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Appendix A

Implementation in WinBUGS

A.1 Additive model, fixed location of m la-

tent kernels

WinBUGS code for Poisson–Gamma model assuming an additive influence

of benzene and a fixed number of latent risk sources at fixed locations.

model1

{2

########################################################################3

# Data4

#=======================================================================5

# Variable Description6

#---------- -----------------7

# benzene benzene emission in the area each ward covers8

# E population numbers (vector of length I)9

# count observed number of cases (vector of length I)10

# J number of grid cells (benzene emissions)11

# I number of wards12

# Source number of latent covariates involved13

# Sx.grid coordinates of the grid cells used for evaluation of latent14

# risk factors (vector of length nx.grid)15

# Sy.grid similar for y direction16

# nx.grid number of grid cells in x direction17

# ny.grid similar for y direction18

# Sx.source location of the latent covariates (vector of length nx.source)19

# Sy.source similar for y direction20
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# nx.source number of sources in x direction21

# ny.sorces number of sources in y direction22

# X.coords Index of grid cell the ward center belongs to23

# Y.coords similar for y direction24

# S.index nx.source times ny.source matrix giving index number (1:Source)25

# of latent grid cell26

# area area of region in km^2.27

#########################################################################28

# Parameters29

#========================================================================30

# required constants31

#===================32

expect <- mean(E[])33

34

# Priors for additive risk factors35

#=================================36

beta.0 ~ dgamma(a.0 , tau.0) # prior for intercept37

beta.benz ~ dgamma(a.benz , tau.benz) # prior for benzene38

beta.latent ~ dgamma(a.latent, tau.latent) # prior for latent coefficient39

a.0 <- 0.575 # shape for intercept40

tau.0 <- a.0 * 3 * expect # scale for intercept41

a.benz <- 0.575 # shape for benzene42

tau.benz <- a.benz * 3 * expect # scale for benzene43

a.latent <- 0.575 # shape for latent coefficient44

tau.latent <- a.latent * 3 * expect # scale for latent coefficient45

46

# no multiplikative risk factors47

#===============================48

# Priors for gamma[m]’s49

#======================50

# magnitudes of the latent risk factors51

52

for (s in 1:Source)53

{54

gamma[s] ~ dgamma(a.gamma, tau.gamma)55

}56

a.gamma <- area * tau.gamma57

tau.gamma <- 1/Source58

59

# Kernel: calculate kernel in WinBUGS to allow rho to be uncertain60

#=================================================================61

logrho ~ dnorm(0,2)62

rho <- exp(logrho)63
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for(sx in 1:nx.source) # loop over nx.sources64

{65

dFx[sx,1:nx.grid]<- eval.grid(Sx.grid[], Sx.source[sx], rho)66

# eval.grid() is a Black Box function. Code is given below.67

}68

for(sy in 1:ny.source)69

{70

dFy[sy, 1:ny.grid] <- eval.grid(Sy.grid[], Sy.source[sy], rho)71

}72

# calculates kerX[ward.number, source.number]73

# X.coords contains the number of the grid cell74

# (grid for evaluation of latent risk factors)75

# in which the ward center is situated76

# (similar for Y.coords)77

for(sx in 1:nx.source) # loop over sources78

{79

kerX[sx,1:I] <- belong(dFx[sx, ], X.coords[1:I])80

# belong() is a Black Box function. Code is given below.81

}82

for(sy in 1:ny.source) # loop over sources83

{84

kerY[sy,1:I] <- belong(dFy[sy, ], Y.coords[1:I])85

}86

# merge together for 2 dimensional risk surface87

for(i in 1:I) # loop over areas88

{89

for(sx in 1:nx.source)90

{91

for(sy in 1:ny.source)92

{93

kernel[S.index[sx,sy] ,i] <- kerY[sy,i] * kerX[sx,i] * 100094

}95

}96

}97

98

# Intensities99

#=============100

for (i in 1:I)101

{102

count[i] ~ dpois(lambda[i])103

lambda[i] <- p[i]*E[i]104

benz.term[i] <- beta.benz*benzene[i]105

for (s in 1:Source)106
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{107

latent[s,i] <- delta[s]*kernel[s,i]108

}109

latent.term[i] <- beta.latent*sum(latent[,i])110

p[i]<- beta.0 + benz.term[i] + latent.term[i]111

}112

113

#expected number of cases attributed to each source114

#==================================================115

E.base <- beta.0116

E.benzene <- mean(benz.term[])117

for (i in 1:I)118

{119

latentsum[i] <- sum(latent[,i])120

}121

E.latent <- beta.latent*mean(latentsum[])122

Total <- E.base + E.benzene + E.latent123

percent.base <- E.base / Total *100124

percent.benzene <- E.benzene / Total * 100125

percent.latent <- E.latent / Total * 100126

}127

A.2 Black Box function eval.grid()

Function to calculate the intensity of a latent risk source source in grid cell

grid.

MODULE WBDevEvalGrid;1

IMPORT2

WBDevVector, WBDevSpecfunc, Math;3

TYPE4

Function = POINTER TO RECORD (WBDevVector.Node) END;5

Factory = POINTER TO RECORD (WBDevVector.Factory) END;6

VAR7

fact-: WBDevVector.Factory;8

PROCEDURE (func: Function) DeclareArgTypes (OUT args: ARRAY OF CHAR);9

BEGIN10

args := "vss";11

END DeclareArgTypes;12

PROCEDURE (func: Function) Evaluate (OUT dFx: ARRAY OF REAL);13

CONST14
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grid = 0; source = 1; rho = 2;15

VAR16

numGrid, i, j: INTEGER;17

val: REAL;18

Fx: ARRAY 1000 OF REAL;19

BEGIN20

numGrid :=LEN(func.arguments[grid]);21

i:=0;22

WHILE i < numGrid DO;23

val :=0.001*(func.arguments[grid][i].Value()-24

func.arguments[source][0].Value());25

val:= val/func.arguments[rho][0].Value();26

Fx[i] := WBDevSpecfunc.Phi(val);27

INC(i);28

END;29

j:=0;30

WHILE j < (numGrid-1) DO;31

dFx[j] :=Fx[j+1] - Fx[j] ;32

INC(j);33

END;34

END Evaluate;35

36

PROCEDURE (f: Factory) New (option: INTEGER): Function;37

VAR38

func: Function;39

BEGIN40

NEW(func); func.Initialize; RETURN func;41

END New;42

43

PROCEDURE Install*;44

BEGIN45

WBDevVector.Install(fact);46

END Install;47

48

PROCEDURE Init;49

VAR50

f: Factory;51

BEGIN52

NEW(f); fact := f;53

END Init;54

BEGIN55

Init;56

END WBDevEvalGrid.57
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A.3 Black Box function belong()

To ease and to speed up calculations in WinBUGS, the function belong()

is written. This function can be replaced by the lines

for(i in 1:I)

{

for(sx in 1:nx.source)

{

kerX[sx,i] <- dFx[sx, X.coords[i] ]

}

}

in the WinBUGS code.

MODULE WBDevBelong;1

IMPORT2

WBDevVector,3

Math;4

TYPE5

Function = POINTER TO RECORD (WBDevVector.Node) END;6

Factory = POINTER TO RECORD (WBDevVector.Factory) END;7

VAR8

fact-: WBDevVector.Factory;9

PROCEDURE (func: Function) DeclareArgTypes (OUT args: ARRAY OF CHAR);10

BEGIN11

args := "vv";12

END DeclareArgTypes;13

PROCEDURE (func: Function) Evaluate (OUT val: ARRAY OF REAL);14

CONST15

dFx = 0; Xcoords = 1;16

VAR17

numTimes, i, a: LONGINT;18

BEGIN19

numTimes :=LEN(func.arguments[dFx]);20

i := 0;21

WHILE i < numTimes DO;22

a:=ENTIER(func.arguments[1][i].Value())-1;23

val[i]:= func.arguments[0][a].Value();24

INC(i);25

END;26
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END Evaluate;27

28

PROCEDURE (f: Factory) New (option: INTEGER): Function;29

VAR30

func: Function;31

BEGIN32

NEW(func); func.Initialize; RETURN func;33

END New;34

35

PROCEDURE Install*;36

BEGIN37

WBDevVector.Install(fact);38

END Install;39

40

PROCEDURE Init;41

VAR42

f: Factory;43

BEGIN44

NEW(f); fact := f;45

END Init;46

47

BEGIN48

Init;49

END WBDevBelong.50

A.4 Multiplicative model, random location of

m latent kernels

model1

{2

#########################################################################3

# Parameters4

#========================================================================5

# required constants6

#===================7

expect <- mean(E[])8

9

# no additive risk factors10

#==========================11

12

# multiplikative risk factors13
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#=============================14

beta.0 ~ dgamma(a.0 , tau.0) # prior for intercept15

beta.benz ~ dgamma(a.benz , tau.benz) # prior for benzene16

beta.latent ~ dgamma(a.latent, tau.latent) # prior for latent coefficient17

a.0 <- 0.575 # shape parameter for intercept18

tau.0<- a.0 *3 * expect # scale for intercept19

a.benz<- 0.575 # shape for benzene20

tau.benz <- a.benz * 3 * expect # scale for benzene21

a.latent<- 0.575 # shape for latent coefficient22

tau.latent <- a.benz * 3 * expect # scale for latent coefficient23

24

#Priors for gamma[m]’s25

#======================26

for (s in 1:Source)27

{28

delta[s] ~ dgamma(a.gamma, tau.gamma)29

}30

a.gamma <- area * tau.gamma31

tau.gamma <- 1/Source32

33

#Location of the Sources: allow uncertainty34

#===========================================35

for(i in 1:Source)36

{37

moveX[i] ~ dunif(dist1[i], dist2[i])38

moveY[i] ~ dunif(dist3[i], dist4[i])39

}40

Sx.sourceMove[1:Source] <- Add(moveX[], Sx.source[])41

Sy.sourceMove[1:Source] <- Add(moveY[], Sy.source[])42

# Add() is a Black Box function. Code is given below.43

44

#Kernel: calculate kernel in WinBUGS to allow rho to be uncertain45

#==================================================================46

for (sx in 1:Source) #loop over areas47

{48

for (i in 1:I)49

{50

distanceX[sx, i] <- abs(wardXcenter[i] - Sx.sourceMove[sx])51

distanceY[sx,i] <- abs(wardYcenter[i] - Sy.sourceMove[sx])52

kernel[sx,i] <- exp(-(pow(distanceX[sx,i]/(2*rhoX[sx]), 2) +53

pow(distanceY[sx,i]/(2*rhoY[sx]), 2)) )54

}55

logrhoY[sx] ~ dnorm(0,wert)56

164



logrhoX[sx] ~ dnorm(0,wert)57

rhoY[sx] <- exp(logrhoY[sx])58

rhoX[sx] <- exp(logrhoX[sx])59

}60

#Intensites61

#==========62

for (i in 1:I)63

{64

count[i] ~ dpois(lambda[i])65

lambda[i] <- p[i] * E[i]66

benz.term[i] <- beta.benz * benzene[i]67

latent[i] <- inprod2(delta[], kernel[,i])68

latent.term[i] <- beta.latent * latent[i]69

p[i]<- (beta.0 + latent.term[i]) * exp( benz.term[i])70

}71

}72

A.5 Black Box function Add()

The WinBUGS code given in Section A.4 uses in lines 43-44 a vectorised
version of the following lines:

for(i in 1:Source)

{

Sx.sourceMove[i] <- Sx.source[i] + moveX[i]

}

This procedure speeds up calculations.

MODULE WBDevAdd;1

IMPORT2

WBDevVector, WBDevRandnum,3

Math;4

TYPE5

Function = POINTER TO RECORD (WBDevVector.Node) END;6

Factory = POINTER TO RECORD (WBDevVector.Factory) END;7

VAR8

fact-: WBDevVector.Factory;9

PROCEDURE (func: Function) DeclareArgTypes (OUT args: ARRAY OF CHAR);10

BEGIN11

args := "vv";12
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END DeclareArgTypes;13

14

PROCEDURE (func: Function) Evaluate (OUT SxsourceMove: ARRAY OF REAL);15

CONST16

move=0; Sxsource=1;17

VAR18

Number, i: INTEGER;19

BEGIN20

Number := LEN(func.arguments[Sxsource]);21

i := 0;22

WHILE i < Number DO;23

SxsourceMove[i] := func.arguments[Sxsource][i].Value()24

+ func.arguments[move][i].Value();25

INC(i);26

END;27

END Evaluate;28

29

PROCEDURE (f: Factory) New (option: INTEGER): Function;30

VAR31

func: Function;32

BEGIN33

NEW(func); func.Initialize; RETURN func;34

END New;35

36

PROCEDURE Install*;37

BEGIN38

WBDevVector.Install(fact);39

END Install;40

41

PROCEDURE Init;42

VAR43

f: Factory;44

BEGIN45

NEW(f); fact := f;46

END Init;47

48

BEGIN49

Init;50

END WBDevAdd.51
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Appendix B

Additional simulation results

In this Chapter we give the result of Poisson–Gamma random field models

in the implementation discussed in Section 3.4.3. Selected structures are

already discussed in Chapter 8, here we discuss the following structures

• structure A in Section B.1;

• structure B in Section B.2;

• structure D in Section B.3;

• structure F in Section B.4;

• structure G in Section B.5;

• structure H in Section B.6;

• structure J in Section B.7;

• structure M in Section B.8;

• structure N in Section B.9;

• structure P in Section B.10;

• structure Q in Section B.11;
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♯ latent factors 0 1 2 3 4 5

model f 339.9 341.7 341.6 342.3 — —

(0.024) (0.026) (0.027) (0.028)

model m 347.5 349.3 349.6 349.0 348.4 387.0

(0.049) (0.051) (0.053) (0.053) (0.050) (0.309)

model o — 363.2 364.9 365.3 365.5 —

(0.155) (0.150) (0.150) (0.150)

model y 373.2 (0.165)

model v 353.3 (0.050)

model z 351.2 (0.050)

Table B.1: DIC (MSE) values for extended models applied to structure A.

• structure R in Section B.12;

• structure T in Section B.13;

• structure U in Section B.14

• structure V in Section B.15.

For a schematic overview on the used letters see page v.

B.1 Structure A

Data generated according to structure A assumes an additive influence of

benzene. In total, 330 observations are generated. Table B.1 reports the

calculated DICs and corresponding MSEs for the employed models.

When including benzene in modelling by Poisson–Gamma models, we favour

an additive influence based on DIC values. This corresponds to the under-

lying structure. While the best fitting model of class m, which is the one

without any latent risk sources, leads to a DIC of 347.5, model Af0 assuming

an additive influence of benzene improves this DIC to be 339.9, see Table

B.1. An illustration of the modelled risk surface is given in Figure B.1. A
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Figure B.1: Simulated Λi for structure A (a) and estimated spatial pattern Λ̂i

of the best fitting model Af0 (b), as well as the Poisson–Gamma model

with one latent risk source Ao1 (c).

close agreement between the underlying structure and the modelled values is

observed. This is reflected by a small MSE of 0.024.

Performance of Poisson–Gamma models not including benzene is inferior to

Af0. Here, we calculate DIC values larger than 360, see Table B.1. As

presented in Figure B.1 (c) this is caused by larger differences between the

parameters of the Poisson distribution Λi and the estimated values Λ̂i, which

occur along the whole interval. Ao1 is characterised by a smooth risk with

a high risk region corresponding to the area with increased benzene observa-

tions.

Alternative models show similar performances as those Poisson–Gamma mod-
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♯ latent factors 0 1 2 3 4

model f 312.2 313.4 313.8 313.9 313.9

(0.016) (0.020) (0.020) (0.020) (0.020)

model m 326.8 327.7 328.3 328.2 327.1

(0.135) (0.136) (0.135) (0.133) (0.136)

model o — 362.0 366.0 364.9 368.2

(0.494) (0.477) (0.470) (0.440)

model y 372.4 (0.537)

model v 329.6 (0.151)

model z 327.9 (0.143)

Table B.2: DIC (MSE) values for extended models applied to structure B.

els including benzene multiplicatively. Both MRF models gain a DIC of

around 350, different neighbourhood structures have no effect on the model

fit. The BDCD model shows an inferior performance for this structure re-

flected by a DIC of 373.2.

For this structure, the best model equals the underlying pattern in data

generation.

B.2 Structure B

For structure B, we generate 770 cases assuming an additive influence of

benzene only. Table B.2 reports the calculated MSEs and corresponding

DICs.

Among Poisson–Gamma models, the one assuming an additive influence of

benzene leads to best results among all applied models. Here, the model

which does not include any latent risk factors has the lowest MSE of 0.016

and a DIC of 312.2. The corresponding spatial risk surface is given in Figure

B.2 (b).

Those DIC results are elevated by about 14 points for model class Bm where

a multiplicative influence of benzene is assumed. DIC values are stable for
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Figure B.2: Simulated Λi for structure B (a), estimated spatial pattern Λ̂i of the

best fitting model Bf0 (b) and the best among Poisson–Gamma models

not including benzene Bo1 (c).

all numbers of incorporated latent risk sources. Nevertheless, model Bm0

not including additional latent covariates achieves best results. When com-

paring models with three and four covariates — Bm3 and Bm4 — we see an

improvement of Bm4 over Bm3. Nevertheless, the DIC is still higher than

the one of Bm0, so we stop adding latent covariates.

If benzene is not included in the Poisson–Gamma model the obtained model

fit is inferior. This holds for up to 4 latent risk factors. As we do not observe

any convergence of the DIC towards lower values, we do not increase the

number of latent risk sources any further. Even if the model fit is inferior,

we point out that a MSE of less than 0.500 which is achieved by all of those

models is a good match. A plot of the spatial risk Λ̂i for model Bo1 is given
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♯ latent factors 0 1 2 3 4

model f 583.9 326.8 327.3 — —

(5.767) (0.197) (0.230)

model m 618.5 358.0 360.7 361.8 —

(6.177) (0.564) (0.511) (0.495)

model o — 401.8 399.5 366.6 374.8

(1.175) (0.928) (0.721) (0.822)

model y 395.5 (2.003)

model v 361.0 (0.779)

model z 368.4 (0.823)

Table B.3: DIC (MSE) values for extended models applied to structure D.

in B.2 (c). Model Bo1 gives a very smooth representation of the benzene

term involved in generation. The MSE of 0.494 reflects a reasonable model

fit as main characteristics of the structure are reproduced.

Other models do not reach the DICs we obtained for the best model Bf0.

While both MRF models achieve a similar model fit compared to the Poisson–

Gamma models assuming a multiplicative influence of benzene, the BDCD

algorithm produces the least appropriate fit for the data set with a DIC of

372.4.

Similar as in structure A, the best model equals the underlying pattern in

data generation for structure B.

B.3 Structure D

Data generated by structure D is characterised by an additive influence of

benzene accounting for about 770 cases and a latent risk source that accounts

for further 330 cases. The spatial pattern is presented in Figure B.3 (a).

DIC and MSE values which are achieved by the chosen models are reported

in Table B.3. For Poisson–Gamma models including a benzene term we

observe an immense modelling benefit when including a latent risk term in
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comparison to modelling benzene alone, although this benefit is not as big

as for structure C. The inclusion of more latent covariates neither improves

the DIC of the additive nor the multiplicative model. Additive modelling is

to favour over multiplicative modelling which reflects the generation scheme.

Whereas DIC is 326.8 for model Df1, multiplicative modelling of benzene

leads to values of DIC = 358.0 (Dm1) or higher, which is similar to those

values we gain when benzene is excluded. Model Do3 which includes three

latent covariates performs best among models of class Do. The corresponding

risk surface is given in Figure B.3 (c). Compared to the underlying pattern,

this model has difficulties to estimate low-risk regions correctly, leading to

a DIC value of 366.6 and MSE of 0.721 in comparison to those values we

estimate for model Df1.

Similar DICs are estimated by MRF models without a remarkable influence

of which neighbourhood structure is applied. We get a DIC of 361.0 for

model Dv and a DIC of 368.4 for model Dz, see Table B.3. We conclude

comparability of both approaches. Furthermore, for this structure both, the

log-link MRF model and the multiplicative Poisson–Gamma model produce

comparable pattern. The possibility of Poisson–Gamma models to treat ben-

zene as an excess risk factor by the identity link reveals the advantage of this

model class.

The BDCD model performs worse for this structure. The calculated MSE of

2.003 which is more than the double amount of those MSEs calculated for

other models. The same holds for the corresponding DIC which is 395.5. We

conclude that the BDCD model is able to reproduce the main characteristics

of the underlying structure but Poisson–Gamma models and MRF models

are to prefer.

All together, we found Df1 to be the best fitting model. A plot of the spatial

risk surface is given in Figure B.3 (b). Estimated parameters of the Poisson

distribution are close to the generated ones, which is reflected by a small

MSE of 0.197. Location and variance of the Gaussian kernel representing

latent risk in data generation is estimated well by the model.
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Figure B.3: Simulated Λi for structure D (a) and results: Estimated spatial

pattern of Λ̂i for the best fitting model Df1 (b), and of the best one

without benzene Do3 (c).

B.4 Structure F

Data generation according to structure F assumes an additive influence of

benzene (770 cases) and a linearly decreasing trend component (330 cases).

A plot of the spatial structure of generated Λi is given in Figure B.4 (b).

Modelling these data by Poisson–Gamma models involving benzene addi-

tively leads to a DIC of 330.425 (compare Table B.4) when involving five

latent covariates which is the best model fit in this class. This is slightly

improved over 330.378 when using six latent covariates. Further extension

does not lower the DIC. We therefore assume model Ff5 to be the most

appropriate one for this structure.
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Figure B.4: Results for structure F: Scatterplot matrix of the estimated param-

eters Λ̂i Ei of Poisson–Gamma models with additive influence of benzene

and six latent covariates (Ff6), multiplicative influence of benzene and

seven latent covariates (Fm7), four latent covariates without a benzene

term (Fo4), and the MRF model assuming wards across the Thames to be

neighbours (Fz) (a); simulated structure F (b); estimated rate Λ̂i of the

Poisson–Gamma model with benzene as excess risk factor and six latent

risk sources (Ff6) (c) and estimated rate Λ̂i of the Poisson–Gamma model

Fo4 without benzene and four latent risk sources (d).
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♯ latent factors 0 1 2 3 4 5 6 7

model f 343.0 336.3 336.3 331.4 330.6 330.4 330.4 330.4

(0.388) (0.105) (0.130) (0.086) (0.080) (0.083) (0.085) (0.089)

model m 351.9 343.1 339.8 339.5 339.4 338.9 338.6 338.1

(0.463) (0.174) (0.163) (0.161) (0.166) (0.168) (0.169) (0.171)

model o — 370.8 360.2 357.4 357.5 — — —

(0.654) (0.542) (0.492) (0.477)

model y 360.2(0.627)

model v 338.6(0.244)

model z 334.4(0.171)

Table B.4: DIC (MSE) values for extended models applied to structure F.
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Ff5 Fm7 Fo4 Fz

Ff5 1 0.988 0.936 0.979

Fm7 0.988 1 0.936 0.985

Fo4 0.936 0.936 1 0.934

Fz 0.979 0.985 0.934 1

Table B.5: Structure F: Pearsons correlation coefficient of the estimated param-

eters Λ̂i Ei of models plotted in Figure B.4 (a).

When benzene is included multiplicatively DIC is constantly decreasing with

an increasing number of Gaussian kernels. As the DIC is decreased by 1.7

points only between model Fm2 (two latent covariates, DIC = 339.8) to

model Fm7 (seven latent covariates, DIC = 338.1) we do not proceed fur-

ther. We compare the estimated values Λ̂iEi of model Ff6 with Fm7 in a

scatterplot matrix given in Figure B.4 (a). Here, we also include the results

of model Fo4, the best model among the Poisson–Gamma models without

benzene, and the MRF model Fz assuming wards across Thames to be neigh-

bours.

Model Fz convinces by a DIC of 334.4, which is slightly lower than the one

of the MRF model where the Thames disconnects neighbours. BDCD does

not convince in modelling data according to structure F. The DIC is 360.2

which is even higher than the one of the class of Poisson–Gamma models not

involving benzene.

Figure B.4 (a) reveals a close concordance between the selected models, which

is also reflected by the correlation matrix using Pearson’s method as pre-

sented in Table B.5 which is at least 0.934. The lowest correlation coefficient

is calculated for model Fo4 which has also the highest DIC value among the

selected models. Additionally, we give plots of the best–fitting model Ff6 and

of model Fo4 in Figures B.4 (c) and (d) respectively. We see a high agreement

among estimates of both models and the generated values as given in Figure

B.4 (b). Both models satisfy by reproducing the characteristics of the gen-

erated structure. It follows that models with intermediate correlations lead

to good results as well. Even if additive modelling of benzene is to favour,

multiplicative modelling as by models Fm7 and Fz is a good substitute.
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♯ latent factors 0 1 2 3 4

model f 643.0 393.8 367.3 368.9 370.8

(2.462) (0.373) (0.240) (0.224) (0.209)

model m 643.2 403.4 379.4 383.9 386.8

(2.452) (0.400) (0.290) (0.257) (0.249)

model o — 406.3 391.9 388.1 388.4

(0.461) (0.315) (0.285) (0.365)

model y 345.6 (0.234)

model v 340.5 (0.126)

model z 370.6 (0.351)

Table B.6: DIC (MSE) values for extended models applied to structure G.

B.5 Structure G

Structure G represents data generated assuming an additive influence of ben-

zene and a covariate representing an increased risk in all wards south of the

river as plotted in Figure 6.5 (a) on page 68. Both account for about 330

cases. The results of the modelling are reported in Table B.6. Again, we see

a huge drop–off in DIC when including one latent covariate in both benzene

settings of Poisson–Gamma models. This reflects the presence of risk that is

not associated to benzene. Hence, inclusion of latent covariates is required.

Performance of Poisson–Gamma models assuming an additive influence of

benzene is better than of those assuming a multiplicative influence which in-

crease the DIC for about 10 points. Best results are achieved when including

two latent covariates (Gf2) where the DIC is 367.9 (MSE 0.240). For more

than two latent covariates DIC increases while the MSE decreases slightly.

As judgement is based on the DIC we choose Gf2 to be the best fitting model.

Similar conclusions as drawn for multiplicative models where Gm2 leads to

the lowest DIC value of this group which is 379.4.

If benzene is not a covariate in the Poisson–Gamma model we should include

three latent covariates leading to a DIC of 388.1 (MSE 0.285). Even if this

value is increased by 20 points difference in the MSE is only 0.045 which is
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negligible. We compare spatial pattern of models Go3 and Gf2 in Figure B.5.

Risk surface modelled by Gf2 gives the best reproduction when focusing on

the appropriate estimation of low-risk regions. The MRF model Gv (Figure

B.5 (e)) which treats wards separated by the Thames not to be neighbours

performs significantly better (DIC 340.5) than the one where we have neigh-

bours across the Thames (DIC 370.6, Figure B.5 (f)) which agrees with the

underlying structure. Model Gv is the one most able to reproduce the abrupt

change in Λi at the Thames. In comparison to MRF model Gv Poisson–

Gamma models have difficulties to estimate the sharp drop-off at the river

leading to overestimated risks north of the Thames. For Poisson–Gamma

models such as Gf2, a decomposition into latent term and benzene term is

possible see Figure B.5 (a) and (b). The latent term reveals the character-

istics of Gaussian kernels used for the latent covariates. We observe a small

band where the latent influence is decreasing fast. Probably, other kernels

like Uniform ones would improve the model fit. Additionally, the estimated

pattern is not completely homogeneous in the southern part. Again, the

choice of alternative kernels would improve this pattern.

Main differences between model Gf2 and Go3 are observable in the estima-

tion of low risk regions where the Poisson–Gamma model without benzene

overestimates. Here a mixture of different kernel functions could lead to

improved results.

The BDCD model also convinces by a low DIC value of 345.6. As presented

in Figure B.5 (d) the high risk region south of the Thames is identified

correctly. Additionally, the model convinces in identifying the sharp border

created by the river. For regions north of the river bank the cluster structure

estimated by the model does not reflect the generated pattern. Low risk

regions in the east are overestimated to a medium risk cluster while the low

risk cluster with mean risk of 0.625 detected in the north–west compromises

23 ward whose generated mean risk is 1.258. Using the median instead of

the mean Monte Carlo estimates leads to identical conclusions. In such a

situation credibility intervals should be considered which are not available

by the BDCD software.
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Figure B.5: Results for structure G: Estimated rate Λ̂i of the Poisson–Gamma

model with additive influence of benzene and two latent risk sources Gf2

(a) and the corresponding latent term (b), without benzene and three

latent risk sources Go3 (c), the BDCD model (d), MRF model Gv where

the river does part the neighbourhood structure (e) and Gz where the

river does not part (f).
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♯ latent factors 0 1 2 3 4 5 6

model f 504.4 377.3 373.9 362.0 362.0 362.3 —

(2.457) (0.436) (0.344) (0.347) (0.331) (0.322)

model m 508.6 385.9 377.2 370.4 370.2 370.3 —

(2.558) (0.535) (0.497) (0.425) (0.418) (0.416)

model o — 424.9 418.2 416.6 414.3 413.6 412.1

(0.891) (0.704) (0.667) (0.617) (0.604) (0.610)

7 8 9 10 11 12 13

408.8 407.4 404.9 403.3 402.1 411.7 —

(0.610) (0.610) (0.618) (0.620) (0.623) (0.600)

model y 389.9 (0.687)

model v 353.6 (0.229)

model z 372.0 (0.430)

Table B.7: DIC (MSE) values for extended models applied to structure H.

B.6 Structure H

Data generated according to structure H is characterised by an additive influ-

ence of benzene accounting for approximately 770 expected cases. For wards

situated south of the Thames, an increased risk is generated, accounting for

further 330 expected cases.

Poisson–Gamma models including benzene additively such as assumed for

data generation lead to satisfying model fits. Best results are achieved when

including three to four latent covariates such as in Hf3 and Hf4 leading to a

DIC of 362.0. Slightly worse results are estimated by Poisson–Gamma models

including benzene multiplicatively. Best fits include four latent sources and

have a DIC of 370.2, see Table B.7.

When benzene is not included in the model, the generated data set requires

eleven latent covariates to achieve a DIC of 402.1 which corresponds to a MSE

of 0.623. Inclusion of more latent covariates decreases the fit. Compared to

models including benzene, the DIC is increased by 30 to 40 points indicating

an inferior model fit. In real applications this gives an indication that benzene
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Figure B.6: Λ̂i by the MRF model Hv where the river does not part the neigh-

bourhood structure (a) and Hz where the river does part (b).

needs to be considered. Additionally, we point out the highly corresponding

model fits of the three groups of Poisson–Gamma models, see Figure B.5 (a).

MRF models lead to similar model fits. Here we observe differences due to

the chosen neighbourhood structure. The assumption of wards across the

Thames to be neighbours leads to a DIC of 372.0 while a separation by

the river improves the DIC to 353.6 as this neighbourhood represents the

underlying risk pattern much better. Figure B.6 illustrates the differences in

Λ̂i between both models.

Figure B.5 (a) presents a scatterplot matrix of estimated Λ̂iEi of Poisson–

Gamma models representing the best model fits in each group. Additionally,

we include estimated values of the more appropriate MRF model Hv which

assumes the Thames to separate neighbours as well as those by the BDCD

model. Even if we expected the BDCD model to be a good performing one

due to the clustered pattern, the model achives a higher DIC value than

Poisson–Gamma models including benzene as well as MRF models.

We give the underlying pattern of this structure in Figure B.5 (b) as well

as the estimated spatial pattern Λ̂i for model Ho11 (Figure B.5 (c)) and for

model Hf4 (Figure B.5 (d)). All models lead to comparable results. Most

deviations are observable for higher values estimated by model Hv. Never-
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Figure B.7: Results for structure H: Scatterplot matrix of the simulated and esti-

mated parameters Λ̂i Ei of the Poisson–Gamma model with multiplicative

influence of benzene and four latent covariates (Hm4), additive influence

of benzene and four latent covariates (Hf4) and eleven latent covariates

without a benzene term (Ho11) (a); simulated structure H (b); pattern

of Λ̂i for model Ho11 (c) and Λ̂i for model Hf4 (d).
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♯ latent factors 0 1 2 3 4 5

model f 1001.9 670.3 486.3 454.1 410.7 411.4

(11.405) (7.827) (3.811) (2.811) (2.017) (2.017)

model m 982.6 700.4 502.1 465.7 478.3 —

(11.286) (8.256) (4.236) (3.063) (2.581)

model o — 1006.2 805.2 521.2 487.4 466.6

(11.389) (6.543) (3.703) (3.397) (2.804)

6 7 8 9 10 11

461.3 459.0 457.2 456.0 476.1 —

(2.665) (2.583) (2.536) (2.505) (2.495)

model y 397.6 (1.820)

model v 431.7 (2.568)

model z 431.9 (2.515)

Table B.8: DIC (MSE) values for extended models applied to structure J.

theless, spatial pattern are close to the generated one. All models lack of the

ability to estimate the three generated low risk regions correctly, although

model fit is good in general. This is also reflected by the estimated MSEs, see

Table B.7. There is no difference between the additive and the multiplicative

setting of benzene, even if treating benzene as excess risk factor leads to a

better fit with less covariates.

B.7 Structure J

Data generated by the assumption of an additive influence of benzene ac-

counting for about 770 observations in combination with 330 cases in three

cluster regions corresponds to structure J. Resulting MSEs and DICs are

summarised in Table B.8. We also calculate Pearsons correlation coefficient

between the best models in each group, see Table B.9.

Poisson–Gamma models assuming benzene to be an excess risk factor corre-

spond to the generating structure. This model also leads to the lowest DIC

which is 410.7 when including four latent covariates. Inclusion of further
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J Jf4 Jm3 Jo9 Jz Jy

J 1.000 0.919 0.882 0.905 0.904 0.934

Jf4 0.919 1.000 0.958 0.978 0.935 0.914

Jm3 0.882 0.958 1.000 0.944 0.900 0.857

Jo9 0.905 0.978 0.944 1.000 0.943 0.932

Jz 0.904 0.935 0.900 0.943 1.000 0.953

Jy 0.934 0.914 0.857 0.932 0.953 1.000

Table B.9: Structure J: Pearsons correlation coefficient of the generated (J)

and estimated values Λ̂i Ei of the Poisson–Gamma model with additive

influence of benzene and four latent covariates (Jf4), with multiplicative

influence and three latent covariates (Jm3), Poisson–Gamma model with

nine latent covariates (Jo9), MRF model Jz, and BDCD algorithm Jy.

covariates increases the DIC.

The assumption of benzene to be a relative risk factor does not lead to

satisfying results. The correlation coefficient between model Jm3 including

three latent covariates and the generated values is 0.882, compare Table B.9.

We calculate the DIC to be 465.7 for this model. For higher number of latent

sources the DIC increases.

This result can be improved when not including benzene but only latent

covariates. Although the number of those is higher now, model Jo9 satisfies

by a DIC of 456.0. The correlation between model Jf4 and Jo9 is 0.978, see

Table B.9. Both show a high correlation to the generated values of 0.919

and 0.905 respectively. Corresponding spatial plots are given in Figure B.8.

By visual inspection, both models are able to identify the high risk regions

correctly. As model Jf4 uses only four Gaussian kernels to model the risk in

the cluster regions, the ability to identify the plateau-like character is limited.

Therefore, the risk is overestimated in some of those regions. Model Jo9 has

less problems here as nine kernels provide a more flexible way of estimation.

On the other hand, low risk regions present especially in border regions of

the generated structure cannot be reproduced by model Jo9. Here model Jf4

has its amenities.

With a value of 397.6, the DIC estimated by the BDCD model Jy is even
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Figure B.8: Simulated Λi for structure J (a) and results: Estimated spatial

pattern of Λ̂i of Poisson–Gamma models Jf4 (b) and Jo9 (c) and of the

BDCD model Jy (d) .

lower compared to Poisson–Gamma models. The corresponding spatial plot

is presented in Figure B.8 (d). Here we obtain similar results as for model Jo9

concerning low risk regions: those are not reproduced by the model. High

risk regions are identified correctly, although we see different risk levels than

generated in the central cluster.

We also employ MRF models on this structure. Both involved neighbourhood

structures lead to similar results. The DIC is about 431 which is slightly

worse than Poisson-Gamma models involving benzene additively but leads to

better results than other settings for Poisson–Gamma models. They provide

an alternative modelling tool in this situation.
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♯ latent factors 0 1 2 3 4 5 6

model f 321.9 323.6 323.3 392.3 323.6 — —

2.1 4.6 4.6 20.8 6.1

(0.006) (0.007) (0.007) (0.145) (0.009)

model m 322.8 324.3 324.8 323.8 323.5 — —

1.9 4.0 5.5 5.9 3.0

(0.008) (0.010) (0.010) (0.009) (0.009)

model o — 329.7 327.8 327.2 326.0 325.9 386.4

5.9 8.0 8.0 8.9 9.1 22.0

(0.041) (0.034) (0.034) (0.033) (0.033) (0.180)

model y 328.0, 7.5 (0.043)

model v 321.1, 5.5 (0.021)

model z 322.4, 5.0 (0.005)

Table B.10: DIC, pD and (MSE) values for extended models applied to

structure M.

B.8 Structure M

For structure M, we generate 330 observations determined by the amount of

benzene only. Contrary to structure A benzene is assumed to be a relative

risk factor. The spatial pattern of Λi is given in Figure B.9 (b). These are

modelled by the class of Poisson–Gamma models with a number of latent

risk sources as well as MRF models and the BDCD algorithm. Resulting

DICs and MSEs are reported in Table B.10.

In the class of Poisson–Gamma models we estimate similar risk assuming

either additive or multiplicative influence of benzene. The introduction of

any latent covariates does not improve the model fit. When benzene is not

included, the fit is degraded. Five latent risk factors are necessary to replace

the benzene covariate and to gain a fit of a similar quantity. This leads to

a DIC value of 325.9 which is an increase of 4 points only in comparison to

Mf0, compare Table B.10. MSEs are very low for all models, e.g., 0.033 for

Mo5 and 0.008 for Mm1.
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The lowest DIC values in the class of Poisson–Gamma models are achieved

by the

• Poisson–Gamma model assuming an additive influence of benzene and

no latent factors (Mf0);

• Poisson–Gamma model assuming a multiplicative influence of benzene

and no latent factors (Mm0);

• Poisson–Gamma model with five latent covariates (Mo5).

We compare the estimated parameters of the Poisson distribution by a scat-

terplot matrix, see Figure B.9 (a). We see almost identical estimates Λ̂iEi

for model Mm0 and model Mf0. Estimates of model Mo5 are close, although

we observe small deviations across the whole range of values, in particular

for higher values. In addition to the scatterplot matrix, we calculate the cor-

relation coefficient by Pearson. The matrix for models Mf0, Mm0 and Mo5

is 


1 0.998 0.964

0.998 1 0.958

0.964 0.957 1


 .

The spatial risk surface of model Mm0 is given in Figure B.9 (c), estimated

Λ̂is for model Mo5 are found in Figure B.9 (d).

MRF models lead to similar risk surfaces for both neighbourhood structures,

the BDCD algorithm produces slightly higher DIC values.

Altogether, the best model for this structure equals the underlying structure.

Furthermore, the assumption of additive influence of benzene or the usage

of latent covariates instead of the benzene term reproduces the generated

structure well.
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Figure B.9: Results for structure M: Scatterplot matrix of the estimated param-

eters Λ̂i Ei of the model with multiplicative influence of benzene (Mm0),

additive influence of benzene (Mf0) and five latent covariates without a

benzene term (Mo5) (a); simulated structure M (b); pattern of Λ̂i for

model Mm0 (c) and Λ̂i for model Mo5 (d).
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♯ latent factors 0 1 2 3 4 5

model f 442.4 387.6 388.8 — — —

(0.893) (0.575) (0.523)

model m 340.5 341.5 340.7 — — —

(0.055) (0.053) (0.053)

model o — 466.0 450.5 433.7 427.6 433.3

(1.141) (0.870) (0.853) (0.798) (0.750)

model y 420.6 (0.972)

model v 366.5 (0.277)

model z 364.6 (0.282)

Table B.11: DIC (MSE) values for extended models applied to structure N.

B.9 Structure N

We generate observations depending multiplicatively on benzene only. In

structure N, this leads to about 770 cases. Generated rates Λi are plotted in

Figure B.10 (a).

When including benzene into Poisson–Gamma models, we need only a small

number of latent risk sources in the model to get the best fit. For the

favourable model among the additive ones Nf1 we achieve a DIC of 387.6. In

contrast, if we set the influence of benzene to be multiplicatively as assumed

in data generation, the model fit is improved reflected by a DIC of 341.5 for

Nm1. The DIC of model Nm0 is even lower, namely 340.5, see Table B.11.

Therefore, the model corresponding to the underlying structure is to favour.

When not including benzene into the Poisson–Gamma model, we achieve

higher values for the DIC, which are at least 427.6. Model No4 that leads

to best results among this group includes four latent Gaussian kernels. The

corresponding MSE of 0.798 is highly satisfying.

We plot rates Λ̂i of the multiplicative model not including any further covari-

ates (Nm0) as well as the Poisson–Gamma model consisting of four latent

covariates only (No4) in Figure B.10. The resulting pattern are similar, es-

pecially in identification of high risk regions. Low risk regions are somewhat
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Figure B.10: Simulated Λi for structure N (a) and results: Estimated spatial

pattern of Λ̂i of the best fitting model Nm0 (b) and of the best one without

benzene No4 (c).

overestimated by model No4.

In terms of alternative models, we observe a similar performance of the

BDCD model as for the Poisson–Gamma models not including benzene. Here

we estimate a DIC of 420.6. MRF models including the CAR structure as

well as benzene on a multiplicative level perform slightly better. Here we

achieve a DIC of about 365.0 depending on the choice of neighbourhood, al-

though its influence is low for this structure. Nevertheless, Poisson–Gamma

models convince by even lower DICs as well MSEs.
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B.10 Structure P

For structure P, we assume a multiplicative influence of benzene together

with the influence of a latent covariate represented by a Gaussian kernel. In

this structure, we assume a 1:2 matching for the two covariates in terms of

the numbers of cases caused by either. The generated Λi are displayed in

Figure B.11 (a).

For Poisson–Gamma models assuming benzene to be a relative risk factor

we find model Pm1 to be the most suitable, see Table B.12. This model in-

cludes one Gaussian kernel and is therefore identical with the data generating

structure. The estimated Λ̂i are presented in Figure B.11 (c). We observe a

high agreement between the generated and the estimated risk which is also

reflected by a low MSE of 0.381.

Other models have difficulties to model the generated high risk represented

by the Gaussian kernel. The maximum of the generated Λi is 160.5, for the

optimal model Pm1 we estimate a maximum of 166.5. In contrast, the max-

ima for other applied models are 123.7 (model Pf7), 118.9 (model Po6), 142.8

(model Pz), and 154.4 (model Py). This also results in differences between

estimated and generated values in the surrounding regions and therefore in-

creased MSEs and worsened model fit.

For example, a Poisson–Gamma model that assumes benzene to be an excess

risk factor such as model Pf7 does not lead to satisfying results. On one

hand, the DIC does not improve remarkably after including five to seven

latent covariates. Therefore, we do not add further covariates. On the other

hand, model fit is worse compared to multiplicative modelling of benzene,

compare the DICs of model Pm1 and Pf7 in Table B.12.

We find similar conclusions for Poisson–Gamma models that do not include

benzene such as model Po6. Here we estimate a MSE of 6.267. The corre-

sponding DIC of 478.4 is even worse than the one for model Pf7. Beside the

problems of estimating high risk appropriately, the model has also difficulties

in identifying low risk regions. Here, the minimum of Λ̂i is 2.0. In contrast,

min(Λi) = 0.8. It is possible that a larger number of latent covariates im-
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♯ latent factors 0 1 2 3 4 5 6 7

model f 2055.6 664.8 506.3 494.6 446.4 425.5 425.3 425.0

(70.386) (23.530) (4.761) (9.254) (8.297) (5.339) (5.077) (4.901)

model m 1785.8 341.1 342.6 344.1 — — — —

(64.035) (0.381) (0.394) (0.435)

model o — 768.9 627.7 524.5 551.0 479.0 478.4 478.8

(26.783) (13.212) (5.027) (10.212) (6.733) (6.267) (6.058)

model y 482.2 (3.929)

model v 401.6 (2.481)

model z 400.9 (2.711)

Table B.12: DIC (MSE) values for extended models applied to structure P.
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Figure B.11: Simulated pattern Λi for structure P (a) and results: Estimated

rate Λ̂i of the Poisson–Gamma model with additive influence of benzene

and seven latent risk sources Pf7 (b), with multiplicative influence of

benzene and one latent risk sources Pm1 (c) and without benzene and six

latent risk sources Po6 (d), the BDCD model Py (e) and the MRF field

model where wards across Thames are assumed to be neighbors (f).
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proves the model fit, but as DIC increases from model Po6 to Po7, we do not

proceed further.

The BDCD model shows similar disadvantages. The model fails to identify

low risk regions correctly, though the minimum of 1.2 is lower than the one

of model Po6. Given the DIC, the BCDC model is least appropriate for

this structure. The risk as plotted in Figure B.11 (e) confirms the discussed

findings.

The MRF model estimates DIC values of about 400, see Table B.12. Both

neighbourhood structures produce comparable results. This is not surprising

as there is no obvious reason why differences in the neighbourhood close to

the river should lead to better or worsened fit. The estimated spatial pattern

is close to the generated structure which is also reflected by a MSE of 2.711

for model Pz and 2.481 for model Pv, see Table B.12 and the plot of Λ̂i for

model Pz in Figure B.11 (f).

Altogether, we are able to identify the underlying structure by our models

correctly. In contrast to other structures we observe the necessity to use

benzene as a relative risk factor. Using other model classes, the models

have difficulties to estimate the underlying structure in a comparable quality.

Nevertheless, if we compare the spatial structures as given in Figure B.11 we

recognise the ability of all models to identify the main characteristics of the

generated structure.

B.11 Structure Q

Structure Q assumes a multiplicative influence of benzene at a low level that

is combined with a covariate representing a linear spatial trend that decreases

from north to south. A plot of the spatial structure of generated Λi can be

found in Figure 6.4.

Again, all models are applied to a data set generated corresponding to this

structure. For achieved DICs and MSEs see Table B.13.

As the huge drop in DIC indicates we require to include a minimum of one
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♯ latent factors 0 1 2 3 4

model f 517.9 339.7 340.0 343.2 —

2.0 5.6 6.5 15.3

(1.253) (0.100) (0.096) (0.061)

model m 517.9 338.3 340.2 341.1 —

2.0 5.5 9.8 11.9

(1.253) (0.076) (0.062) (0.057)

model o — 343.5 346.0 342.7 343.4

4.8 13.0 12.8 17.4

(0.158) (0.101) (0.097) (0.079)

model y 345.5, 20.2 (0.163)

model v 356.7, 37.1 (0.134)

model z 353.0, 52.0 (0.139)

Table B.13: DIC, pD and (MSE) values for extended models applied to

structure Q.

latent covariate into the model. Inclusion of further Gaussian kernels slowly

increases the DIC. Hence our favoured models in this group are:

• Poisson–Gamma model with benzene as excess risk factor and one la-

tent covariate (Qf1), DIC = 339.7;

• Poisson–Gamma model with benzene as relative risk factor and one

latent covariate (Qm1), DIC = 338.3;

Ignorance of benzenes influence in modelling such as for models Qo3 (Poisson-

Gamma model with three latent covariates only) and Qy (BDCD algorithm)

increases the DIC by about 10 points for the generated data set. Both models

produce similar qualities of fit as confirmed by their DIC values and the

scatterplot in Figure B.12 (a).

Fit by MRF models increases DIC by about 15 points compared to Qf2 and

Qm2. Different neighbourhood structures do not lead to any remarkable

discrepancy.
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Figure B.12: Results for structure Q: Scatterplot matrix of the estimated param-

eters Λ̂i Ei of the Poisson–Gamma model with multiplicative influence of

benzene (Qm1), additive influence of benzene (Qf1) and no benzene in-

fluence (Qo3) (all models include one latent risk source), and MRF model

Qz and BDCD model Qy (a); spatial pattern of Λ̂i estimated by model

Qm1 (b).

We compare the estimated parameters of the Poisson distribution Λ̂i Ei by a

scatterplot matrix, see Figure B.12 (a). Best agreement in the chosen models

is between Qf1 and Qm1, model Qo3 has some minor deviations, for Qz and

Qo deviations are higher. For all models those deviations occur on the whole

interval. Both, the MSE and DIC are very similar for all models, we achieve

similar model fits for all applied models.

We present the risk surface Λ̂i for model Qm1 which has the lowest DIC of

all models, that is 338.3. There are some small deviations between generated

and modelled values, but the risk surface is reproduced reasonably well. This

is reflected by the small MSE of 0.076.

For this structure, our favoured model includes a benzene term and incorpo-

rates one latent Gaussian kernel. Differences due to the type of influence is

negligible.
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♯ latent factors 0 1 2 3 4

model f 619.7 441.6 387.7 395.0 —

(3.910) (2.523) (1.213) (1.483)

model m 555.8 327.7 329.9 331.1 —

(2.261) (0.200) (0.191) (0.188)

model o — 518.4 481.1 419.7 424.7

(3.804) (2.517) (1.602) (1.766)

model y 443.4 (1.537)

model v 360.8 (0.454)

model z 363.0 (0.537)

Table B.14: DIC (MSE) values for extended models applied to structure R.

B.12 Structure R

Data generated according to structure R are characterised by a multiplicative

influence of benzene combined with a covariate that has a linear spatial trend.

In contrast to structure Q, benzene accounts for about 770 cases. The trend

covariate accounts again for 330 cases. The corresponding risk surface of Λi

is given in Figure B.13 (a).

We employ Poisson–Gamma models with various settings on the generated

data set, resulting DICs are given in Table B.14. Best results are achieved

when benzene is included multiplicatively in a Poisson–Gamma model in

combination with one latent risk factor. The calculated DIC for model Rm1 is

327.7, the corresponding risk surface is plotted in Figure B.13 (b). Similarity

between Rm1 and the generated structure is high, which is reflected by an

MSE of 0.200 as well. The main difference between generated and estimated

values is found in the high risk regions in the center, where estimations do

not reproduce the very high rates. The assumption of an additive influence

of benzene leads to an inferior model fit. The best fit among model class Rf

is given by model Rf2 with a DIC of 387.7 which is an increase of 60 points.

If we do not include benzene in our model, the best surface corresponds to

model Ro3 plotted in Figure B.13 (c). The DIC is 419.7 and the corre-
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Figure B.13: Simulated pattern Λi for structure R (a) and results Λ̂i: Estimated

spatial pattern of the Poisson–Gamma model Rm1 with multiplicative in-

fluence of benzene and one latent risk source (b), and model Ro3 without

benzene and three latent risk sources (c).

sponding MSE 1.602. When comparing the estimated and generated spatial

surfaces a high agreement is observable. There are deviations in the south-

ern low-risk regions as well as in the north-western part of Inner London.

Additionally, the range of Λ̂i is in the interval of [0.267, 27.612] while Λi has

values in [0, 62.839]. The difference of the upper bound values is remarkable.

Nevertheless, the fit of model Ro3 reproduces the main characteristics of the

generated structure and presents a satisfying estimation. Although DIC of

models Rm1 and Ro3 differ in 90 points, main characteristics of the risk sur-

face are similar. We point out that Ro3 especially underestimates high risk

as it tends to oversmooth.
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For the MRF model the fit is inferior to that of model Rm1. Nevertheless, re-

sults are more satisfying than those of Poisson–Gamma models which do not

include benzene multiplicatively, see Table B.14. We see no differences due

to the different neighbourhood structures applied. The clustering approach

of Knorr-Held and Raßer (2000) is not able to model this structure appro-

priately as the clustering assumption is too restrictive to model a smoothly

decreasing risk.

For this structure we get a clear indication that inclusion of benzene is re-

quired. All models including a benzene term lead to a lower DIC. Multiplica-

tive modelling as for Rm1 and the MRF models is to favour, best results are

achieved for models corresponding to the underlying pattern.

B.13 Structure T

For this structure T, we generate 770 observations due to benzene that is

assumed to be a relative risk factor, in combination to 330 further cases that

built a plateau of increased risk on the southern river bank of the Thames.

Figure B.14 (b) gives an impression of the generated risk surface.

As for other structures we apply Poisson–Gamma models with different set-

tings as well as MRF model and the BDCD algorithm on our generated data.

Achieved MSEs and DICs are given in Table B.15. The lowest DIC of 386.3

is achieved for the BDCD algorithm. Obviously, the clustering algorithm is

the most appropriate model to identify a sharp decrease in the risk surface

as present in our data. This structure also corresponds to the neighbourhood

applied for model v. The decrease in risk is supported by the model, leading

to a DIC of 392.8. Although benzene is considered in both data generation

and applied model, DIC is increased by 4.5 points compared to model y

not including benzene. We conclude that although the MRF model leads to

an acceptable model fit after identifying an appropriate neighbourhood the

BDCD model is more appropriate when clustering is present.

Model z does not include such a corresponding neighbourhood. This de-
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Figure B.14: Results for structure T: Scatterplot matrix of the estimated param-

eters Λ̂i Ei of Poisson–Gamma models Tm11, To10 and Ty; simulated Λi

of structure T (b); spatial pattern of Λ̂i estimated by model Tm11 (c)

and by model Ty (d).
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♯ latent factors 0 1 2 3 4 5

model f 576.3 456.5 437.1 425.5 430.1 —

(2.777) (0.991) (0.804) (0.659) (0.687)

model m 554.1 425.0 422.0 419.3 412.9 410.9

(2.425) (0.498) (0.371) (0.350) (0.364) (0.382)

6 7 8 9 10 11

409.5 408.2 406.8 405.5 404.7 404.1

(0.399) (0.415) (0.431) (0.444) (0.454) (0.461)

model o — 512.9 465.6 448.7 448.1 447.2

(1.854) (1.314) (1.064) (1.040) (1.029)

6 7 8 9 10 11

446.4 445.8 439.9 438.9 438.4 444.6

(1.023) (1.018) (1.110) (1.109) (1.108) (1.016)

model y 386.3 (0.487)

model v 392.8 (0.631)

model z 440.9 (1.078)

Table B.15: DIC (MSE) values for extended models applied to structure T.
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creases the DIC by 54.6 points compared to model Ty. We use this model

to compare with the results of Poisson–Gamma models that — in our case

— use Gaussian kernels to model latent risk. An overall neighbourhood is

therefore more appropriate for a comparison.

While Poisson–Gamma models not accounting for the covariate lead to a sim-

ilar model fit represented by a DIC of 438.4, those Poisson–Gamma models

including benzene satisfy by lower values. If benzene is considered multi-

plicatively as in data generation, DIC drops to a value of 404.1. Even if this

corresponds to an increase of 18 points compared to BDCD, the result is

satisfying. Inclusion of benzene as an excess risk factor leads to higher DIC

values, although better results than model To10.

In Figure B.14 (a) we give a scatterplot matrix of Λ̂iEi as estimated by model

Ty, To10 and Tm11. Although deviations occur, we rather observe an overall

agreement of all models, instead of systematic differences. We therefore take

a closer look on risk surfaces Λ̂i of models Tm11 and Ty. Both show very

similar pattern and represent an approximation to the generated structure.

Nevertheless, both models oversmooth the high risk in central wards. While

we generate values in the interval [0.750, 40.840], estimates of model Ty are

in a subset of this interval only, namely in the interval [1.536, 15.498]. For

model Tm11, we get [1.349, 26.517]. This results not only in the disability to

estimate high risk regions correctly, but also to overestimate low risk regions.

As DIC of the clustering model as well as of model Tv are lower than those

compared to Poisson–Gamma models with Gaussian latent risk structures,

we expect our results to be highly improvable by alternative latent risk mod-

elling, for example via Uniform kernels or half–Gaussian ones.
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B.14 Structure U

Data containing 330 cases due to benzene and 330 cases in three clusters

located all over the are of Inner London is denoted as structure U. The

corresponding risk surface is given in Figure 6.6 on page 70.

We apply all selected models on the generated sat set leading to the val-

ues presented in Table B.16. For Poisson–Gamma models applied on this

structure, a minimum DIC is not reached after inclusion of 15 Gaussian ker-

nels. Nevertheless we stop our procedure here as model selection gets too

time-consuming if further kernels should be considered.

Poisson–Gamma models profit from the inclusion of benzene as comparison

of the calculated DIC values show. Model Uo7 reaches the lowest DIC of

417.6 which is about 24 points higher than the DICs of model Um15 (DIC

= 393.1) and model Uf15 (DIC=393.1). We do not notice any difference in

those values concerning DIC or MSE.

Lower DIC values are estimated for the clustering approach. Here, we get

a value of 358.9. For MRF models we get higher values again. Although

considering benzene, they are at a similar level as those for Poisson–Gamma

models without benzene. As a comparison of model Uv and Uz reveals, a

neighbourhood structure parted at the Thames is not optimal. Other settings

are possible, but not practical as we have to many potential options.

For Poisson–Gamma models a special choice of a neighbourhood is not re-

quired. From our results we conclude that Gaussian kernels are not optimal

for this structure. Better results for BDCD model Uy confirm this idea. As

modelling of sharp risk is required we recommend the usage of according

kernels, for example Uniform ones.

To get an impression on the actual estimated risk surface and the differences

in the modelling approaches, we give a scatterplot matrix of Λ̂iEi of the two

Poisson–Gamma models including benzene as well as the BDCD model in

Figure B.15. Additionally, we present the corresponding risk surfaces Λ̂i.

As we already conclude from the scatterplot of model f15 against m15 both
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♯ latent factors 0 1 2 3 4 5 6 7

model f 1194.5 913.4 527.3 446.0 435.0 434.3 426.1 418.6

2.0 6.2 10.6 15.9 20.2 33.3 37.0 40.4

(11.278) (7.462) (3.136) (2.360) (2.061) (1.611) (1.390) (1.215)

8 9 10 11 12 13 14 15

413.2 404.9 403.8 399.3 397.1 396.4 394.7 393.1

42.0 41.4 41.9 41.5 41.5 41.8 41.7 41.7

(1.164) (1.116) (1.103) (1.087) (1.078) (1.079) (1.072) (1.067)

model m 1186.7 1071.5 529.4 445.1 444.5 436.6 430.5 421.3

2.0 212.8 9.8 14.8 28.4 32.6 41.6 42.6

(11.233) (5.334) (3.237) (2.457) (1.947) (1.737) (1.372) (1.274)

8 9 10 11 12 13 14 15

416.2 408.9 403.2 401.2 397.3 395.9 393.3 393.1

43.4 42.8 42.2 42.2 41.6 41.6 41.2 41.4

(1.225) (1.168) (1.140) (42.184) (1.111) (1.109) (1.904) (1.089)

model o — 1210.0 528.5 450.0 438.0 433.8 426.3 417.6

296.2 9.7 13.9 22.2 28.6 35.4 39.8

(5.584) (3.234) (2.443) (2.172) (1.707) (1.370) (1.198)

8 9 10 11 12 13 14 15

419.0 — — — — — — —

35.7

(1.890)

model y 358.9, 50.9 (0.402)

model v 431.0, 120.6 (1.259)

model z 427.4, 120.5 (1.222)

Table B.16: DIC, pD and (MSE) values for extended models applied to

structure U.
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Figure B.15: Results for structure U: Scatterplot matrix of the estimated param-

eters Λ̂i Ei of the BDCD model Uy and Poisson–Gamma models assuming

additive (Uf15) and multiplicative influence of benzene (Um15), both in-

clude 15 Gaussian kernels; and spatial risk surfaces Λ̂i of model Uy (b),

model Uf15 (c) and model Um15 (d).
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Poisson–Gamma models give very similar risk surfaces. We detect only mi-

nor differences. In contrast, the comparison with BDCD reveals larger dis-

crepancies. Most obvious, BDCD estimates a low risk region for some very

southern wards that is not present from data generation. On the other hand,

this model is able to estimate the almost constant high level risk of the three

clusters correctly, Poisson–Gamma models fail to do so. High risk regions

are identified correctly, but due to Gaussian kernels we cannot estimate a

constant risk here. As generated Λi is large here, differences Λ̂iEi − ΛiEi

are more influenced by such high risk regions than underestimated regions

by BDCD.

We expect Poisson–Gamma models to perform much better when allowing

for alternative kernels as the models already lead to a satisfying fit of lower

risk regions.

B.15 Structure V

Data generated by structure V is characterised by a multiplicative influence

of benzene accounting for 770 cases. Additional 330 cases are generated in

three cluster centers. A plot of the corresponding risk surface is given in

Figure B.16 (a).

We model those data by Poisson–Gamma models with different settings.

When assuming a multiplicative influence of benzene in our model best re-

sults are achieved when three latent covariates are included (model Vm3).

The calculated DIC value equals 410.5, see Table B.17. The number of re-

quired Gaussian kernels therefore corresponds to the number of clusters in

data generation. The estimated pattern of Λ̂i is given in Figure B.16 (c). It is

very similar to the generated pattern. Nevertheless, comparison of the range

of the values shows differences. While Λi is in the interval of [0.75, 40.8], we

estimate Λ̂i to be in [0.83, 34.7]. Inclusion of a fourth kernel leads to a worse

model fit.

Poisson–Gamma models that assume an additive influence of benzene re-
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Figure B.16: Simulated pattern Λi for structure V (a) and results: estimated

spatial pattern Λ̂i of the Poisson–Gamma model with additive influence

of benzene and seven latent covariates (Vf7, b), multiplicative influence

of benzene and three latent covariates (Vm3, c), without the influence

of benzene and three latent covariates (Vo3, d), the MRF model where

wards across the Thames are assumed to be neighbours (Vz, e), and the

BDCD model (Vy, f).
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♯ latent factors 0 1 2 3 4

model f 1077.5 963.5 445.1 427.0 421.8

(12.431) (5.448) (3.352) (3.123) (2.410)

5 6 7 8 9

418.9 418.7 418.3 418.1 —

(2.300) (2.150) (2.093) (2.044)

model m 984.7 683.4 474.1 410.5 421.3

(11.210) (7.841) (3.921) (2.838) (2.902)

model o — 1291.2 505.5 476.5 476.8

(7.398) (4.321) (3.790) (3.474)

model y 389.4 (0.982)

model v 434.9 (1.469)

model z 433.0 (1.468)

Table B.17: DIC (MSE) values for extended models applied to structure V.

quire a higher number of latent covariates to achieve similar results. Here,

the number is more difficult to determine. For model Vf6 the DIC is 418.9.

Inclusion of one additional covariate leads to a value of 418.3 (Vf7), two addi-

tional kernels lead to 418.1 (Vf8). The DIC values decrease very slowly here.

Furthermore, the number of latent covariates is much higher compared to

the multiplicative Poisson–Gamma model which has a lower DIC. Therefore,

we do not include more latent covariates. In Figure B.16 (b) we plot the risk

surface Λ̂i for model Vf7. Main differences to the underlying structure are

in the low risk regions where the risk is underestimated. The maximum of

the estimated values Λ̂i is 34.7. Higher DIC values are calculated for model

Vo3 (Poisson–Gamma model with three latent covariates and no benzene),

see Table B.16. Again, a model that includes three covariates corresponding

to the number of clusters achieves the best results. Here, it is easy to de-

termine that at least three kernels are required due to the huge drop in the

DIC values, but we observe only a small increase in DIC afterwards.

MRF models show a highly acceptable model fit with a DIC of 433.0 (Vz)

and 434.9 (Vv) points. The risk surface of model Vz is given exemplarily in

Figure B.16 (e). We plot a similar surface when the neighbourhood structure
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V Vf7 Vm3 Vo3 Vz Vy

V 1 0.928 0.903 0.866 0.950 0.968

Vf7 0.928 1 0.971 0.963 0.950 0.915

Vm3 0.903 0.971 1 0.933 0.933 0.876

Vo3 0.866 0.963 0.933 1 0.910 0.863

Vz 0.950 0.950 0.933 0.910 1 0.950

Vy 0.968 0.915 0.876 0.863 0.950 1

Table B.18: Structure V: Pearsons correlation coefficient of the estimated pa-

rameters Λ̂i Ei of selected models.

of model Vv is used.

Lowest DIC values for this structure are achieved for the clustering algorithm

where the DIC is 389.4, see Table B.17. The corresponding MSE equals 0.982.

Differences occur in the maximal risk which is 22.41 here. Although the risk

is underestimated, the cluster regions are well identified as high risk regions

by the model, see Figure B.16 (f).

All models are suitable to identify the underlying risk structure correctly.

They are able to reproduce the high risk in the selected wards. Sharpest

distinction between high and low risk regions is possible by the BDCD model

which has also the lowest DIC value. Recall that BDCD does not involve

any covariate information. Table B.18 gives Pearsons correlation coefficient

for the discussed models. Those are close to one. Lowest correlation between

generated and modelled values is 0.866 (model Vo3) corresponding to the

DIC values. Nevertheless this model still brings us to a suitable fit.

Inclusion of benzene leads to better estimates. Here multiplicative modelling

uses three latent covariates only. The additive approach compensates disad-

vantages of treating benzene as an excess risk factor by the inclusion of seven

latent covariates. This leads to a similar fit.
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