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Overview on structures and

models code referred to in this

thesis

Structures

+ benzene ×benzene

low high low high

A B M N benzene only

C D O P + latent risk covariate

E F Q R + linear trend covariate

G H S T + increased risk in the southern part

I J U V + increased risk in 3 clusters

⇓ ⇓ ⇓ ⇓ ⇓
330 770 330 770 + 330 cases

Schematic overview of the generated structures.
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Models

Models with fixed locations of Gaussian kernels

Poisson–Gamma models with additive influence of benzene:

model a: no latent risk sources;

model b: 4 latent risk sources with d1 = 15km;

model c: 9 latent risk sources with d1 = 15km;

model d: combination of sources from b and c to 13 latent risk sources;

model e: 36 latent risk sources with d2 = 5km;

Poisson–Gamma models with multiplicative influence of benzene:

model g: no latent risk sources;

model h: 4 latent risk sources with d1 = 15km;

model i: 9 latent risk sources with d1 = 15km;

model j: combination of sources from b and c to 13 latent risk sources;

model k: 36 latent risk sources with d2 = 5km;

Poisson–Gamma model with no influence of benzene:

model w: 36 latent risk sources;

model x: 13 latent risk sources;

Other spatial models:

model y: BDCD algorithm, wards parted by river Thames are neighbours;

model z: CAR model, neighbourhood structure as used in BDCD;

model v: CAR model, wards parted by river Thames are not neighbours.

Models with random locations of Gaussian kernels

model f : Poisson–Gamma model with additive influence of benzene;

model m: Poisson–Gamma model with multiplicative influence of benzene;

model o: Poisson–Gamma model with no influence of benzene.
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Chapter 1

Introduction

In spatial epidemiology interest often focuses on describing and modelling spatial

variation of diseases and other spatial phenomena. The area of research can be

divided into ecologic regression studies and disease mapping studies. The first

group focuses on the estimation of regression coefficients in order to quantify the

exposure/disease relationship, whereas the second one has the objective to estimate

the spatial risk surface by highlighting areas of elevated and lowered risk. Another

field of spatial models is given by cluster models which focus on determining disease

etiology but provide also a popular tool in disease mapping. As the variance of the

ratio between observed and expected cases, the so–called standardised mortality

ratio (SMR) depends reciprocally on the number of expected cases differentiation

between random variation and variation in the SMRs is difficult. Methods based

on Bayesian assumptions have been used to remove sample variation. To improve

prediction, measured as well as latent covariates can be included in the model. For

an introduction on spatial epidemiology see for example Elliot et al. (2000).

The spatial analysis performed in this thesis was motivated by the paper by

Best et al. (2001) who analyse childhood leukaemia rates in dependence on en-

vironmental benzene emissions using ecologic regression models.

Childhood leukaemia and its causes are a main research area. Compared to other

diseases in economically developed parts of the world cancer in children is a rare

disease. It accounts for less than 1% of new cancers each year (Wild and Kleinjans,

2003) and has an incidence rate of about 4 in 100 000 per year (Little, 1999). Never-

theless, cancer follows accidents as the second most common entry in cause of death
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statistics for children. Among cancers, leukaemia is the most frequent one. Various

causes for leukaemia are discussed. Dockerty et al. (2001) investigate the effects of

parental age, parity (the total number of previous children live born and stillborn to

the mother) and socioeconomic level on childhood cancer in a case–control study in-

volving more than 10 000 matched pairs of children. Other risk factors are the expo-

sure to high doses of ionising radiation, trisomy 21, certain rare diseases (Fanconis

anaemia, ataxia-telangiectasia, type 1 neurofibromatosis), and certain chemother-

apies (Steffen et al., 2004). Dickinson et al. (2003) analyse the proximity of rail-

way lines to the household as an alternative risk factor for childhood leukaemia

but found no significant association. UK Childhood Cancer Study Investigators

(2000b) perform a case–control study involving 3 838 children with cancer and

7 629 unaffected children living in England, Scotland, and Wales in the period

1991–1998 to evaluate possible causes of childhood cancer. Among other re-

sults, they have found no association between higher radon concentrations and

risk of any of the childhood cancers or the residential proximity to power lines

(UK Childhood Cancer Study Investigators, 2000a). Another report on the devel-

opment of childhood leukaemia in Great Britain from 1969 to 1993 is published by

the Committee on Medical Aspects of Radiation in the Environment (COMARE)

(2006). The authors show evidence for spatial clustering in Britain, but no evi-

dence for clustering around nuclear installations in general, although the village

next to the Sellafield power plant showed an excess of cases.

In this thesis, we model childhood leukaemia data previously analysed by Best et al.

(2001). At the level of electoral wards leukaemia cases of children under 15 years

old are given as well as corresponding population counts. These are related to

environmental benzene exposure modelled on a 1 km × 1 km grid. As an alter-

native covariate we use a deprivation index which is given on ward level. The

chosen index is the one of Carstairs (1995). The data set is presented in detail in

Chapter 2.

When analysing the observed leukaemia cases in relation to benzene emissions,

we have to cope with different spatial resolutions. The usual approach to deal

with such data is to aggregate data and covariates to a common spatial scale.

The frequently used Markov random field (MRF) ecologic regression model is one

example for such models that have to deal with the problem of the ecological

fallacy (Richardson, 1992). This term reflects the idea that group–level exposure–

response relationship may not reflect individual–level relationship. As we usually
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assume a Uniform distribution of risk within aggregated areas the problem of

ecological fallacy tends to be larger for higher aggregations. Nevertheless, it the

MRF ecologic regression model is almost exclusively used.

A random field generalisation of Poisson–Gamma hierarchical models, introduced

by Wolpert and Ickstadt (1998) and generalised by Best et al. (2000) for an appli-

cation in epidemiology, provides a more suitable modelling framework. Here, we

are able to model data and covariates on their original spatial scales. A further

advantage is the possibility to model covariates either as excess or relative risk

factors (Breslow and Day, 1980) leading to different interpretations. The additive

influence of excess risk factors allows alternative explanations of an event and is

preferable for competing, non–interacting effects. The multiplicative influence of

relative risk factors reflects different individual susceptibilities to a covariate. La-

tent covariates can be introduced to improve risk estimates not associated with

considered covariates.

Commonly used log–linear models allow only for multiplicative modelling which

may not reflect the true influence of each covariate. The class of Poisson–Gamma

random field models provides a flexible tool which does not rely on multiplicative

modelling of covariates and latent risk. In this thesis, we focus on investigation

of the impact of a relative risk factor modelled as an excess risk factor and vice

versa as well as the performance of Poisson–Gamma models in general using sim-

ulated data sets as well as the one by Best et al. (2001). This includes the effect

of different settings of the latent spatial structure. Different spatial resolutions of

benzene and leukaemia rates are neglected for computational reasons. Neverthe-

less, modelling of the latent field is on a different scale.

Spatial analyses have to deal with many sources of complexity. Therefore in mod-

elling such data, we do not directly specify parameters for all sources of variability.

Alternatively, a Bayesian hierarchical framework allows to model uncertainty in

estimation of model parameters in a flexible and hierarchical way. An overview

on Bayesian modelling is given in Chapter 3. This includes a brief introduction

to Markov chain Monte Carlo (MCMC) methods. A description of the models

applied throughout this thesis builds the main part of the third Chapter. It in-

cludes the class of Poisson–Gamma random field models, their implementation

in WinBUGS, as well as alternatively considered models. These are a cluster-

ing model by Knorr-Held and Raßer (2000), the so–called Bayesian Detection of

Clusters and Discontinuities (BDCD), and an ecologic regression model based on
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Markov random fields (MRF) similar to the one used in Best et al. (2001).

One focus of this thesis is to implement Poisson–Gamma models in the Bayesian

software programme WinBUGS (Spiegelhalter et al., 2004). This software is very

popular for Bayesian applications. Selected spatial models such as the widely used

MRF ecologic regression models are already implemented and ready to use, which

is one reason for its popularity. By implementation of Poison–Gamma models in

the software and analysing the according performance of this model class, which

is the main focus of this thesis we hope to provide an alternative easy accessible

modelling framework.

The main disadvantage of the software is it’s non–automatised state where con-

stant interaction between user and software is required. To improve the appli-

cation of WinBUGS, the development of automatisation software is necessary.

This is provided by the packages R2WinBUGS (Sturtz et al., 2005) and BRugs

(Thomas et al., 2006) which allow to use WinBUGS from the statistical software

R (R Development Core Team, 2006). An introduction to these packages is given

in Chapter 4.

When working with MCMC methods, convergence of Markov chains needs to

be assessed. The criterion of Brooks, Gelman and Rubin (Gelman and Rubin,

1992, Brooks and Gelman, 1998) is suitable to validate convergence of chains to-

wards the posterior distribution. Once the model is fitted appropriately its fit

has to be compared to alternative models. The Deviance Information Criterion

(Spiegelhalter et al., 2002, DIC) is such a criterion. We employ the DIC to select

the most appropriate model for the data. In Chapter 5 we discuss both, conver-

gence diagnostics and DIC.

To analyse the performance of the proposed models and its performance within

WinBUGS, we generate different spatial structures in a simulation study, the de-

sign of the study and the structures is described in Chapter 6.

For selected basic structures we use a restricted WinBUGS’ implementation of

Poisson–Gamma random field models. Here we limit the models’ ability to estimate

latent risk in order to get an idea if such an intermediate model between the

discrete and the continuous version of the class of Poisson–Gamma models already

gives a sufficient modelling framework. The corresponding results are presented in

Chapter 7.
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The simulations reveal the necessity of model refinement. We therefore extend our

model and apply it on all generated structures structures described in Chapter 6.

The collection of generated structures allows for a comprehensive judgement and

comparison of models’ performances which we present in Chapter 8.

In Chapter 9, we apply Poisson–Gamma random field models as well as the MRF

models and the BDCD algorithm on leukaemia cases observed in Inner London.

Used covariates include benzene emissions and the Carstairs index. We use both

as either excess or relative risk factor and estimate the spatial risk surface. To

improve models’ performance we include a sufficient number of latent covariates.

Finally, we summarise the results in Chapter 10, where we also give an outlook to

future work.
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Chapter 2

Data description

In many applications, disease data as well as exposure data and covariates are

measured on different geographical scales. These include individual level data and

aggregated counts for administrative areas as well as regular and irregular grid

structures.

In Britain, possible administrative areas are countries, districts and wards. Other

geographies include health structures (health authorities, primary care trusts),

electoral (parliamentary constituencies), postal (postcode sectors, unit postcodes),

statistical (census output areas) and other aggregations (national parks, local ed-

ucation authorities).

Enumeration districts (ED) build the lowest level of census geography in Britain.

Higher units, such as electoral wards and countries are merged EDs. Each of them

contains approximately 200 households or equivalently around 400 persons.

The next stage of British census geography are wards. On national average, each

ward contains approximately 5 500 people, although they tend to be more populous

in urban areas. They represent convenient geographical units for small area epi-

demiological studies, as for each ward, census population and other demographic

data are available. For Greater London, we have 873 wards based on the census

of 1991. Inner London consists of 310 wards.

The next stage of this geography are local authority districts (LAD) comprising

around 20 wards. The number of comprised wards varies between eight to 45 for

the region of Greater London.
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Another commonly used geography is given by the postcode of residence. It is

used to survey the number of incident cases of leukaemia. Postcodes do not nest

exactly within wards, but there exist postcode to ED look–up tables, see e.g.

http://census.ac.uk/cdu/Datasets/Lookup_tables/Postal/

Postcode_Enumeration_District_Directory.htm.

In this chapter we describe the different data sets used in this thesis. First of

all, this is information on leukaemia incidences in the study region (Section 2.1).

Additionally, we use population counts to correlate incident cases of leukaemia

in different wards. These are described in Section 2.2. As covariates, we use

benzene exposure data (Section 2.3) and the deprivation index as introduced by

Carstairs and Morris (1991). This index is described in Section 2.4.

2.1 Leukaemia registration data

Leukaemia is the most common cancer in childhood. There are several types of

leukaemia, such as the most common type in children, called acute lymphoblastic

leukaemia. For medical background information on leukaemia see for example

Groër and Shekleton (1979).

Incident cases of leukaemia are registered at the Office for National Statistics and

the Thames Cancer Registry for the period from 1985 until 1996. Before 1985, the

area that was covered comprised three separate cancer registries, namely the North

West, North East and South registries (Best and Wakefield, 1999). A review of

the complex cancer registration system operating in England and Wales is given

in Swerdlow (1986) and Gulliford et al. (1993). They found a good documentation

of cancer in general. One major reason for decreased data quality is the existence

of different regional cancer registers which work at different completeness and

accuracy levels. Therefore, the combination of different regional registers may lead

to misinterpretations (Swerdlow, 1986). Hence, data from before the amalgamation

of the three London cancer registries in 1985 is not considered in this thesis.

Cancer type, date of birth, sex, and postcode of residence (at the time of diagnosis)

are available for each registration. Each registered case was checked involving

matching cases with regards to postcode, sex and date of birth. In two postcode

areas Health Offices of Qatar and Kuwait were located. This leads to unusually

8



Greater London Inner London

number of cases 734 295

median 1 1

arithmetic mean 0.841 0.916

variance 1.070 1.224

form of distribution right skewed right skewed

wards with 0 cases 418 (47.9%) 133 (42.9%)

wards with 1 cases 267 (30.6%) 101 (32.6%)

wards with 2 cases 125 (14.3%) 51 (16.5%)

wards with 3 cases 44 (5.0%) 13 (4.2%)

wards with 4 cases 11 (1.3%) 7 (2.2%)

wards with 5 cases 7 (0.8%) 5 (1.6%)

wards with 6 cases 1 (0.1%) 0 ( 0.0%)

Table 2.1: Some descriptive characteristics of incident cases of childhood

leukaemia for Greater and Inner London.

high numbers of registered cases. Best et al. (2001) estimate the number of cases

in these two areas as additional parameters in the model. In this thesis we will

use the estimated numbers from that paper. Additional data checks are described

in more detail in Best et al. (2001). Over the 12–year study period, we observe

734 registered cases of cancer in children under 15 years old in the area of Greater

London. For Inner London, there are 295 cases. Some additional characteristics

of these data are given in Table 2.1.

For the spatial distribution of the data see Figure 2.1. They look rather scattered

over the whole area of Greater London. Nevertheless, there are less cases in the

south–western part of the area. Additionally, high incidences of more than three

cases are more likely to be observed in the north–east of Greater London.
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Figure 2.1: Incident cases of childhood leukaemia registered in the period of

1985–1996, bold line marks border of Inner London.

2.2 Population estimates and number of ex-

pected cases

The number of observed cases is directly influenced by the population at risk.

Therefore, it is necessary to involve population figures into the analysis. Popula-

tion counts stratified by sex and age are available for enumeration districts from

the 1981 and 1991 censuses. For intercensual years, counts must be interpolated

accounting for demographic changes (e.g. deaths and births), aging of the popula-

tion, and migration. Several approaches to model population counts are discussed

in Best and Wakefield (1999).

In this thesis we use a set of annual age– and sex–stratified population estimates

produced for 1991 EDs following the approach by Arnold (1999) using simple

linear interpolation. The interpolated strata– and ED–specific counts are rescaled

to sum to the published Registrar General’s mid–year population estimates which

are available only for much larger geographical areas, i.e., LADs (Best et al., 2001).

Using population estimates it is possible to calculate the number of expected in-
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Figure 2.2: Number of expected incidences in the period of 1985–1996, bold line

marks border of Inner London.

cidences Ei for each ward i, i = 1, . . . , n. This is done separately for six different

age–sex strata corresponding to boys and girls aged 0–4, 5–9 and 10–12 years old,

for twelve time periods t corresponding to each of the years 1985–1996. Given

the national leukaemia rate rst for age–sex stratum s and year t, we calculate the

number of expected cases

Ei =
∑

st

rstNist

using the estimated population at risk Nist in ward i, age–sex stratum s and year t.

An impression of the spatial distribution of the number of expected incidences is

given in Figure 2.2. Here, we can see parts with high population density, e.g., in

the north of Greater London or the east of Inner London. Some characteristics of

population figures are given in Table 2.2. These are very similar for both regions

and show smaller values than the ones of observed cases, compare Table 2.1.

Using both, observed and expected cases, we can calculate incidences corrected for

population figures. This corresponds to SMRs which are given in Figure 9.1 on

page 124.
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Greater London Inner London

number of expected cases 679.119 237.848

minimum 0.0001 0.0001

1st quartile 0.543 0.533

median 0.752 0.756

arithmetic mean 0.778 0.767

3rd quartile 1.005 1.025

maximum 1.924 1.924

variance 0.110 0.125

Table 2.2: Some descriptive characteristics of the expected incidences of child-

hood leukaemia for Greater and Inner London.

2.3 Benzene exposure data

Benzene is a colourless liquid with a sweet odour found in air, water and soil. It

is produced by human activities, but comes also from natural processes like for-

est fires or eruption of volcanoes. It passes into the air from burning coal or oil,

benzene waste and storage operations, motor vehicle exhaust or evaporation from

petrol service stations (Agency for Toxic Substance and Disease Registry (ATSDR),

1997). Smoking was found to be the largest anthropogenic source of background

exposure to benzene (Hattemer-Frey et al., 1990). A review of large–scale studies

of personal or indoor air levels of benzene is given in Wallace (1996).

Most people are exposed to a small amount of benzene on a daily basis, mainly

through breathing air that contains the substance. For small children, the daily

intake of air has been estimated to be 2.3 times higher than in adults, accounting

for body weight in kg (Wild and Kleinjans, 2003). Benzene is classified as a group

1 carcinogen by the International Agency for Research on Cancer. It is well known

that benzene exposure increases the risk of leukaemia in adults, see for example

Yardley-Jones et al. (1991), Duarte-Davidson et al. (2001), Dockerty et al. (2001),

and Linet and Cartwright (1996).

Obtaining benzene exposure data via personal devices is extremely costly. An al-

ternative is to monitor air quality at selected locations. This gives only information
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Greater London Inner London

minimum 0.247 0.341

1st quartile 0.862 1.149

median 1.123 1.319

arithmetic mean 1.101 1.321

3rd quartile 1.333 1.485

maximum 2.612 2.612

variance 0.122 0.092

Table 2.3: Some descriptive characteristics of the atmospheric benzene emissions

for Greater and Inner London.

about benzene level at these locations and is still expensive.

Another option is the use of an atmospheric emissions inventory. Such an inventory

schedules the sources of pollutants within a particular geographic area. For each

of the scheduled sources, the emission rate can be calculated by

emission rate = activity rate × emission factor.

Activity rates are collected for all sources related to benzene emissions and applied

to the activity to estimate the likely emissions in each of the observed areas.

Sources of emissions include modelled traffic flows, petrol stations and commercial,

residential and industrial combustion processes.

The London Research Centre (http://www.london-research.gov.uk) has pro-

duced such an atmospheric emissions inventory for London (Buckingham et al.,

1997). Using the estimates provided by this inventory, benzene exposure data is

provided for the area of Greater London on 1 km × 1 km grid squares covering

the area within the M25 orbital motorway. The estimated numbers are given in

tonnes per year, ranging between 0.247 and 2.612 for Greater London, see Fig-

ure 2.3. Estimates in this inventory are based on data collected in 1995. By that

time traffic flows on most London roads had been at capacity for several years.

Therefore it is not unrealistic to assume that these estimates are applicable from

the early 1990s onwards. Table 2.3 compares some characteristics of benzene emis-

sions for Greater and Inner London. As we see we estimate higher emissions in

13
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Figure 2.3: Observed benzene exposure data for Greater London on 1 km × 1 km

grid cells, line marks border of Inner London.

the Inner London area leading to a smaller variance as well.

2.4 An index of deprivation

An alternative explanation of leukaemia incidence can be seen in deprivation. A

prominent example of a deprivation index is the Carstairs index proposed by

Carstairs and Morris (1991). It focuses on material deprivation, i.e., the access

to material resources to reflect wealth and income (Carstairs, 2000). It includes

the percentages of

• individuals living in overcrowded accommodation, i.e., more than one person

per room;

• male unemployment;

• low social class households (head of household in social class IV of V);

• households without a car.

14
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Figure 2.4: Quantiles of Carstairs index for Inner London.

These percentages are reduced to a single standardised value with mean zero and

variance one without any weighting or transformation (Carstairs, 2000). There

exist alternative deprivation indices differing by weighting scheme, used transfor-

mations and the variables included. The larger the score, the greater is the depri-

vation suffered by the according ward. For a comparison of deprivation indices see

Carstairs (1995).

The Carstairs index is given on ward level for the area of Inner London. It is

aggregated to quintiles referring to Greater London. For Inner London, this results

in a single ward with an index of “1” representing the lowest quintile, while most

wards lie in the highest quintile. For modeling purposes, we use the highest class

including 233 of 310 wards as reference value. Additionally, we combine class 1

and 2 to a single class of 6 wards. The resulting spatial pattern is presented in

Figure 2.4.
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Chapter 3

Spatial models

There exist several alternative approaches for modelling spatially distributed data.

Data sets can consist of either point–referenced data, areal data or point pattern

data.

For point–referenced data, there are observations for a chosen set of locations which

vary continuously over the space. Here methods like the descriptive covariogram

— a plot of the covariance versus the distance — or exponential modelling are

used to describe or to analyse dependence between two locations as a function of

the distance, see for example Cressie (1993). Spatial prediction at points where

no data are observed can be done by spatial interpolation, so–called kriging. For

details on kriging see Stein (1999).

With areal data a fixed subset of the space is partitioned into a finite number

of areal units with well defined boundaries. Commonly used models incorporate

Markov random fields (Rue and Held, 2005, MRF) and the usage of neighbour-

hood information by simultaneously and conditionally autoregressive models (see

Whittle, 1954, and Besag et al., 1991, respectively).

For point pattern data the location of an observation itself can be considered

to be random. Therefore data indicate the occurrence of an event and possibly

give additional covariate information. In the later case we refer to marked point

processes. Here, tests for spatial randomness, applications of Poisson processes

and Markov point processes are appropriate approaches (Diggle, 2003).

A comprehensive review on modelling all kind of spatially distributed data is given
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by, e.g., Banerjee et al. (2004). Inclusion of a time dimension leads to spatial–

temporal processes which are discussed for example by Finkenstädt et al. (2007).

In the context of spatial epidemiology we usually deal with areal or point pat-

tern data. The number of observed incidences is usually assumed to follow a

Poisson distribution, for nonrare diseases a binomial model is more appropriate

(Knorr-Held and Besag, 1998). There exist several alternative approaches when

a Poisson distribution can be assumed. Best et al. (2000) for example model the

observed counts by a Poisson–Gamma model, Wakefield et al. (2000) by a Poisson–

Gamma and a Poisson–log–Normal model. Different modelling approaches given

by Fernández and Green (2002) and Green and Richardson (2002) introduce a

mixture model for Poisson distributed data in which the weights vary according

to the observations. Spatial dependencies are commonly modelled in the context

of MRFs via conditional autoregressive (CAR) terms. Univariate CAR models

introduced by Besag et al. (1991) are extended to multivariate CAR models for

two related diseases by Held et al. (2005) and Jin et al. (2005).

Recent model approaches include the analysis of boundaries that separate areas

of elevated and lowered risk by Bayesian wombling (see Banerjee et al., 2003, for

point–referenced data and Lu and Carlin, 2005, for areal data).

Other approaches try to reduce ecological bias of data that are given on an aggre-

gated level. Jackson et al. (2006) show improvement of inference for these data by

combining individual–level data with aggregated data.

This chapter focusses on the models employed on observed as well as generated

data in this thesis. Following an overview on Bayesian inference and Markov

chain Monte Carlo (MCMC) methods in Section 3.1 and definitions of Poisson

and Gamma random fields in Section 3.2, we introduce conjugate Poisson–Gamma

hierarchical models (Clayton and Kaldor, 1987) in Section 3.3. This approach

assumes data and covariates given for equal geographies. Wolpert and Ickstadt

(1998) present a generalisation using a random field approach, allowing for data

and covariates on disparate spatial scales. The random field approach is generalised

by Best et al. (2000) for an application in epidemiology, allowing to model covari-

ates either as excess or relative risk factors. This extension of Poisson–Gamma

models is also described in Section 3.3.

To employ Poisson–Gamma random field models on a specific data set we have to

adopt the theoretical approach presented in Section 3.3 to the given data. Sec-
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tion 3.4 discusses the chosen settings and the implementation in WinBUGS.

Parameter estimation is done in a Bayesian framework using MCMC methods.

Therefore, it is necessary to introduce prior distributions on the highest level of

hierarchy expressing uncertainty about the parameters. The choice of prior dis-

tributions for the data analysed in this thesis is described in Section 3.4.1. Im-

plementation in WinBUGS is discussed in Section 3.4.2 and Section 3.4.3. While

the first deals with the implementation of a restricted version of Poisson–Gamma

random field models, the latter discusses a more appropriate implementation of

this model class.

Alternative spatial models are used to compare model performances of the different

modelling approaches. We employ an alternative ecologic regression model based

on a Markov random field (MRF) involving a CAR term as well as the cluster

model by Knorr-Held and Raßer (2000). These are presented in Section 3.5 (MRF

model) and Section 3.6 (clustering approach).

3.1 Bayesian inference

From a Bayesian point of view both the observables and the parameters of the

statistical model are considered to be random. The joint probability function

P (Y, β) of observed data Y and model parameters β combines information from

the data given by a likelihood function and a prior distribution P (β) expressing

uncertainty about β before taking data into account, i.e.,

P (Y, β) = P (Y |β)P (β).

Using Bayes theorem, we can express the distribution of the parameters β given

the observed data Y by

P (β|Y ) =
P (β)P (Y |β)∫
P (β)P (Y |β)dβ

.

The posterior distribution P (β|Y ) is used for Bayesian inference (Gilks et al.,

1996a) and to obtain moments, quantiles and other functions f(β) of the pa-

rameter of interest.

In many applications, we can use the concept of conjugacy to evaluate the posterior

distribution for a given likelihood and prior distribution. This will result in a pos-

terior belonging to the same family of distribution. For the Poisson distribution for
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example, the conjugate prior is a Gamma distribution, see the conjugate Poisson–

Gamma model in Section 3.3. There are other examples of conjugate priors such

as Binomially distributed data with a Beta prior that has a Beta posterior distri-

bution. For details about conjugate priors see for example Gelman et al. (2003).

Hierarchical models are a more flexible approach allowing for prior distributions for

the priors themselves, so–called hyperpriors. These reflect uncertainty about the

true values of the parameters of the prior distribution. Additionally, this concept

allows for structural dependencies of β. Information of all areas is combined via

the joint influence of the hyperprior distribution.

In a hierarchical model we improve model formulation of the priors β by hyper-

priors φ. The joint distribution is given by

P (β, φ) = P (β|φ)P (φ),

leading to the posterior

P (φ, β|Y ) ∝ P (β, φ)P (Y |β, φ)

= P (β, φ)P (Y |β).

Note that

P (Y |β, φ) = P (Y |β),

therefore hyperpriors φ are independent of Y given β.

Unfortunately, integration of the numerator of the posterior distribution, namely∫
P (β)P (Y |β) dβ can be difficult, especially for high dimensional problems.

Alternatively, we can employ Markov chains to construct samples from the pos-

terior distribution. By Monte Carlo integration, samples are averaged to obtain

the required model parameter. This approach is referred to as Markov chain

Monte Carlo (MCMC) methods. The construction of a suitable Markov chain with

the desired stationary distribution can be done, for example, by the Metropolis–

Hastings algorithm (Metropolis et al., 1953, Hastings, 1957) or the Gibbs sampler

(Geman and Geman, 1984, Gelfand and Smith, 1990, Casella and George, 1992).

Each Markov chain starts at initial values chosen by the user. A suitable algorithm

constructs a chain of length ̟. After a sufficiently long burn–in period of length

ζ, the Markov chain will reach its stationary distribution, i.e., the posterior of

the according parameter. When the steady state is reached, the distribution stays
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stationary (Gamerman, 1997). After discarding ζ samples from the so–called burn–

in period, we estimate the expected value of any function f(·) by the remaining

̟ − ζ iterations by averaging

f(β) =
1

̟ − ζ

∑̟

t=ζ+1

f(βt)

(Gilks et al., 1996a). Introduction of a thinning parameter reduces autocorrelation

between the samples. For an overview about MCMC methods and applications

see Gilks et al. (1996b). A popular criterion to determine the length of a sufficient

burn–in period is the one by Brooks, Gelman and Rubin described in Section 5.1.

Gelman (1996) suggests to use multiple chains for each MCMC simulation and the

usage of widely dispersed initial values. This helps to identify whether a Markov

chain has reached its target distribution, especially if convergence is slow. We

follow this recommendation by employing two Markov chains for each run.

For the Bayesian analysis of the leukaemia data set as well as the simulation

study we use the software WinBUGS (Spiegelhalter et al., 2004) and OpenBUGS

(Thomas, 2004). All other computations are done in the statistical software R

(R Development Core Team, 2006). For linking WinBUGS and R, we use the R

package R2WinBUGS (Sturtz et al., 2005), linking between R and OpenBUGS

is done via the R package BRugs (Thomas et al., 2006). An introduction to the

software packages is given in Chapter 4.

The BUGS software uses Gibbs sampling to construct transition kernels for Markov

chain samplers. While compiling, it sets for each model parameter a method to

draw a sample from the relevant full conditional distribution. These are chosen

according to the hierarchy given in Table 3.1. A review of WinBUGS as well as

an example of usage can be found in Cowles (2004).

3.2 Poisson and Gamma random fields

Before we introduce Poisson–Gamma models we need to define Poisson random

fields (Definition 3.2.1) and Gamma random fields (Definition 3.2.2). For these

definitions we follow the work of Ickstadt (2001).
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discrete target distribution

finite upper bound inversion

shifted Poisson direct sampling using standard algorithm

continuous target distribution

conjugate direct sampling using standard algorithms

log–concave adaptive rejection sampling (Gilks, 1992)

restricted range slice sampling (Neal, 1997)

unrestricted range random walk Metropolis (Metropolis et al., 1953)

Table 3.1: Sampling methods hierarchy used by WinBUGS (Spiegelhalter et al.,

2004).

Definition 3.2.1 (Poisson random field)

Let Y ⊂ IRd with Borel σ–algebra B(Y) and N(A) a number of points in Y ∩ A.

N(dy) is a Poisson random field on Y with non–negative σ–finite intensity measure

λ(dy) if

a) for each measurable set A ∈ B(Y) with λ(A) < ∞ and integer k ≥ 0

P (N(A) = k) =
λ(A)k exp(λ(A))

k!

and

b) for any disjoint measurable subsets A1, . . . , Ak ⊂ B(Y), j = 1, . . . , k, the random

variables N(A1), . . . , N(Ak) are independent.

Therefore, for each A the number of points in A has a Poisson distribution with

mean λ(A). As the Poisson process is a point process, realisations of a Poisson

random field are almost surely discrete with finitely many integer point masses or

jumps.

Similar to a Poisson random field we can define a Gamma random field.

Definition 3.2.2 (Gamma random field)

Let S ⊂ IRd with Borel σ–algebra B(S) and Γ(A) a number of points in S ∩ A.

Γ(ds) is a Gamma random field on S with non–negative σ–finite shape measure

α(ds) and inverse scale β > 0 if

a) for each measurable set A ∈ B(S) with α(ds) < ∞ the random variable Γ(A)

has a density

fΓ(A)(t) =
βα(A)tα(A)−1 exp (−βt)

Γ(α(A))
, t > 0,
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and

b) for any disjoint measurable subsets A1, . . . , Ak ⊂ B(S) with α(Aj) < ∞, j =

1, . . . , k, the random variables Γ(A1), . . . ,Γ(Ak) are independent.

It follows, that for each set A the random variable Γ(A) has a Gamma(α(A), β−1)

distribution with

α(A) =

∫

A
α(ds) =

∫

A
α(s)Π(ds)

where α(s) is a density w.r.t. some reference measure Π(ds). Realisations of a

Gamma process are almost surely discrete as they consist of countably infinitely

many jumps at locations sm ∈ S with corresponding magnitudes γm > 0, i.e.

Γ(ds) =
∑

m γmδsm(ds). Wolpert and Ickstadt (1998) present the Inverse Lévy

Measure (ILM) algorithm to construct a Gamma random field, for our approaches

in WinBUGS and their limitations see Sections 3.4.2 and 3.4.3.

3.3 Theory of Poisson–Gamma models

In epidemiological contexts, we observe Ni cases in region i, i = 1, . . . , n, due

to an infection or disease or death. This number is modelled in dependence to

the expected number Ei of infections or deaths in the corresponding region and

a number of possible covariates. The usual approach is to assume Ni to follow a

Poisson distribution with mean λi Ei depending on the number of expected cases

Ei and the relative risk λi, i.e.,

Ni ∼ Pois(λi Ei).

A possible approach for modelling the relative risk λi is given by Poisson–Gamma

random field models (Best et al., 2000).

The class of Poisson–Gamma random field models is a generalisation of conju-

gate Poisson–Gamma models first described by Clayton and Kaldor (1987).

Furthermore, these models represent a generalisation of generalised linear mixed

models as described by Böhning (2000) as well as McLachlan and Peel (2000).

Clayton and Kaldor (1987) assume the relative risk λi in region i to follow a

Gamma distribution with shape α and scale τ a priori, i.e.,

λi ∼ Gamma(α, τ).
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Thus, the posterior distribution of λi is

λi ∼ Gamma(Ei + α,Ni + τ)

and the posterior expectation given the observed values and the prior settings of

the Gamma distribution is

E(λi|Ni;α, τ) =
Ni + τ

Ei + α

(Clayton and Kaldor, 1987). Hence, each estimate compromises the observed SMR

and the prior mean α/τ . For large numbers in region i, E(λi|Ni;α, τ) will be close

to SMR = Ni/Ei, while for small numbers the expectation is close to the overall

prior mean α/τ . For the estimation of α and τ , empirical or hierarchical Bayes

methods can be employed.

This model is mathematically easy, but requires a sensible choice of the parame-

ters of the Gamma distribution. The generalisation of this model by hierarchical

structures is a necessary improvement.

Furthermore, the model demands the same spatial resolution of observed and ex-

pected values. When aggregating individual data to groups or combining smaller

groups to larger ones in order to get a common spatial scale, the so–called ecolog-

ical bias or fallacy occurs. Spatial models assume homogeneous risk within each

aggregated area. This implicit Uniform distribution across the aggregation may

lead to over– or underestimation of the true effect. Ecological bias is discussed in

detail for example in Richardson (1992) and Greenland and Robins (1994).

A generalisation of Poisson–Gamma conjugate models by Clayton and Kaldor (1987)

is presented by the papers of Ickstadt and Wolpert (1997) and Wolpert and Ickstadt

(1998) as a hierarchical Poisson–Gamma model that also allows for positive asso-

ciation between neighbouring regions. This is modelled by introducing doubly

stochastic Poisson processes whose intensities are mixtures of random fields. This

approach is generalised by Ickstadt and Wolpert (1999) allowing for covariates.

Contrary to other commonly used spatial models, Poisson–Gamma random

field models use an identity link function rather than log–link, allowing to model

additive and multiplicative influence of covariates, not only the latter one. This

also leads to aggregation consistency. By relating all observable quantities to an

underlying random field it is even possible to model data measured at disparate

spatial scales, see Ickstadt and Wolpert (1999). Hence, this class of models over-

comes the problem of ecological bias.
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Additionally, the model by Ickstadt and Wolpert (1999) relates the intensities of

the Poisson distribution to both location–specific covariates and individual–specific

attributes. Spatial dependence between subregions is introduced via kernel mix-

tures.

Assume an observed point process in some set Y in Euclidean space and a number

of covariates J . For any arbitrary aggregation of Y in region i, i = 1, . . . , n, we set

a Poisson regression model with identity link as follows:

Ni ∼ Pois(Λi wi)

Λi = β0 +
∑

j∈J

Xijβj ,

where wi refers to a reference weight measure, e.g., the population at risk, Xij , j ∈
J , is a set of covariates with corresponding coefficients βj , β0 corresponds to an

intercept. Setting Λi = β0 leads to the conjugate Poisson–Gamma model. We

express our uncertainty about coefficients on a second stage of hierarchy by prior

distributions β ∼ π(β).

This partition–based approach still leads to ecological fallacy. Therefore, we refine

the partition of Y until ultimate refinement, leading to observations N(dy) from a

Poisson random field with mean

N(dy) ∼ Pois(Λ(y)w(dy))

Λ(y) = β0 +
∑

j∈J

Xj(y)βj (3.1)

with reference measure w(dy) on Y for the Poisson random field as in Definition

3.2.1.

In many epidemiologic applications we may also observe individually attributed

risk, such as age and gender, which we might want to include in the model. An

extension of model (3.1) is to model a point process on a space X = Y × A of

marked points x = (y, a) on location y with marks a. This leads to

N(dy da) ∼ Pois(Λ(y, a)wY (dy)wA(da))

Λ(y, a) = β0 +
∑

j∈J

ajβj ,

which equals model (3.1) if aj = Xj(y) but setting aj = Xj(x) is more general. The

reference weight prior wA(da) of the attributes is usually chosen to be space inde-

pendent, i.e., wA(da|y1) = wA(da|y2) = wA(da) for y1 6= y2, and set to wA(da) ≡ 1,
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but can also be location–specific. Choosing wA(da) to be location–independent

gives wY (dy) the role of a population reference measure (Ickstadt and Wolpert,

1999). We use the population at risk for the leukaemia data set and the simula-

tion study.

Furthermore, we include spatial dependencies between regions introduced through

the influence of unobserved spatially varying covariates. These are expressed by

an additional component X∗(y)β∗ of unobserved but spatially correlated covariates

X∗(y) and regression coefficient β∗ to the intensity Λ(y, a).

We use a set {sm}m∈M of point locations in Y at which the m unobserved covariates

are centered. To model the decreasing influence of each latent source with decreas-

ing distance |y−s|, kernel functions k(y, s) are suitable, for example Gaussian–like

kernels proportional to exp((|y − s|/ρ)2) where the variance ρ determines the re-

gion of influence of the kernel. The influence of each kernel depends furthermore

on the latent positive magnitudes Γm associated with the set {sm}m∈M , resulting

in the latent term X∗(y) =
∑

m∈M k(y, sm)Γm.

For a Bayesian analysis we need to introduce prior distributions for the additional

regression coefficient β∗ as well as for the magnitudes {Γm}m∈M . Ickstadt and Wolpert

(1999) suggest using the conjugate prior Γm ∼ Gamma(αβ
m, τβ

m).

So our model is as follows:

N(dy da) ∼ Pois(Λ(y, a)wY (dy)wA(da))

Λ(y, a) = β0 +
∑

j∈J

ajβj +
∑

m∈M

k(y, sm)Γm β∗ (3.2)

Γm ∼ Gamma(αβ
m, τβ

m)

β ∼ π(β)d(β)

including m latent risk sources on point locations {sm}m∈M with magnitudes

{Γm}m∈M . We may extend model (3.2) by enlarging the number of point sources

m leading to an inhomogeneous Gamma random field Γ(ds) on space S as in Defini-

tion 3.2.2. Shape measure αβ(ds) and scale τβ(ds) must be reduced appropriately

when increasing the number of sources. This extends model (3.2) to
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N(dy da) ∼ Pois(Λ(y, a)wY (dy)wA(da))

Λ(y, a) = β0 +
∑

j∈J

ajβj +

∫

S

k(y, s)Γ(ds)β∗ (3.3)

Γ(ds) ∼ Gamma(αβ(ds), τβ(ds))

β ∼ π(β)d(β).

This hierarchical model representation allows for additive influence of covariates

as well as for spatial dependencies. For some applications we might doubt the va-

lidity of additivity. Additive influence of covariates is more appropriate when

we believe in competing, non–interacting effects of covariates, giving alterna-

tive explanations of an event. Such covariates are called excess risk factors

(Breslow and Day, 1980) and are interpretable as the difference of stratum–specific

incidences βj = µj,1 − µj,0 for covariate βj , j ∈ JA, for any µj,·. The mean of the

j-th covariate is denoted by µj,1 for diseased/dead persons, while µj,0 corresponds

to non–diseased/living persons. Therefore, covariate j increases the risk additively.

Excess risk factors are represented in an identity link Poisson regression model by

Λ(x) =
∑

j∈JA
Xj(x)βj for marked points x = (y, a).

Best et al. (2000) extend model (3.3) for covariates to be modelled either as ad-

ditive or multiplicative risk factors. Multiplicative modelling reflects different in-

dividual susceptibilities. By defining exp(βj) = µj,1/µj,0 for covariate βj , j ∈ JM ,

we increase a background rate of non–infected persons µj,0 by exp(βj). These are

also called relative risk factors by Breslow and Day (1980). As multiplicative

risk factors affect the scale of Λ(x), we need to introduce a normalising term c(x)

leading to Λ(x) = c(x) exp(
∑

j∈JM
Xj(x)βj) (Best et al., 2000).

Generalising model (3.3) by allowing for excess and relative risk factors leads to

the formulation:

N(dy da) ∼ Pois(Λ(y, a)wY (dy)wA(da))

Λ(y, a) =


β0 +

∑

j∈JA

ajβj +

∫

S

k(y, s)Γ(ds)β∗


× c(β, y) exp


∑

j∈JM

ajβj




Γ(ds) ∼ Gamma(αβ(ds), τβ(ds)) (3.4)

β ∼ π(β)d(β)

using a normalising term c(β, y) leading to mean relative risk factor of unity cal-
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culated by

c(β, y) =





∫

A

exp(
∑

j∈JM

ajβj)wA(da|y)





−1

(Best et al., 2000). Risk factors and attributes aj may depend on either or both

the location y and attribute a in x = (y, a) in Equation (3.4).

3.4 Settings and Implementation of Poisson–

Gamma models

In the leukaemia example, we model the number of observed cases of childhood

leukaemia Ni in ward i, i = 1, . . . , n, as a realisation of the random field N(dx) by

Ni ∼ Pois(Λ(y)wY (dy)),

where we use the number of expected cases of childhood leukaemia as described

in Section 2.2 as reference measure wY (dy) for region i, i = 1, . . . , n, and set

wA(da) = 1.

Covariate information about benzene is available and modelled either as an excess

or a relative risk factor. A maximum of one relative risk factor is considered.

Hence, the normalising term c(β, y) reduces to

c(β, y) =

{∫

A

exp

(∑

k

λik(Bk − B)βbenz

)}−1

= 1,

as (Bk − B) = 0 and is therefore no longer considered. In the left–handed term

Bk represents the amount of benzene in a grid cell k, k ∈ K, with overall mean

B. When including the Carstairs index as an alternative covariate to benzene

emissions this holds accordingly. For details on the benzene covariate see below.

Furthermore, unobserved risk can be modelled by latent spatial variables. For

the number and location of latent risk sources, different options are considered.

Chapter 6 discusses implementation for a fixed number of kernels at fixed locations

which is a restriction of the flexibility of Poisson–Gamma random field models.

Chapter 8 applies unrestricted Poisson–Gamma random field models allowing for

a random location of covariates.
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Benzene is considered as both, an excess and a relative risk factor to compare the

different model approaches. This leads to the additive model

Λ(x) = β0 + Xbenz(y)βbenz + X∗(y)β∗ (3.5)

and multiplicative model

Λ(x) = (β0 + X∗(y)β∗) exp(Xbenz(y)βbenz) (3.6)

including a baseline risk β0 and unobserved risk X∗(y) =
∑

m∈M k(y, sm)Γm in

both equations. The benzene term Xbenz is calculated using mean polished benzene

by

Xbenz =
∑

k

λik(Bk − B).

The coefficient λik equals the amount of area grid cell k and ward i have in com-

mon. This is equivalent to an aggregation of benzene to the spatial scale of the

observations. This is necessary to reduce computational time and saves up to

several days for models with higher numbers of latent risk sources. Latent risk

sources are used on their original spatial scales which is continuous following the

Gaussian kernel. The WinBUGS code for an additive model is shown exemplarily

in Appendix A.1, implementation details are discussed in Section 3.4.2 for fixed

locations of latent kernels. The assumption of a random location requires a more

complex implementation as discussed in Section 3.4.3. Furthermore, this includes

a more flexible estimation of variance.

3.4.1 Prior settings

We need to define prior distributions for all uncertain parameters. For the Poisson–

Gamma models, these are the regression coefficients βj , j ∈ J , the latent magni-

tudes Γm, and the variance parameter ρ of the Gaussian kernel.

For the regression coefficients βj , j ∈ J = {β0, βbenz, β∗}, we assume a Gamma

distribution Gamma(α, τ) with density

f(βj) =





ταβα−1

j exp (−τβj)

Γ(α) if βj > 0,

0 else,

and set the shape parameter equal to α = 0.575 because this gives the ratio of

the 90th/10th percentile of the prior distribution to be 100. This reflects a prior
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probability of 80% for the number of cases associated to each factor to lie between

a 1/10th and 10 times the prior mean. The prior scale parameter τ is chosen so

that the prior mean assumes an equal amount of association for each covariate in

J . Since the intensity Λ depends on the ratio of (♯ observed cases)/(♯ expected

cases) the prior mean for regression coefficient βj is

βap
j =

∑
i Ni

|J |∑i Ei
. (3.7)

For the latent magnitudes Γm of the kernel mixtures we use a Gamma distribution

as well. Here we choose

Γm ∼ Gamma(αm, τm)

proportional to the area of the bounding box of the modelled region. To ensure

aggregation consistency, the prior mean of the magnitudes is set to be

|I|/m,

where |I| is the area of region I and m is the number of latent risk sources. Further-

more, the prior weight of a single latent risk source is decreased when increasing

the number of modelled latent risk sources. Hence, the parameters of the corre-

sponding Gamma distribution are given by

αm = |I| × τm

τm =
1

m
.

For the kernel k(y, s) we assume a Gaussian kernel with uncertain variance pa-

rameter ρ. Prior distribution of ρ is chosen according to a log–Normal distribution

with mean 0; the precision varies between 1 and 3 where we check for consistency.

This was motivated by a prior study on model adequacy assuming fixed variances

of Gaussian kernels. Alternative kernels are also possible, see the discussion in

Chapter 10.

3.4.2 Restricted Poisson–Gamma random field models

For a first approach to implement Poisson–Gamma random field models in Win-

BUGS, we restrict the model by assuming the location of the latent covariates

30



to be fixed. In this discrete setting of Poisson–Gamma random field models, we

apply small and fixed number of Gaussian kernels with an uncertain variance. In

different settings of the model, the number of included kernels is increased. By

using infinitely many of such fixed kernels we can reproduce a Gamma random

field where only m of these have an non–negligible influence. As in the discrete

case random variables replace the random field, we can use Gamma distributions

to sample the jump height Γm of kernel m ∈ M , i. e.,

Γm ∼ Gamma(αm, τm)

In the WinBUGSs’ implementation described in this section, we assume a common

variance for all kernels, for a generalisation of the model see Section 3.4.3.

The results of the corresponding simulation study are given in Chapter 7. Here

we present the main parts of the WinBUGS code, it is given in more detail in

Appendix A.1.

For the calculation of the latent risk we discretise the modelled area by dividing

the area into squares of a fixed size. This is done as follows:

After the standardisation of the distance between the source itself and a chosen grid

cell the cumulative density function Fx for source sx and grid cell g is calculated,

see line 7 of the WinBUGS code below. The change in the cumulative distribution

function between two points g and (g+1) (line 11) gives an estimate of the influence

of the corresponding kernel sx in the grid cell.

for(sx in 1:nx.source) # loop on sources1

{2

for(g in 1:(nx.grid+1)) # loop on cells3

{4

dx[sx,g] <- 0.001*(Sx.grid[g]-Sx.source[sx])/rho5

# "standardisation"6

Fx[sx,g] <- phi(dx[sx,g]) # phi=standard normal cdf7

}8

for(g in 1:nx.grid)9

{10

dFx[sx,g] <- Fx[sx,g+1] - Fx[sx,g] # change in cdf11

}12

}13

To speed up simulations, this part can be replaced by lines 68–72 in Appendix
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A.1 using the Black Box function eval.grid() that is given in Appendix A.2.

The value of the kernel itself is calculated by matching the grid cells to the

wards they lie in. This is done for longitude and latitude separately. As

both directions are assumed to be independent, the value of the bivariate

Gaussian kernel can be calculated by multiplication.

In this setting we typically use two Markov chains with 50 000 iterations

as burn–in followed by 100 000 iterations for Monte Carlo estimation. The

thinning parameter is set to be 5 in order to reduce autocorrelation.

3.4.3 Poisson–Gamma random field models

In contrast to the modelling approach described in the previous section, we

now allow for random locations of the latent covariates and independent

variances for each kernel in longitudinal and latitudinal direction.

For any ǫ > 0 a Gamma process can be viewed as jumps of size Γ ≥ ǫ. As

discussed in Section 3.2, there are countably infinitely many of such jumps,

but for any ǫ > 0 the number of jumps of sizes bigger than ǫ is finite with

probability one. Wolpert and Ickstadt (1998) ensure to draw the largest m

jumps by the Inverse Lévy Measure (ILM) algorithm. We cannot use this

algorithm in WinBUGS, so we proceed as follows.

We use a fixed number m of jumps with corresponding Gaussian kernels to

model the latent risk. For the jump heights, we use Gamma distributed

draws

Γm ∼ Gamma(αm, τm)

as in the previous section. This does not ensure sampling from a Gamma

random field. Nevertheless, as we allow the location of each kernel to be

uncertain, we hope that chosen locations correspond to those with the highest

probability of the Gamma random field.

To allow for a random location of the kernel, we need to abandon the dis-

cretisation described in Section 3.4.2 but to rely on the distance between the

centroid of each ward and the location of each source. Necessary adoptions
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are described in the following.

While the location of ward i is characterised by its coordinates wardXcenteri

and wardYcenteri, the latent risk source sx is situated at (Sx.source[sx],

Sy.source[sx]).

The random vector X = (X1, X2, . . . , Xp) is said to be p-variate normally

distributed if its distribution function is given by

f(X) =

(
1

2π

)ρ/2

|Σ|−1/2 exp

{
−1

2
(X − µ)′ Σ−1(X − µ)

}

where µ = (µ1, µ2, . . . , µp) represents the vector of means and Σ the variance-

covariance matrix.

Setting p = 2 and covariances σ12 = σ21 = 0 leads to

f(X1, X2) =
1√

2πσ1σ2

exp

{
−1

2

(
(X1 − µ1)

2

σ2
1

+
(X2 − µ2)

2

σ2
2

)}

∝ exp

{
−1

2

(
(X1 − µ1)

2

σ2
1

+
(X2 − µ2)

2

σ2
2

)}
. (3.8)

After calculation of the absolute distances in lines 5 and 6 of the WinBUGS

code below the kernel is calculated according to Equation (3.8).

for(i in 1:I)1

{2

for(sx in 1:Source)3

{4

distanceX[sx,i] <- abs(wardXcenter[i] - Sx.source[sx])5

distanceY[sx,i] <- abs(wardYcenter[i] - Sy.source[sx])6

kernel[sx,i] <- exp(-(pow(distanceX[sx,i]/(2*rho), 2) +7

pow(distanceY[sx,i]/(2*rho), 2)) )8

}9

}10

This improved model representation allows variance estimation for each ker-

nel separately which also allows for more flexibility. Furthermore, we assume

different variances for longitude and latitude instead of one common ρ for

both directions. For the prior distributions of the variances in x-direction
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ρ
(X)
m and in y-direction ρ

(Y )
m of each kernel m ∈ M we choose a Gaussian

distribution of the logarithm with mean 0 and different precisions p ranging

between 1 and 3 similar to Section 3.4.1, i.e.,

log(ρ(X)
m ) ∼ Gau(0, pX)

log(ρ(Y )
m ) ∼ Gau(0, pY )

allowing for different values pX and pY for each direction. Large values for

precision p ∈ {pX , pY } represent a concentrated influence in a small disc

round the kernels location only, while smaller values indicate an influence in

a larger area. Both possibilities may be present in a data set given the actual

location of each kernel. Extending this approach by, e.g.,

pX =




p1 if z > 0.5

p2 if z ≤ 0.5

for an arbitrary value z ∼ Unif(0, 1) allows even more flexibility and improves

convergence of the model.

We now implement a random location of each kernel. For each kernel, we

suggest a location depending on the prior value and a Uniformly distributed

random variable. The coordinates of random location of each latent covariate

(l
(R)
X , l

(R)
Y ) are given as a combination of the prior location (lX , lY ) and the

random variable (RX , RY ), e.g.,

l
(R)
X = lX +RX

where

RX ∼ Unif(min(CX) − lX , max(CX) − lX)

and (CX , CY ) represent the set of coordinates of Inner London. The corre-

sponding WinBUGS code is given in Appendix A.2 assuming multiplicative

influence of benzene exemplarily.

Figure 3.1 shows a boxplot of the jump heights in a selected model of the

simulation study. Here, we use all jumps in 10 000 iterations for two ker-

nels and two chains in model Sf2. Although this is not a proof, the actual

jumps heights tend to be large as to be expected for a Gamma random
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Figure 3.1: Boxplots of the jump heigths Γm, m ∈ {1, 2}, as estimated by

WinBUGS in 10 000 iterations, ν = 2, model Sf2.

field and therefore support the assumption that our implementation leads to

an approximation of the Gamma random field. Another indication for the

suitability of this approach are the actually estimated locations which are

discussed in Section 8.7.

As the model is more complex compared to the restricted implementation

described in Section 3.4.2, we increase the burn–in to 500 000 followed by

another 500 000 iterations for Monte Carlo estimation. Again, we use two

chains and set the thinning parameter to be 5 to reduce autocorrelation. To

determine the number of required iterations to achieve the conjugated state

we use the criterion of Brooks, Gelman and Rubin described in Section 5.1.
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3.5 The Markov random field–based ecologic

regression model

This alternative approach combines spatially structured and unstructured

spatial effects with the influence of covariates.

We assume the observed cases Ni to follow a Poisson distribution with mean

parameter µi. The log(µi) depend on the logarithm of the expected number

of deaths Ei, an overall level α and spatial random effects as well as a term

depending on the mean averaged benzene observed in region i with the effect

estimated by coefficient βbenz. For the spatial effects we differentiate between

latent covariates with (Vi) and without (Ui) a spatial structure. This leads

to the model

Ni ∼ Pois(µi)

log(µi) = log(Ei) + α + Vi + Ui + βbenz(Bi − B).

For the spatially unstructured effects Vi we assume a Gaussian distribution

with mean 0 and precision parameter τV , i.e.,

Vi ∼ Gau(0, τV ).

Following Clayton and Kaldor (1987), the spatially structured effects Ui are

based on an intrinsic Gaussian conditional autoregressive model (CAR) which

is

Ui|Uj , j 6= i ∼ Gau(b̄i, τU),

(Besag et al., 1991). The term b̄i = (
∑

j wijUj)/wi+ refers to the mean of

neighbouring areas j 6= i around area i, wi+ =
∑

j wij. The weights wij = 1 if

areas i and j are neighbours, i.e., share a border, and wij = 0 otherwise. This

definition has the intuitive interpretation for the conditional mean E(Si|S−i)

as a weighted average of all neighbouring regions Sj. This specification of

spatially structures effects leads to a Gaussian Markov Random field, see

Rue and Held (2005). We will therefore refer to this model as Markov random

field (MRF) model. In addition, the bi values are constraint in summing up

to zero (Besag and Kooperberg, 1995). However, this requires an improper
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and unbounded uniform distribution on the real line for α, i.e.,

α ∼ Unif(−∞,∞).

For βbenz, we also use an uninformative Gamma distribution as prior as fol-

lows

βbenz ∼ Gau(0, 0.0001),

hyperpriors for the precision parameters of the spatial effects are set to be

τV ∼ Gamma(0.5, 0.0005) τU ∼ Gamma(0.5, 0.0005).

Using the software WinBUGS we use MCMC techniques for estimation of

the posterior distribution. For the MRF model two chains with a burn–in

period of 200 000 iterations were chosen, followed by a sample of 400 000. To

reduce autocorrelation in the Markov chains we set the thinning parameter

to be 10, this leads to 40 000 iterations.

3.6 The clustering approach by Knorr–Held

and Raßer (2000)

An alternative to the Poisson–Gamma model and the MRF model is a clus-

ter or partition model, for example the so–called BDCD (Bayesian Detec-

tion of Clusters and Discontinuities in Diseases Maps) model described by

Knorr-Held and Raßer (2000). Although the main goal is clustering, it is of-

ten used as a disease mapping tool (Best et al., 2005). We choose this model

as it is of similar complexity as Poisson–Gamma models.

The basic idea assumes a constant mortality risk within one or more neigh-

boured regions. These are combined to so–called clusters. Using adaptive

smoothing we should be able to detect discontinuities in the modelled region.

Given the number of observed cases Ni in region i, i = 1, . . . , n, and the

number of expected deaths Ei, we assume a constant relative risk hj in one

or more regions, leading to

Ni ∼ Pois(Ei hj).
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Regions are grouped to a cluster Cj with associated relative risk hj which is

a part of the set of all regions. We can write Cj ⊂ {1, . . . , n}, j = 1, . . . , k,

where Cj1 ∩ Cj2 = ∅ for j1 6= j2 and C1 ∪ C2 ∪ . . . ∪ Ck = {1, . . . , n}. The

number of clusters k is unknown a priori.

To find a partition of the region into k clusters, we employ Reversible Jump

MCMC methods introduced by Green (1995) allowing to switch between

different values k.

As prior distribution for the number of cluster centers we choose a Uniform

distribution on the number of regions {0, . . . , n} implying an equal proba-

bility for each aggregation of regions. Given the number of cluster centers

k we choose k regions out of the whole area and define them as cluster cen-

ters Gk = (g1, . . . , gk). Remaining regions belong to the cluster center with

minimal distance measured by the number of borders between region i and

cluster center gj with j = 1, . . . k.

The corresponding relative risk in Hk = (h1, . . . , hk) in each cluster follows

a log–Normal distribution a priori, i.e., log(hj) ∼ Gau(µ, σ2) and we need to

specify priors for µ, which is a Uniform one on the whole real line (diffuse

prior) and for σ2 where we choose a highly dispersed Inverse Gamma dis-

tribution IG(a, b) with fixed a and b. In our example we choose a = 1 and

b = 0.01. Other values are tested and lead to similar results.

Additionally, we introduce possible moves for the Reversible Jump MCMC

scheme. For changing the numbers of clusters, we use a birth and a death

move, in which we add and delete a cluster center out of the remaining n−k

regions respectively. Additionally we use a shift move to change a cluster

center gj. In a switch move we exchange positions of two cluster centers in

Gk possibly leading to an alternative cluster configuration. This is due to

associating a region with the same distance to two cluster centers to the one

with the smaller index in Gk. In a height move we recalculate the relative

risks in Hk using

hj ∼ Gamma

(
yj +

µ̃2

σ̃2
, ej +

µ̃

σ̃2

)
, (3.9)

where µ̃ = exp(µ + 0.5 σ2) and σ̃2 = exp(σ2) × (exp(σ2) − 1) × (exp(2µ))
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(Knorr-Held and Raßer, 2000). The hyperparameters µ and σ2 of the corre-

sponding Gamma distribution may be changed in a hyper move.

For details of BDCD and the chosen setting see Knorr-Held and Raßer (2000)

as well as Sturtz (2002).

For application of BDCD we use a burn–in of 200 000 followed by 40 000 000

iterations using a thinning parameter of 4000. The thinning is increased

compared to other models due to high autocorrelation when using Reversible

Jump MCMC. This leads to 10 000 samples for Monte Carlo estimation.
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Chapter 4

Computation: Linking R and

WinBUGS

As already briefly described in Section 3.1, the BUGS (Bayesian inference

Using Gibbs Sampling) language provides a very flexible and powerful tool

for Bayesian analysis of complex models using MCMC methods. The Win-

dows implementation of BUGS, WinBUGS, provides a graphical interface

and makes the BUGS language therefore more convenient and easier acces-

sible. The user can specify the Bayesian model including data and suitable

initial values by clicking appropriate buttons. With the provided tool boxes

the model can be updated, Monte Carlo estimates for specified quantities

can be calculated, and lots of other functions are provided.

For the purpose of a convenient and automatised use of WinBUGS — which is

especially necessary for the simulation study carried out here — Sturtz et al.

(2005) develop the R package R2WinBUGS. This package uses the scripting

language of WinBUGS, which is available from version 1.4 onwards.

R2WinBUGS is available under CRAN1, the Comprehensive R Archive Net-

work, and can be installed via the command install.packages("R2WinBUGS")

and loaded by library("R2WinBUGS"). The main function of the package is

bugs(), help is available by typing ?bugs.

1http://CRAN.R-project.org
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After specifying the data set necessary for modelling in WinBUGS, the

R2WinBUGS package writes a file containing these data which WinBUGS

can interpret. R2WinBUGS allows for a wide range of data formats in R, it

can be either a named list, a vector, or a list of the names of the data objects.

Similar things hold for the initial values of a user defined number of chains.

After writing data files and files containing initial values as well as the script

itself, WinBUGS is started in the batch mode and runs the script. Some out-

puts including trace plots and summary statistics are created automatically.

Resulting values can be read in either automatically in R by the package itself

or stored in ASCII files supporting the coda format. In the latter case, a wide

range of inference and output diagnostics are available via the coda package

(Plummer et al., 2004). A detailed description of the R2WinBUGS package

including reproducible examples demonstrating the usage of the package can

be found in Sturtz et al. (2005).

R2WinBUGS allows for an automatised use of WinBUGS. Nevertheless,

communication between R and WinBUGS is done via exchanging text files

and an interactive process of sampling/convergence diagnostics is not pos-

sible. A further development of WinBUGS called OpenBUGS contains the

open source version of the BUGS language and can be embedded into R

via the interface BRugs, published under CRAN. Installation is possible

by install.packages("BRugs") similar to R2WinBUGS. The package is

loaded by the command library("BRugs").

The BRugs package contains the OpenBUGS software itself, refined versions

of the functions that reproduce OpenBUGS functionality as well as functions

for data preparation and initial values from R2WinBUGS. Using BRugs,

it is possible to control OpenBUGS from R using a dynamic link library

which provides a .C() interface to BUGS command language. Initial help is

available by ?BRugs or the online manual.

Model procedures are similar to those used in WinBUGS itself as well as

the scripting language, but BRugs provides R functions that communicate

with OpenBUGS components allowing for an interactive modelling process.

There are various functions available, such as
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• modelCheck() for checking a model in BUGS code stored in a specific

file,

• modelData() for loading the data, and

• modelInits() for the initial values of multiple chains.

The latter two can either be stored in specified files or available as R objects

only. For the initial steps of MCMC analysis a wrapper function BRugsFit()

is available. The range of more than 60 functions reproduces OpenBUGS

functionality, here is a selection of some frequently used functions:

• samplesSet() to set the chain for a particular variable,

• modelUpdate() to update the model,

• samplesStats() to produce summary statistics for a variable,

• samplesHistory() to plot the trace of a variable,

• samplesBgr() for the Brooks–Gelman–Rubin convergence statistics,

• samplesDensity() for a smoothed kernel density estimate for contin-

uous data or a histogram for discrete data etc.

The R package is described in detail in Thomas et al. (2006). The reference

also includes an example how to use the package.

43



44



Chapter 5

Convergence diagnostics and

model selection

Fitting Bayesian models by MCMC methods requires to set the number of

iterations needed for the model to converge and those necessary to get stable

Monte Carlo estimates. While the latter one can be determined by the Monte

Carlo error the choice of an appropriate burn–in period is more complicated.

Methods include the visual inspection of the Markov chain, where the usage

of multiple chains makes stationarity easier to determine. More objective

criteria include the criteria of Geweke (1992) and Heidelberger and Welch

(1983). A comparative review about possible convergence criteria can be

found in Cowles and Carlin (1996). This includes the criterion of Brooks,

Gelman and Rubin (BGR) which is implemented into WinBUGS. It is intro-

duced by Gelman and Rubin (1992) and generalised by Brooks and Gelman

(1998). In this thesis, BGR helps us to set the burn–in period. It is described

in detail in Section 5.1.

The influence of different covariates to observed data can be expressed by

alternative models. From those, the user has to identify the most appropriate

one. There exist a large number of model selection criteria, for example the

Bayes Information Criterion and Bayes factors described by Kass and Raftery

(1995). Alternative methods include posterior predictive p–values and condi-

tional p–values which are discussed by Bayarri and Berger (2000), Aitkin et al.
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(2004), and Perez and Berger (2002) and increased their popularity during

recent years. Furthermore, Vehtari and Lampinen (2004) suggest predictive

explanatory power for model comparison and evaluation of model perfor-

mance.

Another frequently used criterion is the Deviance Information Criterion (DIC),

introduced by Spiegelhalter et al. (2002). It combines a measure of complex-

ity and a measure of fit. This allows to compare not only the performance

of the applied model but also to judge about the increased complexity by

additional covariates. In this thesis, the DIC will be used as an indicator of

model performance in both, simulation study and real data set application;

it is described in Section 5.2.

5.1 Convergence diagnostics

A possible convergence criterion is the one by Brooks, Gelman and Rubin

(BGR). It is introduced by Gelman and Rubin (1992) and generalised by

Brooks and Gelman (1998). This criterion is implemented in WinBUGS and

available via a tool box. The idea is to monitor η iterations of a number of

ν > 1 chains and to compare between and within variances of those chains.

To check convergence of any scalar summary ψ three different quantities are

monitored:

The within–sequence variance W is calculated by

W =
1

ν(η − 1)

ν∑

r=1

η∑

s=1

(ψrs − ψ̄r·)
2

for any scalar summary ψ. It should stabilise as the number of itera-

tions η increases.

The mixture–of–sequences variance V is calculated as a pooled poste-

rior average of the between–sequence variance

B

η
=

1

ν − 1

ν∑

r=1

(ψr· − ψ··)
2
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and the estimated variance σ2
+ which is calculated by a weighted average

of B and W as follows:

σ̂2
+ =

η − 1

η
W +

B

η
.

This leads to

V = σ2
+ +

B

νη

=
η − 1

η
W +

B

η
+
B

νη
.

If convergence is not achieved yet, we expect W to be less than V .

Therefore, we can use the ratio of both quantities for convergence di-

agnostics.

The variance ratio R is given by the ratio of the within–sequence variance

W and mixture–of–sequences variance V . This ratio is corrected for

sampling variability depending on the degrees of freedom of estimation

d ≈ 2V/Var(V ) assuming normality of the marginal distribution of

each scalar quantity ψ. Therefore, the variance ratio is estimated to be

R =
(d+ 3)V

(d+ 1)W

(Brooks and Gelman, 1998).

Dividing each chain into batches of length b, we can plot the development of

V , W and R as η increases.

If assumption of normality is violated R should be modified by using interval

lengths rather than variance ratios. We calculate the empirical 100(1− α)%

interval of η simulation draws of each single chain as a substitute of within–

sequence variance W . As a substitute for mixture–of–sequences variance V

we use the total–sequence interval as the empirical 100(1− α)% interval out

of all νη observations. Both quantities are used to calculate

Rinterval =
length of total–sequence interval

mean length of the within–sequence intervals
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Figure 5.1: BGR plots for selected parameters in model Af1 in Chapter 8 for

βlatent (a) and for the x–location of Gaussian kernel l
(R)
X (b).

(Brooks and Gelman, 1998). The resulting plot is among the standard out-

put provided by WinBUGS using batches of size 50 or larger, leading to

at most 100 different values as η increases. The average length of the 80%

total–sequence interval is plotted in green, the one of within–sequence vari-

ances is blue, while their ratio Rinterval is red. For plotting purposes pooled–

and within–interval widths are normalised to have an overall maximum of

one (Spiegelhalter et al., 2004). Approximate convergence is attained if the

green and the blue line stabilise at the same value resulting in a ratio of one

plotted as a red line such as in Figure 5.1. This figure shows the BGR plot

exemplarily for a Poisson–Gamma model with additive influence of benzene

and one latent covariate applied on structure A (Af1), for details see Chap-

ter 8. Here, we use a burn–in of 100 000 followed by 100 000 iterations. The

thinning parameter is chosen to be 5.
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5.2 The Deviance Information Criterion

The Deviance Information Criterion (DIC) can be seen as a Bayesian ana-

logue of Akaikes Information Criterion (Akaike, 1973). Formally introduced

by Spiegelhalter et al. (2002), it consists of a measure of complexity and a

measure of fit. For complexity, we estimate the effective number of parame-

ters by

pD = D(θ) −D(θ̄), (5.1)

where the Bayesian deviance is defined by

D(θ) = −2 log (p(y|θ)) + 2 log (f(y)) , (5.2)

see Spiegelhalter et al. (2002).

We combine the deviance as a classical estimate of fit with twice the effective

number of parameters estimated by Equation (5.1) leading to

DIC = D(θ̄) + 2pD

= D(θ) + pD. (5.3)

The standardising term f(y) of the Bayesian deviance function in Equa-

tion (5.2) is a function of the data alone. For comparison of different models

used for exactly the same data it can be neglected, i.e., by setting f(y) ≡ 1.

WinBUGS provides a tool box to calculate the DIC automatically using this

setting. However, this approach is not appropriate for the simulation setting

applied in Chapter 7 as we generate different data sets in each simulation

leading to different values of f(y).

For members of the exponential family with E(Y ) = µ(θ) we do not need to

set f(y) = 1. Instead we can use the saturated deviance which is obtained

by setting f(y) = p(y |µ(θ) = y) in Equation (5.2). Using this definition, we

expect the posterior expected deviance to be approximately the number of

free parameters in θ if the model is true (Spiegelhalter et al., 2002) giving a

possible check for model adequacy.
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For data assumed to be Poisson distributed, i.e., Ni ∼ Pois(θiEi), the de-

viance Di(θi) for region i, i = 1, . . . , n, can be written as

Di(θi) =





2
{
yi log

(
yi

θi Ei

)
− (yi − Eiθi)

}
if yi > 0

2 Ei θi if yi = 0
(5.4)

(McCullagh and Nelder, 1990). The total deviance D(θ) is then calculated

by

D(θ) =

n∑

i=1

Di(θi). (5.5)

When implementing DIC estimation in WinBUGS negative values of pD are

possible. In the simulation study this occurs for example if we employ a hard–

wired function in the software package BlackBox (Oberon microsystems, Inc.,

2004) in our model. In the BUGS language, pD is calculated by posterior

means of stochastic parents. These are changed by the hard–wired function,

therefore estimates are not reliable as mentioned on the WinBUGS mailing

list on April, 21st, 2005, see

http://www.jiscmail.ac.uk/cgi-bin/wa.exe?A2=ind0504&L=bugs&P=R3370&I=-1.

Therefore we decided not to use WinBUGS’ implemented calculation cor-

rected for the saturated deviance but to use our own coding of the deviance

as well as of the DIC in R.

To decide whether one model is significantly superior to other considered

models the point estimate should be supported by its corresponding vari-

ance. Zhu and Carlin (2000) propose a so–called ‘Brute Force’ approach by

rerunning the Bayesian model N times with different starting values and dif-

ferent seeds leading to a sequence of estimated DICs which is DIC1, . . . ,DICN

for variance estimation. Hence, we have

V̂ar(DIC) =
1

N − 1

N∑

l=1

(DICl − DICl)
2. (5.6)

This approach is very time–consuming and therefore not suitable for most

applications. Alternative approaches include estimation of variances and co-

variances using only one setting of the model by the delta method, dealing
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with effective sample sizes and accounting for autocorrelation through batch-

ing. For two independent samples of size G1 and G2 we separately compute

D(θ̄) according to Equations (5.4) and (5.5) as well as D̄ and plug those into

Var(DIC) = Var
(
2D̄ −D(θ̄)

)
= 4Var(D̄) + Var(D(θ̄))

assuming those estimates to be uncorrelated. Using batching, V̂ar(D̄) can

be estimated directly from the data. A detailed explanation of the batching

approach is given below.

For estimation of Var(D(θ̄)) we express this term as a function of Var(θ̄i)

and Cov(θ̄i, θ̄i′) for any i 6= i′ using the multivariate delta method as follows

Var(D(θ̄)) ≈
∑

i

(
∂Di(θ̄i)

∂θ̄i

)2

Var(θ̄i) +
∑

i6=i′

∂Di(θ̄i)

∂θ̄i

∂Di(θ̄i)

∂θ̄i′
Cov(θ̄i, θ̄i′)

(5.7)

(Zhu and Carlin, 2000). The θ̄i are posterior means of the random mean

measure, their variance and covariance can be estimated from the {θ(g1)}G1

g1=1

output using batching. The first derivative of a Poisson deviance is given by

∂Di(θ̄i)

∂θ̄i

=





2
∑

i(−Ni/θ̄ + Ei) if yi > 0

2Ei if yi = 0.

When using batching for estimation of V̂ar(D̄), we compute theD(g2) output

using Equations (5.4) and (5.5) and divide this sequence of length G2 into t

successive batches of length T . For each of the batches, we calculate batch

means B1, . . . , Bt and

B̄ =
1

t

t∑

i=1

Bi.

This leads to the variance estimate

V̂ar(D̄) = V̂ar(B̄) =
1

t(t− 1)

t∑

i=1

(Bi − B̄)2

producing reliable estimates if T is large enough so that the correlation be-

tween batches is negligible. Furthermore, t needs to be chosen large enough to
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produce reliable estimates of Var(Bi). Estimation of Var(θ̄i) and Cov(θ̄i, θ̄i′)

follows the paper by Zhu and Carlin (2000).

Besides batching Zhu and Carlin (2000) presented two other approaches for

estimating Var(θ̄i) and Cov(θ̄i, θ̄i′) in their paper, but all three lead to very

poor results as presented in Zhu and Carlin (2000).

We might also build some alternative samples for the batching approach.

The one we introduce in this thesis is to build the sample using thinning,

i.e., we construct a new sample by using each Nth value. That would be

1st, (N + 1)th, (2N + 1)th, . . ., (L − N + 1)th value for the first batch,

. . .

Nth, 2Nth, 3Nth, . . ., Lth value for Nth batch

where L = η × ν. Using those alternatively built batches we proceed with

variance estimation as proposed by Zhu and Carlin (2000).

Additionally, we suggest the use of bootstrapping and cross–validation tech-

niques to improve the fit of Var(DIC).

For bootstrapping we use the MCMC estimates of θ of length L to sample

a new chain with similar length. This is done with replacement. Then we

estimate the DIC of this sample. The procedure is repeated N times to

estimate

VarBoot(DIC) =
1

N − 1

N∑

l=1

(DICl − DIC
Boot

)2,

where

DIC
Boot

=
1

N

N∑

l=1

DICl

and DICl is from the l’th bootstrap sample.

An alternative approach is to adopt cross–validation techniques for vari-

ance estimation of DIC. We construct a new sample of θ by leaving out N
elements successively from the whole sample of length L. This leads to L/N
new samples. In this approach, the goal is not to estimate characteristics of

the left–out iterations but to use the new samples to estimate the variance

of the DIC. For each sample l, we calculate DICl, l = 1, . . . ,L/N , which we
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use to estimate

VarCross(DIC) =
1

(L/N )(L/N − 1)

L/N∑

l=1

(DICl − DIC
Cross

)2,

where

DIC
Cross

=
1

L/N

L/N∑

l=1

DICl.

Table 5.2 presents selected results of variance estimation for three Poisson–

based examples, namely

1. The conjugate Poisson–Gamma hierarchical model (Spiegelhalter et al.,

2004, Examples I) employed on the numbers of failure of ten power

plant pumps by George et al. (1993) with 2 chains each of length 1000

following a burn–in of 2500 (Pumps).

2. The CAR model used for disease mapping (Spiegelhalter et al., 2004,

Examples in the GeoBUGS Manual): rates of lip cancer in 56 counties

in Scotland as analysed by Clayton and Kaldor (1987) and

Breslow and Clayton (1993) with 2 chains each of length 1000 following

a burn–in of 2500 (Lip Cancer).

3. The Poisson–Gamma random field model employed on a generated data

set based on the leukaemia data described in Section 2. Model and data

equals combination Aa1 in the simulation study, see Section 6.2.1. We

employ 2 chains with a burn–in period of 50 000 followed by 100 000

iterations when setting the thinning parameter to be 5.

Additionally, we give the corresponding DIC estimates for each of the ex-

amples as well as the number of effective parameters pD. As the quality

of estimation depends on the effective sample size Table 5.2 also contains

the autocorrelation of lag one for the deviance of one chain of each of the

examples.

Estimation was done using OpenBUGS (Thomas, 2004) via the R software

(R Development Core Team, 2006) by the package BRugs (Thomas et al.,

2006).
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Pumps Lip Cancer Leukaemia

DIC 17.873 103.131 315.958

pD 8.662 26.413 1.926

Autocorrelation of deviance for chain 1 0.0130 0.2130 0.0350

Brute Force N = 1000 0.0352 0.1230 0.0018

Bootstrap N = 100 0.0034 0.0084 0.0003

N = 1000 0.0030 0.0084 0.0004

Batching T = 10 0.1109 0.6238 0.1260

T = 50 0.1143 0.7866 0.1171

T = 100 0.0992 0.9296 0.1224

Batching & Thin T = 10 0.0902 0.3039 0.1159

T = 50 0.1064 0.2601 0.1171

T = 100 0.1005 0.3608 0.1403

Cross Validation N = 1 0.0032 0.0101 0.0012

N = 10 0.0033 0.0111 0.0018

N = 100 0.0029 0.0124 0.0019

Table 5.1: Variances of the DIC estimated by different methods for three consid-

ered data sets.
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Variance estimates are reported in Table 5.1. All values are estimated to be

less than one. This holds for the Brute Force approach which can be seen as

a “gold–standard” as well as for alternative approaches.

Unfortunately, faster methods than the Brute Force approach do not produce

reliable estimates. Using the bootstrap approach we underestimate the true

DIC. The amount of underestimation does not depend on the batch size.

The batching approach overestimates, again the results are stable for different

batch sizes. For the Pumps model and the Leukaemia examples, batching

and the combination of batching and thinning produce similar estimates.

For the Lip Cancer examples incorporating a CAR–term a reduction of the

estimate is achieved by thinning. This is probably due to autocorrelation

between the samples in the original chain which can be reduced by thinning.

The cross–validation approach underestimates the variance for the Pumps

and the Lip Cancer examples by factor 10, for the Leukaemia examples we

achieve estimates close to those of the Brute Force approach. For all models,

results are consistent for different sizes of N .

There is just a slight relationship between the estimated variances for any

of the examples. The influence of the autocorrelation in the deviance chain

seems to be more important.

All together, the variance of the DIC is estimated to be less than one in all

three examples which is very small compared to the DIC. It can be assumed

that similar results would be achieved for models which DICs in the same

order of magnitude. Therefore, an estimation of variance is not taken into

account any further. Nevertheless, Zhu and Carlin (2000) report much higher

DICs and Var(DIC) in their paper. A more detailed analysis of our proposed

methods using different models than those applied here is necessary. For a

discussion on the variance of DIC in general see Chapter 10.
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Chapter 6

A simulation study: settings

For analysing characteristics and performances of Poisson–Gamma models

using different settings within this model class itself and in comparison to the

alternatively chosen MRF model and the BDCD cluster model, we perform

a simulation study. This gives the possibility to explore the performance of

the model with respect to the true underlying structure. Certain scenarios

will be set up for data generation as described in Chapter 6.2.

In principle, all components such as covariates, population figures, and the

number of observations can be varied within a simulation study. Nevertheless,

it is sufficient to use population figures and benzene outcome like they are

observed in the data set of childhood leukaemia described in Chapter 2. We

used the expected number of cases as a surrogate for the real population

which gives the generated numbers the interpretation of expected cases. We

will only change the amount and the type of influence benzene has on the

generated number of incidences in the fixed population numbers of Inner

London.

Data are generated assuming a number of different scenarios as described

in Section 6.2. One assumes the influence of a single covariate only, others

additionally involve risk due to a latent risk factor represented by a Gaussian

kernel, a linear or a plateau trend, or clusters of increased risk in combination

with the covariate. The chosen covariate can be benzene, as in our real data
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set, or any other variable. In a simulation study, we can set the amount

of influence of the chosen covariate to result in a pre–specified number of

incident cases or deaths among the population at risk.

As a first step we implement the restricted version of Poisson–Gamma models

as described in Section 3.4.2. The different models employed on these data

are described in Section 6.1. The results are reported in Chapter 7. Results of

the more flexible implementation of Poisson–Gamma random field models as

described in Section 3.4.3 are given in Chapter 8. The quality of the findings

is measured using DIC and the Mean Square Error (MSE) as described in

Section 6.3.

6.1 Models employed on generated data

On each of the generated data sets, several models will be employed. First,

we use Poisson–Gamma models where risk is modelled depending on benzene

only.

Additionally, we combine the different types of influence of benzene with

latent covariates located at different distances. Here we use the restricted

implementation assuming fixed locations as described in Section 3.4.2. In

principal, each possible distance can be assumed. Nevertheless, given the

fixed extension of the area, which is 24.6 km from east to west and 22.5 km

from north to east, not all distances are suitable.

We calculate the number of points which fit into the bounding box covering

the area of Inner London given a certain distance. Typically, this is not

an integer. Therefore, we round this value up and recalculate the distance

between two latent covariates accordingly. The deviation between the chosen

distance and the recalculated one is the larger, the larger the distance between

two locations is chosen.

As distances, we choose d1 = 15 km (resulting in 9 latent risk sources) and

d2 = 5 km (leading to 36 latent risk sources) located from the edges of the

grid covering the whole area of Inner London. The real distances for d1 (d2)
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(a) (b)

Figure 6.1: Location of latent sources: (a) 4 (orange) and 9 (green) kernels with

distance d1, (b) 36 kernels with distance d2.

are 12.316 km (4.926 km) for the latitude and 11.126 km (4.502 km) for the

longitude. For computational reasons, a higher number of latent risk sources

will not be considered.

There is also the possibility to locate four sources to span a square of 15 km

length centered around the middle of the bounding box of Inner London. A

combination of four centrally located and nine sources spread over the whole

area leads to 13 latent sources as shown in Figure 6.1 (a).

Furthermore, we are interested in the performance of models where no ben-

zene is considered, but a certain amount of latent risk sources. This gives

an idea how the model performs when covariates that have an influence on

the incidence outcome are not involved in the model. Here we employ two

different settings: one involving 13 risk sources located as in Figure 6.1 (a)

and a second setting of 36 risk sources, see Figure 6.1 (b). The location of

the latent risk sources is assumed to be fixed in this part of the study and

implemented in WinBUGS following Section 3.4.2. A list of the resulting

Poisson–Gamma models is given below. For an implementation allowing the

location of each kernel to be random see Section 3.4.3.
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Summarising the models introduced above, we apply the following settings

to generated data in the first part of the study:

restricted Poisson–Gamma models with additive influence of benzene:

Model a: no latent risk sources;

Model b: 4 latent risk sources with d1 = 15km;

Model c: 9 latent risk sources with d1 = 15km;

Model d: combination of sources from b and c to 13 latent risk sources;

Model e: 36 latent risk sources with d2 = 5km;

restricted Poisson–Gamma models with multiplicative influence of benzene:

Model g: no latent risk sources;

Model h: 4 latent risk sources with d1 = 15km;

Model i: 9 latent risk sources with d1 = 15km;

Model j: combination of sources from b and c to 13 latent risk sources;

Model k: 36 latent risk sources with d2 = 5km;

restricted Poisson–Gamma model with no influence of benzene:

Model w: 36 latent risk sources;

Model x: 13 latent risk sources.

6.2 Generation of data sets

To analyse the performance of Poisson–Gamma models, we consider five

different settings.

In Section 6.2.1 we give details on the study design where only benzene

determines the observed number of incidences without involving any latent

risk factors in the generation procedure.

In a second part of this study, a latent risk source will be combined with the

benzene covariate in data generation. This results in the structures described

in Section 6.2.2.

Furthermore, we construct some other commonly used spatial structures in-

cluding covariates with linear spatial trend and clusters with increased risk.
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One pattern includes a covariate with linear spatial trend (Section 6.2.3),

again with either a low or a high additive or multiplicative influence of ben-

zene.

Other spatial structures increase the risk in all wards south of the Thames

(Section 6.2.4) or are characterized by clusters with increased risk, see Sec-

tion 6.2.5. Those scenarios again include different levels of benzene.

6.2.1 Data sets determined by benzene only

In this setting we do not account for any latent risk sources in data gen-

eration. This leads to a number of observed cases influenced only by the

chosen covariate benzene. As Poisson–Gamma models give the possibility

to introduce this covariate either as an excess or a relative risk factor, both

interpretations will be considered in data generation leading to additive and

multiplicative models which are referred to as “structures” throughout this

thesis. Besides the model type, the amount of influence of benzene can be

varied. Details on both are given in the following.

The model type

The number of observed cases Yi in ward i is assumed to follow a Poisson

distribution with mean depending on the expected number of cases Ei and

an area–specific relative risk Λi, i.e.,

Yi ∼ Pois(ΛiEi).

For Ei we use the expectations from the example given in Best et al. (2001),

see Section 2.2. For calculation of Λi we assume either an additive or a

multiplicative influence of benzene in grid k.

Furthermore, we set the amount of influence of benzene. We do not vary the

intercept parameter but fix it to have no influence at all, i.e., β0 = 0 for the

additive model and β0 = 1 for the multiplicative one. Using a multiplicative

model this gives a lower limit of around 250 observed cases; less cases can be

observed setting β0 < 1.
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βbenz additive model βbenz multiplicative model

0.5 55.397 0.1 246.614

1 110.795 0.3 265.522

2 221.589 0.6 297.779

3 332.384 0.9 335.563

4 443.178 1.0 349.583

5 553.973 2.0 544.043

6 664.768 2.5 695.583

7 775.562 2.7 771.288

8 886.357 3.0 905.682

Table 6.1: Number of expected cases for different parameters of benzene us-

ing additive and multiplicative models, bold numbers indicate parameter

values chosen for data generation.

The amount of influence

The amount of influence of benzene is determined by the parameter βbenz.

We calculate the number of expected cases for the area of Inner London

for various settings in multiplicative and additive models as presented in

Table 6.1.

Using ideas of experimental design, we select two different values for βbenz

reflecting ‘high’ and ‘low’ influence of the covariate for each type of model

according to Table 6.1. Keeping in mind that the observed number of cases

in Inner London is about 290 we set βbenz = 0.9 leading to about 330 cases.

A similar amount of expected observations is achieved by additive models

with βbenz = 3.

For a high influence of benzene, we roughly double the expected number

of observations leading to βbenz = 2.7 (multiplicative model) and βbenz = 7

(additive model) giving approximately 770 cases, see Table 6.1.

Therefore, we employ the following structures in data generation which in-

clude only benzene but no latent risk factors:
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Structure A: additive model, influence of benzene is low, i.e., βbenz = 3;

Structure B: additive model, influence of benzene is high, i.e., βbenz = 7;

Structure M: multiplicative model, influence of benzene is low, i.e., βbenz = 0.9;

Structure N: multiplicative model, influence of benzene is high, i.e., βbenz =2.7.

Note that different modelling schemes lead to a similar number of observa-

tions, but different variances. For the additive structure A we calculate a

variance of 0.356, while it is 0.224 for structure M; in structure B, we get a

variance of 1.940, for structure N we achieve 3.024.

According to the model formulation (see Equation (3.6) for the multiplicative

model and Equation (3.5) for the additive one) the parameter of the Poisson

distribution Λi in ward i, i = 1, . . . , n, is calculated. Hence, we sample

the observed number of incident cases in each situation according to the

calculated Poisson mean.

6.2.2 Including a latent risk source as covariate

It is also possible to include “unobserved” risk factors in data generation

additionally to benzene. This gives information on how well the selected

models can detect existing latent risk sources or spatial patterns in general.

We expand data generation by just one Gaussian kernel representing the in-

fluence of an unobserved covariate. This kernel is located next to one of the

four centered latent risk sources considered in models b and h, see Section 6.1.

Hence, we employ models on generated data using kernels located in direct

neighbourhood to this generated covariate (models b/h, d/j), in a distance

of approximately 3.5 km (models c/i) or nearby as for models e and k. The

chosen coordinates (527, 175) are represented by a dot in Figure 6.2. The

amount of influence by the latent covariate is chosen to be similar to a low

influence of benzene, i.e., causing approximately 330 cases. Two different

scenarios are considered. First, both covariates are matched with a propor-

tion of 1:1, in the second setting the number of cases caused by benzene is

roughly double the amount of that caused by the latent covariate.
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Figure 6.2: Location for the latent risk source in data generation. Coordinates

are given in km, the point of origin is determined by the most western

and the most southern point of the UK.

Furthermore, we consider the variance of the Gaussian kernel representing

the spatial dimension of influence and the parameter βlatent of that kernel.

The standard deviation (sd) of the Gaussian kernel is selected according to

Table 6.2 to be 2.5 km which is equivalent to a variance of 2.52 = 6.25 km2.

The distance of 6.25 km2 corresponds approximately to a quarter of the cir-

cumference of Inner London. This choice of variance ensures that the Gaus-

sian kernel has a non–neglecting influence in more than 25% of all wards

which is an increase of 0.0013 × βlatent = 0.6812 on the parameter Λi. Due

to a median smaller than 0.0001, the increase in at least half the wards in

Inner London is less than 0.0001 × βlatent = 0.0520 and therefore negligi-

ble. Increases of Λi caused by other values of the standard deviation of the

Gaussian kernel are given in Table 6.2.

The range of Inner London is about 24 km in the east–west direction and

the north–south range is 22 km. Given a total influence of 0.6385 by the

Gaussian kernel

Ki,m ∼ N

((
527

175

)
,

(
6.25 0

0 6.25

))
,
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sd minimum 1st quantile median 3rd quantile maximum sum

1 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.1904 0.7231

2 < 0.0001 < 0.0001 < 0.0001 0.0005 0.0480 0.6833

2.5 < 0.0001 < 0.0001 < 0.0001 0.0013 0.0307 0.6385

3 < 0.0001 < 0.0001 0.0001 0.0020 0.0214 0.5919

5 < 0.0001 0.0002 0.0007 0.0020 0.0079 0.4445

Table 6.2: Increase of Λi by the latent risk source depending on standard devia-

tion of Gaussian kernel.

we select βlatent = 520 resulting in 332 additionally expected cases for the ad-

ditive model. As presented in Figure 6.3, influence of the generated Gaussian

kernel is only observable in the south–western part of Inner London.

When using the multiplicative model, influences of the latent source and

benzene are multiplied. This makes an adaption of βlatent necessary leading

to a value of 350 (480) for 665 (1100) expected observations in total for a

low (high) level of benzene. In addition to data generation settings when no

latent variable is involved, we consider the following structures:

Structure C: additive model, influence of benzene is low, i.e., βbenz = 3,

βlatent = 520, Gaussian kernel at (527, 175) with sd=2.5;

Structure D: additive model, influence of benzene is high, i.e., βbenz = 7,

βlatent = 520, Gaussian kernel at (527, 175) with sd=2.5;

Structure O: multiplicative model, influence of benzene is low, i.e.,

βbenz = 0.9, βlatent = 350, Gaussian kernel at (527, 175) with sd=2.5;

Structure P: multiplicative model, influence of benzene is high, i.e.,

βbenz =2.7, βlatent = 480, Gaussian kernel at (527, 175) with sd=2.5.
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Figure 6.3: Effect of involving latent variable in data generation: true underlying

risk Λi involving only benzene ((a), structure A) and additionally a latent

covariate at (527, 175) ((b), structure C).

6.2.3 Including a covariate of linear spatial trend

A common scenario in spatial epidemiology is to include an additive covariate

which has a linear spatial trend. In our case the trend is modelled to have

no influence in the southern wards of Inner London. Influence is increased

with increased distance to the minimum of all centroids of the wards, i.e.,

trend = βtrend × (centroidi − min
i

(centroidi)),

where centroidi is the centroid of region i, i = 1, . . . , n, in km, mini(centroidi)

is the smallest coordinate of the centroids of n wards, i.e., the most southern

centroid, and βtrend is the trend coefficient. The later one is chosen to account

for approximately 332 cases, which is equal to the number of cases the latent

risk source in structures C/D/O/P accounts for.

The resulting spatial pattern of the trend component itself as well as in com-

bination with a low multiplicative influence of benzene is given in Figure 6.4.

All together, in the situation of including a covariate with a linear spatial

trend we have the following structures for data generation:
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Figure 6.4: Linear spatial trend component (a) and resulting spatial pattern Λi

(b) for structure Q.

Structure E: additive model, influence of benzene is low, i.e., βbenz = 3,

βtrend = 0.137;

Structure F: additive model, influence of benzene is high, i.e., βbenz = 7,

βtrend = 0.137;

Structure Q: multiplicative model, influence of benzene is low, i.e., βbenz = 0.9,

βtrend = 0.194;

Structure R: multiplicative model, influence of benzene is high, i.e., βbenz=2.7,

βtrend = 0.140.

6.2.4 Increased risk in southern areas

Another interesting spatial structure is given by an extreme of the linear

spatial trend component (Section 6.2.3), built by a region of constantly in-

creased risk. We choose the Thames as the separating factor between the

high and the low-risk region. Therefore, 215 wards northwards the Thames

are allocated to the low-risk region with risk determined by benzene only.

The risk of the remaining 95 wards is increased such that we obtain an extra
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Figure 6.5: Increased risk for wards south of the river (a) and resulting spatial

pattern Λi (b) for structure G.

330 expected cases compared to the “benzene-only” structures. The risk for

each ward is calculated as follows

Λ(y) =




β0 +Xbenz(y)βbenz + βincrease (additive model)

β0 × exp (Xbenz(y)βbenz) + βincrease (multiplicative model)

where

βincrease =





0 if northern ward,

β∗
increase if southern ward.

We choose β∗
increase such that it accounts in total for 332 cases. The value of

β∗
increase = 3.7 itself corresponds to the number of cases generated additionally

in each ward. Choosing the river as the partition has another advantage: it is

now possible to analyse differences in the MRF models differing in the choice

of neighbouring structure across the river. The expected spatial pattern for

βincrease as well as for the spatial pattern Λ(y, a)wY (dy) presented in Figure

6.5 assumes a low and additive influence of benzene, denoted as structure G.

All analysed structures are determined by different settings for benzene and

are as follows:
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Structure G: additive model, influence of benzene is low, i.e., βbenz = 3,

β∗
increase = 3.7;

Structure H: additive model, influence of benzene is high, i.e., βbenz = 7,

β∗
increase = 3.7;

Structure S: multiplicative model, influence of benzene is low, i.e., βbenz = 0.9,

β∗
increase = 3.7;

Structure T: multiplicative model, influence of benzene is high, i.e., βbenz=2.7,

β∗
increase = 3.7.

6.2.5 Increased risk in cluster regions

Instead of increasing risk in half of the area as in Section 6.2.4, we can assume

an increased risk for some specific clusters. We design three different clusters

for the area of Inner London. The location of each cluster is randomly chosen

with some aspects in mind. These are:

• Clusters should be built by different numbers of wards;

• One of the clusters should be divided by the river Thames;

• There should be clusters at the border of Inner London as well as in

the center; and

• Distances between the clusters should be different.

In our cluster configuration presented in Figure 6.6 the northern cluster con-

sists of 7 wards, the southern one of 10 wards, the cluster in the center is

built by 19 wards. Therefore, risk of 35 wards is increased. For each ward,

the resulting risk is calculated as in Section 6.2.4 but with

βincrease =




β∗∗

increase if ward belongs to any of the clusters,

0 else.

Again, the parameter β∗∗
increase is chosen to account for approximately 332

additional cases. The resulting spatial pattern of β∗∗
increase = 15 is shown in
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Figure 6.6: Increased risk for wards on three chosen clusters (a) and resulting

spatial pattern Λi (b) for structure U.

Figure 6.6 (a), the pattern of the expected cases when combined with a low

multiplicative influence of benzene is shown in Figure 6.6 (b). The settings

of the structure incorporating an increased risk in certain cluster regions are:

Structure I: additive model, influence of benzene is low, i.e., βbenz = 3,

β∗∗
increase=15;

Structure J: additive model, influence of benzene is high, i.e., βbenz = 7,

β∗
increase = 15;

Structure U: multiplicative model, influence of benzene is low, i.e.,

βbenz = 0.9, β∗∗
increase = 15;

Structure V: multiplicative model, influence of benzene is high, i.e.,

βbenz=2.7, β∗∗
increase = 15.
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6.3 Evaluation of model performance

In simulation studies, it is possible to compare the modelled parameter Λ̂iEi

with the generated parameter ΛiEi. This is done according to the criteria

described in this section.

Of course, it is possible to compare the estimates β̂0 and β̂benz with the data–

generating parameters β0 and βbenz in each structure. In models incorporat-

ing latent risk sources the parameters β̂latent and Γ̂m can also be compared

with their equivalents in data generation. Nevertheless, this comparison is

still insufficient as different values may lead to similar results, especially when

using a different model for data generation and simulation. Therefore, we

compare Λ̂iEi to ΛiEi.

This can be done by the so–called Mean Square Error (MSE) between sim-

ulated and calculated parameter of the Poisson distribution of Yi, which is

calculated by

MSE =
1

n

n∑

i=1

(ΛiEi − Λ̂iEi)
2

(Mood et al., 1974). If the model performs well, we will observe small values

of MSE; if the given structure is not found by the applied model, larger values

will result.

MSE calculated for the parameters of the Poisson distribution indicates if the

true underlying structure is recovered easily but it can be calculated only if

this structure is known as in a simulation study, not for real observations.

An alternative measure is the DIC introduced in Section 5.2. This will be

calculated in all simulations. Therefore, comparison of the performances of

DIC and MSE indicates if the DIC is a sufficient method in real applications.
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Chapter 7

Simulation results for restricted

Poisson–Gamma models

Following the design of the simulation study described in Chapter 6 we com-

bine the different generated structures with the chosen restricted Poisson–

Gamma models as described in Chapter 6.1. In this chapter we will use struc-

tures determined by benzene only (A/B/M/N) and those characterised by the

influence of benzene in combination with one latent risk source (C/D/O/P)

only.

The corresponding implementation in WinBUGS is described in Section 3.4.2.

We assume the location of the latent covariates to be fixed which limits the

flexibility of Poisson–Gamma random field models. For the covariates we

use Gaussian kernels as described in Chapter 6, their variance is assumed

to be unknown. The underlying data set of each combination is generated

separately. To stabilise estimation of model performance we use three runs

of each combination of generating structure and model.

The resulting DIC and MSE of the simulations are summarised by their

means in Tables 7.1 and 7.2 respectively. We use mean values instead of those

of each single run to give a better overview. For structure A we exemplarily

give the results of the three single runs on page 77.

Structures that do not involve latent risk at all such as A and B were well
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model A B C D M N O P

a 336.1 328.2 780.3 665.0 347.2 388.2 718.2 3850.1

b 322.0 299.3 493.3 441.1 325.2 402.9 485.6 3602.7

c 341.8 354.6 762.9 604.4 321.3 420.0 638.3 3596.2

d 336.8 334.5 434.6 393.9 315.2 411.1 428.9 3681.0

e 329.0 336.5 444.2 427.2 337.3 427.5 446.6 1268.0

g 323.9 355.3 851.3 722.2 330.1 327.5 782.5 3276.9

h 340.6 346.7 506.2 462.8 355.4 334.8 474.8 673.4

i 345.7 348.1 657.4 543.4 339.0 323.3 616.3 1281.8

j 336.4 369.8 410.6 371.7 348.1 376.9 402.0 458.3

k 350.7 349.4 439.9 406.0 321.6 321.7 417.0 587.2

w 398.4 427.1 461.8 431.9 359.7 494.9 425.8 1257.7

x 398.5 429.3 465.8 488.4 342.0 625.5 431.4 1441.3

Table 7.1: Summary of mean DICs of structures A, B, C, D, M, N, O and P of

the simulation study.

identified by all employed models. Usually, MSEs are less than one, which

is really small given the total number of 310 wards where risk is estimated

simultaneously.

For structures where a latent risk source is generated by a Gaussian kernel

the current implementation is too restrictive. The model has difficulties in

identifying the underlying structure correctly, especially if the position of the

kernel is not in the vicinity of the one used for data generation. The problem

is not solved by increasing the number of latent risk factors as this results in

overestimation caused by additional covariates and increases computational

time. Therefore it is necessary to allow for a random location of latent risk

sources. This is possible within the framework of Poisson–Gamma models

and shows the flexibility of the model class. It results in an extension of

our model implementation as described in Section 3.4.3. The corresponding

results are given in Chapter 8.

Benzene is always included as a covariate in data generation. If we do not

include this covariate in the model, we are nevertheless able to achieve satis-

factory results. The Gaussian kernels are very flexible already and are able
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model A B C D M N O P

a 0.0011 0.0253 5.786 5.794 0.0052 0.871 22.056 98.457

b 0.0085 0.0195 1.723 1.889 0.0132 0.877 12.631 96.355

c 0.0116 0.0079 4.954 5.358 0.0176 0.886 19.850 95.883

d 0.0029 0.0284 1.040 1.153 0.0108 0.878 11.191 98.082

e 0.0183 0.0406 1.549 1.661 0.0133 0.871 12.786 63.444

g 0.0330 0.205 5.975 6.196 0.0153 0.0148 22.193 104.834

h 0.0353 0.173 1.545 2.036 0.0134 0.0078 12.103 51.161

i 0.0283 0.151 4.443 4.853 0.0124 0.0257 19.447 55.170

j 0.0350 0.167 0.977 1.106 0.0048 0.0490 10.059 55.880

k 0.0308 0.144 1.439 1.207 0.0153 0.0435 11.721 58.055

w 0.153 0.694 1.675 1.869 0.0469 1.657 13.232 62.379

x 0.205 0.908 0.993 1.601 0.0575 2.423 9.480 78.021

Table 7.2: Summary of mean MSEs of structures A, B, C, D, M, N, O and P of

the simulation study.

to adopt the missing covariate. It is reasonable to assume that model per-

formance will be improved even further when allowing for random location

of the kernels.

In the following sections, we describe main results for the different structures

in more detail. While Section 7.1 deals with data generated assuming additive

influence of benzene but no latent risk sources (structures A and B), Section

7.2 discusses results for structures M and N. For structures where we model

the latent risk at fixed locations, results are presented in Section 7.3 for

additive influence (structures C and D) and in Section 7.4 for multiplicative

influence of benzene, i.e., structures O and P.

As already described the restricted implementation of Poisson–Gamma mod-

els is not flexible enough for satisfying results when latent risk is involved

in data generation. We therefore do not apply this implementation on other

generated structures. Results of the more flexible approach for all structures

is discussed in Chapter 8.

For a summary of structures’ and models’ names see page v.
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7.1 Additive influence of benzene, no latent

risk sources

Data sets analysed in this section are generated assuming an additive influ-

ence of benzene only. For structure A we assume a low influence of benzene

accounting for about 330 cases, for structure B the influence of benzene pro-

duces about 770 cases.

When modelling these data by Poisson–Gamma models that do include a

benzene term we calculate very small MSEs for all applied models as pre-

sented for all three runs separately in Table 7.3. Corresponding DICs are

given in Table 7.4. As all have the same order of magnitude, we decide to

focus on the mean of the values in the following only which are a good sub-

stitute and ease model comparison as done in Table 7.1 for the DIC and

Table 7.2 for the MSE.

For the Poisson–Gamma model including benzene as an excess risk factor

applied on data generated according to structure A (Aa) the amount of

modelled risk explained by benzene is about 75–85%, which is a similar

amount of variation as the added Poisson noise in data generation. For

data generated according to structure B this amount is about 70–85%. For

Poisson–Gamma models where we additionally include latent covariates in

modelling the amount of risk explained by benzene reaches similar levels for

both structures. By adding latent risk sources it is possible to explain some

of the baseline risk. This amount is elevated by increasing the number of

latent risk sources.

As the MSE’s magnitude does not depend on the number of latent risk sources

additionally involved in the model and all of those produce a homogeneous la-

tent field we conclude the ability of the model to identify the data generating

structure concerning the number of covariates.

In order to analyse the influence of different interpretations of covariates

we compare the results of additive and multiplicative models. Compared to

additive models, the MSE is slightly increased for multiplicative ones, which
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first run second run third run mean

Aa 0.0012 0.0013 0.0008 0.0011

Ab 0.0138 0.0101 0.0017 0.0085

Ac 0.0027 0.0270 0.0052 0.0116

Ad 0.0006 0.0013 0.0068 0.0029

Ae 0.0095 0.0020 0.0434 0.0183

Ag 0.0260 0.0335 0.0394 0.033

Ah 0.0280 0.0289 0.0490 0.0353

Ai 0.0327 0.0248 0.0274 0.0283

Aj 0.0317 0.0287 0.0446 0.035

Ak 0.0270 0.0379 0.0276 0.0308

Aw 0.149 0.160 0.150 0.153

Ax 0.198 0.207 0.209 0.205

Table 7.3: summary of MSE in situation A

first run second run third run mean

Aa 315.958 359.796 332.665 336.140

Ab 304.397 324.184 337.455 322.012

Ac 318.813 380.457 326.073 341.781

Ad 332.325 361.980 316.182 336.829

Ae 315.155 340.755 331.089 329.000

Ag 324.607 334.977 312.215 323.933

Ah 326.854 352.175 342.707 340.579

Ai 338.147 347.535 351.436 345.706

Aj 339.557 351.712 317.891 336.387

Ak 365.749 342.209 344.246 350.735

Aw 418.239 393.501 383.341 398.360

Ax 450.744 358.570 386.145 398.486

Table 7.4: summary of DIC in situation A
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is due to an overestimation of some low–risk regions at the border. This is

even more apparent for data generated according to structure B assuming a

high additive influence of benzene. Nevertheless, as differences are small both

approaches are suitable. The spatial pattern for selected models is presented

in Figure 7.1 (structure A) and Figure 7.2 (structure B) where we use the first

run of the simulations. For both structures we achieve patterns close to the

generated structures confirming the values of MSE which are smaller than

0.04 for A and 0.30 for B in all Poisson–Gamma models including benzene.

Furthermore, both approaches lead to very similar DICs, see Table 7.1 on

page 74.

If we do not include benzene in modelling but only latent covariates, esti-

mates differ a lot more compared to previous results. In models w (36 latent

covariates) and x (13 latent covariates) we explain lots of variation by latent

covariates namely ≈ 95 % for structure A. For structure B we explain 98.0 %

in average for Bw and 97.7 % for model Bx. Results are therefore robust to

the different number of latent risk sources.

Nevertheless, compared to Poisson–Gamma models assuming additive influ-

ence of benzene, we observe higher deviations between generated and mod-

elled risk. This is reflected by an increased MSE of around 0.150 (model Aw),

0.200 (model Ax), 0.694 (Bw), and 0.908 (Bx), compare Table 7.2. These

MSEs are the highest among all applied models due to an increased variance

when comparing generated and modelled values. Comparison between the

results of structure A and B reveals the following relationship: the higher

the influence of benzene is in data generation, the higher are the deviations

between generated and modelled values and therefore the MSE. Overestima-

tion of risk occurs especially in eastern and southern areas. Nevertheless all

wards in the center of London are correctly identified as low-risk wards and

the MSE is less than one, see Table 7.2. The increase of MSE is well reflected

by the corresponding DICs as given in Table 7.1.
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Figure 7.1: Structure A: Simulated cases (a) and modelled risk pattern Λi Ei

using a Poisson–Gamma model with additive influence of benzene (b),

a Poisson–Gamma model with multiplicative influence of benzene (c), a

Poisson–Gamma model without a benzene term and 13 latent risk sources

(d), and a Poisson–Gamma model without a benzene term and 36 latent

risk sources (e).
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Figure 7.2: Structure B: Simulated cases (a) and modelled risk pattern ΛiEi

using a Poisson–Gamma model with additive influence of benzene (b),

a Poisson–Gamma model with multiplicative influence of benzene (c), a

Poisson–Gamma model without a benzene term and 13 latent risk sources

(d), and a Poisson–Gamma model without a benzene term and 36 latent

risk sources (e).
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7.2 Multiplicative influence of benzene, no

latent risk sources

Data analysed in this section are generated following structures M and N

including multiplicative influence of benzene but no other covariates. The

generated patterns are presented in Figure 7.3 (a) for structure M and in

Figure 7.4 (a) for structure N.

Among other models, Poisson–Gamma models assuming benzene to be an

excess risk factor are applied. For M, this class performs well and identifies

the generated spatial pattern. We observe a similar behaviour for multi-

plicative Poisson–Gamma models with estimated MSEs of the same order of

magnitude, see Table 7.2 on page 75.

For combination Mg generating structure and modelling scheme are identical.

The underlying structure is well reproduced as presented in Figure 7.3 (c),

the mean of the MSE is less than 0.03. If we introduce latent covariates

in either additive or multiplicative models, the estimated spatial pattern

remains almost constant, which is reflected by similar MSEs as given in

Table 7.2. Additionally, their influence is estimated to be homogeneous over

the study area. The standard deviance of each kernel is estimated to be

less than 0.0001 reflecting very tight Gaussian kernels in order to minimise

their influence in each ward. Similar to structures A and B it is difficult to

distinguish between the results of the multiplicative and the additive Poisson–

Gamma model, either by MSE or DIC, the latter is presented in Table 7.1

on page 74.

This holds only for M. When we generate a higher number of observations as

for structure N, the additive model is not able to estimate more extreme val-

ues correctly. The MSE is increased by a factor of around 80, see Table 7.2.

As the spatial distribution of risk due to latent covariates is still homogenous,

it follows that additive models are not able to produce extreme values and

skewed distributions as generated by multiplicative structures. The range

of estimated risks is only a subset of the generated ones and multiplicative

modelling is required. This is also reflected by the calculated DIC values,
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see Table 7.1. Multiplicative inclusion of benzene in Poisson–Gamma models

produces satisfying results for structure N for both MSE and DIC as well as

for the estimated spatial pattern which are close to the generated structure,

compare Figure 7.4 (c) and (a). Here we need to clarify whether additive

modelling can be improved further if we do not rely on the restricted imple-

mentation of Poisson–Gamma models. The more flexible implementation of

Poisson–Gamma random field models is discussed in Chapter 8.

Poisson–Gamma models not taking benzene into account but a number of

latent risk sources produce a reasonable fit when the influence of benzene is

low as for structure M, but for increased influence of benzene as in N the

model has difficulties to identify the generated structure correctly as to be

seen in Figure 7.4 (d) and (e). Risk is overestimated for a large number of

wards. Additionally, there are regions of rather high generated risk which are

underestimated. This is reflected by high MSEs (Table 7.2) as well as highly

increased DICs, see Table 7.1. This holds for models w and x involving 36

and 13 latent covariates respectively.

7.3 Additive influence of benzene, one latent

risk source

In this section, we summarise the results for data generated following a

Poisson–Gamma model with an additive benzene term and a latent risk

source generated by a Gaussian kernel located in the south–western part

of Inner London.

Here, we observe higher MSEs compared to previously analysed structures.

One reason is a higher number of observed cases compared to previous struc-

tures but also worsened goodness of fit.

Poisson–Gamma models in the restricted implementation are able to model

the spatial structure satisfactorily only if suitable locations for latent risk

sources are provided. In Figure 7.5 some results of additive modelling of

structure C are given. If too many kernels at fixed locations are provided,
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Figure 7.3: Structure M: Simulated cases (a) and modelled risk pattern ΛiEi

using a Poisson–Gamma model with additive influence of benzene (b),

a Poisson–Gamma model with multiplicative influence of benzene (c), a

Poisson–Gamma model without a benzene term and 13 latent risk sources

(d), and a Poisson–Gamma model without a benzene term and 36 latent

risk sources (e).
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Figure 7.4: Structure N: Simulated cases (a) and modelled risk pattern ΛiEi

using a Poisson–Gamma model with additive influence of benzene (b),

a Poisson–Gamma model with multiplicative influence of benzene (c), a

Poisson–Gamma model without a benzene term and 13 latent risk sources

(d), and a Poisson–Gamma model without a benzene term and 36 latent

risk sources (e).
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the risk of low–risk regions is likely to be overestimated (see Figure 7.5 (e)

and (f)). On the other hand, if we do not consider sources located next

to the location of the generated risk, the model is not able to reconstruct

the spatial pattern (compare Figure 7.5 (d) and the corresponding values

of MSE and DIC in Tables 7.2 and 7.1, respectively). Furthermore, if no

latent risk sources are involved in modelling, the models fail to identify the

pattern correctly as we expect, see Figure 7.5 and the corresponding MSE

(Table 7.2) and DIC (Table 7.1). The necessity to implement a continuous

version of Poisson–Gamma models concerning latent risk component follows.

The restricted implementation of Poisson–Gamma models still allows for un-

certainty in the variance of the Gaussian kernel. This is well estimated if

there is a kernel located at a suitable position as for example for model b,

compare Table 7.5. Recall that the location of latent covariates is assumed to

be fixed here. If that location is too far away like for model c, the standard

deviation of the Gaussian kernel is overestimated, while it is underestimated

if too many latent risk sources are provided. This can be explained by a

necessary maximisation of kernels influence in order to cope with the high

risk far away and the idea to minimise each kernels influence in the latter

situation similar to Section 7.2. A more flexible approach for variance esti-

mation in combination with uncertainty of kernels location can improve the

model, see Chapter 8.

The results concerning the locations of Gaussian kernels can be transferred

one–to–one from additive to multiplicative models and to structure D where

we present a selection of estimated surfaces in Figure 7.7. Again the spa-

tial risk is only reproduced satisfactorily when we provide Gaussian kernels

in the vicinity of the generated risk source. In that case multiplicative and

additive modelling of benzene leads to similar results. We also see the neces-

sity to allow for a random location of latent covariates in our WinBUGS’s

implementation.

Comparison of treating benzene as excess (models a–e) or relative risk factor

(model g–k) in Poisson–Gamma models reveals better results for additive

modelling. We observe lower DICs and MSEs in general. As for previously
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Figure 7.5: Structure C: Simulated cases (a) and modelled risk pattern ΛiEi

using different settings of Poisson–Gamma models with additive influence

of benzene: no latent risk source (b), 4 latent risk sources (c), 9 latent

risk sources (d), 13 latent risk sources (e) and 36 latent risk sources (f).
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model first run second run third run mean

Cb 2.582 2.601 2.530 2.571

Cc 5.762 5.807 5.922 5.830

Cd 2.575 2.453 2.516 2.515

Ce 1.893 1.840 1.864 1.866

Ch 2.977 3.127 3.157 3.087

Ci 5.804 5.724 5.686 5.738

Cj 2.610 2.599 2.655 2.621

Ck 1.850 1.843 1.882 1.858

Cw 1.898 1.808 1.789 1.832

Cx 2.649 2.592 2.465 2.569

Table 7.5: Estimated variance parameter ρ (in km) for Poisson–Gamma mod-

els including a latent Gaussian kernel applied on data generated by

structure C.

analysed structures it is difficult to decide whether the influence of benzene

should be modelled rather additively or multiplicatively. Nevertheless it has

to be noted that the lowest mean of DICs for both structures C and D are

achieved for model j which assumes benzene to be a relative risk factor.

The corresponding mean MSE is also the lowest for these structures. The

reason for this decay can either be the suitability of the model or due to

the randomly generated data sets in each run. Application of both covariate

interpretations to the same data set as done in Chapter 8 allows for a fairer

judgement whether this is a result of the models or of different generated

data sets.

When not including a benzene term in Poisson–Gamma models as we do in

models w and x, the models are able to identify the latent risk structure,

compare Figure 7.6 (b) for structure C and 7.7 (b) for structure D. It has to

be noted that the risk for some of the low–risk regions is overestimated by

those models. This is reflected by relatively low values of MSE (Table 7.2)

and DIC (Table 7.1) compared to those calculated for other models.
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Figure 7.6: Structure C: Simulated cases (a) and modelled risk pattern ΛiEi

using a Poisson–Gamma model with multiplicative influence of benzene

(b), a Poisson–Gamma model without a benzene term and 13 latent risk

sources (c), and a Poisson–Gamma model without a benzene term and

36 latent risk sources (d).
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Figure 7.7: Structure D: Simulated cases (a) and modelled risk pattern ΛiEi

using a Poisson–Gamma model with additive influence of benzene and

suitable locations of latent risk sources (b), a Poisson–Gamma model with

multiplicative influence of benzene (c), a Poisson–Gamma model without

a benzene term and 13 latent risk sources (d), and a Poisson–Gamma

model without a benzene term and 36 latent risk sources (e).
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7.4 Multiplicative influence of benzene, one

latent risk source

Data generated by structures O and P are characterised by moderate risk

in most wards, ranging between zero and five observations. Additionally,

we observe very high risk in the south–western part of Inner London due

to the latent risk generated by a Gaussian kernel. Here, we observe up to

20 (structure O) and 99 (structure P) cases. Especially for structure P this

leads to a highly right–skewed distribution of observed risks.

We obtain similar results as described in Section 7.3 regarding the locations

of the Gaussian kernels. Modelling such data without involving latent risk

as for model a and model g does not produce sufficient results as we see in

the DIC values (Table 7.1). Therefore we need to include latent covariates.

If we do so assuming a fixed location we note the necessity of model improve-

ment as already concluded in Section 7.3. A small number of fixed located

kernels is too unflexible to model the generated structures sufficiently, but

inclusion of a high number of latent covariates is not a suitable solution.

If we use unsuitably located or no latent risk sources at all, the restricted

implementation of the Poisson–Gamma model is unable to reproduce the

latent pattern adequately and the standard deviation of the Gaussian kernel

is overestimated. Again, this causes difficulties in identifying the high–risk

region. In Figure 7.9 we show the resulting spatial pattern exemplarily for

multiplicative Poisson–Gamma models used on data generated according to

structure P.

Additionally, multiplicative Poisson–Gamma models perform much better

compared to additive models as those are able to cope with the steep descent

of risk. This becomes most clear for structure P. Boxplots as presented

in Figure 7.10 (d) reveal that for additive modelling of data generated by

structure P we observe the third quantile of the generated values to be even

lower than the median of the modelled results. This occurs even for model b

which provides a Gaussian kernel close to the point used for data generation.
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The corresponding multiplicative model Ph achieves good results.

The inclusion of latent risk sources in multiplicative Poisson–Gamma models

at locations similar to those used in model generation leads to satisfying re-

sults, although the models are not able to reproduce risks of the same amount

as generated by structure P, see Figure 7.9 (f) for example. Additionally we

observe a tendency to favour models with a higher number of latent risk

sources than required. In the simulations analysed in Chapter 8 we need to

clarify whether this is a result of fixed locations of latent kernels, different

data sets or if it is a draw back of the model implementation.

Excluding benzene from the model results in a spatial pattern with well

identified risk due to the latent risk sources but also leads to overestimation

in lots of low–risk regions. Inclusion of a higher number of latent covariates

improves the model fit, see Table 7.1.
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Figure 7.8: Structure O: Simulated cases (a) and modelled risk pattern ΛiEi

using a Poisson–Gamma model with additive influence of benzene and

suitable locations of latent risk sources (b), a Poisson–Gamma model with

multiplicative influence of benzene (c), a Poisson–Gamma model without

a benzene term and 36 latent risk sources (d), and a Poisson–Gamma

model without a benzene term and 13 latent risk sources (e).
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Figure 7.9: Structure P: Simulated cases (a) and modelled risk pattern ΛiEi using

different settings of Poisson–Gamma models with multiplicative influence

of benzene: no latent risk source (b), 4 latent risk sources (c), 9 latent

risk sources (d), 13 latent risk sources (e) and 36 latent risk sources (f).
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Figure 7.10: Structure P: Simulated and modelled risk pattern ΛiEi using a

Poisson–Gamma model without a benzene term and 36 latent risk sources

(b), a Poisson–Gamma model with additive influence of benzene and suit-

able locations of latent risk sources (c), the corresponding boxplot for all

three runs (d), a Poisson–Gamma model without a benzene term and 13

latent risk sources (e).
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Chapter 8

Simulation results for Poisson–

Gamma random field models

The results described in Chapter 7 are calculated using a restricted imple-

mentation of Poisson–Gamma models applied to only two of the generated

scenarios described in Chapter 6. This does not lead to satisfactory results,

especially when latent risk is generated. We therefore extend our WinBUGS

implementation to allow for a random location of the latent risk sources as

described in Section 3.4.3. We also allow the variances of each kernel to be

estimated separately.

This chapter deals with the results of this extended model formulation ap-

plied to all structures described in Chapter 6. On page v an overview of the

generated structures is given.

In contrast to Chapter 7, we pick only one data set randomly for each of the

selected structures. We avoid distortion of results by applying all models to

exactly that data set. The changed approach appears necessary as we do not

repeat each model combination three times as in Chapter 7.

To each data set, we apply the following Poisson–Gamma random field mod-

els:
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model f : Poisson–Gamma model with additive influence of benzene;

model m: Poisson–Gamma model with multiplicative influence of benzene;

model o: Poisson–Gamma model with no influence of benzene.

These models are extended by a number of latent risk sources whose loca-

tions are unknown a priori. Using our WinBUGS implementation of Poisson–

Gamma random fields, we successively include more latent covariates to im-

prove the model fit until the DIC no longer improves.

In spatial epidemiology, there are also other frequently used models, for ex-

ample the Markov random field (MRF) model (Besag et al., 1991) which also

allows for covariates. The model is applied to our data using two different

neighbourhood structures. For model v two regions are considered to be

neighbours if they share a common border. As London is divided by the

river Thames, wards on the North Bank are not considered to be neighbours

of wards on the South Bank.

The neighbourhood structure can be extended such that contrary to the

above definition, regions only parted by the river are considered to be neigh-

bours. In model z we employ an MRF model with this extended neigh-

bourhood definition. This definition is more adequate for a comparison to

Poisson–Gamma models estimating latent risk by Gaussian kernels.

Another group of spatial models are so–called cluster models. One represen-

tative of this group of models is the BDCD algorithm (Knorr-Held and Raßer,

2000) described in Chapter 3. This model is chosen as it is of similar com-

plexity as Poisson–Gamma models, leading to a fair comparison of models’

performances. Altogether, we employ the following alternative models in ad-

dition to Poisson–Gamma models:

model y: BDCD algorithm, wards parted by river Thames are neighbours;

model v: MRF model, neighbourhood structure as used in BDCD;

model z: MRF model, wards parted by river Thames are not neighbours.

In this chapter, we present results for selected structures only, other struc-

tures are discussed in Appendix B. These include “low benzene” scenarios

as these are close to our real example. In detail, we discuss:
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• additive influence of benzene in combination with latent risk repre-

sented by a Gaussian kernel (Structure C) in Section 8.1;

• multiplicative influence of benzene in combination with latent risk rep-

resented by a Gaussian kernel (Structure O) in Section 8.2;

• additive influence of benzene in combination with a linear spatial trend

component (Structure E) in Section 8.3;

• multiplicative influence of benzene in combination with an increased

risk in southern areas (Structure S) in Section 8.4;

• additive influence of benzene in combination with an increased risk in

cluster regions (Structure I) in Section 8.5.

Results for structures assuming a high influence of benzene lead to similar

results as described in Appendix B. Structures assuming an influence of ben-

zene only are discussed in the appendix only as we already achieve reasonable

results using the restricted implementation of Poisson–Gamma models.

For all models, we report the calculated DIC as well as the corresponding

MSE. We base our model selection on the DIC values only, although we in-

clude the corresponding MSE values in our discussion. For structures assum-

ing a low multiplicative influence of benzene and those which are discussed

in this chapter we additionally give the effective number of parameters.

The notation referring to the underlying structure and the applied model is

as follows: We start with a capital letter corresponding to the underlying

spatial structure. A small letter indicating the model follows. When apply-

ing Poisson–Gamma models we also deal with different numbers of latent

covariates. Here, the number corresponds to the number of latent covariates

included in the model.

At the end of this chapter we present an overview of the results of all struc-

tures. Furthermore, in Section 8.7 we demonstrate some additional charac-

teristics of Poisson–Gamma models which make them a flexible and powerful

tool for model estimation and analysis.
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Figure 8.1: Simualted Λi for structure C (a) and results: Estimated spatial

pattern of Λ̂i for the best fitting model Cf1 (b), for model Cm1 (c), and

for model Co3 (d).

8.1 Additive influence of benzene, one latent

risk source

Structure C assumes an additive influence of benzene in combination with a

Gaussian kernel representing latent risk. Both covariates account for a similar

number of observations. A spatial plot of the generated structure is given in

Figure 8.1 (a). We employ different models on the generated ΛiEi according

to structure C and calculate MSE and DIC for the estimated values Λ̂iEi as

given in Table 8.1. The MRF model and the BDCD algorithm produce high

values for the DIC reflecting non-appropriate model fits. This holds for both

neighbourhood structures of the MRF model. Although it includes benzene,

the MRF model shows an inferior fit compared to a Poisson–Gamma model
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♯ latent factors 0 1 2 3 4

model f 732.7 346.2 346.7 352.1 353.1

2.017 6.686 7.528 15.959 18.338

(5.808) (0.083) (0.094) (0.092) (0.106)

model m 766.8 374.7 375.0 — —

1.713 6.987 7.844

(5.937) (0.276) (0.286)

model o — 410.1 408.0 384.4 385.2

7.028 17.996 17.348 20.101

(0.351) (0.279) (0.173) (0.173)

model y 408.0, 69.368 (0.685)

model v 389.6, 69.246 (0.600)

model z 387.6, 72.587 (0.586)

Table 8.1: DIC, pD and (MSE) values for extended models applied to structure C.

not including benzene, compare the DIC value of 387.6 for model Cz to

the one of model Co3 which is 384.4. The BDCD model achieves a DIC of

408.0. Given n = 310 wards this fit is not appropriate. The assumption of

cluster regions with a constant risk is too restrictive to model the gradual

descent generated by the Gaussian covariate. In contrast, MRF models have

difficulties to model sharply decreasing risk in neighbouring regions as the

rather assume the mean of the surrounding regions for each ward.

In contrast, Poisson–Gamma models show a better performance in general.

We conclude that those are more suitable for the underlying structure and

explain our findings for those model classes in the following.

For both, the multiplicative and the additive Poisson–Gamma models we see

a huge decrease in DIC and MSE from zero to one latent factor by almost

400 points. This gives immense evidence for the existence of at least one

latent factor in the underlying data set reflecting the truth.

Best results are achieved if the model is equivalent to the underlying struc-

ture, namely models with an additive influence of benzene and one latent

covariate. Model Cf1, the most appropriate one, has a DIC value of 346.2
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(MSE of 0.083). The spatial risk surface is given in Figure 8.1 (b).

If benzene is modelled multiplicatively, performance is degraded by about

30 points. Model Cm1 shows the best results for this class. Given an MSE

of 0.276, the performance of multiplicative models is still acceptable, main

characteristics of the generated structure are reproduced by the model (com-

pare Figure 8.1 (c)), although we observe a tendency to overestimate risk in

low-risk regions.

Poisson–Gamma models without benzene are estimated to have a higher DIC

value, although the MSE for three latent risk factors (model Co3) is smaller

than the one of model Cm1. The resulting spatial risk surface is given in

Figure 8.1 (d). It especially lacks in the ability to identify low-risk regions

properly, similar as discussed above for model Cm1. In conclusion, for this

structure we select the model that corresponds to the generating structure.

Although both, Poisson–Gamma models Cm and log-link MRF models Cv

and Cz, include a benzene term, multiplicative modelling does not give con-

vincing results for this structure. We calculate similar DIC values as for

Poisson–Gamma models without benzene. The BDCD model not including

benzene leads to even higher DIC values.

8.2 Multiplicative influence of benzene, one

latent risk source

Data generated according to structure O is characterised by multiplicative

influence of benzene and the presence of latent risk in the south west of

Inner London. These covariates are matched in the proportion of 1:1 for the

number of generated cases. A spatial plot of generated Λi is given in Figure

8.2 (b), resulting DICs and MSEs of applied models in Table 8.2.

Poisson–Gamma models assuming either a multiplicative or an additive in-

fluence of benzene lead to almost identical results. When we do not include

any latent risk sources, DIC reaches high values, larger than 800 for both
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Figure 8.2: Results for structure O: Scatterplot matrix of the estimated param-

eters Λ̂i Ei of the Poisson–Gamma model with multiplicative influence

of benzene (Om1), additive influence of benzene (Of1) and no benzene

influence (Oo1), all models include one latent risk source (a); simulated

structure Λi for O (b); rate Λ̂i of model Om1 (c).
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♯ latent factors 0 1 2 3 4

model f 803.8 373.2 375.5 377.3 378.5

2.0 6.8 9.8 13.4 16.3

(5.340) (0.176) (0.175) (0.187) (0.217)

model m 821.4 373.5 373.5 377.6 373.9

1.7 6.7 7.0 13.6 7.6

(5.397) (0.106) (0.107) (0.121) (0.107)

model o — 375.2 378.2 379.7 380.9

6.0 9.6 11.3 14.8

(0.222) (0.226) (0.232) (0.273)

model y 398.0, 49.8 (0.860)

model v 387.0, 76.9 (0.595)

model z 386.9, 78.9 (0.559)

Table 8.2: DIC, pD and (MSE) values for extended models applied to structure O.

models. Both approaches show a substantial drop in the DIC when includ-

ing one latent risk source in the model, leading to a DIC of 373. Addition

of more latent covariates does not improve the model fit anymore. Here, the

user is not able to distinguish whether additive or multiplicative modelling

is more appropriate.

Similar DICs are obtained for Poisson–Gamma models without benzene (Oo1).

A slight increase compared to model classes with benzene is noticeable as the

DIC equals 375.2 if including only one latent covariate. Inclusion of more

latent sources decreases the model fit. Therefore, the Poisson–Gamma model

involving only one latent covariate is favourable.

MRF models and the BDCD algorithm lead to inferior model fits reflected

by DIC values greater than 380. For the MRF model no differences due to

the different neighbourhood structures are noticeable. Alternative models

involve a higher number of effective parameters leading to a higher DIC.

Furthermore, estimated MSE values give an indication that model fit is in-

ferior. A reason for inferiority of BDCD is the clustering assumption which

contradicts to the smoothly decreasing risk of the Gaussian kernel. This
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can also not appropriately be reproduced by CAR terms involved in MRF

models. Assumptions considered here do not correspond to steep slopes in

decreasing/increasing risk between neighbouring regions.

In order to find the best fitting model we compare the resulting risk surfaces

of the Poisson–Gamma models with the lowest DIC values. These are the

• Poisson–Gamma model with benzene as excess risk factor and one la-

tent covariate (Of1);

• Poisson–Gamma model with benzene as relative risk factor and one

latent covariate (Om1);

• Poisson–Gamma model with one latent covariate (Oo1).

Resulting values of the risk surface Λ̂iEi for each model are plotted against

each other using a scatterplot matrix in Figure 8.2 (a). All models result

in very similar parameters of the Poisson distribution and therefore in ex-

changeable risks with a correlation of at least 0.998. This includes the setting

used for data generation. A plot of the rates Λ̂i according to model Om1

is given in Figure 8.2 (c). In contrast to generated Λi, estimated Λ̂i achieve

slightly lower values in high risk regions and higher values in low-risk regions.

This is reflected by mean and variance of both, Λi and Λ̂i. These are 2.947

(Var=33.232) and 3.068 (Var=9.174) respectively. Nevertheless, the MSE of

model Om1 equals 0.106 reflecting an appropriate fit of the 310 rates.

Altogether, Poisson–Gamma models satisfy for this structure. Here, alterna-

tive covariate interpretations lead to comparable results.

8.3 Additive influence of benzene, linear de-

creasing trend

For structure E we assume an additive influence of benzene accounting for

330 cases. A similar amount of cases is generated following a linear spatial

trend decreasing from north to south. The generated risk surface is plotted
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in Figure 8.3 (b). In contrast to structures characterised by latent risk built

by Gaussian kernels, the generated latent pattern cannot be decomposed

by such kernels. We expect a higher number of kernels to be necessary to

reproduce the linear spatial trend.

We employ the models described at the beginning of this chapter and use

DIC and MSE for model comparison which are given in Table 8.3. Note the

high DIC values for models Ef4 (DIC = 390.5) and Em5 (DIC = 387.1). For

the additive model we calculate the amount of risk explained by the different

terms for model Ef3, Ef4 and Ef5, see Table 8.4. In contrast to models Ef3

and Ef5 where benzene explains more that 40%, benzene explains only 10.5%

of the variation modelled by Ef4. Most of the risk is explained by the baseline.

We assume similar problems for model Em5, but — as percentages cannot be

calculated for multiplicative models — we cannot check for the percentages

of explained risks. An improvement of the model fit is possible using different

initial values. We do not pursue this possibility as incorporation of a higher

number of latent factors already leads to satisfying results.

Poisson–Gamma models incorporating benzene convince with low DICs of

318.8 for model Em6 and 313.4 for model Ef5. As for previous structures,

the additive influence assumed for data generation leads to the most satis-

fying results for the whole structure. Nevertheless, agreement between both

models is high, see the scatterplot matrix in Figure 8.3 (a). Modelling the

continuously decreasing trend in combination with benzene as a relative risk

factor leads to best results when employing six or seven latent covariates.

The incorporation of five latent covariates achieves best results among Poisson–

Gamma models not including benzene as a covariate. The DIC is increased

by 25.4 points comparing model Ef5 to Eo5. This is caused by an increased

variance between both parameter estimates. These differences are observable

across the whole interval, in particular for the high–risk regions in the north of

Inner London. Here risk is underestimated for model Eo5, see Figure 8.3 (a).

Estimated rates Λ̂i of model Ef5 and Eo5 are presented in Figure 8.3 (c)

and (d) respectively. Both model the decreasing risk satisfactorily although

incorporation of benzene is favourable.
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Figure 8.3: Results for structure E: Scatterplot matrix of the estimated parame-

ters Λ̂i Ei of the model with additive influence of benzene and five latent

risk sources (Ef5), multiplicative influence of benzene and six latent risk

sources (Em6), no benzene influence and five latent risk sources (Eo5)

and the MRF model assuming wards across the Thames to be neighbours

(Ez) (a); simulated spatial structure Λi (b); and spatial risk surfaces Λ̂i

of model Ef5 (c) and model Eo5 (d).
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♯ latent factors 0 1 2 3 4 5 6 7

model f 374.0 330.5 330.2 323.9 390.5 313.4 313.9 —

2.020 6.958 15.224 17.899 22.249 17.053 17.876

(0.419) (0.230) (0.237) (0.244) (2.136) (0.285) (0.273)

model m 376.2 332.5 329.2 324.6 320.6 387.1 318.8 319.0

1.897 6.328 13.005 16.142 16.779 22.252 17.991 18.626

(0.431) (0.267) (0.300) (0.313) (0.304) (2.117) (0.299) (0.292)

model o — 343.2 343.7 340.9 339.6 338.8 338.8 —

5.967 11.039 14.019 15.887 17.266 18.387

(0.330) (0.307) (0.293) (0.286) (0.280) (0.281)

model y 341.7, 17.484 (0.258)

model v 333.9, 25.509 (0.149)

model z 330.8, 32.582 (0.164)

Table 8.3: DIC, pD and (MSE) values for extended models applied to structure E.
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Ef3 Ef4 Ef5

expl. risk baseline (%) 39.3 60.0 34.7

expl. risk benzene (%) 42.7 10.5 46.1

expl. risk latent (%) 18.0 29.5 19.2

Table 8.4: Amount of risk explained by baseline risk, benzene and latent term

for Poisson–Gamma models including benzene additively and three to five

latent factors.

Performance of the BDCD model is inferior to all classes of Poisson–Gamma

models with a DIC of 373.2, see Table 8.3. As already discussed for structure

C in Section 8.1, the clustering algorithm has difficulties to model a smooth

decrease of the risk surface. Hence a high number of cluster centers is required

which increases the number of effective parameters and therefore the DIC.

MRF models lead to worse fit compared to Poisson–Gamma models includ-

ing a benzene term, but perform equally well as Poisson–Gamma models

not considering benzene. The influence of the alternatively chosen neigh-

bourhood structures is negligible. The scatterplot matrix of the estimated

Λ̂iEi includes model Ez. It reflects the close correspondence by the different

Poisson–Gamma models to Ez which is confirmed by Pearson’s correlation

coefficient between Ez and Ef5 that is 0.963.

Although we use an additive setting for model generation we see no immense

disadvantage when using benzene as relative risk factor as in model Em6

and Ez. The number of latent covariates involved is able to compensate

differences due to different interpretations. Gaussian kernels are a suitable

tool to model the latent risk. Sharp decrease is obviously not present as the

increased DIC for model Ev in contrast to model Ez indicates. We point out

that inclusion of benzene in any of the applied models leads to improved fits

although Poisson–Gamma models perform better in general.
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♯ latent factors 0 1 2 3

model f 596.3 383.6 373.0 373.1

1.1 6.8 12.8 15.8

(2.350) (0.365) (0.243) (0.231)

model m 596.4 383.7 373.3 374.0

1.1 6.8 13.6 15.9

(2.350) (0.361) (0.239) (0.228)

model o — 383.5 370.9 373.4

6.6 11.9 15.8

(0.373) (0.254) (0.238)

model y 347.8, 13.2 (0.140)

model v 335.7, 6.5 (0.024)

model z 376.5, 55.1 (0.257)

Table 8.5: DIC, pD and (MSE) values for extended models applied to structure S.

8.4 Multiplicative influence of benzene, plateau

trend

Structure S includes benzene multiplicatively as well as a plateau of higher

risk in the wards south of the Thames. Both components account for 330

cases each. For a plot of generated Λi see Figure 8.4 (b).

For this structure, the three different classes of Poisson–Gamma models lead

to very similar results. Again, inclusion of a single covariate immensely

reduces the DIC. We conclude that risk due to other covariates than benzene

is present.

Best results are achieved when two latent covariates are considered. While

model Sm2 modelling a multiplicative influence of benzene and two latent risk

factors leads to a DIC of 373.3, we achieve a value of DIC = 373.0 for model

Sf2 (additive influence of benzene, two latent risk factors) and of DIC = 370.9

for model So2 (two latent covariates only). Results of other numbers of

covariates are given in Table 8.5. For a comparison of the estimated rates

Λ̂iEi of these three models see Figure 8.4 (a). We see a high agreement
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of structure S (b); spatial pattern of Λ̂i estimated by model Sf2 (c) and
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between the estimated values of all three models. We pick model Sf2 to give

the corresponding plot of the rates surface, see Figure 8.4 (c). The estimated

risk of this model can be partitioned to evaluate the fit of the latent term

alone as done in Figure 8.4 (d). As we already assume from the Λ̂is in Figure

8.4 (c), the change in risk at the river is not as abrupt as in the generated

data, as we employ Gaussian kernels. Nevertheless we are satisfied with the

results given the shape of Gaussian kernels. Poisson–Gamma models allow

for other kernels such as Uniform ones or combinations of different types to

improve the model fit. Furthermore, the usage of overcomplete dictionaries

(Clyde and Wolpert, 2007) is also an alternative to our procedure.

Other models show a better performance. The MRF model Sv treating wards

across the Thames not to be neighbours leads to a very low MSE of 0.024 for

this structure. The corresponding DIC equals 335.7 which is about 40 points

lower than DICs achieved by Poisson–Gamma models. We point out that the

corresponding neighbourhood information strongly supports the underlying

structure. This indicates that Poisson–Gamma models with more suitable

kernels will reach similar values. Comparison to model Sz that has a DIC

of 376.5 reveals a high dependency on the chosen neighbourhood structure,

especially when comparing the number of effective parameters pD. Lower

values indicating a higher contribution of prior information are found for

model Sv supporting the generating structure. DIC of Sz is comparable to

that of Poisson–Gamma models. In this setting we also have corresponding

situations as modelling of spatially structured and unstructured terms as in

Sz corresponds to the employed Gaussian kernels.

A plot of Λ̂i as estimated by model Sz is given in Figure 8.4 (e). We recognise

low risk regions in the north and increased risk in the south. The abrupt

change in the rates Λ̂i at the river is not reproduced. Here, an alternative

neighbourhood structure is necessary. Compared to Poisson–Gamma models,

the change in model Sz is less smooth. In contrast, risk in the south is less

constant but more patchy. By using the alternative neighbourhood structure

as for Sv DIC drops to a value of 335.7. Here, we reproduce the sharp risk

drop at the Thames.
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The BDCD algorithm is also able to model the risk differences appropriately.

Nevertheless, the boundary between high- and low-risk regions is not esti-

mated to equal the Thames exactly. So some low-risk regions are estimated

to have higher risk than they actually have. This leads to an increase in DIC

by 8 points compared to model Sv, but lower values than for Poisson–Gamma

models. Note that the neighbourhood structure applied by Sy corresponds

to those of Sz, i.e., wards separated by the Thames are assumed to be neigh-

bours. Hence, the dropping line is well estimated by the partition model.

Altogether, we see advantages in MRF models when correct neighbourhood

information is provided by the user. Similar DICs are gained by the BDCD

model where such information is not required. Poisson–Gamma models with

our choice of Gaussian kernels show similar performance as MRF models

with the standard neighbourhood. Modelling of the sharp drop in the risk is

successful by allowing for independent estimation of longitudinal and latitu-

dinal variances, see Section 8.7. For this structure multiplicative modelling of

benzene is not essential, the additive model leads to almost identical results.

8.5 Additive influence of benzene, increased

risk in cluster regions

Data generated according to a low additive influence of benzene in combi-

nation with an increased risk in three selected cluster regions is denoted as

structure I. Here, both components account for about 330 generated cases

each. The resulting risk surface is given in Figure 8.5 (b).

For data generated according to this structure, we achieve the results pre-

sented in Table 8.6 when applying our selected models. Estimation of Poisson–

Gamma models Io13 and Im13 stops with inclusion of any further latent ker-

nels as this procedure does not lead to sufficient decrease of the DIC. For the

resulting models, namely Im13 assuming multiplicative influence of benzene

and 13 Gaussian kernels (DIC = 401.1) and Io13 modelling risk by 13 latent

covariates only (DIC = 410.7), we compare the estimated Λ̂iEi in a scat-
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Figure 8.5: Results for structure I: Scatterplot matrix of the estimated parame-

ters Λ̂i Ei of the model with additive influence of benzene and four latent

covariates (If4), multiplicative influence of benzene and 13 latent covari-

ates (Im13), no benzene influence and 13 latent covariates (Io13), BDCD

model (Iy), and the MRF model assuming wards across the Thames to

be neighbours (Iz) (a); simulated spatial structure Λi (b); and spatial risk

surfaces Λ̂i of model If4 (c) and model Iy (d).
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♯ latent factors 0 1 2 3 4 5 6

model f 1156.6 1011.0 447.7 393.1 376.7 378.5 —

2.0 222.9 10.1 14.5 16.7 21.1

(11.277) (5.518) (3.519) (2.841) (2.511) (2.339)

model m 1130.9 764.4 484.9 412.8 409.7 407.1 406.9

2.0 5.9 10.7 14.7 15.8 17.7 21.5

(11.199) (8.060) (3.743) (2.958) (2.653) (2.551) (2.361)

7 8 9 10 11 12 13

405.8 405.2 404.5 403.0 402.4 401.6 401.2

23.2 26.4 28.2 30.2 31.0 31.8 32.3

(2.263) (2.150) (2.074) (1.960) (1.940) (1.960) (1.878)

model o — 1212.5 482.6 440.1 437.7 428.7 423.3

219.0 9.5 14.3 26.6 30.6 34.2

(6.090) (3.664) (3.064) (2.729) (2.540) (2.435)

7 8 9 10 11 12 13

418.7 415.5 413.8 412.7 411.6 411.1 410.7

36.0 36.9 37.7 38.2 38.7 39.1 39.5

(2.415) (2.391) (2.375) (2.371) (2.365) (2.362) (2.359)

model y 381.0, 60.8 (0.633)

model v 415.6, 115.8 (1.509)

model z 412.1, 115.1 (1.505)

Table 8.6: DIC, pD (MSE) values for extended models applied to structure I.
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terplot matrix as given in Figure 8.5 (a). We include the Poisson–Gamma

model including benzene additively in our comparison. Here four kernels are

required to achieve a minimum value of the DIC which is 376.7 in our case.

Additionally we compare the results of the clustering model Iy. This model

satisfies with a DIC of 381.0.

MRF models have difficulties to model the sharp decrease in risk in combina-

tion with an additive influence of benzene reflected by high DICs. These are

greater than the values achieved by all settings of Poisson–Gamma models.

As these models do not lead do satisfying DIC values we do not consider

them any further.

The scatterplot matrix (Figure 8.5 (a)) shows a high agreement between re-

sults of all Poisson–Gamma models. The reason is probably the comparable

structure of the model although different interpretations of benzene and dif-

ferent numbers of kernels are considered. The BDCD model shows differences

across the whole interval when compared with any of the Poisson–Gamma

model formulations.

We take a closer look at the resulting risk surfaces of model If4 and Iy.

We choose model If4 among Poisson–Gamma models as this satisfies by the

lowest DIC of this group. Figure 8.5 (c) and (d) present the surfaces of Λ̂i.

By visual comparison, identification of cluster regions leads to similar results.

Estimated values do not necessarily correspond to the generated ones which

lie in the interval of Λi ∈ [0, 18.404]. For model If4, we overestimate the

risk as Λ̂i ∈ [−0.118, 26.636]. Note that negative values are estimated by

WinBUGS, although these are impossible for Poisson distributed values. We

take them as estimated. For model Iy the estimated values lie in the interval

of Λ̂i ∈ [0.520, 15.688], i.e., this model rather underestimates the risk in high

risk regions. In contrast, low risk regions are overestimated.

The estimated surface of clusters differs from the constantly increased risk

that is generated. Although we expect a clustering model to detect such

structures, model Iy has similar difficulties as the Poisson–Gamma model

If4 employing four smoothly decreasing Gaussian kernels for latent terms.

Here we expect an improvement of the model fit when employing alternative
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kernels such as Uniform ones.

Low risk regions are reasonably reproduced by the Poisson–Gamma model,

whereas the clustering model tends to oversmooth. Although both models

lead to similar DICs we clearly favour the Poisson–Gamma model with its

potential model improvements by alternative kernels.

Due to the DIC values of Poisson–Gamma models we prefer additive mod-

elling of the covariate as assumed for data generation. Multiplicative mod-

elling decreases the model fit, although this model formulation is preferable

over ignoring benzene’s influence as in model Io13.

Altogether, for this structure we prefer the Poisson–Gamma model assuming

an additive influence of benzene as in data generation. We see a huge poten-

tial for model improvement when other than Gaussian kernels, e.g. Uniform

ones, are considered.

8.6 Summarised results for all structures

In this section we summarise the results of the simulation study for all struc-

tures. Table 8.7 gives the DICs achieved for the different models. For each

structure we report the value for the best model, in combination with the

differences between this and the DIC of every other model.

Spiegelhalter et al. (2002) suggest that differences in DIC less than two show

equal support of both models and are worth considering while differences

larger than seven can be interpreted as inferior support of the model by the

data.

In contrast to this recommendation we observe negligible risk differences

for two models while the DICs differ in less than seven to eight points, see

for example the scatterplot matrices in Figures 8.3 (models Ef5 and Em6,

difference 5.4) and Figure B.4 (models Ff5 and Fm7, difference 7.7). For

many models, smaller DIC values almost reproduce the intersecting line.

Furthermore, the goal of our study is not to find a single best fitting model

but to analyse the abilities to reproduce the risk surface.
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model f model m model o MRF model BDCD

Structure A 339.9 + 7.6 + 23.3 + 11.3 + 33.3

Structure B 312.2 + 14.6 + 49.8 + 15.7 + 60.2

Structure C 346.2 + 28.5 + 38.2 + 41.4 + 61.8

Structure D 326.8 + 31.2 + 39.8 + 41.6 + 68.7

Structure E 313.4 + 5.4 + 25.4 + 17.4 + 28.3

Structure F 330.4 + 7.7 + 27.1 + 4.0 + 29.8

Structure G + 21.7 + 33.8 + 42.5 + 25.0∗ 345.6

Structure H 362.0 + 8.2 + 40.1 10.2∗ + 27.9

Structure I 376.7 + 24.4 + 34.0 + 35.4 + 4.3

Structure J + 13.1 + 68.1 + 58.4 + 34.3 397.6

Structure M 321.9 + 0.9 + 4.0 + 0.5 + 6.1

Structure N + 47.1 340.5 + 87.1 + 24.1 + 80.1

Structure O 373.2 + 0.3 + 2.0 + 13.7 + 24.8

Structure P + 83.9 341.1 + 137.3 + 59.8 + 141.1

Structure Q + 1.4 338.3 + 4.4 + 14.7 + 7.2

Structure R + 60.0 327.7 + 92.0 + 35.3 + 115.7

Structure S + 25.2 + 25.5 + 23.1 + 28.7∗ 347.8

Structure T + 39.2 + 17.8 + 52.1 + 54.6∗ 386.3

Structure U + 34.2 + 34.2 + 58.7 + 68.1 358.9

Structure V + 28.9 + 21.1 + 87.1 + 43.6 389.4

Table 8.7: Summary of the DICs achieved for different structures, the MRF

model refers to model z where ∗ marks structures where model v and

model z lead to differences larger than seven.

Keeping in mind the recommendation of Spiegelhalter et al. (2002) we colour

differences less than seven green in Table 8.7 representing models with a

similar support. Models leading to much larger differences should clearly not

be considered as alternatives to the “best” model. Hence we colour large

values red. As a breakpoint for models that should not be considered we

set twice the breakpoint between the best model and those acceptable as

alternatives, i.e., differences larger than 14. Intermediate values are coloured

in orange.

For the MRF model, different settings of the neighbourhood structure lead to
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similar results for most structures. We therefore report only one value in Ta-

ble 8.7. As reference, we choose model z as the corresponding neighbourhood

structure is more adequate for a comparison to the Gaussian kernels applied

for Poisson–Gamma models which also ignore the river as a boundary for

modelled risk. Models where the support of both neighbourhood structures

differs by more than seven points are marked by a “ ∗ ”. These correspond

to those structures where we generate a plateau of increased risk in southern

Thames’ wards, i.e., structures G/H/S/T.

Our main conclusions from the simulation study are as follows:

• Additive structures usually favour an additive model while multiplica-

tive structures lead to a multiplicative model as best fitting model. The

different interpretations of the covariate are not exchangeable in gen-

eral. This holds especially for structures assuming a “high” influence

of the covariate.

• When not considering benzene in the model the DIC is increased which

guides us to include necessary covariates. This holds for both, Poisson–

Gamma model o and BDCD model y. The increase in DIC of Poisson–

Gamma models tends to be smaller compared to the BDCD model.

• The number of involved latent covariates in Poisson–Gamma models is

typically small. It tends to be higher when benzene is not considered

by the model.

• For MRF models, different neighbourhood structures lead to negligible

differences less than seven in the DICs of most structures. Structures

generating an abrupt change in risk at the Thames (G/H/S/T) favour

the neighbours to be parted by the river.

• In our choice of compared models, MRF models assuming a neighbour-

hood structure that ignores the Thames lead to spatial dependencies

most similar to multiplicative Poisson–Gamma models estimating la-

tent risk by distance–based decrease of Gaussian kernels. Nevertheless,

their results are inferior.
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• Clustered structures I/J/U/V lead to lowest DICs when modelled by

the BDCD model. This model also shows good results for structures

assuming a plateau of increased risk south of the Thames (G/H/S/T).

For other structures their deviation from the best fitting model is rather

high.

• Although we do not observe differences due to different neighbourhoods

for most structures we strongly recommend to apply different ones for

sensitivity analysis.

From the results of the BDCD model concerning clustered structures as well

as MRF models assuming neighbourhood structure v we expect an improve-

ment of the model fit of Poisson–Gamma models when allowing for alter-

native kernels. For small cluster regions Uniform kernels probably provide

the best alternative. Structures that assume risk to drop at a boundary

such as the Thames probably require more complex kernels, half–Gaussian

ones provide a possible solution. These correspond to neighbourhood v in

MRF models. The advantage of Poisson–Gamma models is the estimation

of the breakpoint of a half–Gaussian kernel as boundary in contrast to MRF

models where the neighbourhood structure is required as model input. Work-

ing with different kernel functions presented as overcomplete dictionaries as

suggested by Clyde and Wolpert (2007) provides a suitable extension of the

model class. Furthermore, Poisson–Gamma models can easily be partitioned

into their individual terms and are easier to interpret. They also give a

guideline for possible clusters as discussed in the next section.

8.7 Identification of high-risk regions

As we have already seen in previous sections, Poisson–Gamma models pro-

vide a very flexible and powerful tool for the identification of the underlying

structure. Models favour covariate information as either excess or relative

risk factor corresponding to the underlying setting and therefore help to iden-

tify the correct pattern. The user can easily determine whether additional

covariates should be included or do not provide any further information.
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Beside mapping the risk surface alone Poisson–Gamma models are useful for

identification of unknown risk factors. It is possible to map the locations

of the latent random field such as in Figure 8.6. We give the locations of

the Gaussian kernels for best fitting Poisson–Gamma models for structures

discussed above, namely

• for generation of one latent covariate: model Of1;

• for generation of smoothly decreasing risk: model Ef5;

• for generation of abrupt changing risk at the Thames: model Sf2;

• for generation of increased risk in three clusters: model If4.

The plots give estimated locations of the kernels. The frequency is repre-

sented by the colour of each cell with red values indicating frequently chosen

locations. On the axes we give density estimates of the location of the Gaus-

sian kernels for longitude and latitude. For all plots the same scale is used

that ranges between 0 (yellow) and 0.2 (red).

In the first situation, the risk surface can be partitioned into Gaussian kernels.

The location we have chosen for data generation in structure O is reproduced

exactly by the model. In a real application we can identify the location of a

point source.

The second setting assumes smoothly decreasing risk from north to south.

This is also reproduced by the location of the Gaussian kernels. The location

of any of the kernels is more likely in the north of the region as a higher density

indicates. For longitude we see no such decreasing line which supposes no risk

differences in this direction. A closer inspection of the according variances

helps to figure out the smoothly decreasing risk. We observe only small peaks

of the density compared to other settings.

Higher peaks in density estimates reveal sharp risk differences such as for

structure S that has an increased risk in the south. Both kernels are located

in the southern area, they are nearly never in any northern region. For the

longitude all locations are chosen with a peak in the center. In our setting,

we assume an independence of both directions making such a constitution
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Figure 8.6: Latent random field for Poisson–Gamma models Of1 (one latent

Gaussian kernel in data generation), Ef5 (smoothly decreasing risk as-

sumed), Sf2 (increased risk in southern wards assumed) and If4 (increased

risk in three clusters assumed).
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necessary: One kernel ‘increases’ the risk in all wards up to the least northern

increased one while an additional kernel models latent risk in the remaining

southern wards. The peak in longitudinal direction corresponds to the latter

one.

The fourth situation is characterised by three clusters of increased risk. These

are identifiable using the information of the cluster centers in Figure 8.6.

Obviously, the size of cluster in the south-eastern area is too large to be

modelled by a single Gaussian kernel given the sharp risk drop off. Here two

kernels are used. Note that the model is able to separate the increased risk

in the two more central clusters lying close together.

Other useful interpretation of the intensity of the influence corresponds to the

variance of the kernel given its location which is demonstrated for structure

S, model Sf2, in Figure 8.7. High values indicate a slowly decreasing and

smooth influence of the latent covariate, while low values correspond to a

small area of increased risk. This allows to model sharp decreasing risk or

elevated risk in small areas. The mean variance in each of the cells varies

in the interval of [0.08, 21.19] for longitudinal direction and [0.07, 11.76] for

latitudinal direction. The scale of each plot in Figure 8.7 varies accordingly.

For longitudinal direction, we estimate low variances for the centrally located

kernel, while southern ones are characterised by larger variances. In contrast,

variances in latitudinal direction are estimated to be smaller. Higher values

are mainly observed at the transition between both kernel zones leading to a

sharp decrease of the kernels. Histograms as given in Figure 8.7 (c) and (d)

also show the different behaviour of longitudinal and latitudinal variances.

This example also shows the necessity to allow for independent variances

in both directions. We give another example for such an analysis for the

leukaemia data set in Chapter 9.
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Figure 8.7: Results for model Sf2: Variances in longitudinal (x) and latitudinal

(y) direction, red colour indicates high values, yellow colour low variances;

the margin represents the estimated location of the Gaussian kernels for

both directions. Subfigures (c) and (d) give according histograms.
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Chapter 9

Results for leukaemia data

In Chapter 8 we demonstrate the abilities of Poisson–Gamma random field

models, MRF models and the BDCD algorithm to identify an underlying

spatial structure. In this chapter, we apply these models to smooth the

calculated SMRs for the leukaemia data set described in Chapter 2. By con-

sideration of covariates, we analyse the dependence of observed leukaemia

counts on atmospheric benzene emissions and the Carstairs deprivation in-

dex. Benzene emissions are given on 1 km × 1 km grid cells and are aggre-

gated to match the leukaemia data set given on ward level. Deprivation data

are given as quintiles referring to Greater London. A data set of quintiles

than refer to Inner London is not available for this thesis. For a detailed

description of the data set see Chapter 2, a plot of the SMRs is given in

Figure 9.1. For reasons of computational time, we restrict our analysis to

the area of Inner London.

As covariates for Poisson–Gamma models we use benzene and the deprivation

index (Carstairs and Morris, 1991) leading to the following models:

model f : additive influence of benzene;

model m: multiplicative influence of benzene;

model p: additive influence of Carstairs index;

model q: multiplicative influence of Carstairs index;

model r: additive influence of benzene, multiplicative influence of Carstairs index;
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Figure 9.1: Calculated SMRs for the leukaemia data set (a). In (b) the increased

SMR in the central region is set to be 1 for a better impression.

model s: additive influence of benzene and Carstairs index;

model t: multiplicative influence of benzene and Carstairs index;

model u: multiplicative influence of benzene, additive influence of Carstairs index;

model o: no influence of benzene and Carstairs index.

These are combined with different numbers of latent risk sources which are

enlarged until model fit is not improved anymore.

Additionally, we employ MRF models and the BDCD clustering approach to

the observed data. This corresponds to the following settings:

model y: BDCD algorithm, neighbours across river Thames;

model v: MRF model with neighbourhood structure as in BDCD;

model z: MRF model where Thames parts neighbourhood structure.

MRF models can also incorporate covariates just like Poisson–Gamma mod-

els. They can only be introduced as relative risk factors where we consider

the following settings:

‘none’ is characterised by spatially structured and unstructured terms only;

‘benzene’ additionally includes atmospheric benzene emissions;

‘deprivation’ adds deprivation data to the model;

‘deprivation and benzene’ contains both, deprivation and benzene data.
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Table 9.1 presents the calculated DICs for the applied Poisson–Gamma ran-

dom field and clustering models. For MRF models DICs are reported in

Table 9.2 to ensure a better overview.

For the observed data set, we slightly extend the model selection process

compared to the simulation study. When the DIC is increased a single time

for a model we continue to include latent factors. If the DIC still increases

or remains constant we stop. We also compare the newly calculated value

with those achieved in less complex models.

From the resulting DICs presented in Table 9.1 we conclude the follow-

ing. Poisson–Gamma models assuming any influence of benzene and/or the

Carstairs index require one latent covariate to drop the DIC substantially

from values of the interval of [408.6, 418.4] to [390.8, 392.8]. This holds for

all interpretations of the covariates. The model fit of o, the model that does

include only latent covariates, is of similar quality.

In simulated data we find a substantial decrease in the DIC when a required

covariate is considered by the model, compare Chapter 8. Furthermore, the

model fit is decreased when benzene — accounting for a certain amount of

cases in data generation — is not considered in the model. For the leukaemia

data we do not see such a difference when any of the covariates is not con-

sidered. Here, model o1 with a value of 390.8 is even at the lower boundary

of the interval of DICs for all models with one latent variable. Following

Spiegelhalter et al. (2002) models without any latent covariates lead to not

inferior model fit and are therefore not considered anymore. From the DIC

values it is not possible to select any of the Poisson–Gamma models at this

stage.

Inclusion of more than one latent covariate does not improve the model fit for

most Poisson–Gamma models. This does not hold for the following models:
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♯ latent factors 0 1 2 3 4 5 6 7 8 9 10 11

model f 417.0 390.8 394.6 417.1 — — — — — — — —

model m 415.5 391.0 397.3 391.8 388.9 386.9 385.2 384.1 383.4 382.8 382.5 382.5

model p 418.4 390.4 393.6 394.1 — — — — — — — —

model q 417.2 391.4 393.2 392.0 388.4 385.7 383.7 382.4 381.7 381.3 381.1 381.1

model r 410.0 391.7 391.7 391.6 — — — — — — — —

model s 413.8 390.4 395.3 393.5 391.6 — — — — — — —

model t 408.6 392.8 391.8 391.0 387.6 384.7 382.8 381.6 380.9 380.3 380.2 380.2

model u 408.8 391.1 391.8 392.7 — — — — — — — —

model o — 390.8 396.6 393.3 390.5 388.2 386.4 384.8 383.8 383.2 383.0 382.9

model y 375.6

MRF models see Table 9.2

Table 9.1: DIC values of various models for observed leukaemia incidences.
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neighbourhood

covariates v z

none 391.0 384.9

benzene 390.7 384.7

deprivation 386.8 379.8

deprivation and benzene 383.8 377.7

Table 9.2: DIC values of MRF models for observed leukaemia cases.

• model m assuming benzene to be a relative risk factor;

• model q considering multiplicative influence of the deprivation index;

• model t including both benzene and the Carstairs index multiplica-

tively;

• model o containing only latent covariates.

These models profit from the inclusion of Gaussian kernels to model latent

risk. The DIC converges until values in the interval of [380.2, 382.9] are

achieved which is the case for about eleven latent covariates. Highest values

belong to Poisson–Gamma random field models that consider latent covari-

ates only. Inclusion of benzene and deprivation data reduces the DIC, best fit

is achieved for model t containing both benzene and deprivation as relative

risk factors. Superiority of this model becomes clear for a higher number

of latent covariates as the DIC converges faster to a slightly lower value of

380.2 compared to other settings. At this stage, main characteristics of the

risk surface are already identified and fine adaption becomes the main goal.

Even if the DIC reduces by only ten points from the group containing only

one latent covariate (best model o1 with DIC = 390.8) to those incorporating

ten Gaussian kernels (model t10 with DIC = 380.2) we clearly favour the

more complex model t10 over o1 corresponding to the recommendation of

Spiegelhalter et al. (2002). Inclusion of additional latent covariates does not

improve model fit for model t. Therefore we prefer model t10 over t11.
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This does not hold for all considered models, compare the results of model

class o where convergence is achieved slower making inclusion of 11 kernels

necessary.

For MRF models assuming neighbourhood structure z we get similar results

concerning the inclusion of covariates as for Poisson–Gamma random field

models. While largest DIC values in the class are achieved by the model con-

taining no covariates (DIC = 384.9), the DIC drops slightly when benzene

is included (DIC = 384.7). Corresponding model formulations of Poisson–

Gamma models achieve lower DICs for these two settings. Inclusion of the

deprivation index as a single covariate in the model results in a more re-

markable drop leading to a DIC of 379.8. Here the corresponding value

for Poisson–Gamma random field models q11 and q10 is 381.1, i.e., greater.

Consideration of both, benzene and deprivation, leads to an additional de-

crease of the DIC leading to a value of 377.7 for the MRF model and 380.2

for the Poisson–Gamma model t10. In terms of the effective parameters,

we calculate pD to be 41.3 for the MRF model and 24.0 for model t10, i.e.,

prior information contributes more information about the parameters for the

MRF model compared to Poisson–Gamma models. This value is decreased

for the alternative neighbourhood structure v assuming the Thames to part

the neighbourhood structure where we calculate pD = 23.7. In general, this

alternative adjacency structure leads to increased DICs and is therefore not

considered any further. We conclude that a risk change is not apparent at

the Thames.

We compare the relative risks (RR) of benzene and deprivation for model

t10 and the corresponding MRF model. As reference class for the depriva-

tion index we use those 233 of the 310 Inner London wards in the highest

quintile when referring to Greater London. In the fourth quintile we have

53 wards, the third quintile contains 18 wards. The last class compromises

six wards in the two lowest deprivation quintiles of the Greater London data

base. From Table 9.3 we see a lower RR for all covariates when applying

the Poisson–Gamma random field model t10. Additionally, 95% credibility

intervals (CI) are smaller when compared to the corresponding MRF model.

In our example, a lower deprivation index increases the risk to suffer from
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model t10 model z

benzene 1.437 [1.002, 2.654] 2.990 [1.358, 5.796]

deprivation 2 1.894 [1.004, 4.389] 5.380 [1.708, 11.900]

deprivation 3 1.245 [1.001, 1.908] 1.759 [0.943, 2.905]

deprivation 4 1.235 [1.002, 1.712] 1.598 [1.072, 2.283]

Table 9.3: Relative risk due to benzene and deprivation index and 95% credibility

intervals for model t10 and z.

leukaemia. We also observe a trend of increasing RR with decreasing depri-

vation. As estimation is based on a small number of wards only, especially

for the lowest group, we recommend to repeat this analysis using quintiles of

the deprivation index referring to Inner London.

For atmospheric benzene emissions we observe an increased RR with in-

creased benzene emissions. For both models, the critical value 1 is not in-

cluded in the 95% CI. Again, the CI of the MRF model is wider. Thus, like

Best et al. (2001) in their analysis of Greater London we found a positive

association of benzene to childhood leukaemia.

The third model class applied to observed leukaemia cases is the BDCD

algorithm. Here, we cannot introduce any covariates. The calculated DIC

value is lower than those for any other models, namely 375.6.

We compare the results of the selected models in Figure 9.2. The scatterplot

matrix consists of the estimated parameters Λ̂iEi of the following models:

• Poisson–Gamma model with eleven latent covariates (o11, DIC = 382.9);

• Poisson–Gamma model assuming a multiplicative influence of benzene

and ten latent covariates (m10, DIC = 382.5);

• Poisson–Gamma models assuming multiplicative influence of both, ben-

zene and deprivation, with ten latent covariates (q10, DIC = 381.1);

• Poisson–Gamma model assuming a multiplicative influence of benzene

129



o11

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

3.
0

0.
0

1.
0

2.
0

3.
0

m10

q10

0.
0

1.
0

2.
0

3.
0

0.
0

1.
0

2.
0

3.
0

t10

y

0.
0

1.
0

2.
0

3.
0

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

3.
0

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

z

Figure 9.2: Results for the leukaemia data set: Scatterplot matrix of the esti-

mated parameters Λ̂i Ei of selected models.
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and Carstairs and ten latent covariates (t10, DIC = 380.2);

• BDCD model (y, DIC = 375.6);

• MRF model assuming wards parted by the Thames to be neighbours

and multiplicative influence of benzene and deprivation (z, DIC =

377.7).

High agreement between Λ̂iEi estimated by Poisson–Gamma models is ob-

vious in the upper left corner of the scatterplot matrix. This is caused by

the same structure of the models: all contain a number of latent covariates

represented by Gaussian kernels. Differences result in inclusion of benzene

and deprivation data, differences from a different number of latent covariates

are negligible. DICs of all three models differ by only three points. We prefer

model t10 as this leads to the lowest DIC as described above. Higher de-

viations between estimated Λ̂iEi are observable between the three different

model groups.

We compare risk surfaces of the Poisson–Gamma random field model t10,

the corresponding MRF model with neighbourhood z and the BDCD model

in Figure 9.3. The first two models contain benzene and deprivation multi-

plicatively. All three risk surfaces show similar patterns characterised by low

risk regions compared to the UK nation-wide leukaemia rate on the southern

river bank. Northern wards tend to have higher rates than the nation-wide

average which is used to calculate the number of expected cases. We observe

differences in the maximum value estimated by each of the models. While

the maximum of the Poisson–Gamma model is 6.1, we estimate values of 4.3

for model y and 10.7 for the MRF model. Low risk regions of models t10 and

y are smooth and very similar. In contrast, such regions are more patchy

for the MRF model. Even if differences appear, the overall impression of the

risk surface is similar for all three models. The location of high and low risk

regions resembles the surface of the SMRs as given in Figure 9.1.

We also compare the regions where Λ̂i is estimated to be lie outside the 95%

CI. These are given in Figure 9.3 as well. All models estimate an increased

risk compared to the nation wide leukaemia rate for a small number of wards
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Figure 9.3: Results for the leukaemia data set: Risk surfaces Λ̂i of Poisson–

Gamma model with ten latent covariates and multiplicative influence of

benzene and deprivation (a), and the MRF model assuming the Thames

not to part the neighbourhood structure involving benzene and depriva-

tion (model z, c), and the BDCD model (model y, e) and corresponding

95% credibility intervals of Λ̂i.
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only. Model t10 is the only model that estimates the risk in two single wards

to be lower than one as they lie outside the 95% CI. Concerning increased

risk all models identify a region in the central western part of Inner London,

although the size varies. Furthermore, model y and model t10 identify a

high-risk region on the north eastern edge of the study region.

Poisson–Gamma models, especially the surface estimated by the Gamma ran-

dom field, identify covariates that should be introduced in the model. We can

partition the model by terms representing the covariates and latent covariates

under consideration. Figure 9.4 gives an impression of the estimated location

and variances of the Gaussian kernels. In contrast to previously shown fig-

ures which give the location of Gaussian kernels only such as Figure 9.4 (a),

we expand our presentation to present the variances of the Gaussian kernels

along both axes.

Dividing the study region into cells of 500 × 500 m we observe mean variances

in [0.12, 3.18] for longitude and in [0.22, 2.97] for latitude among the cells.

The variance is displayed in Figure 9.4 for longitudinal (Subfigure (b)) and

latitudinal direction (Subfigure (c)) separately. The margin of each subfigure

contains density estimates of the location of the Gaussian kernel on the same

scale as in Chapter 8. In contrast, colours in the study region are adopted

to the current data set.

From the location of the Gaussian kernels we do not expect any particular

clusters of increased risk, contrary to for example the locations of the ker-

nels for structure I in Figure 8.6 on page 120. We rather find latent risk

over the whole study region. There is a tendency to favour regions in the

north-western part of the Inner London area, see Figure 9.4 (a). This cor-

responds to regions of significantly increased risk, compare Figure 9.3, and

regions of increased SMRs, see Figure 9.1. Furthermore, frequently chosen

locations are close to wards with lower deprivation, compare the plot of the

Carstairs index on page 15. This holds true for the most frequently assumed

position north of the Thames as well as for the two north-western ones and

the slightly increased region in the south. Kernels in surrounding regions are

characterised by high variances representing a smoothly decreasing influence.
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Figure 9.4: Results for the leukaemia data set: Location (a) and variances in lon-

gitudinal (x) and latitudinal (y) direction for the Poisson–Gamma models,

red colour indicates high values, yellow colour low variances; the margin

represents the estimated location of the Gaussian kernels for both direc-

tions.
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As lower deprivation also increases the RR for leukaemia, these findings en-

courage us to use an arrangement of quintiles that refers to Inner London.

Unfortunately, such data is not available for this thesis. Even so, Poisson–

Gamma random field models allow for a detailed inspection of the estimated

risk surface leading to a better understanding of the evaluated data set.

For the leukaemia data set, Poisson–Gamma random field model t10, MRF

model z and partition model y lead to most satisfying results. The DICs of

the three models differ by only 4.6 points. This corresponds to a strong sup-

port for the MRF model and weak support for the Poisson–Gamma model

following the recommendations of Spiegelhalter et al. (2002). Benzene emis-

sions and deprivation index are introduced as relative risk factors if possible

for the model. Using the covariates as excess risk factors does not improve

the model fit for all model classes. We find higher benzene levels to increase

the risk to get leukaemia. Concerning the Carstairs index we find an in-

creased risk for low deprived wards. As estimation is based on a small set

of less deprived areas only we recommend to repeat this analysis with either

quintiles referring to Inner London or the original deprivation data set.

For Poisson–Gamma random field models we observe a benefit in separate

estimation of variances of each direction. High variances are estimated for lo-

cations inside the bounding box but also outside Inner London. Here kernels

increase the risk in large parts of the study area.

For MRF models we can plot spatially structured and unstructured terms

separately as done in Figure 9.5. Note that the scale of both subfigures

differs.

For the spatially unstructured terms we estimate values close to zero with a

very low variance. In contrast, spatially structured terms are more important

for estimation of Λ̂i. It leads to a reduced risk in wards south of the Thames

and elevates risk in northern wards. Inspection of these figures helps to

identify useful covariates.

In contrast, density estimates of Gaussian kernels provide a much easier

interpretable information compared to structured and unstructured spatial

covariates in MRF models. Poisson–Gamma models reveal the whole com-
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Figure 9.5: Results of the MRF model for the leukaemia data set: spatially

structured terms U and unstructured terms V .

plexity of the latent risk surface. As information about the location of latent

risks as well as their variance is available, investigation of potential alterna-

tive covariates is more convenient.

Additionally, other kernel functions are possible and make the class of Poisson–

Gamma models more flexible. As the partition approach of the BDCD model

leads to a lower DIC, such an adoption is a reasonable extension of this work.
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Chapter 10

Summary and discussion

The main topic of this thesis was to analyse the performance of Poisson–

Gamma random field models and its implementation into WinBUGS. We

focused on disease mapping, especially on the ability of the model class to

produce a precise map of the underlying risk surface by inclusion of latent

risk factors and the necessity to allow for different covariate interpretations.

We allowed for different spatial resolutions for latent pattern in contrast to

observed data and covariates.

We set up a simulation study that allowed to evaluate models’ performances

with respect to possible covariate interpretations for different spatial struc-

tures. These included combinations of the covariate with other spatial char-

acteristics such as a linear decreasing trend or clusters with increased risk.

We applied Poisson–Gamma random field models with either excess or rel-

ative risk factors in combination with varying numbers of latent covariates

represented by Gaussian kernels. We also compared Poisson–Gamma random

field models to other frequently used spatial models of similar complexity.

These were a MRF-based ecologic regression model (Besag et al., 1991) and

the BDCD model (Knorr-Held and Raßer, 2000). The first one was also im-

plemented into WinBUGS, for the second model a software implementation

is available from the authors.

Model evaluation was done using MSE and DIC. For the DIC, we also dis-

137



cussed different approaches for Monte Carlo error estimation as an alternative

to the time-consuming Brute Force approach proposed by Zhu and Carlin

(2000). In addition to the Brute Force approach the authors themselves

also introduced a batching approach which we included in our comparison.

Furthermore, we suggested alternatives for batch construction (batching and

thin), and application of bootstrapping and cross-validation.

In contrast to Zhu and Carlin (2000) we estimated only small variances for

the Brute Force approach as well as for our alternatives. One reason is

the different number of free parameters. While the data set employed by

Zhu and Carlin (2000) involved hospitalisations in 97 zip codes in a spatial-

temporal setting over an eight-year study period, our examples included less

free parameters represented by ten power plant pumps, lip cancer rates in

56 counties in Scotland, and leukaemia cases in 310 Inner London wards. As

we expect the expected posterior deviance to equal the number of free pa-

rameters (Spiegelhalter et al., 2002), lower DIC values are calculated. This

corresponds to smaller variances of the DIC. For future research we recom-

mend the usage of more complex data sets. In such a comparison, e.g. the

hospitalisation data set by Zhu and Carlin (2000) should be included. As

the estimation of an MC error for the mean of the deviance D̄ is straight-

forward, we recommend to select rather complex models where pD tends to

be large. Furthermore, we suggest to include other models not assuming

Poisson-distributed data as the investigation and comparison of the estima-

tion performance is of interest for other model classes as well.

In a first part of the simulation study we implemented a restricted version

of Poisson–Gamma random field models in the WinBUGS software. Using

a small number of kernels at fixed locations does not lead to a satisfying

estimation of the latent field as the dependency of the model fit on an ap-

propriate position of the kernels is very high. We therefore extended our

implementation of the Gamma random field in WinBUGS.

For estimation of the random field we applied bivariate Gaussian kernels.

Longitudinal and latitudinal directions are assumed to be independent, their

variance and location are estimated within the MCMC framework.
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Here we find the necessity to allow for alternative interpretations of covari-

ates. In general, additive Poisson–Gamma models convince when an excess

risk factor is involved in data generation while multiplicative Poisson–Gamma

models tend to have higher DIC values. On the other hand, multiplicative

modelling is to favour when risk due to a relative risk factor is generated.

This becomes more obvious with larger influence of the covariate. When in

doubt, results of the simulation study suggest to prefer the multiplicative

model.

Non-consideration of a covariate that is involved in data generation leads to

highest DIC values within the framework of Poisson–Gamma models.

In general, Poisson–Gamma random field models convince by their ability to

reproduce the generated structure. The WinBUGS’ adoption of the Gamma

random field is able to reproduce latent structures. By analysing the cor-

responding terms we can identify covariates that should be included in the

model.

We also applied MRF models and the BDCD model to generated data sets.

For clustered structures the BDCD model is to favour over Poisson–Gamma

models even though these models do not allow for covariates. In MRF models

we included the covariate in a multiplicative setting. Here we usually find an

inferiority of the model compared to corresponding Poisson–Gamma models.

Exceptions are given by structures where the risk changes instantly at the

Thames. Using a corresponding neighbourhood structure drops the DIC

substantially and convinces by an improved estimation of the risk surface

compared to all other models.

These results encourage us to enlarge the flexibility of Poisson–Gamma ran-

dom field models. Distance-based Gaussian kernels lead to a comparable

neighbourhood structure as the conditional auto-regressive approach where

all wards are connected if they share a common border. A neighbourhood

where the Thames parts this structure as assumed by one of the MRF mod-

els in our simulation study corresponds to half–Gaussian kernels that can be

used alternatively for estimation of the Gamma latent field. In contrast to

MRF models we do not need to fix a neighbourhood structure, the break
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♯ Gaussian kernels 0 5 10 15

computational time 15 min 3 days 10 days 4 weeks

Table 10.1: Computational time of selected models

is estimated by the kernels’ parameters automatically. In order to produce

similar conditions for Poisson–Gamma random field models and the BDCD

clustering algorithm Uniform kernels can be considered as an alternative.

We expect an improvement for situations of increased risk in cluster regions.

Using overcomplete dictionaries by allowing different kernel functions simul-

taneously such as presented by Clyde and Wolpert (2007) may also make this

model class more flexible.

In our WinBUGS’ implementation, we assumed each kernels’ longitude and

latitude to be independent. This is sufficient to reproduce generated struc-

tures. We point out that structures assuming a sharp risk increase at the

west–to–east directed Thames correspond to such an independence assump-

tion. Otherwise, random field estimation can be improved by the introduc-

tion of a covariance structure in model estimation. We emphasise that this

increases computational time.

In Poisson–Gamma models the number of latent Gaussian kernels necessary

to reproduce the spatial structure is typically small. For a larger number

of kernels we see disadvantages of the model class as computational time

is increased. For some selected runtimes see Table 10.1. We present those

of typical 1GB RAM PCs. The underlying structure is simulated assum-

ing a multiplicative influence of benzene and three clusters of increased risk

(structure U). The number of Gaussian kernels was increased successively

until the DIC is not reduced anymore. Hence, fitting a model that requires

15 latent covariates required several weeks. As we see in Table 10.1, this is

particularly due to the complete estimation of an elevated number of Gaus-

sian kernels. Implementation in WinBUGS/OpenBUGS cannot be optimised

anymore unless the code is directly implemented by BUGS developers. For

the WinBUGS implementation the user himself can slightly optimise some
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code by implementation in the developers tool WBDev, for the OpenBUGS

version this is not possible. As one goal of this thesis was to implement

Poisson–Gamma random field models into WinBUGS, we did not code the

model directly in C++ and provided a programm such as for the BDCD model.

A main disadvantage of such an a ready–to–use program is either its com-

plexity as the model class itself or its restrictions on the flexibility of the

user. In contrast, we hope that the availability of an adoptable WinBUGS

implementation as presented in this thesis will provide a basis for other users

that want to apply the class of Poisson–Gamma models on their data.

Speeding up calculations can also be done by assuming a fixed variance for all

kernels. However, as we have seen in particular for structures with an abrupt

risk change, this is a main advantage of our implementation and increases

the model fit.

Another possible improvement is to allow the inclusion of the number of

latent risk sources as a hyper-parameter in the model and let it being esti-

mated in the MCMC algorithm, e.g., by reversible jump MCMC methods

(Green, 1995). We expect a decrease in computational time compared to the

iterative procedure proposed here. Unfortunately, this approach necessitates

loops running over all possible numbers of sources and therefore depending

on a random quantity. However, using WinBUGS, nodes used as bounds in

for()-loops are not allowed to be stochastic (Spiegelhalter et al., 2004).

Recent extensions of the model class are applications for concentrations of

pollutants at point sources and their dispersal over time and space, i.e., a non-

stationary, spatial-temporal model. Clyde et al. (2006) use this model class

to estimate the abundance of proteins in mass spectroscopy data. A good

overview on such extensions is given by Clyde and Wolpert (2007). These

additional applications in combinations with our findings show the power of

this approach.

Keeping in mind our findings of the simulation study we applied all models

to observed leukaemia counts. For covariates we considered atmospheric

benzene emissions as well as the Carstairs deprivation index. The latter

one was available in quintiles referring to Greater London only. Both were
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included as excess and relative risk factors in different combinations. Again,

we successively added latent covariates represented by Gaussian kernels. We

also employed a model including only latent covariates. The DIC was used to

identify the most appropriate model. As in the simulation study we applied

BDCD and MRF models to the observed data. The latter model is extended

to allow for deprivation as well as benzene as covariates as relative risk factors.

Best results are achieved when both, atmospheric benzene emissions and

deprivation data are included in the model. This holds for both, the Poisson–

Gamma random field model and the MRF-based model. Here, we prefer a

neighbourhood structure that is not influenced by the course of the Thames

river. MRF models lead to a slightly lower DIC value. Most appropriate

fit is achieved for the BDCD partition model. The DIC value of these three

models differs by 4.6 points only.

Models allowing for covariates identify benzene to increase the risk of leukaemia.

Furthermore, we find an increased RR in less deprived wards. Both covariates

are identified to be relative risk factors. As the Carstairs index is discretised

by quintiles referring to the Greater London data base, for some deprivation

quintiles the number of observations is small. Hence, we recommend to re-

peat this analysis using either quintiles referring to the study area only or

the original data set to confirm our findings.

Best et al. (2001) perform a similar analysis in the area of Greater London

using MRF-based ecologic regression models. They consider atmospheric

benzene emissions as covariate and find a positive association with the risk of

childhood leukaemia similar to our findings. However, their analysis on ward

level found a higher increase in RR due to benzene emissions. In contrast to

Best et al. (2001) we used the area of Inner London only where benzene tends

to be higher while leukaemia cases and the population at risk have similar

characteristics for both areas leading to increased exposure and therefore

smaller variance. For a comparable analysis we recommend to apply our

model on Greater London’s data. As the number of wards is increased from

310 (Inner London) to 873 (Greater London), and the corresponding area

from 548 km2 (Inner London) to 2887 km2, this increases computational
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time. To be able to run such amount of data in reasonable time, WinBUGS

performance needs to be improved first.

For Inner London, the model leading to the lowest DIC is the BDCD model by

Knorr-Held and Raßer (2000). In our simulation study we find this model to

be the most appropriate one for clustered structures. Hence, we recommend

to use alternative kernels to model the latent risk in Poisson–Gamma models

which are more suitable for clustered structures. Uniform kernels or half-

Gaussian ones provide suitable alternatives. We expect an improvement in

model performance from such an extension.

Another improvement of the model is given by treating benzene on the ob-

served spatial resolution of a 1 km × 1 km regular grid. We have aggregated

this data to the same scale as the observed leukaemia data and only treated

the latent field on its original scale. An extension is possible within the frame-

work of Poisson–Gamma random fields but not considered in this thesis as

computational time is very high already. Nevertheless, such an improvement

is necessary for further reduction of the ecological bias.
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Böhning, D. (2000): Computer-Assisted Analysis of Mixtures and Applica-

tions . Boca Raton: Champman & Hall/CRC.

Breslow, N. and Clayton, D. (1993): Approximate inference in generalized

linear mixed models. Journal of the American Statistical Association, 88,

9–25.

Breslow, N. and Day, N. (1980): Statistical Methods in Cancer Research, Vol.

1: The Analysis of Case-Control Studies. Lyon: International Agency for

Research on Cancer.

146



Brooks, S. B. and Gelman, A. (1998): General methods for monitoring con-

vergence of iterative simulations. Journal of Computational and Graphical

Statistics , 7, 434–455.

Buckingham, C., Clewley, L., Hutchinson, D., Sadler, L., and Shah, S. (1997):

London atmospheric emissions inventory. Technical report , London Re-

search Centre, London.

Carstairs, V. (1995): Deprivation indices: their interpretation and use in

relation to health. Journal of Epidemiology and Community Health, 49,

Suppl. 2, S3–S8.

Carstairs, V. (2000): Socio-economic factors at areal level and their relation-

ship with health. In: Spatial Epidemiology: Methods and Applications ,

51–67. Oxford: Oxford University Press.

Carstairs, V. and Morris, R. (1991): Deprivation and Health in Scotland .

Aberdeen: Aberdeen University Press.

Casella, G. and George, E. (1992): Explaining the Gibbs sampler. American

Statistician, 46, 167–174.

Clayton, D. and Kaldor, J. (1987): Empirical Bayes estimates of age-

standardized relative risks for use in disease mapping. Biometrics , 43,

671–681.

Clyde, M. A., House, L. L., and Wolpert, R. L. (2006): Nonparametric

models for proteomic peak identification and quantification. In: K. Do,

P. Müller, and M. Vannucci (eds.) Bayesian Inference for Gene Expression

and Proteomics , 293–308. Cambridge: Cambridge University Press.

Clyde, M. A. and Wolpert, R. L. (2007): Nonparametric function estimation

using overcmplete dictonaries. In: J. Bernardo, M. Bayarri, J. Berger,

A. Dawid, D. Heckerman, A. Smith, and M. West (eds.) Bayesian Statis-

tics , volume 8, 1–24. Oxford: Oxford University Press.

Committee on Medical Aspects of Radiation in the Environment (COMARE)

(2006): 11th Report: The Distribution of Childhood Leukaemia and other

147



Childhood Cancers in Great Britain 1969-1993 . Oxon: Health Protec-

tion Agency for the Committee on Medical Aspects of Radiation in the

Environment. ISBN 0-85951-578-8.

Cowles, M. K. (2004): Review of WinBUGS. The American Statistician, 58,

330–336.

Cowles, M. K. and Carlin, B. P. (1996): Markov chain Monte Carlo con-

vergence diagnostics: A comparative review. Journal of the American

Statistical Association, 91, 883–904.

Cressie, N. A. C. (1993): Statistics for Spatial Data. New York: Wiley.

Dickinson, H., Hammal, D., Dummer, T., Parker, L., and Bithell, J. (2003):

Childhood leukaemia and non-Hodgkins lymphoma in relation to proximity

to railways. British Journal of Cancer , 88, 695–698.

Diggle, P. (2003): Statistical Analysis of Spatial Point Patterns . London:

Arnold.

Dockerty, J. D., Draper, G., Rowan, S. D., and Bunch, K. J. (2001): Case-

control study of parental age, parity and socioeconomic level in relation to

childhood cancers. International Journal of Epidemiology , 30, 1428–1437.

Duarte-Davidson, R., Courage, C., Rushton, L., and Levy, L. (2001): Ben-

zene in the environment: an assessment of the potential risks to the health

of the population. Occupational and Environmental Medicine, 58, 2–13.

Elliot, P., Wakefield, J., Best, N., and Briggs, D. (2000): Spatial Epidemiol-

ogy. Methods and Applications. Oxford: Oxford University Press.

Fernández, C. and Green, P. J. (2002): Modelling spatial correlated data via

mixtures: a Bayesian approach. Journal of the Royal Statistical Society/B ,

64, 805–826.
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