Numerical Simulation of Immiscible Fluids
with FEM Level Set Techniques

Dissertation
Doktors der Naturwissenschaften

Dem Fachbereich Mathematik der Universitat Dortmund
vorlegt am 2007 von

Shu-Ren Hysing

Abstract

Hysing, S. 2007. Numerical simulation of immiscible fluids with FEM level set
techniques. Doctoral dissertation.

Multiphase flows, including free surface and two-phase flows, are commonly
encountered in many industrial applications. Effects of wave phenomena are
for example important when designing boats, drop formation is essential for
ink jet printers, and bubbles may come into play in chemical reactors and heat
exchangers.

Numerical simulation of these phenomena is a complex and challenging task.
The desire to have both high accuracy and computational speed often stands
in direct contradiction to each other. The aim of this thesis was to describe a
suitable methodology with potential to be both very accurate and also efficient.
High resolution benchmarks were also developed in order to validate and quan-
tify the performance of a code (TP2D) developed according to the presented
approach.

The developed methodology combined a non-conforming finite element dis-
cretization with the level set method for tracking the interfaces. A semi-implicit
approach to implementing surface tension forces was also derived, which allowed
for significantly larger time steps in comparison with the traditional explicit ap-
proach.

The benchmarks were used to compare the developed code with two com-
mercial CFD codes (Comsol Multiphysics and Ansys Fluent). The commercial
codes did not show strong convergence towards the reference solution, in con-
trast to TP2D which was both faster and significantly more accurate. TP2D
even computed a more accurate solution on the very coarsest grid compared to
the best results of the commercial codes.

Keywords: two-phase flow, finite element method, interface tracking, level set
method, benchmarking.

Knowing is not enough; we must apply.
Willing is not enough; we must do.

Bruce Lee

Acknowledgments

First, I would like to thank my main supervisor, Stefan Turek, for giving me
the opportunity of immersing myself in applied high performance computing
as a PhD student. Thank you for your confidence in me, optimism, patience,
and showing a real passion for the field of numerical computation. I also thank
Dmitri Kuzmin for very helpful discussions and guidance on the topic of con-
vective stabilization techniques amongst others.

Thanks should also go to Nicola Parolini, Erik Burman, Sashikumaar Gane-
san, and Lutz Tobiska for all their contributions and also patience with respect
to the bubble benchmarks. Additionally all my colleagues at the institute for
applied mathematics and numerics at the University of Dortmund should be
thanked for their invaluable help and support.

It should be acknowledged that this work has been made possible by the
financial contributions from the German Research foundation (DFG) under
grants Paketantrag PAK178 (Tul02/27-1, Kul530/5-1) and Sonderforschungs-
bereich SFB708 (TP B7).

Finally, I would like to deeply thank my family, in particular my mother
Margareta Hysing and my father Wong Mau, for always believing in me, and
teaching me independence and to trust in myself. And last but not least I thank
my sister Shu-Chin who without fail always has been there for me.

- Shu-Ren

Contents

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3

4.1
4.2
4.3
4.4

4.5
4.6

Introduction

Mathematical modeling

Conservation laws
Navier-Stokes equations L.
Boundary and initial conditions L
Two-phase flows
Surface tension
Nondimensionalization
General problem formulation

Numerical treatment

Temporal discretization
Spatial discretization oL
Discrete projection method
3.3.1 Momentum equations
3.3.2 Convective stabilization techniques
3.3.3 Nonlinear iteration techniques.
3.3.4 Pressure Poisson equation
3.3.5 Matrix assembly L Lo

Interface tracking

Eulerian interface tracking methods
Level set method
Numerical treatment L.
Reinitialization L o
4.4.1 Reinitialization methods
4.4.2 Algorithmic components
4.4.3 Numerical experiments
4.4.4 Summary of reinitialization methods
Normal and curvature field reconstruction
Mass conservation oL Lo

vii

© 0 00 = ot O

10
12

15
15
17
18
19
21
21
22
23

viii

5 Surface tension effects

5.1 Surface tension model
5.2 Explicit time integrationo
5.3 Semi-implicit time integration
5.4 Fully implicit surface tension force
5.5 Regularization
5.6 Numerical tests
5.6.1 Static bubble
5.6.2 Oscillating bubble
5.6.3 Risingbubbleo
6 Benchmarking
6.1 Definition of test cases
6.1.1 Configuration,
6.1.2 Classification
6.1.3 Parameters
6.1.4 Benchmark quantities
6.1.5 Error quantification
6.2 Initial benchmark studies
6.3 Results for test case 1
6.3.1 Group 1: TP2D
6.3.2 Group 2: FreeLIFE
6.3.3 Group 3: MooNMD
6.3.4 Overall results for test case 1
6.4 Results for test case 2
6.4.1 Group 1: TP2D
6.4.2 Group 2: FreeLIFE
6.4.3 Group 3: MooNMD
6.4.4 Overall results for test case 2
6.5 Summary of the benchmarks

7 State of the art

7.1 Commercial software tools
7.1.1 Comsol Multiphysics
7.1.2 Ansys Fluent

7.2 Academic software tools
721 TP2D

7.3 Future prospects
7.3.1 Grid adaption
7.3.2 ALE formulation

7.3.3 Other potentially beneficial components
8 Summary and outlook

A Solver structure

A.1 Solution procedure
A.1.1 Discrete projection method
A.1.2 Interface tracking

Bibliography

CONTENTS

Chapter

Introduction

Fluid flow plays a major role in each and everyones daily lives, from the essential
blood flowing through our veins and air breathed into our lungs, to the trivial
cup of coffee and squeeze on the tube of toothpaste in the mornings. As long as
these processes work we rarely give them a moments notice, it is only when the
cup of coffee goes missing one morning that we start to ask questions. There are
however many applications and processes for which it, due to for example safety
reasons, is necessary to know and to be able to accurately predict the behavior
of the involved fluids. Some examples of such vital processes include the flow
of reactants in chemical gas-liquid reactors, boiling and movement of gases in
reactors for power generation such as in nuclear reactors, and micro-capillary
flow in biomedical devices.

Many of the previously mentioned examples can and do concern the flow of
immiscible fluids, that is fluids which are incapable of mixing, such as oil and
water. These types of flows are generally known as multiphase flows, of which
the most common configuration involves two distinct fluids, so called two-phase
flows. The different fluids are separated by a very thin interface region where
surface tension effects and mass transfer due to chemical reactions may appear.
Surface tension is caused by molecular force imbalances in the vicinity of the
fluid interfaces. A molecule deep in the core of the fluid will experience a zero
net force due to all surrounding molecules, whereas a molecule in the interface
region is “missing” some neighbors, resulting in a net force imbalance.

To explain and to predict the behavior of fluids, one is faced with two choices:
Firstly, one can make experiments and measurements on either a model scale
or in full scale. This approach should ideally be able to give very accurate
predictions if one is able to capture all relevant details. A major drawback
of the experimental approach is that it often is prohibitively expensive and
time consuming, and it sometimes even can be completely impossible or too
dangerous to measure what one is after. This could for example be to examine
and quantify details of the fuel ignition process inside a combustion engine. The
second alternative then, is to resort to intellectual reasoning whereby suitable
assumptions are made regarding the involved physical processes which then can
be modeled by mathematical relations. The arising equation systems are usually
very complex and can only in very rare cases be solved analytically. They will

2 CHAPTER 1. INTRODUCTION

more commonly be discretized and approximated numerically with subsequent
application of appropriate solution techniques.

There exists a multitude of algorithms and methods to choose from for nu-
merical simulation of immiscible fluids. Before making a choice and committing
to a specific methodology or software it is important to ask what the quanti-
ties of interests are and how much accuracy will be required. Since one often
has a very specific process or application to simulate in mind, the answers to
these questions should really come rather easily. Unfortunately it is very hard
to find dedicated scientific studies providing benchmarking, reference data, and
selection criteria on which to apply these answers. This author can only count
11 such relevant publications pertaining to four different benchmark configura-
tions [18, 43, 46, 51, 52, 53, 54, 68, 107, 108, 112]. Thus one is still more or less
standing in the dark. With this in mind, it is the aim of this thesis to highlight
an appropriate algorithm, capable of handling a wide spectrum to two-phase
flow problems and investigate how to optimally modify it for both accuracy
and computational efficiency. In addition to this, benchmark configurations for
strict quantitative evaluation and comparison of interfacial flow codes will be
presented and thoroughly investigated.

(a) Ansys CFX (b) Ansys Fluent (¢) Comsol Multiphysics

Figure 1.1: Solution snapshots of a rising bubble computed with three
different commercial CFD codes.

To get a feeling for what the current state of the art is and what modern
computational fluid dynamics (CFD) tools are capable of let’s briefly look at an
example, in this case an initially circular air bubble rising in a water column.
If the bubble is large and surface tension forces are not completely dominat-
ing, there will be significant topology change of the interface, which may even
break up into smaller parts. Figure 1.1 depicts the solution of such a test case
computed with the commercial software codes Ansys CFX, Ansys Fluent, and

Comsol Multiphysics. All three solutions show the same overall behavior, a sig-
nificantly deformed shape with thin elongated trailing filaments. If one takes a
closer look however, it is evident that the solutions differ somewhat, in partic-
ular with respect to the shape of the filaments. From a physical viewpoint the
solutions are also questionable since such thick and elongated filaments rarely
if ever appear in nature and experiments. It is more likely that the filaments
should break off and form trailing satellite droplets. Let’s leave this for now but
come back to this discussion towards the end of the thesis.

This thesis is organized as follows. Chapter 2 discusses mathematical mod-
eling of fluid flows with particular emphasis on two-phase flows. Chapter 3
continues with explaining the numerical discretization procedure of the derived
equation systems and highlighting appropriate solution techniques. Interface
tracking techniques with emphasis on the level set method and related algo-
rithms is described in Chapter 4. This is followed with a chapter devoted to
implementation of surface tension effects (Chapter 5), where an efficient method
allowing for large time steps while still being fully implicit with respect to all
interfaces is derived. Benchmark test cases for quantitative validation and com-
parison of two-phase flow codes are presented in Chapter 6 together with exten-
sive studies, conducted in collaboration with two other research groups, which
provide reference target values of the measured quantities. The last chapter of
this thesis (Chapter 7) uses the established benchmarks to compare an academic
code, based on the methodology described in Chapters 25, with two commer-
cial CFD tools. The comparison indicates that although the commercial tools
deliver plausible solutions in the picture norm, they leave a lot to desire with
respect to accuracy and thus also overall computational efficiency. The thesis is
concluded with a discussion on methodologies which may have a future potential
to improve both accuracy and efficiency for numerical simulation of immiscible
multiphase flows. Appendix A supplements the thesis by practically describing
a suitable solver structure for the developed methodology.

CHAPTER 1. INTRODUCTION

Chapter

Mathematical modeling

To model physical phenomena such as heat transfer, wave propagation, struc-
tural stresses, and of course fluid dynamics, it is very common to pose the
involved problems as partial differential equations. These equations can quite
elegantly be derived by examining the rate of change of the involved quantities
in an infinitesimal volume.

2.1 Conservation laws

Consider for the moment a prototypical property or quantity ¢, existing in an
arbitrary domain 2. For this quantity to be conserved within €2, the rate of
change of ¢ must be equal to the normal flux crossing the total surface S (let i
denote the unit normal to S). With flux meaning the transport of ¢, in and out
of 2, with a vector field u. Any generation from directional surface sources Qg
and scalar internal sources @y also contributes to an increased (or decreased)
amount of ¢q. Figure 2.1 illustrates these phenomena for the region (.

Figure 2.1: Illustration of a general conservation law.

6 CHAPTER 2. MATHEMATICAL MODELING

A balance equation explicitly stating the conservation of ¢ will have the form

net increase of ¢ influx internal generation surface generation

time time time time

which is easy to translate into mathematical vector notation

8/qu——/qu-ﬁdS’—!—/deﬂ—/Qs-fldS.
ot 5 Q s

Application of Gauss’ divergence theorem

/F-ﬁdS:/V-FdQ
s Q

to the surface terms results in the following reformulation

gt qdQ = — /v qudQ+/deQ /v Qs dC. (2.1)

Let us consider the conservation of mass by substituting ¢ with the density p.
Under the assumption that the system is isolated it is possible to disregard
any generation from internal and surface sources. What is left is the following
balance equation

8875 pdQ) = — /V (pu) dQ

which must hold for a volume of any size. Thus, in the limit @ — 0 the well
known mass conservation or continuity equation will appear, which reads

ap
E+V (pu) = 0. (2.2)

Moving on to conservation of linear momentum which, from Newton’s second
law, is the amount of mass transported with a certain velocity. Specifically,
momentum transport per unit volume is therefore expressed as the density p
transported with the velocity field u. If now the product of these quantities
is substituted for ¢ in the general conservation equation (2.1) then the flux of
momentum over the boundaries will accordingly be represented by the quantity
puu. Moreover, momentum is created and destroyed by forces acting internally
and on the surface of €. Inside of 2 momentum is generated by the presence
of forces, here labeled f, while on the surface momentum is created by both
pressure p and shear stresses, which combined are represented by the stress
tensor 7. Having made these observations enables the following formulation for
the conservation of momentum

gt/pudﬂ— /V puu)dQ—l—/fdQ—i—/V T dS).

This should again be valid for a volume of any size or shape with the conse-
quential removal of the integral operations, thus yielding the partial differential
equation

0
§(pu) =-V-(puu)+£f+ V-1

2.2. NAVIER-STOKES EQUATIONS 7

The stress tensor T can, as stated above, be subdivided into two parts, the static
pressure p and the shear stresses o. Consider for the moment €2 in the form of a
unit cube where the coordinate axes are aligned with the surface normals. For
a given coordinate axis, the pressure term will now only have one component
which is acting directly against the surface normal, while the shear stress terms
will have three different components, one in each coordinate direction. This
enables a splitting of 7 into the two terms pI and o, that is

%(pu) =—-V.(puu)+f+V.(—pl+o0) (2.3)

where I denotes the diagonal unit matrix.

2.2 Navier-Stokes equations

Fluids can generally be classed as either Newtonian, such as plain water, or non-
Newtonian for which the viscosity changes with the applied stress (for example
toothpaste, corn starch solutions, and blood). For Newtonian fluids the shear
stresses are assumed to be proportional to the velocity gradients, which can be

expressed as
8u7; + (9’U,j
0;5 =
J H &rj 6:@

where p is the dynamic or molecular viscosity of the fluid.

Under the assumption that the fluid also is incompressible, meaning that
the density p is constant, the continuity equation (2.2) reduces to V- u = 0.
By using this identity, the first term on the right hand side of the momentum
equation (2.3) can be rewritten as V- (puu) = u-V(pu)+pu(V-u) = p(u-V)u.
After a little rearranging, what is left is what commonly is referred to as the
Navier-Stokes equations

p (88—1; + (u- V)u) = —Vp+ V- (u(Vu+vu”)) +f (2.4)

V-u 0 (2.5)

which mathematically describe flows of incompressible Newtonian fluids.

The convective term in (2.4) is nonlinear in u and makes the equations
particularly challenging to solve, which also is why existence and uniqueness
of a solution has yet to be proved. This proof is in fact so elusive that the
Clay Mathematics Institute has announced it as one of the seven Millennium
Prize Problems (awarding $1 million for its solution) [20]. The Navier-Stokes
equations have despite these difficulties been used extensively and successfully to
model and predict a multitude of fluid engineering applications, from optimizing
flow around the Alinghi America’s Cup racing boat [79] and Formula 1 racing
cars [2, 6], to designing micro- and nano-scale devices such as bio-chips and
miniature fuel cells [27, 63].

8 CHAPTER 2. MATHEMATICAL MODELING

2.3 Boundary and initial conditions

The modeled applications and processes are usually very specific in nature and
the studies can thus be confined to a smaller spatial sub region or domain 2 ¢ R?
and a specific temporal extent [0, 7']. Both these restrictions will usually greatly
simplify the modeling and also reduce the effort required to obtain a solution.
It is particularly advantageous to utilize all existing symmetry axes to further
shrink the computational domain. Sometimes it is also possible to transform
a three dimensional model to two dimensions if the problem can be considered
axisymmetric. The drawback of restricting the models spatially is that the
equations now have to be supplied with suitable boundary conditions, which
are supposed to describe all interactions between 0 and the rest of the non-
modeled environment.

Boundary conditions usually come in two distinct variants, Dirichlet con-
ditions which fixes the value of a quantity, and Neumann, also called natural,
boundary conditions which specify the in- or out-flux. When modeling fluid
flow, Dirichlet conditions uniquely set the velocities on a boundary, that is

u=g on 0Jp.

These conditions are usually prescribed at inlets to set the inflow velocities
or at impermeable walls to fix the velocity of the fluid to that of the wall
(which usually has zero velocity). One can alternatively prescribe the stress at
a boundary with the following natural boundary condition

A (—pI+p(Vu+vVu'))=h on 0Qy

where n is the outward pointing unit normal. The special case of a homoge-
nous Neumann condition (h = 0), or zero stress condition, is commonly used
as an outflow boundary condition. A combination of Dirichlet and Neumann
conditions may be used to specify a so called free-slip or symmetry condition

A-u=0, t-a (Vu+Vvu’))=0 on 0Qs.

Initial conditions, in the form of specified velocities u(x,0) = ug(x), must
be prescribed in addition to the boundary conditions for applications where the
temporal evolution is of interest. For stationary calculations it is also advan-
tageous to specify a good initial guess so that the nonlinear solver will con-
verge faster. The equations together with fluid parameters, domain, boundary
conditions, and initial conditions all together now uniquely specify the model
problem.

2.4 Two-phase flows

The special case of modeling two-phase flows can be treated quite similar to
single phase flows. The fact that two unique fluids are present can be handled
either by using two separate sets of the Navier-Stokes equations, one for each
fluid, or more conveniently using the same set of equations for both fluids but
with variable density and viscosity fields, that is

p(x) (g—;‘ + (u- V)u) = —Vp+ V- (ux)(Vu+Vuh)) +f

V-u 0

2.5. SURFACE TENSION 9

where now p(x) and p(x) depend on the spatial coordinate x € 2. The latter
approach requires a method to identify where each fluid is so that the correct
value of the density and viscosity is chosen at each point. This will later on be
referred to as interface tracking techniques.

Assuming that the two fluids are immiscible, there will exist interfaces I' :=
001 N 0Ny separating the different fluids or phases (see Figure 2.2). On these
interfaces internal boundary conditions have to be prescribed to link the different
fluids together. For incompressible fluids which do not lose or gain mass (for
example, due to chemical reactions), the normal velocity on both sides of the
interface must be equal

n-u= 0|p

Here 1 is the unit normal at the interface pointing into ; and [A]|, = A|a,nr —
Alq,nr denotes the jump of a quantity A across the interface.

©

Figure 2.2: Illustration of a typical two-phase flow configuration.

Additionally the internal forces must, due to Newton’s third law, be in equi-
librium. However, as pointed out in the introduction, molecular force imbal-
ances will arise between the two fluids. An additional force must thus exist to
reestablish the equilibrium, and it is this force which is usually called surface
tension.

2.5 Surface tension

Surface tension forces work towards minimizing the surface area of an interface.
There are in general two ways to integrate surface tension effects into the Navier-
Stokes equations. One can apply the force balance boundary condition

[—pI + u(Vu+ (Vu)")]|. - i = okn

directly to the interface I'. This states that the difference between the combina-
tion of pressure and viscous forces must be equal to the product of a coefficient
o and the curvature of the interface k. The surface tension coefficient o mainly
depends on the two fluids in contact, but can also vary with temperature and

10 CHAPTER 2. MATHEMATICAL MODELING

chemical impurities on the interfaces (so called surfactants). In the following o
will be assumed to be constant.

The internal force boundary condition can also be rewritten as a volumetric
force, and then takes the form

foo = ornd (T, x) (2.6)

where §(I", x) is the Dirac delta function localizing the surface tension force to
the interface. This approach is generally favored by the research community
since, from a numerical viewpoint, its inclusion as an explicit right hand side
source term is quite straight forward. A detailed derivation of the interface
conditions can be found in [94].

When an interface is in contact with a wall or solid boundary a so called
contact angle is formed. This angle depends on several variables; the two fluids,
the material and roughness of the solid boundary, and the magnitude and sign
of the contact line velocity. Modeling of contact angle dynamics is complex and
will not be discussed further. The interested reader is referred to references
[35, 61, 93].

2.6 Nondimensionalization

Dimensionless numbers help to identify which physical effects are dominating,
and also assist when classifying different model problems. The introduction of
the length scale L, characteristic velocity U, and the subsequent scaling of the
involved variables
P T / u ’ p ;U
Ty ==, W=7, p:—27 = 7
L U pU L
results in the following dimensionless form of the Navier-Stokes equations

vlow U%*, ., _,
”(TW+T(“'V)“)

V.u = 0.

U? U
_pTv/p/ + v/ . ﬁ (M(V’u’ + v/u/T)) + f

Multiplication with the factor L/pU? and rearranging gives

du
ot

L

+(u-Viju=-Vp+V- (L(Vu + VuT)) + Wf @)

pUL
V-u=0

where the prime notation has been dropped. The Reynolds number can now
be identified as the inverse of the nondimensional group in front of the viscous
term, that is

~_ pUL

L
This scale factor is the most commonly used nondimensional number in fluid
dynamics and relates inertial forces to viscous forces. A high Re number indi-
cates that the nonlinear convective terms dominate over the viscous terms, and
vice versa a low Reynolds number indicates that the flow is viscous and laminar.

Re

2.6. NONDIMENSIONALIZATION 11

The right hand side source term f in (2.7) includes all imposed forces of which
two major effects relevant to two-phase flow applications will be considered,
gravitational and surface tension forces. The gravitational and volume force
formulation of the surface tension forces (2.6) result in the following source
term

f=pg+ ornd(T,x)
which with the introduced scaling yields

Lg o)

’ /2N

Here it has been used that s is proportional to 92 f/dz? and thus scales as
k' = L?k. Two additional nondimensional groups can now be identified, namely
the Froude and Weber numbers

U? U?L
Fr=—, We =22
gL o
which relate inertial to gravitational effects (¢ is the gravitational constant)
and inertial to surface tension effects. Another helpful nondimensional number
which will be used further on is the E6tvos number, which is defined as

L2
Fo = P9 .
g

The Eo6tvos number is used to characterize the shapes of bubbles and drops
by relating buoyancy forces to surface tension forces. One example of using
these numbers to classify test configurations is the classical diagram of Clift,
Grace, and Weber (see Figure 2.3), which predicts bubble shapes as a function
of bubble Re and Fo numbers [19).

T

e
3
=

T
REYNOLDS NUMBER, Rq
\ \

3 skiaren |
LLpsol
10 =
9 /E
DIMPLED 4
LLIPSOIDALCAP
SPHERICAL 5
S o g
2 E
£
4/ — 1
5/ o J
7
\ Al I Y]

Figure 2.3: Shape regimes for bubbles and drops (from Clift et al. [19]).

12 CHAPTER 2. MATHEMATICAL MODELING

2.7 General problem formulation

Assume that incompressible Newtonian flow of immiscible fluids in a d-dimensional
region is to be modeled. The task is then, given ug = u(x, 0) and py = p(x,0),
to find the unknown velocity field u(t) and pressure p(t) through solving

0
p(x) <8ltl + (u V)u) =-Vp+ V- (ux)(Vu+Vu')) +f inQ,
V-u=0 in €,
u=g on 0Qp,
f- (—pIl+p(Vu+va')) =h on Iy,
h-ull=0 on I
[—pI + p(Vu + (Vu)T)HF ‘N = okN onT.

The external boundary 0f) consists of two parts, the Dirichlet boundaries 0€)p,
where the velocity field is uniquely specified, and Neumann boundaries 02y .
Internally there may exist an arbitrary number of interfaces which are included
in I

The weak or variational form of the posed problem shall now be derived.
First define a scalar product

(u,w):/u-wdQ:/u1w1+...+udwddQ
Q Q

and introduce a set of arbitrary test functions which constitutes a vector field
v = [v1 v2...v4], where subscripts 1, ..., d denote the space dimension in ques-
tion. Application of the test functions to the momentum equations, through the
scalar product, yields

[t (5 +) van -

/Vp de+/V)(Vu+ Vu))-de+/f~de. (2.8)
Q

By incorporating the pressure into the stress tensor in (2.8) and using the Gaus-
sian theorem the term for the total stress can be written as

/ V- (=pI+ p(x)(Va+ Vu’)) - vdQ =
Q
= —/ (=pI+ p(x)(Vu+ vVu’)) - VvdQ +
Q
+/ A (—pI+ p(x)(Vu+ Vu')) - vdS =
o
:—/ (=pI + p(x)(Vu+ vu™)) -Vde+/ h-vdS
Q

0N

where the Neumann boundary condition has been substituted into the boundary
integral which arose naturally due to the partial integration. An advantage of

2.7. GENERAL PROBLEM FORMULATION 13

using the weak formulation in this way is that it reduces the requirements on
the approximating functions to be once instead of twice differentiable.

The boundary conditions for the surface tension forces can be incorporated
similarly to the Neumann boundary conditions but will in the following be in-
cluded into the force term f as per (2.6). The weak formulation of the problem
now reads:

Find u(¢) and p(t) such that
(#0055v) 0 wuw) =) +bla) = () + f(hv) (29)

for velocity and pressure test functions, v and ¢, chosen in appropriate function
spaces. Here the convective and diffusive terms are represented as

a(w,u,v) = / p(x)(w - V)u- v+ pu(x)(Va + vul) - Vv dQ,
Q
and the linear forms as
b(QaV) = /qVVdQ,
Q
flg,v) = / g-vds.
o0y

The weak formulation of the Navier-Stokes equations (2.9) will, after time
discretization, form the basis of the spatial finite element discretization pre-
sented in Chapter 3.

14

CHAPTER 2. MATHEMATICAL MODELING

Chapter

Numerical treatment

Analytical solutions of the Navier-Stokes equations are very hard to come by,
even for quite simple configurations. Take for example flow in a straight and per-
fectly smooth circular pipe, if the flow rate is low, the fluid behaves predictably
and is classed as laminar. In this case it is possible to derive an analytical
solution, the so called Hagen-Poiseuille flow profile [114]. However, as the flow
rate increases perturbations start to appear and the flow becomes increasingly
irregular. This chaotic and unpredictable flow behavior is what is usually meant
by turbulence, a flow state for which no exact analytical solutions can be found
without resorting to drastic simplifications.

To obtain general solutions to the Navier-Stokes equations one more com-
monly must apply numerical techniques. The equations are discretized both
spatially into smaller subregions and temporally into time slices, which leads
to a large set of coupled subproblems each of which should satisfy the discrete
equations. This can in general be represented as a large matrix system which
must be inverted in order to obtain the corresponding discrete and approximate
solutions.

In the following chapter, the issues of appropriate discretization and sub-
sequent solution techniques for the Navier-Stokes equations with emphasis on
two-phase flow applications shall be addressed. The presented methodology
builds on and shares many concepts with the FeatFlow software suite (short for
Finite Element Analysis Tools for Flow) which has been developed to efficiently,
robustly, and accurately simulate single phase laminar fluid flow [7, 102].

3.1 Temporal discretization

The first step in the numerical discretization process is to choose an appropriate
time stepping scheme. It should not only be accurate in time, but also easy
to realize and computationally robust and affordable (inexpensive) to use. A
simple and flexible choice is the 6-scheme approach, which allows for the use of
the single step Backward Euler and Crank-Nicolson schemes, and also multi-step
schemes such as the strongly A-stable Fractional-step-6-scheme. The #-scheme
applied to the Navier-Stokes equations results in the following general semi-
discrete system for each time step:

16 CHAPTER 3. NUMERICAL TREATMENT

Given u” at time ¢ = ¢t" and time step At = t"*! — " then solve for u = u"*!
and p = pt!

n

u—u . _ . T _ pntl
ot 0[p(u-V)u—-V- (u(Va+ (Vu)'))]|+Vp=b (3.1)
V-u=0
with right hand side given by
bn+1 —_ ofn—i-l T 1— 0 fn
() (3.2)

—(1=0) [p"(u" - V)u" — V- (u"(Vu" + (Vu™)T))] .

The parameter 6 is chosen according to the time stepping method, 6§ = 1 for
the first order Backward Euler scheme and 6 = 1/2 for the second order Crank-
Nicolson scheme. The Fractional-step-0-scheme (first proposed by Glowinski et
al. [10]) is a multi-step scheme involving the following time stepping parameters

V2 , 1-26
9—1—7, 0—1—20, Oé—ﬁ,

where the whole time interval At is split into the following three sub time steps

f=1—a«a

un,+9 —u”®

At/g 4 a&N(u”’+9)u"+9 + van—i-& _

P
= aff"0 4 BOf" — BON (u™)u"

V-u"t? =0, (3.3)

un+170 _ un+0

p At/g + ﬁg/N(un+179)un+179 + glvpn+179 —

60/fn+1—9 4 aa/fn-l—e o aelN(un+0)un,+9

Vou"tll =0, (3.4)

un+1 _ un+170

Az abN (u"THu" 4 vyt =

_ O[@fnJrl + ﬂ@fnJrl*G o ﬂ@N(u”Jrl*e)u"Jrl*G
V-u"tt =0. (3.5)

Here N(w)u = [p(w-V)u— V- (u(Vu+ (Vu)7?))] represents, in compact form,
the nonlinear convective and diffusive terms.

3.2. SPATIAL DISCRETIZATION 17

3.2 Spatial discretization

The next step is to apply a spatial discretization to the unknown variables u
and p. Commonly employed discretization schemes are finite volume (FVM),
finite difference (FDM), and finite element methods (FEM). A suitable choice
is not always obvious but in [102] Turek showed how to devise a very robust
and computationally efficient nonconforming finite element scheme to solve the
Navier-Stokes equations on arbitrary domains. In the following, this methodol-
ogy will be extended to be able to efficiently treat two-phase flows with immis-
cible fluids.

The starting point of constructing a finite element discretization is to first
derive the weak or variational form of the equations. The weak formulation
is obtained by multiplying the equations with arbitrary functions v, the so
called test function space, after which integration is performed over the whole
domain Q. Partial integration (by using using the Gaussian theorem) is usually
also applied to terms involving 2nd and higher order derivatives, which reduces
smoothness requirements of the involved variables. The corresponding weak
formulation of the Navier-Stokes equations which will be used in the following
was derived in Chapter 2 (Section 2.7).

The discretization step consists of subdividing or triangulating the domain
into smaller cells (in this case quadrilaterals in two dimensions and hexahedrals
in three dimensions). The triangulation is denoted by 7; where h(K) is the
diameter or width of cell K.

The approximation of the velocity on each cell utilizes rotated multilinear
(bilinear in 2D and trilinear in 3D) polynomial shape functions Q; defined by

QI(K) = {qow[_(l : AS Span<1axi7x? _x?—i-l?i =1,. 7d>}

where ¢ : R — K is the multilinear transformation from the reference element
R = [~1,1]? to the cell K. The corresponding degrees of freedom are determined
by either of the functionals

Fgl) = |E|71]{ v ds or F}(sb) =v(mg)
E

where E C 07;, denotes the cell edges/faces. Using the functional Fgl) will
result in degrees of freedom corresponding to the mean values over the edges,
and using Fg)) will similarly correspond to pointwise values on the edge/face
midpoints mg. Alternatively one may employ the non-parametric counterparts
which, although computationally expensive, are better suited for grids with high
anisotropies.

The pressure field is approximated by piecewise constant values on each cell,
the so called @ element, and sought in the space

Ln ={qn € L§ : qunyxc = const, V K € Tp,}.

The Stokes element pair Q1Qo, also called Rannacher-Turek elements [106],
is very efficient from a computational viewpoint, allowing for fast geometric
multigrid solvers to be constructed. It is also very robust with respect to grid
anisotropies and fulfills all stability requirements of the LBB Babuska-Brezzi
condition.

18 CHAPTER 3. NUMERICAL TREATMENT

The test function space v is usually taken as the same function space which
approximates the dependent variables (Galerkin formulation), but can also be
modified to include certain properties, for example streamline diffusion or SUPG
stabilization (Petrov-Galerkin formulation).

Discretization in both time and space now yields the following saddle point
system which must be solved to advance the solution:

Given u” and time step At = t"*t1 — " solve for u = u*! and p = p"*!

Su+ AtBp=D>b
{ P (3.6)

BTu=0
where the system or iteration matrix S is defined as
S = [M,+ 0AtN (u)].

Here M, denotes the density weighted mass matrix

M, = / p(x)u - vdQ
Q

arising from the discretization of the time derivative. The transport operator
N(+) is given by

N(w) = /Qp(x) (w-V)u) v+ pux) (Vu+ (Va)') - VvdQ

and contains the nonlinear convective and diffusive contributions. B and B” are
simply discrete analogs of the gradient and divergence operators, and are used
to include the pressure gradient and to enforce the incompressibility constraint.
The discrete right hand side is finally given by

b= / byt vdQ,
Q

where b} is the discrete analog to equation (3.2). A suitable and efficient
method to solve this system, with proper treatment of the pressure and conti-
nuity equation, will be discussed in the following section.

3.3 Discrete projection method

Due to the incompressibility constraint special care has to be taken to be able
to solve the saddle point system (3.6). Standard direct solvers and iterative
solvers, not sensitive to zeros on the diagonal, may be applied to invert the
coupled system directly. However, direct solvers are generally slow and require
large amounts of memory. Iterative solvers on the other hand require more and
more iterations to converge as the systems grow in size.

Two-phase flow applications are most often time dependent and involve phe-
nomena that occur on very small time scales (for example break up and coales-
cence). This will pose natural restrictions on the maximum allowable size of the
time steps. With this in mind it is preferable to employ the discrete pressure
Schur complement approach, a type of projection method, presented in [103].

3.3. DISCRETE PROJECTION METHOD 19

The essence of this methodology is to split the momentum equations and the
continuity equation from each other, leading to smaller Poisson type problems
which separately can be solved very efficiently.

The discrete projection method applied to (3.6) involves the following steps
to obtain the new velocity field u”t! and pressure field p™+!:

1. Solve the momentum equations for the approximate velocity field & (while
ignoring the incompressibility constraint):

Su = bt — AtBp"
2. Construct the pressure right hand side:

I
fp_AtBu

3. Approximate exact pressure matrix P* = BT S™!B with P = BTMp_llB
and solve the pressure Poisson equation:

Pq:fp

4. Update the pressure field:

PP = P 4 apg+ aDMI;llfp
where ar and ap are appropriately chosen damping parameters, and M; ll
is the discrete lumped pressure mass matrix.

5. Project the approximate velocity field to a divergence free space:
u"tt = a—AtM, [Bq

The key to efficiency lies in optimizing the two main computationally inten-
sive parts, the matrix inversions in steps 1 and 3, as well as the finite element
matrix assembly.

3.3.1 Momentum equations

An efficient method to solve the discretized momentum equations in the first step
of the discrete projection method is to use a geometric multigrid approach. The
idea behind multigrid is to assemble and iteratively solve the linear systems on a
sequence of grids. This allows for the slowly converging low frequency errors on
the finest grid to quickly be filtered out on the coarser grids (the low frequency
error is seen as having a higher frequency on the coarser grids). A near linear
efficiency can in this way be achieved in the optimal case (with linear meaning
that the cost of solving the systems increase linearly with the number of degrees
of freedom) [42]. This is in contrast to standard iterative solvers which require
an increasing number of iterations to converge as the computational grids are
refined.

20 CHAPTER 3. NUMERICAL TREATMENT

A prototypical multigrid sweep to solve the system Axup = fr involves the
following steps:

1. Given an initial guess on grid level k, u%, perform j =0,...,m — 1 pres-
moothing steps to get a more accurate iterate

- ,
u = Si(uy,).

The smoothing operator S essentially computes a first approximation to

Apug = [

2. The presmoothing steps should have “smoothed” the residual sufficiently
so that the remaining error will be seen as having a high frequency on a
coarser grid. Calculate the residual and restrict it to a coarser grid

rhe1 = Iy (fr — Arul)

where Z,]j_l is the restriction operator from the fine grid k to the coarser
grid k — 1.

3. Solve the coarse grid system
Ap_1up_q = Tk-1
to obtain the correction uj_,.

4. Prolongate the calculated correction to the fine grid and apply

up ™t =l 4 Ty,
where « is a suitably chosen damping parameter and I’kﬂl is the prolon-
gation or interpolation operator from grid k — 1 to k.

5. Perform [= 0,...,n — 1 number of postsmoothing steps (as in step 1) to

obtain the final solution u}:‘“*”.

It is common to apply these steps recursively on a succession of grid levels to
achieve a faster reduction of error. Appropriate algorithms now have to be
chosen for the prolongation, restriction, smoother, and solver components to
achieve full efficiency.

The most computationally expensive component is normally the smoother S
which performs a number of typical iterative solver steps (for example Jacobi,
SOR, or SSOR). Smoothers depending on incomplete LU factorizations (ILU-k)
are generally excellent at smoothing, however, their cost can offset the benefits
on regular grids.

The prolongation and restriction routines are normally constructed either
as pure interpolation operators or alternatively as discrete L?-projection op-
erators. Another approach, which has been developed for highly anisotropic
grids, is to embed appropriate weighting in the operators to properly account
for the anisotropies [92]. This approach is potentially advantageous for two-
phase flow simulations since the discontinuous density and viscosity fields can
be interpreted as anisotropies.

The employed solvers are usually standard iterative solvers, alternatively
direct solvers may be used on coarse grids if the number of degrees of freedom
is sufficiently small. It is not necessary to decrease the residual error in the
solving step by a large amount, usually a gain of one digit is sufficient, since the
correction is applied iteratively.

3.3. DISCRETE PROJECTION METHOD 21

3.3.2 Convective stabilization techniques

High Re-number flows, where the convective terms dominate over the diffusive,
often require special numerical treatment. This is mainly due to the limited
resolution (the number of cells) that can be afforded in the simulations. The
unresolved subgrid effects will eventually cause oscillations and an unphysical
solution behavior if not suppressed. A mechanism to handle this consists of
locally adding small amounts of numerical diffusion to counterbalance the dom-
inating convective terms.

A quite elegant approach to introduce artificial stabilization in the finite
element context consists of modifying the test function space to vpg := v+46Vv,
where § = 0(Rep, h) is locally tuned for the correct amount of stabilization. This
classical Petrov-Galerkin approach only introduces artificial diffusion in the flow
or streamline directions, and is thus called streamline diffusion or streamline
upwind Petrov-Galerkin (SUPG) [47]. The method is consistent (meaning that
the stabilization disappears for the exact solution), linear with respect to the
solution variables, and is usually fairly easy to implement.

One major drawback of the streamline diffusion approach is that it allows
unphysical under- and over-shoots to appear (the method is not monotonicity
preserving). Depending on the nature of the phenomena under study it can
be very critical to limit or even completely suppress this behavior (for example
when solving for turbulence variables or chemical reactions). An alternative is
to use total variation diminishing (TVD) and flux-corrected transport (FCT)
schemes. These schemes allow for very accurate solutions at the cost of introduc-
ing an additional nonlinearity. However, if treated properly, or if the problem is
already nonlinear, the additional cost will be quite low. A very elegant and gen-
eral approach to introduce TVD/FCT, in particular with respect to the FEM
context, is to use the approaches developed by Kuzmin et al. [58, 59, 60].

Another recent stabilization approach is so called edge stabilization where
contributions are added to each cell edge corresponding to the jump in either
the dependent variable or its gradient [12]. The stabilizing terms can quite
easily be modified to treat different effects, for example instabilities due to con-
vection, incompressibility, and the Korn’s inequality (which appears when using
the Rannacher-Turek elements with the deformation stress tensor formulation).
The edge stabilization method is essentially linear, like streamline diffusion, but
has the advantages of generally being more accurate and involve a quite insen-
sitive tuning parameter (it can sometimes even vary within magnitudes without
destabilizing the solutions significantly [104]). The main disadvantages are that
it is not monotonicity preserving, and that it requires increased computational
effort due to the need for assembly over all cell edges. The edge based struc-
ture also leads to additional matrix storage requirements, and a corresponding
increase in computational time required to invert the matrices.

3.3.3 Nonlinear iteration techniques

The convective term in the momentum equations unfortunately contains a non-
linearity which must be treated appropriately. An efficient way to solve the
nonlinear model problem A(u)u = f is to use the following iterative defect
correction approach

Uj = Uj—1 T+ W C_l’l“j_l, 7=0,1,2,...

22 CHAPTER 3. NUMERICAL TREATMENT

where 7, = f — A7 (u)uy is the defect vector in iteration [, and w is a damping
parameter. The preconditioning matrix C' should ideally be chosen so that it is
cheap to construct and easy to invert while still allowing for fast convergence.
Typically one will use C' = A for the standard fixed point approach while full
Newton schemes require a more elaborate construction. The iterative procedure
is stopped when a predefined convergence criterion has been reached, for exam-
ple when the norm of the residual error ||r;|| has decreased sufficiently or the
solution difference between iterates ||u; — u;_1|| is small enough.

The iterative defect correction scheme applied to the Navier-Stokes equations
leads to the following linearization of the convective term

(u; - V)u; =~ (w1 - V)uy

where u;_; is the solution from the previous step in the defect loop. An alter-
native for time dependent problems is to use extrapolation backwards in time
by replacing

(u"t . V)u"tt by either (u"-V)u; or ((2u”—u""')-V)u,.

It is even possible to treat the convective term completely explicit on the right
hand side. Although these extrapolation techniques remove the nonlinearities,
and thus are computationally favorable, they should be used with caution since
the time step size may have to be reduced dramatically if the nonlinearity is
strong.

3.3.4 Pressure Poisson equation

The solution of the pressure Poisson equation is the second major part of the
discrete projection method. To handle this efficiently a geometric multigrid ap-
proach, similar to the one used for solving the momentum equations, can be
applied. An important difference between single and multiphase flow is in the
choice and construction of the lumped mass matrix, which is the main con-
stituent of the approximate projection matrix P = BTM[:llB. For multiphase
flow applications the lumped mass matrix needs to be weighted with the dis-
continuous density field and there are number of ways of doing this leading to
quite different results.

The two main approaches is either to first lump the standard mass matrix
and then scale it with the density, or first assemble the full density weighted mass
matrix exactly and lump it afterwards. The first approach is easy and cheap,
the standard row-sum lumped mass matrix is computed and stored once, after
which it is multiplied with a corresponding density field vector. The density
field can either be evaluated pointwise in the nodes (or midpoints) alternatively
averaging can be applied on the cells first, after which a mean density for each
cell can be evaluated.

The second alternative is to construct the mass matrix exactly, resolving the
density jumps on the elements accurately after which a lumping procedure can
be applied. For a mass matrix constructed from the Q1 basis functions one can in
general not use the standard row-sum lumping procedure since negative diagonal
entries may be created. This is due to the combination of the density jump and
non-positiveness of parts of the basis functions which may create dominating
off-diagonal entries. There are two other approaches available however, diagonal

3.3. DISCRETE PROJECTION METHOD 23

Grid level Pw. Avg.+Pw. Exact+HRZ

3 111 31 14
4 109 33 12
5 40 23 8
6 35 23 7
7 26 27)

Table 3.1: Average number of multigrid iterations required to solve the
pressure Poisson equation. (Pw.) denotes pointwise eval-
uation of the density, (Avg.+Pw.) density averaging before
pointwise evaluation, and (Exact+HRZ) exact assembly with
HRZ-lumping.

lumping where only the positive diagonal entries are kept, and HRZ-lumping
(from Hinton, Rock, and Zienkiewicz [44]) where the diagonal entries are kept
and the whole resulting local mass matrix is scaled so that the total mass of
each element is preserved.

The different approaches were evaluated by simulating a standard rising
bubble test problem (test case 2 described in Chapter 6) and recording the
average number of multigrid iterations required to reduce the residual norm in
the pressure Poisson equation to 10719, The results are shown in Table 3.1. It is
clear that the exact assembly plus HRZ-mass lumping is by far the best choice,
requiring on average around 10 iterations. For the variants where the standard
lumped mass matrix is scaled by the density it is preferable to average the
density over the cell. This approach did however take 2-3 times more iterations
to converge compared to using the HRZ-lumped mass matrix. The most costly
method is to just scale with the density evaluated directly in the nodes, requiring
over 100 iterations to achieve convergence on the coarser grid levels.

3.3.5 Matrix assembly

Finite element methods invariably require expensive numerical integration to
build the finite element matrices, this is the so called assembly step. For single
phase flow it is possible to save most matrices in memory if the mesh is kept
fixed throughout the simulation, then only the convective contributions need
to be reassembled. However, for two-phase flow simulations the density and
viscosity fields will change with time, thus all but the gradient matrices will
need to be reassembled in each and every time step. For efficiency reasons it
is clearly very important to fully optimize the assembly routines using good
programming practice, such as precomputing as much as possible and lifting
calculations from the inner element assembly loops.

Another particularity of two-phase flow simulations is that the assembly
will include numerical integration with discontinuous coefficients and functions.
Standard cubature rules developed for continuous functions (such as Gaussian
quadrature) may in this case lead to large errors. Two approaches can be
taken to remedy this, firstly the discontinuous functions can be regularized and
artificially “smoothed”, secondly one can split the region to be integrated into
several patches, each patch corresponding to a continuous part of the function.

24 CHAPTER 3. NUMERICAL TREATMENT

Regularized assembly. Applying regularization to the discontinuous coeffi-
cients is a very popular and common approach. It requires very little modifi-
cation to an existing code and is thus easy to implement. Another advantage
is that the assembly can be performed fully implicit with respect to any in-
terfaces, which can potentially be a great advantage. Following the work of
Tornberg [109] a regularized Heaviside or step function can be constructed as

1 d > w,
Hw(d) = V(d/w) |d| S w,
0 d <w,

where the signed distance function d = d(T",x) gives the minimum signed dis-
tance between the point x and the interface I The regularization is fully
determined by specifying the width of the regularized support region w and
selecting the transition or smoothing function v. The width should be chosen
as a function of the mesh size w = O(h) so that the integrands converge in the
limit A — 0. A narrower transition region results in better accuracy but will re-
quire a higher quadrature rule to converge. Tornberg has shown that the use of
transition functions with a high number of vanishing moments is advantageous
since the analytical error of replacing the discontinuous Heaviside function with
its regularized counterpart will accordingly scale with higher powers of w [109).
Two examples of suitable polynomial transition functions are

1 1

1/270(5) = 5 + g(gf - 553)’
Al = % L 2_;)6(5255 122563 4 132365 — 495¢7).

The function ©%° has two vanishing moments but no continuous derivative, and
v*1 has four vanishing moments and one continuous derivative. Special care
must be taken when using these polynomials since they are not strictly positive
(see Figures 3.1(a) and 3.1(b)), if used improperly they may locally generate
unphysical coefficient values (for example negative density and viscosity values).
Another common choice for the transition function, which is strictly positive but
which error only scales as w?, is the sine function (plotted in Figure 3.1(c))

W(E)™ = 51+ &+ —sin(x)).

! -05

(a) v*0(¢) (b) v®1(9) (e) v (¢)

0.5 1 1 -05 0 05 1 1 -05 0 05 1

Figure 3.1: Transition functions approximating a Heaviside function.

3.3. DISCRETE PROJECTION METHOD 25

Having chosen w, v, and reconstructed H,, the regularized function "9 is
finally given as

freg = fl + (f2 _fl)Hw

where f; is the value of the discontinuous function in region or phase i. 79 is
clearly continuous, with smoothness properties according to the chosen transi-
tion function, and allows standard integration rules to be applied.

Patch assembly. The potentially more accurate way of integrating a discon-
tinuous function is theoretically very simple but practically more complex to
implement (especially in 3D). One must essentially identify and construct suit-
able subregions or patches, corresponding to the different function values, which
then can be integrated with usual quadrature rules. The patch assembly pro-
cedure thus consists of applying the following steps to each cell containing an
interface:

1. Reconstruct and identify all interfaces intersecting the cell.
2. Split the cell into smaller sub-regions by regular subdivision. (Optional)

3. Split the cell or sub-regions into polygonal patches over which the discon-
tinuous function is constant or at least smooth.

4. Perform the integrations over all patches and sum up the results to form
the full integral.

Since the interfaces normally are curved they do not allow for suitable patches
to be formed and are thus approximated by lines in 2D and planes in 3D. This
naturally results in a decrease in accuracy, hence the 2nd optional splitting step
which can be performed recursively to attain arbitrary precision. The splitting
is also helpful to eliminate ambiguities if several interface segments are present
in the integration region.

The patch integration process applied to an arbitrary quadrilateral is il-
lustrated in Figure 3.2. In step 1 (shown in Figure 3.2(a)) the interfaces are
explicitly found and reconstructed. In this example two interfaces (I'y and I'y)
intersect the cell and separates the discontinuous function f into three regions
with values f; or fo. In the second step the quadrilateral is split into four tri-
angles (AA — AD) via the diagonals (Figure 3.2(b)). This splitting is preferred
to regular refinement into four quadrilaterals, since the lower right subcell then
would contain two interface segments. The final patches over which integration
is performed is depicted in Figure 3.2(c). Note that the interface curves have
been approximated by straight line segments. In this case there are two ways of
performing the integration, the first is to integrate normally over the patches,
using fo for the quadrilateral patches (1A — (0D and f; for the triangular ones
AA" — AD'. Alternatively one can choose to integrate only over triangles, by
first calculating the integral of f; over AA — AD and then subtracting f1 — f
integrated over the smaller patches AA’ — AD’. Both methods will give the
same result but the latter may be more convenient from an implementational
viewpoint.

26 CHAPTER 3. NUMERICAL TREATMENT

(a) Interface reconstruction (b) Cell splitting (c¢) Patch creation
Figure 3.2: Illustration of the patch assembly process.

A simple numerical test case was constructed in order to evaluate the dif-
ferent integration methods. The test considered the assembly of a mass matrix
scaled with a discontinuous coefficient on a [2 X 2] square domain. The scaling
coefficient f was given as

_ 10 |x| < 0.6,
F(x) _{ 1000 |x| > 0.6,

and was thus equal to 10 inside a circle with radius 0.6 and 1000 everywhere else.
Assembly with regularization of the discontinuous function employed all three
previously defined transition functions where the width spanned 1.5 cells (w =
1.5h). From Figure 3.3, showing the Iy error for the assembled non-zero matrix
entries, one can see that the sine v and low order polynomial % transition
functions were somewhat less accurate than the high order transition polynomial
v1 although all of them converged with more or less 2nd order. The simple
2x2 Gauss integration rule was also applied, where the discontinuous coefficient
was evaluated directly in the cubature points, which resulted in errors of similar
magnitude but with a slightly lower convergence order than for the regularized
assembly. Lastly the patch integration process was tested and showed error
levels a magnitude or so lower than the best of the other methods and also a
better convergence behavior. Thus if high accuracy is needed then the patch
assembly process is clearly the best choice.

10'

—&— patch int.

N —0— Reg.v?"
10° b : e —o— Reg. v**

—¥— Reg. v*!
A 2x2 Gauss

Assembly error

107k

H
o 10t 10°
1/h

Figure 3.3: [2 error in the assembly of a mass matrix scaled with a
discontinuous coefficient.

Chapter

Interface tracking

Interface tracking methods can in general be divided into two main categories.
The first category consists of Lagrangian methods where the interfaces are ex-
plicitly tracked, meaning that the cell edges always are aligned with the inter-
faces (Figure 4.1(a)). This approach preserves a sharp interface representation
but does so at the cost of introducing additional algorithmic complexities to
handle break up and merging of interface segments. The governing equations
also have to be modified to account for the grid movement, and periodic remesh-
ing may be necessary if the interfaces deform too much, which may introduce
additional errors.

The second category consists of Eulerian interface tracking methods where
the interfaces are allowed to intersect the cells arbitrarily (Figure 4.1(b)). This
allows for fixed grids to be used which is more desirable from both computational
and implementational points of view. In addition to this, coalescence and break
up is, for most Eulerian methods, implicitly controlled by the grid resolution
and is thus treated naturally. The drawback of using Eulerian methods is that
the interfaces potentially are “smeared” across one or more cell widths requiring
higher resolution to achieve the same accuracy as for the Lagrangian methods.
In the following we will examine how the Eulerian methods can be applied to
the posed two-phase flow problems.

(a) Lagrangian (b) Eulerian

Figure 4.1: Lagrangian and Eulerian interface descriptions.

28 CHAPTER 4. INTERFACE TRACKING

4.1 FEulerian interface tracking methods

There are quite a number of Eulerian interface tracking methods and variants
to choose from, each having its own distinct advantages and disadvantages. The
most popular methods to date are the volume of fluid (VOF), front tracking,
and level set methods.

The volume of fluid method originally introduced by Hirt and Nichols [69]
implicitly tracks interfaces through the volume fraction function. Each cell is
assigned a volume fraction between 0 and 1 to indicate the averaged relative
amount of one of the fluids. A cell with a volume fraction of 0 or 1 will be
completely filled with either of the fluids, while a cell with an intermediate
volume fraction will have an interface segment intersecting it. The convection
of the discontinuous volume fraction field usually requires special techniques
but can be performed fully mass conserving, which is the main advantage of
this approach. On the other hand, the use of an averaged volume fraction
field does not give any information about the interfaces and their corresponding
reconstructions are therefore not unique (one can for example use piecewise
constant and linear (PLIC) techniques [110], or more advanced and expensive
methods (such as the least squares ELVIRA and parabolic PROST methods
[82, 84]) to reconstruct the interfaces). Both the reconstruction and convection
steps makes the VOF method particularly suited for Cartesian tensor product
grids, but the extension to unstructured grids, although possible, is quite rarely
encountered.

The front tracking method essentially does the opposite of the VOF method.
Here the front is tracked explicitly, usually with the help of massless marker
particles indicating the position of the front. The convection of the particles
is both easy and inexpensive. All that is required is an interpolation operator
giving the velocity at the position of the particles. The opposite, to use infor-
mation of the explicit front in the governing equations, requires more elaborate
techniques. The common approach is to construct a smoothed delta function
effectively smearing the front on the computational grid. Another drawback is
that merging and break up of interfaces may cause difficulties, depending on
the implementation approach. Additionally, marker particles must periodically
be inserted or removed to maintain a nice representation of the front.

Many other methods exist, such as the phase field [29, 111], immersed in-
terface [62], ghost fluid [28], and segment projection methods [109]. Some re-
searchers have tried to combine two methods to get the best properties out of
them. The CLSVOF method combines the level set and VOF methods to es-
sentially create a mass conservative level set method [99]. The particle level
set method can be seen as a diffuse front tracking approach used to correct the
level set method [26]. In the following chapter the standard level set method is
described in detail since it is easy to implement, the smooth level set field allows
for accurate convection and discretization with high order finite elements, and
distance function, normal, and curvature fields are easy to reconstruct globally.

4.2. LEVEL SET METHOD 29

4.2 Level set method

The level set method introduced by Osher and Sethian [72] has proved to be
applicable in many diverse fields such as image processing, crystal growth, in-
verse problems, and of course multiphase flow. The main idea of the level set
method is to embed the interface I'(t) (represented by a curve in 2D or surface
in 3D) in a higher dimensional function ¢, that is,

F(t) = {X € Rd | ¢(X7 t) = Uls}v
where v;s is the contour level or isosurface value implicitly representing the
interface. The choice of v is arbitrary but is usually taken as zero, since it
then is possible to identify the different phases by just using the sign of ¢. It is
appropriate to prescribe (or at least initialize) ¢ as a signed distance function

dist(T, x), X €),
¢(X7 0) = d(F,X) = Vls, X € F,
—dist(T,x), x € Qo,

where 2; and 25 denote the two regions that the fluids occupy. Two advantages
of using a distance function is that it is smooth for the most part and simplifies
construction of regularized Heaviside and delta functions. Methodologies using
local grid adaptation and grid deformation can also make use of the distance
function to identify where to refine the grid. Additionally normal and curvature
fields are globally defined as

. Vo .

n= Vol k=—=V- 0. (4.1)
An example of a level set function initialized as a signed distance function, where
I' is a circle, can be seen in Figure 4.2.

Figure 4.2: Level set description of a circle (represented by the solid
black contour line).

The starting point for deriving an evolution equation for the level set field ¢
is to recognize that the following must hold for the moving interface (from here
on taken as the zero level set)

o(x(t),t) = 0.

30 CHAPTER 4. INTERFACE TRACKING

Direct differentiation with the chain rule yields

% v a’(;ff)

ot =0.

The speed with which the front propagates in the normal direction is given by
F=n- 8’55/75). Using this and the definition of the normal vector in (4.1) results
in the following evolution equation for ¢

9¢

5 TFIVe =0

which must hold globally for all values of ¢. The speed function F' can depend
on many variables such as mean curvature, external forces, but in our case will
only depend on the fluid velocity, that is F' = n - u, which gives

9¢
ot
where the definition of the normal in (4.1) has been used once more.

What essentially has been achieved is a fully implicit formulation of the
interface and its evolution at the cost of operating in a higher dimension. Addi-
tionally, geometrical properties such as interface normals and curvature are also
implicitly defined and are possible to reconstruct globally. Note that in contrast
to the VOF method, the interface is uniquely known and may be reconstructed
if necessary.

+(u-V)p =0, (42)

4.3 Numerical treatment

The level set equation (4.2) is a pure hyperbolic transport problem and thus
allows for application of standard solution tools, such as those used to treat the
momentum equations in Chapter 3. Time discretization follows by applying the
single step #-scheme, which results in the problem formulation:

Given ¢™ and the time step At = t"t1 — 1" then solve for ¢ = ¢"t!

¢ — 9"
At

+60(u-V)p=b

with the right hand side
b=(0—-1)(u-V)o".

Alternatively one may as before apply the Fractional-step-0-scheme for addi-
tional stability which leads to a three step method analogous to equations (3.3)—
(3.5).

It is only natural to choose the same discretization scheme in space as for the
Navier-Stokes equations, the finite element method. Since the level set function
is smooth for the most part a continuous representation is appropriate, differing
from the non-conforming velocity ansatz functions. By using the same approx-
imation order as for the velocities the choice falls upon continuous multilinear
basis functions, the Q1 space, which is described by

Q1(K) = {qo Fgl : g € span <1,x¢,xixmod(i,d)+1,i =1,.. .,d>}.

4.4. REINITIALIZATION 31

After discretization in space, the final form of the level set equation will read

[Mqy + AthA]p" T = b7, (4.3)

b = [Mg) — At(1 - 0)Alg", '
where M) = fQ v1v9 dS2 is the mass matrix which may be lumped if appropriate.
A is the transport matrix, responsible for convecting the level set function and
thus also implicitly the interface, and is given by

A= /Q(u V)vivs dS2. (4.4)

Here v; and vs denote the ()1 basis functions and test functions, respectively.
A is a trilinear form where the explicit velocity field u must be appropriately
evaluated in the assembly step. Since u is changing A needs to be reassembled
in each time step in contrast to the mass matrix which may be computed once
and then reused. One can potentially save some effort by restricting the com-
putations to a region around the interface, a so called narrow band approach,
or alternatively if one sacrifices some accuracy the group finite element method,
as suggested in [30, 60], is also a viable cost saving approach.

Since equation (4.2) is a hyperbolic transport equation without any diffusion,
some form of artificial stabilization is needed. Edge stabilization initially seems
to be an ideal choice, since it both allows for high accuracy and retains the
linear character of the problem. The drawback is the increased matrix stencil
adding to computational overhead. The stabilization options that are used in
the following are the high resolution FEM-TVD schemes [58, 59, 60], although
they render the problem nonlinear, the cost of solving the equations can for the
most part be made almost negligible.

For the solution of equation (4.3) one may apply standard but efficient tech-
niques, such as BiICGStab and multigrid schemes. Alternatively one can employ
the iterative defect correction approach described earlier, which in fact also is
necessary when using FEM-TVD. To take full advantage of all possibilities one
should note that the preconditioning matrix C' in the defect loop should closely
resemble the iteration matrix

C = [M(l) + At HA]

for fast convergence. It does not need to be exact, and can be approximated
with just the mass matrix if the time steps are small enough. If one now also
lumps the mass matrix the inversions are trivial and cost next to nothing. For
larger time steps this approach usually works too but will require more iterations
in the defect correction loop to converge.

4.4 Reinitialization

Even if the level set function is initialized as a distance function it will generally
distort significantly with time, causing convergence difficulties and reducing
accuracy for normal and curvature reconstructions. The velocity with which
the level set field is transported will preserve the distance function property if

Ve VF =0 (4.5)

32 CHAPTER 4. INTERFACE TRACKING

is fulfilled, which means that the normal velocity is constant along the char-
acteristics normal to the interface. This is unfortunately not the case for the
velocity fields arising from fluid flow. To remedy this a so called extension ve-
locity field may be constructed, which must both satisfy equation (4.5) and be
identical to the original velocity field at the interface [1].

A more common approach is to periodically apply what is known as redis-
tancing or reinitialization to the distorted level set field, and thus recover the
distance function property. This is equivalent to solving the Eikonal equation

IVo(x)| = F(x) (4.6)
with boundary condition ¢(x) = 0, x € I'. The speed function should be taken
as unity, F'(x) = 1, in order to recover the pure distance function.

To be of practical interest the reinitialization methods must fulfill a num-
ber of requirements. Firstly, the chosen method should ideally not move the
interface or zero level set, which would cause unphysical mass loss. Secondly, it
should be as accurate as possible, since an accurate level set field will result in
better normal and curvature fields. Thirdly, the computational overhead may
not be significant, the computations should not be dominated by the redistanc-
ing step. It is worth to examine the various reinitialization algorithms in detail
to identify suitable methods fulfilling these requirements [49].

4.4.1 Reinitialization methods
The fast sweeping method

The fast sweeping method described in the papers by Tsai et al. [100, 101]
essentially consists of applying upwind type difference formulas, see subsection
4.4.2 later, while using Gauss-Seidel type of iterations, to update the distance
function field. The key to fast sweeping is to update the points in a certain
order that tries to follow the characteristics of the solution, that is the sweeping
direction should ideally correspond to the real propagation of information. The
basic method is described as follows

e Select sweeping direction and calculate the corresponding grid point order.

e Loop over all points in accordance with the above sequence and update
the distance value for each point if the newly calculated distance is smaller
than the previous one.

e Repeat this procedure for all sweeping directions.
e Repeat until convergence for all grid points has been achieved.

It is easy to see that the complexity of this algorithm is of order O(N), and has
the potential to be very fast if the number of sweeps can be kept to a minimum.
The sweeping orders may be chosen as follows for a two dimensional tensor
product mesh

l.e=1:1,7=1:J, 2.4=1:1,75=1:J
3.i=1:1,7=J:1, 4.9=1:1,7=J:1
where i is the node position in the x-direction and j is the corresponding position

in the y-direction. I and J are the maximum number of nodes in the x- and
y-directions respectively.

4.4. REINITIALIZATION 33

Algebraic Newton method

This method utilizes an existing approximate distance field ¢ by solving, for
each grid point xq, the following equations

_ ¥(x) _
L(x) = Vi(x) x (x —x0) | = 0 (4.7)
to locate the unknown point x. The operator L(x) specifies that x should lie
on the zero distance curve and, additionally, that the vector pointing from the
original point x(to x should be parallel to the normal of the zero distance curve.
Since each grid point xq is only visited once the algorithmic complexity is of
order O(N).

The system (4.7) can either be solved with a full Newton scheme, as described
in Persson and Strang [80], or with the two step Newton scheme presented
by Chopp [15] where the second order derivatives of the Jacobian have been
omitted. The latter approach was tried but eventually dropped due to slow
convergence.

For our purposes the two dimensional version of the operator and Jacobian
will look like:

L(x) = { (@ — xo)fy(ai z@ — Y0)¥a } ’

J(X):a—L: |: (o wy+(‘x—x0)wry—(9_y0)¢mm]T
ox Yy —Vr — (Y — Y0)Puy + (¥ — 20)Pyy

The typical iteration employed is x**! = x* — §J~1(x*)L(x*), where § is a
relaxation parameter which can be adaptively adjusted to reduce the step size
and to keep the updates from diverging. After each iteration convergence is
checked by taking the residual norm of the operator L(x). If convergence has
been achieved the new distance is given by ¢(xg) = |x — Xo|.

The convergence properties of the algebraic Newton method depends on the
smoothness of the given approximate distance field 1. Should this field be non-
smooth then the method will fail to find the exact distance in regions where
the gradient is undefined (such as the corners of a square). Thus the algebraic
Newton method can not be seen as a truly general method to compute distance
functions for arbitrary distance fields, but the distance fields must belong to
class C?, that is have continuous second derivatives.

The fast marching method

The fast marching method originally devised by Sethian [88, 89] takes into
account the characteristics of the solution, knowing that information will only
propagate outward from the zero distance curve. Starting from there, each
grid point is updated in order of increasing distance in an upwind fashion.
Initialization of the fast marching algorithm is done with the following steps

e Tag all points on the cells intersecting the zero distance curve as Accepted,
and calculate exact distance values to these points.

e Tag all grid points that lie in the neighboring cells to the boundary points
as Trial, and compute initial approximate distance values to these.

34 CHAPTER 4. INTERFACE TRACKING

e All other points lie in the Unknown set and should be given distance
values that are bigger than the largest possible distance value.

After these initial steps the algorithm proceeds as follows

1. Find the point with the smallest distance value in the set of T'rial points.
2. Remove this point from the T'rial set and add it to the Accepted set.

3. Add all points of neighboring cells to the newly accepted point, that do
not belong to the Accepted set to the T'rial set. Compute new distance
values of all T'rial points that are neighbors to the newly accepted point.

4. Repeat the procedure until the T'rial set is empty.

The key to efficiency of fast marching is the realization of a heap structure
for the T'rial set. This enables the sorting and finding of the minimum distance
within the T'rial set (step 1) to be executed on average in O(logN) operations
[87]. Thus the algorithmic complexity of the fast marching method is of order
O(NlogN) [88]. Comparing the fast marching and fast sweeping methods one
sees that fast marching costs O(logN) operations more to sort out the real
propagation order, while fast sweeping assumes this is known in advance thus
escaping this additional cost.

Brute force redistancing

The simple brute force method consists of subdividing or approximating the
zero distance curve with linear line segments or just sampling points for an even
easier version. Then the distance for each grid point to all approximated zero
distance segments is computed, from which the minimum is taken as the new
distance. This algorithm is obviously of order O(N M) with N being the number
of grid points and M the number of zero distance segments. Thus if there are
many interface segments the algorithm could approach quadratic costs while on
the other hand for very few interface segments the algorithm is close to linear.

Hyperbolic PDE approach

The commonly used PDE based redistancing scheme uses the following time de-
pendent hyperbolic equation to redistance a given approximate distance function
o [98]
80 = 5(00)(1 - V9. (1.9
This equation should be solved to the stationary limit together with homoge-
neous Neumann boundary conditions and the initial condition ¢(x,0) = ¢o(x).
S(d) is a sign function introduced to propagate the information out from the
zero distance curve. One does not commonly apply the exact sign function but
a smoothed version, such as S(d) = d?/v/d? + €2 where ¢ is proportional to the
grid size or smoothing distance. This leads to a problem that the zero distance
curve can wander off its initial position, resulting in loss of mass. Additional
constraints can be introduced to minimize this effect such as done in a paper
by Sussman and Fatemi [96].

4.4. REINITIALIZATION 35
Equation (4.8) can also be rewritten as

B u-Vo=S(b), u= S(60) oy
taking on the guise of a normal, but nonlinear, convection and diffusion trans-
port problem. Since there are a vast number of methods and discretization
schemes to solve this problem (FDM, FEM, FVM, coupled with ENO methods,
etc.), all resulting in different accuracies and efficiencies, this method will not
be examined further.

Vo

4.4.2 Algorithmic components

Here the involved difference updates and the quadrilateral splitting used in the
fast marching and fast sweeping methods are described in more detail.

Unstructured difference update

Both the fast marching method and the fast sweeping method depend on the
ability to solve the Eikonal equation for a given grid point by using the distance
values from the surrounding points. While this is rather straightforward given
a strict Cartesian grid, it is not so easy if perturbed or unstructured grids are
used. To manage this let’s follow the general approach taken by Sethian and
Vladimirsky [90] which allows for both first and second order updates. Another
more geometrically oriented approach is taken by Kimmel et al. [56, 95], which
however only allows for updates of first order accuracy.

To construct an approximation to the Eikonal equation for a grid point x
using the surrounding points x;,- -+ , X, first define the unit directional vector
pointing from point x; to point x as P; = (x—x;)/||x—x;||. Then let v;(x) be the
value of the approximate directional derivative in direction P; and point x. Thus
one can write that v;(x) = P; - V¢(x), and taking all directions ¢, substituting
this into the Eikonal equation (4.6), and squaring gives the following

v(x)T(PPT) lv(x) = F(x)? (4.9)

where the matrix P is constructed by placing the directional vectors P; as its
rows and v(x) is simply a column vector with elements v;(x). Since P has to be
nonsingular the updates are restricted to come from simplices, that is triangles
in 2D and tetrahedra in 3D.

To solve equation (4.9) it is necessary to be able to write the directional
derivatives v;(x) as functions of the unknown distance ¢(x). First and second
order difference approximations are given as follows:

aom 900 _o(x)

' [l =il Tl =il

()02 _ 2¢(x) _ 2¢(x) _P.-V)
R e e

Both of these formulas permit the rewriting of v;(x) into the form v;(x) =
a;$(x)+b;. Thus the Eikonal equation is finally reduced to a quadratic equation
for the distance ¢(x) in the form

36 CHAPTER 4. INTERFACE TRACKING

(a”Qa)¢(x)? + (2a” Qb)¢(x) + (b" Qb) = F(x)*

where Q is defined as Q = (PPT)_1 and the vectors a and b by their respective
constituents a; and b;. This equation is then solved to find two roots of which
the largest one is taken as a possible new distance for ¢(x). This new distance
can only be accepted if the update comes from within the polygon spanned by
X, X;,...,X, and if the calculated distance value is smaller than the old one.
Thus the distance value is only updated if the vector components Qv(x) =
Q(ap(x) + b) are all positive and if ¢(x) < ¢°(x).

Nodal point update and simplex construction

Given a point, A, to update with the unstructured update in a quadrilateral
grid, the following procedure is applied:

e Loop over all quadrilaterals including grid point A as one of the defining
vertices.

e Construct virtual triangles from grid point A and the other grid points of
each quadrilateral. For an arbitrary quadrilateral with node numbering
A to D the virtual triangles will have node combinations A — B — C,
A—C—-—D,and A— B—-D.

e Apply the unstructured difference update to grid point A for each virtual
triangle in turn.

This splitting of the quadrilateral is quite effective to handle the imposed
stability constraint of the unstructured update, that is to only update from
acute triangles [56]. It is easy to see that the possibility to update point A from
an acute angle is always present. This eliminates or at least reduces the need
for splitting and unfolding of obtuse triangles described in references [56, 90].
The quadrilateral splitting procedure is illustrated in Figure 4.3.

C C C

A

Figure 4.3: Simplex construction from a quadrilateral, the updating of
point A comes from the grey triangle.

4.4. REINITIALIZATION 37

4.4.3 Numerical experiments

The described redistancing methods were applied to a practical benchmark test
case in order to highlight their strengths and weaknesses. The test code was
compiled with the Intel Fortran compiler and run on a 2.0 GHz Intel Core2Duo
processor. In the following tables the column CPU denotes the actual required
number of CPU seconds for a given method to converge for all nodes.

Test case

For the computational experiments a non trivial test case was chosen that both
reflects typical features of an engineering computation, and also allows for an an-

alytical solution. The test case is given by the following exact distance function
field

#(x) = min (2.25 —y VI (- 12— 0.4) :

The computational domain is a rectangle spanned by = = [-1, 1], y = [0, 3].
Both the zero distance curve and distance function field can be seen in Figure 4.4.
This distance field contains both singularities, where the gradient is essentially
undefined, and parts where the solution is smooth, giving a non-trivial test case.

Figure 4.4: Interface curve and distance function field for the test case.

The basic coarse Cartesian grid consists of 24 conforming quadrilaterals with
cell edge length h = 0.5, which correspond to grid level 1. Successive mesh levels
are created by uniform subdivision, that is simply by splitting each cell into four
new ones via its centroid coordinate. To test the unstructured capabilities of the
solution algorithms, stochastic perturbations were introduced corresponding to
10% and 25% of the approximate mean cell edge length » = 1/(v/N — 1), where
N is the number of nodes or vertices.

38 CHAPTER 4. INTERFACE TRACKING

Error estimation

The computed solution vectors for all grid points were measured against the
exact solutions in the following relative error norms

Eivzl |¢i,exact - ¢i,comput6d|

N
Zi:l |¢i,e?{:act|

N ‘ L 9 1/2
l2 error . ||€||2 _ Zi:l |¢z,§\:fract ¢z,computed| :
Ei:l |¢i,emact|2

max; |¢i,exact - ¢i,computed|
max; |¢i,emact|

ly error : llellr =

)

loo error : lle]loo =

The error norms were only computed for points that did not belong to the
cells intersecting the zero distance curve, or to points with a distance value
greater than a prescribed maximum (taken as 0.35 in these tests), thus preclud-
ing the influence of singularities. In addition, convergence rates for the various
methods in the different error norms were established as

||6l71|| hlfl
ROC:loglo(||el||)/lOgl()(T)

where [is the level of refinement and h the mean cell diameter.

Results

The fast marching method. Tables 4.1 and 4.2 show the required CPU time,
computed error norms and convergence orders for the fast marching method
with the 1st and 2nd order difference updates, respectively. Only the most in-
teresting results, from grid refinement levels 6 through 9 (corresponding to 24897
and 1575425 vertices), are included. It can be seen that the convergence rates
very accurately approach the expected values with successive grid refinements.
Also note that the grid distortion only causes a small reduction in accuracy,
thus not really affecting the convergence rates at all. Comparing the results
for the two difference update formulas one can see that the 2nd order approach
only consumed a fraction more CPU time while at the same time giving much
better results. The only reason not to use the 2nd order method is then if the
gradients of the distance function at the interface nodes are unavailable, since
they are required as additional initial values.

The fast sweeping method. Fast sweeping should ideally produce identical re-
sults to the marching method since it uses the same difference update formulas.
This is also what calculations on non perturbed grids show. In the tests the
same update order was used for distorted grids as for the purely Cartesian one.
Unfortunately as the grids become more and more distorted the update pro-
cedure often fails, since one cannot be sure that the sweeping order is correct
for an unstructured grid. The fast sweeping approach like standard iterative
methods, requires an increasing number of sweeps to converge as the grid size
decreases, which turned out to be particularly true for highly perturbed grids.
The marching method was in fact faster, even on fully regular and unperturbed
grids, and is therefore to be preferred over the sweeping method.

4.4. REINITIALIZATION 39

Level CPU llel]r ROC, llel]2 ROCs llelloo ROC+
No mesh perturbation
6 0.04 0.212:1072 0.92 0.455-1072 0.92 0.237-107! 0.64
7 0.17 0.109-102 0.96 0.235-1072 0.95 0.132-107¢ 0.84
8 0.74 0.553-1073 0.98 0.119-1072 0.98 0.710-102 0.90
9 3.38 0.280-1073 0.98 0.604-103 0.98 0.368-102 0.95
10% mesh perturbation
6 0.05 0.214.1072 0.94 0.455-1072 0.93 0.237-10! 0.66
7 020 0.110-102 096 0.235:1072 0.95 0.133-107! 0.83
8 0.88 0.559-1073 0.98 0.119-1072 0.98 0.710-1072 0.90
9 4.00 0.281-1073 0.99 0.602-1073 0.99 0.367-102 0.95
25% mesh perturbation
6 0.05 0.219-1072 0.92 0.451-102 0.92 0.235-107! 0.73
7 0.21 0.113:102 095 0.233-1072 0.95 0.132-107! 0.83
8 0.89 0.573-1073 0.98 0.118-1072 0.98 0.702-1072 0.91
9 4.07 0.289-1073 0.99 0.597-1073 0.99 0.362-102 0.96
Table 4.1: Results for redistancing by the fast marching method with
the 1st order difference update.
Level CPU el ROC, llel]2 ROCs llelloo ROC+
No mesh perturbation
6 0.05 0.569-10~* 1.95 0.122:10% 1.96 0.106-10~2 1.39
7 0.21 0.146-107% 1.96 0.314-1074 1.96 0.296-103 1.85
8 0.92 0.367-107° 1.99 0.786-107° 2.00 0.778-10~4 1.93
9 4.30 0.925-10° 1.99 0.198-107° 1.99 0.195-104 1.99
10% mesh perturbation
6 0.06 0.580-10~4 1.96 0.123-1073 1.97 0.108-1072 1.50
7 0.23 0.150-10~% 1.95 0.319-1074 1.95 0.301-1073 1.84
8 1.00 0.382-107° 1.97 0.803-107° 1.99 0.783-107* 1.94
9 4.79 0.967-1076 1.98 0.202-107° 1.99 0.196-10~* 2.00
25% mesh perturbation
6 0.06 0.636-10~% 1.92 0.130-1073 1.94 0.110-1072 1.68
7 0.25 0.168-1074 1.92 0.342-107* 1.93 0.311-1073 1.83
8 1.07 0.434-107° 1.95 0.878-107° 1.96 0.795-10~4 1.97
9 4.97 0.111-107° 1.97 0.223-107° 1.98 0.203-10~* 1.97
Table 4.2: Results for redistancing by the fast marching method with

the 2nd order difference update.

40 CHAPTER 4. INTERFACE TRACKING
Level CPU [le]]1 ROC, [le]]2 ROC; llelloo ROC«
No mesh perturbation
6 0.35 0.156-1073 1.92 0.202-103 1.96 0.225-1073 2.01
7 1.72 0.401-10~4 1.96 0.509-10~% 1.99 0.561-10~% 2.00
8 8.95 0.102-107* 1.98 0.128-10% 1.99 0.140-10~% 2.00
9 51.98 0.255-107° 2.00 0.320-107° 2.00 0.352-107° 2.00

10% mesh perturbation
6 0.43 0.152.1073 1.88 0.197-1073 1.93 0.263-1073 1.97
7 2.03 0.398:107* 1.94 0.504-10~* 1.97 0.651-107* 2.01
8 10.51 0.101-107* 1.98 0.127-10~% 1.99 0.162:10~* 2.00
9 58.97 0.251-107° 2.00 0.316-107° 2.00 0.405-107° 2.00
25% mesh perturbation
6 0.45 0.161-1073 1.88 0.212-1073 1.94 0.338-.1073 1.97
7 2.05 0.419-1074 1.94 0.547-10~% 1.95 0.104-1072 -
8 10.55 0.106-10~* 1.98 0.163-10~% 1.74 0.196-1072
9 59.82 0.343.107° 1.63 0.618-1073 ~ 0.325-107°

Table 4.3: Results for the algebraic Newton method.

Algebraic Newton method. Table 4.3 presents the results for the algebraic New-
ton redistancing scheme with an approximate distance function given by a bi-
linear polynomial on each quadrilateral cell (the standard Q' finite element
basis function). This distance field approximation, although a representative
choice since one rarely can rely on having a nice analytical approximate dis-
tance function in practice, was quite challenging to use since it only is piecewise
differentiable.

A convergence criteria of 1072 and a maximum number of nonlinear itera-
tions equal to 200 were used with the Newton method. The step size was also
restricted not to exceed a distance equal to the mean cell diameter on the coars-
est grid. The results show that the Newton method did not have any serious
problems for grids with no or small perturbations, and converged with an order
of 2. The approach did not however converge on the finer grids with 25% mesh
perturbation. Regarding the CPU time, the Newton method was more than 10
times more demanding than the fast marching method.

Brute force method. Table 4.4 shows the results for brute force redistancing
where the interface has been approximated by two straight line segments on each
cell. Here, as expected, the accuracy is virtually independent of grid distortion,
and the approach converges with an order of 2 in all norms. The required
CPU times scales very unfavorably, rendering the method unpractical for larger
calculations. The 10% increase in CPU time for the perturbed grids was due to
the fact that the interface intersected more cells, resulting in more line segments
than for the perfectly symmetric case.

4.4. REINITIALIZATION 41

Level CPU el ROC, llel]2 ROCs llelloo ROC+
No mesh perturbation
6 0.57 0.165-10~3 1.98 0.238-10~3 2.01 0.431-1073 2.01
7 4.61 0.414-10~* 1.99 0.579-10~4 2.04 0.108-1073 2.00
8 36.58 0.998-10~° 2.05 0.138-10~% 2.06 0.279-10~4 1.95
9 294.71 0.251-107° 1.99 0.345-107° 2.00 0.711-107° 1.97
10% mesh perturbation
6 0.65 0.169-10—3 1.98 0.245.10~3 2.01 0.505-10~3 2.02
7 5.01 0.422-10~* 2.01 0.591-10~* 2.05 0.121-1073 2.07
8 40.58 0.101-10~* 2.07 0.140-10~* 2.08 0.326-10~* 1.89
9 329.44 0.253-107° 1.99 0.350-107° 2.00 0.770-107° 2.08
25% mesh perturbation
6 0.65 0.180-1073 1.96 0.264-1073 1.99 0.629-10~3 2.04
7 5.06 0.446-10~* 2.01 0.637-10~* 2.05 0.144-1073 2.13
8 40.70 0.106-10~* 2.08 0.149-10~* 2.10 0.404-10~* 1.83
9 328.60 0.267-10~° 1.99 0.373-107° 2.00 0.905-107° 2.16

Table 4.4: Results for the brute force method with the interface approx-
imated by straight line segments.

4.4.4 Summary of reinitialization methods

From the tables it can clearly be seen that the fast marching method outperforms
all other methods with respect to speed. Accuracy wise, marching with the 2nd
order update is just as accurate as the other methods, and more notably is only
marginally more expensive than with the first order update. The only drawback
of the second order fast marching method is that one must compute and store
arrays of the first derivatives causing some increase in memory consumption.

The fast sweeping method proved both slower than the marching method
and was also quite unstable for highly perturbed grids. It is possible that these
deficiencies could be overcome by more precise definitions of the sweeping order,
but as it stands now this method is not competitive in a general context.

The algebraic Newton method is limited by the fact that it requires an
approximate distance function for it to work. It is not possible to use the al-
gorithm with a simple step function as initial distance field. The choice of an
approximate distance function therefore influences the end results and necessi-
tates careful tuning of the Newton scheme. For the considered benchmark, the
timings were about a factor of ten slower than for the fast marching method,
but this could vary somewhat depending on convergence criteria, the maximum
number of allowed iterations, and the choice of relaxation parameter.

The last examined method, redistancing via brute force, does produce consis-
tently good results for general grids but the required computational effort scales
unfavorably for it to be generally interesting. The method could possibly prove
useful to redistance a limited number of cells, such as the cells intersecting the
initial zero distance curve. Brute force redistancing also shares a deficiency with
the algebraic Newton method, that it can only produce the Euclidean distance,
which will not be correct unless the domain is simply connected.

42 CHAPTER 4. INTERFACE TRACKING

4.5 Normal and curvature field reconstruction

Geometric properties such as normals and curvature can easily be recovered
globally from the level set function. Direct differentiation of the level set function
¢ gives

Ve K= n

Vel '

Although the finite element method supports this approach, it is not the best
alternative since accuracy is lost when differentiating ¢. The recovered normals
will also be discontinuous at the cell edges if C°-functions (such as Q; elements)
are used, which causes ambiguous evaluations necessitating some form of aver-
aging procedure. Furthermore, first order basis functions are not two times
differentiable and thus some other approach must be found to reconstruct the
curvature.

More accurate approaches include reconstruction via L2?-projection and so
called patch recovery techniques. The L?-projection approach minimizes the
following variational forms

ﬁ:

M(l)m’h = Bi(b}m M(l)ﬁh = — Z(Bini,h)a i = 1, ..o n

i

where My is the (possibly lumped) mass matrix, n;; the recovered normal
vector in direction 7, and B; the gradient matrix B; = f %vg dQ). An under-
score h indicates the discrete analog of the continuous variable. Once recovered,
the discrete normals and curvature now live in the corresponding finite element
ansatz space (in our case ()1 so they are continuous) and can be evaluated
accordingly. If the mass matrix is lumped the inversion is trivial, otherwise
appropriate solvers have to be applied.

The main idea behind patch based gradient recovery techniques is to use
information available in the surrounding cells to construct a more accurate rep-
resentation of the gradients. In the following the ZZ-patch recovery technique
(from Zienkiewicz and Zhu [119, 120]) and the PPR-technique (short for poly-
nomial preserving recovery [118]) will be explored. The idea of the ZZ-technique
is to evaluate the gradients in superconvergent points of the cells neighboring
the node of interest, after which a local least-squares fitting is applied. This
construction has been shown to achieve better convergence on regular grids
than otherwise possible [119]. The PPR-technique instead constructs a high
order polynomial around the evaluation point from which the gradients can be
recovered in a robust way.

The described gradient recovery techniques are applied to a test problem
in order to assess the accuracy of the resulting normal and curvature fields.
The test configuration considers a circle with radius 0.25 centered in a 2 x 2
domain. Errors can easily be calculated since the analytic normal and curvature
fields around a circle are known. Figure 4.5(a) shows the maximum norm of
the error of the normal reconstruction, which was evaluated pointwise along
the circumference of the circle. The computations were performed for regular
refinements of a perfect tensor product grid, and it is clear that all methods
yield 2nd order convergence. However, when the grid nodes are stochastically
perturbed by 20% one can see some clear differences (Figure 4.5(b)). The direct
differentiation (DIFF) and L2-projection (L2) methods now only converges with

4.6. MASS CONSERVATION 43

1st order accuracy. The ZZ-technique converges with and order of 2 for the
coarser grids but decreases to 1st order on as the grids are refined. The PPR
approach is as robust as before achieving full 2nd order convergence.

i i i i
10' 10 10° 10' 10 10°
1/h 1/h

(a) No perturbation (b) 20% perturbation

Figure 4.5: Errors in normal reconstruction on a tensor product grid
with and without 20% nodal perturbation.

The curvature is recovered in a 2nd step using the previously computed
normals. In this way it is essential that the normals are recovered accurately
in order to get a precise representation of the curvature. Figure 4.6(a) shows
the results for the tensor product grids. Like for the normals, full 2nd order
convergence is achieved. This is not so surprising since the recovery methods
are the same, and the used grids are computationally favorable. The absolute
values of the curvature errors are a magnitude higher than for the normals,
but this is to be expected since some accuracy must be lost in the additional
reconstruction step. When the grids are perturbed on the other hand the results
are completely different (Figure 4.6(b)). Now the direct differentiation (DIFF)
and L2-projection (L2) methods completely stop converging (note that their
respective curves overlap each other). The ZZ-patch recovery shows a quite low
initial error but also stops converging as the grid is refined. The only method
that converges is the PPR-technique although it shows the largest error on the
coarsest grid. Clearly, if one works with anything but perfectly regular grids,
the PPR-technique, although expensive, is the safest choice giving at least 1st
order convergence in the curvature reconstruction.

4.6 Mass conservation

The last topic to examine within the field of interface tracking is mass con-
servation. The employed level set method is neither locally nor globally mass
conserving. The amount of mass lost (or gained) during the corse of a simula-
tion depends on many factors such as mesh density, time step, reinitialization
method, and the scheme chosen to convect the level set field. Decreasing the
mesh size and time steps sizes are two obvious ways to decrease mass loss. How-
ever, if this is not feasible (for example due to computational requirements) or
if the problem in question calls for absolute mass conservation, an additional
postprocessing step is needed.

44 CHAPTER 4. INTERFACE TRACKING

& 07 i:|—e—DiFF i ‘ &
‘ ; o ‘ ‘
| —w—2zz
—&— PPR

i i i i
10" 10° 10° 10" 10° 10°
1h 1h

(a) No perturbation (b) 20% perturbation

Figure 4.6: Errors in curvature reconstruction on a tensor product grid
with and without 20% nodal perturbation.

In [94] Smolianski proposed a global mass correction step for the level set
method which consists of lowering or raising the level set curve by addition of
a suitable constant, that is

" (x) = ¢(x) + Cme-

The mass correction constant defined as ¢pe = (Arey — A(t))/lr, where A,ey
is the reference mass/area, A(t) the calculated mass/area, and I the length
or circumference of the interface. This correction is to be applied after each
time step and introduces to a very small change in the level set function which
effectively eliminates accumulation of mass errors in time. An improvement of
this approach was presented by Mut et al. [67] which applies this correction
in a weighted sense so that nodes/cells with more or less mass are corrected
appropriately. In this way the impact of the total mass correction is controlled
better.

There are two other options to improve mass conservation worth mentioning.
Firstly, one can, like for the phase field method introduce a Lagrange multiplier,
which should enforce mass conservation in the equations themselves [29]. This
is quite attractive from a mathematical point of view since the correction isn’t
as artificially imposed as for the method described above. Alternatively, one
can employ the conservative level set method, by Olsson and Kreiss [73, 74],
in which the distance function is substituted with a smoothed Heaviside like
function. Additional source terms are also introduced to preserve the width of
the smoothing region, and thus implicitly preserving the mass.

Chapter

Surface tension effects

As discussed earlier, surface tension effects arise due to the internal attraction
of the sparsely distributed fluid molecules near an interface [114]. In contrast to
the main bulk of the fluid, where the attractive forces are counterbalanced by
other surrounding molecules, this results in net forces which work to minimize
the corresponding areas or volumes of the involved interfaces. The magnitude of
this effect will thus depend on the molecular composition of the involved fluids
and also the shape of the interfaces.

In multiphase flow applications these surface tension or capillary effects can
usually either be completely ignored, for example in large scale wave phenom-
ena, or they have to be resolved very accurately, for example in small scale
experiments involving bubbles and drops. In the former case there is not much
to discuss, but in the latter some time and effort must be devoted to accurately
and efficiently include these effects into the discrete systems.

5.1 Surface tension model

The surface tension forces can be mathematically modeled as interfacial bound-
ary conditions. Assuming that no mass transfer between the fluid phases occur
the following conditions apply at the d — 1 dimensional interface I' C 2

][p =0, —[-pI+u(Vu+ VuT)HF ‘N = oK.

Here again 1 denotes the interface normal and [A]| is the jump of property A
across the interface. These conditions imply continuity of the velocity across
the interface and also a jump in the normal stress proportional to the coefficient
of surface tension o and the curvature of the interface .

To apply these boundary conditions directly to the interfaces is often im-
practical. Fortunately, they can also be rewritten as source terms

fst = okno (T, x) (5.1)

where §(I",x) is a Dirac delta function localizing the surface tension force to
the interface between the different fluids. These additional source terms arise
naturally when using a finite element discretization but have to be implemented

46 CHAPTER 5. SURFACE TENSION EFFECTS

approximately when using finite differences or volumes. The finite difference
counterpart is often called the immersed boundary method and has its roots in
the early work on blood flow by Peskin [81]. This was later extended to finite
volume/volume of fluid (VOF) calculations by Brackbill, Kothe, and Zemach
[9] who dubbed it the continuum surface force method (CSF). The two latter
approaches employ a regularization of the interface surface integrals to transform
them to volume integrals. A significant advantage of this approach is that the
evaluation of the surface tension forces may be done fully implicit in space by
using a suitable regularization method, meaning that the interfaces never have
to be reconstructed explicitly.

5.2 Explicit time integration
The most common way of discretizing the surface tension forces (5.1) in time is
to use a fully explicit approach. The involved quantities are thus evaluated for

the interface at the previous time step I'” and added to the right hand side as
a source term. In the finite element context this is equivalent to

fs t

/ ok™n" - vdl (5.2)
= /J/{"ﬁ"&(f‘",x) v dQ (5.3)
Q

where a superscript n denotes the old time level and v are the test functions.
A proper choice of time step size is not always clear. For efficiency reasons
it is desirable to use a large time step, but if the phenomena under study occur
very rapidly or involve high frequency fluctuations then the time step size must
be correspondingly reduced. With a little reasoning it is possible to derive some
upper bounds on the size of the time steps which should not be exceeded.
First consider the involved physical effects. It is desirable to achieve a bal-
ance between them so that neither will dominate and impose higher require-
ments on the temporal resolution. In the case of two-phase flows the capillary
forces should be balanced against the viscous ones which, with help of the non-
dimensional capillary number, can be expressed as
L ~ 1 = AN RS &
o Atearg o
Here U and L denote characteristic velocity and length scales, respectively,
and At°P is our resulting physical capillary time scale.
Using the explicit form of the surface tension forces, equation (5.2) or (5.3),
will unfortunately lead to the following discrete time step restriction [9]

Ca

AL
h

where ¢““? is the phase velocity of the capillary waves given by

<1 (5.4)

5.3. SEMI-IMPLICIT TIME INTEGRATION 47

The largest magnitude of the curvature x that can be resolved is inversely pro-
portional to the size h of the cells containing an interface segment. Using this
and inserting (5.5) in (5.4) yields the discrete numerical time step criterion

3
A < ([P0 (5.6)
o

This constraint is very restrictive for high mesh densities (scaling like 73/2) and
also contra-productive to the requirement to resolve the discontinuities very
accurately (with for example some form of local grid adaption). A small mesh
size in the interface regions will thus impose a more or less global time step
constraint severely limiting computational efficiency (any efficiency gains from
locally adapting the grid might possibly be completely nullified by this time step
restriction). In the following, a method circumventing this limitation, while at
the same time preserving the scheme fully implicit with respect to all interfaces,
will be examined.

5.3 Semi-implicit time integration

When working with the finite element method it is possible to employ partial in-
tegration to transfer the explicit calculation of the curvature to the test function
space. This methodology was introduced by Dziuk [24] and later applied to flow
calculations in the Arbitrary Eulerian Lagrangian (ALE) framework by Bénsch
and coworkers [3, 4, 5], Sashikumaar and Tobiska [37], and Matthies [64]. Some
work has also been done in the context of FEulerian fixed grids; with level sets
by Grof et al. [41] and with front tracking by Minev and coworkers [66].

In the following, the new variation of implementing surface tension forces by
Hysing [50] is presented. The approach combines the ideas of regularizing the
surface integrals and implementing them semi-implicitly in time. This allows the
capillary time step restriction to be circumvented while never explicitly having
to reconstruct the interfaces, which always has been done previously. The first
step in deriving this method is to introduce some definitions from differential
geometry.

Definition 1 The tangential gradient of a function f, which is differentiable in
an open neighborhood of ', is defined by

Vf(z) = Vf(z) - (a(z) - Vf(x))h(z), =zel.
Here V denotes the usual gradient in R?.

Definition 2 If f is two times differentiable in a neighborhood of T', then the
Laplace-Beltrami operator of f is defined as

Af(z) =Y - (Yf(z)), =xzel. (5.7)
Lemma 1 A theorem of differential geometry now states that

Ax|r = ki (5.8)

where Kk is the mean curvature and X|p is the identity mapping on I'. Proof of
this is for example given in Gallot et al. [34].

48 CHAPTER 5. SURFACE TENSION EFFECTS

To transform the surface tension term (5.1) to its variational equivalent,
which is the basis of a finite element discretization, multiply it with a suitably
chosen test function space v and integrate over €, which yields

fo = / okn-v o(T,x)dQ = / okn - vdl. (5.9)
Q T

Here the delta function has been embedded in the integral to simplify the expres-
sions. Using relations (5.7) and (5.8) with equation (5.9) and partial integration
gives the following

fg = /O’Iifl'VdF = /O’(éXh")'VdF
r r
= —/JZX|F~ZVdP+/087X|p-vd'y (5.10)
r bl

where the boundary term 0,x|r = 1, is acting on the tangent line v, given by
the intersection between the interface I' and the boundary of €2, in the direction
tangential to the interface. This term will only appear if the integration path
does not posses a closed shape and v is non-vanishing on ~.

Following the work of Bénsch [3, 4] one can reduce the awkward time step
restriction (5.6) by using a semi-implicit time discretization instead. This is
accomplished by writing the new interface position as a function of the old
position

(x|r)" " = (x|r)" + Atu™ ! (5.11)

where At = t"t1 — " is the time step and u™*! is the velocity field at the new
time level. This results in the following representation of the surface tension
effects

n

f, = —/ JZ(X|F)"-ZVdP—At/ oVu"™ . Vvdl. (5.12)

The resulting new term is linear with respect to the velocity at time level n + 1
and can thus simply be assembled as a positive definite contribution to the
iteration matrix. This approach is simpler to implement than the earlier work
on implicit surface tension by Williams and Hochstein [45], which essentially
required that the normals and curvature were evaluated implicitly as

on\" Ok on\"
antl o an i ntl o ~ K" — = .
n ~n +At(8t) , K K +At(8t) K AtV (875)

The clear advantage that the semi-implicit discretization (5.12) has over a
purely explicit one is that the additional term represents a diffusion operator
working in the tangential direction of I". This results in a more physical im-
plementation of capillary effects since an increased coefficient of surface tension
now generates more interface diffusion, that is a stiffer system, instead of a
larger destabilizing source term.

5.4. FULLY IMPLICIT SURFACE TENSION FORCE 49

5.4 Fully implicit surface tension force

Having arrived at the semi-implicit expression in time for the surface tension
force it would now be desirable to also combine it with the CSF framework.
This would enable a fully implicit representation of the interfaces in space while
at the same time retaining the stabilizing effect. To achieve this one must first
go back to equations (5.9) and (5.10) but now keep the delta function in the
expressions, that is

fao = /Qmiﬁ -v (T, x) dQ = /Qo(éxhﬂ) - (vo(T, x)) d2
= —/ oVx|r-V(vo([,x))dQY = —/ oVx|r - Vv §(I, x)dS,
Q Q

where it has been assumed that 6(T',x) is constant in the tangential direction.
Applying the semi-implicit time integration (5.11) now gives

fo = —/ oV (x|r)" - ¥Yv o(I'", x) dQ) — At/ oVu" . Vv §(T", x) dS.
Q Q
The last step is to substitute the singular Dirac delta function § with its reg-
ularized counterpart de, after which one arrives at the final expression for the
surface tension force

£ = —/ o 0e(I™,x) V(X|r)" - VvdQ

« (5.13)

— At/ o 0e(T",x)) Vu-VvdQ
Q

where X|r is the extension of the interface over the support of de with width 2e.

Assuming that it is possible to find an implicit way to construct the regular-
ized delta function in equation (5.13), then the surface tension implementation
will be fully implicit with respect to any interfaces and should not be bounded
by the capillary time step restriction (5.6).

5.5 Regularization

The construction of the regularized Dirac delta function follows the same ap-
proach as for the regularization of the Heaviside function in Chapter 3. Exis-
tence of a distance function significantly simplifies the regularization procedure,
and with d(T", x) giving the minimum signed distance from x to I', one can write
the delta function as

§(T,x) = 6(d(T, x)).

The regularized and continuous delta function §. can now be defined as

1
_ | celz/e) |x|<e = mh,
Oc(z) = { 0 || > e = mh,

50 CHAPTER 5. SURFACE TENSION EFFECTS

where h is the mesh spacing, which together with the constant m defines the
support € of the regularized delta function, and ¢ is a characteristic function
determining the kernel shape. There are several possible choices for the kernel
function of which some common choices are:

e The linear hat function:

P& =1~

e The cosine approximation:
1 €
P*(€) = 5(1 + 003(7))

e Higher order polynomials, for example:

¥ (€) = %(3 — 2067 + 42¢* — 36£° + 11¢°)

Figure 5.1 shows a graphical representation of the kernel function for a fixed
width 2e. For a more in depth analysis of the ensuing errors when using this
regularization approach the reader is referred the extensive work of Tornberg
et al. [25, 109].

2

(c) de(¥?)

Figure 5.1: Three examples of kernel functions for regularization of a
Dirac delta function.

5.6 Numerical tests

In this section results from computational simulations are presented which ex-
amine the performance of the proposed surface tension implementation variant
(5.13), which in the following is labeled CSF-LBI. The new approach is com-
pared to the standard explicit method denoted by CSF (5.3).

5.6.1 Static bubble

This test case models a perfectly stationary circular bubble at equilibrium. Ac-
cording to the Laplace-Young law the pressure inside the bubble is equal to
Din = Pout + 0/r, where r is the radius of the bubble. Since everything is
stationary the velocity should be zero everywhere, however, due to certain im-
balances in the numerical method spurious velocity currents will be generated.

5.6. NUMERICAL TESTS o1

The test configuration consisted of a bubble with radius » = 0.25 positioned
in the center of a unit square. The coefficient of surface tension and the viscosi-
ties were set to unity while the densities were given a magnitude of 10%, which
corresponds to a Laplace number of La = (2r)opu=2 = 5-10%. A fixed time
step of At = 0.01 was used and the simulations were run until ¢ = 125.

Tables 5.1 and 5.2 show the error of the dimensionless velocity for the differ-
ent methods in the [* and I! norms, defined as max; [u;u/o| and + Efvzl |u;p/ol,
where N is the number of nodes. The new method proved somewhat more accu-
rate than the standard CSF method which can be expected due to the additional
diffusion in the interface region.

1/h - QiQF" Qg™ 1!

20 7.4-1073 6.9-1073

40 3.9-1073 3.7-1073

80 2.0-1073 1.8-1073

160 9.8-10% 8.1-10~4
ROC ~ 1.0 1.0

Table 5.1: Errors and convergence rates (ROC) in the discrete [*° norm
for the non-dimensional velocity uu/o.

1/h QlQ(()JSF QngSF—LBI

20 6.7-107% 5.8-107%

40 1.9-107* 1.6-10%

80 5.2-107° 4.1-10-5

160 1.4-107° 1.0-107°
ROC ~ 1.9 2.0

Table 5.2: Errors and convergence rates (ROC) in the discrete [* norm
for the non-dimensional velocity uu/o.

Table 5.3 shows how well the pressure field fulfilled the Laplace-Young law
in both absolute and relative error norms. The results indicate that the Q1Qo
approach with the standard CSF method does not perform equally well to the
new CSF-LBI method. The error for the new approach was about a factor
of 3 smaller than with the explicit implementation. Figure 5.2 shows pressure
cut-lines at y = 0.5 for various levels of grid refinement and as can be seen the
pressure approximation is quite sharp and non oscillating for both CSF methods
even on fairly coarse grids.

52 CHAPTER 5. SURFACE TENSION EFFECTS

1/h QngSF QlQ(()JSFfLBI
|pin — Pout — O'/T|

20 4.8-1072 6.1-1073

40 1.2-107%2 35-1073

80 3.1-1073 1.0-1073

160 7.8-107% 2.7-1074
‘pin*pout*a/rl .
e £ e LU

20 1.2% 0.15%

40 0.31% 0.088%

80 0.078% 0.026%

160 0.020% 0.0066%

Table 5.3: Absolute (top) and relative (bottom) errors in the Laplace-
Young law.

35k
E A a——
°F "’ \"'\.‘-\
25F N 1
E 1/
Bk
S
osf
E I il
°F i i}
F / by
L. | - 1 | T IR
! 0.2 0.4 0.6 0.8 1
X
(a) CSF (b) CSF-LBI

Figure 5.2: Pressure cut-line (y = 0.5) for four different mesh sizes.

5.6.2 Oscillating bubble

In the second example the previous test configuration is made a little more
difficult. The circle is in this case initially perturbed to an elliptical shape by
scaling the semi-axes a factor 1.25 in the a-direction and 0.8 in the y-direction.
The ellipse or bubble consists of the same fluid as in the surrounding unit square
cavity. The fluid has a density of 10%, viscosity 1, and a coefficient of surface
tension equal to 0.1. Simulations for various levels of refinement of the initial
5x5 mesh were performed with a fixed time step At = 5 until ¢ = 1000. At the
final time the bubble is expected to have reached an equilibrium state, that is
a stable circular shape. Theoretically the capillary time step restriction (5.6)

5.6. NUMERICAL TESTS 53

is already exceeded on the second mesh refinement (L3), as can be seen from
Table 5.4, and instabilities can thus be expected to appear on this and finer
meshes.

Mesh level L1 L2 L3 L4 L5 L6 L7
AP 113 4.0 1.4 05 0.17 0.06 0.02

Table 5.4: Capillary time step restriction for the standard explicit CSF
method applied to the oscillating bubble example.

Figure 5.3 shows the results for the standard CSF method at six representa-
tive times for levels 3-6. It is apparent that numerical oscillations start to appear
and pollute the solution as the mesh is refined. The new CSF-LBI method on
the other hand proved to be very stable, and as can be seen from Figure 5.4
only the very finest levels (at 80-250 times A¢;*") show the onset of oscillations.

s OO O (PO O 'O
OO O O [1O
O CHEE e e
IO OO OO
<O D LD [PO

Figure 5.3: Evolution of an oscillating bubble with the standard explicit
CSF method. Refinement levels 3-7.

54 CHAPTER 5. SURFACE TENSION EFFECTS

= OO O[O O FO
<O O O OO O
= OO0 O 0 OO
« OO OO OO0
OO OO O C

Figure 5.4: Evolution of an oscillating bubble with the new CSF-LBI
method. Refinement levels 3-7.

5.6.3 Rising bubble

The final test example concerns a single bubble rising in a heavier fluid. The
bubble is given an initial radius of 7o = 0.2 and is placed at [0.5;0.5] in a
rectangular domain with dimensions [0; 1] x [0; 2]. No-slip conditions are applied
on the horizontal walls and slip conditions on the vertical ones. Initially both
fluids are at rest having a velocity of zero everywhere.

The physical parameters for the simulation are listed in Table 5.5 and cor-
respond to a Reynolds number Re = (2r0)3/29;/2p1uf1 = 71.6 and Eotvos
number Fo = 4pyg,rdo~" = 2.56. According to Clift et al. [19] such a bubble
is expected to assume an ellipsoidal shape. This is valid for fully three dimen-
sional bubbles but not necessarily for the considered two dimensional one, it
should however give an indication of the final shape that might be found. The
computations were performed on a single 80 x 160 mesh where the time step
At was varied between 0.0125 and 4 to test the stabilizing capabilities of the
new surface tension implementation method. From (5.6) the estimate of the
capillary time step restriction is At;*” = 0.056 indicating possible problems for
the larger time step sizes.

5.6. NUMERICAL TESTS 95

p1 (liquid) 10%
p2 (gas) 10°
w1 (liquid) 1
p2 (gas) 1

gy 810~
o 0.5

Table 5.5: Physical parameters used in the rising bubble example.

Figure 5.5 shows the results for the standard CSF method at time steps
At = 0.5 and At = 1.0, where it can be seen that severe oscillations pollute the
solution with the larger time step. Further increases in time step size resulted
in a complete breakdown of the solution process. It is interesting to note that
it was still possible to perform the simulation although the capillary time step
restriction was exceeded by almost a factor of ten. Figure 5.6 in contrast shows
the results for the new CSF-LBI method where both time steps yielded the same
qualitative solution. The method did in fact even work quite well up to At = 2.0,
after which there also appeared too much distortion in the interface contour.
Table 5.6 lists the averaged number of nonlinear iterations and linear multigrid
steps for velocity and pressure with time step sizes At = 0.5 and At = 0.25. The
new CSF-LBI method resulted in a slight decrease in the number of nonlinear
iterations and multigrid steps while solving the momentum equations. The
number of multigrid steps required to solve the pressure Poisson equation was
however unaffected.

At 0.5 0.25
CSF CSF-LBI CSF CSF-LBI
ANNL 4.1 3.6 3 2.6
AMGU 5.2 4.8 3 2.7
AMGP 53 5.2 4.6 4.6

Table 5.6: Average number of nonlinear iterations (ANNL), and lin-
ear multigrid steps for solving the velocity (AMGU) and the
pressure (AMGP), for the rising bubble test case with time
steps At = 0.5 and At = 0.25.

56

CHAPTER 5. SURFACE TENSION EFFECTS

15 30 45 60 75

Figure 5.5: Evolution of a rising bubble with the standard CSF method
with time steps At = 0.5 and At = 1.0.

15 30 45 60 75

Figure 5.6: Evolution of a rising bubble with the new CSF-LBI method
with time steps At = 0.5 and At = 1.0.

0.5

At =

1.0

At

At =0.5

At =1.0

Chapter

Benchmarking

From Chapters 2-5 it is clear that numerical simulation of incompressible inter-
facial flows, such as two-phase flows with immiscible fluids, is a very complex
matter involving many separate parts which must work together. Each year a
significant amount of effort is invested by the research community in devising
improved schemes, algorithms, and methods resulting in numerous publications
on the topic. Considering this, it is perhaps somewhat surprising that no rigor-
ous, that is quantitative, numerical benchmark configuration has been proposed
for validation and comparison of interfacial flow codes to this date. This is in
contrast to other fields of computational fluid dynamics for which dedicated
benchmarks have been presented and accepted by the general CFD community
[18, 46, 54, 68, 107, 108].

The most common approach to validate interfacial flow codes is to examine
the “picture norm”, that is qualitatively comparing the interface shape to either
experiments or other numerical simulations. One frequently used test case for
validation of two-phase flow codes is the classical dam break experiment by
Martin and Moyce [65]. Although the dam break benchmark can be helpful
for rough calibration in the early stages of code development, the somewhat
imprecise experimental data and negligible influence of surface tension effects
limits its subsequent use. When simulating bubbles and drops it is common to
compare the computed bubble shapes to the experimentally established Clift,
Grace, and Weber diagrams [19]. However, one should be careful not to only
compare with experiments, since even if perfect agreement is reached one still
cannot be certain that the solutions have satisfied the Navier-Stokes equations.
Taking this into consideration it would be preferable to validate a code with well
defined numerical benchmarks so that one can be sure that at least the posed
mathematical problem is solved correctly.

Numerical benchmarks are on the other hand only helpful if they can be used
for quantitative comparisons, mere visual inspection is rarely if ever enough to
draw serious conclusions. To illustrate this, consider the bubble shapes shown
in Figure 6.1. These shapes are calculated by six different codes with identical
problem formulations. They should thus ideally give six identical solutions.
Sadly this is clearly not the case. The shapes are quite similar but it is not
possible to tell which solutions, if any, are really correct. In order to be able

58 CHAPTER 6. BENCHMARKING

to do this one must leave the “picture norm” behind and instead use some
rigid metrics with which convergence directly can be measured. This shall be
addressed in the following.

((A

CFX Comsol Fluent

FreeLIFE MooNMD TP2D

Figure 6.1: Simulation of a rising bubble with six different codes.

The rest of this chapter is devoted to the establishment of two new numerical
benchmark configurations for quantitative comparison and validation of interfa-
cial flow codes. Relevant benchmark quantities are defined to directly measure
topological parameters, such as interface deformation, and also indirect ones,
such as velocity measures. The task of the benchmarks is to track the evolution
of an initially circular two-dimensional bubble rising in a liquid column. This
configuration is simple enough to compute accurately yet also allows for very
complex topology change, giving the interface tracking techniques of today an
adequate challenge.

6.1. DEFINITION OF TEST CASES 59

6.1 Definition of test cases

This section describes the governing equations, and defines the test cases and
benchmark quantities to be used for validation of interfacial flow codes.

6.1.1 Configuration

The benchmarks consider isothermal, incompressible flows of immiscible fluids
where the conservation of momentum and mass is described by the Navier-
Stokes equations (2.4) and (2.5). Surface tension effects are important and may
not be neglected. Their incorporation is up to the participants, and any of the
methods described in Chapter 5 could for example be used.

The initial configuration, shown in Figure 6.2, is identical for both test cases
and consists of a circular bubble of radius rop = 0.25 centered at [0.5,0.5] in a
[1 x 2] rectangular domain. The density of the bubble is smaller than that of
the surrounding fluid (p2 < p1) so that it will rise upwards. No-slip boundary
conditions (u = 0) are used at the top and bottom boundaries, whereas the free
slip condition (A-u=0,t A (u(Vu+ Vul)) =0, t - the tangential vector) is
imposed on the vertical walls. The benchmarks are restricted to two dimensions
since both computational complexity and time is greatly reduced.

u=v=0
u=0 u=0
fluid 1
~
Y 05 u=v=0
X

- |

Figure 6.2: Initial configuration and boundary conditions.

6.1.2 Classification

The dimensionless Reynolds and E6tvos numbers are here specificly defined to
relate to bubbles (and drops) as

2 3/2 4 2

oo PWACHY L dpigrd

H1 o
where a subscript 1 refers to the surrounding heavier fluid and 2 to the lighter
fluid of the bubble. Moreover, rq is the initial radius of the bubble, and g is the
gravitational constant. The density ratio p1/p2 and viscosity ratio uq /s finally
help to fully classify the test cases.

60 CHAPTER 6. BENCHMARKING

6.1.3 Parameters

Table 6.1 lists the fluid and physical parameters which specify the test cases.
The evolution of the bubbles should be tracked for 3 time units during which the
defined benchmark quantities should be measured. The first test case models
a rising bubble with Re = 35, Fo = 10, and both density and viscosity ratios
equal to 10. According to the experimental studies by Clift et al. [19] such a
bubble will end up in the ellipsoidal regime (see Figure 2.3). Assuming that this
also is true for a two-dimensional bubble, it would mean that surface tension
effects are strong enough to hold the bubble together and thus one should not
expect any break up to occur in this test case.

Test Case pL P2 1 Mo g o Re FEo pi/p2 p1/pe

1 1000 100 10 1 098 245 35 10 10 10
2 1000 1 10 0.1 098 196 35 125 1000 100

Table 6.1: Physical parameters and dimensionless numbers defining the
benchmark test cases.

The second and more challenging test case models a rising bubble with Re =
35, Fo = 125, and with large density and viscosity ratios (1000 and 100). This
bubble lies somewhere between the skirted and dimpled ellipsoidal-cap regimes
indicating that break up can possibly occur [19], which will present additional
challenges to the different interface tracking algorithms.

6.1.4 Benchmark quantities

Visual comparison of the results, and in particular visualization of the bub-
ble interface, is one obvious way to compare simulations. However, this does
not allow us to rigorously determine how accurate our simulations really are
and, perhaps more interestingly, how much numerical effort is required to attain
a certain accuracy? The following quantities, which will be used to assist in
describing the temporal evolution of the bubbles quantitatively, are therefore
introduced.

Point Quantities. Positions of various points can be used to track the translation
of bubbles. It is common to use the centroid or center of mass [16, 17, 71, 99],

defined by
Jo, x dz

- szl dx

where €25 denotes the region that the bubble occupies. Other points could be
the absolute top or bottom of a bubble [16].

Xc - (xcy yc)

Mass/Area. An obvious quantity to measure is mass/area conservation which
ideally should be preserved perfectly. This is one of the most common measures
that is used in validation of interfacial flow algorithms. Although it does give
information regarding the potential accuracy of the simulation, it is not suffi-
cient to determine whether the result is converged or even physically correct.

6.1. DEFINITION OF TEST CASES 61

Circularity. The ”degree of circularity”, introduced by Wadell [113], can in two
dimensions be defined as

¢ = P, perimeter of area-equivalent circle wd,
P perimeter of bubble P

Here, P, denotes the perimeter or circumference of a circle with diameter d,
which has an area equal to that of a bubble with perimeter P,. For a perfectly
circular bubble or drop the circularity will be equal to unity and decrease as the
bubble is deformed.

Rise Velocity. The mean velocity with which a bubble is rising or moving is
a particularly interesting quantity since it not only measures how the interface
tracking algorithm behaves but also the quality of the overall solution. The
mean bubble velocity is defined as

fQ2 u dx

P -
fQ21dx

where (5 again denotes the region that the bubble occupies. A variant of this
is simply to use the velocity at the centroid of the bubble u(X,.). The velocity
component in the direction opposite to the gravity vector is usually denoted as
rise velocity V., for which the stationary limit is called terminal velocity. Both
rise and terminal velocities are for example used in references [17, 97].

6.1.5 Error quantification

The temporal evolution of the computed benchmark quantities can be measured
against suitable reference solutions to establish the following relative error norms

NTS
_ Doimi |Gtrer — @l

ly error : llellr = TS ,
=1 qt.res]
NTS 2\ /2
I error : llelle = <Zt—£VT|‘SIt,ref 62]t|) 7
=1 |Gtrefl

maxy |qeref — Ge
maxy [t ref|

loo error : lle]loo =

where ¢; is the temporal evolution of quantity gq.

The solution computed on the finest grid with the smallest time step is usu-
ally taken as a reference solution g; .. Interpolation should be appropriately
applied if there are more time steps or sample points (NTS) for the reference
solution than the solutions ¢; for which the error norms should be computed.

With the relative errors established and CPU times measured it is then easy
to see how much effort is required to establish a certain accuracy. Additionally,
convergence rates for the quantities can also be computed as

-1 -1
ROC = loglo(H) /loglo(hT)

where [is the grid level and h the mean cell edge length.

62 CHAPTER 6. BENCHMARKING

6.2 Initial benchmark studies

Benchmarking and validation efforts have been initiated by the author with
the aim of producing grid independent reference solutions for the proposed test
cases. Extensive initial studies have also been carried out by the three re-
search groups listed in Table 6.2, for which corresponding methods and codes
are described in this section. As shall be seen in the following, the study found
very good agreement for the first test case while the second proved significantly
more challenging. The benchmark study has been submitted to IJNMF to both
provide the research community with reference data and also elicit more partic-
ipation from additional groups [51].

Group and Affiliation Code/Method
1 Uni. Dortmund, Inst. of Applied Math. TP2D
S. Turek, D. Kuzmin, S. Hysing FEM-Level Set
2 EPFL Lausanne, Inst. of Analysis and Sci. Comp. FreeLIFE
E. Burman, N. Parolini FEM-Level Set
3 Uni. Magdeburg, Inst. of Analysis and Num. Math. MooNMD
L. Tobiska, S. Ganesan FEM-ALE

Table 6.2: Participating groups and methods.

Group 1: TP2D

The TP2D code (short for Transport Phenomena in 2D) is the extension of
the FeatFlow [102] incompressible flow solver to treat immiscible fluids with the
level set method (as described in Chapters 2-5).

The benchmarks did not require artificial stabilization of the convective
terms in the momentum equations due to the low flow velocities. Numerical
stabilization was only used with the level set equation and then in the form of
high order FEM-TVD. Reinitialization of the level set field was applied every 20
time steps and artificial mass conservation in the form of lowering/raising the
level set field was used after every step. Although the mass conservation only
involved adding a constant of magnitude 1075 or less its inclusion was necessary,
especially on coarser grids, in order to prevent accumulation of mass errors.

Surface tension effects were incorporated by straight line approximation of
the interface contours and direct integration over these line segments instead of
using the usual continuum surface force approach.

Group 2: FreeLIFE

The FreeLIFE (Free-Surface Library of Finite Element) software is an incom-
pressible flow solver for the solution of free-surface two-fluid problems. The
software is based on the numerical solution of the Navier-Stokes equations with
variable density and viscosity. In order to track the location of the interface
between the two fluids, where discontinuities in the density and viscosity occur,
a level set approach is adopted. The Navier-Stokes equations are therefore cou-

6.2. INITIAL BENCHMARK STUDIES 63

pled with an advection equation for the level set function whose zero level set
defines the interface location [77, 78].

The spatial discretization is based on a piecewise linear finite-element ap-
proach. In particular, the Navier-Stokes problem is solved using Pj-isoPs ele-
ments for the velocity and P; for the pressure. The sub-grid topology associated
with the P;-isoP» element is also exploited for the solution of the level set trans-
port equation, where the local sub-grid edge stabilization introduced in [13] has
been adopted. In the simulations presented here, to be consistent with the
method of group 1, a mass correction step has been added which consists in
lowering/raising the level set function by a constant value in order to guarantee
a global mass conservation.

The level set reinitialization is based on a new method proposed in [77] con-
sisting of a local (L?-projection based) reconstruction of the distance function
in the neighborhood of the interface and a fast marching strategy for the far
field [14].

The FreeLIFE software has been used for the simulation of a variety of
test cases concerning laminar two-fluid flows. The results of these simulations
have been presented and discussed in [22, 77, 78]. The method has been im-
plemented in a finite element library which is restricted to two-dimensional
problems. However, the proposed methodology is well suited for the solution
of three-dimensional problems. This approach is currently being extended to
three-dimensional problems in the framework of the library LifeV, a three di-
mensional finite element code developed in a joint collaboration between Ecole
Polytechnique Fédérale de Lausanne (CMCS), Politecnico di Milano (MOX)
and INRIA (BANG).

Group 3: MooNMD

MooNMD stands for Mathematics and object oriented Numerics in MagDeburg
[65]. Tt is a program package based on mapped finite element methods for dis-
cretizing partial differential equations. In particular, it covers the solution of the
incompressible Navier-Stokes equations by inf-sup stable isoparametric finite el-
ements [39] and the solution of convection-diffusion equations by stabilized finite
element methods. It has been extended to treat incompressible two-phase flows
with capillary forces using the arbitrary Lagrangian-Eulerian (ALE) approach.

For the benchmarks, the velocity components were discretized on simplex
grids by quadratic basis functions enriched with cubic bubble functions, and the
pressure by discontinuous piecewise linear elements. In this way, high accuracy
could be achieved and spurious velocities suppressed [38]. Tt is worth to mention,
that no mass correction step was applied. Furthermore, the curvature was
replaced by the Laplace-Beltrami operator which could then be integrated by
parts and thus reduced the smoothness requirements [4, 24, 85].

For the time discretization, the second order, strongly A-stable fractional-
step-theta scheme was used [83]. In each time step the interface was fully
resolved by the mesh, meaning that the interface was always aligned with cell
edges. Three to four different initial meshes were generated using the mesh
generator Triangle [91], by fixing 200-900 degrees of freedom on the interface.
The movement of the interface was done in a Lagrangian manner after which the
inner mesh points were fitted to the new interface by an elastic mesh update, that
is by solving a linear elasticity problem [35]. It turned out that no remeshing,

64 CHAPTER 6. BENCHMARKING

to improve the mesh quality, was needed for long periods. During such a period
the number of degrees of freedom was fixed. However, remeshing had to be
applied after some time depending on the degree of deformation, which changed
the number of degrees of freedom dynamically during the simulations.

6.3 Results for test case 1

In test case 1 the bubble, being initially circular, is stretched horizontally and
first develops a dimple as it rises, but after some time proceeds to assume a
more stable ellipsoidal shape. Figure 6.3 shows a typical time evolution of the
interface shape (computed by group 1 on a h = 1/160 grid).

Figure 6.3: Typical interface evolution for test case 1.

6.3. RESULTS FOR TEST CASE 1 65

6.3.1 Group 1: TP2D

The results for test case 1 computed with the TP2D code of group 1 are pre-
sented here. All computations were performed on rectangular tensor product
grids with cell sizes h = 1/[40,80,160,320]. The implicit 2nd order Crank-
Nicolson scheme was used with the time step fixed to At = h/16. Table 6.3
shows the simulation statistics for the different grid levels where the number of
elements is denoted by NEL, the total number of degrees of freedom by NDOF,
and the total number of time steps by NTS. The time in seconds required for
each computation is denoted by CPU which scaled by the number of time steps
yields the factor CPU/TS. The Fortran 77 TP2D code was compiled with the
PathScale v2.5 compiler suite and the computations were performed on servers
with 2.4 GHz AMD Opteron processors.

1/h NEL NDOF NTS CPU CPU/TS

40 3200 19561 1920 181 0.1
80 12800 77521 3840 1862 0.5
160 51200 308641 7680 20360 2.7
320 204800 1231681 15360 126373 8.2

Table 6.3: Simulation statistics for test case 1 and group 1 (TP2D).

1.4r 141 141

0.5 0:6 017 0:8 0:9 0.5 016 0:7 0:8 019 0.5 016 0:7 0:8 019
(a) h =1/40 (b) h =1/80 (¢) h=1/160

Figure 6.4: Test case 1 bubble shapes for the TP2D code at time t=3.
Coarse grid solutions (solid red) compared to the shape
computed on the finest grid h = 1/320 (dashed blue).

In Figure 6.4 the symmetric right half of the coarse grid bubble shapes at the
final time (t=3) are compared to the solution from the computation on the finest
grid (h = 1/320). It is apparent that the solution on the coarsest grid h = 1/40
(Figure 6.4(a)) is already quite good but does visibly differ somewhat from the
reference solution. The computation on a one level finer grid (h = 1/80 shown
in Figure 6.4(b)) is clearly better and further refinements yield bubble shapes

66 CHAPTER 6. BENCHMARKING

which are visually indistinguishable from the reference shape. Merely looking
at the bubble shapes is not sufficient to say anything about the accuracy on
the finer grids, and it is now that the previously defined benchmark quantities
become particularly useful.

The relative error norms for the circularity, center of mass, and rise velocity
are shown in Table 6.4 together with the estimated convergence rates (ROC).
The reference solution is as before taken as the solution from the computation
on the finest grid (h = 1/320). It is evident that all quantities converge with a
more than linear convergence order, approaching quadratic convergence in the
l1 and Il norms. In the maximum norm the convergence order decreased to 1.16
for the circularity and 1.39 for the rise velocity.

1/h [le][r ROC, llel]la ROCq llellce ROCo
Circularity
40 1.00e-03 1.22e-03 2.89¢-03

80 3.0le-04 1.74 3.63e-04 1.75 9.67e-04 1.58
160 8.83e-05 1.77 1.10e-04 1.72 4.32e-04 1.16

Center of mass

40 2.65e-03 2.99e-03 3.56e-03
80 9.64e-04 1.46 1.02e-03 1.55 1.14e-03 1.64
160 2.62e-04 1.88 2.71e-04 1.91 2.96e-04 1.95

Rise velocity

40 1.19e-02 1.29e-02 1.49e-02
80 2.90e-03 2.04 3.07e-03 2.07 5.08e-03 1.55
160 7.73e-04 1.91 7.85e-04 1.97 1.94e-03 1.39

Table 6.4: Relative error norms and convergence orders for test case 1
and group 1 (TP2D).

The following figures depict the time evolution of the benchmark quantities
for test case 1 and group 1 (TP2D). From Figure 6.5(a), which shows the circu-
larity, it is quite hard to discern any significant differences between the different
grids. Only for the coarsest grid (h = 1/40) is it possible to see some deviations;
the circularity drops too quickly up until t=0.7, after which the correct solution
behavior is recovered. A close up around the point of minimum circularity is
shown in Figure 6.5(b) from where it is possible to see the convergence behav-
ior. Most notable is that there are irregularities or small jumps in the curves
for the two coarsest grids which is due to the reinitialization procedure which
was applied every 20 time steps. The minimum circularity converges towards a
value of 0.9013 around t=1.90 (see Table 6.5).

RESULTS FOR TEST CASE 1

v TP2D 1/h=40
—*—TP2D 1/h=80
——TP2D 1/h=160
—© TP2D 1/h=320

0.5 1 15 2 25 3
Time

(a) Circularity

0.905(

0.90451

0.904

0.9035-

0.9031

0.9025

0.902F

0.90151

0.9011

v TP2D 1/h=40
—*—TP2D 1/h=80
—+—TP2D 1/h=160
—© TP2D 1/h=320

67

18

1.85 19

Time

1.95

(b) Close-up of the circularity

Figure 6.5: Temporal evolution of the circularity (TP2D Case 1).

1/h 40 80 160 320

¢ 0.9016 0.9014 0.9014 0.9013
tle—g 1.9234 18734 1.9070 1.9041
Vi mas 0.2418 0.2418 0.2419 0.2417
tviv, ee 0.9141 0.9375 09281 0.9213
ye(t=3) 1.0818 1.0810 1.0812 1.0813

Table 6.5: Minimum circularity and maximum rise velocity, with corre-
sponding incidence times, and the final position of the center
of mass for test case 1 and group 1 (TP2D).

Both the center of mass, shown in Figure 6.6(a), and the mean rise velocity

of the bubble, shown in Figure 6.6(b), converge very nicely. From Table 6.5
one can see that the maximum rise velocity of V; 4, = 0.2417 is attained quite
early at time t=0.92. The center of mass of the bubble can asymptotically be
described as a linear function of time and approaches y. = 1.0813 towards the
end of the simulation.

0.9

0.81

0.7r

0.6

0.5

v TP2D 1/h=40
—*—TP2D 1/h=80
—4—TP2D 1/h=160
—© TP2D 1/h=320

05 1 15 2 25 3
Time

(a) Center of mass

0.3p

0.1r

0.05-

v TP2D 1/h=40
—*—TP2D 1/h=80
—4—TP2D 1/h=160
—© TP2D 1/h=320

1 15
Time

2 25

(b) Rise velocity

Figure 6.6: Center of mass and rise velocity (TP2D Case 1).

68 CHAPTER 6. BENCHMARKING

6.3.2 Group 2: FreeLIFE

The following results are computed with the FreeLIFE code of the second group.
The computations were performed on simplex cells created by subdivision of
regular quadrilaterals with element mesh sizes h = 1/[40,80,160]. The time
step was chosen as At = h/2. Statistics and timings for the computations can
be seen in Table 6.6.

1/h NEL NDOF NTS CPU CPU/TS

40 6400 14145 240 257 1.1
80 25600 55485 480 4299 8.5
160 102400 219765 960 108846 113.2

Table 6.6: Simulation statistics for test case 1 and group 2 (FreeLIFE).

In Figure 6.7 the bubble shapes at the final time (t=3) with the different grid
resolutions are compared. Although the interface contour from the solution on
the coarsest grid seems to be offset in the y-direction the overall shape is correct,

and when the grid is refined once it is not anymore possible to distinguish
between the two bubbles (Figure 6.7(b)).

14r 14r

0.5 016 017 0:8 0‘.9 0.5 0‘.6 0‘.7 018 0:9
(a) h =1/40 (b) h =1/80

Figure 6.7: Test case 1 bubble shapes for the FreeLIFE code at time
t=3. Coarse grid solutions (solid red) compared to the
shape computed on the finest grid h = 1/160 (dashed blue).

A quantitative convergence analysis has been performed computing the rel-
ative errors for the circularity, center of mass, and rise velocity together with
the estimated convergence rates (ROC), as defined in section 6.1.5. Here, the
solution from the finest grid (h = 1/160) is taken as the reference solution. As
can be seen from Table 6.7 the method gives a convergence order approaching
1.5 for the circularity and 2 for the rise velocity. The center of mass shows
a good convergence behavior of about 3 in the [; and [norms and 2 in the
loo nOTM.

6.3. RESULTS FOR TEST CASE 1
1/h llei ROCy lle]lz2 ROC, llellocc ROCo
Circularity
40 2.61e-03 3.63e-03 8.09e-03
80 1.05e-03 1.31 1.36e-03 1.41 2.51e-03 1.69
Center of mass
40 7.85e-03 8.14e-03 7.74e-03
80 9.42e¢-04 3.06 1.25e-03 2.70 1.72¢-03 2.17
Rise velocity
40 1.78e-02 1.95e-02 3.30e-02
80 3.99¢-03 2.16 5.54e-03 1.82 1.00e-02 1.72

Table 6.7: Relative error norms and convergence orders for test case 1

and group 2 (FreeLIFE).

69

Figure 6.8 depicts the circularity for the three different grid levels. Although
the solution on the coarsest grid is highly oscillating the results converge toward
the solution corresponding to the finest grid (h = 1/160). The maximum defor-
mation of the bubble is reached at time t=1.88 where the circularity attains its
minimum value of 0.9011 (see Table 6.8 and Figure 6.8(b)).

1.02p 0.914¢
—— FreeLIFE 1/h=40
—o— FreeLIFE 1/h=80 0.912F
= —=— FreeLIFE 1/h=160 |

0.904r

0.9f

0.898

—— FreeLIFE 1/h=40
—9 FreeLIFE 1/h=80
—®— FreeLIFE 1/h=160

0.906

0 0.5 1 15 2 25 3 18

185 19

1.95

Time Time
(a) Circularity (b) Close-up of the circularity

Figure 6.8: Temporal evolution of the circularity (FreeLIFE Case 1).

The time evolutions of the center of mass and mean rise velocity can be
seen in Figures 6.9(a) and 6.9(b), respectively. Both these quantities seem to
converge although the curve from the simulation on the coarsest grid deviates
somewhat from the other two. The rise velocity reaches a maximum value of
0.2421 at time t=0.9313 and center of mass of the bubble reaches a height of

1.08 at the end of the simulation (see Table 6.8).

70

CHAPTER 6. BENCHMARKING

1/h 40 80 160

¢ 0.9060 0.9021 0.9011
tly—y 1.8375 1.9125 1.8750
Ve,maz 0.2427 0.2410 0.2421
Hv=Vemaw 09000 0.9375 0.9313
ye(t = 3) 1.0715 1.0817 1.0799

Table 6.8: Minimum circularity and maximum rise velocity, with corre-
sponding incidence times, and the final position of the center
of mass for test case 1 and group 2 (FreeLIFE).

1.2r

11r

0.9r

0.81

0.7r

—A—FreeLIFE 1/h=40
—o— FreeLIFE 1/h=80
—®—FreeLIFE 1/h=160

0.6r

0.5

0 0.5 1 15 2 2.5 3
Time

(a) Center of mass

0.31

0.25¢

—4—FreeLIFE 1/h=40
9 FreeLIFE 1/h=80
—®—FreeLIFE 1/h=160

05 1 15 2 2.5 3
Time

(b) Rise velocity

Figure 6.9: Center of mass and rise velocity (FreeLIFE Case 1).

6.3.3 Group 3: MooNMD

Simulations of test case 1 with the MooNMD code of the third group were
performed with 200, 300, 600, and 900 degrees of freedom resolving the interface
(denoted by NDOF;,,;). The computations were run on a server with a 2.16 GHz
Intel processor, for which simulation statistics are given in Table 6.9.

NDOF;,; NEL(t=0) NDOF NTS CPU CPU/TS
200 595 17846 3000 11034 3.7
300 2640 24002 6000 25110 42
600 5534 50048 6000 58349 9.7
900 8066 72836 6000 180819 30.1

Table 6.9: Simulation statistics for test case 1 and group 3 (MooNMD).

Table 6.10 shows the computed error norms and convergence orders for
MooNMD. Since the finer meshes are not obtained by uniform refinement of
the coarse mesh, but with the help of a mesh generator, h was replaced in the

6.3. RESULTS FOR TEST CASE 1 71

formula for calculating the convergence rates by h*, the edge length of the in-
terface at ¢ = 0. This is indicated in Table 6.10 by the notation ROC*. The
center of mass and the rise velocity approach a convergence order of 3 and 2.2
in the I; and [norms. In the [, norm the convergence order decreases for the
rise velocity. The circularity had the overall lowest convergence order of 1.3.

NDOF;,,; lle]l: ROC3 lle]lz ROCH llellcc ROCE,
Circularity
200 4.40e-04 5.99e-04 1.19e-03

300 2.60e-04 1.30 3.40e-04 1.40 6.55e-04 1.47
600 1.07e-04 1.28 1.41e-04 1.27 2.90e-04 1.18

Center of mass

200 5.07e-04 7.91e-04 1.53e-03
300 1.79e-04 2.57 2.87e-04 2.50 5.82e-04 2.38
600 1.66e-05 3.43 2.11e-05 3.76 3.85e-05 3.92

Rise velocity

200 2.87e-03 3.70e-03 5.96e-03
300 1.18e-03 2.20 1.54e-03 2.17 2.48e-03 2.16
600 2.33e-04 2.34 3.10e-04 2.31 1.28e-03 0.95

Table 6.10: Relative error norms and convergence orders for test case 1
and group 3 (MooNMD).

That this method had very small error levels, even on the coarsest grids,
is apparent from Figures 6.10(a) and 6.11, which depict the circularity, center
of mass, and the rise velocity. There is no real visible evidence that any of
the curves differ, even for the coarser grids, until one looks much closer (see
Figure 6.10(b)). Then it is possible to see that each grid refinement produces
results that are closer to the curve corresponding to the computation on the
finest grid.

0.9051

—e— MooNMD NDOF, =200 —+ MooNMD NDOF, =200
. _ 4 MooNMD NDOF, =300 0.9045¢ —a— MooNMD NDOF, =300
o MooNMD NDOF,, =600 0004 o MoONMD NDOF, =600
—a— MooNMD NDOF, =900 —a MooNMD NDOF, =900
0.98F

0.9035-

0.903| B i
0.90251

°
0.902F -

0.90151

0.9011

0 05 1 15 2 2.5 3 18 1.85 1.9 1.95 2
Time Time

(a) Circularity (b) Close-up of the circularity

Figure 6.10: Temporal evolution of the circularity (MooNMD Case 1).

72 CHAPTER 6. BENCHMARKING

1.2r 0.3r
—o— MooNMD NDOF; =200

1.1} |—a—MooNMD NDOF, =300
—o— MooNMD NDOF; =600
[| —=— MooNMD NDOF; =900

0.25¢

0.21
0.9r

0.8r

0.7r

—e— MooNMD NDOF, =200

—a— MooNMD NDOF; =300
o MoONMD NDOF, =600/
—a— MooNMD NDOF, =900

0.6r

0.5

[0.5 1 15 2 25 3 0 0.5 1 15 2 25 3

Time Time
(a) Center of mass (b) Rise velocity

Figure 6.11: Center of mass and rise velocity (MooNMD Case 1).

Table 6.11 shows the time and values of the minimum circularity, maximum
rise velocity, and maximum position of the center of mass achieved during the
simulations. For the finest grid a minimum circularity of 0.9013 was measured at
time t=1.9. The rise velocity showed a very stable maximum, almost irrespective
of grid level, with a value of 0.2417 recorded at times around 0.92. At the final
time the center of mass of the bubble had reached a position of 1.0817.

NDOF;n; 200 300 600 900

fonim 0.9022 0.9018 0.9014 0.9013
tle—g 18630 1.8883 1.9013 1.9000
Veomaz 0.2418 02417 0.2417 0.2417

tviv, ee 0.9236 0.9236 0.9214 0.9239
ye(t=3) 1.0833 1.0823 1.0818 1.0817

Table 6.11: Minimum circularity and maximum rise velocity, with cor-
responding incidence times, and the final position of the
center of mass for test case 1 and group 3 (MooNMD).

6.3.4 Overall results for test case 1

Here the results from all groups computations on the finest grids are compared
starting with the bubble shapes shown in Figure 6.12. No significant differences
can really be seen at all and one would thus expect the computed benchmark
quantities to be similarly close.

The curves for the circularity shown in Figure 6.13(a) does not reveal any
significant differences between the groups. Only in the enlarged section around
the minimum (Figure 6.13(b)) is it possible to see some separation between the
curves. The curves of groups 1 (TP2D) and 3 (MooNMD) agree best, while the
minima calculated by the 2nd group (FreeLIFE) is somewhat offset. This is also
reflected by the actual values shown in Table 6.12. From there it is possible to
conclude that the minimum circularity will have a value of 0.9012+0.0001 and
occur around t=1.9.

6.3. RESULTS FOR TEST CASE 1 73

14r
1.3r
1.2r

11r

0.9r

i i i i i i i ;
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 6.12: Bubble shapes at the final time (t=3) for test case 1 (TP2D
(solid red), FreeLIFE (dotted green), and MooNMD
(dashed blue)).

Group 1 2 3

¢ 0.9013 0.9011 0.9013
tle—g 1.9041 18750 1.9000
Vemas 0.2417 0.2421 0.2417
v e 0.9213 0.9313 0.9239
ye(t=3) 10813 1.0799 1.0817

Table 6.12: Minimum circularity and maximum rise velocity, with cor-
responding incidence times, and the final position of the
center of mass for test case 1 (all groups).

1.02p 0.90241
—&—TP2D
—© FreeLIFE 0.9022}
1 —*—MooNMD |

0.9021
0.90181
0.9016/

0.90141

0.90121

«——

0.921 0.901F
—&—TP2D

ool 0.9008 —©— FreeLIFE
—*—MooNMD

0 0.5 1 15 2 25 3 1.8 1.85 19 1.95 2
Time Time
(a) Circularity (b) Close-up of the circularity

Figure 6.13: Circularity for test case 1 (all groups).

The time evolution of the center of mass (Figure 6.14) essentially shows the
same behavior as the circularity. The curves for groups 1 and 3 agree well while
the bubble of the second group seems to rise with the same speed but has been
somewhat delayed (negative offset). From Table 6.12 one can see that the center
of mass of the bubble reaches a position of 1.08140.001 at the final time.

74 CHAPTER 6. BENCHMARKING

1.2r 1.0851

11r

0.9r

—&—TpP2D

—&TP2D

0.8 —© FreeLIFE —©— FreeLIFE
—*—MooNMD 1.055f —*—MooNMD
0.7r 1.05F
06f 1.045
1.041
05
1.085)
0 05 1 15 2 25 3 275 28 2.85 2.0 2.95 3
Time Time
(a) Center of mass (b) Close-up of the center of mass

Figure 6.14: Center of mass for test case 1 (all groups).

The last benchmark quantity to be examined for this test case is the mean
rise velocity of the bubble, which is shown in Figure 6.15. Again the curves for
groups 1 (TP2D) and 3 (MooNMD) agree very well while the curve for FreeLIFE
(group 2) is slightly positively offset. The overall maximum rise velocity has a
magnitude of 0.2419+0.0002 and occurs between times t=0.921 and t=0.932.

0.3r 0.2435¢
—#—TP2D
0.243} —©—FreelIFE
0.25F : ——MooNMD

0.24251
0.2f 0.242 e T e

0.24151

0.2411

0.1} —&—TP2D 0.240
—o— FreeLIFE 24051
—*—MooNMD
0.24r
0.051
0.2395/
0 0.5 1 15 2 25 3 0.8 0.85 0.9 0.95 1 1.05
Time Time
(a) Rise velocity (b) Close-up of the rise velocity

Figure 6.15: Rise velocity for test case 1 (all groups).

To summarize, preliminary studies of test case 1 have been conducted which
have made it possible to establish a target reference range for each of the bench-
mark quantities. However, the three different codes did not agree perfectly and
one must conclude that numerical simulation of a single rising bubble, under-
going quite moderate deformation, is still not a trivial task.

6.4. RESULTS FOR TEST CASE 2 (0]

6.4 Results for test case 2

Figure 6.16 shows snapshots of the time evolution of the bubble (computed
by group 1 on a h = 1/160 grid). Although the bubbles in both test cases
rise with approximately the same speed, the decrease in surface tension causes
this bubble to assume a more convex shape and develop thin filaments which
eventually break off. The time of break up is in this simulation predicted to
occur between t=2.2 and 2.4, as is evident from Figures 6.16(d) and 6.16(e).
After the break up small satellite droplets trail the bulk of the main bubble,
which eventually assumes the shape of a dimpled cap.

15[--------- besomeeoaes 15f---------- besomeeoaes 15f---------- oo 15f----o-oo- oo

0 05 1 0 05 1 0 05 1 0 05 1
(a) t =0.6 (b) t =12 (¢) t =138 (d) t=22
Y I ——————————— P I ——————————— P I ——————————— Py I ———————————
AN J Lo a l o 0 L o ‘ o
0.5f---------- e 05f---------- e 05f---------- e 0.5f---------- e
o I o I ‘ o I o I
0 05 1 0 0.5 1 0 0.5 1 0 05 1
(e) t =24 () t =26 (g) t =28 (h) t = 3.0

Figure 6.16: Typical time evolution of the interface for test case 2.

76 CHAPTER 6. BENCHMARKING

6.4.1 Group 1: TP2D

The bubble shapes at the final time (t=3), computed by the TP2D code of group
1, are shown in Figure 6.17. First of all one can see that the simulation on the
coarsest grid produced a rather unphysical break up behavior, producing sharp
edged trailing filaments (Figure 6.17(a)). The shapes computed on the finer
grids did not have these filaments and seemed to converge for the main bulk
bubble. The two small satellite droplets were apparently the most difficult to
correctly capture since their shape and position even differed on the two finest
grids (Figure 6.17(d)).

14¢ 14¢
13f . ‘ 13}
12} 12}
1t 11t
1f 1}
0.9 0.9
08l 0.8
0.7 0.7}

0.6 0.6 @
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
(a) h=1/40 (b) h=1/80

14¢ 14¢

13f 13}

12} 12}

1t 11t

1f 1}

oof ! ! oof !

08l 0l -

0.7 07k

os i) & 06l @ &

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
(c) h = 1/160 (d) h =1/320

Figure 6.17: Test case 2 bubble shapes for the TP2D code at time t=3.
Coarse grid solutions (solid red) compared to the shape
computed on the finest grid h = 1/640 (dashed blue).

6.4. RESULTS FOR TEST CASE 2 T

Table 6.13 shows the simulation statistics and timings for this test case and
the TP2D code. The CPU times have increased by more than a factor of two
compared to the timings from the first test case, shown in Table 6.3. This is
mostly due to the increased number of multigrid iterations required to solve
the pressure Poisson equation which now converges more slowly due to the 100
times larger jump in the density.

1/h NEL NDOF NTS CPU CPU/TS

40 3200 19561 1920 410 0.2
80 12800 77521 3840 4351 1.1
160 51200 308641 7680 47919 6.2
320 204800 1231681 15360 713816 46.5
640 819200 4920961 30720 2967465 96.6

Table 6.13: Simulation statistics for test case 2 and group 1 (TP2D).

The circularity shown in Figure 6.18(a) is constant until t=0.5. It then
decreases more or less linearly until somewhere between t=2.2 and t=2.6 where
there is a sharp inflection point (see Figure 6.18(b)). This point should be very
close to the time of break up since the thin elongated filaments, due to the
high curvature and surface tension, shrink quite rapidly thereafter. This is also
consistent with Figures 6.16(d)-6.16(f). The curves for all grid levels agree very
well until t=1.7 where they start to deviate from each other. Although the
deviations are also apparent from looking at the values of the minima in Table
6.14, the numbers point towards a minimum circularity of 0.59+0.05 occurring
between times 2.3 and 2.4.

1.2r 0.9r
v TP2D 1/h=40 v TP2D 1/h=40
1.1F —¢—TP2D 1/h=80 0.85t —*—TP2D 1/h=80
—+—TP2D 1/h=160 —4—TP2D 1/h=160

—o— TP2D 1/h=320 : | —e TP2D 1/h=320
—=—TP2D 1/h=640 —=— TP2D 1/h=640

0.9r

0.8r

0.7r

0.6-

0.5r

i i i i i i i L i i i i i
[0.5 1 15 2 25 3 1.6 18 2 2.2 2.4 2.6 2.8 3

Time Time
(a) Circularity (b) Close-up of the circularity

Figure 6.18: Temporal evolution of the circularity (TP2D Case 2).

The time evolutions of the center of mass and mean rise velocity of the bubble
are shown in Figures 6.19(a) and 6.19(b), respectively. The center of mass moves
similar to the first test case, reaching a slightly higher position of 1.138 at the end
of the simulation (Table 6.14). There are virtually no differences between the
curves for the different grids. For the mean rise velocity on the other hand one
can see that the curves corresponding to simulations computed on coarser grids

78 CHAPTER 6. BENCHMARKING

1/h 40 80 160 320 640

¢ 0.5193 0.5717 0.5946 0.5943 0.5869
tlomg 3.0000 24266 22988 2.3439 2.4004
Vemas 1 0.2790 0.2638 0.2570 0.2538 0.2524
tlvivi e, 07641 0.7250 0.7430 0.7340 0.7332
Vemaz 2 0.2749 0.2597 0.2522 0.2467 0.2434
tv—v.... , 19375 19688 2.0234 2.0553 2.0705
ye(t = 3) 1.1303 1.1370 1.1377 1.1387 1.1380

Table 6.14: Minimum circularity and maximum rise velocities, with cor-
responding incidence times, and the final position of the
center of mass for test case 2 and group 1 (TP2D).

differ quite much from, but also converge nicely toward, the fine grid solutions.
Instead of the single velocity maximum found in the first test case there are
now two, the first occurring at time 0.7332 with a magnitude of 0.2524 and the
second one at t=2.0705 with a slightly smaller magnitude of 0.2434. Lastly note
that it is not possible to see when the break up occurs for these two benchmark
quantities in contrast to the circularity.

127 03p
11t v v
0.25F Y &~ T
—— v v
i =
02f
09r v~ TP2D 1/h=40
—e—TP2D 1/h=80
08 0150 —&—TP2D 1/h=160
—o— TP2D 1/h=320
07l —=—TP2D 1/h=640
01f
o6l v TP2D 1/h=40
- —+—TP2D 1/h=80
—+—TP2D 1/h=160 0051
05 —o TP2D 1/h=320
—#—TP2D 1/h=640
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Time Time
(a) Center of mass (b) Rise velocity

Figure 6.19: Center of mass and rise velocity (TP2D Case 2).

6.4.2 Group 2: FreeLIFE

The bubble shapes at the final time (t=3) computed with the FreeLIFE code on
the three grid levels h = 1/[40, 80, 160] are presented in Figure 6.20. Although
some sharp edged filaments are present, despite refining the grids, the shapes
do seem to converge towards the solution obtained on the finest grid. The main
bulk of the bubble appears to be the easiest to capture correctly, showing only
minor visible differences between the two finest grids (Figure 6.20(b)).

6.4. RESULTS FOR TEST CASE 2 79

14r : . 14r
13r
1.2r

11r

0.91
0.8

0.71

0.6

0.1 012 0‘.3 014 0‘.5 016 0‘.7 018 0‘.9 0.1 O‘.2 013 0‘.4 015 016 017 0‘.8 019
(a) h = 1/40 (b) h =1/80

Figure 6.20: Test case 2 bubble shapes for FreeLIFE at time t=3.
Coarse grid solutions (solid red) compared to the shape
computed on the finest grid h = 1/160 (dashed blue).

The curves for the circularity (Figures 6.21(a) and 6.21(b)) agree well and
show a typical convergence behavior up to t=1.8 after which the bubble breaks
up and no convergence trend can be seen anymore. Since the thin filaments do
not retract after break up has occurred there is no clear inflection point which
could indicate the time of break up. The minimum circularity can thus be found
towards the very end of the simulations, as can be seen in Table 6.15.

1.2r : 0.8 .
—A—FreeLIFE 1/h=40 —4— FreeLIFE 1/h=40

114 9 FreeLIFE 1/h=80 0.75F —© FreeLIFE 1/h=80
—®—FreeLIFE 1/h=160 < —®—FreeLIFE 1/h=160

i i i i i i i L i i i i i
[0.5 1 15 2 25 3 1.6 18 2 2.2 2.4 2.6 2.8 3

Time Time
(a) Circularity (b) Close-up of the circularity

Figure 6.21: Temporal evolution of the circularity (FreeLIFE Case 2).

80 CHAPTER 6. BENCHMARKING

1/h 40 80 160

¢ 0.4868 0.5071 0.4647
tlemg 2.7500 2.8438 3.0000
Vemaz 1 0.2563 0.2518 0.2514
tvievi e s 07750 0.7188 0.7281
Ve,maz 2 0.2397 0.2384 0.2440
v, ..., 19875 1.9062 1.9844
ye(t = 3) 1.0843 1.1099 1.1249

Table 6.15: Minimum circularity and maximum rise velocities, with cor-
responding incidence times, and the final position of the
center of mass for test case 2 and group 2 (FreeLIFE).

The vertical position of the center of mass, shown in Figure 6.22(a), con-
verges better than the circularity. The thin filaments apparently do not influence
the overall movement too much since the curves are still approximately linear.
A position of 1.1249 is reached by the bubble at the end of the simulation on
the finest grid (Table 6.15). A very good agreement can be seen for the curves
describing the rise velocity up until the first maximum, occurring at t=0.7281
with a magnitude of 0.2514 on the finest grid (Figure 6.22(b) and Table 6.15).
From then on the curve corresponding to the simulation on the coarsest grid
starts to show a somewhat irregular and oscillatory behavior. The other two
curves corresponding to the finest grids keep in close contact until the second
maximum from where all curves show minor irregularities (most likely due to
some oscillations in the velocity field close to the interface).

1.2r 0.31

11r
0.25¢

0.2
0.9r

—4— FreeLIFE 1/h=40
0.15 —©— FreeLIFE 1/h=80

0.81

—®—FreeLIFE 1/h=160

0.7r

—A—FreeLIFE 1/h=40
—o— FreeLIFE 1/h=80
—®—FreeLIFE 1/h=160

0.1f
0.6r

0.05
0.5

[0.5 1 15 2 25 3 0 0.5 1 15 2 2.5 3

Time Time
(a) Center of mass (b) Rise velocity

Figure 6.22: Center of mass and rise velocity (FreeLIFE Case 2).

6.4. RESULTS FOR TEST CASE 2 81

6.4.3 Group 3: MooNMD

For the third group (MooNMD) the results are as consistent as for the first test
case with one exception, the simulation on the coarsest grid (NDOF;,,; = 300)
failed at t=2.1 due to the formation of very computationally unfavorable cell
shapes in the thin filamentary regions. The Lagrangian approach used here
could not treat break up automatically, and thus the bubble kept deforming
more and more. This is evident from the curves for the circularity which after
the initial period decreases monotonically (Figures 6.23(a) and 6.23(b)).

1.2r 0.8

—+_MooNMD NDOF, =300 —+~MooNMD NDOF, =300
14k _ o MooNMD NDOF, =600 —o MoONMD NDOF, =600
s MoONMD NDOF, =900 0.7 a— MoONMD NDOF, =900 |

i i i i i i i L i i i i i
[0.5 1 15 2 25 3 1.6 18 2 2.2 2.4 2.6 2.8 3

Time Time
(a) Circularity (b) Close-up of the circularity

Figure 6.23: Temporal evolution of the circularity (MooNMD Case 2).

NDOF;,,; 300 600 900

¢ - 0.5191 0.5144
tlemy - 3.0000 3.0000
Vemaz 1 0.2503 0.2502 0.2502
tlv—v...., 0.7317 0.7317 0.7317
Vemaz 2 0.2390 0.2393 0.2393
tly—v. ..., 2.0650 2.0600 2.0600
ye(t = 3) - 1.1380 1.1376

Table 6.16: Minimum circularity and maximum rise velocities, with cor-
responding incidence times, and the final position of the
center of mass for test case 2 and group 3 (MooNMD).

Figure 6.24(a) shows the linear time evolution of the center of mass. The
curves agree completely irrespective of grid level and from Table 6.16 it is possi-
ble to see that the center of the bubble reaches a height of 1.1376 at the end of
the simulation. Table 6.16 also shows very consistent results for the two max-
ima found in the mean rise velocity. The first maximum occurred at t=0.7317
with a magnitude of 0.2502 while the second peak came later at t=2.06 with
a velocity of 0.2393. These results are also perfectly mirrored by the plotted
curves in Figure 6.24(b).

82 CHAPTER 6. BENCHMARKING

1.2r 0.31

11r
0.25¢

0.2
0.9r

0.8r

—a— MooNMD NDOF, =300
—o— MooNMD NDOF, =600

0.7r

01r ‘ —a—MooNMD NDOF, =900 |
0.6
.~ MooNMD NDOF, =300
05 o MoONMD NDOF, =600 005
—_a— MOONMD NDOF, =900
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Time Time
(a) Center of mass (b) Rise velocity

Figure 6.24: Center of mass and rise velocity (MooNMD Case 2).

6.4.4 Overall results for test case 2

To compare the results for the second test case, a rising bubble with a sig-
nificantly lower density compared to that of the surrounding fluid, the bubble
shapes computed by the different codes are plotted against each other in Fig-
ure 6.25. It is evident that although all codes predict a similar shape for the
main bulk of the bubble, there is no agreement with respect to the thin filamen-
tary regions. The two first codes (TP2D and FreeLIFE) can handle break up
automatically but do not, with the employed discretizations in space and time,
agree what happens after. Since no criteria for the break up of the bubble has
been implemented in the third code (MooNMD), the long thin trailing filaments
remain intact.

A

°
s
i g e e T
e e

01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9

Figure 6.25: Bubble shapes at the final time (t=3) for test case 2 (TP2D
(solid red), FreeLIFE (dotted green), and MooNMD
(dashed blue)).

6.4. RESULTS FOR TEST CASE 2 83

The circularity for all groups (Figure 6.26(a)) agree very well with each
other until about t=1.75 after which significant differences start to appear. The
main difference is that the circularity predicted by the TP2D code (group 1)
starts to increase after the break up due to the retraction of the filaments (Fig-
ure 6.26(b)). Table 6.17 clearly shows how there is no real agreement between
the codes concerning the minimum circularity.

11p 0.9r
—=-TP2D —&-TP2D

—©— FreeLIFE 0.851 —©— FreeLIFE

1 —4—MooNMD | —4—MooNMD

0.9r

0.8F

0.7r

0.61

0.5r

i i i i i i i L i i i i i
[0.5 1 15 2 25 3 1.6 18 2 2.2 24 2.6 2.8 3

Time Time
(a) Circularity (b) Close-up of the circularity

Figure 6.26: Circularity for test case 2 (all groups).

Group 1 2 3

Eonin 0.5869 0.4647 0.5144
t|¢:¢mm 2.4004 3.0000 3.0000
tVe=Vimaer 0-7332 0.7281 0.7317
Ve,maz2 0.2434 0.2440 0.2393

tlv—v. ..., 20705 1.9844 2.0600
ye(t=3) 1.1380 1.1249 1.1376

Table 6.17: Minimum circularity and maximum rise velocities, with cor-
responding incidence times, and the final position of the
center of mass for test case 2 (all groups).

The vertical movement of the center of mass, shown in Figures 6.27(a) and
6.27(b), is predicted very similarly for all groups. Surprisingly the break up
does not in this case influence the overall averaged quantities to a significant
degree. The estimated final position of the center of mass is 1.37+0.01 (Table
6.17). However, this value is quite meaningless since the final shape the bubble
most likely will assume is unknown.

84

1.2r

11r

0.9r

—&—TP2D
—© FreeLIFE
—*— MooNMD

0.8r

0.7r

0.6r

0.5

0 0.5 1 15 2 2.5 3
Time

(a) Center of mass

CHAPTER 6. BENCHMARKING

o’

—&-TP2D
—© FreeLIFE
—*—MooNMD

0.95-

2 2.2 2.4 2.6 2.8 3
Time

(b) Close-up of the center of mass

Figure 6.27: Center of mass for test case 2 (all groups).

Lastly the time evolution of the mean rise velocity is examined. There
is also here a quite good agreement between the different codes. The first
maximum is predicted to have a magnitude of 0.25+0.01 and occur around
t=0.7340.02 (Table 6.17). The prediction of this maximum should be quite
trustworthy since break up has not yet occurred and the curves are quite close
to one another (Figure 6.28(a)). The second maximum is more ambiguous but
should most likely have a somewhat smaller magnitude and occur around t=2.0

(Figure 6.28(Db)).

0.3r

0.21

0.15¢

—&—TP2D
—© FreelLIFE
—*—MooNMD

0.1r

0.05-

0 0.5 1 15 2 2.5 3
Time

(a) Rise velocity

—=-TP2D
—© FreelIFE
0.26- ——MooNMD

0.6 0.8 1 12 14 16 18 2 2.2
Time

(b) Close-up of the rise velocity

Figure 6.28: Rise velocity for test case 2 (all groups).

6.5. SUMMARY OF THE BENCHMARKS 85

6.5 Summary of the benchmarks

Benchmark studies are valuable tools for the development of efficient numerical
methods. A well defined benchmark does not only assist with basic validation of
new methods, algorithms, and software components but can also help to answer
more fundamental questions, such as “How much numerical effort is required
to attain a certain accuracy?”, which would allow for rigorous comparison of
different methodologies and approaches.

Two benchmark test cases have been introduced and studied by conducting
extensive preliminary computations. Both test cases concern the evolution of
a single bubble rising in a liquid column while undergoing topological change.
For the first test case the shape deformation is quite moderate while the second
bubble deforms significantly and even breaks up after some time. In addition,
a number of benchmark quantities have been defined which allow for easier
evaluation and comparison of the computed results since they can be used for
strict validation in a “picture norm” free form. They include the circularity
and the center of mass, which both are topological measures, and also the mean
rise velocity of the bubble. In future benchmarks it would be interesting to
additionally track more complex quantities, such as force measures which involve
derivatives of the dependent variables and the discontinuous pressure.

The preliminary studies showed that it was possible to obtain very close
agreement between the codes for the first test case, a bubble undergoing moder-
ate shape deformation, and thus establish reference target ranges for the bench-
mark quantities. The second test case proved far more challenging. Although
the obtained benchmark quantities were in the same ranges they did not agree
on the point of break up or even what the bubble should look like afterwards,
rendering these results rather inconclusive. To establish reference benchmark
solutions including break up and separation will clearly require much more in-
tensive effort by the research community.

86

CHAPTER 6. BENCHMARKING

Chapter

State of the art

In this chapter the state of the art of mathematical software tools for simulating
flows with immiscible fluids will be examined. Two commercial codes, the very
general and flexible PDE solving package Comsol Multiphysics and the truly
dedicated CFD solver Ansys Fluent, will be compared with the academic TP2D
code which is developed according to the principles presented in this thesis. The
chapter will conclude with a discussion on techniques and methodologies which
have a strong potential to improve both accuracy and efficiency for multiphase
flow simulations.

7.1 Commercial software tools

Commercial software tools are widely used by engineers in the industry to sim-
ulate various physical processes. Except for monetary cost, they offer many
benefits over academic tools; commercial codes are reasonably easy to use,
are documented extensively, have good user support, and usually include tried
and tested algorithms which produce good results with “engineering precision”.
However, what is usually not known is how accurate these codes really are on
an absolute level, and what performance can be expected for a given problem.
This will, within the context of two-phase flows, be examined in the following
by simulating one of the previously described benchmarks with two different
commercial codes.

7.1.1 Comsol Multiphysics

The Comsol Multiphysics software suite (previously marketed under the name
Femlab) is a finite element package for solving coupled systems of partial differ-
ential equations. Although the software is very user friendly, has a nice graph-
ical user interface (GUI), and allows for almost arbitrary PDE problems to be
postulated, the fully coupled approach and heavy dependence on direct solvers
limits its practical use to rather small problem sizes. Despite this, Comsol Mul-
tiphysics was applied to the first benchmark test case (described in Chapter
6) in order to get a feeling for what a general commercial simulation tool, not
optimized for CFD, can accomplish.

88 CHAPTER 7. STATE OF THE ART

The following simulations were performed with version 3.3a of Comsol Mul-
tiphysics and the conservative level set application mode included in the cor-
responding Chemical Engineering Module [73, 74]. A purely Cartesian tensor
product grid was employed in the calculations with continuous biquadratic and
discontinuous linear finite element basis functions, the Q2P Stokes elements,
discretizing the velocity and pressure. The level set field was correspondingly
discretized with @2 basis functions.

All the following computations (also including those of Fluent and TP2D
for comparison purposes) were performed on a computer with a 2.0 GHz Intel
Core2Duo processor for which simulation statistics are given in Table 7.1. The
first column 1/h shows the number of cells in the x-direction corresponding
to the level of grid refinement. The number of elements is denoted by NEL,
the total number of degrees of freedom by NDOF, and the number of time
steps by NTS. The computational effort required can be seen from the peak
memory consumption in Megabytes (MEM) and the required time to complete
each simulation (CPU).

1/h NEL NDOF NTS MEM CPU

20 800 13163 277 175 101
40 3200 51923 115 446 483
60 7600 116283 120 890 986
80 12800 206243 120 1568 2361

Table 7.1: Simulation statistics and timings for Comsol Multiphysics.

Although a comprehensive selection of iterative linear solvers is included
in Comsol Multiphysics, the default and most robust choice is to use a direct
solver, in this case UMFPACK [21]. The magnitude of the peak memory con-
sumption, although scaling linearly with the number of degrees of freedom, was
very high due to the fully coupled approach. It was in fact impossible to ob-
tain a solution for anything larger than a 80 x 160 grid, even when switching
to the iterative solvers, which either failed to converge or still tried to allocate
too much memory. The time stepping scheme on the other hand worked very
well, only requiring about 120 time steps to complete each simulation for all but
the coarsest grid. The underlying algorithm employed the variable order DAE
solver DASPK (where up to fifth order accuracy was allowed) [11].

The bubble shapes at the final time (t=3) can be seen in Figure 7.1. The
results computed on the finer grids look quite good and believable in the pic-
ture norm. The shape for the coarsest grid 20 x 40 (Figure 7.1(a)) exhibits a
very jagged contour, but is otherwise reasonably well aligned with the reference
shape. Refining the grid improved the shape, but seemed to result in slightly
more rounded contours than that of the reference bubble.

7.1. COMMERCIAL SOFTWARE TOOLS 89

14r 14r 1.4¢

I I I
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

(a) 20 x 40 (b) 40 x 80 (c) 80 x 160

Figure 7.1: Bubble shapes computed with Comsol Multiphysics on dif-
ferent grids (solid red), and a reference solution (dashed
blue).

The use of the defined benchmark quantities makes it easier to spot conver-
gence trends, and the computed circularity, a measure of shape deformation, is
thus compared against an established reference curve (Figure 7.2). The results
for the two coarsest grids, 20 x 80 and 40 x 80, shows very oscillatory behaviors
for which the means deviate significantly from the reference curve. The curves
corresponding to the two finer grids behave better but do not converge towards
the reference solution after t=2.5. The computed circularity increases towards
the end of the simulation instead of flattening out indicating a less elongated
shape which is consistent with Figures 7.1(b) and 7.1(c).

1.021
v— Comsol 20x40
1 —o— Comsol 40x80 ‘
! —a— Comsol 60x120
—©— Comsol 80x160
0.98F —&— Reference sol.
2096/
o
>
e
o 0.941
0.92r
0.9r
088 i i i i i i
0 0.5 1 1.5 2 25 3
Time

Figure 7.2: Computed circularity for Comsol Multiphysics.

90 CHAPTER 7. STATE OF THE ART

Table 7.2 shows the minimum circularity ¢ . with corresponding incidence
times t|s—¢ and also the time averaged relative error of the circularity [e4|.
Except for the very coarsest grid, the minimum circularity is quite close to the
reference value, with a relative error of 1.0-10~2 on the finest grid. The corre-
sponding incidence times fluctuate somewhat and one would ideally like to have
more data for finer grid levels to really be able to establish a convergence trend.
The time averaged relative error is three times larger than that of the minimum
on the finest grid, due to the divergence towards the end of the simulation.

1/h ¢m7n t|¢:¢vn'in |e¢|

20 0.8402 2.25 3.6-1072

40 0.9034 1.65 1.0-1072

60 0.9081 1.90 8.0-1073

80 0.9022 1.95 2.9.1073
Ref. 0.9012 1.90

Table 7.2: Minimum circularity with corresponding incidence time, and
time averaged error for Comsol Multiphysics. (The line Ref.
shows the reference values.)

To summarize, these tests have shown that although the Comsol Multi-
physics package can simulate two-phase flows some real difficulties do exist.
Firstly, the results do not seem to converge towards the correct solution for
longer time periods and, secondly, the general solver approach consumed far too
much memory to be able to run simulations with even moderately dense grids.

7.1.2 Ansys Fluent

The CFD package Fluent has frequently been marketed as “the world leader in
Computational Fluid Dynamics” [32] and “a state-of-the-art computer program
for modeling fluid flow” [31], and thus has a lot to live up to. Fluent includes
a comprehensive set of models to treat various flow related phenomena such
as heat transfer, turbulence, combustion and chemical reactions, population
balances, and also multiphase flow. Flows with immiscible fluids are treated
with the Eulerian volume of fluid (VOF) methodology which employs the use of
a volume fraction function indicating the relative amounts of the fluids present
in each cell.

Fluent employs the traditional finite volume discretization in space with un-
knowns located at the cell centers. In the time domain there are a number
of discretization schemes to choose from, of which the recommended implicit
Fractional step operator spitting scheme has been used in the following tests.
This scheme, which is a form of projection method, effectively separates the so-
lution of the pressure from the velocity calculations, thus saving computational
effort. To solve the arising linear equation systems Fluent employs an algebraic
multigrid approach (AMG). In the following, identical benchmark tests were
performed with version 6.3 of Fluent as previously done with Comsol Multi-
physics.

7.1. COMMERCIAL SOFTWARE TOOLS 91

The simulation statistics and timings for Fluent can be seen in Table 7.3.
Compared to Comsol Multiphysics, Fluent allocated significantly less memory
and allowed the use of finer grids. However, it should be pointed out that since
Fluent uses cell centered degrees of freedom the total number of unknowns is
four times fewer than used by the Comsol software for a grid of the same size
(Comsol Multiphysics also allows for higher accuracy with the employed Qs
finite element discretization). The time steps were selected so that the capillary
time step restriction was respected. Although the calculations for a given grid
consumed less CPU time than for Comsol Multiphysics, it does not say anything
about the level of accuracy achieved.

1/h NEL NDOF NTS MEM CPU

40 3200 12800 150 96 45
80 12800 51200 480 111 254
160 51200 204800 1200 210 2106
320 204800 819200 3000 439 21091

Table 7.3: Simulation statistics and timings for Fluent.

Figure 7.3 shows the computed bubble shapes at the final time (t=3). The
computation on the coarsest grid produced a result which deviated significantly
from the reference bubble and one can see that there is a lot of room for improve-
ment (Figure 7.3(a)). Refining the grids allowed the simulations to converge
towards the reference shape, which is evident from Figures 7.3(b) and 7.3(c).
It is in fact quite hard to see any significant differences between the reference
solution and the shape computed on the finest grid (320 x 640).

14r 14r 1.4¢

0.5 016 017 018 0‘.9 0.5 016 017 018 0‘.9 0.5 016 0‘.7 0‘.8 019
(a) 40 x 80 (b) 80 x 160 (c) 320 x 640

Figure 7.3: Bubble shapes computed with Fluent on different grids
(solid red), and a reference solution (dashed blue).

92 CHAPTER 7. STATE OF THE ART

Since the final shape was accurately computed one might expect that the
preceding temporal evolution also is correct. However, if one looks at the curves
for the circularity (Figure 7.4) one can see that this is not the case. Although
mesh independent solutions are obtained from the two finest grids, they do not
converge towards the reference solution. It is apparently a period around the
maximum deformation, between t=1.2 and t=2.5 (corresponding to the point
of minimum circularity), that causes the most trouble for Fluent.

1.021
v Fluent 40x80
1 —¢— Fluent 80x160
! —A— Fluent 160x320|
—©— Fluent 320x640
0.98F —&— Reference sol.
2096/
o
>
e
o 0.941
0.92r
0.9r
v v
0.88 :
0 0.5 1 1.5 2 25 3
Time

Figure 7.4: Computed circularity for Fluent.

The maximum errors and also the time averaged errors of the circularity are
quite large as can be seen from Table 7.4. The values from the two finest grids
show that a mesh independent solution has indeed been obtained. However,
this solution does not coincide with the reference solution towards which con-
vergence has completely stopped. The minimum circularity is predicted to occur
slightly too late with a smaller value than expected. Comparing these errors
with those produced by Comsol Multiphysics (Table 7.2) one can see that both
codes achieve quite similar levels of accuracy. Fluent has a slight advantage in
the averaged norm while the Comsol software produces better values for the
minimum circularity.

7.2. ACADEMIC SOFTWARE TOOLS 93

1/h ¢m7,n t|¢:¢vn'in |e¢|

40 0.8834 1.86 8.2:1073
80 0.8922 1.90 4.3-1073
160 0.8962 1.92 241073
320 0.8963 1.92 231073
Ref. 0.9012 1.90

Table 7.4: Minimum circularity with corresponding incidence time, and
time averaged error for Fluent. (The line Ref. shows the
reference values.)

To conclude the study of commercial simulation tools recall the curves for
the circularity (Figures 7.2 and 7.4). It unfortunately seems that if one desires
a good final solution one should choose Fluent, and if one prefers a better
intermediate solution one should choose Comsol Multiphysics. Is it not possible
to have both? To try to answer this let’s proceed by examining a code belonging
to a different class of software tools.

7.2 Academic software tools

Academic software often utilizes the newest and most experimental algorithms
in contrast to commercial tools which mostly include tried and tested routines.
It is interesting to see if there exist any performance differences between a newly
developed academic tool and what the commercial enterprises offer. The same
tests used to evaluate the commercial simulation tools are therefore also applied
to an academic dedicated two-phase flow code.

7.2.1 TP2D

The TP2D code is a Fortran 77 realization of the concepts described in Chap-
ters 2-5. An overview of the solver structure with a break down of the relative
computational costs of the involved components can be found in Appendix A.
The employed code was identical to the one used to produce the benchmark
results in Chapter 6 but in this case tuned to run as fast as possible without
sacrificing too much accuracy.

The resulting bubbles shapes and curves for the benchmark quantities were
next to identical to the ones given in Section 6.3.1 in Chapter 6 and will thus
not be repeated here. However, the simulation statistics and timings differed
and are shown in Table 7.5. The most notable difference, compared to the
benchmark runs (Table 6.3), is that the number of time steps could be reduced
significantly, leading to a corresponding decrease in computational effort. The
required CPU time was also smaller than for the commercial tools with respect
to both grid size and the number of degrees of freedom (compare Table 7.5 with
Tables 7.1 and 7.3).

94 CHAPTER 7. STATE OF THE ART

1/h NEL NDOF NTS MEM CPU

40 3200 19561 150 15 15
80 12800 77521 450 95 185
160 51200 308641 1000 212 1674

Table 7.5: Simulation statistics and timings for TP2D.

The resulting errors together with reference values are shown in Table 7.6.
From these error levels it can be seen that TP2D produces very accurate results,
and most notably is that even for the very coarsest grid the error was signif-
icantly smaller than anything that the commercial tools could achieve. This
can be seen more clearly from Figure 7.5 which plots the averaged error in the
circularity against the CPU time for all codes.

1/h ¢mln t|¢:¢mm |€¢|
40 0.9002 1.88 7.2:107%
80 0.9007 1.88 2.8-1074

160 0.9010 1.91 1.9-1074

Ref. 0.9012 1.90

Table 7.6: Minimum circularity with corresponding incidence time, and
time averaged error for TP2D. (The line Ref. shows the ref-
erence values.)

—4A— Comsol
—@— Fluent
\ —&— TP2D

Error

i i i
10 10° 10° 10° 10°
CPU Time

Figure 7.5: Averaged error in the circularity vs. CPU time.

7.2. ACADEMIC SOFTWARE TOOLS 95

To summarize, these small comparisons have shown that a properly designed
academic tool can effectively compete with and also beat commercial tools with
respect to both computational time and accuracy. Although the TP2D code
did not run magnitudes faster than either Fluent or Comsol Multiphysics this is
something that most certainly can be improved upon in the future. Techniques
for achieving this will be explored in the following section.

In order to show that the TP2D code has been designed to be able to treat
a very general class of two-phase simulations, not just a single rising bubble,
three additional examples are shown below. First is a simulation with nine ran-
domly placed bubbles which rise and merge with a free surface (Figure 7.6).
The simulation is clearly quite dynamic involving a lot of merging of interfaces.
Figure 7.7 shows a corresponding simulation with 25 symmetrically placed bub-
bles which as they rise arrange themselves in a somewhat unordered pattern.
The last example shows how the finite element approach can be applied to more
complicated geometries, in this case a liquid film flows around a half circle and
forms a long filament which eventually breaks up into drops (Figure 7.8).

¢

Figure 7.6: Simulation of nine randomly sized and placed rising bubbles
merging with a free surface.

96

CHAPTER 7. STATE OF THE ART

Figure 7.7: Simulation of 25 equally sized and symmetrically placed

rising bubbles merging with a free surface.

Figure 7.8: Simulation of drop formation from a liquid stream.

7.3. FUTURE PROSPECTS 97

7.3 Future prospects

This section presents a discussion on various methods and algorithms which
have a strong potential to bring future improvements, in both accuracy and
efficiency, to the presented methodology. Many of the methods described in
the following have already been successfully implemented, but not thoroughly
tested, in the TP2D code. The discussions will therefore only include a few
preliminary computational examples.

7.3.1 Grid adaption

Local grid adaption techniques can be particularly useful for Eulerian simula-
tions with interfaces. It is reasonable to assume that a large part of the errors
in the computations arises from regions where the interfaces and thus also dis-
continuities exist. The extent to which the interfaces can be resolved is directly
proportional to the local grid size and hence the idea of locally adapting the
grids and thereby decreasing the corresponding error.

There are two main approaches to applying grid adaption of which the first
is to locally refine cells where needed, so called 'h-adaption’. This approach
will invariably generate an increased number of degrees of freedom, and also
hanging nodes when working with quadrilateral and hexahedral cells. Another
drawback is that the underlying grid topology and matrix structure will be
changed, potentially leading to performance penalties. The second approach,
called grid deformation or ’r-adaption’, consists of redistributing the existing
grid points to increase accuracy while at the same time preserving the number
of nodes and cells. The following discussion will be limited to this methodology
since it does not possess the drawbacks of ’h-adaption’, is theoretically easy to
implement, and does not require significant changes to an existing code.

Grid deformation

The grid deformation method essentially involves the construction of a transfor-
mation ¢, from the computational space £ to the physical space x = ¢(&) [40].
There are two basic types of approaches to accomplish this. First, there are
locally based approaches where z is computed via minimization of a variational
form. The minimization procedure often requires the solution of nonlinear sys-
tems which can be costly. The second group of grid deformation approaches
are velocity based which means that a mesh velocity field is computed which
transports the grid nodes to their new locations. There are several advantages
to the latter method of which the main ones are the following:

e Only the solution of linear Poisson problems on fixed meshes are required.

e Monitor functions can be constructed quite freely; either directly from
error distributions or by choosing other error indicators.

e Mesh tangling can be prevented.
e The mesh topology is never changed through the deformation procedure.

Given the area distribution of the undeformed mesh g(z), and a monitor
function/size distribution f(x) for the target grid, then the transformation ¢
can be computed with the velocity based method from the following four steps:

98 CHAPTER 7. STATE OF THE ART

1. Compute the two scale factors c; and ¢, for the given monitor function
f(x) > 0 and the area distribution g(z) so that

1 1
cf/ﬂm dx:cg/gmdx:mL

where Q C R? is the computational domain. Let f and ¢ denote the
reciprocals of the scaled functions f and g, that is,

2. Compute a grid-velocity vector field v : — R? by satisfying the following
linear Poisson equation

—div(v(z)) = f(z) —§(z), €Q, and v(z)-n=0, zecdQ,

where n is the outer normal vector of the domain boundary 0f2, which
may consist of several boundary components.

3. For each grid point x, solve the following ODE system

onl) o), 0<t<1, p0) =z
with
n(y,s) == v) , y€Q, s€0,1].

sfy) + (1-9)3(y)

4. Evaluate the following transformation to get the new updated grid points
¢(z) == p(z,1).

For more detailed discussions regarding various implementation issues with
this grid deformation method the reader is referred to Grajewski et al. [40]. In
addition, further improvements can potentially be achieved by aligning the cell
edges with the internal interfaces [48].

Monitor function

The monitor function f should describe the absolute mesh size distribution of
the target grid. Typically f is chosen as

f(z) = min{l, max {expr,e}}

so that f is bounded between [e, 1] with expr determining the grid size distri-
bution in the transition area.

The proper choice of monitor function expression expr is an essential part
of maximizing the effect of grid deformation, since the movement of grid points
should result in a reduction of error. It is reasonable to choose expr from infor-
mation gathered from error indicators, defect vectors, and solution gradients.

7.3. FUTURE PROSPECTS 99

For problems containing moving interfaces, such as two-phase flows, there is
another option, and that is to use the assumption that errors will be introduced
mainly from the interface regions. This assumption is particularly valid for
Eulerian interface tracking methods where the interfaces are regularized and
smoothed out over several cells. The monitor function expression can thus be
constructed by taking the shortest distance to the interface, that is a distance
function, which thus concentrates the grid points near the interface. Another
option is to use information about the curvature of the interface x since regions
where curvature is high naturally need higher resolution. A linear combination
can possibly be the best option, that is

f=T(elo(@)], k().

This approach of constructing the monitor function makes the level set method
ideally suited to use as an interface tracking algorithm, since both the distance
function and curvature are easy to recover and are also defined globally.

Example: Static bubble

To test the influence of grid deformation on a simple fluid flow problem the
static bubble test case used in the Chapter 5 is revisited. This test models
a perfectly stationary two dimensional bubble with radius » = 0.25 in a unit
square which, according to the Laplace-Young law, should have a pressure inside
equal to pin, = pout + 0 /7. The velocity field should ideally be zero everywhere
since the bubble is stationary, but due to the numerical discretization so called
spurious velocity currents will appear in the vicinity of the interface.

1

il

—
=
Iy

| T
i3

Figure 7.9: Magnitude of spurious velocities for a static bubble with
grid deformation (right) and without (left).

Figure 7.9 shows the resulting magnitude of the velocity field with and with-
out grid deformation (the same scaling is used in both figures). Both the spatial
extent and magnitude of the spurious velocities decrease as the cells are con-
centrated around the interface. In Table 7.7 the velocity and pressure errors in
the maximum norm are given. With the adapted grid the velocity error was
reduced by a factor of 2-3 and the pressure with factor of 2-5. It is hard to

100 CHAPTER 7. STATE OF THE ART

judge the convergence properties with grid deformation since the cell sizes are
not controlled in an absolute way. The most convincing way to illustrate the
potential of the this method is to look at the pressure jump in Figure 7.10 which
clearly shows how much sharper it becomes with an adapted grid.

Grid level 3 4 5 6

Tensor product grid
U error 3.7-107% 1.1-107% 1.0-107% 5.6-1073
P error 5.583% 1.433% 0.212% 0.037%
Adapted grid
U error 2.0-107% 7.3-107% 35.107% 1.8-107°
P error 2.969% 0.261% 0.042% 0.013%

Table 7.7: Velocity and pressure errors with and without grid adaption.

i

i

Figure 7.10: Pressure field for a static bubble with (right) and without
(left) grid deformation.

7.3.2 ALE formulation

The grid deformation methodology, although having potential to significantly
increase accuracy while keeping the computational costs low, introduces an ad-
ditional difficulty for time dependent problems. Since the grid nodes are moving
the computed solution values will not match up with the new node positions.
One approach to account for this discrepancy is to use interpolation or some
form of projection. This will in most cases introduce various degrees of inter-
polation errors which with time can accumulate and become quite significant.
A more common approach is what is referred to as the Arbitrary Lagrangian
Eulerian method, or ALE for short. The essence of the ALE method is to
reformulate the governing equations so that they account for the grid movement
in an independent way. The easiest and most convenient way to do this is to

7.3. FUTURE PROSPECTS 101

simply subtract the grid velocity w from the convective velocities, which for a
typical discretized problem will look like

[MnJrl + AtAnJrl(wnJrl)] unJrl _ anrl7

bn+1 —_ MnJrlun _|_ AtfnJrl. (71)
Here M! is the mass matrix corresponding to the domain Q;, and A'(w) rep-
resents a system matrix. For a typical convection and diffusion problem in
non-conservative formulation, discretized with the finite element method, A'(w)
takes the form

Al(w) = /Ql vV - Vg + ((u — w) - V) v102 dQ

where v represents the diffusion coefficient, u the convective velocities, and vy
and vy the finite element trial and test function spaces, respectively.

The ALE scheme (7.1) is simple to implement but only the first order equiv-
alent of the backward Euler time stepping method [33, 70]. More accurate
schemes requires a more elaborate construction, as for example the following
conservative 2nd order scheme [8]

[Mn—i-l T O5At (An—i-l(wn-i—l) _ M3+1(Wn+1)ﬂ un—i—l _ bn—i—l,
b = (M — 0.5A¢ (A (W) — ME(w™)] u”

+ 05AL(f"F 4+ 7). (7.2)

Here M!

(W) is a mass matrix weighted with the divergence of the grid velocity,
that is

M) = [(7w, de

Example: Interface tracking

The combination of the grid deformation and ALE methods are here applied to
the standing vortex test case by Rider and Kothe [86]. This interface tracking
test consists of convecting a circle with radius 0.15 centered at (0.5,0.5) in a
unit square. The velocity field used to deform the circle is given by

u = —2sin®(7x) sin(my) cos(my), v = 2sin(mz) sin?(7y) cos(rx)

which deforms the interface in a circular pattern forming a thinning spiral. After
the interface reaches the point of maximum deformation at ¢t = tepq/2 the flow
is reversed to attempt to exactly recover the initial state. This time-reversal
is accomplished by multiplying the velocity field by cos(nt/tenq). The initial
and intermediate (¢ = 2) reference solutions for the following simulations with
tend = 4 can be seen in Figure 7.11.

Figure 7.12 shows the computed interface shapes for a fixed tensor product
grid, and also the results for the same grid dynamically adapted with subse-
quent application of ALE schemes (7.1) and (7.2). The results without grid

102 CHAPTER 7. STATE OF THE ART

Figure 7.11: Intermediate (blue) and final (green) reference solutions
for convection of a circle with a standing vortex.

adaption do not look particularly promising. The intermediate solution is not
smooth and seems to have lost a bit of mass in the tail section (Figure 7.12(a)).
The final solution shown in Figure 7.12(b) is also very perturbed and does not
resemble a circle at all. Both calculations with grid adaption and ALE look far
more promising. From comparing the intermediate results (Figures 7.12(c) and
7.12(e)) it is clear that the 2nd order scheme preserves the tail much better. As
for the final shapes (Figures 7.12(d) and 7.12(f)) the 1st order scheme generates
a smoother result while the shape from the 2nd order scheme is more jagged.
One should add that calculations on finer grids produced much better results
for the 2nd order scheme, a near perfect circle at the final time, while for the
1st order method this was not the case.

The results are quantitatively summarized in Table 7.8. One can see that
while both ALE schemes improve on the final circularity (which should be equal
to 1 if the initial state has been recovered perfectly), the 1st order ALE scheme
actually leads to a mass loss which is greater than that for the non adapted sim-
ulations. The 1st order scheme should therefore be used with extreme caution
in contrast to the 2nd order scheme which showed improvements for all grid
levels.

Scheme 1/h Aoy ¢(t = tend)

No grid adaption 20 0.01532 0.60584
40 0.01288 0.71031
80 0.00390 0.96438

Grid adaption with 20 0.11688 0.96329
1st order ALE scheme 40 0.05428 0.99110
80 0.01212 0.99829

Grid adaption with 20 0.02879 0.73490
2nd order ALE scheme 40 0.00093 0.98078
80 0.00043 0.99881

Table 7.8: Errors in mass/area (Aer) and the computed circularity at
the final time (¢(¢ = tena)) for the standing vortex interface
tracking test case.

7.3. FUTURE PROSPECTS 103

(a) Interm. shape (without adaption) (b) Final shape (without adaption)

T

/7
oS TN,
AT
AR
AN

(¢) Interm. shape (1st order ALE scheme) (d) Final shape (1st order ALE scheme)

(e) Interm. shape (2nd order ALE scheme) (f) Final shape (2nd order ALE scheme)

Figure 7.12: Intermediate and final shapes for the standing vortex in-
terface tracking test case with and without grid adaption.

104 CHAPTER 7. STATE OF THE ART

Example: Rising bubble

The grid deformation approach with ALE was also applied to the first rising bub-
ble benchmark problem. In contrast to the example above, this test also includes
the flow solver which is strongly coupled with the interface tracking algorithm.
The introduction of the ALE corrections are unfortunately not enough to com-
pletely account for the grid movement in this case, and one must thus introduce
supplemental correction mechanisms. One example of the ensuing additional
complexities is the treatment of the density and viscosity fields which now have
to be interpolated after the grid has been moved. The deformed meshes and
bubble shapes for the initial and final times can be seen in Figure 7.13.

I 1]
i il i []
il [[11] |
H [T [T1] o
It | F T
\ Hl HH II \l\ll\l\l |\|||||l|”
HHAN i e
LT | [
RRRARRANA LT
C [T ES
il [[1] [
] [T [[] L
B T
pim
£ : i dai :
= i [1]
] |
e i
Bt
FHHHRE
(a) t=0 (b) t=3

Figure 7.13: Grid and bubble shapes for a rising bubble simulation with
grid deformation and ALE.

The resulting curves for the circularity can be seen in Figure 7.14. The
circularity computed with grid deformation and ALE was improved for times
less than t=0.7 in comparison with the results from the non-deformed grid with
the same number of cells. However, around the minimum the curve shows a
slight increase in error, predicting a somewhat larger circularity. To find some
reductions in accuracy is not so surprising considering the low level of error
already achieved with the tensor product grid, and also the amount of additional
uncertainties introduced by the grid deformation/ALE approach.

7.3. FUTURE PROSPECTS 105

1.02¢
—¢— L4 - Def.+ALE
v L4 - No def.
1s —&— | 7 - No def.
0.98r
Pl
5 0.96¢
=
e
© 0.94
0.921
0.9¢
0 0.5 1 1.5 2 2.5 3

Time

Figure 7.14: Computed circularity with and without grid deformation
and ALE, for a rising bubble benchmark problem.

7.3.3 Other potentially beneficial components
Particle level set method

The particle level set method, originally introduced by Enright et al. [26], has
the potential to improve the resolution significantly over the standard level set
method. The idea is to add signed massless particles in a band around the in-
terfaces which then can be passively transported by the flow. Since the particle
convection generally is more accurate, and inexpensive to perform, than for the
level set field one should use information from them to correct the level set func-
tion. Thus, if a particle ends up on the wrong side of the interface, the level set
function is incorrectly represented on the given cell and should be reconstructed
with the help of the surrounding particles. Xu implemented this approach in
a code based on the presented methodology, and showed how its inclusion can
result in very significant improvements in accuracy and mass conservation for
pure interface tracking problems [116, 117]. The particle level set method can
also theoretically be combined with the grid adaption methodology presented
above to yield a method capable of resolving interfaces very accurately.

Pressure separation

Pressure separation is a technique to improve the velocity approximation in
finite element solutions of the Navier-Stokes equations [23, 36]. By recognizing
that the velocity error generally scales as Ch*T1(|u|gr+1 + Re|p|gx), where C
is a constant and k is the finite element approximation order, one sees that if
the pressure norm or Re is large then the error will be dominated by Re|p|«.
The idea is now to adjust the pressure so that the corresponding norm will be
small, thus one should solve the modified system

106 CHAPTER 7. STATE OF THE ART

ou
P24 T) = T pu) 49 (1T V) 4 T
Vu = 0

instead of the usual Navier-Stokes equations, where pg., is a known function
so that |[p — psep| g+ is minimized. Different ways of constructing pse, is given
in [36] together with some simple tests proving the validity of the approach.
A more comprehensive discussion with more application oriented tests can be
found in Turek et al. [105] from where it is clear this technique shows good
potential for single phase flows. They also applied pressure separation together
with edge stabilization to a static bubble and observed improvements in both
the pressure and velocity. More intensive studies must be undertaken to be
able to draw conclusions on the applicability of pressure separation to general
two-phase flow simulations.

Higher order elements

The methodology described in this thesis is quite general but has been imple-
mented with first order finite elements. This discretization is very computation-
ally efficient but does not use the finite element method to its fullest potential.
Higher order elements, such as Q2 P; for the flow variables, allows for signifi-
cantly more accurate solutions, in particular in regions where the solutions are
reasonably smooth [75]. Tt is also desirable to use the same finite element space
for the velocities and the level set field, and thereby simplifying interpolation
between the two.

The simulations with Comsol Multiphysics in section 7.1.1 above, utilized
this suggested approach, namely Q2 P, basis functions for the velocity and pres-
sure and Qo for the level set field. The corresponding simulations were per-
formed without any artificial stabilization, mass conservation, or reinitialization
of the level set field. Taking this into consideration one must say that the re-
sults were surprisingly accurate and shows that, despite the performance issues,
higher order elements have a great potential.

Assembly

The matrix assembly in finite element simulations is a necessary but very time
consuming task, especially in multiphase flow simulations (see also Appendix A).
Aside from fully optimizing the assembly routines manually in the code, one
should consider what can be done to reduce the amount of required computa-
tions by streamlining the assembly algorithm on an algorithmic level. One could
for example use the approach by Kirby et al. [57] who applies a heuristic graph
algorithm to find redundant and similar computations and thereby reducing the
total number of involved operations.

A more natural way, with respect to assembly of mass and diffusion matrices
in the case of two-phase flows, is to recognize that only the cells containing and
surrounding a discontinuity will need to be updated. One can thus compute the
linear matrices without the discontinuities once after which it would be sufficient
to correct the subset of matrix entries corresponding to cells containing interface
segments [115]. In this way a lot of computational effort can be saved since it is

7.3. FUTURE PROSPECTS 107

quite rare to have interfaces in more than 10% of all grid cells. This approach
does not apply to the nonlinear convective term in the Navier-Stokes equations
which always have to be reassembled (assuming that no extrapolation in time
is used). In the absence of a complexity reducing method to treat this case one
can always resort to parallelization.

Parallelization

With the advent of dual- and multi-core processors discussions do not in general
contain the question “if to parallelize” a code anymore, but more often “how”
to do it properly. There are currently two main parallelization approaches avail-
able, shared memory with OpenMP and distributed memory with MPI, which
both have their respective advantages and disadvantages. OpenMP is limited
to the available memory and number of processors/cores in the machine, but is
easy to include in virtually any code. One has to be careful when implementing,
since writing to shared variables, such as matrices in the assembly, will result
in the loss of data when two or more write operations try to access the same
location at the same time. MPI on the other hand does not have this problem
since memory and work load is shared between a number of computers at the
cost of a more complicated implementation. The application in question must
eventually dictate which approach is the most suitable.

108 CHAPTER 7. STATE OF THE ART

Chapter

Summary and outlook

In this thesis appropriate methods for numerical simulation of flows with immis-
cible fluids have been discussed. An approach has been presented which couples
a flow solver, based on the discrete projection method, with the level set method
for interface tracking. An efficient finite element discretization in space was cho-
sen with nonconforming Q1 Qo Rannacher-Turek elements for the flow variables
and conforming ()1 basis functions for the level set field. In time, the implicit
f-scheme was applied, allowing for both 1st and 2nd order accuracies.

A semi-implicit approach to implementing surface tension effects was ad-
ditionally presented which in contrast to traditional explicit implementations
allows for significantly larger time steps to be taken. In this new method the
interfaces are represented implicitly in space through regularized delta func-
tions, which is especially attractive for higher order discretizations in 3D where
explicit interface reconstruction can be very difficult. The new methodology is
particularly suited for finite element discretizations combined with the level set
method due to the existence of global distance, normal, and curvature fields,
which are used in the construction of the regularized delta functions. The per-
formance of the new method was tested on three numerical examples, which
showed that the capillary time step restriction could be exceeded by up to 80
times in some cases.

The usual approach to validation of multiphase flow codes is to look at the
“picture norm”. This is rather limiting since it does not allow one to establish
an absolute error level, which is needed to be able to show convergence. Two
benchmark test cases have thus been defined for strict quantitative evaluation
and comparison of two-phase flow codes. A benchmarking initiative has also
been started for which three independent research groups have participated by
calculating the benchmarks. It was shown that grid independent reference values
of the defined quantities could be obtained for the simpler of the two cases, a
bubble undergoing moderate deformation, while the other case including break
up and separation proved far more difficult.

110 CHAPTER 8. SUMMARY AND OUTLOOK

The usefulness of the benchmarks was shown when comparing two com-
mercial CFD tools (Comsol Multiphysics and Ansys Fluent) with the academic
TP2D code, which is based on the presented methodology. It was clear that
neither of the commercial tools managed to achieve a really strong convergence
towards the reference solution. The developed code was on the other hand faster
and more importantly much more accurate. It is notable that it only took 15
CPU seconds for the TP2D code to compute a solution better than anything
that the commercial codes could produce.

The presented methodology and code has a strong future potential to be
even more accurate, with the inclusion of higher order elements, grid adap-
tion, narrow band and particle level set, and pressure separation methods. At
the same time it could be made to run much faster by optimizing the finite
element assembly step. Since the developed code was restricted to two dimen-
sions a natural step in its development is to extend it to axisymmetry and full
3D. This also holds true benchmarks which then possibly could be compared
with experimental data. However, this step will invariably require the aid of
parallelization, since already in 2D it can take up to 1 month to calculate a
benchmark reference solution. How to best achieve speedup with parallelization
is also something that is left for the future.

Appendix

Solver structure

In Chapters 2 to 5 different components needed to numerically simulate two-
phase flows have been presented and discussed. In the solution process these
components need to be arranged and called upon in a suitable and efficient
manner, what is called a solver structure. The following appendix will cover the
construction of an appropriate solver structure, and various efficiency aspects
relating to it.

A.1 Solution procedure

Both the solution of the Navier-Stokes equations and any additional interface
tracking algorithm can be treated in a fully coupled way, that is to set up and
solve the following large system for all unknowns:

p(0) <%—ltl + (u- V)u) =-Vp+ V- (u(¢)(Vu+ VuT)) +f,
f = p(d)g + or(P)n(p)d(e), (A.1)
V-u=0,
% +(u-V)p=0.

This may be convenient and robust, but not efficient from a computational
point of view. It is generally always less costly to solve, that is to invert, a
series of smaller matrix systems than a single large one. The discrete projec-
tion method presented in Chapter 3 allows for this by separating the velocity
computations from the pressure.

The interface tracking algorithm, in this case the level set equation, should
theoretically also be included implicitly so that the interfaces, which must move
with the velocity field, are updated continuously. In practice this is usually not
very convenient since the density and viscosity fields, gravity force, and surface
tension in (A.1) all depend on the position of the interfaces. The velocity field
in the trilinear form (4.4) convecting the interfaces will also have to be handled
explicitly.

112 APPENDIX A. SOLVER STRUCTURE

Considering all this it is quite natural to add the interface tracking algo-
rithm explicitly, updating the positions of the interfaces after the new velocity
and pressure fields have been established. This will lead to a solver structure of
the following form:

Solver structure

e Initialization

e Time stepping loop:
For "1 € [0, 7], and time step At = ¢"*1 —¢" do

1. Discrete projection method:

Given I' = I'™ update the velocity field u"*! and pressure p"*+!.
2. Interface tracking:

Given u = u™t! update the interface I'"*1.

3. Postprocessing

The initialization will include input of parameters, grid generation, and alloca-
tion of memory space for arrays, vectors, and matrices. It is advantageous to
include the discrete projection method and interface tracking, steps 1 and 2,
modularly so that the code easily can be extended if one for example wants to
include chemical reactions or heat transfer and solidification effects. Steps 1-3
may be repeated iteratively in each time step until convergence in a suitable
norm has been reached. The postprocessing step contains routines for graphical
and quantitative output, and time stepping control. Local grid adaption and
grid deformation techniques can either be added in this step, or between steps
1 and 2, depending on which variables are the least sensitive to interpolation.

For a typical simulation the flow solver step will consume 80% or more
of the total CPU time. The cost of the interface tracking can potentially be
made completely negligible assuming that appropriate algorithms are chosen
(for example the narrow band level set method). Let’s look in more detail which
components are required in the different modules and what their corresponding
computational overhead is.

A.1.1 Discrete projection method

The solution of the flow variables, even when using the discrete projection
method, is the most costly component and hence should be given the most
attention. A corresponding module (treating step 1 above) will have the follow-
ing structure:

A.1. SOLUTION PROCEDURE 113

Flow solver: Discrete projection method module
1. Assembly of mass and diffusion matrices.
2. Generation of the projection matrix.

Assembly of RHS (gravity and surface tension effects).

- W

Assembly of convective terms and calculation of initial defect.
5. Defect correction loop for the momentum equations:

a) Assemble convective terms and generate iteration matrices.

(
(

)
b) Solve the linearized momentum equations.
(c) Calculate new defect.

(d) Check for convergence (go to step 5a if necessary).
6. Calculate RHS for the pressure Poisson equation.
7. Solve the pressure Poisson equation.

8. Update pressure and velocity fields.

In this algorithmic structure, the mass and diffusion matrices are assembled
once outside the defect loop. This saves some computational effort, in direct
proportion to the number of required defect iterations, compared to using a
single routine to assemble everything in the defect loop. Boundary conditions
must also be appropriately applied to the momentum equations at flow inlets
and wall boundaries.

The relative cost of each component in the flow solver was examined by
computing a typical rising bubble problem (benchmark test case 1 described in
Chapter 6). Table A.1 shows the relative costs for different levels of grid refine-
ment. The boundary condition enforcement (BC), defect calculations (DFKT),
and linear combinations of vectors and arrays (LC) were not major contributing
parts, together comprising 13-19% of the total computational effort. The most
expensive part was instead the finite element matrix assembly (ASM) taking
roughly 50% of the CPU time. Of the different assembly steps, the cost of
assembling the nonlinear convective contributions were the highest since 2-3 de-
fect iterations were required for convergence to be achieved. The solution of the
momentum equations (SLV(U)) was restricted to two grid levels, and employed
SOR as coarse grid solver and smoother (with 1 smoothing step). This resulted
in a well balanced multigrid scheme where no component was dominating. The
solution of the pressure Poisson equation on the other hand required the use
of all available grid levels and 4 SOR smoothing steps which clearly is why
the smoothing needed about 60% of the solving effort. All together the solvers
required about 20-30% of the total computational effort of which about three
quarters were due to the solution of the momentum equations.

114 APPENDIX A. SOLVER STRUCTURE

Level 4 5 6

BC 0.3% 0.2% 0.1%

DFKT 4.5% 6.0% 7.0%

LC 8.7% 11.1% 11.0%

ASM 56.1% 50.3% 47.6%

Mass. matrix 14.7% 12.0% 11.5%
Diff. matrix 28.4% 22.1% 19.7%
Conv. matrix 44.5% 47.2% 47.5%
Linear comb. 12.4% 18.7% 21.2%
SLV (U) 17.8% 23.5% 27.3%
Smoother 26.3% 25.6% 25.6%
Solver 8.3% 7.5% 7.2%
Defect calc. 37.7% 39.4% 40.5%
Prolongation 24.6% 25.4% 25.1%
Restriction 3.0% 2.0% 1.6%
SIV(P) 9.7% 7.1% 5.6%
Smoother 57.1% 60.0% 58.4%
Solver 2.6% 1.0% 0.3%
Defect calc. 14.4% 13.1% 13.1%
Prolongation 15.4% 15.3% 16.8%
Restriction 9.1% 10.4% 11.3%

Table A.1: Distribution of computational effort for the flow module
(BC-Boundary conditions, DFKT-Defect calculation, LC-
Linear combinations, ASM-Matrix assembly, SLV(U/P)-
Solving for U or P).

A.1.2 Interface tracking

An interface tracking module for solving the level set field is in theory quite easy
to construct. The governing equation is a standard convection diffusion PDE
transporting a relatively smooth scalar property, and thus no special tools need
to be developed.

The most costly component will again be the assembly, even though only
the convective transport operator needs to be reassembled in each time step.
The velocity field in the trilinear transport operator, which in this case comes
from another finite element space, should be evaluated directly in the cubature
points. This is costly since it will require a higher order quadrature rule (up to
fourth order in our case).

Additionally routines for reinitialization, mass conservation, and normal and
curvature recovery may be added in a postprocessing step. The interface track-
ing module with the level set method will in detail look like the following:

SOLUTION PROCEDURE

115

Interface tracking: Level set module

1. Assembly of convection matrix.

2. Generation of RHS.

3. Calculation of initial defect.

4. Defect correction loop for the level set equations:

a) Assemble contributions for artificial stabilization.

(a)
(b)
()

)

(d) Check for convergence (go to step 4a if necessary).

Solve the level set equation.

Calculate new defect.

5. Apply reinitialization and mass conservation.

6. Recover normal and curvature fields.

Note that the mass matrix is assembled once and then reused (under the as-
sumption that the grid is fixed). The defect correction loop can also be omitted
if the applied convective stabilization is linear. This scheme applied to the rising
bubble test problem results in the following distribution of the computational
costs (see Table A.2).

Level 4 5 6

LC 1.1% 0.9% 0.5%

ASM 72.3% 68.0% 63.9%

Conv. matrix 55.4% 55.9% 49.0%
Art. Stab. 7.0% 5.1% 5.4%
Asm-LC+MV. 37.6% 39.0% 45.7%
SLV 0.9% 0.8% 0.5%

POST 25.0% 30.0% 35.0%

Reinit. 42.0% 54.0% 68.7%
Mass cons. 29.7% 20.5% 12.9%
Grad. recov. 14.4% 12.9% 9.8%
Interf. info 15.0% 13.9% 9.6%

Table A.2: Distribution of computational effort for the level set mod-
ule (LC-Linear combinations, ASM-Matrix assembly, SLV-
Solving, POST-Additional post processing).

116 APPENDIX A. SOLVER STRUCTURE

The linear combinations (LC) and more notably the solving (SLV) steps were
completely negligible with respect to computational effort. In the solution step
the preconditioning matrix was approximated with the lumped mass matrix,
and thus cost virtually nothing to invert. The expensive part was as expected
the finite element assembly (ASM) demanding 64%-72% of the total CPU time.
The cheapest part of the assembly step was the addition of artificial stabiliza-
tion, in this case FEM-TVD. The assembly of the convective matrix and linear
combinations/matrix vector operations, used in the assembly, equally shared
the rest of the time. Of the postprocessing (POST) operations, the fast march-
ing reinitialization required the most effort, clearly costing more as the grid was
refined (scaling as O(NlogN)). The rest of the postprocessing time was shared
between the artificial mass conservation, normal and curvature recovery, and
general interface related routines.

Bibliography

[1]

[10]

D. ADALSTEINSSON AND J. A. SETHIAN, The fast construction of exten-
sion welocities in level set methods, J. Comp. Phys., Volume 148, 2-22,
1999.

S. AKANNI, T. LARSSON, AND C. BIENZ, Numerical modelling of the aero-
dynamic flow field about a formula one car, Fluent User Group Meeting,
Germany, 2001.

E. BANSCH, Numerical Methods for the Instationary Navier-Stokes Equa-

tions with a Free Capillary Surface, Habilitation Thesis, Universitit
Freiburg, 1998.

E. BANSCH, Finite element discretization of the Navier-Stokes equations
with a free capillary surface, Numer. Math., Volume 88, Issue 2, 203-235,
2001.

E. BANscH, C. P. BERG, AND A. OHLHOFF, Uniarial extensional flows
in liquid bridges, Journal of Fluid Mechanics, Volume 521, 353-379, 2004.

C. BiENz, T. LARSSON, T. SaTo, AND B. ULLBRAND, In front of the
grid - CFD at Sauber Petronas F1 leading the aerodynamic development,
1st European Automotive CFD Conference, Bingen, Germany, 2003.

H. BLuwMm, J. HARIG, S. MULLER, AND S. TUREK, FEAT2D Finite element
analysis tools, User Manual, Release 1.3, Heidelberg, 1992.

D. Borri AND L. GASTALDI, Stability and geometric conservation laws
for ALE formulations, Comput. Methods Appl. Mech. Engrg., Volume 193,
4717-4739, 2004, doi: 10.1016/j.cma.2004.02.020.

J. U. BRACKBILL, D. B. KOTHE, AND C. ZEMACH, A continuum method
for modeling surface tension, J. Comp. Phys., Volume 100, Issue 2, 335-354,
1982, doi: 10.1016/0021-9991(92)90240-Y.

M. O. BRrISTEAU, R. GLOWINSKI, AND J. PERIAUX, Numerical methods

for the Navier-Stokes equations. Application to the simulation of compress-
ible and incompressible flows, Comp. Phys., Volume 6, 73-188, 1987.

118

[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

BIBLIOGRAPHY

P. N. BrRowN, A. C. HINDMARSH, AND L. R. PETZOLD, Using Krylov
methods in the solution of large-scale differential-algebraic systems, SIAM
J. Sci. Comput., Volume 15, 14671488, 1994.

E. BurMAN AND P. HANSBO, Edge stabilization for Galerkin approxi-
mations of convection-diffusion-reaction problems, Computer Methods in
Applied Mechanics and Engineering, Volume 193, Issues 15-16, 14371453,
2004, doi: 10.1016/j.cma.2003.12.032 .

E. BURMAN AND N. PAROLINI, Subgrid edge stabilization for transport
equations, EPFL-TACS report 09.2005, 2005.

E. BURMAN AND N. PAROLINI, A new reinitialization procedure for the
finite element approximation of the level set equation, EPFL-TACS report
13.2005, 2005.

D. L. Caopp, Some Improvements of the fast marching method,
SIAM J. Sci. Comput., Volume 23, Issue 1, 230-244, 2001, doi:
10.1137/S106482750037617X.

L. CHEN, S. V. GARIMELLA, J. A. REIZES, AND E. LEONARDI, The de-

velopment of a bubble rising in a viscous fluid, Journal of Fluid Mechanics,
Volume 387, 61-96, 1999.

T. CHEN, P. D. MINEV, AND K. NANDAKUMAR, A projection scheme for

incompressible multiphase flow using adaptive Fulerian grid, Int. J. Num.
Meth. Fluids, Volume 45, Issue 1, 1-19, 2001, doi: 10.1002/fld.591.

A. M. CHRrISTON, P. M. GRESHO, AND S. B. SuTtTON, Computational
predictability of time-dependent natural convection flows in enclosures (in-
cluding a benchmark solution), Int. J. Num. Meth. Fluids, Volume 40, Issue
8, 953-980, 2002, doi: 10.1002/fld.395.

R. CrirT, J. R. GRACE, AND M. E. WEBER, Bubbles, Drops and Parti-
cles, Academic Press: New York, 1978.

Millennium Prize Problems, Available from the Clay Math-
ematics Institute of Cambridge, Massachusetts (CMI) site:
http://www.claymath.org/millennium/.

T. A. Davis, Algorithm 832: UMFPACK, an unsymmetric-pattern multi-
frontal method, ACM Transactions on Mathematical Software, Volume 30,
Issue 2, 196-199, 2004.

D. A. D1 PiETRO, S. LO FORTE, AND N. PAROLINI, Mass pre-
serving finite element implementations of the level set method, Applied
Numerical Mathematics, Volume 56, Issue 9, 1179-1195, 2006, doi:
10.1016/j.apnum.2006.03.003.

O. DOROK, Improved accuracy of a finite element discretization for solv-
ing the Boussinesq approzimation of the Navier-Stokes equations, Preprint
32/94, Otto-von-Guericke-Universitdt Magdeburg, Fakultdt fiir Mathe-
matik, 1994.

BIBLIOGRAPHY 119

[24]

[25]

[26]

[27]

[28]

G. Dz1UK, An algorithm for evolutionary surfaces, Numer. Math, Volume
58, Issue 6, 603611, 1991, doi: 10.1007/BF01385643.

B. EncQuisT, A.-K. TORNBERG, AND R. TSAl, Discretization of Dirac
delta functions in level set methods, J. Comput. Phys., Volume 207, 28-51,
2005.

D. EnrIGHT, R. FEDKIW, J. FERZIGER, AND I. MITCHELL, A hybrid

particle level set method for improved interface capturing, J. Comput. Phys.,
Volume 183, 83-116, 2002.

D. ERICKSON, Towards numerical prototyping of labs-on-chip: modeling
for integrated microfluidic devices, Microfluidics and Nanofluidics, Volume
1, Issue 4, 301-318, 2005, doi:10.1007/s10404-005-0041-z.

R. FEDKIW AND X.-D. Liu, The Ghost Fluid Method for Viscous Flows,
Innovative Methods for Numerical Solutions of Partial Differential Equa-
tions, edited by M. Hafez and J.-J. Chattot, 111-143, World Scientific
Publishing, New Jersey, 2002.

X. FENG, Y. HE, aND C. L1u, Analysis of finite element approximations
of a phase field model for two-phase fluids, Math. Comp., Volume 76, 539—
571, 2007, doi: 10.1090/S0025-5718-06-01915-6.

C. A. J. FLETCHER, The group finite element formulation, Computer
Methods in Applied Mechanics and Engineering, Volume 37, Issue 2, 225—
244, 1983, doi: 10.1016,/0045-7825(83)90122-6.

FLUENT 6.3 Getting Started Guide, Fluent Inc. 2006.

Fluent announces first international CFD conference dedicated to the oil €
gas industry, Press release, Fluent Europe Ltd., Sheffield, UK, 7th April
2006.

L. FORMAGGIA AND F. NOBILE, A stability analysis for the arbitrary La-

grangian Eulerian formulation with finite elements, East-West J. Numer.
Math., Volume 7, Issue 2, 105-131, 1999.

S. GALLOT, D. HULIN, AND J. LAFONTAINE, Riemannian Geometry, 3rd
ed., Springer-Verlag, 2004, ISBN: 3-540-20493-8.

S. GANESAN, Finite Element Methods on Moving Meshes for Free Surface
and Interface Flows, PhD Thesis, Otto-von-Guericke-Universitét, Fakultét
fiir Mathematik, Magdeburg, 2006, published as book by docupoint Verlag
Magdeburg, ISBN: 3-939665-06-1.

S. GANESAN AND V. JOHN, Pressure separation—a technique for improv-
ing the velocity error in finite element discretizations of the Navier-Stokes
equations, Applied Mathematics and Computation, Volume 165, 275-290,
2005.

S. GANESAN AND L. TOBISKA, Finite element simulation of a droplet
impinging a horizontal surface, Proceedings of Algoritmy, 1-11, 2005.

120

[38]

[47]

[48]

[49]

[50]

BIBLIOGRAPHY

S. GANESAN, G. MATTHIES, AND L. TOBISKA, On spurious velocities in
incompressible flow problems with interfaces, Computer Methods in Applied
Mechanics and Engineering, Volume 196, Issue 7, 1193-1202, 2007, doi:
10.1016/j.cma.2006.08.018.

V. GIRAULT AND P. A. RAVIART, Finite Element Methods for Navier-
Stokes equations, Springer-Verlag, 1986.

M. GRAJEWSKI, M. KOESTER, S. KILIAN, AND S. TUREK, Numerical
analysis and practical aspects of a robust and efficient grid deformation
method in the finite element context, Ergebnisberichte des Instituts fir
Angewandte Mathematik, Nummer 294, FB Mathematik, Universitit Dort-
mund, 2005.

S. Gross, V. REICHELT, AND A. REUSKEN, A finite element based level
set method for two-phase incompressible flows, IGPM-Report 243, RWTH
Aachen, 2004.

W. HACKBUSCH, Multi-Grid Methods and Applications, Springer-Verlag,
1985, ISBN: 0-387-12761-5.

M. HANKE, Benchmarking FEMLAB 3.0a: Laminar Flows in 2D, Royal
Institute of Technology (Stockholm), Report No. 2004:01, Department of
Numerical Analysis and Computer Science, Parallel and Scientific Comput-
ing Institute, 2004.

E. HinTON, T. Rock, AND O. C. ZIENKIEWICZ, A note on mass lumping
and related processes in the finite element method, Earthquake engineering
and structural dynamics, Volume 4, 245-249, 1976.

J. I. HocHSTEIN AND T. L. WiLLiaMS, An Implicit Surface Tension
Model, ATAA meeting papers, 599, 1996.

J. HRON AND S. TUREK, Proposal for numerical benchmarking of fluid-
structure interaction between an elastic object and laminar incompressible
flow, Bungartz, H.-J.; Schéfer, M., Lecture Notes in Computational Sci-
ence and Engineering, 53, 371-385, Fluid-Structure Interaction - Modelling,
Simulation, Optimization, Springer, 2006, ISBN: 3-540-34595-7.

T. J. R. HUGHES AND A. BROOKS, A multidimensional upwind scheme
with no crosswind diffusion, In T. J. R. Hughes, editor, Finite Element
Methods for Convection Dominated Flows, AMD, Volume 34, ASME, 19—
35. New York, 1979.

J. M. HymaN, S. Li, P. KNuPP, AND M. SHASHKOV, An algorithm for

aligning quadrilateral grid with internal boundaries, Journal of Computa-
tional Physics, Volume 163, 133-149, 2000, doi:10.1006/jcph.2000.6560.

S. HysiNG AND S. TUREK, The Eikonal equation: Numerical efficiency

vs. algorithmic complexity on quadrilateral grids, Proceedings of Algoritmy,
Conference on Scientific Computing, 22-31, 2005, ISBN: 80-227-2192-1.

S. HysING, A new implicit surface tension implementation for interfacial
flows, Int. J. Num. Meth. Fluids, Volume 51, Issue 6, 659-672, 2006, doi:
10.1002/ld.1147.

BIBLIOGRAPHY 121

[51]

[62]

[63]

S. HysiNG, S. TUuRek, D. KuzMmIN, N. PAROLINI, E. BURMAN, S. GANE-
SAN, AND L. TOBISKA, Proposal for quantitative benchmark computations
of bubble dynamics, Submitted to Int. J. Num. Meth. Fluids in 2007.

V. JOHN, Higher order finite element methods and multigrid solvers in a
benchmark problem for the 8D Navier-Stokes equations, Int. J. Num. Meth.
Fluids, Volume 40, 775-798, 2002.

V. JOHN, Reference values for drag and lift of a two-dimensional time
dependent flow around a cylinder, Int. J. Numer. Meth. Fluids, Volume 44,
777788, 2004.

V. JOHN AND G. MATTHIES, Higher-order finite element discretizations in
a benchmark problem for incompressible flows, Int. J. Num. Meth. Fluids,
Volume 37, Issue 8, 885-903, doi: 10.1002/fld.195.

V. JoHN AND G. MATTHIES, MooNMD - a program package based on
mapped finite element methods, Computing and Visualization in Science,
Volume 4, Issues 2-3, 163-170, 2004, doi: 10.1007/s00791-003-0120-1.

R. KIMMEL AND J. A. SETHIAN, Computing geodesic paths on manifolds,
Proceedings of National Academy of Sciences, Volume 95, Issue 15, 8431—
8435, 1998.

R. C. KirBY, M. KNEPLEY, A. LOGG, AND L. R. ScoTT, Optimizing
the evaluation of finite element matrices, STAM Journal on Scientific Com-
puting, Volume 27, Issue 3, 2005.

D. KuzMIN, On the design of general-purpose flux limiters for finite el-
ement schemes. I. Scalar convection, Journal of Computational Physics,
Volume 219, Issue 2, 513-531, 2006, doi: 10.1016/j.jcp.2006.03.034.

D. KuzMIN AND S. TUREK, High-resolution FEM-TVD schemes based on
a fully multidimensional fluz limiter, Journal of Computational Physics,
Volume 198, Issue 1, 131-158, 2004, doi: 10.1016/j.jcp.2004.01.015.

D. KuzMmIN, R. LOHNER, AND S. TUREK, Fluz-Corrected Transport: Prin-
ciples, Algorithms, and Applications, Scientific Computation, Springer,
2005, ISBN: 978-3-540-23730-3.

R. LEVY AND M. SHEARER, Comparison of two dynamic contact line mod-
els for driven thin liquid films, European Journal of Applied Mathematics,
Volume 15, 625-642, 2004.

Z. L1 AND K. IT0, The Immersed Interface Method - Numerical Solutions
of PDEs Involving Interfaces and Irregular Domains, SIAM series: Fron-
tiers in applied mathematics, 2006, ISBN: 0-89871-609-8.

H. Liu aND T. ZHOU, CFD-Based PEM fuel cell models and applications,
Technical Proceedings of the 2003 Nanotechnology Conference and Trade
Show, Volume 3, 463-466, Nano Science and Technology Institute, 2003,
ISBN: 0-9728422-2-5.

G. MATTHIES, Finite Element Methods for Free Boundary Value Problems
with Capillary Surfaces, PhD Thesis, Shaker Verlag, 2002.

122

[65]

[66]

[73]

[74]

[75]

[76]

[77]

BIBLIOGRAPHY

J. MARTIN AND W. MOYCE, An experimental study of the collapse of liquid
columns on a rigid horizontal plane, Philos. Trans. A 244, 312-324, 1952.

P. D. MiNnev, T. CHEN, AND K. NANDAKUMAR, A finite element
technique for multifluid incompressible flow using Fulerian grids, Jour-
nal of Computational Physics, Volume 187, Issue 1, 255-273, 2003, doi:
10.1016/S0021-9991(03)00098-6.

F. Mut, G. C. BUSCAGLIA, AND E. A. DARI, New mass-conserving algo-

rithm for level set redistancing on unstructured meshes, Journal of Applied
Mechanics, Volume 73, Issue 6, 1011-1016, 2006.

G. NABH, On Higher Order Methods for the Stationary Incompressible
Navier-Stokes Equations, PhD Thesis, Universitdat Heidelberg, Preprint
42/98, 1998.

B. D. NicuorLs AND C. W. Hirr, Methods for calculating multi-

dimensional, transient free surface flows past bodies, Proc. First Intern.
Conf. Num. Ship Hydrodynamics, Gaithersburg, ML, 1975.

F. NOBILE, Numerical Approzimation of Fluid-Structure Interaction Prob-
lems with Application to Haemodynamics, PhD Thesis, Number 2458, Ecole
Polytechnique Fédérale de Lausanne (EPFL), 2001.

C. E. NORMAN AND M. J. MIKSIS, Dynamics of a gas bubble rising in an
inclined channel at finite Reynolds number, Physics of Fluids, Volume 17,
Issue 2, 022102, 2005, doi: 10.1063/1.1842220.

S. OSHER AND J. A. SETHIAN, Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formulations, Jour-
nal of Computational Physics, Volume 79, Issue 1, 12-49, 1988, doi:
10.1016,/0021-9991(88)90002-2.

E. OLssON AND G. KREISS, A conservative level set method for two phase
flow, Journal of Computational Physics, Volume 210, Issue 1, 225-246,
2005, doi: 10.1016/j.jcp.2005.04.007.

E. OLssoN, G. KREISS, AND S. ZAHEDI, A conservative level set method
for two phase flow 11, Journal of Computational Physics, Volume 225, Issue
1, 785-807, 2007, doi: 10.1016/j.jcp.2006.12.027.

A. Ouazzi, Finite Element Simulation of Nonlinear Fluids with Applica-
tion to Granular Material and Powder, PhD Thesis, University of Dort-
mund, 2005.

A. Ouazzi AND S. TUREK, Efficient multigrid and data structures for
edge-oriented FEM stabilization, Preperint No. 306, Institute of applied
mathematics, Dortmund University, 2005.

N. PArROLINI, Computational Fluid pynamics for Naval Engineering Prob-
lems, PhD Thesis, Number 3138, Ecole Polytechnique Fédérale de Lau-
sanne (EPFL), 2004.

BIBLIOGRAPHY 123

[78]

[79]

[80]

[81]

N. PAROLINI AND E. BURMAN, A finite element level set method for viscous
free-surface flows, Applied and Industrial Mathematics in Italy, Proceed-
ings of SIMAT 2004, 417-427, World Scientific, 2005.

N. PAROLINI AND A. QUARTERONI, Mathematical models and numerical
simulations for the America’s Cup, Computer Methods in Applied Me-
chanics and Engineering, Volume 194, Issues 9-11, 1001-1026, 2005, doi:
10.1016/j.cma.2004.06.020.

P.-O. PERSsON AND G. STRANG, A simple mesh generator in
Matlab, SIAM Review, Volume 46, Issue 2, 329-345, 2004, doi:
10.1137/S0036144503429121.

C. S. PESKIN, Numerical analysis of blood flow in the heart, Jour-
nal of Computational Physics, Volume 25, Issue 3, 220-252, 1977, doi:
10.1016,/0021-9991(77)90100-0.

J. E. PLriop, An Analysis of Piecewise Linear Interface Reconstruction
Algorithms for Volume-of-Fluid Methods, MSc Thesis, University of Cali-
fornia, Davis, 1992.

R. RANNACHER, Incompressible viscous flows, Encyclopedia of Computa-
tional Mechanics, Volume 3, 155-182, Wiley, 2004.

Y. RENARDY AND M. RENARDY, PROST: a parabolic reconstruction of
surface tension for the volume-of-fluid method, Journal of Computational
Physics, Volume 183, Issue 2, 2007.

K. J. RUSCHAK, A method for incorporating free boundaries with surface
tension in finite element fluid-flow simulators, International Journal for
Numerical Methods in Engineering, Volume 15, Issue 5, 639-648, 1980,
doi: 10.1002/nme.1620150502.

W. J. RIDER AND D. B. KOTHE, Stretching and tearing interface tracking
methods, Technical Report ATAA 95-0699, ATAA, 1995.

R. SEDGEWICK, Algorithms, 2nd Fd., Addison-Wesley, 1988, ISBN: 0-201-
06673-4.

J. A. SETHIAN, A fast marching level set method for monotonically ad-
vancing fronts, Proceedings of National Academy of Sciences, Volume 93,
Issue 4, 1591-1595, 1996.

J. A. SETHIAN, Level Set Methods and Fast Marching Methods, Cambridge
University Press, 1999.

J. A. SETHIAN AND A. VLADIMIRSKY, Fast methods for the Eikonal and
related Hamilton-Jacobi equations on unstructured meshes, Proceedings of
National Academy of Sciences, Volume 97, Issue 11, 56995703, 2000.

J. R. SHEWCHUK, Triangle: engineering a 2D quality mesh generator and
delaunay triangulator, Applied Computational Geometry: Towards Geo-
metric Engineering in Lecture Notes in Computer Science, Volume 1148,
203-222, Springer-Verlag, 1996.

124 BIBLIOGRAPHY

[92] R. SCHMACHTEL, Robuste Lineare und Nichtlineare Liosungsverfahren fir
die Inkompressiblen Navier—Stokes—Gleichungen, PhD Thesis, University of
Dortmund, 2003.

[93] K. A. SMITH AND J. M. OTTINO, Simple representation of contact-line

dynamics in a level-set model of an immiscible fluid interface, Ind. Eng.
Chem. Res., Volume 44, Issue 5, 1194-1198, 2005.

[94] A. SMOLIANSKI Numerical Modeling of Two-Fluid Interfacial Flows, PhD
Thesis, Jyviskylda Studies in Computing 8, University of Jyvéskyld, 2001,
ISBN: 951-39-0929-8.

[95] A. SPIRA AND R. KIMMEL, An efficient solution to the Eikonal equation
on parametric manifolds, Interfaces and Free Boundaries, Volume 6, Issue
3, 315327, 2004.

[96] M. SussMAN AND E. FATEMI, An efficient, interface-preserving level set
redistancing algorithm and its application to interfacial incompressible fluid
flow, STAM J. Sci. Comput., Volume 20, Issue 4, 1165-1191, 1999, doi:
10.1137/S1064827596298245.

[97] M. SUSSMAN AND P. SMEREKA, Awzisymmetric free boundary problems,
Journal of Fluid Mechanics, Volume 341, 269-294, 1997.

[98] M. SussMAN, P. SMEREKA, AND S. OSHER, A level set approach
for computing solutions to incompressible two-phase flow, Journal of
Computational Physics, Volume 114, Issue 1, 146-159, 1994, doi:
10.1006/jcph.1994.1155.

[99] M. SussMAN AND E. G. PUCKETT, A coupled level set and volume-of-
fluid method for computing 3D and axisymmetric incompressible two-phase
flows, Journal of Computational Physics, Volume 162, 301-337, 2000.

[100] Y. R. Tsa1, H.-K. ZHAO, AND S. OSHER, Fast sweeping algorithms for a
class of Hamilton-Jacobi equations, SIAM J. Num. Anal., Volume 41, Issue
2, 673-694, 2003, doi: 10.1137/S0036142901396533.

[101] Y. R. Tsal, Rapid and accurate computation of the distance function
using grids, Journal of Computational Physics, Volume 178, Issue 1, 175—
195, 2005, doi: 10.1006/jcph.2002.7028.

[102] S. TUREK, Efficient Solvers for Incompressible Flow Problems: An Algo-
rithmic and Computational Approach, Series: Lecture Notes in Computa-
tional Science and Engineering , Volume 6, Springer-Verlag, 1999, ISBN:
3-540-65433-X.

[103] S. TUREK, On discrete projection methods for the incompressible Navier-
Stokes equations: An algorithmical approach, Computer Methods in Ap-
plied Mechanics and Engineering, Volume 143, 271-288, 1997.

[104] S. TUREK AND A. Ouazzi, Unified edge-oriented stabilization of noncon-
forming FEM for incompressible flow problems : Numerical investigations,
J. Numer. Math., Accepted for publication, 2007.

BIBLIOGRAPHY 125

[105] S. TUREK, A. OuAzzI, AND J. HRON, On pressure separation algorithms
(PSepA) for improving the accuracy of incompressible flow simulations,
Ergebnisberichte des Instituts fiir Angewandte Mathematik, Nummer 349,
FB Mathematik, Universitat Dortmund, 2007.

[106] S. TUREK AND R. RANNACHER, A simple nonconforming quadrilateral
Stokes element, Numerical Methods for Partial Differential Equations, Vol-
ume 8, 97-111, 1992.

[107] S. TUREK S AND M. SCHAFER, Benchmark computations of laminar
flow around cylinder, Flow Simulation with High—Performance Computers
IT (Notes on Numerical Fluid Mechanics), Volume 52, 547-566, Vieweg,
1996.

[108] S. TUREK S, M. SCHAFER, AND R. RANNACHER, Evaluation of a CFD
benchmark for laminar flows, Proceedings of ENUMATH, World Science
Publishing, 1998.

[109] A.-K. TORNBERG, Interface Tracking Methods with Application to Multi-
phase Flows, PhD Thesis, NADA, KTH, Stockholm, Sweden, 2000, ISBN:
91-7170-558-9, TRITA-NA 0010.

[110] D. L. YOUNGS, An interface tracking method for a 3D Eulerian hydrody-
namics code, Technical Report 44/92/35, AWRE, 1984.

[111] P. YuEg, J. FENG, C. Liu, AND J. SHEN, A diffuse-interface method for
stmulating two-phase flows of complex fluids, Journal of Fluid Mechanics,
Volume 515, 293-317, 2004.

[112] O. VERDIER, Benchmark of FEMLAB, Fluent and ANSYS, Preprints
in Mathematical Science, 2004:6 LUFTMA-5039-2004, Lund Institute of
Technology, Centre for Mathematical Sciences and Numerical Analysis,
2004.

[113] H. WADELL, Journal of Geology, Volume 41, 310-331, 1933.

[114] F. M. WHITE, Fluid Mechanics, 4th ed., McGraw-Hill 1999, ISBN: 0-07-
069716-7.

[115] C. WINKELMANN, Seminar presentation and internal discussions at the
University of Dortmund, 2007.

[116] J. Xu, Evaluation of Interface Tracking Schemes with Finite Element
Discretizations, MSc Thesis, Inst. for Applied Math. and Numerics, LS3,
University of Dortmund, 2006.

[117] J. Xu, S. HYSING, AND S. TUREK, A numerical comparison of interface
tracking methods, To be published in 2008.

[118] Z. ZHANG, Polynomial preserving gradient recovery and a posteriori es-
timate for bilinear element on irregular quadrilaterals, Int. J. Numerical
Analysis and Modeling, Volume 1, Number 1, 1-24, 2004.

126 BIBLIOGRAPHY

[119] O. C. ZIENKIEWICZ AND J. Z. ZHU, The superconvergent patch recovery
and a posteriori error estimators. Part 1. The recovery technique, Int. J.

Numer. Methods Eng., Volume 33, 1331-1364, 1992.

[120] O. C. ZIENKIEWICZ AND J. Z. ZHU, The Superconvergent patch recovery
and a posteriori error estimators. Part 2. Error estimates and adaptivity,
Int. J. Numer. Methods Eng., Volume 33, 1365-1382, 1992.

