (2.5) and (2.8)), we imme-

diately obtain

E(ε2
t ) = ω + E

( ∞∑
k=0

M(t, k)
)

= ω +
∞∑

k=0

E
(
M(t, k)

)
.

The geometric series

∞∑
k=0

E
(
M(t, k) (2.8)

with

E(M(t, k)) =
( q∑

j=1

αj +

p∑
i=1

βi

)k

converges if and only if

q∑
j=1

αj +

p∑
i=1

βi < 1. (2.8)

In this case then, we have

E(ε2
t ) =

ω

1−
( ∑q

j=1 αj +
∑p

i=1 βi

) (2.9)

Indeed, weak stationarity in GARCH(p,q)-models is equivalent to

q∑
j=1

αj +

p∑
i=1

βi < 1 (2.10)

As opposed to weak stationarity, strict stationarity is a stronger concept. We

address the existence of strictly stationary solutions for the general GARCH

process next.
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2.4 Existence of strictly stationary solutions

of the general GARCH process equation

In this section, we present necessary and sufficient conditions for the existence

of a strictly stationary solution of the GARCH time series equation. For this,

we recall some useful definitions. We will consider a probability measure λ on

R with zero mean and unit variance.

Definition 2. A process xt is strictly stationary if for all t,m ∈ Z the law of(
xt, xt+1, ..., xt+m

)
is independent of t.

Definition 3. The top Lyapounov exponent associated to a sequence At, t ∈ Z

of i.i.d. random matrices is given by

γ = inf
{
E

( 1

t + 1
ln ‖A0A−1...A−t‖

)
, t ∈ N

}
(2.11)

when E(max(ln ‖A0‖, 0) < ∞, (2.12)

where ‖ ‖ is a matrix norm on M ∈ M(d), the set of d × d matrices. ‖ ‖ is

defined as

‖M‖ = sup{‖Mx‖/‖x‖; x ∈ Rd, x 6= 0}. (2.13)

In the previous section, we characterized the existence of weakly stationary so-

lutions for the linear GARCH(p,q)-process. Bollerslev (1987) however, among

others has found that some financial time series, especially daily data, show

parameters which are not in the weak stationarity region. Even if these series

are not squared integrable, they are strictly stationary.

For convenience, in the linear GARCH(p,q)-process, we will always suppose

p, q ≥ 2. We can always make the redundant αj’s (resp. βi’s) equal to zero

when the corresponding p (resp. q) is smaller than two. With this we can

define the following matrix:
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At =



β1 + α1
εt

σt
β2 . . . βp−2 βp−1 βp α2 α3 . . . αq−2 αq−1 αq

1 0 . . . 0 0 0 0 0 . . . 0 0 0

0 1 . . . 0 0 0 0 0 . . . 0 0 0

0 0
. . . 1 0 0 0 0 . . . 0 0 0

0 0 . . . 0 1 0 0 0 . . . 0 0 0
εt

2

σt
2 0 . . . 0 0 0 0 0 . . . 0 0 0

0 0 . . . 0 0 0 1 0 . . . 0 0 0

0 0 . . . 0 0 0 0 1 . . . 0 0 0

0 0 . . . 0 0 0 0 0
. . . 1 0 0

0 0 . . . 0 0 0 0 0 . . . 0 1 0



.

At contains two identity matrices of size p− 1 and p− 2 respectively. We can

easily see that it is a (p+ q− 1)× (p+ q− 1) matrix. The random matrices are

i.i.d., and all coefficients of these matrices are integrable. So E(max(ln ‖A0‖, 0)

is finite. The top Lyapounov exponent is therefore well defined. We have all

the ingredients to present the following theorem, due to Bougerol and Picard

(1992) that characterizes the existence of strictly stationary solutions of the

general GARCH process equation.

Theorem 2. (Bougerol and Picard, 1992)

When ω > 0, the GARCH(p,q) model has a strictly stationary solution

if and only if the Lyapounov exponent γ associated with the matrices At, t ∈ Z

is strictly negative. Moreover, this solution is ergodic. Its is the only stationary

solution when the ηt’s are given.

The proof of this central theorem requires four steps. First we state the lemma

ensuring the strict negativity of the top Lyapounov exponent given a sequence

of i.i.d. stochastic matrices. We then move on to the two steps require to prove

any mathematical equivalence and conclude with the proof of the unicity of

the solution.
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Let us define the following multivariate model:

Definition 4. A generalized autoregressive equation with non negative i.i.d.

coefficients is

xt+1 = At+1xt + Bt, t ∈ Z, (2.14)

where {(At,Bt) t ∈ Z} is a given sequence of independent, identically dis-

tributed, random variables with values in M(d)× Rd and xt is in Rd.

There is tight connection between this multivariate model and the GARCH

process. This connection plays an essential role in the proof of theorem 2. We

start by noting this general fact:

Consider the process xt, t ∈ Z defined by

xt = (σ2
t+1, σ

2
t , ..., σ

2
t−p+2, ε

2
t , ε

2
t−1, ..., ε

2
t−q+2)

′, (2.15)

and define the p + q − 1 real vector B as

B = (ω, 0, ..., 0)′. (2.16)

It is easily seen that εt solves the GARCH process equation if and only if xt is

a solution of

xt+1 = At+1xt + B. (2.17)

The following lemma characterizes the negativity of the top Lyapounov expo-

nent.

Lemma 1. (Bougerol and Picard, 1992)

Let An, n ∈ Z be a sequence of independent, identically distributed,

random matrices such that E(max(ln ‖A0‖, 0) < ∞.

If limt−→∞‖A0A−1...A−t‖ = 0, then the top Lyapounov exponent associated

with this sequence is strictly negative.
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Proof : See e.g Bougerol (1987) or Bougerol and Picard (1990) for a complete

proof and related results.

Here we are going to suppose that there exists a strictly stationary solution

εt, t ∈ Z of the GARCH process and prove that the top Lyapounov exponent

associated with the matrices At is strictly negative. This constitutes the ⇒

part of the equivalence.

Using (2.17), we can write for t > 0;

x0 = A0x−1 + B (2.18)

= A0A−1x−2 + B + A0B (2.19)

= A0A−1A−2x−3 + B + A0B + A0A−1B (2.20)

= A0A−1A−2...A−tx−t−1 + B +
t−1∑
k=0

A0A−1...A−kB. (2.21)

The coefficients of At, xt and B are non negative. So for any t > 0, it holds

t−1∑
k=0

A0A−1...A−kB ≤ x0. (2.22)

This shows that the series
∑t−1

k=0 A0A−1...A−kB converges almost surely. This

never happens unless A0A−1...A−tB converges almost surely to zero as t −→

∞.

Next, we prove that

limt−→∞A0A−1...A−tel = 0, (2.23)

for all 1 ≤ l ≤ p + q − 1 .

Consider (e1, e2, ..., ep+q−1) a canonical base of Rp+q−1 .

The case l = 1 :

B = ωe1 and since ω 6= 0 ( ω is strictly positive),

limt−→∞ A0A−1...A−te1 = 0. (2.24)
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Since A−tep = βpe1, we have

limt−→∞ A0A−1...A−t+1A−tep = (2.25)

βp limt−→∞ A0A−1...A−t+1e1 = 0. (2.26)

Now we use induction (backward recursion) to show that (2.23) holds for all

the l ≤ j given any j so that 2 < j ≤ p.

Suppose that for such a fixed j,

limt−→∞ A0A−1...A−t+1A−tej = 0. (2.27)

Then using A−tej−1 = βj−1e1 + ej,

limt−→∞ A0A−1...A−t+1A−tej−1 = (2.28)

limt−→∞ A0A−1...A−t+1(βj−1e1 + ej) = (2.29)

βj−1 limt−→∞ A0A−1...A−t+1e1 + limt−→∞ A0A−1...A−t+1ej = 0. (2.30)

(2.28) shows that (2.23) holds as well for j−1. So (2.23) holds as well for all the

j ≤ p. Using the same reasoning and arguments as above for ep+q−1, ..., ep+1

and the relations

Atep+q−1 = αqe1 and Atep+j−1 = αje1 + ep+j (2.31)

for 2 ≤ j ≤ q − 1, we conclude that (2.23) holds for all the el. So

limt−→∞ A0A−1...A−t+1A−t = 0 a.s. (2.32)

We now use Lemma 1 to conclude that the top Lyapounov exponent associ-

ated with the matrices At is strictly negative. This proves the ⇒ part of the

theorem.

We suppose now that the top Lyapounov exponent associated with the matrices

At is strictly negative. We want to prove that the GARCH model then has a
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strictly stationary solution. This shall constitute the ⇐= part of the theorem.

The sub-additive ergodic theorem proven for example in Kingman (1973) says

that the top Lyapounov exponent almost surely can be rewritten as

γ = lim
t−→∞

=
1

t
ln ‖A0A−1...A−t‖. (2.33)

Norms are equivalent in Rn so this Lyapounov exponent is independent of the

norm. The Lyapounov exponent being strictly negative, (2.33) implies that

the series

∞∑
k=0

AtAt−1...At−kB (2.34)

converges almost surely for any t. Let construct the following xt, t ∈ Z as

xt = B +
∞∑

k=0

AtAt−1...At−kB. (2.35)

This sequence is non negative and fulfills

xt+1 = At+1xt + B. (2.36)

Pose σt =
√

x1
t−1 where x1

t−1 is the first component of the vector xt−1.

The process εt = σtηt is a solution of the GARCH model where ηt is any zero

mean unit variance process whose distribution conditional on Ft−1 follows the

law λ. Then the process {At, ηt, t ∈ Z} is strictly stationary and ergodic. For

some measurable function F independent of t, we can write

εt = F (ηt,An,An−1,An−2, ...). (2.37)

So {εt, t ∈ Z} is a strictly stationary and ergodic process, solution of the

GARCH process equation. This proves the ⇐= of the theorem.

In the last step of this proof, we are concerned about the unicity of this strictly

stationary solution.
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Let zt, t ∈ Z be another solution of the GARCH process.

Then for t ≥ 0, we have

‖x0 − z0‖ = ‖A0A−1...A−t(x−t−1 − z−t−1)‖ (2.38)

≤ ‖A0A−1...A−t‖ ‖x−t−1 − z−t−1‖. (2.39)

‖A0A−1...A−t‖ converges to zero a.s., xt and zt are strictly stationary so is

x−t−1 − z−t−1. This means that x−t−1 − z−t−1 is independent of t. This leads

to x0 − z0 equals to zero in probability. By the same reasonning, one easilly

obtains xt = zt for t > 0 a.s. This shows that when the ηt are given, then the

GARCH process has a unique solution.

2.5 General GARCH(1,1)-models

We shall restrict ourselves in this work to a very simple but very useful formu-

lation of the conditional variance equation

σ2
t = ω + αε2

t−1 + βσ2
t−1. (2.40)

Equations (2.2) and (2.40) form the GARCH(1,1)-model which is the most

used tool in finance in the presence of conditional heteroskedaticity. α is the

ARCH parameter, β is the GARCH parameter and δ = α+β is the persistence

parameter. As explained in Campbell, Lo, and MacKinlay (1997) page 483,

the persistence parameter is important in constructing multi-period forecasts

of volatility. When the persistence is smaller than 1, the unconditional variance

of the GARCH process εt or equivalently the unconditional expectation of σ2
t

is

ω

1− (α + β)
. (2.41)
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In fact, recursive substitution in (2.40) and the law of iterated expectation at

time t, yield the following k-periods ahead conditional expected volatility1

E(σ2
t+k) = (α + β)k

(
σ2

t −
ω

1− (α + β)

)
+

ω

1− (α + β)
. (2.42)

So the multi-period volatility forecast reverts to its unconditional mean at rate

α + β. In the case α + β = 1, the conditional expected volatility k periods

ahead at time t, is

E(σ2
t+k) = σ2

t + kω . (2.43)

In this specific case, the GARCH(1,1)-model has a unit autoregressive root so

today’s volatility affects forecasts of the volatility into the indefinite future.

The ARMA(1,1) representation of (2.2) and (2.40) is given by

ε2
t = ω + (α + β)ε2

t−1 + ut − βut−1, (2.44)

where

ut = ε2
t − E

(
ε2
t |ε2

t−1, ε
2
t−2, ...

)
= ε2

t − σ2
t (2.45)

is white noise uncorrelated with past ε2s. In order to insure the positivity of

σ2
t we require ω > 0, α ≥ 0 and β ≥ 0. In the literature, these are called

”the Bollerslev non-negativity condition”. We also require weak stationarity

by imposing α + β < 1.

In general one differentiates between linear and non-linear GARCH models.

The GARCH(1,1)-model introduced is the simplest and standard formulation

in the GARCH family of models. Other linear GARCH models include the

Integrated GARCH (IGARCH), the Fractionally Integrated GARCH (to be

presented in details in chapter 7) and the GARCH in mean model.

1As mentioned previously, the expected volatility is conditional on the filtration Ft mod-
eling information set at time t.
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The IGARCH is the GARCH model where the parameters α and β sum up to

exactly 1. This fact implies a unit root in its ARMA(1,1)-formulation. (2.44)

becomes

ε2
t − ε2

t−1 = ω + ut − βut−1. (2.46)

In this case, the unconditional variance of εt is not finite and the IGARCH

is not covariance-stationary. Still, Nelson (1990) shows that it is strictly sta-

tionary. The autocorrelations of ε2
t in the case of the IGARCH model are not

defined properly but Ding and Granger (1996) show that one can approximate

autocorrelations at a given lag g by

ρg =
1

3
(1 + 2α)(1 + 2α2)−

g
2 . (2.47)

The GARCH in mean model introduced by Engle, Lilien, and Robins (1987)

was designed to capture the relationship between the return and the time

varying conditional variance. It considers the µ(b) in (2.1) as κσ2
t such that

the return is written as

xt = κσ2
t + εt. (2.48)

The conditional variance equation stays the same. Under this formulation, the

autocorrelation function of the GARCH(1,1)-M at a given lag g as derived in

Hong (1991) is

ρg = (α + β)ρg−1 (2.49)

= (α + β)g−1ρ1, (2.50)

where

ρ1 =
(α + β)(2α2κ2ω)

(2α2κ2ω) + (1− α− β)(1− β2 − 2αβ − 3α2)
. (2.51)

Bollerslev, Chou, and Kroner (1992) offer an overview of the applications of

GARCH in mean models to stock returns, interest rates and foreign exchange

rates.
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Among the rich class of nonlinear GARCH models, exponential GARCH, GJR-

GARCH, quadratic GARCH and Markov-switching GARCH are used in mod-

ern finance ( see Franses and Dijk (2000), Hentschel (1995) and Bollerslev,

Chou, and Kroner (1992) among others). The conditional variance in standard

GARCH models depends on the square of the shock, so positive and negative

shocks of the same magnitude will have the same effect. Volatile periods in

stock markets are initiated by large negative shocks. When the stock falls, the

debt-to-equity ratio( also called leverage) increases leading to an increase of

the volatility. Positive and negative shocks have different impact on the con-

ditional volatility of the following observations as recognized by Black (1976).

This property is called the leverage effect. These nonlinear GARCH models

have been designed to account for the effects of positive and negative shocks

or other types of asymmetries.

The exponential GARCH (EGARCH) model of Nelson (1991) was the first

variant of GARCH models to address the issues of asymmetries. In this model

the conditional variance is

ln(σ2
t ) = ω + αηt−1 + γ(| ηt−1 | −E(| ηt−1 |)) + β ln(σ2

t ). (2.52)

As seen, the EGARCH differs from the standard GARCH models in being for-

mulated in terms of the log of the conditional variance. Nonpositive variances

need not be prevented and this simplifies the estimation. As wanted, negative

shocks have a different impact than positive.

The GJR-GARCH of Glosten, Jagannathan, and Runkle (1993) is an alter-

native method that accounts for asymmetries. In this particular model, the

coefficients of ε2
t depends on the sign of the shock. The conditional variance is

written as

σ2
t = ω + αε2

t−1(1− I[εt−1 > 0]) + γε2
t−1I[εt−1 > 0] + βσ2

t−1 , (2.53)
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where I is the indicator function.

The condition for the nonnegativity of the conditional variance are

ω > 0, α + γ/2 ≥ 0 and β > 0. (2.54)

The condition for covariance stationarity is

α + γ/2 + β ≤ 1. (2.55)

GJR-GARCH and EGARCH can be considered as alternative models for asym-

metries in the same series. It is however difficult to develop a criteria to dis-

tinguish between them (see e.g Franses and Dijk (2000) page 151).

The quadratic GARCH (QGARCH) is another GARCH that takes are of the

asymmetries, see Sentana (1995). Its conditional variance is written as

σ2
t = ω + γεt−1 + αε2

t−1 + βσ2
t−1. (2.56)

The term γεt−1 enables positive and negative shocks to have different effects on

σ2
t . If γ < 0, the effect positive shocks will be smaller than the effect of negative

shocks of the same magnitude. Apart from the asymmetry, QGARCH and

GARCH are very similar. They have the same unconditional variance, and the

condition for covariance stationarity and existence of the unconditional fourth

moment are the same. The kurtosis as expected is different because QGARCH

is built up to account for it whereas standard GARCH does not.

In these nonlinear models so far, the parameter in the model change with

respect to the sign and the size of the lagged shock, which is observable. Instead

of letting the model parameter change according to the sign of these observable

shocks, we can assume that parameters change according to an unobservable

Markov process st. A general Markov Switching model has its conditional

variance equation written as

σ2
t =

[
ω + αε2

t−1 + βσ2
t−1

]
I[st = 1] +

[
ζ + γε2

t−1 + ισ2,t−1

]
I[st = 2] (2.57)
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where st is a two state Markov chain with given transition probabilities and I

is the indicator function. This form is considered in Klaassen (2002). Dueker

(1997), Cai (1989) and Hamilton and Susmel (1994) among others have applied

different forms of the Markov Switching GARCH.

Existence of higher order moments in the
GARCH(1,1)-model

This section studies the necessary and sufficient conditions for the existence

of higher order moments of the GARCH(1,1)-model. It gives as well a close

formula for its computation.

Theorem 3. (Bollerslev, 1986)

For the GARCH(1,1)-model as previously defined, a necessary and sufficient

condition for existence of the 2mth moment is

m∑
j=0

(
m

j

)
aj αj βm−j < 1, (2.58)

where

a0 = 1, aj = Πj
i=1(2j − 1), j = 1, ...,m (2.59)

The 2mth moment can be expressed by the recursive formula

E(ε2m
t ) = am

[ m−1∑
n=0

a−1
n E(ε2n

t )αm−n

(
m

m− n

) n∑
j=0

(
n

j

)
aj αj βn−j

]
(2.60)

×
[
1−

m∑
j=0

(
m

j

)
aj αj βm−j

]−1
. (2.61)

Proof: By normality,

E(ε2m
t ) = am E(σ2m

t ), (2.62)
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where am is defined as in the theorem. Using the binomial formula, we can

write

σ2m
t = (ω + αε2

t−1 + βσ2
t−1)

m (2.63)

=
m∑

n=0

(
m

n

)
ωm−n

n∑
j=0

(
n

j

)
α βn−j ε2j

t−1σ
2(n−j)
t−1 . (2.64)

Now we use the equality

E(ε2j
t−1σ

2(n−j)
t−1 |Ft−2) = ajσ

2n
t−1 (2.65)

to obtain

E(σ2m
t |Ft−2) =

m∑
n=0

σ2n
t−1

(
m

n

)
ωm−n

n∑
j=0

(
n

j

)
aj αj βn−j. (2.66)

Let’s define zt = (σ2m
t , σ

2(m−1)
t , ..., σ2

t ). Then by (2.66),

E(zt|Ft−2) = d + Czt−1, (2.67)

where C is an m×m matrix with diagonal elements

i∑
j=0

(
i

j

)
aj αj βi−j for i = 1, 2, ...,m. (2.68)

Replacing in (2.67) yields

E(zt|Ft−k−1) = (I + C + C2 + ... + Ck−1)d + Ckzt−k . (2.69)

We assume that the process has started far away in the past with finite 2m

moments, the limit as k goes to infinity exists and does not depend on t if and

only if all the eigenvalues of C lie inside the unit circle,

E(zt|Ft−k−1) = (I + C)−1d = E(zt). (2.70)

Because C is upper triangular, the eigenvalues are equal to the diagonal el-

ements as given in (2.68). Intense and straightforward calculations (see e.g
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Bollerslev (1986) page 325 and onward) show that
∑i

j=0

(
i
j

)
aj αj βi−j < 1

implies
∑i−1

j=0

(
i−1
j

)
aj αj βi−1−j < 1 for α+β ≤ 1 and

∑m
j=0

(
m
j

)
aj αj βm−j < 1

is enough for the 2mth moment to exist.

Finally we rearrange (2.62) and (2.66) to obtain

E(ε2m
t ) = am

[ m−1∑
n=0

a−1
n E(ε2n

t )αm−n

(
m− n

m

) n∑
j=0

(
n

j

)
aj αj βn−j

]
(2.71)

×
[
1−

m∑
j=0

(
m

j

)
aj αj βm−j

]−1
. (2.72)

According to this theorem, the fourth order moment exists if and only if

3α2 + 2αβ + β2 < 1. Furthermore,

E(ε2
t ) =

ω

1− (α + β)
, (2.73)

and

E(ε4
t ) =

3α2(1 + α + β)

(1− α− β)(1− 3α2 − 2αβ − β2)
. (2.74)

We easily calculate the coefficient of kurtosis as

κ =
E(ε4

t )− 3E(ε2
t )

2

E(ε2
t )

2
(2.75)

=
6α2

1− β2 − 2αβ − 3α2
(2.76)

and this quantity is greater than zero by assumption. So the GARCH(1,1)-

process is heavy tailed.
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2.6 Invariance of the estimated MLE

GARCH parameters to the choice of µ(b)

and ω

We consider the GARCH(1,1) - model:

rt = εt + µ(b) , (2.77)

εt = ηtσt , (2.78)

σ2
t = ω + αε2

t−1 + βσ2
t−1. (2.79)

In any estimation of GARCH(1,1)-models, the important parameters are the

ARCH and GARCH parameters. The following three results2 show that scaling

the data by a constant, changing µ(b) or altering ω do not change the estimated

ARCH parameter α̂ and estimated GARCH parameter β̂. We stress here that

this issue is totally different from the structural changes one where the change

of the parameters occur within the time serie, inducing an increase of the

estimated persistence (see chapter 6 and 7). In general, a change of any of the

above three parameters might produce a shift in the whole time series but not

in different blocks of the time series.

Result 1. Multiplying the GARCH data by a constant k will not change the

value of α̂ and β̂ but it will scale the value of µ(b) by k and the value of ω by k2
0.

Let’s define r′t = krt. Then from (2.77) and (2.79), it comes

r′t = k(εt + µ(b)) , (2.80)

ε′t = kηtσt , (2.81)

σ′2t = k2σ2
t (2.82)

= k2ω + αk2ε2
t−1 + βk2σ2

t−1 (2.83)

= ω′ + αε′2t−1 + βσ′2t−1. (2.84)

(2.85)

2We follow in this section Lumsdaine (1995).



2.6. INVARIANCE OF THE ESTIMATED MLE GARCH PARAMETERS
TO THE CHOICE OF µ(B) AND ω 27

The scaled model is of a form similar to (2.77) and (2.79) where µ′(b) = kµ(b)

and ω′ = k2ω and α and β remain unchanged. The maximum likelihood of

the scaled model will be constructed as previously. The estimated conditional

variances and the maximum likelihood estimates will be scaled in the same

manner as the true parameters. The value of the likelihood function will de-

crease by ln(k) but this is only a constant and does not affect the ranking of

the function. Therefore the estimated α and β will remain unchanged.

Result 2. If we change µ(b), this will not change the value of the values of α̂

and β̂.

Let µ(b) suffer a shift k. We called

µ′(b) = µ(b) + k. (2.86)

A new process r′t will be built as

r′t = µ′(b) + εt. (2.87)

This amount to a shift in the distribution of rt but not on its shape. The

estimated µ(b) will change by a shift of magnitude k,

µ′(b)− µ(b) = µ̂′(b)− µ̂(b). (2.88)

The quantities εt and σt do not change, so the estimated likelihood conditional

on the data being generated with this new parameter value will not change

either so this change does not alter the estimated ARCH and GARCH param-

eters.

Result 3. If we change the value of ω, this will not change the value of α̂

and β̂. It will result in different values for the estimated likelihood, µ̂(b) − µ,

and ω̂ − ω. In particular3, doubling ω will decrease the likelihood by ln 2
2

, will

multiply µ̂(b)− µ by
√

2 and will double ω̂ − ω.

3 A detailed proof of these results can be found in Lumsdaine (1995) page 9 and 10.
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2.7 Quasi maximum likelihood estimation of

GARCH(1,1)-models

We have assumed so far that the returns were conditionally normal and based

our maximum likelihood function on this important assumption. However, one

can never be sure that the specified distribution is the correct one and there

is more and more evidence in the literature that returns are not conditionally

normally distributed, see Rachev, C, and Fabozzi (2005), Embrechts, McNeil,

and Frey (2005) among others. The practical approach is to ignore this problem

and still base the likelihood on the normal distribution assumption. This is

usually referred to in the literature as quasi maximum likelihood4. Table 2.1

shows the quasi maximum likelihood computation and GARCH estimates for

the Deutsche bank returns considered in figure 2.2. The best parameter are

the one that maximizes the likelihood function for N given observations

N∏
t

[ 1√
2πσ2

t

exp
( r2

t

2σ2
t

)]
. (2.89)

In general GARCH models (see e.g. Franses and Dijk (2000)), this still yields

consistent and asymptotically normal estimates, provided that the models for

the conditional mean and the conditional variance are correctly specified. In

the specific case of the GARCH(1,1)-model, Lumsdaine (1996) and Lee and

Hansen (1991) proved the consistency and asymptotic normality of the quasi

maximum likelihood estimator. The results of Lumsdaine (1996) hold not only

for the ARCH parameter α and the GARCH parameter β, but also for the other

parameters µ and ω. Another finding in that research article is that in contrast

to the case of the unit root in the conditional mean, the presence of unit root in

conditional variance does not affect the limiting distribution of the estimators

when the returns are normally distributed. Even more interesting, consistency

4To be more precise, this is Gaussian quasi maximum likelihood as opposed to non
Gaussian QMLE such as the student t or chi square distribution of the returns.
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Day t rt σ2
t −2ln(σt)− r2

t /σ
2
t

1

2 -0.007869 0.0000619 —–

3 0.003661 0.00000638 9.44866

4 0.001124 0.00000620 9.66783
...

...
...

...

2761 -0.005750 0.0001100 8.814167

2762 0.004771 0.0001061 8.936126

2763 -0.004349 0.0001018 9.006677

19396.302

Table 2.1: QMLE of the GARCH(1,1) model with data from figure 2.2. Final
estimates ω = 0.0000019, α = 0.074 and β = 0.923 for a persistence of δ = 0.997
(2767 observations).

and asymptotic normality of the quasi maximum likelihood estimates do not

require that the parameters of the GARCH(1,1)-model satisfy the covariance

stationarity condition α + β < 1.

2.8 Conclusion

In this chapter, we have introduced GARCH models in general, and have given

following Bougerol and Picard (1992), necessary and sufficient conditions for

the existence of a strictly stationary solution. Bollerslev (1986) discusses the

existence of weakly stationary solutions. Nelson (1990) solved the problem of

the existence of strictly stationary solution for the GARCH(1,1)-model and

indicated that the theory of products of random matrices should be the ap-

propriate technique to handle the general case. Bougerol and Picard (1992)

followed his advice to solve the problem for general GARCH models. They

characterized the existence of the solution by the strict negativity of the Lya-

pounov exponent associated to the GARCH corresponding random matrices.
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In the following, we consider the simple but still very useful linear GARCH(1,1)-

model. We will assume at least weak stationarity and ergodicity. The results

obtained in the case of the GARCH(1,1)-model are fairly easily generalized to

linear GARCH(p,q)-models and provide insights for nonlinear models.



Chapter 3

Minimum Distance Estimation
of GARCH(1,1)-models

3.1 Introduction

The Minimum Distance Estimation (MDE) of a GARCH(1,1)-model to be in-

troduced in this section minimizes the Mahalanobis generalized distance of a

vector of empirical autocorrelations from the corresponding population auto-

correlations. The attraction of this estimator compared to maximum likelihood

estimator is that it does not require any strong distributional assumption on

the disturbances of the process. The MDE as such is very similar to the gener-

alized method of moment (GMM) estimation in the sense that, as we will see

in the next pages, it is obtained by the minimization of a quadratic criterion

function.

31
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GARCH(1,1)-MODELS

3.2 The autocorrelation function of the

GARCH(1,1) squared process

We consider a covariance-stationary GARCH(1,1)-model.The long run or un-

conditional variance of εt as said previously is

σ2 =
ω

1− α− β
. (3.1)

We therefore can rewrite the conditional variance equation as

σ2
t = σ2(1− α− β) + αε2

t−1 − βσ2
t−1. (3.2)

We rearrange the above equation to obtain

ε2
t − σ2 = (α + β)(ε2

t − σ2)− βσ2
t−1(η

2
t−1 − 1) + σ2

t (η
2
t − 1). (3.3)

By multiplying both sides of (3.3) by (ε2
t−1 − σ2) and taking the expectations,

we obtain

E(ε2
t − σ2)(ε2

t−1 − σ2) = (α + β)E(ε2
t − σ2)2 − 2βEσ4

t−1. (3.4)

We easily identify

γ1 = E(ε2
t − σ2)(ε2

t−1 − σ2) (3.5)

as the covariance between ε2
t and ε2

t−1 and

γ0 = E(ε2
t−1 − σ2)2 (3.6)

as the variance of ε2
t−1. We further ensure that the fourth moment of the εt

exists by imposing that1

3α2 + 2αβ + β2 < 1. (3.7)

Then we can divide both sides of (3.4) by γ0 and obtain2

ρ1 =
γ1

γ0

= α + β − 2β
Eσ4

t−1

γ0

. (3.8)

1This is a result already seen in Chap 2 as an application of Theorem 3.
2γ0 is finite.
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By definition we have

γ0 = E(ε2
t − σ2)2 = 3Eσ4

t − σ4, (3.9)

which yields

Eσ4
t =

γ0 + σ4

3
. (3.10)

Substituting (3.10) into (3.8) gives

ρ1 = α + β − 2β
γ0 + σ4

3
= α +

1

3
β − 2

3
β

σ4

γ0

. (3.11)

From the conditional variance equation we derive

Eσ4
t−1 =

σ4(1− α− β)(1 + α + β)

1− (3α2 + 2αβ + β2)
, (3.12)

and substituting this into (3.9), we have

γ0 = 3Eσ4
t − σ4 = σ4 2(1− 2αβ − β2)

1− (3α2 + 2αβ + β2)
, (3.13)

so that

σ4

γ0

=
1− (3α2 + 2αβ + β2)

2(1− 2αβ − β2)
. (3.14)

Substituting this into (3.11) and simplifying further gives

ρ1 = α +
α2β

1− 2αβ − β2
. (3.15)

Bollerslev (1988) discusses the correlation structure for the GARCH-model and

concludes that the autocorrelations functions for ε2
t for GARCH(p,q) is given

by

ρg = Σm
i=1φiρg−i g ≥ q + 1, (3.16)

where m = max(p, q) and φi = αi + βi for i = 1, 2, ...,m αi = 0 for i > p, and

βi = 0 for i > q.

For p = q = 1,

ρg = φ1ρg−1 = (α + β)ρg−1 for g ≥ 2. (3.17)
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Combining (3.15) and (3.17) gives the autocorrelation3 functions of the GARCH(1,1)

squared process as

ρg = (α +
α2β

1− 2αβ − β2
)(α + β)g−1 for g ≥ 2. (3.18)

The conditional normality and the covariance stationarity assumptions can be

relaxed, still similar results can be derived. These specific issues are detailed

in Ding and Granger (1996).

3.3 Minimum Distance Estimation of

GARCH(1,1)-models

We consider the GARCH(1,1) - model defined as in (2.77) and (2.79). It is

well known that the empirical autocorrelations of this GARCH(1,1)-process

are very small. Empirical autocorrelations of the squared process are however

significantly different from zero, even for large lags, see Mikosch and Starica

(2000) and Ding and Granger (1996). Figure 3.1 plots the first 50 autocorrela-

tions of the Deutsche Bank returns data already presented in figure 2.2. The

generalized Mahalanobis distance between the empirical autocorrelations and

the theoretical autocorrelations of the squared process has its minimum at a

vector whose coordinates are the estimated ARCH and GARCH parameters of

the GARCH(1,1)-process.

Specifically, this estimator is based on the ARMA(1,1) - representation of ε2
t as

given by (2.44) and (2.45). The basic idea is to exploit the fact that, because of

(2.44), the theoretical autocorrelations of ε2
t as derived in the previous section

(see (3.15) and (3.17)) are known functions of α and β.

The empirical ρg are then estimated by

3 We shall write ρg = ρg(α, β) to highlight the fact that the theoretical autocorrelation
depends solely on α and β at a given lag g.
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Figure 3.1: Autocorrelations of Deutsche Bank stock returns and squared
returns
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ρ̂g =

∑n−g
t=1 (ε̃2

t − ¯̃ε2)(ε̃2
t+g − ¯̃ε2)∑n

t=1(ε̃
2
t − ¯̃ε2)2

, (3.19)

where ε̃t := rt − r̄, and the Minimum Distance Estimators α̂ and β̂ for α and

β are obtained as

arg min
α,β

[ρ̂− ρ(α, β)]′W[ρ̂− ρ(α, β)], (3.20)

where the g × g matrix W is some suitable positive definite weighting ma-

trix, ρ̂ = (ρ̂1, . . . , ρ̂g)
′ and where ρ(α, β) = (ρ1(α, β), . . . , ρg(α, β))′ is a vector

defined in (3.17) and (3.18) for α > 0, β ≥ 0 and α + β ≤ 1.

3.4 Consistent estimation of W

Standard covariance matrix estimations are concerned with processes whose

innovations are i.i.d.. This is clearly not the case in (2.44). Baillie and Chung

(2001), Domowitz and White (1982) and White (1984) discuss consistent es-

timation of the covariance matrices when the i.i.d. assumption does not hold.

They consistently estimate a covariance matrix using the Newey and West

(1987) procedure and obtain feasible Minimum Distance Estimators. The fol-

lowing discussion follow Baillie and Chung (2001).

First, we construct the sample autocovariance and autocorrelation of the squared

process as:

γ̃k = T−1

T∑
t=k+1

(ε2
t − ε̄2)(ε2

t−k − ε̄2) (3.21)

and

ρ̃k =
γ̃k

γ̃0

. (3.22)
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Next, we construct the robust covariance matrix estimator following Domowitz

and White (1982) and White (1984):

√
T (ρ̃g − ρg) = T

−1
2

( 1

γ̃0

) T∑
t=g+1

Zt,

where Zt is a g × 1 vector defined by

Zt =


(ε2

t − ε̄2)(ε2
t−1 − ε̄2)− ρ1(α, β)(ε2

t − ε̄2)2

(ε2
t − ε̄2)(ε2

t−2 − ε̄2)− ρ2(α, β)(ε2
t − ε̄2)2

...

(ε2
t − ε̄2)(ε2

t−g − ε̄2)− ρg(α, β)(ε2
t − ε̄2)2

 .

By defining

Γj = E(ZtZ
′
t−j) (3.23)

and

Vz =
∞∑

j=−∞

Γj, (3.24)

it is shown in White (1984) that

1√
T

T∑
t=1

Zt −→ N(0,Vz). (3.25)

Furthermore

√
T (ρ̃g − ρg) =

1√
T

( 1

γ̃0

) T∑
t=g+1

Zt and γ̃0 −→ γ0, (3.26)

allows to conclude that

√
T (ρ̃g − ρg) −→ N(0,Vz/γ

2
0). (3.27)

Newey and West (1987) provide a consistent way to estimate Vz, namely

V̂z = Γ̂0 −
q∑

j=1

(
1− j

1 + q

)(
Γ̂j − Γ̂′j

)
(3.28)
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where Γ̂j is a covariance matrix estimator at lag j, and

Γ̂j =
1

T

T∑
t=j+1

Z∗tZ
∗′
t−j (3.29)

with

Z∗t =


(ε2

t − ε̄2)(ε2
t−1 − ε̄2)− ρ1(α̂, β̂)(ε2

t − ε̄2)2

(ε2
t − ε̄2)(ε2

t−2 − ε̄2)− ρ2(α̂, β̂)(ε2
t − ε̄2)2

...

(ε2
t − ε̄2)(ε2

t−g − ε̄2)− ρg(α̂, β̂)(ε2
t − ε̄2)2

 .

This Newey West technique gives an optimal weighting matrix WNW consis-

tently estimated by

ŴNW = (
1

γ̂0

)2V̂z, (3.30)

where

γ̂0 = T−1

T∑
t=1

(ε2
t − ε̄2)2. (3.31)

γ̂0 consistently estimates γ0 and V̂z consistently estimates Vz.

The (feasible) Minimum Distance Estimators α̂ and β̂ for α and β in the case

of non i.i.d. disturbances are obtained as

arg min
α,β

[ρ̂− ρ(α, β)]′Ŵ−1
NW[ρ̂− ρ(α, β)]. (3.32)

The efficiency of this estimator relative to the Maximum Likelihood estima-

tor is evaluated in detail by Baillie and Chung (2001). They found that this

estimator can be surprisingly efficient for quite a small number of autocor-

relations. It is even more efficient than the quasi maximum likelihood for

some regions of the parameter space and for some specific conditional den-

sities. Using Monte Carlo similations, Baillie and Chung (2001) found that
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for (α, β) ∈ {(0.1, 0.55); (0.15, 0.55)} for example, and the conditional density

being chi-squared with two degrees of freedom, MDE was better than QMLE

both in terms of parameter estimation bias and root mean squared error.

In their empirical example comparing QMLE to MDE, they study 3138 obser-

vations of the hourly exchanges rate returns Deutsche Mark versus US dollar.

They found that the two estimates had the similar diagnostic properties but ex-

hibit remarkable differences in the value of the autocorrelations of the squares

of the fitted returns. It is known see e.g Jacquier, Polson, and Rossi (1994)

that MLE estimation of GARCH models are unable to properly replicate styl-

ized facts such as the autocorrelation function of the squared returns. The

minimum distance estimator (MDE) of Baillie and Chung (2001) thanks to its

criterion function, accurately reproduces the nature of the sample autocorre-

lations of the squared observations where the MLE produces autocorrelations

that are much higher than the corresponding sample equivalents.

3.5 Invariance of the estimated MDE

GARCH parameters to the choice of µ(b)

and ω

As done in the case of Maximum Likelihood Estimation, we justify in this

section the invariance of the estimated ARCH and GARCH parameters of the

GARCH(1,1)-model to the choice of µ(b), ω and to the scaling of the whole

time series. As easily seen in equations (3.18) the theoretical autocorrelations

depend solely on α and β, so any change in any of the other parameters or even a

scaling of the time series will have no effect on the theoretical autocorrelations.

The empirical autocorrelations as defined in (3.19) depend on the residuals

ε̃ = rt − E(rt) = rt − r̄. So if r′t = rt + k, then

ε̃′ = r′t − E(r′t) = r′t − r̄′ = rt + k − E(rt)− k = ε̃.
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This shows that the empirical autocorrelations are not affected by a shift of

the whole time series. The residuals in this case remain unchanged. A change

in ω has no effect on the residuals and therefore no effect in the empirical

autocorrelations. This result is different from what will be claimed in chapter

6 and 7 where a structural in the parameters at some point in time within

the time series changes the empirical autocorrelations. Here, we stress that

changes in µ and ω happen for the whole time series. We see that none of this

changes affect the empirical autocorrelations.

We consider now the case where we scale the time series by a constant k. We

have a new time series say r′t = krt. Then ε̃′t = krt − kE(rt) = kε̃t. The

autocorrelations do not change because the scaling factor of k2 appear in both

the numerator and the denominator in (3.19). Again, here we consider the

whole time series. We shall see in chapter 6 that scaling some part of the time

series changes the empirical autocorrelations.

The remaining possible problem could be the effect of this scaling on the weight-

ing matrix. Going through the derivation of the consistent estimation of the

covariance matrix, one easily sees that V̂z will be multiplied by k4. This comes

from the product ZtZ
′
t where Zt and Z′t each is is multiplied by k2. But

the weighting matrix ŴNW = ( 1
γ̂0

)2V̂z contains the term γ̂0 which as well

is scaled by k4. So k4 appear in both the numerator and the denominator.

The weighting matrix remain unchanged under the scaling of the time series.

Even if weighting matrix would be scaled my a non zero constant factor, this

might change the value of the criterion function at the extremum but not the

extremum itself.

So as the case of maximum likelihood estimators, changes in parameters µ and

ω or a scaling of the whole GARCH time series do not affect the minimum

distance estimators α and β.
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3.6 Conclusion

In this chapter, we have introduced the minimum distance estimation of a

GARCH(1,1)-model and discussed the consistent estimation of the weighting

matrix given when the disturbances are not i.i.d.. This allows us to obtain

feasible MDE parameters. We have shown that the theoretical autocorrelations

by definition are insensitive to changes of parameters others than α and β. For

the empirical autocorrelations, we have found that they remained unchanged

under changes of µ, ω and the scaling of the whole time series. The weighting

matrix being as well unchanged under these changes, we reached the conclusion

that the MDE are invariant under these operations.

As found in Baillie and Chung (2001), MDE favorably competes with QMLE in

some regions of the parameter space and for some conditional densities. In the

following chapter we will show that the estimated persistence in GARCH(1,1)-

model is severely biased in small sample. An alternative will be the MDE just

introduced.





Chapter 4

Small Sample Bias in the
Estimated Persistence of
GARCH(1,1)-Models

4.1 Introduction

The Tsunami of December 26 in 2004, September 11, the German Reunification

of October 3rd 1990 and natural catastrophes are among many other economic

shocks that shake financial markets. Particularly, returns data (stocks, interest

rates, foreign exchange rates) indicate that investments at certain periods are

riskier than others. As is well known, these risky times do not occur randomly

across time. There is degree of autocorrelation in the riskiness of financial

returns.

A question of interest is naturally the accuracy of the prediction of the GARCH

model. We are interested in the variance of the error term and what can make

it fluctuate. Fitting financial daily data into a GARCH(1,1)-model reveals

a sum of the ARCH and GARCH parameter close to one (see chapter 6).

43
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Bollerslev and Engle (1986) have introduced the IGARCH to highlight this

fact. Fractionally integrated financial data also exhibits high persistence. This

property is becoming a stylized fact in empirical finance (see Granger (2005)).

The finite sample evidence on the performances of the GARCH maximum like-

lihood estimator is still very limited. Lumsdaine (1995) and Bollerslev and

Wooldridge (1992) belong to the very few that investigate these performances

and their findings are reported in Bollerslev, Engle, and Nelson (1994) where

one reads ” For the GARCH(1,1) with conditional normal errors, the available

Monte Carlo evidence suggests that the estimates for α̂ + β̂ is downward bi-

ased and skewed to the right in small samples. The bias in α̂+ β̂ comes from a

downward bias in β̂ while α̂ is upward biased”. In particular, Lumsdaine (1995)

in the study of the finite sample properties of the maximum likelihood estima-

tor in the GARCH(1,1)-model finds that this estimator has a normal limiting

distribution and a constant covariance matrix. Furthermore, the asymptotic

distribution is, for the most part, well approximated by the estimated t statis-

tics. Other statistics such as the Lagrange Multiplier test, Likelihood ratio and

Wald test however, do not behave as well in small samples. The ARCH and

GARCH estimators are skewed in small samples. The study reports a ”pileup”

effect at the boundary of parameter true value, an effect which decreases as the

sample size increases. The tails of the small sample distribution are heavier

than those of the normal distribution. The skewness of the estimated per-

sistence in finite sample is more pronounced in the ARCH parameter. This

is caused in part by the estimation design where the parameter α and β are

constrained to be in the open unit interval. This restriction is the so called

Bollerslev non-negativity condition. Recent research, see (e.g Soosung and

Pereira (2006)) addresses the issue of relaxing the Bollerslev non-negativity

condition and we will be discussing this as well in the next paragraph. This

restriction does create a truncation in the estimation causing the finite sam-
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ple distribution to resemble a truncated distribution. This effect disappear

when the sample size is large enough to allow the estimated distribution to

lie entirely within the unit interval. The finite sample distribution differs the

most from its limiting distribution when the true value of α and β are close

to the boundary of the unit interval. So a question of interest as well is to

determine how large a sample size must be before the asymptotic distribution

of the maximum likelihood estimator is well approximated by the finite sample

distribution.

Recent evidence is found in Soosung and Pereira (2006) where the Bollerslev

non-negativity condition is relaxed. They find that the estimated persistence is

still biased but the size of the bias is smaller than the size of the bias in Lums-

daine (1995). In fact as already mentioned by Lumsdaine (1995) and further

documented in Nelson and Cao (1992), they find as well that the Bollerslev non-

negativity condition are a serious restriction in small samples in GARCH(1,1)-

model. In small samples, this restriction causes a huge number of convergence

problems. When they impose the following weaker non-negativity condition

ω > 0 and σ2
t > 0 (4.1)

instead of the Bollerslev non-negativity condition

ω > 0, α ≥ 0, and β ≥ 0, (4.2)

the number of convergence errors decreases significantly. Comparing their pa-

rameter estimate results with Lumsdaine (1995), they find that the ARCH es-

timates α̂ are negatively biased in their case while positively biased in the case

of Bollerslev non-negativity condition as studied in Lumsdaine (1995). Their

estimated GARCH parameter β̂ is severely negatively biased and with small

α, some β̂’s are even negative. When the Bollerslev non-negativity conditions

are imposed, the negative bias of β̂ becomes smaller but the convergence error

increases significantly. The bias decreases gradually as the sample increases.
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They analyze as well the interdependence of α and β and find for example that

β̂ is affected by the size of α, becoming in fact less biased for large α. They

conclude their study by recommending the use of their weak non-negativity

conditions rather than the Bollerslev one at least as a pre check because, al-

though they do not guarantee positive volatility, they do reduce convergence

errors significantly.

Next we extend their investigation to the case where the estimated parame-

ters of the GARCH(1,1)-model are obtained by minimum distance estimation.

Our point is to show that with the errors being normally distributed, for some

regions of the parameter space, the minimum distance estimator performs bet-

ter than the exact maximum likelihood in small samples. Asymptotically, the

exact maximum likelihood will of course perform better and we highlight this

as well by including sample size of 1000 and 2000 and in some case 3000 and

4000 to show that ultimately, as the sample size grows, minimum distance es-

timators are outperformed. Our investigation relies on a Monte Carlo study

under different parameters. Our conclusion describes as well the source of the

bias in different cases.

4.2 Small Sample Bias of the Estimated

Persistence

In this section, we compare the performances of the minimum distance esti-

mators with the (exact)maximum likelihood estimators by means of a Monte

Carlo study. Table 4.1 shows the parameters combinations investigated. The

symbol X in the table points cases where the MDE outperforms the MLE. This

analysis is particular because the general consensus is that no other estimator

competes with exact maximum likelihood. This is certainly true asymptotically
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and we can observe it as the sample sizes grows. However, in small samples,

we find regions of the parameters space where the distribution free method of

minimum distance estimation of GARCH(1,1)-models competes and even out-

performs the exact maximum likelihood especially in terms of the parameter

bias and in some cases in terms of the mean squared error. We focus on sample

size up to five hundred, this case only represents already about 2 years of daily

data, 10 years of weekly data and about 40 years of monthly data. The last

two are time spans usually called for in macro-econometric analysis. Our con-

clusion is based on samples of this size and we additionally report the result

for the sizes 1000, 2000, and in some case 3000 and 4000 to strengthen the

common wisdom that exact maximum likelihood is asymptotically unbeatable.

In this particular minimum distance estimation, we used the first 10 lags and

the weighting matrix calculated using Newey and West (1987). Other num-

ber of lags and other weighting matrices provide roughly the same results and

yield the same conclusions. In the alternative of maximum likelihood, proce-

dures programmed in Gauss Fanpac module are called in estimating the exact

maximum likelihood GARCH model.

We found and reported 15 cases where the distribution free method outper-

forms the exact maximum likelihood in terms of the parameter estimation bias.

Comparative tables of the MDE and MLE estimated parameters are in the ap-

pendix. We designed the experiment in such a way that we can as well address

the issue of small sample bias in terms of explaining the particular behavior

of the estimated ARCH and GARCH parameters as done in Bollerslev, Engle,

and Nelson (1994) and Lumsdaine (1995). Their results are obtained using

maximum likelihood methods. Here, we address the same using the minimum

distance estimation. To achieve that, we generate GARCH data of sample size

500. We estimated subsamples of sizes 100, 200, 300, 400 and the entire simu-

lated data which has a sample size of 500. For each subsample, the ARCH and
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β 0.60 0.70 0.73 0.75 0.77 0.80 0.82 0.83 0.90

α

0.05 X

0.055 X X

0.070 X X

0.075 X

0.080 X X

0.09 X X

0.10 X X X X

0.16 X

Table 4.1: Parameters region investigated

GARCH parameter are estimated both in MDE and MLE. Reported results are

averages of 10000 replications. The study of Lumsdaine (1995) studies sample

sizes of 500 and 200 (results not reported) with 500 replications. The research

of Soosung and Pereira (2006) considers sample sizes of 100, 250, 500 and 1000

in which 1000 replications are used.

The different sample sizes considered are representative of the sizes of monthly

and quarterly data sets commonly used empirically. We are not concerned

with large samples here because the asymptotic properties are are less ques-

tionable and Monte Carlo evidence of Baillie and Chung (2001) and Storti

(2006) address this larger sample issues . They both find that exact maximum

likelihood is the best estimation method asymptotically. In our investigation

here, we cover a wider region of the parameter space, and we run simulations

based on 10000 replications. The ω = 0.1 and µ(b) = 0 as opposed to Lums-

daine (1995) who used ω = µ(b) = 1. We justified earlier that the choice of the

parameter other than α and β does not changes the values of the estimated
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parameters α̂ and β̂.

Figures 4.1 and 4.2 present two cases where MDE outperforms MLE in small

samples. Entries in these figures are averages of 10000 runs. In figure 4.1,

one sees that the estimated MLE persistence increases rapidly and table 10.4

shows that by the sample size of 1000, it has already crossed the estimated MDE

persistence. In the second figure (figure 4.2) the estimated MLE persistence

increases at a slower rate and as it can be read in table 10.6, it crosses the

estimated MDE persistence by the sample size of 3000. The point here is that

although MLE is better asymptotically, the rate at which is catches and crosses

the estimated MDE persistence depends on the region of the parameter space.

The estimated α and β for both exact maximum likelihood and minimum dis-

tance estimation are reported next to each others to ease direct comparison in

the appendix (see tables 10.4, 10.5, 10.6, 10.7 and 10.8). For all the parameter

settings presented, the minimum distance estimator outperformed the exact

maximum likelihood in terms of the parameter bias. In all the other cases,

with a few exceptions in the sample sizes of 100 of 200 or sometimes 300, exact

maximum likelihood was better than the minimum distance estimation.

We first look at the estimates of the maximum likelihood method. There

is downward bias of the estimated persistence as documented by Bollerslev,

Engle, and Nelson (1994). This downward bias is explained by an overestimated

ARCH parameter and and underestimated GARCH parameter. The estimated

ARCH parameter decreases as the sample size increases, but stays above the

true parameter in our estimations, in all the parameters settings and for all

the different sub sample sizes. The estimated GARCH parameter increases as

the sample size increases but stays under the true parameter. Its increase rate

is however strong enough to push the sum α̂ + β̂ to increase as the sample size

increases. The estimation gets very accurate as the sample size increases since

the mean squared errors decrease sharply at the same time.
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Figure 4.1: True parameter (α, β) = (0.10, 0.75) for δ = α + β = 0.85
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Next, we consider the estimates of minimum distance estimation method. As

opposed to the maximum likelihood estimation case where the estimated per-

sistence δ̂ = α̂ + β̂ increases as the sample increases, the δ̂MDE seems not to

have a clear variational path. However, in most of the cases where α > 0.10,

the estimated persistence increases as the sample size increases. We observe

as well a downward bias. The estimated ARCH parameter α̂ and the GARCH

parameter β̂ do not have a clear and determined behavioral path as in the

exact maximum likelihood case. The minimum distance method is very good

in estimating very small sample size. Already with sample size of about 100

one gets an estimated persistence already close to the true persistence. Again

the estimation gets very accurate as the sample size increase and this as well

is noticeable in the mean squared error which then becomes very small.

Looking at α̂MDE, α̂MLE, β̂MDE, β̂MLE, δ̂MDE and δ̂MLE all together, we can

observe that, while having δ̂MDE = α̂MDE + β̂MDE > δ̂MLE = α̂MLE + β̂MLE

in all the 15 cases, α̂MDE < α̂MLE and β̂MDE > β̂MLE. As sample sizes

grows as seen for example in the sample sizes of 1000 and above, while α̂MDE

stays smaller than α̂MLE, β̂MLE becomes so greater than β̂MDE that δ̂MLE gets

superior to δ̂MDE.
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Figure 4.2: True parameter (α, β) = (0.055, 0.80) for δ = α + β = 0.855
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4.3 Conclusion

In this chapter, we have addressed the issue of small sample bias of the es-

timated persistence of the GARCH(1,1)-model. In an attempt to describe,

compare and identify the driving forces behind the behavior of the estimated

persistence in both estimation methods, we simulated GARCH data in in-

creasing sample sizes in 40 different parameters settings. We found 15 cases

where the Minimum distance Estimator outperforms the Maximum Likelihood

Estimator. Specifically on these cases, we could further say that:

• The estimated persistence increases as the sample size increases in both

methods of estimation.

• The estimated persistence in the Maximum Likelihood case is downward

biased and this bias is explained by and upward biased in α̂MLE and a

downward biased in β̂MLE. This confirms results in Bollerslev, Engle,

and Nelson (1994). In the case of minimum distance estimators, the

downward bias in the estimated persistence is explained by the downward

bias of α̂MDE and the downward bias in β̂MDE.

• For some regions of the parameter space, Minimum Distance Estimators

perform better than Maximum Likelihood in small samples, in term of

bias of the estimated persistence. This fact in small sample is explained

by the difficulties of the model to properly estimate the β’s. As the

sample sizes grow however, the while α̂MDE < α̂MLE, we realize that

β̂MDE gets smaller than β̂MLE in such a way that δ̂MLE > δ̂MDE.

• The estimation becomes more accurate when the sample sizes grows as

the mean squared error decreases.

We have found cases where Minimum Distance Estimators are better

than Maximum Likelihood Estimators. We are not saying that Minimum
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Distance Estimators are better than Maximum Likelihood Estimators in

small samples, rather that Maximum Likelihood is not always the best

estimator when sample sizes are smaller than say 500. Our recommen-

dation is to run pre check Monte Carlo simulations to compare the two

estimation methods before choosing any of them.

The investigations in the case of minimum distance estimation in this

chapter have been done using the first 10 lags. Nothing prevents us from

using 5 or 15 or even 70 lags. The issue of optimal lag choice the minimum

distance estimation framework is an important one (see e.g Storti (2006)).

If the number of lags is too large, we face time constraints in computing

the parameters estimates necessary for risk measures such as the hourly

or daily value at risk. In the following chapter, we will be addressing this

issue.



Chapter 5

Lag Choice in Minimum
Distance Estimation of
GARCH(1,1)-Models

5.1 Introduction

Empirically, Baillie and Chung (2001) have applied the MDE to hourly ex-

change rates using the first 10 lags. Storti (2006) uses the first 20 lags to

estimate hourly returns on the FTSE100 futures. Storti (2006) acknowledges

that ” the development of a formal identification procedure for the value of g

is of course an important point worth to be investigated in future work”. Our

purpose in this chapter is to do just that. Our primary optimality criterion is

the mean squared error. It is a better optimality criteria than the bias alone

because it considers not only the bias (more precisely the squared bias), but

the variance of the estimated parameter as well.

55
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In chapter 3, we have introduced both the GARCH(1,1)-model and the min-

imum distance estimator of its parameters. In the next section, we directly

present the results of our investigations.

5.2 Finite Sample Results on the Optimal

Lag

This section presents the results based on 1000 replications of the Monte Carlo

analysis. We deal successively with the following sample sizes: 250, 500, 1000,

2000, 4000 and 8000. We consider the two following cases :

α = 0.15, β = 0.70 and α = 0.20, β = 0.50.

The ω is the same in the two settings ω = 0.001. These two parameters settings

are chosen because of their frequent use in this type of analysis, see Baillie and

Chung (2001) and Storti (2006).

Figures 5.1 and 5.2 plot the mean squared error as a function of lags for the

sample sizes of 1000 and 4000. The figures for the remaining sample sizes are

found in the appendix. Entries in the figures are based on means of 1000 runs.

Figures 5.3 and 5.4 plot the mean squared error as a function of lags in this

second parameter setting for the sample sizes of 250 and 500 respectively.

We could not find a direct functional relationship between the optimal lag for

the estimated α, β and δ and the sample size. In itself, this is not a bad result

as any type of relationship between the optimal number of lags and the sample

size might not keep the number of lags bounded. In particular, a functional

relationship of the type of g =
√

T will still require 100 lags for a sample

size 10000, which will be computationally demanding even for a high speed

computer.

As a general finding in this investigation, the mean squared error decreases

sharply in the first lags for all the three estimated parameters. This finding
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is consistent with all the six samples size used in our analysis. In general,

the optimal lags for the parameter estimation of α, β and δ are different from

one another. For the ease of the discussion and because the whole GARCH

literature is centered about the persistence parameter, we will limit ourselves

to optimal lag choice in the case of the estimated persistence.

The main finding is that the mean squared error decreases sharply within the

first lags (see figures 5.1 to 5.4 hereafter). The decreasing rate as seen in

the figure is very high in the very first lags, especially from lag 2 to lag 10.

Afterwards, it decreases, but at a much slower rate and after lag 30 and in

some case 40, the changes are only marginal. The interesting fact here is that

this behavior is independent of the sample size. The optimal number of lag

is often found to be beyond 50. A mistake of at most 2 percent will be made

when choosing a smaller lag instead of these optimal lags across the different

sample sizes considered.

A similar investigation under the same parameter settings has been done using

the bias as optimality condition. Figures 5.5 till 5.8 show the corresponding

graphs. In both graphs, one sees that a mistake of about 3% is made by

choosing a small lag instead of the optimal lag with is a large number. The

remaining graphs are in the appendix. A similar argument looking at those

remaining graphs justifies the choice of a small number of lags.
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Figure 5.1: MSE of δ̂ as a function on number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 1000

Figure 5.2: MSE of δ̂ as a function on number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 4000
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Figure 5.3: MSE of δ̂ as a function of number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 250

Figure 5.4: MSE of δ̂ as a function of number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 500
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5.3 Conclusion

The estimation of the parameters of a GARCH(1,1) model using a minimum

distance estimator applied to the empirical autocorrelations of the squared

process is a viable method. We have properly addressed the issue of optimal

lag choice through intensive Monte Carlo investigations under different settings.

We have found that:

• There is no functional relationship between the optimal lag and the sam-

ple size.

• The optimal lag for the estimated persistence occured in general beyond

lag 50. These high lags would be time consuming and computationally

demanding if they were to be used.

• Similar results holds for the estimated α and β.

• Our main finding is that the mean squared error decreases sharply within

the first lags. This is robust with all the sample sizes simulated and the

two estimated parameters.

• By allowing a mistake of less than 2% one can choose a small number

of lags in estimating persistence, speeding up therefore the estimation

procedure. This holds as well for the two estimated parameters α and β

taken separately.

• A similar investigation has been done using the bias as optimality con-

dition. The results were mixed and a clear path was not found. But

interestingly, the fluctuations of the graphs in early lags justify the pos-

sible use of a small number of lags. The mistake made is around 3%.



5.3. CONCLUSION 61

Figure 5.5: Bias of δ̂ as a function of number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 2000

Figure 5.6: Bias of δ̂ as a function of number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 4000
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Figure 5.7: Bias of δ̂ as a function of number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 500

Figure 5.8: Bias of δ̂ as a function of number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 1000



Chapter 6

Structural Change and
Estimated Persistence

6.1 Introduction

This chapter is based on Krämer and Tameze (2007)

The GARCH(1,1) - model as already defined in (2.77) and (2.79) is

rt = εt + µ , (6.1)

εt = ηtσt , (6.2)

σ2
t = ω + αε2

t−1 + βσ2
t−1, (6.3)

where ηt ∼ iid(0, 1) and rt - the variable to be ”explained” - is typically the rate

of change of some economic quantity. This model is still the main workhorse in

all areas of applied economics whenever conditional heteroskedasticity is seen

to be a problem. Almost from the moment it was born, it was however plagued

by the observation that in many applications, the estimate of the ”persistence

63
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parameter” δ := α+β , no matter in which way obtained, was viewed as much

too large (in the sense that the superior forecasting performance implied by

high persistence did not materialize in empirical applications), and that this

upward bias towards the maximum of 1 increases with increasing sample size.

For illustration, figure 6.1 plots various estimates that have been reported in

the literature against the sizes of the respective samples. For ease of compar-

ison, we confine ourselves to studies which use daily data. A more detailed

description of the studies summarized in figure 6.1 is in table 10.2. The figure

clearly demonstrates that estimated persistence increases with sample size and

is almost indistinguishable from unity for samples of size 2000 or more.

Diebold (1986) was probably the first to point out that this upward tendency of

estimated δ′s might be due to a switch in regime somewhere in the sample, the

probability of which increases with increasing calendar time. Lamoureux and

Lastrapes (1990), Hamilton and Susmel (1994) or Mikosch and Starica (2004),

among many others, show that empirical estimates of δ indeed decrease when

the sample is split according to some sensible criterion, and propose general-

izations of (6.1) and (6.3) to account for changes in the parameters.

When standard GARCH(1,1)-models are fitted to data generated from such

more general models, empirical estimates δ̂ of δ are rather close to, but usu-

ally less than one. Haas, Mittnik, and Paollela (2004a) (Figure 1) show by

Monte Carlo simulations that δ̂ approaches 1 as persistence in their Markov -

switching model increases; Mikosch and Starica (2004) show analytically that

the Whittle - estimator of δ becomes arbitrarily close to one if the differences

in the variances of their sub-models tend to infinity. This chapter considers the

Minimum Distance Estimator (MDE) of α and β and shows that the sum of

the estimated α and β can likewise be made arbitrarily close to one if there are
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Figure 6.1: Estimated persistence as a function of sample size

structural changes in the unconditional expectation µ of the rt-process whose

number is small relative to sample size, and if the size of the structural changes

is large enough.
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6.2 Empirical Estimates of the QMLE

GARCH(1,1)-model

As said earlier, our interested in GARCH models is around the estimation of

persistence parameter. It tells us how long shocks would stay in the GARCH

time series. In this section and in the next, we will discuss empirically reported

estimates of the persistence parameter of the GARCH(1,1)-model using stocks,

interest rates of foreign exchange rates returns at different frequencies.

Tables (10.2, 10.3 and 10.1) in the appendix presents empirical estimates of

the persistence parameter of the GARCH(1,1)-model. We present successively

daily, weekly and monthly data, all estimated with the quasi maximum like-

lihood. For the minimum distance estimation, only two results have been re-

ported in the literature. These entries are selected from the studies published

in leading economic journals. These tables contain authors names, nature of

the data, sample size and the estimated persistence.

In general, as already highlighted by numerous authors (see e.g Baillie and

Bollerslev (1990) and Granger (2005)) high persistence does occur in the very

special case of daily data, especially for sample sizes covering long time span.

The average of the estimated persistence in the case of daily data estimated

from sample size of 2000 or more is 0.981. While studies with daily data have

frequently found integrated GARCH behavior, studies with higher frequency

data (hourly data, tick by tick data) over shorter time spans show weaker

persistence. Focussing on daily data however, ensures that sample size is pro-

portional to calendar time, which appears to be the real driving force behind

the increase in the estimated persistence.
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Considering hourly exchange rate data of the British Pound, the Deutsche

Mark, the Swiss Franc, the Japanese Yen each with respect to the US Dol-

lar, Baillie and Bollerslev (1990) found an average persistence of 0.558 with

a sample size of 3191. Others frequency studies revealed weaker persistence

compared to the persistence shown by daily data. In the case of weekly and

monthly data, the averaged estimated persistence for the data in tables 10.3

and 10.1 are 0.903 and 0.916 respectively.

6.3 Empirical Estimates of the MDE

GARCH(1,1)-model

Two studies report Minimum Distance estimates of the GARCH(1,1)-model

in the literature. The first is done by Baillie and Chung (2001) where the

minimum distance estimator is based on the autocorrelations of the GARCH

squared process. They used a lag length of 10 and the Newey West weighting

matrix to find a persistence of 0.606 for hourly exchange rate between the

British Pound and the US Dollars, a total of 3191 observations. The second

study is the recent work of Storti (2006) where his minimum distance estimator

estimates the GARCH parameters by minimizing the Mahalanobis distance

between empirical and theoretical auto-covariances of the GARCH squared

process. He uses a lag length of 20 to find a persistence of 0.967 with a sample

size of 1673 of hourly futures.
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6.4 Structural Change and Sample

Correlations

There is a particular relationship between certain types of structural change in

the model (6.1) and (6.3) and the estimated autocorrelations of the ε2
t . Most

models that allow for changes in the coefficients of (6.1) and (6.3) do so by

letting µ, ω, α or β depend on the (unobserved) state of a finite - dimensional

Markov chain. Recent examples and variants thereof, with useful surveys of

the literature, are Francq, Zakoian, and Roussignol (2001), Klaassen (2002)

or Haas, Mittnik, and Paollela (2004a). Alternatively, Hamilton and Susmel

(1994), Liu (2000) or Wong and Li (2001) consider

ε∗t := f(∆t)εt, (6.4)

where εt is generated by(6.1) (or some variant thereof), and f again depends on

the state of some Markov-process {∆t} or some other stochastic process. Here,

structural changes do not affect the dynamics of the process, just the scale.

Other examples are Dueker (1997), who considers changes in the variance of

the innovations ηt, or Mikosch and Starica (2004), who simply collect together

different sub-samples from different stationary models. All of these models

imply that E(r2
t ) is not constant over time.

This chapter considers the Minimum-Distance Estimator of α and β when there

are structural changes in µ which are ignored when the model (6.1) and (6.3)

is fitted to the data. No matter which way the process changes, it is easily seen

that any such change will in general increase empirical autocorrelations of the

ε2
t . For illustration, figure 6.2 depicts the first 16 empirical autocorrelations

computed from n = 4000 observations, for a stationary MA(2) process

rt = m + εt + 0.5εt−1 + 0.5εt−2, εt ∼ nid(0, 1), (6.5)
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where m switches from -t to t in the middle of the sample. Without such change

in m, the theoretical autocorrelations are ρ1 = 0.5, ρ2 = 0.17, ρ3 = ρ4 = ... = 0.

As the figure shows, estimated correlations are much larger and tend to one as

t increases.

The same effect is found for the GARCH(1,1) process with parameters

α = 0.2, β = 0.4 and ω = 0.001 where µ successively takes the values 0,

0.25 and 0.5 (see figure 6.3 where entries are averages of 1000 replications).

For the GARCH squared process with the same parameters, which itself is an

ARMA(1,1) process, figure 6.4 shows the empirical autocorrelations when the

process undergoes structural shifts in the mean µ. The structural change in

the mean of the process inducing an increase of the empirical autocorrelations

holds for all types of stochastic processes.

Let in general rt (t = 1, ..., n) be any short memory sequence of random vari-

ables with bounded variance and k shifts in mean at 1 < n1 < ... < nk < n,

and consider the empirical g’th order autocorrelation coefficient

ρ̂g =

∑n−g
t=1 (rt − r̄)(rt+g − r̄)∑n

t=1(rt − r̄)2
. (6.6)

Rewriting the numerator as

n−g∑
t=1

(rt − r̄)(rt+g − r̄) =
n∑

t=1

(rt − r̄)2 (6.7)

−
n∑

t=n−g+1

(rt − r̄)2 +

n−g∑
t=1

(rt − r̄)(rt+g − rt) , (6.8)

we see that

ρ̂g = 1−
∑n

t=n−g+1(rt − x̄)2∑n
t=1(rt − r̄)2

+

∑n−g
t=1 (rt − r̄)(rt+g − rt)∑n

t=1(rt − r̄)2
, (6.9)
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a) t = 1

b) t = 2

c) t = 4

Figure 6.2: Empirical autocorrelations of the MA(2) process with a shift in
expectation
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where the last two terms can be made as close to 0 as desired if n is ”large”

relative to k and
∑

(rt − r̄)2 P→ ∞. This is so because the first term tends to

zero has g/n → 0, and the second term tends to zero in view of the fact that

(rt − r̄)(rt+g − rt) is ”small” relative to (rt − r̄)2 whenever rt+g and rt belong

to the same regime. When the number of shifts is small relative to sample

size, this will apply to an increasing number of terms in the sum, so the ratio

becomes arbitrarily small.

This reasoning is of course purely heuristic, but suffices for the purposes of the

present investigation, which is not concerned with the particular mechanics

which lead to ρ̂i
p→ 1. Rather, we take this limiting behavior as given and

explore its implications for the estimated persistence of the data.

6.5 Estimating Persistence

The Minimum-Distance-Estimator (MDE) of α and β was explained in chapter

1. Its efficiency relative to the Maximum Likelihood estimator is evaluated in

detail in Baillie and Chung (2001); it depends on the particular choice of g

and W and shall not concern us here. Rather, we take g and W as given and

consider the behavior of δ̂ = α̂ + β̂ as the size of structural changes increases.

This behavior in turn depends crucially on the fact that, in view of section 6.4,

ρ̂ = (ρ̂1, . . . , ρ̂g)
′ p→ e := (1, . . . , 1)′ (6.10)

as the structural changes become larger. This implies that

arg min
α,β

[plim ρ̂− ρ(α, β)]′W [plim ρ̂− ρ(α, β)] (6.11)

⊆ arg min
α,β

[e− ρ(α, β)]′W [e− ρ(α, β)], (6.12)
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a) µ = 0

b) µ = 0.25

c) µ = 0.5

Figure 6.3: Empirical autocorrelations with a shift in expectation for the
GARCH(1,1) process with α = 0.20 β = 0.40, ω = 0.001 sample size of 4000.
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a) µ = 0

b) µ = 0.25

c) µ = 0.5

Figure 6.4: Empirical autocorrelations with a shift in expectation for the
GARCH(1,1) squared process with α = 0.20 β = 0.40, ω = 0.001 sample size of
4000.
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where the latter set of minimizing values of α and β is in view of1 (3.18)

determined by

α + β = 1 and (6.13)

α +
α2β

1− 2αβ − β2
= 1. (6.14)

This is so because (6.13) and (6.14) are equivalent to ρ(α, β) = e, which is

equivalent to

[e− ρ(α, β)]′W [e− ρ(α, β)] = 0, (6.15)

which in view of the positive definiteness of W is the minimum value which

can be attained.

It is easily checked that (6.13) implies (6.14), so all pairs of α and β with

α > 0, β ≥ 0 and α + β = 1 are candidates for plimρ̂→e(α̂, β̂). Which one

of these will eventually materialize depends on the particular way in which ρ̂

approaches e. In practise, it appears that small values of α̂ and large values of

β̂ are preferred (see e.g. Haas, Mittnik, and Paollela (2004a), figure 1). The

point of interest here is that, no matter what the particular probability limits

of α̂ and β̂ are, they must always sum to one.

6.6 Some Finite Sample Simulations

This section reports on various Monte Carlo simulations to check the finite

sample relevance of the above result. Table 6.1 summarizes the experiments.

We use various sample sizes and magnitudes of the structural shift in µ as

defined in (6.1) and (6.3). The number of lags for the minimum distance

1(3.18) is ρg = (α + α2β
1−2αβ−β2 )(α + β)g−1, g ≥ 2.
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Figure 6.5: Paths of the GARCH(1,1) process with a deterministic shift in
the mean µ (Type I) with α = 0.2, β = 0.4, µ1 = 0, µ2 = 0.5, µ3 = 1 .



76 CHAPTER 6. STRUCTURAL CHANGE AND PERSISTENCE

estimator is fixed at g = 10, and the weighting matrix W is obtained via

the Newey West procedure; results remain virtually unchanged for different

lags and weighting matrices. The innovations ηt are standard normal, and the

shift always occurs in the middle of the sample. N = 1000 experiments are

performed for any given parameter and sample size combination. The value

for ω is 0.001, uniformly across experiments. In this particular experiment, the

size of the shift occurring in µ will be increasing all the time at each step by 0.1

and starting from 0 till 1. We labeled these types of breaks as ”type I”. Figure

6.5 shows the paths of GARCH the time series with a deterministic shift in

the mean, this break always occurring the the middle of the sample. Figure

6.6 plots the estimated persistence as a function of the size of the break in the

case where α = 0.2 and β = 0.4. Figures 10.17 and 10.18 in the appendix

correspond to the cases (α, β) = (0.3, 0.3) and (α, β) = (0.4, 0.2).

Another type of breaks, labeled ”type II” is pictured in figure 6.7. These

are constructed by assuming that the constant term of the conditional mean

equation µ is non zero as opposed to the previous types of breaks where one

starts with a time series with a zero mean. As soon as the µ of the time

series is non zero, we then can multiply the second half of the time series by

a sufficiently large constant2 to shift it up, obtaining a figure similar to figure

6.5. We also find here that the estimated persistence is an increasing function

of the size of the break. Interestingly, it can be made arbitrarily close to one.

Table3 6.2 reports the results of the simulations.

2We denote this constant by c.
3In this table, c is the break coefficient which represents the multiplicative factor of the

second half of the time series.
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∆µ
T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a) α = 0.2, β = 0.4

1000 0.556 0.715 0.868 0.940 0.959 0.974 0.989 0.992 0.994 0.997 0.998
2000 0.557 0.774 0.904 0.956 0.977 0.993 0.996 0.996 0.997 0.998 0.998
4000 0.562 0.824 0.934 0.967 0.988 0.995 0.995 0.998 0.999 0.999 0.999

b) α = 0.4, β = 0.2

1000 0.545 0.786 0.817 0.903 0.953 0.971 0.984 0.989 0.993 0.995 0.995
2000 0.546 0.739 0.881 0.945 0.971 0.987 0.994 0.996 0.997 0.998 0.998
4000 0.556 0.776 0.926 0.962 0.983 0.992 0.996 0.997 0.998 0.998 0.999

c) α = 0.3, β = 0.3

1000 0.538 0.655 0.816 0.914 0.934 0.960 0.980 0.984 0.988 0.989 0.993
2000 0.541 0.710 0.866 0.931 0.952 0.982 0.990 0.991 0.994 0.995 0.998
4000 0.566 0.766 0.898 0.958 0.978 0.986 0.990 0.996 0.997 0.998 0.999

Table 6.1: Estimated δ’s (averaged over 1000 runs) for various sizes of struc-
tural shifts in µ – Type I
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Figure 6.6: Estimated persistence as a function of the size of the break type
I (α = 0.20, β = 0.40 and ω = 0.001 )
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Figure 6.7: Paths of the GARCH process with a deterministic shift (Type II)
α = 0.2, β = 0.4 µ = 1 with c1 = 1, c2 = 5 and c3 = 10
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c
T

1 1.1 1.2 1.3 1.4 1.5 2

a) α = 0.2, β = 0.4

1000 0.556 0.971 0.982 0.993 0.994 0.997 0.997

2000 0.557 0.984 0.993 0.996 0.997 0.998 0.998

4000 0.559 0.995 0.996 0.998 0.999 0.999 0.999

a) α = 0.3, β = 0.3

1000 0.545 0.961 0.984 0.986 0.993 0.996 0.997

2000 0.546 0.983 0.0.991 0.994 0.996 0.997 0.998

4000 0.556 0.989 0.997 0.998 0.998 0.999 0.999

a) α = 0.4, β = 0.2

1000 0.538 0.958 0.977 0.983 0.993 0.994 0.996

2000 0.541 0.958 0.978 0.988 0.993 0.994 0.996

4000 0.566 0.988 0.995 0.997 0.998 0.998 0.999

Table 6.2: Estimated δ’s (averaged over 1000 runs) for various sizes of struc-
tural breaks – Type II
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6.7 Conclusion

This chapter has considered the Minimum Distance Estimators of α and β

suggested by Baillie and Chung (2001) and has showed that the estimated per-

sistence can arbitrarily be made close to one if there are deterministic structural

changes in unconditional expectation µ. In the finite sample assessment of this

result, the first type of structural breaks (labeled ”Type I”) is concerned with

a shift of µ in the middle of the time series. Another type of break (labeled

”Type II”) is concerned with multiplying the second half of the time series with

a constant, provided that the µ is a non zero constant. In both cases, we reach

the conclusion that the estimated persistence can be made arbitrarily close to

one.

Our finding, confirmed by the Monte Carlo study is the special case in which

the break always occurred in the middle of the sample. In this framework,

we argue that this type of break increase the autocorrelations of the squared

process, therefore increasing the estimated persistence. This is a sufficient

condition for the persistence parameter to become arbitrarily close to one.





Chapter 7

Additional origins of high
persistence in GARCH-models

7.1 Introduction

Modeling the conditional mean of macroeconomic and financial time series

has highlighted the role of persistence of shocks. Tests for unit roots in the

univariate representation of time series were being performed as opposed to

simply considering the time series to be stationary. A simple classification of

processes being I(0) or I(1) is far too restrictive. An I(0) process is stationary

and an I(1) process contains a unit root.

As opposed to I(0) processes where the propagation of shocks to the mean

decays exponentially and to the I(1) processes characterized by infinite persis-

tence, Adenstedt (1974), Granger (1980), Granger (1981) and Granger and

Joyeux (1980) proposed already around the 80’s, families of discrete time

stochastic processes in which the propagation of the shocks to the mean were

neither I(0) nor I(1). They called this type of processes long memory fraction-

ally integrated processes (see section 2).
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Recent studies by Breit, Crato, and Lima (1998), Dacorogna, Muller, R.J,

Olsen, and Pictet (1993), Harvey (1993) and Ding, Granger, and Engle (1993)

have reported the presence of apparent long memory (to be define in the next

section) in the autocorrelations of squared or absolute returns of various finan-

cial asset prices. Baille, Bollerslev, and Mikkelsen (1996) introduced therefore

the Fractionally Integrated Generalized Autoregressive Conditional Heteroske-

daticity or FIGARCH to explain and represent these types of phenomenon in

financial market volatility.

The estimated persistence in various types of GARCH - models is known to

be too large when the parameters of the model undergo structural changes

somewhere in the sample. The present chapter argues that one avenue through

which this could happen is apparent long memory in the squares of εt and in εt

itself. We also show that a particular estimator of α+β = δ must by necessity

tend to one if this artificial long memory resembles an I(d)-process with d >

1/2. The particular mechanism of interest here which induces this I(d)-behavior

is a structural change in the unconditional mean µ. Previous research on

structural changes in GARCH models was mainly concerned with changes in

the GARCH parameters α, β and ω (Francq, Zakoian, and Roussignol (2001),

Haas, Mittnik, and Paollela (2004b) among many others) or in the distribution

of the innovations ηt (Dueker (1997)). Here we follow Diebold and Inoue (2001)

by taking the distribution of the εt’s as given, and consider changes in the

mean µ. Extending results from the previous chapter (these are as well found

in Krämer and Tameze (2007)), where the focus is on increasing structural

changes when the sample size is fixed, we here consider structural changes in

the context of increasing samples, in the vain of Hillebrand (2005). Hillebrand

(2005) shows that the ML-estimates of δ will tend to one when the number of

structural changes remains finite as sample size increases. We consider again

the Minimum Distance Estimator (MDE) of α and β suggested by Baillie and
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Chung (2001), and show that the sum of the estimated α and β can likewise

be made arbitrarily close to one if there are certain types of structural change

in the rt-process.

7.2 Definitions of Long Memory

This section considers several definitions of long memory and linkages among

them. Let recall that a process rt is said to be (fractionally)integrated of order

d, 0 < d < 1 or I(d), if

(1− L)drt = ut, (7.1)

where L is the lag operator, and ut is a stationary and ergodic process with a

bounded and positively valued spectrum at all frequencies.

Usually, long memory can be defined in the time domain in terms of decay

rates of the long lags autocorrelations, or in the frequency domain in terms of

rates of explosion of low frequency spectra or alternatively in terms of the rate

of growth of the variance of the partial sums.

A long lag definition of long memory for a covariance stationary process rt is

ρrt(τ) ∼ kτ 2d−1 as τ −→ ∞. (7.2)

Alternatively, Mcleod and Hipel (1978) say rt possesses long memory if

limn−→ ∞ Σn
j=−n | ρj | = ∞. (7.3)

A low frequency definition spectral definition of long memory is

frt(ω) ∼ gω−2d as ω −→ 0+. (7.4)

Heyde and Yang (1997) gives an even more general low-frequency spectral

definition of long memory as

frt(ω) −→∞ as ω −→ 0+. (7.5)
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A third definition of long memory which will be used in this chapter involves

the rate of growth of variances of partial sums. We define

ST =
T∑

t=1

rt. (7.6)

The rt display long memory if

Var(ST ) = O(T 2d+1). (7.7)

Beran (1994) chapter 2, proves that the first two definitions are equivalent

under specific hypotheses. There is a tight connection between the variance of

partial sums definition of long memory and the spectral and autocorrelation

definitions of long memory as discussed in Diebold and Inoue (2001). The

spectral density at zero is the limit of 1
T
ST so A covariance stationary process

has long memory in the generalized spectral sense of Heyde and Yang (1997)

if and only if it has long memory for some d > 0 in the variance of partial sum

sense. Barndorff-Nielsen and Cox (1989) present more insights into this result.

Fractionally integrated processes constitute a special family of long memory

processes. In this work, we have been focussing on GARCH models which

are special type of stochastic processes used in forecasting volatility. In these

models, the variance rate follows a mean-reverting process. Our interest in long

memory processes won’t center on unit root processes but instead, on mean

reverting fractionally integrated processes I(d), 0 < d < 1 and long memory

in our sense will be meaning I(d), 0 < d < 1.
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7.3 Stochastic Structural Change in the

Mean and Sample Autocorrelations

Once more, our approach here considers the Minimum Distance Estimator of

α and β when there are structural changes in the unconditional expectation

µ which are ignored when the model is fitted to the data. These changes can

be stochastic in the mean, for instance, by letting µ depend on the state of an

independent Markov process ∆t:

rt := µ(∆t) + εt. (7.8)

This is similar to the model described in (6.4) extensively considered in the

literature. The difference in (7.8) is that it is the conditional mean and not

the conditional variance of rt that is affected. No matter in which way the

process changes, however, any such change will in general increase the empirical

autocorrelations of the r2
t .

In this chapter, we show that the sum of the estimated α and β can likewise be

made arbitrarily close to one when there are certain types of structural changes

in the expectation µ of the rt-process, or more generally, when the rt
2-process

behaves as if it had nonstationary long memory.

Krämer and Tameze (2007) show that the estimated persistence will become

undistinguishable from 1 for any given sample size as the size of the structural

change increases. Next, we investigate yet another avenue through which em-

pirical autocorrelations may be led to tend to one. This happens for increasing

sample size, when the rt can be made to behave as if they were I(d) with d ≥ 1
2
,

where, following Diebold and Inoue (2001), I(d) behavior is defined by

V ar
( T∑

t=1

rt

)
= O

(
T 2d+1

)
. (7.9)

It has long been known (see e.g. Krämer (1985)) that for d = 1, empirical

autocorrelations of rt of all orders must tend to one in probability as T −→∞,
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and Hassler (1997) shows that this holds for fractional integration parameters

with 1
2
≤ d < 1 as well. The intuition behind this is that the last two terms in

the following expression already derived in the previous chapter

ρ̂g = 1−
∑n

t=n−g+1(rt − r̄)2∑n
t=1(rt − r̄)2

+

∑n−g
t=1 (rt − r̄)(rt+g − rt)∑n

t=1(rt − r̄)2
, (7.10)

become arbitrarily small as T −→ ∞ as the numerators are of smaller orders

in probability than the denominators.

Diebold and Inoue (2001) show that behavior of type (7.9) occurs for instance

whenever µt is stochastic and independent of εt and displays structural breaks

of the form

µt = µt−1 + νt (7.11)

(7.12)

νt =

{
0 with probability 1− p

ωt with probability p,

where ωt = i.i.d.(0, σ2), and where p may depend on sample size. Since

T∑
t=1

µt = Tv1 + (T − 1)v2 + ... + vT , (7.13)

we have

V ar
( T∑

t=1

µt

)
= p σ2

T∑
t=1

t2 = p σ2T (T + 1)(2T + 1)

6
. (7.14)

So, we can have (7.9) for any d, 0 < d < 1, by letting

p = c
1

T 2−2d
(0 < c ≤ 1). (7.15)

Of course, in the limiting case where d = 1 and p does not depend on T , µt

and therefore also rt will be I(1) and long memory will be extreme.

Spurious long memory in rt can also be induced by time varying staying prob-

abilities

p00 = 1− c0T
−δ0 (7.16)

p11 = 1− c1T
−δ1 (7.17)
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in the Markov-switching model (7.8) with two states and serially independent

ε’s. Diebold and Inoue (2001) show that then (7.9) applies with

d =
1

2
max

{
min(δ0, δ1)− |δ0 − δ1|, 0

}
, (7.18)

and to the extent that this carries over to the case where the εt’s follow a

GARCH-process, we will for d0 = d1 = 1 again have empirical autocorrelations

of the rt which tend to one as a consequence of structural change.

We will not enter into a detailed discussion of this phenomenon here. There

might well be many other instances where this tendency towards unity of em-

pirical autocorrelations occurs. Diebold and Inoue (2001) for instance show

that the Engle and Smith (1999)–STOP-BREAK model, which generates an

I(1)-series, can be generalized to an arbitrary I(d)-behavior where in all cases

we have autocorrelations increasing with sample size. For the present pur-

pose, it suffices to know that there do exist meaningful models which induce

empirical autocorrelations of a time series to become large. The conditions

that guarantee this to happen do not concern us here. Rather, we take this

behavior as given and explore its implications for the estimated persistence of

a GARCH(1,1)-model.

To that purpose, it remains to show that real or spurious long memory in the

rt’s induces real or spurious long memory in the r2
t (since the estimator which

we consider in this chapter is based on the empirical autocorrelations of the

squared observations). For a given sample size and increasing breaks, it is easily

seen that the arguments that lead to increasing autocorrelations of rt also lead

to increasing autocorrelations of r2
t . For “genuine” Gaussian I(d)-processes

with d ≥ 1
2
, Dittmann and Granger (2002) show that the squared process is

also I(d) with the same d, and similar results hold for spurious long memory

as well (in the sense that convergence to one of the empirical autocorrelations

of the rt’s implies convergence to one of the empirical autocorrelations of the
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r2
t ’s). For instance, it is easily seen that with µ’s changing according to (7.11),

the empirical autocorrelation of both the rt’s and the r2
t ’s must tend to one as

sample size increases. Again, we do not want to enter into a detailed discussion

here, as the mechanisms that produce large autocorrelations of the rt
2 are not

our main concern. Rather, our interest is focused on the consequences which

this might have for the estimated persistence α̂ + β̂ = δ̂.

7.4 Some finite sample simulations

This section reports on various Monte Carlo simulations to check the finite

sample relevance of the above results. In a first series of experiments, we keep

the number of changes fixed at times [Td1], [Td2], ..., [Tdk] where 0 < d1 < d2 <

...dk < 1, along the lines of Hillebrand (2005).

Figure 7.1 reports the first 16 empirical autocorrelations in a GARCH(1,1)-

squared process with α = 0.2, β = 0.4 where k = 1, d1 = 1/2, where a shift

in µ of size 0.8 occurs. The figures are averages over 1000 replications and

show that empirical autocorrelations tend to one quite rapidly as sample size

increases.

Figure 7.2 shows the resulting estimates of δ̂ = α̂ + β̂, also for a wider range

of sample sizes and structural breaks. It is seen that the estimated persistence

likewise tends to one quite rapidly as the sample size increases, at least if the

structural change is large enough. Similar results were also obtained for other

values of k, d1, d2, ..., dk and α and β and can be obtained from the authors

upon request.

In a second series of experiments, we let µ change according to the Diebold

and Inoue (2001)–scheme from equation (7.11). Figures 7.3, 7.4 and 7.5 show
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a) Sample size of 100

b) Sample size of 1000

c) Sample size of 4000

Figure 7.1: Empirical autocorrelations with a shift of 0.8 in µ for the
GARCH (1,1) squared process α = 0.2, β = 0.4
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Figure 7.2: Estimated persistence as a function of the sample size (α, β) =
(0.2, 0.4)
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Figure 7.3: Stochastic mean according to (7.11), p = 0.01 and T = 1000

Figure 7.4: Stochastic mean according to (7.11), p = 0.05 and T = 1000

Figure 7.5: Stochastic mean according to (7.11), p = 0.10 and T = 1000
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some sample time series of the µ’s for some fixed sample sizes. In each case,

we fix the switching probability and increase the sample size.

Figure 7.6 shows the resulting first 16 empirical autocorrelations of the rt
2 for

the case where νt ∼ n.i.d(0, σ2) and the switching probability is p = 0.05.

It is seen that sample autocorrelations likewise tend to one as sample size

increases, although not as fast as for the case where the structural change is

non stochastic.

Figure 7.7 gives the persistence derived from these empirical autocorrelations

for a wider range of switching probabilities and sample sizes. Again, it is seen

that δ̂ approaches 1 quite rapidly, and similar results were obtained for different

parameters of the GARCH-model as well.

7.5 Conclusion

The previous chapter dealt with structural changes in the mean µ in which the

sample sizes were fixed and the size of the break was increasing. We find that

this setting was sufficient to generate the IGARCH effect in the sense that the

estimated persistence could arbitrarily made close to one by sufficiently increas-

ing the size of the break. In this chapter, we show the same effect by keeping

the size of the break fixed this time and increasing the sample size. This pro-

duces as well in an increase of the empirical autocorrelations of the GARCH

process and squared process, which results in an increase of the estimated per-

sistence. As the sample size grows, the persistence becomes undistinguishable

from 1. Furthermore, we show that the estimated persistence can as well be

made arbitrarily close to one if there are stochastic structural changes in the

unconditional expectation µ, in particular in processes of the type (7.8). Our

finding, confirmed by the Monte Carlo study is the special case in which the
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a) Sample size of 100

b) Sample size of 500

c) Sample size of 2000

Figure 7.6: Empirical autocorrelations of the stochastic mean (as defined
in (7.11))with a switching probability of p = 0.05
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Figure 7.7: Estimated persistence as a function of the size with switching
probabilities p = 0.01, 0.05 and 0.10 respectively
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stochastic mean was generated according to (7.11). We argue that this type of

break increases the autocorrelations of the GARCH process and squared pro-

cess, therefore increasing the estimated persistence. In the previous chapter,

we showed that a particular deterministic structural changes in µ was sufficient

to produce the almost IGARCH behavior. This other particular deterministic

structural change in µ and the stochastic structural change are two others suf-

ficient conditions for the persistence parameter to become arbitrarily close to

one.





Chapter 8

Value at Risk and Expected Tail
Loss from Minimum Distance
Estimation of
GARCH(1,1)-models

8.1 Introduction

Hull (2006) defines a GARCH model as an econometric model to forecast risk

where the variance follows a mean reverting process. In this chapter, we con-

sider risks in financial markets. Unexpected market movements, often due to

exogenous shocks, can cause stocks, interest rates, exchange rates and com-

modities to fluctuate enormously. Market risk is the risk an institution suffers

from these changes. One of the most important tasks of financial institutions

such as banks is to evaluate and manage market risk exposure. Stocks, interest

rates, exchange rates and commodities are termed ”derivatives”. These deriva-

tives are best managed by specific sensitivity risk measures called ”Greek”

letters. These Greeks describe different aspects of risk in a portfolio of deriva-

tives. A financial institution usually calculates each of these measures each

day for every market variable to which it is exposed. But even small banks

99
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sell lots of different products in many markets. So often, there are hundreds or

even thousands of these markets variables and these lead to a large amount of

different risk measures being produced everyday. These risk measures provide

valuable information for a trader who is responsible for managing the part of

the portfolio that is dependent on the particular market variable. They do

not provide a way to measure the total risk to which a financial institution is

exposed. Value at Risk (VaR) calculation is a process that provides a single

number summarizing the total risk in a portfolio of financial assets. It has

become widely used by corporate treasurers and fund managers as well as by

financial institutions. Central bank regulators also use VaR in determining the

capital required to reflect the market risk it is bearing. BASEL II is the latest

international regulations for calculating bank capital. It is expected to come

into effect in 2007, see e.g Hull (2007) for a discussion. In the context BASEL

II for example, require an internal risk measurement model based on the 10

day VaR at a 99% confidence level.

In the Risk Management framework, VaR has emerged as the standard tool

for measuring market risk. It provides a single number that quantifies the

worst possible financial loss to a portfolio over a fixed time horizon and a given

confidence level, see Jorion (2002) and Dowd (2005). This single estimate is of

importance to managers as they need a number to quantify the possible loss.

However as a risk measure VaR suffers from two drawbacks. First VaR is not

a coherent risk measure(see section 8.2) as it is not sub-additive (to be defined

in section 8.2). Next, it does not incorporate the happening of an extreme

event as well as the size of the possible corresponding losses. An alternative

simple measure extending the value at risk into a coherent risk measure and

accounting for extremal events is the expected tail loss, see Embrechts, McNeil,

and Frey (2005).
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Forecasting the volatility using the history of the returns is intensively done

in the ARCH and GARCH framework, mainly with maximum and quasi max-

imum likelihood methods. In this chapter, we take another approach, namely

we forecast the needed volatility using the GARCH model in which the param-

eters are obtained by the minimum distance estimation as discussed in chapter

2. These minimum distance estimators are different at each lag. So the risk

measure we will be calculating will depend on the number of lags used in the

minimum distance estimator. We propose to compare two measures of mar-

ket risk, namely Value at Risk (VaR) and Expected Tail Loss (ETL), both

calculated as a function of the number of lags used in the minimum distance

estimation framework with the same risk measures computed when the risk

factors are forecasted under standard maximum likelihood approach. Value

at Risk and expected tail loss are considered as risk measures so we start by

discussing the properties of risk measures.

8.2 Properties of Risk Measures

Banks have to comply with some capital requirements under what is known as

BASEL II. In this case, a risk measure is defined as the amount of cash that

must be added to a position to make its risk acceptable to regulators.

Let $ be a risk measure, X1 and X2 be two risks, % a positive real number

τ and be a real number. Following Hull (2007), a risk measure $ is called

coherent if it has the following properties:

• Monotonicity : X1 ≤ X2 ⇒ $(X2) ≤ $(X1).

If a portfolio has lower returns than another portfolio for every state of

the world, its risk measure should be greater.
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• Translation invariance: $(X1 + τ) = $(X1)− τ .

If we add an amount of cash τ to a portfolio, it risk measure should go

down by τ .

• Homogeneity : $(%X1) = %($(X1)).

Changing the size of the portfolio by a factor r while keeping the relative

amounts of different items in the portfolio the same should result in the

risk measure being multiplied by %×.

• Subadditivity : $(X1 + X2) ≤ $(X1) + $(X2)

The risk measure for two portfolios after they have been merged should be

no greater than the sum of their risk measures before they were merged.

In the literature, one simply reads ”a merger does not create extra risk”.

The first three conditions are straightforward, given the intuitive definition of

a risk measure. The fourth condition states that diversification helps reduce

risk. When we aggregate two risks, the total risk should either decrease or stay

the same. In the next section, we will show that VaR is not a coherent risk

measure by showing that it is not sub-additive. The ETL on the other side

does satisfies all these properties and is therefore a coherent risk measure.

8.3 Value at Risk

Value at Risk (VaR) is still the standard tool in measuring market risk. It

is an attempt to provide a single number that summarizes the total risk in

a portfolio of financial assets. Indeed, VaR tells the worst loss over a target

horizon with a given level of confidence. Beyond funds managers, corporate

treasurers and financial institutions, central banks also use VaR in determining

the bank capital requirement.



8.3. VALUE AT RISK 103

Considering a portfolio, a confidence level Land a time horizon N, saying that

V is the VaR of the portfolio means that we are L percent certain that we will

not lose more than V dollars in the next N days. This seems simple and pretty

intuitive as it answers the question ”how bad can things get”. At this time of

writing, under the Basel II prescriptions for example, the capital market risk

for financial institution is the 10 days VaR at 99% confidence level multiplied

by a factor between 3 and 4 to provide the minimum capital requirements for

regulatory purposes. VaR is just a simple quantile of the distribution of the

losses.

In the special case of the loss distribution function being normal, i.e FX ∼

N (µ, σ2) for a given α ∈ (0, 1) one has

V aRα = µ + σΦ−1(α), (8.1)

where Φ denotes the standard normal distribution function and Φ−1(α) is the

α-quantile of Φ.

The whole attraction of the VaR is its ability to summarizes all sort of risk in

a single number. This charm however goes as at the cost of its weaknesses. As

pointed out by numerous authors, VaR is not a good risk measure In partic-

ular, Artzner, Delbaen, Eber, and Heat (1999) Dowd (2005), Rachev, C, and

Fabozzi (2005), Jorion (2002) and numerous references therein provide detailed

discussions on weaknesses of VaR as a risk measure.

VaR as opposed to the expected tail loss (see next section), only tells us the

most we can lose if a tail event does not occur. In case of an appearance of

an extreme event, we can expect to lose more than the VaR but the VaR itself

does not give any information about the magnitude of this possible huge loss.

This implies that two positions can have the same VaR number meaning that

they have the same risk when we use the VaR to measure it, but effectively

have different risk exposures.
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From the seminal paper Artzner, Delbaen, Eber, and Heat (1999), VaR is not

a coherent risk measure because it is not sub-additive. A classical example

adapted from Dowd (2005), page 34, is the following: Consider two identical

securities A and B, each defaulting with probabilities 9% and we get a loss of

says 50 if default occurs and a loss of 0 if no default occurs. The 90% VaR in

each security is therefore 0. By assuming that the default are independent, one

gets a lost of 0 with probability (1 − 9%)2 and a loss of 100 with probability

9%2 and a loss of 50 with probability 1 − (1 − 9%)2 − 9%2. VaR(X+Y) = 50

> 0 = VaR(A)+ VaR(B). So VaR is not sub-additive.

The consequences of VaR being not sub-additive are painful, both in risk man-

agement perspective and in the regulatory perspective. If firms were to meet

a risk control criterion that does not satisfy this property, the firm might have

incentives to break up into several sub units to avoid satisfying the criterion.

This will be an issue for the regulator as a huge amount of entities are al-

ways more difficult to control. This might lead to financial problems including

possible tax evasions.

We learned in basic portfolio theory that diversification decreases the total risk

exposure. Non subadditivity suggests that diversification is a bad thing and

it recommends that putting all the assets in one basket is a good risk man-

agement practise. If risk measures are not sub-additive, adding them together

gives us an underestimate of combined risk making the sum of individual risk

not as a back-up- envelope-measure any longer. In case of subadditivity, the

combined risk is bounded by the sum of the individual risk and this is seen as

a conservative estimated of the combined risk.

Facing these drawbacks, particularly the non sub-additivity, researchers intro-

duced recently the Expected Tail Loss as a natural coherent alternative to the

VaR. In addition to all the properties already satisfied by the value at risk, the

ETL is sub additive making it therefore a coherent measure of risk.
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8.4 Expected Tail Loss

Although VaR is seen as a standard in measuring market risk related issues,

we have highlighted its drawback. There is a need to transform the VaR into

a proper risk measure which would be at least sub additive. An alternative to

VaR is the so called expected tail loss.

Formally, following the notations as in the case of VaR in section 8.3, the ETL

at confidence level α ∈ (0, 1) is defined as:

ETLα(X) = E
[
X|X ≥ V aRα(X)

]
. (8.2)

Intuitively, it is the average loss for losses larger than the VaR. Expected Tail

Loss takes into account losses beyond the VaR level. It is proven (see for

example Dowd (2005) page 35) that it is sub additive making it therefore a

coherent risk measure. In the literature, Expected Tail Loss, Conditional Value

at Risk or Expected Shortfall are interchangeably used, when the underlying

loss distribution is continuous.

When denoting FL as a continuous distribution of the loss function, one rewrite

it as

ETLα(X) = E
[
X|X ≥ V aRα(X)

]
=

E(XI[qα(X),∞)(X))

P (X ≥ qα(X))

=
1

1− α
E(XI[qα(X),∞)(X))

=
1

1− α

∫ ∞

qα(X)

xdFX(x),

where IA is the indicator function with the value 1 if x ∈ A and 0 otherwise.

Remembering that V aRα(X) = qα(X) and assuming that X is continuous, it

follows

ETLα(X) =
1

1− α

∫ 1

α

V aRα(X)dp.
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When facing discrete distributions, we use the so called Generalized Expected

Tail Loss (GETL) defined as

GETLα(X) =
1

1− α

[
E(XI[qα(X),∞)(X)) + qα(X)(1− α− P (X ≥ qα(X)))

]
.

The second term in the expression on the right hand side above disappears

when the distribution of X is continuous. In this case GETL and ETL are

equal.

In the specific case where the returns are normally distributed, say X ∼

N (µ, σ2) and assuming φ and Φ the density and the distribution function of

the standard normal distribution , we easily derive

ETLα(X) = E
[
X|X ≥ V aRα(X)

]
= E

(
µ + σY |µ + σY ≥ V aRα(µ + σY )

)
where Y ∼ N (0, 1)

= E
(
µ + σY |Y ≥ V aRα(Y )

)
= µ + σETLα(Y )

= µ + σ
φ(Φ−1(α))

1− α
.

A simple proof that ETLα(Y ) = φ(Φ−1(α))
1−α

where Y ∼ N (0, 1) is found in

Embrechts, McNeil, and Frey (2005) page 45.

Unlike VaR, ETL has the following interesting features: ETL gives information

about the losses beyond the VaR, using information in the tail. It tells us what

to expect in bad situations. It even gives an idea about how bad things might

be while VaR tell nothing other than to expect a loss higher than the VaR itself.

ETL possesses the complete set of coherent risk measure as defined and ex-

plained in section 8.2. It is by definition and construction a form of conditional

expected loss and it happen to be convenient to use in portfolio optimization.

In particular, ETL is sub-additive while VaR is not and therefore has all the
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various attractions of sub-additivity and the VaR does not (see Dowd (2005)

and Jorion (2002)). Finally, ETL gives an indication of extreme losses, in case

they occur. Although it is yet to become a standard in the financial industry,

Expected Tail Loss will surely play a major role, as it currently does in the

insurance industry.

8.5 Results

The main assumption in our investigation is that the conditional profit/loss

distribution is normal. The normal distribution is elliptic and in this case

the VaR is sub additive. This allows us as well to use the closed forms solu-

tions presented in the previous sections writing the programming routines for

calculations.

We used a sample size of 4000 artificially generated data in two parameter set-

tings ω = 0.001 and (α, β) ∈ {(0.15, 0.70); (0.20, 0.50)}. Entries are averaged

over 1000 runs. In our case, VaR and ETL is calculated for a time horizon of

1 day at the confidence levels of 95% and 99%. Practitioners use the
√

T rule

to get an approximation of the T-day VaR. The one day ahead volatility is

forecasted using a GARCH(1,1)-model. In the case of MDE GARCH, estima-

tion of the parameters is performed from lags 2 to 40. Indeed, chapter 4 shows

that a higher number of lags does not reveal any additional information. The

weighting matrix is computed using the Newey and West (1987) procedure. For

comparison, the VaR and ETL are calculated under the normal distribution

assumption, as implied by the data, for each simulations.

Figures 8.1 and 8.2 show the magnitude of the estimates of two risk measures

as a function of the lags. They show little variation and this implies that a lag

does not have a significant influence in estimating these market risk measures
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Figure 8.1: 99% VaR as a function of lags ω = 0.001, α = 0.15, β = 0.70

Figure 8.2: 99% ETL as a function of lags ω = 0.001, α = 0.20, β = 0.50
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ω̂ = 0.0010 α̂ = 0.1493 β̂ = 0.6987

(6.17e-005) (0.0217) (0.0353)

95% MLE-VaR = 0.0658 95%MLE-ETL = 0.0825

(0.0004) (0.0013)

99%MLE-VaR = 0.0933 99%MLE-ETL= 0.1058

(0.0014) (0.0016)

95%VaR = 0.1307 95%ETL = 0.1638

(0.0009) (0.0012)

99%VaR = 0.1848 99%ETL= 0.2116

(0.0014) (0.0016)

ω̂ = 0.0010 α̂ = 0.2006 β̂ = 0.4978

(7.10e-005) (0.0308) (0.0305)

95%MLE-VaR = 0.0647 95%MLE-ETL = 0.0811

(0.0003) (0.0004)

99%MLE-VaR = 0.0916 99%MLE-ETL= 0.1039

(0.0004) (0.0005)

95% VaR = 0.0947 95%ETL = 0.1186

(0.0002) (0.0002)

99%VaR = 0.1339 99%ETL= 0.1533

(0.0002) (0.0002)

Table 8.1: 95% and 99% MLE-VaR, MLE-ETL, VaR and ETL.

and therefore a choice of a small number of lag within the minimum distance

framework is reasonable and recommended.

Alternatively, calculations in which the GARCH parameters are estimated from

the traditional maximum likelihood methods were performed. VaR and ETL

as implied by the data, are as well calculated. Table 8.1 presents all these risk

measures calculated at 95% and 99% confidence level with a holding period

of one day. The numbers in brackets are the standard errors. Concretely, in

the case ω = 0.001, α = 0.15 and β = 0.70 for example, the 99% MDE VaR
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(see figure 8.1) varies between 0.1927 and 0.1935 which is an interval of length

0.0008 (8bp!). The corresponding MLE VaR is 0.0933 only (see table 8.1).

The implied 99% corresponding VaR is 0.1848, very close to the corresponding

MDE VaR. This holds for all the MDE calculated risk measures, they are

greater than their MLE equivalents in all the investigated cases and are very

close to the risk measures implied by the data. This holds for all the parameter

settings considered. This finding suggest that MDE value at risk and expected

tail loss are reliable risk measures. They are more conservative than their MLE

counterparts in the sense that they will have fewer exceptions (an exception

is a value that is higher than the risk measure). This will then lead to higher

reserves cash money which will happen to be helpful in case of claims but also

reduces the investment capital of the financial institution.

8.6 Conclusion

The results in this paper show that Value at Risk and Expected Tail Loss calcu-

lations can be made with the daily volatility being forecast by a GARCH(1,1)-

model where the parameters are minimum distance estimators as developed

by Baillie and Chung (2001). Assuming the specific case where the loss dis-

tribution is normal, closed forms solutions allow one to calculate the Value at

Risk and Expected Tail Loss as a function of the number of lags and evaluate

their magnitude at each lag. The use of a small number of lag is recommended

as the total error made using any lag among the first 40 investigated is less

than 0.08%. The Value at Risk and Expected Tail Loss obtained by standard

MLE GARCH models were anyhow clearly smaller in magnitude. The MDE

calculated risk measures are very close to the risk measures naturally implied

by the data. They outperform clearly the MLE counterparts.
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Figure 8.3: 95% VaR as a function of lags ω = 0.001, α = 0.15, β = 0.70

Figure 8.4: 95% VaR as a function of lags ω = 0.001, α = 0.20, β = 0.50
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Figure 8.5: 95% ETL as a function of lags ω = 0.001, α = 0.15, β = 0.70

Figure 8.6: 95% ETL as a function of lags ω = 0.001, α = 0.20, β = 0.50
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Figure 8.7: 99% ETL as a function of lags ω = 0.001, α = 0.15, β = 0.70

Figure 8.8: 99% VaR as a function of lags ω = 0.001, α = 0.20, β = 0.50





Chapter 9

Concluding Remarks

Conditional heteroskedasticity is an important stylized fact of financial re-

turns series. ARCH and GARCH models have been the workhorse in modern

risk management when facing such issues. To account for some specific prop-

erties of financial data and to be as well in accordance with the economic

theory, different reformulations of GARCH models have been studied in the

literature, including nonlinear ones. Quasi maximum likelihood methods are

usually used whenever estimating these models. In the presence of extreme

non normality however, this estimation method can fail to deliver asymptot-

ically efficient parameter estimates. Moreover, maximum likelihood methods

have been shown to be inadequate in replicating the behavior of the autocor-

relations of the squared observed returns. Distribution free approaches using

minimum distance estimators have been proposed in the literature. We used

the one presented by Baillie and Chung (2001) to address several issues in-

vestigated with the quasi maximum likelihood methods as well. This method

presents the advantage that it does not require any distributional assumption

of the underlying data.

After presenting GARCH models in general, we deal with the existence of its

solution. We follow Bollerslev (1986) in discussing the existence of weakly sta-

tionary solutions for linear GARCH(p,q)- processes. The theory of products of

115
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random matrices is the appropriate technique to handle the case of strict sta-

tionarity as suggested by Nelson (1990). Bougerol and Picard (1992) followed

his advice to solve the problem for general GARCH models. They character-

ized the existence of the solution by the strict negativity of the Lyapounov

exponent associated to the GARCH corresponding random matrices.

The minimum distance estimation of the GARCH(1,1)-model is presented in

chapter 3. Because this estimation is based on the autocorrelations of the

squared process, we start by reviewing the calculations of the theoretical auto-

correlations of the GARCH squared process as discussed in Bollerslev (1988)

and Ding and Granger (1996). The empirical counterparts are easily and con-

sistently estimated by (3.19). Having both the theoretical and the empirical

autocorrelations, the only ingredient left in the MDE is the weighting matrix.

We discussed the estimation of a consistent covariance matrix when, as it is the

case in (2.44), the disturbances are not i.i.d.. Newey and West (1987) present

a way of estimating it a practical situations and in all our applications, the

weighting matrix is obtained in this way.

We addressed the issue of small sample bias of the estimated persistence of

the GARCH(1,1)-model in chapter 4. Previous research in this direction has

been done in Lumsdaine (1995) and Soosung and Pereira (2006) in the context

of quasi and exact maximum likelihood. Here we have extend this work to

the case where α and β are minimum distance estimators of the GARCH(1,1)-

process. We covered a wider region of the parameter space and used much

more replications in our simulations. Consistency and asymptotic normality of

the minimum distance estimators of GARCH(1,1)-models have already been

proven by Baillie and Chung (2001) and Storti (2006). They found that in cer-

tain regions of the parameter space, and for certain conditional densities, the

minimum distance estimator can compete with the quasi maximum likelihood

estimator. We find that the estimated persistence increases as the sample size
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increases in both methods of estimation. Furthermore, minimum distance esti-

mators perform better than exact maximum likelihood in small samples (up to

500) in certain regions of the parameter space, in term of bias of the estimated

persistence. As the sample size grows, maximum likelihood estimators becomes

better than the minimum distance estimators, recovering the common finding

that exact maximum likelihood is the best estimator, as least asymptotically.

We recommend one to perform a monte carlo precheck whenever estimating

small samples GARCH models. The smaller the sample, the greater the like-

lihood that minimum distance estimation outperforms maximum likelihood

estimation.

Minimum Distance Estimators of a GARCH(1,1)-model depend directly on the

autocorrelations of the squared process. The autocorrelations are computed at

given lags. The MDE will directly depend on a chosen lag. A question we

therefore address in chapter 5 is the lag choice in this context. We find that

a number of lags between 10 and 30 is recommendable. In our Monte Carlo

investigation, taking the mean squared error as the optimality condition, we

find that the mean squared error decreases sharply in the first lags and changes

only very marginally after the 30 or 40 first lags. Our result is consistent with

different sample sizes and different parameter settings. A functional relation-

ship between the optimal number of lags and the sample size was not found. As

such, this is not a bad result because a certain relationship (depending e.g. on

the sample size) could force one to use a large number of lags. This could turn

out to be computationally demanding and time consuming making it difficult

to update daily risk measures such as the value at risk in case of large lags.

The optimal lag was often found at a very high lag. A similar investigation has

been done using the bias as optimality condition. The results were mixed and

a clear path was not found. But interestingly, the fluctuations of the graphs

at early lags justify the possible use of a small number of lags.
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Time series covering long time span often suffer from structural breaks. In

chapter 6, we have studied the effect of deterministic structural breaks in

the mean µ on the sum of the minimum distance estimators α and β of the

GARCH(1,1)-model. The break in the constant term of the conditional mean

equation occurs in the middle of the time series. This results in an increase of

the estimated persistence. We support this finding with monte carlo evidence

in which sample sizes are fixed and the size of the structural break is increas-

ing. The estimated persistence increases as well as a function of the size of

the break and becomes arbitrarily close to one if the structural change is large

enough.

We extend the previous analysis in chapter 7 by considering this time again

deterministic structural breaks in the mean, but for fixed sizes of the break

and increasing sample sizes. This produces an increase in the empirical au-

tocorrelations. We find that the estimated persistence likewise tends to one

as the sample size increases. Structural changes in the time series can also

occur stochastically. We study the case where the structural changes in the

constant term of the conditional mean equation are stochastic. We impose a

path to be followed by µ to be a function of a particular process with some

switching probabilities. We find out that the estimated persistence increases

independently of a particular switching probability and that it can be made

arbitrarily close to one by increasing the sample size.

The constant term in the conditional mean equation µ and the constant term in

the conditional variance equation ω are just scaling parameters in the GARCH

process. The ARCH parameter α and GARCH parameter β are the two most

important factors in modeling volatility. Value at Risk and Expected Tail

Loss estimated from a GARCH updating volatility scheme are functions of α

and β. There is a certain mistake we make by choosing a lag other than the

optimal one when estimating these important market risk measures in GARCH
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Minimum Distance Estimation framework. Chapter 8 studies these two market

risk measures as a function of the lag used in Minimum Distance Estimation.

We realize that these market risk measures are almost constant for the first

40 lags studied. Higher lags do not provide additional information as seen in

chapter 5. The MDE-GARCH estimated risk measures are found to be much

closer to the risk measures implied by the data than the MLE-GARCH risk

measures.
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Chapter 10

Appendix

Authors Data Size δ̂

Cai (1989) Returns 3m-T-Bill 08/64-11/91 328 0.980

Bollerslev (1987) 500C 01/47-09/84 453 0.842

Bollerslev (1987) Indus 01/47-09/84 453 0.834

Bollerslev (1987) Cap. goods 01/47-09/84 453 0.816

Bollerslev (1987) Cons goods 01/47-09/84 453 0.885

Bollerslev (1987) Pub. Util. 01/47-09/84 453 0.943

Baillie and Gennaro (1990) Retuns VW 02/28-12/84 683 0.924

Cao and Tsay (1992) S+P 01/28-12/89 744 0.980

Cao and Tsay (1992) Ret VW 01/28-12/89 744 0.975

Cao and Tsay (1992) Ret EW 01/28-12/89 744 0.982

Table 10.1: Empirical estimates of the persistence parameter in GARCH(1,1)–
model case of monthly data
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Authors Data Size δ̂

Lamoureux and Lastrapes (1990) *** 20 stocks (80–84) 358 0.728

Mikosch and Starica (2004) S+P 86-87 375 0.835

Mikosch and Starica (2004) S+P 53-56 750 0.831

Bollerslev and Engle (1986) FX US,SwF 07/73-08/85 632 0.996

McCurdy and Morgan (1988) Returns Futures 1067 0.985

Baillie and Bollerslev (1989) FX FF,US 01/03/80-28/01/85 1245 0.943

Baillie and Bollerslev (1989) FX IT,US 01/03/80-28/01/85 1245 0.961

Baillie and Bollerslev (1989) FX JPY,US 01/03/80-28/01/85 1245 0.990

Baillie and Bollerslev (1989) FX CHF,US 01/03/80-28/01/85 1245 0.980

Baillie and Bollerslev (1989) FX BP,US 01/03/80-28/01/85 1245 0.971

Baillie and Bollerslev (1989) FX DM,US 01/03/80-28/01/85 1245 0.966

Francq, Zakoian, and Roussignol (2001) CAC40 1/6/88-31/12/93 1286 0.923

Noh and Kane (1994) S+P 500 21/04/86-31/12/91 1339 0.984

Dueker (1997) S+P 12/82-12/91 2370 0.974

Hull (2006) FX Yen 06/01/88-15/08/97 2423 0.960

Engle (2001) Portf NDJLB 23/03/90-23/03/00 2500 0.982

Hillebrand (2005) D J 07/12/87-31/10/03 4000 0.996

Lamoureux and Lastrapes (1990) ** 30 stocks 01/01/63-13/11/79 4228 0.978

Klaassen (2002)* FX 03/01/78-23/07/97 4982 0.980

Haas, Mittnik, and Paollela (2004b) FX SingD,USD 01/81-06/03 5313 0.933

Haas, Mittnik, and Paollela (2004b) FX SingD,USD 01/81-06/03 5313 0.986

Haas, Mittnik, and Paollela (2004b) FX BP,USD 01/81-06/03 6313 0.974

Haas, Mittnik, and Paollela (2004b) FX BP,USD 01/81-06/03 6313 0.990

Haas, Mittnik, and Paollela (2004b) FX JPY/USD 01/81-06/03 6336 0.958

Haas, Mittnik, and Paollela (2004b) FX JPY/USD 01/81-06/03 6336 0.965

Breit, Crato, and Lima (1998) VW Ret. 07/62-07/69 6801 0.999

French and Schwert (1987) S+P 01/28-12/52 7326 0.992

Haas, Mittnik, and Paollela (2004b) Nasdaq Ret 02/71-06/01 7681 0.986

French and Schwert (1987) S+P 01/53-12/84 8043 0.992

Bollerslev and Mikkelsen (1996) S+P 500 02/01/53-31/12/90 9558 0.995

French and Schwert (1987) S+P 01/28-12/84 15369 0.996

Ding, Granger, and Engle (1993) S+P 500 03/01/28-30/08/91 17055 0.997

Table 10.2: Empirical estimates of the persistence parameter in GARCH(1,1)-
model case of daily data



141

Authors Data Size δ̂

McCurdy and Morgan (1988) Returns Futures 219 0.888

Drost and Nijman (1993) FX FF,USD 01/03/80-28/01/85 249 0.799

Drost and Nijman (1993) FX IT,USD 01/03/80-28/01/85 249 0.845

Drost and Nijman (1993) FX CHF,USD 01/03/80-28/01/85 249 0.905

Drost and Nijman (1993) FX BP,USD 01/03/80-28/01/85 249 0.891

Drost and Nijman (1993) FX DM,USD 01/03/80-28/01/85 249 0.885

Day and C.M (1992) S+P 11/11/83-28/12/89 319 0.907

Franses and Dijk (2000) Returns Tokyo 01/86-12/95 520 0.981

Franses and Dijk (2000) Returns Frankfurt 01/86-12/95 520 0.779

Franses and Dijk (2000) Returns NY 01/86-12/95 520 0.987

Franses and Dijk (2000) Returns Paris 01/86-12/95 520 0.926

Franses and Dijk (2000) Returns FX BP 01/86-12/95 520 0.927

Franses and Dijk (2000) Returns FX FF 01/86-12/95 520 0.945

Franses and Dijk (2000) Returns FX DM 01/86-12/95 520 0.842

Ray Chou (1988) Ret NYSE 07/62-12/89 1225 0.986

Hamilton and Susmel (1994) Returns NYSE 07/62-12/87 1327 0.960

Table 10.3: Empirical estimates of the persistence parameter in QMLE
GARCH(1,1)-model case of weekly data
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Figure 10.1: MSE of δ̂ as a function on number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 250

Figure 10.2: MSE of δ̂ as a function on number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 500

Figure 10.3: MSE of δ̂ as a function on number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 2000

Figure 10.4: MSE of δ̂ as a function on number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 8000
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Figure 10.5: MSE of δ̂ as a function on number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 1000

Figure 10.6: MSE of δ̂ as a function on number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 2000

Figure 10.7: MSE of δ̂ as a function on number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 4000

Figure 10.8: MSE of δ̂ as a function on number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 8000
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Figure 10.9: Bias of δ̂ as a function on number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 250

Figure 10.10: Bias of δ̂ as a function on number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 500

Figure 10.11: Bias of δ̂ as a function on number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 1000

Figure 10.12: Bias of δ̂ as a function on number of lags in case of α = 0.15, β =
0.70 and ω = 0.001 sample size of 8000
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Figure 10.13: Bias of δ̂ as a function on number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 250

Figure 10.14: Bias of δ̂ as a function on number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 2000

Figure 10.15: Bias of δ̂ as a function on number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 4000

Figure 10.16: Bias of δ̂ as a function on number of lags in case of α = 0.20, β =
0.50 and ω = 0.001 sample size of 8000
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Figure 10.17: Estimated persistence as a function of the size of the break
(α = 0.30, β = 0.30 and ω = 0.001 )

Figure 10.18: Estimated persistence as a function of the size of the break
(α = 0.40, β = 0.20 and ω = 0.001 )
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Figure 10.19: Stochastic mean according to (7.16) and (7.17), p = 0.01 and T
= 2000

Figure 10.20: Stochastic mean according to (7.16) and (7.17), p = 0.05 and T
= 2000

Figure 10.21: Stochastic mean according to (7.16) and (7.17), p = 0.10 and T
= 2000
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Sample

size α̂MDE α̂MLE β̂MDE β̂MLE δ̂MDE δ̂MLE

a) α = 0.10, β = 0.75

100 0.092 0.114 0.619 0.231 0.712 0.345

200 0.094 0.109 0.610 0.376 0.705 0.486

300 0.091 0.108 0.624 0.475 0.715 0.583

400 0.090 0.106 0.633 0.548 0.724 0.655

500 0.090 0.105 0.647 0.595 0.737 0.700

1000 0.089 0.102 0.687 0.702 0.777 0.804

2000 0.092 0.100 0.713 0.736 0.805 0.836

b) α = 0.10, β = 0.80

100 0.090 0.116 0.674 0.302 0.764 0.419

200 0.091 0.111 0.671 0.459 0.762 0.571

300 0.088 0.109 0.688 0.562 0.776 0.671

400 0.087 0.106 0.704 0.631 0.791 0.738

500 0.086 0.105 0.723 0.682 0.809 0.787

1000 0.089 0.102 0.687 0.702 0.777 0.804

2000 0.092 0.100 0.713 0.736 0.805 0.836

c) α = 0.05, β = 0.90

100 0.048 0.073 0.770 0.509 0.818 0.582

200 0.047 0.066 0.773 0.600 0.820 0.667

300 0.044 0.062 0.776 0.668 0.821 0.731

400 0.044 0.060 0.786 0.719 0.830 0.779

500 0.043 0.058 0.795 0.753 0.838 0.812

1000 0.042 0.053 0.838 0.850 0.880 0.904

2000 0.041 0.051 0.877 0.886 0.918 0.937

Table 10.4: MDE and MLE simulated mean of the estimated parameters of
the standard GARCH(1,1)-model with different α’s and β’s
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Sample

size α̂MDE α̂MLE β̂MDE β̂MLE δ̂MDE δ̂MLE

d) α = 0.08, β = 0.82

100 0.075 0.098 0.6864 0.509 0.762 0.369

200 0.074 0.093 0.688 0.600 0.762 0.503

300 0.074 0.090 0.689 0.668 0.763 0.600

400 0.071 0.089 0.711 0.719 0.782 0.677

500 0.069 0.087 0.726 0.753 0.796 0.728

1000 0.070 0.082 0.766 0.759 0.837 0.842

2000 0.072 0.080 0.794 0.806 0.866 0.886

e) α = 0.07, β = 0.73

100 0.069 0.085 0.582 0.168 0.652 0.254

200 0.067 0.080 0.585 0.269 0.653 0.349

300 0.072 0.079 0.584 0.344 0.657 0.424

400 0.066 0.078 0.597 0.406 0.664 0.484

500 0.076 0.077 0.600 0.445 0.676 0.523

1000 0.066 0.074 0.622 0.588 0.689 0.663

2000 0.067 0.072 0.665 0.683 0.733 0.755

f) α = 0.07, β = 0.83

100 0.067 0.091 0.711 0.254 0.778 0.346

200 0.065 0.083 0.697 0.373 0.762 0.457

300 0.064 0.080 0.699 0.471 0.764 0.552

400 0.063 0.079 0.709 0.538 0.773 0.618

500 0.063 0.077 0.721 0.597 0.785 0.674

1000 0.062 0.073 0.769 0.739 0.831 0.813

2000 0.062 0.071 0.799 0.808 0.862 0.879

Table 10.5: MDE and MLE simulated mean of the estimated parameters of
the standard GARCH(1,1)-model with different α’s and β’s
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Sample

size α̂MDE α̂MLE β̂MDE β̂MLE δ̂MDE δ̂MLE

g) α = 0.075, β = 0.70

100 0.081 0.083 0.570 0.154 0.651 0.238

200 0.077 0.081 0.547 0.249 0.624 0.330

300 0.074 0.080 0.545 0.324 0.623 0.404

400 0.073 0.080 0.551 0.381 0.624 0.461

500 0.071 0.079 0.563 0.428 0.634 0.508

1000 0.071 0.078 0.594 0.571 0.665 0.649

2000 0.072 0.077 0.630 0.657 0.702 0.733

h) α = 0.055, β = 0.90

100 0.052 0.076 0.788 0.541 0.840 0.618

200 0.050 0.069 0.777 0.637 0.828 0.707

300 0.049 0.066 0.782 0.705 0.831 0.771

400 0.046 0.064 0.797 0.757 0.843 0.821

500 0.047 0.062 0.806 0.789 0.853 0.851

1000 0.041 0.053 0.841 0.849 0.882 0.902

2000 0.040 0.077 0.888 0.885 0.920 0.936

i) α = 0.055, β = 0.80

100 0.056 0.078 0.649 0.161 0.706 0.240

200 0.059 0.069 0.654 0.246 0.713 0.316

300 0.057 0.066 0.659 0.319 0.717 0.385

400 0.062 0.0634 0.675 0.376 0.737 0.440

500 0.061 0.062 0.681 0.428 0.743 0.491

1000 0.052 0.060 0.692 0.591 0.744 0.651

2000 0.051 0.057 0.737 0.718 0.789 0.776

3000 0.048 0.056 0.749 0.767 0.797 0.823

4000 0.048 0.056 0.764 0.782 0.812 0.838

Table 10.6: MDE and MLE simulated mean of the estimated parameters of
the standard GARCH(1,1)-model with different α’s and β’s
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Sample
size α̂MDE α̂MLE β̂MDE β̂MLE δ̂MDE δ̂MLE

j) α = 0.10, β = 0.77
100 0.093 0.117 0.630 0.254 0.723 0.371
200 0.093 0.110 0.633 0.403 0.726 0.513
300 0.091 0.108 0.645 0.501 0.737 0.609
400 0.089 0.107 0.662 0.577 0.752 0.684
500 0.089 0.106 0.677 0.624 0.766 0.730

1000 0.089 0.102 0.714 0.729 0.803 0.832
2000 0.091 0.100 0.741 0.759 0.832 0.859

k) α = 0.09, β = 0.77
100 0.086 0.108 0.642 0.231 0.728 0.339
200 0.084 0.103 0.626 0.366 0.710 0.468
300 0.082 0.100 0.641 0.462 0.723 0.563
400 0.081 0.099 0.646 0.534 0.727 0.633
500 0.081 0.097 0.665 0.586 0.746 0.683

1000 0.080 0.092 0.705 0.749 0.787 0.841
2000 0.082 0.091 0.734 0.786 0.817 0.877

l) α = 0.09, β = 0.80
100 0.082 0.108 0.679 0.264 0.761 0.372
200 0.081 0.101 0.671 0.410 0.753 0.511
300 0.081 0.099 0.676 0.509 0.758 0.608
400 0.080 0.097 0.692 0.579 0.772 0.677
500 0.080 0.095 0.705 0.631 0.785 0.727

1000 0.080 0.092 0.746 0.749 0.826 0.841
2000 0.073 0.091 0.766 0.786 0.839 0.877

Table 10.7: MDE and MLE simulated mean of the estimated parameters of
the standard GARCH(1,1)-model with different α’s and β’s



152 CHAPTER 10. APPENDIX

Sample

size α̂MDE α̂MLE β̂MDE β̂MLE δ̂MDE δ̂MLE

m) α = 0.16, β = 0.60

100 0.138 0.112 0.473 0.167 0.611 0.279

200 0.141 0.114 0.479 0.254 0.621 0.369

300 0.140 0.114 0.489 0.309 0.629 0.424

400 0.140 0.115 0.500 0.346 0.640 0.462

500 0.140 0.117 0.512 0.375 0.652 0.492

1000 0.142 0.157 0.535 0.553 0.677 0.710

2000 0.145 0.160 0.557 0.584 0.702 0.744

n) α = 0.08, β = 0.80

100 0.076 0.099 0.678 0.230 0.755 0.330

200 0.076 0.091 0.662 0.356 0.738 0.447

300 0.073 0.088 0.671 0.453 0.744 0.542

400 0.073 0.087 0.675 0.526 0.749 0.614

500 0.073 0.086 0.687 0.582 0.760 0.668

1000 0.071 0.084 0.739 0.718 0.811 0.802

2000 0.073 0.081 0.767 0.779 0.840 0.861

o) α = 0.10, β = 0.70

100 0.081 0.109 0.578 0.217 0.659 0.327

200 0.082 0.107 0.568 0.344 0.650 0.452

300 0.083 0.107 0.575 0.430 0.658 0.537

400 0.084 0.106 0.589 0.497 0.673 0.603

500 0.086 0.105 0.597 0.537 0.684 0.642

1000 0.088 0.103 0.638 0.639 0.726 0.742

2000 0.092 0.101 0.667 0.697 0.760 0.780

Table 10.8: MDE and MLE simulated mean of the estimated parameters of
the standard GARCH(1,1)-model with different α’s and β’s
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