Synthese von biologisch aktiven Naturstoffen durch Metathese

DISSERTATION

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) des Fachbereichs Chemie der Universität Dortmund
vorgelegt von
Eric Jarek Grabowski
aus Stettin

Für Aga, Paty und Frederic

1. Berichterstatter:	Prof. Dr. A. Fürstner
2. Berichterstatter:	Prof. Dr. N. Krause
Tag der mündlichen Prüfung:	18.05 .2001

Die vorliegende Arbeit entstand auf Anregung und unter Leitung von Herrn Prof. Dr.
A. Fürstner im Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr in der Zeit von Mai 1998 bis April 2001.

Mein ganz besonderer Dank gilt:

-meinem Doktorvater, Herrn Prof. Dr. A. Fürstner für die attraktive Themenstellung, die ausgezeichneten Arbeitsbedingungen, sein stetes Interesse am Fortgang der Arbeit und für seinen wissenschaftlichen Rat;
-dem Direktor des Max-Planck-Institutes für Kohlenforschung, Herrn Prof. Dr. M. T. Reetz für die Aufnahme am Institut und die Ermöglichung biologischer Tests im S2 Labor;
-Herrn Prof. Dr. N. Krause, Universität Dortmund, für die freundliche Übernahme des Korreferates;
-der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. für die Gewährung eines Promotionsstipendiums;
-Herrn Prof. K. Nagai und Herrn Dr. T. Kataoka, Tokyo Institute of Technology (Yokohama / Japan), für die Durchführung biologischer Studien mit den von uns synthetisierten Verbindungen;
-den Leitern der analytischen Abteilungen des Max-Planck-Institutes für Kohlenforschung und ihren Mitarbeitern für die Durchführung und Auswertung zahlreicher Analysen;
-Herrn Dr. C. W. Lehmann und seinen Mitarbeitern für die Durchführung der Kristallstrukturanalysen;
-Frau C. Wirtz und Herrn Dr. R. Mynott für die Anfertigung und Auswertung der umfangreichen 600 MHz NMR-Untersuchungen;
-den Mitgliedern des Arbeitskreises für das angenehme Klima, insbesondere danke ich Frau K. Radkowski für die hervorragende Zusammenarbeit und Hilfe bei der Totalsynthese von Sophorolipid;
-allen Institutsangehörigen, die zum Gelingen dieser Arbeit beigetragen haben.

INHALTSVERZEICHNIS

1 ALLGEMEINE EINLEITUNG 1
TOTALSYNTHESE VON CYCLONONYLPRODIGIOSIN 3
2 EINLEITUNG 3
2.1 AlkEnmetathese 3
2.2 Prodigiosine 7
3 ERGEBNISSE UND DISKUSSION 10
3.1 Totalsynthese von Cyclononylprodigiosin 10
3.2 Synthese der Prodigiosinanaloga 21
3.3 Biologische Untersuchungen 30
TOTALSYNTHESE VON SOPHOROLIPID 47
4 EINLEITUNG 47
4.1 ALKINMETATHESE 47
4.2 Sophorolipide 50
5 ERGEBNISSE UND DISKUSSION 52
5.1 StRategie und retros ynthetische Analyse 52
5.2 TOTALSYNTHESE VON SOPHOROLIPID 54
6 ZUSAMMENFASSUNG 59
7 EXPERIMENTELLER TEIL 63
7.1 Allgemeine Hinweise 63
7.2 Analytische Methoden 63
7.3 Ausgangsmaterialien 65
7.4 Totalsynthese von Cyclononylprodigiosin 66
7.5 Synthese der Prodigiosinanaloga 73
7.6 Biologische Untersuchungen 87
7.7 TOTALSYNTHESE VON SOPHOROLIPID 92
7.8 ErgäNZENDE ANALYTIK 98
8 LITERATURVERZEICHNIS 116

Abkürzungen			
α	Drehwert	h	Stunde
λ	Wellenlänge	HPLC	Hochdruckflüssigkeits-
Abb.	Abbildung		chromatographie
Ac	Acetyl	HR-MS	high resolution mass
ADMET	acyclic diene metathesis	Hz	Hertz
ber.	berechnet	I	Infrarotspektroskopie
Boc	tert-Butoxycarbonyl	J	Kopplungskonstante
bp	Basenpaare (DNA)	m	Multiplett
bs	breites Singulet	min	Minuten
Bu	Butyl	m / z	Masse/Ladung
δ	chemische Verschiebung	M^{+}	Molekülpeak
Cy	Cyclohexyl	Me	Methyl
d	Dublett	MOPS	3-Morpholino-1-
DC	Dünnschichtchromatographie		propanosulfonsäure
DCC	Dicyclohexylcarbodiimid	MTT	3-(4,5-Dimethylthiazol-2-
DDQ	Dichlorodicyanobenzochinon		yl)2,5-diphenyltetrazolium-
DMAP	4-Dimethylaminopyridin		bromid
DME	1,2-Dimethoxyethan	MS	Massenspektroskopie
DMF	Dimethylformamid	MTBE	Methyl-tert.-butylether
DMSO	Dimethylsulfoxid	NMR	nuclear magnetic resonance
DNA	Desoxyribonucleinsäure	NOE	Nuclear Overhauser Effect
dppf	1,1'-bis-(Diphenyl-	PCC	Pyridiniumchlorochromat
	phosphino)ferrocen	pos	positiv
EDTA	Ethylendiamintetraessigsäure	ppm	parts per million
ee	Enantiomerenüberschuß	q	Quartett
EI	Elektronenstoßionisation	RCM	ring closing metathesis
ESI	Elektronensprayionisation	ROMP	ring opening metathesis
GC	Gaschromatographie		polymerisation
gef.	gefunden	RT	Raumtemperatur
ges.	gesättigt	S	Singulett

Smp.	Schmelzpunkt
Sdp.	Siedepunkt
THF	Tetrahydrofuran
TMS	Trimethylsilyl
Tris	2-Amino-2-
	(hydroxymethyl)-1,3-
	propandiol

1 Allgemeine Einleitung

Die Olefinmetathese, erstmals in der Patentliteratur im Jahre 1955^{1} beschrieben, ist eine chemische Reaktion, bei der formal ein wechselseitiger Austausch der Alkylideneinheiten zweier Alkene in Gegenwart eines Metallcarben-Komplexes stattfindet (Abb. 1).

Abb.1: Das Prinzip der Olefinmetathese.

Auf diesem Prinzip basieren die folgenden wichtigen Anwendungen: Ringschlußmetathese (RCM), ${ }^{2}$ Ringöffnungsmetathese (ROM), ${ }^{2}$ Ringöffnungsmetathese-Polymerisation (ROMP), ${ }^{3}$ acyclische Dienmetathese-Polymeristion (ADMET) ${ }^{4}$ und die Kreuzmetathese (CM) ${ }^{5}$ (Abb. 2).

Abb.2: Grundlegende Typen der Metathesereaktion.

Bei den ersten Metathesekatalysatoren handelte es sich um die einfach zugänglichen Chloride und Oxychloride der Übergangsmetalle Molybdän, Rhenium und Wolfram, deren Reaktivität durch Zugabe von Cokatalysatoren $\left(\mathrm{SnR}_{4}, \mathrm{RAlCl}_{2}, \mathrm{R}_{3} \mathrm{Al}\right)$ und Promotoren $\left(\mathrm{O}_{2}, \mathrm{EtOH}, \mathrm{PhOH}\right)$ deutlich gesteigert werden kann. ${ }^{6}$

Die Anwendung dieser klassischen Katalysatoren in der organischen Synthese war lange Zeit wegen ihrer hohen Oxophilie und stark LewIS-saurer Eigenschaften nicht möglich. Erst die Entdeckung spezieller Metallalkyliden-Komplexe ${ }^{7,8,9,10,11,12,13}$ veränderte die Situation grundlegend. Diese neue Generation von definierten Katalysatoren (s. Kap. 2.1, Abb. 5), die sich durch hohe Aktivität, Stabilität und eine ausgezeichnete Toleranz gegenüber funktionellen Gruppen auszeichnen, bewirkte einen nachhaltigen Einfluß auf die Syntheseplanung in der organischen Chemie. ${ }^{2}$

Der erste Teil dieser Arbeit - Totalsynthese des Alkaloids Cyclononylprodigiosin ${ }^{14}$ - stellt ein neues Beispiel für die Erfolgsgeschichte der Alkenmetathese dar. Im zweiten Teil wird jedoch gezeigt, daß die Metathesereaktion keinesfalls auf Alkene als Substrate beschränkt ist. So ist die darin vorgestellte Totalsynthese des Sophorolipid-Macrolactons ${ }^{15}$ ein Beweis dafür, daß die Alkinmetathese (s. Kap. 4.1) ebenfalls eine präparativ brauchbare Methode darstellt (Abb. 3).

Abb. 3: Das Prinzip der Ringschluß-Alkinmetathese (RCAM).

Totalsynthese von Cyclononylprodigiosin

2 Einleitung

2.1 Alkenmetathese

Die wohl am weitesten verbreitete und entwickelte Anwendung der Metathesereaktion ist die Ringschlußalkenmetathese (RCM). ${ }^{2}$ Diese Reaktion verläuft nach dem allgemein akzeptierten Mechanismus von ChaUvin, ${ }^{16}$ in dem formale [2+2]-Cycloadditions- und CycloreversionsSchritte durchlaufen werden (Abb. 4). Der Katalysecyclus ist a priori reversibel; allerdings wird die Reaktion entropisch getrieben (aus einem Substratmolekül entstehen zwei Produktmoleküle), und das Gleichgewicht der Reaktion durch Entzug der leicht flüchtigen Komponente (hier: Ethen) zur Produktseite hin verschoben.

Abb. 4: Katalysecyclus der reversiblen Ringschlußmetathese (RCM).

Durch die Entdeckung definierter Metallalkyliden-Katalysatoren Anfang der neunziger Jahre wurde die RCM zu einer der wichtigsten Reaktionen der metallorganischen Chemie. So ist der von SChrock 8 entwickelte tetrakoordinierte Alkyliden-Komplex 1 (Abb. 5) einer der aktivsten Metathesekatalysatoren, der mit vielen funktionellen Gruppen kompatibel ist und lange Zeit als einziger die Darstellung von tri- und sogar tetrasubstituierten Cyclo-Alkenen ermöglichte. Dieser Komplex ist allerdings sehr empfindlich gegenüber Sauerstoff und

Feuchtigkeit, so daß er nur unter Schutzgas und in getrockneten Lösungsmitteln anwendbar ist. Der kurz danach von GrubBS synthetisierte Ruthenium-Carben-Komplex $\mathbf{2}^{9}$ ist deutlich weniger oxophil und zeigt ebenfalls große Toleranz gegenüber funktionellen Gruppen und protischen Reagenzien, ist jedoch nicht so reaktiv wie der Schrock-Komplex. Der vor kurzem entwickelte Ruthenium-Phenylindenyliden-Komplex $\mathbf{3}^{10}$ besitzt ähnliche Eigenschaften wie der Grubbs-Katalysator 2, ${ }^{9}$ scheint letzterem jedoch in manchen Fällen überlegen zu sein. ${ }^{17}$ Komplexe vom Typ $4^{11,12,13}$ sind Beispiele für den heutigen Stand der Forschung im Bereich der Metathese. Diese heteroleptischen Ruthenium-Verbindungen vereinen eine mit dem Schrock-Molybdän-Katalysator 1 vergleichbare Reaktivität mit der Stabilität des Grubbs-Katalysators 2 und zeigen hohe Kompatibilität mit vielen funktionellen Gruppen.

$1 \mathrm{M}=\mathrm{Mo}, \mathrm{W}$

3

2a $R=P h$
2b $\mathrm{R}=\mathrm{CH}=\mathrm{CPh}_{2}$

$\begin{aligned} 4 \mathrm{R} & =\mathrm{Ph}, \mathrm{CH}=\mathrm{CPh}_{2} \\ \mathrm{R}^{1} & =\text { Mesityl, CHMePh }\end{aligned}$

Abb. 5: RCM-Präkatalysatoren.

Die vorteilhaften Eigenschaften dieser Komplexe führten in kürzester Zeit zur Anwendung der RCM in der Synthese vieler Naturstoffe. ${ }^{18,19}$ So wurde der Katalysator 2b bei der Darstellung des 13-gliedrigen Rings 6 in der Synthese des Alkaloids Roseophilin 7 eingesetzt (Abb. 6). ${ }^{18 f}$ Dieser Naturstoff wurde von Seto et al. ${ }^{20} 1992$ aus dem Actinomyceten

Streptomyces griseoviridis isoliert. Neben der einzigartigen Struktur besitzt dieser Wirkstoff ausgeprägte Antitumoreigenschaften ($\mathrm{IC}_{50} 0.88 \mu \mathrm{M}$) gegenüber menschlichen Hautkrebszelllinien ${ }^{20}$ und wurde erstmals in unserer Arbeitsgruppe synthetisiert. ${ }^{21}$

Abb.6: Darstellung des 13-gliedrigen Rings 6 von Roseophilin 7.

In der Synthese von (-)-Gloeosporon 10, ${ }^{18 \mathrm{e}}$ das aus dem Pilz Colletotrichum gloeosporioides isoliert wurde, ${ }^{22}$ konnte mit Erfolg der GrubBs-Katalysator 2a eingesetzt werden. Allerdings war der Zusatz des Additivs $\mathrm{Ti}(\mathrm{OiPr})_{4}$ erforderlich, um über eine Komplexierung der Carbonylgruppe in $\mathbf{8}$ ihre desaktivierende Wirkung (Chelateffekt) auf den Katalysator 2a zu unterbinden (Abb. 7).

Abb. 7: Synthese von (-)-Gloeosporon 10 durch RCM.

Die höhere Reaktivität des Schrock-Katalysators 1 und der Ruthenium-Katalysatoren der „zweiten Generation" 4 gegenüber dem bisherigen Grubbs-Carben-Komplex $\mathbf{2}$ wird in der Synthese von Conduritol F 13 deutlich (Abb. 8). ${ }^{23}$ Die Cyclisierung des Diens 11 dauerte mit dem Katalysator 2a wesentlich länger (60 h) und ergab eine nur mäßige Ausbeute. Die Komplexe 1 ($\mathrm{M}=\mathrm{Mo}$) und $4\left(\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{1}=\right.$ Mesityl, ungesättigte Form des N -Heterocyclus) führten hingegen in kurzer Zeit (1 bzw .2 h) zu vollständigem Umsatz und zur Bildung von 12 mit sehr guten Ausbeuten.

Abb. 8: Synthese von Conduritol F 13.

Die klare Überlegenheit der Ruthenium-Komplexe 4 mit N-heterocyclischen Liganden gegenüber dem Grubbs-Komplex 2 wird in der Totalsynthese von (S)-(-)-Zearalenon 16 deutlich (Abb. 9). ${ }^{24}$ Die Umsetzung des Styrols 14 zu dem gewünschten Produkt 15 konnte mit dem Katalysator 2a nicht erzielt werden, der Einsatz des Komplexes 4 ($\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{1}=$ Mesityl, ungesättigte Form des N -Heterocyclus) wurde dagegen mit einer exzellenten Ausbeute belohnt.

Abb. 9: Totalsynthese von (S)-(-)-Zearalenon 16.

2.2 Prodigiosine

In bestimmten Gruppen der Eubakterien und Actinomyceten wie Streptomyces und Serratia als Metabolite vorkommende Verbindungen gehören zur Naturstoffklasse der Prodigiosine (Abb. 10). Die tiefrote Farbe der Bakterienkolonien, die im Altertum fälschlicherweise für Blutflecke gehalten wurde, ${ }^{25}$ stammt von dem Pyrrolpyrromethen-Chromophor, das alle Prodigiosine als gemeinsames Strukturmerkmal besitzen.

17 PRODIGIOSIN

19 CYCLONONYLPRODIGIOSIN

20 METACYCLOPRODIGIOSIN

1970 isoliert aus Actinomadura madurae

21 STREPTORUBIN B

Abb. 10: Vertreter der Prodigiosine.

Neben der seit den 60er Jahren bekannten Anti-Malaria-Wirkung besitzen die Prodigiosine cytotoxische, antibiotische und anticancerogene Eigenschaften. ${ }^{26,27,28}$ Neuerdings wird vielfach beobachtet, daß das Wirkungsfeld dieser Alkaloide auch eine signifikante immunsuppressive Aktivität beinhaltet, die unterhalb der toxischen Dosis liegt. ${ }^{29,30}$

Neuere Studien zeigen, daß der Wirkmechanismus von Prodigiosinen verschieden ist von dem der bekannten Immunsuppressiva Cyclosporin A, FK-506 (Tsukubaenolid) und Rapamycin. ${ }^{30,31}$ Prodigiosine verhindern nicht die Produktion von Interleukin 2 (IL-2), sondern beeinflussen die Signaltransduktion von IL-2 auf die Rezeptorzellen wie z.B. B- und T-Lymphocyten (B-, T-Zellen), die eine essentielle Rolle im Immunsystem spielen. ${ }^{32,33}$ Diese unterschiedliche Wirkungsweise kann ausgenutzt werden, indem eine Kombination zweier Immunsuppressiva eingesetzt wird, um einen synergetischen Effekt zu erzielen. Dies wurde bereits für das Paar 18 / FK-506 beobachtet und patentiert. ${ }^{34}$

Obwohl die klinische Anwendung der natürlichen Prodigiosine wegen ihrer hohen Toxizität eingeschränkt ist, stellen sie eine bedeutende Leitstruktur für die Suche nach neuen synthetischen Analoga dar, deren pharmakologische Eigenschaften die geforderten Kriterien besser erfüllen. ${ }^{35}$ Diese Bemühungen müssen die spezifische Eigenschaft der Prodigiosine zur Existenz in zwei isomeren Formen I und II berücksichtigen (Abb. 11).

Abb. 11: Konfigurationsisomere von Prodigiosin bedingt durch Ausbildung der intramoleku-
laren Wasserstoffbrücken.

Die Gleichgewichtslage hängt vom pH -Wert des Mediums ab, der das Ausmaß der Protonierung des basischen Stickstoffatoms bestimmt. ${ }^{35 \mathrm{a}}$ Da die beiden Formen nicht dieselbe Affinität zu dem bis jetzt unbekannten biologischen Rezeptor besitzen können, sind

Prodigiosinderivate mit definierter Konfiguration von großer Bedeutung für biochemische und pharmakologische Forschungen.

Die vielfältigen Eigenschaften der Prodigiosine und der vor kurzer Zeit vorgestellte neue Syntheseweg zu Metacycloprodigiosin 20 und Streptorubin B 21 durch En-In-Metathese ${ }^{36}$ gab den Anstoß, die Totalsynthese des Naturstoffs Cyclononylprodigiosin 19 zu versuchen. Dieser Wirkstoff wurde 1970 von GERBER et al. ${ }^{14}$ aus Actinomadura madurae isoliert. In ihm sind alle drei Heterocyclen durch eine Alkylkette verbrückt, was zur Z-Konfiguration der Azafulveneinheit führt, und somit die Konfiguration I (Abb. 11) fixiert. Verbindung 19 stellt ein herausforderndes Forschungsziel dar, das weitere Einblicke in die chemische Struktur und biologische Wirkung von Prodigiosinen ermöglichen soll.

3 Ergebnisse und Diskussion

3.1 Totalsynthese von Cyclononylprodigiosin

3.1.1 Retrosynthese

Die bisher bekannten Totalsynthesen von Prodigiosin 17 beruhen auf der Synthese des 2, 2‘Bipyrrolsystems 22, das anschließend unter sauren Bedingungen mit dem substituierten Pyrrol 23 zu Prodigiosin kondensiert wird. ${ }^{27}$

Abb. 12: Frühere Synthesen von Prodigiosin 17.

Die von uns geplante Synthese orientierte sich hingegen an der vor einigen Jahren von D'Alessio et al. ${ }^{37}$ vorgestellten Route zum acyclischen Undecylprodigiosin 18. Diese Methode erlaubt einen bequemen Zugang zu Dien 25, das durch Ringschlußmetathese und anschließende Hydrierung in das Cyclononylprodigiosin 19 überführt werden sollte (Abb. 13). Die Makrocyclisierung via RCM ist wegen des bereits existenten PyrrolpyrromethenChromophors, das stark chelatisierende Eigenschaften besitzt, riskant. Um die Gefahr der Desaktivierung (Komplexierung) des Metathesekatalysators zu reduzieren, wird die Reaktionsstelle möglichst weit entfernt von den polaren Gruppen gewählt. Verbindung $\mathbf{2 5}$ soll durch eine SuZUKı-Reaktion ${ }^{38}$ aus dem Triflat 26 und der Boronsäure 27 gewonnen werden. Verbindung 26 kann durch Behandlung des Bipyrrols 28 mit $\mathrm{Tf}_{2} \mathrm{O}$ erhalten werden, das seinerseits durch basisch katalysierte Kondensation des kommerziell erhältlichen Pyrrolinons 29 mit dem Aldehyd 30 zugänglich ist. ${ }^{37}$ Die Bor-Verbindung 27 wird durch orthoMetallierung des entsprechend alkylierten Pyrrols, Versetzen mit $\mathrm{B}(\mathrm{OMe})_{3}$ und abschließende saure Hydrolyse erhalten. ${ }^{39}$

Abb. 13: Retrosynthetische Analyse von Cyclononylprodigiosin 19.

3.1.2 Synthese der B-C Bipyrroleinheit

5-Hexensäure $\mathbf{3 2}$ wurde ausgehend vom 5-Brom-1-penten $\mathbf{3 1}$ durch Grignard-Reaktion und anschließende Umsetzung mit gasförmigem CO_{2} erhalten. ${ }^{40}$ Säure $\mathbf{3 2}$ konnte dann nach Nicolaou et al. ${ }^{41}$ im Multigramm-Maßstab und mit exzellenter Ausbeute von 97% in das gewünschte Pyrrol 34 überführt werden. Diese regioselektive Acylierung erfolgte über die nicht isolierte Pyridylthioesterstufe 33, die durch Reaktion mit Pyrrolylmagnesiumchlorid zum gewünschten Produkt 34 reagierte.

Abb. 14: Synthese des Aldehyds 30.

Das Keton 34 wurde anschließend durch NaBH_{4} in siedendem Isopropanol zum Alkylpyrrol 35 in 65% iger Ausbeute reduziert. ${ }^{42}$ Verbindung 35 wurde nach VilSMEIER-HAACK mit Phosphorylchlorid/DMF in 80\%iger Ausbeute zum Aldehyd $\mathbf{3 0}$ formyliert. ${ }^{43}$

Im nächsten Schritt wurde der so erhaltene Aldehyd $\mathbf{3 0}$ mit dem kommerziell erhältlichen Pyrrolinon 29 unter basischen Bedingungen in DMSO kondensiert, wobei das Pyrrolylmethylen 28 mit sehr guter Ausbeute (94\%) erhalten wurde. In der Folgereaktion wurde Verbindung 28 durch Versetzen mit $\mathrm{Tf}_{2} \mathrm{O}$ in das Triflat 26 überführt, wobei sich durch Reorganisation des aromatischen Systems die Azafulveneinheit ausbildete.

Abb. 15: Synthese des Triflats 26.

3.1.3 Synthese des Bausteins A

Die Synthese des N-Boc-geschützten Pyrrols 40 wurde auf ähnlichem Weg wie der Zugang zu dem bereits beschriebenen Pyrrol 35 durchgeführt. Ausgehend von kommerziell erhältlicher Pentensäure $\mathbf{3 6}$ über die Thioesterstufe $\mathbf{3 7}$ wurde das acylierte Pyrrol $\mathbf{3 8}$ erhalten. Die anschließende Reduktion mit NaBH_{4} führte zum Alkylpyrrol 39, das für die anstehende Aktivierung zur C-C Verknüpfung in das N -Boc-Pyrrol $\mathbf{4 0}$ überführt wurde. ${ }^{44}$

Abb. 16: Synthese des geschützten Pyrrols 40.

3.1.4 Kupplungsreaktionen

Die Synthese des Diens 25 erwies sich als problematisch. Für die Kupplung des Triflats 26 mußte das Pyrrol 40 aktiviert werden. Dafür wurde die Verbindung 40 in drei verschiedenen Varianten nach StiLLE ${ }^{45}$, Suzuki ${ }^{38}$ und Negishi ${ }^{46}$ in die entsprechenden Derivate 41, $\mathbf{4 2}$ und 43 überführt (Abb. 17). Das Zinn- 41 bzw. Boronsäure-Derivat 42 wurde durch orthoMetallierung des N-Boc-geschützten Pyrrols 40 mit Lithiumtetramethylpiperidinid als Base und Abfangen der so gebildeten Organolithium-Verbindungen mit $\mathrm{Me}_{3} \mathrm{SnCl}$ bzw. $\mathrm{B}(\mathrm{OMe})_{3}$ erhalten. Die Organozink-Verbindung $\mathbf{4 3}$ wurde mit n-BuLi als Base und Ummetallierung mit ZnCl_{2} erzeugt. Weder die Organozinn-Verbindung 41 noch der Boronsäureester 42 noch die Organozink-Verbindung 43 (alle in situ erzeugt) konnten durch Palladium-katalysierte Kreuzkupplung mit dem Triflat 26 zum gewünschten Produkt 25 umgesetzt werden. Durch Hydrolyse von $\mathbf{4 2}$ konnte eine weitere geeignete Verbindung für die Kupplung dargestellt werden. Die so erhaltene Boronsäure 27 erwies sich jedoch als instabil und mußte sofort weiter eingesetzt werden. Erst mit Hilfe dieser Verbindung wurde das gewünschte Dien 25 erhalten. Die Ausbeute von 57% stellt dabei ein optimiertes Ergebnis dar, das mit dem klassischen $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$-Katalysator im Zweiphasensystem (DME / aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$) und LiCl als Zusatz erzielt wurde. Sowohl der Einsatz des $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$-Katalysators, die Änderung des Lösungsmittels (Dioxan, THF, Toluol/Aceton/Wasser-Gemisch), als auch die Verwendung von unterschiedlichen Basen $\left(\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}\right)$ bzw. Additiven (LiBr) brachte keine Verbesserung der Ausbeute.

Abb. 17: Kupplungsreaktionen.

3.1.5 Metathesereaktion

Aufgrund der Inkompatibilität der Ruthenium-Katalysatoren vom Grubbs-Typ $\mathbf{2}^{2}$ mit Aminen wurde das Dien 25 in das entsprechende Hydrochloridsalz überführt. Dabei entsteht durch die Protonierung des Pyrrolylpyrromethen-Derivats am mittleren Ring bevorzugt die Form IV, die durch Ausbildung einer Wasserstoffbrücke zwischen dem N-Atom des A-Rings und der Methoxygruppe am B-Ring stabilisiert ist. ${ }^{35 a}$ Obwohl dieses Isomer IV selbst zur Cyclisierung nicht befähigt ist, erfolgt ein produktiver Ringschluß über das weniger favorisierte Isomer III, das im Gleichgewicht aus der Form IV nachgebildet wird (Abb. 18).

Abb. 18: Ringschlußmetathese.

Abb. 19: Metathese (Prä-)Katalysatoren.

In der Tat konnte das Dien $\mathbf{2 5} \cdot \mathrm{HCl}$ durch Einsatz katalytischer Mengen von Komplex $\mathbf{2 b}{ }^{9}$ in den Makrocyclus $\mathbf{2 4} \cdot \mathrm{HCl}$ mit einer Ausbeute von 42% überführt werden (Tab. 1).

Tab. 1: Ringschlußmetathese

Nr.	Katalysator	Katalysatormenge[Mol\%]	Ausbeute[\%]
1	$\mathbf{4 4}$	$5^{[\text {a] }}$	0
2	$\mathbf{2 b}$	10	42
3	$\mathbf{3}$	10	65
[a]			

${ }^{[a]}$ in Gegenwart von $11 \mathrm{Mol} \% \mathrm{PCy}_{3}$

Dieses Resultat wurde durch Anwendung des Ruthenium-Phenylindenyliden-Katalysators 3, ${ }^{10}$ der aus $\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RuCl}_{2} 45$ und Diphenylpropargylalkohol 46 und anschließendem Ligandenaustausch in 48 von PPh_{3} gegen PCy_{3} zugänglich ist (Abb. 20), noch deutlich verbessert. Damit konnte das gewünschte Cyclisierungsprodukt $24 \cdot \mathrm{HCl}$ mit einer Ausbeute von $65 \%(E: Z \geq 10: 1)$ erhalten werden. Der Präkatalysator 44^{47} zeigte sich dagegen als völlig inaktiv, hier konnte nur das eingesetzte Dien 25 reisoliert werden (Tab. 1).

Abb. 20: Darstellung des Ruthenium-Phenylindenyliden-Katalysators 3.

Vom Metatheseprodukt $\mathbf{2 4} \cdot \mathrm{HCl}$ konnte eine Kristallstrukturanalyse erhalten werden (Abb. 21).

Abb. 21: Kristallstruktur vom Makrocyclus $(E) \mathbf{- 2 4} \cdot \mathrm{HCl} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Ausgewählte Bindungslängen (\AA): $\mathrm{C} 4-\mathrm{C} 5$ 1.329(7), $\mathrm{N} 1-\mathrm{C} 10$ 1.362(7), C10-C11 1.388(7), C11-C12 1.396(7), C12C13 1.401(7), C13-N1 1.402(7), C13-C14 1.420(7), C14-C15 1.355(7), C15-N2 1.429(6), C15-C16 1.435(7), C16-C17 1.369(7), C17-C18 1.414(7), C18-N2 1.363(7), C18-C19 $1.429(7), \mathrm{C} 19-\mathrm{N} 31.396(6), \mathrm{C} 19-\mathrm{C} 20$ 1.384(7), C20-C21 1.397(7), C21-C22 1.383(7), C22N3 1.375(7).

Die Resultate geben wichtige Informationen zur Aufklärung der tatsächlichen Struktur der Prodigiosine. NMR-Studien zeigten, ${ }^{27 e}$ daß eine Protonierung des N-Atoms am C-Ring stattfinden soll, was die tautomere Form B als dominante Form in Lösung favorisiert (Abb. 22). In älteren Arbeiten wurde allerdings das Tautomer \mathbf{A} bevorzugt, in dem die basische N Funktion am mittleren Ring (B-Ring) positioniert wird. ${ }^{14}$ Theoretische Berechnungen an

Pyrrolylpyrromethen-Systemen ohne OMe-Gruppe in Position-4 des B-Rings zeigen, daß die Energiedifferenz zwischen den beiden tautomeren Formen nur gering ist, was keine eindeutige Zuordnung erlaubte. ${ }^{48}$ Da erstmals von einem derartigen heterocyclischen System eine Kristallstruktur erzielt wurde, kann der Sachverhalt zumindest im Festkörper geklärt werden. Die Struktur der Verbindung $\mathbf{2 5} \cdot \mathrm{HCl}$ zeigt nach Analyse der relevanten Bindungslängen, daß sie am besten durch die tautomere Form \mathbf{A} wiedergegeben wird, in der die Azafulvenfunktion am B-Ring lokalisiert vorliegt.

A

B

Abb. 22: Tautomere der Verbindung $\mathbf{2 5} \cdot \mathrm{HCl}$.

3.1.6 Hydrierung

Im letzten Schritt der Synthese mußte die Doppelbindung in der Alkylkette des Makrocyclus 24 reduziert werden. Die ersten Hydrierungsversuche mit Pd / C führten jedoch zur Zersetzung des Produkts. Hingegen war die Reduktion mit $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ (Wilkinson-Katalysator) erfolgreich. Die in EtOH ausgeführte Hydrierung mit relativ hoher Katalysatormenge (0.5 Äq.) lieferte das Zielmolekül Cyclononylprodigiosin 19 in exzellenter Ausbeute (Abb. 23).

Mit diesem Schritt wurde die erste Totalsynthese des biologisch interessanten Alkaloids 19 erreicht, die einmal mehr die hervorragende Eignung der Metathese zur Synthese komplexer Naturstoffe unterstreicht.

Abb. 23: Hydrierung des Makrocyclus $24 \cdot \mathrm{HCl}$.

3.2 Synthese der Prodigiosinanaloga

3.2.1 Synthese der Prodigiosinanaloga durch Ersatz des A-Pyrrolrings

Die Totalsynthese von Cyclononylprodigiosin 19 hat gezeigt, daß die RCM-Methode einen guten Zugang zu cyclischen Prodigiosinen ermöglicht. Daher sollte sie zur Synthese von Analoga dieser Verbindung angewandt werden.

Die B-C-Pyrrolylpyrromethen-Einheit stellt hierfür eine günstige Ausgangsstufe zur Synthese von Analoga dar, die sich von den natürlichen Prodigiosinen durch Ersatz des A-Pyrrolrings gegen einen anderen aromatischen Cyclus (Furan, Thiophen, Benzol) unterscheiden. Derartige Analoga sind leicht zugänglich, indem die entsprechend aktivierten A-Ringe über SuZUKI-Reaktion mit der bipyrrolischen B-C Einheit verknüpft werden. Sind die neu eingebauten A-Cyclen zusätzlich mit einem Alkenylrest ausgestattet, so können die resultierenden Diene anschließend durch RCM in makrocyclische Systeme überführt werden (Abb. 24).

Abb. 24: Synthese der Analoga, $\mathrm{X}=\mathrm{O}, \mathrm{S}, \mathrm{CH}=\mathrm{CH}$.

Dieses Prinzip wurde zunächst beim Aufbau eines tripyrrolischen Systems angewandt. Ausgehend von der relativ stabilen Boronsäure $\mathbf{5 0}^{39}$ (Abb. 25) läßt sich über die Palladiumkatalysierte SuZuki-Reaktion mit dem Triflat 26 die Verbindung 51 gewinnen (Abb. 26). Dieses Derivat unterscheidet sich von Undecylprodigiosin 18 lediglich in der Länge der Alkylkette und dem Auftreten einer terminalen Doppelbindung, die allerdings für weitere Funktionalisierung nutzbar ist.

Abb. 25: Darstellung der Boronsäure 50.

Abb. 26: Darstellung der Verbindung 51.

Auf ähnlichem Weg konnten Analoga mit einem anderen Heterocyclus anstelle des APyrrolrings dargestellt werden. Hierzu wurden zunächst durch Alkylierung von Furan ${ }^{49}$ bzw. Thiophen ${ }^{50}$ die substituierten Derivate $\mathbf{5 4}, \mathbf{5 5}$ und $\mathbf{5 6}$ hergestellt (Abb. 27).

Abb. 27: Darstellung alkylierter Furane 54, 55 und des Thiophenderivats 56.

Die daraus erhältlichen Furan- bzw. Thiophen-Boronsäuren erwiesen sich als sehr instabil (schnelle Deborylierung) und konnten nicht in reiner Form isoliert werden. Dieses Problem konnte jedoch auf einfache Weise umgangen werden. So konnten durch in situ Erzeugen der borylierten Heterocyclen und anschließende Palladium-katalysierte C-C-Knüpfungsreaktion die Verbindungen 57, $\mathbf{5 8}$ und $\mathbf{5 9}$ in guten Ausbeuten erhalten werden (Abb. 28). ${ }^{38 c, 51}$

Abb. 28: SuZUKI-Kupplungen.

Ein weiteres Analogon wurde durch formalen Ersatz der A-Pyrroleinheit durch einen Benzolring erhalten. Ausgehend vom kommerziell erhältlichen Bromophenylethanol 60, der zunächst in das Iodid $\mathbf{6 1}$ überführt wurde, ${ }^{52}$ konnte regioselektiv durch $\mathrm{Li}_{2} \mathrm{CuCl}_{4}$-katalysierte Grignard-Kreuzkupplung ${ }^{53}$ mit Allylmagnesiumchlorid das Bromopentenylbenzol 62 erhalten werden (Abb. 29).

Abb. 29: Darstellung des Benzolanalogons 64.

Die im nächsten Schritt durch Metallierung, anschließendes Versetzen mit $\mathrm{B}(\mathrm{OMe})_{3}$ und Hydrolyse erhaltene Boronsäure $\mathbf{6 3}$ wurde nicht isoliert, sondern direkt einer SuZUKIKupplung mit dem Triflat 26 unterworfen. Diese im Zweiphasensystem durchgeführte Palladium-katalysierte Reaktion lieferte das gewünschte Dien 64 in guter Ausbeute.

Die so dargestellten Diene wurden durch RCM mit dem Phenylindenyliden-Komplex $\mathbf{3}^{10}$ als Katalysator in makrocylische Prodigiosin-Derivate umgewandelt. Die N-heterocyclische Verbindung 51 mit einer terminalen Doppelbindung wurde durch die Metathese-Reaktion ${ }^{54}$ in hoher Ausbeute in das Dimer 65, das zwei über eine Alkylkette verbrückte Azafulveneinheiten beinhaltet, überführt (Tab. 2). In diesem Zusammenhang sei darauf hingewiesen, daß die Dimerisierung des immunsuppressiven Wirkstoffs FK-506 ebenfalls durch Metathese erzielt wurde, ${ }^{55}$ um seine potentielle Aktivität bei der Signalübertragung auf den T-ZellenRezeptor zu erhöhen.

Die Ringschluß-Alkenmetathesen wurden in Anlehnung an die bisherigen RCM-basierten Makrocyclisierungen in hoher Verdünnung und ausgehend von Hydrochlorid-Salzen der Diene ausgeführt. ${ }^{2,18,19}$ So führten die Reaktionen der Furan-Derivate 57, 58 und des Benzolanalogons 64 zu den entsprechenden Makrocyclen 66, 67 und 68 in guten bis sehr guten Ausbeuten. Bemerkenswert ist auch die Tatsache, daß alle Produkte als E: Z-Gemische erhalten wurden, wobei stets die E-Konfiguration als die thermodynamisch stabilere Form überwog (Tab. 2). Das Thiophen-Analogon $\mathbf{5 9}^{56}$ konnte dagegen als einziges Substrat nicht in das entsprechende Cyclisierungsprodukt umgewandelt werden. Dies ist nicht überraschend, da schwefelhaltige Substrate mit den Metathese-Katalysatoren kaum kompatibel sind. ${ }^{57}$

Tab. 2: Metathesereaktionen.
Substrat Produkt

57

66
64
4:1

58

57
2.4:1

64

68
86
10:1

Auch von Verbindung 68 (freie Base) konnte eine Kristallstruktur erhalten werden (Abb.30). Diese zeigt, daß der Austausch des A-Rings im Prodigiosin-System durch einen Benzol-Ring die elektronische Eigenschaften des heterocyclischen π-Systems nicht beeinflußt. Die Analyse der relevanten Bindungslängen führte zu demselben Ergebnis wie bei dem Cyclononylprodigiosin-Metatheseprodukt $\mathbf{2 4} \cdot \mathrm{HCl}$. Demnach ist auch hier die AzafulvenFunktion im mittleren Ring positioniert, was dem Tautomer \mathbf{C} (Abb. 31) am besten entspricht.

Abb. 30: Röntgenstruktur der Verbindung 68. Ausgewählte Bindungslängen [\AA] und Bindungsinkel [${ }^{\circ}$]: N1-C1 1.407(4), C1-C24 1.450(5), C24-C23 1.340(4), C23-C22 1.448(5), C22-N1 1.325(4), C1-C2 1.364(4), C2-C3 1.404(5), N2-C6 1.353(4), C6-C5 1.379(4), C5-C4 1.383(5), C4-C3 1.394(5), C3-N2 1.392(4), C6-C7 1.495(4), C10-C11 1.481(5), C11-C12 1.296(6), C12-C13 1.467(5), C20-C22 1.491(4), C11-C10- C9 113.2(3), C12-C11- C10 127.3(4), C11-C12- C13 128.9(5), C12-C13- C14 109.7(3).

Abb. 31: Tautomere der Verbindung 68.

Die Seitenansicht der Verbindung 68 zeigt die planare Anordnung der beiden Pyrrolringe und des Phenylrings (Abb.32). Die Alkylkette ragt aus dieser Ebene um lediglich $1.28 \AA$ heraus. Das ist in erster Linie auf den Torsionswinkel C14-C15-C16-C17 (-106.7 ${ }^{\circ}$) zurückzuführen, der die Alkylkette aus der planaren Ebene des aromatischen Systems ausweichen läßt. In der Struktur sind außerdem zwei Gauche-Konformationen vorhanden, die an C9-C10 und C13C 14 lokalisiert sind. Die $\mathrm{C}=\mathrm{C}$-Doppelbindung bildet einen dihedralen Winkel von 18° mit der Ringebene, der hauptsächlich durch die beiden Bindungsrotationen um C10-C11 und C12C13 bedingt ist, die um 47.8° bzw. 74.3° von der anti-periplanaren Konformation abweichen.

Abb. 32: Seitenansicht auf die planare Anordnung des heterocyclischen Perimeters in Verbindung 68.

3.2.2 Synthese tripyrrolischer Analoga mit Modifizierung am C-Pyrrolring

Im Hinblick auf die biologischen Untersuchungen (s. Kap. 3.3.3) war es von großem Interesse, weitere Prodigiosin-Derivate darzustellen, die in ihrem aromatischen System ausschließlich pyrrolische Heterocyclen aufweisen. So wurden zwei weitere ProdigiosinAnaloga synthetisiert, die sich von Verbindung 51 nur durch die Länge der Alkylkette am CRing unterscheiden. Dazu mußten allerdings zwei neue B-C-Pyrroleinheiten generiert werden, die bereits in den entsprechenden Vorstufen benötigte Modifikationen aufweisen. So ließen sich in nur wenigen Schritten (3 bzw. 4) zwei weitere wertvolle Prodigiosine aufbauen (Abb. 33).

Abb. 33: Synthese weiterer Prodigiosinanaloga.

Die Synthese ging vom kommerziell erhältlichen Pyrrolcarbaldehyd 71 und dem 5-Ethylpyrrol-2-carbaldehyd 70 aus, der durch VILSMEIER-HAACK-Formylierung ${ }^{43}$ aus

Ethylpyrrol 69 gewonnen wurde. Anschließend wurden durch Kondensation der beiden Aldehyde mit dem Pyrrolinon 29 mit aq. NaOH als Base die entsprechenden Lactame 72 und 73 in ausgezeichneten Ausbeuten erhalten. Durch Behandeln von 72 und 73 mit $\mathrm{Tf}_{2} \mathrm{O}$ bei $\mathrm{O}^{\circ} \mathrm{C}$ wurden die Pyrrolpyrromethene $\mathbf{7 4}$ und $\mathbf{7 5}$ erzeugt. Im letzten Schritt, einer Palladiumkatalysierten SuZUKI-Kupplung, ${ }^{38}$ wurden die Triflate $\mathbf{7 4}$ und $\mathbf{7 5}$ mit der Boronsäure $\mathbf{5 0}$ umgesetzt, was zu den gewünschten Prodigiosin-Derivaten 76 und 77 führte.

3.3 Biologische Untersuchungen

Die von uns dargestellten Prodigiosin-Derivate wurden anschließend drei unterschiedlichen biologischen Tests unterzogen.
A. Einfluß auf die durch Lipopolysaccharid (LPS) und Concanavalin A induzierte Proliferation der B- und T-Zellen in Mäuse-Milz.
B. Einwirkung auf die vakuolare Acidifizierung in BHK-Zellen (BHK = baby hamster kidney).
C. Strangspaltungsaktivität gegenüber doppelsträngiger Plasmid-DNA (ФX174 RF1 DNA).

Die ersten beiden Untersuchungen wurden in Kooperation mit Prof. K. Nagai und Dr. T. Kataoka, Tokyo Institute of Technology (Yokohama / Japan), ausgeführt. Der dritte Test wurde am Max-Planck-Institut für Kohlenforschung in Mülheim/Ruhr vorgenommen.

3.3.1 Einfluß der Prodigiosin-Derivate auf die durch LPS und Concanavalin A induzierte Proliferation der B- und T-Zellen in Mäuse-Milz

Die Immunität umfaßt spezifische Abwehrmechanismen, die auf der Fähigkeit des Organismus beruht, körpereigene von körperfremden Substanzen zu unterscheiden. Sie ist spezifisch, d. h. auf einen ganz bestimmten Erreger ausgerichtet und durch das Immunsystem gewährleistet. Dieses läßt sich in zwei funktionell verschiedene Zellfamilien untergliedern: die B- und T-Zellen. Die B-Zellen sind für die antikörpervermittelte Immunität zuständig. Ihre Wirkung beruht auf den von ihnen produzierten Antikörpern, die vom kaskadenartig aktivierbaren Komplementsystem unterstützt werden. Die T-Zellen sind für die zelluläre Immunität zuständig. Ihre Effektivität verdanken sie den von ihnen und anderen Leukozyten gebildeten Zytokinen sowie bestimmten Zellen aus den eigenen Reihen mit Killerpotential. Die B- und T-Zellen sind auf eine Kooperation unter sich und mit Makrophagen angewiesen. Dazu steht ihnen eine Reihe von Kommunikations- und Signalmolekülen zur Verfügung, welche die im gesamten Organismus verteilten immunkompetenten Zellen zu einem System (Immunsystem) verbinden. Die B- und T-Zellen können durch bestimmte Substanzen künstlich zur Immunreaktion angeregt werden, was nach der Erkennungsphase zu deren verstärkter Proliferation führt. ${ }^{58}$

In dem von uns durchgeführten Test wird die Proliferation der B-Zellen durch Lipopolysaccharid (LPS) bzw. die Proliferation der T-Zellen durch Concanavalin A induziert. Die Zellen wurden gleichzeitig mit unterschiedlichen Konzentrationen von Prodigiosin-Derivaten-Lösungen behandelt (Abb. 34). Nach drei Tagen wurde die Proliferation anhand des MTT-Tests (s. Kap. 7.6.1) abgeschätzt.

18

66

19

67

59

68

65

Abb. 34: Prodigiosin-Derivate.

Der IC_{50}-Wert für die T-Zellen-Proliferation liegt für Undecylprodigiosin 18 bei 0.6 nM . Die Inhibierung der Vermehrung von LPS-induzierten B-Zellen war dagegen deutlich schwächer, hier liegt der IC_{50}-Wert bei 15 nM . Obwohl die Aktivität der anderen Prodigiosine evident schwächer war, konnte bei dem Nonylprodigiosin 19 und dem Thiophen-Derivat 59 eine ähnliche selektive Wirkung beobachtet werden, die sich durch spezifische Unterdrückung der Con A-induzierten T-Zellen-Proliferation und deutlich schwächere Suppression der LPSstimulierten B-Zellen-Proliferation auszeichnet (Abb. 35, Tab. 3). Diese geringere Aktivität von Prodigiosin 19 mag durch kleinere Strukturflexibilität im Vergleich zum acyclischen Derivat 18 bedingt sein. Ein anderer Grund für die hohe suppressive Wirkung der Verbindung 18 kann in der freien Alkylkette liegen, die möglicherweise eine wichtige Rolle bei der Insertion des Wirkstoffs in Zellmembranen spielt.

Abb. 35: Biologische Aktivität der Prodigiosin-Derivate auf Proliferation der B- und TZellen in Mäuse-Milz. Die B-Zellen (hohle Kreise) wurden durch LPS und die TZellen (gefüllte Kreise) durch Concanavalin A stimuliert.

Tab. 3: Zusammenfassung biologischer Aktivität der Prodigiosin-Derivate auf Proliferation der B- und T- Zellen in Mäuse-Milz. ${ }^{[a]}$

Verbindung	B-Zellen Proliferation $\mathbf{I C}_{\mathbf{5 0}}(\mathbf{n M})$	T-Zellen Proliferation $\mathbf{I C}_{\mathbf{5 0}}(\mathbf{n M})$	IC $_{\mathbf{5 0} 0}$ Verhältnis
(B-Zellen/T-Zellen)			
$\mathbf{1 8}$	15	0.6	24
$\mathbf{1 9}$	360	26	14
$\mathbf{5 9}$	1900	130	15
$\mathbf{6 6}$	1500	2900	0.5
$\mathbf{6 7}$	7900	2800	2.8
$\mathbf{6 8}$	12000	4300	2.7
$\mathbf{6 5}$	850	240	3.6

${ }^{[a]} \mathrm{IC}_{50}$ Werte der LPS-induzierten B-Zellen-Proliferation und Con A-induzierten T-ZellenProliferation wurde gemessen. Das Verhältnis der IC_{50}-Werte (B-Zellen-Proliferation versus T-Zellen-Proliferation) wurde berechnet.

3.3.2 Einwirkung der Prodigiosin-Derivate auf die vakuolare Acidifizierung in BHKZellen

In einer weiteren Studie wurde der Einfluß von Prodigiosin-Derivaten auf die vakuolare Acidifizierung untersucht. Die in vielen Zellen des tierischen Gewebes (Leber, Nieren, Darm etc.) existierenden Lysosome gelten als wichtigste Zellorganellen der intrazellulären Verdauung von endogenen oder durch Endozytose einverleibten Makromolekülen (Fremdstoffen). Unter dem Elektronenmikroskop erscheinen sie als stark polymorphe, kugelige oder sackförmige Gebilde, die von einer Elementarmembran umgeben sind. In ihrem Inneren beinhalten sie eine Vielzahl hydrolytisch wirksamer Enzyme (Esterasen, Glycosidasen, Proteasen etc.). Biochemisch charakterisieren sie sich durch einen relativ niedrigen pH -Wert, der zwischen 5-6 liegt. Die hohe Acidifizierung dieser Zellorganellen im Vergleich zum Cytoplasma (pH -Wert ≥ 7) wird durch ATP-getriebene Protonenpumpen in der Lysosomenmembran bewirkt. Bei zu hohem pH-Wert im Inneren der Lysosome wird die Aktivität der Enzyme stark beeinträchtigt oder gar nicht entfaltet.
Prodigiosine gehören zu einer Wirkstoffgruppe, die den Protonentransfer zwischen dem Inneren der Lysosome und dem Cytoplasma beeinflussen. ${ }^{29,59}$ KataOKA et al. ${ }^{29 g}$ konnten zeigen, daß Undecylprodigiosin 18 den H^{+}-Transfer durch die Lysosomenmembran inhibiert, indem es zur Entkopplung der H^{+}-ATPase (V-ATPase)-Aktivität kommt. Weitere Untersuchungen haben gezeigt, daß die Prodigiosine selbst als $\mathrm{H}^{+} / \mathrm{Cl}^{-}$Symporter wirken. Dadurch wird die von der V-ATPase bedingte Acidifizierung von Lysosomen umgangen. ${ }^{60}$ Die von uns dargestellten Prodigiosine wurden auf ihre biologische Aktivität in BHK-Zellen untersucht, deren Lysosome mit Fluoreszenzfarbstoff (Acridinorange) angefärbt wurden. Die orangen Bereiche auf den Fluoreszenzmikroskopbildern repräsentieren acide Organellen (Lysosome) vor dem grünen Untergrund von Cytoplasma und Nucleus (Abb. 36). Die Verbindung 18, 19 und 65 bewirkten eine signifikante Veränderung der vakuolaren Acidifizierung, die durch eine deutliche Abnahme der orangen Bereiche (bzw. Zunahme der grünen Bereiche) auf den Bildern zu erkennen ist. Die übrigen Prodigiosin-Derivate zeigten entweder keine oder nur marginale Aktivität. Diese Ergebnisse lassen feststellen, daß das tripyrrolische Pharmakophor-Gerüst eine essentielle Rolle in der Inhibierung der vakuolaren Acidifizierung spielt.

		Konzentration (μ M)					
Bild	Verbindung	$\mathbf{0 . 1}$	$\mathbf{1}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	MIC $^{[a]}$	
B	$\mathbf{1 8}$	-	+	+		$\mathbf{1}$	
C	$\mathbf{1 9}$		\pm	+		$\mathbf{1 - 1 0}$	
D	$\mathbf{5 9}$				-	$>\mathbf{1 0 0}$	
E	$\mathbf{6 6}$				\pm	>100	
F	$\mathbf{6 7}$				-	>100	
G	$\mathbf{6 8}$				-	$>\mathbf{1 0 0}$	
H	$\mathbf{6 5}$		-	+		$\mathbf{1 0}$	

Abb. 36: Einfluß verschiedener Prodigiosin-Derivate auf vakuolare Acidifizierung. BHKZellen wurden 30 min mit verschiedenen Konzentrationen der Prodigiosin-Analoga-Lösungen behandelt und anschließend mit $5 \mu \mathrm{~g} / \mathrm{ml}$ Acridinorange 30 min lang inkubiert. A) Blindprobe; B) $\mathbf{1 8} 10 \mu \mathrm{M}$; C) $1910 \mu \mathrm{M}$; D) $59100 \mu \mathrm{M}$; E) $\mathbf{6 6} 100 \mu \mathrm{M}$; F) $67100 \mu \mathrm{M}$; G) $68100 \mu \mathrm{M}$; H) $65100 \mu \mathrm{M} .{ }^{[a]}$ minimale Inhibierungskonzentration.

Andere Inhibitoren der vakuolaren Acidifizierung wie Bafilomycin ${ }^{61}$ und Concanamycin A und B^{62} sind spezifisch gegenüber der V-ATPase. Die Concanamycine zeigen eine ähnliche in vitro und in vivo immunsuppressive Aktivität wie die Prodigiosine, die sich in einer inhibierenden Wirkung auf die Vermehrung der Concanavalin A induzierten T-Zellen auszeichnet. ${ }^{29,59}$ Es wird angenommen, daß der inhibierende Effekt dieser Wirkstoffe auf einer strukturellen Veränderung der Con A-Rezeptoren auf der Zelloberfläche beruht. Diese werden durch Beeinflussung der Acidifizierung im Golgi-Apparat hervorgerufen, welche die Glykoproteinprozessierung stört.
In den von uns durchgeführten Studien zeigten zwei Prodigiosin-Derivate 59 und $\mathbf{6 5}$ eine spezifische Aktivität jeweils in einem der beiden biologischen Tests. Verbindung $\mathbf{5 9}$ wirkte immunsuppressiv auf Con A-induzierte T-Zellen-Proliferation und hatte keinen signifikanten Einfluß auf die vakuolare Acidifizierung. Die Wirkweise der Verbindung 65 war dagegen komplementär. Dieser Befund macht deutlich, daß die immunsuppressive Aktivität der Prodigiosine nicht auf die Inhibierung der vakuolaren Acidifizierung zurückgeführt werden kann. Die hier präsentierten Wirkstoffe können daher als wertvolle Hilfe in der Suche nach dem spezifischen Rezeptor für T-Zellen-Funktionen dienen.

3.3.3 Strangspaltungsaktivität der Prodigiosin-Derivate gegenüber Plasmid-DNA

Kürzlich konnte durch UV-Absorptions- und Fluoreszenz-Spektroskopie nachgewiesen werden, daß natürliche Systeme mit 4-Methoxy-2,2‘-bipyrrol-Chromophor eine DNABindungsaffinität aufweisen. ${ }^{63}$ Aufgrund der elektrostatischen Wechselwirkungen und theoretischen Berechnungen wird angenommen, daß die Interkalation bevorzugt an der ATSequenz von DNA stattfindet. ${ }^{63}$ Andere Verbindungen wie Furamidin ${ }^{64}$ und das Bithiazol von Bleomycin, ${ }^{65}$ die bekanntlich DNA-Affinität besitzen, interkalieren hingegen bevorzugt an der GC-Sequenz.
Weitere DNA-Studien an Prodigiosinen zeigten, daß diese Wirkstoffe zur Spaltung der doppelsträngigen DNA führen. Diese Aktivität findet in Gegenwart von $\mathrm{Cu}(\mathrm{II})$ ohne Anwesenheit externer Reduktionsmittel statt. Die Bildung vom reduzierten $\mathrm{Cu}(\mathrm{I})$ wird durch die Oxidation der Prodigiosine zum π-Radikalkation induziert, welches dann durch eine Wasserstoff-Abspaltung von der Desoxyribose zur oxidativen DNA-Spaltung führt. ${ }^{66}$
Die von uns durchgeführten Untersuchungen sollten zeigen, inwieweit sich die eingebrachten Modifizierungen am Prodigiosin-Gerüst auf die biologische Aktivität auswirken. Für diese Studie wurde eine doppelsträngige Plasmid-DNA des Bakteriophagen ФX174 gewählt, deren Sequenz (5386 bp) als erste von allen DNA-Molekülen bereits im Jahre 1977 von SANGER et al. ermittelt wurde. ${ }^{67}$

Plasmide sind eigenständige, ringförmige DNA-Moleküle der Bakterienzelle (Abb. 37). Sie beinhalten Gene, die für eine bestimmte Eigenschaft der betreffenden Bakterienzelle verantwortlich sind. Zu den wichtigsten gehören die Antibiotikaresistenzen, die im Labor als selektierbare Marker dienen, um bestimmte Bakterienkolonien in einer antibiotikahaltigen Kultur zu isolieren. ${ }^{68}$

Bakterienchromosom

[^0]Da die Elektrophorese-Technik bei dieser DNA-Untersuchung eine wichtige Rolle spielt, wird dieser Begriff an dieser Stelle etwas näher erläutert.

Die Elektrophorese ist ein analytisches Verfahren, das geladene Teilchen wie Proteine oder DNA-Moleküle voneinander zu trennen erlaubt und vielfach in der Biochemie, Biologie und Medizin angewendet wird. Da DNA-Moleküle negative Ladung tragen, wandern sie im elektrischen Feld in Richtung des positiven Pols (Anaphorese). Die Wanderungsgeschwindigkeit eines Moleküls hängt in erster Linie von seiner elektrischen Ladung und seiner Größe ab, aber auch von seiner Gestalt. In einem Gel, das gewöhnlich aus Agarose (Agargel-Elektrophorese) oder Polyacrylamid (Polyacrylamidgelelektrophorese PAGE) besteht, ist ein kompliziertes Porensystem enthalten, das die DNA-Moleküle passieren müssen. Je kleiner die DNA-Fragmente sind, desto schneller können sie durch das Gel wandern. Aufgrund dieses elektrokinetischen Effekts können DNA-Moleküle nach ihrer unterschiedlichen Größe aufgetrennt werden.

Die Plasmid-DNA ($\Phi X 174$ RF1 DNA) kommt in drei verschiedenen Formen vor, die im Elektropherogramm (Abb. 38) charakteristische Banden bilden:
-supercoiled DNA (I), wo die ringförmige Doppelhelix zusätzliche Twistungen in der Struktur aufweist
-nicked DNA (II), bei der ein Strang der Doppelhelix getrennt ist -und concatemere DNA (III), welche durch DNA-Oligomerisation zustande kommt.

Abb. 38: Elektropherogramm. Position: (1): Plasmid-DNA, (2): lineare DNA, (3): Molekularmarker (1000bp).

Neben den drei Banden der Plasmid-DNA in Position 1 des in Abb. 38 gezeigten Elektropherogramms ist außerdem die Bande der linearen DNA (IV) in Position 2 sichtbar. Diese wurde aus dem Plasmid gewonnen, indem mit Hilfe eines DNA-spaltenden Enzyms (Restriktionsendonuclease, hier: Xho I) ein einziger Schnitt in der ringförmigen PlasmidDNA erzeugt wurde (Abb. 39).

Abb. 39: Restriktion von Plasmid-DNA.

Dies ist nur dann möglich, wenn die Erkennungssequenz des Restriktionsenzyms nur einmal im DNA-Fragment vorhanden ist. Für die Xho I-Nuclease lautet die Erkennungssequenz:

wobei die Pfeile die Schnittstelle in beiden Strängen anzeigen. Das Xho I -Enzym spaltet demnach die doppelsträngige DNA (dsDNA) um zwei Nucleotide versetzt, was zu den sogenannten klebrigen Enden (sticky ends) der dsDNA-Fragmente führt.

In Position 3 befinden sich die Banden eines Molekularmarkers (Abb. 38). Der Molekularmarker ist eine wichtige Orientierungshilfe beim Bestimmen der Größe von linearen DNA-Fragmenten. Dieser hier verwendete Marker zeigt (beginnend von oben) ein DNA-Bruchstück von 1000bp (Basenpaare) und weiter unten liegende Fragmente, die jeweils um 1000bp größer sind. So kann dem Elektropherogramm entnommen werden, daß die Bande des linearen DNA-Fragments in der Spalte 2 zwischen der 5000bp- und der 6000bp-Bande des Markers liegt und in etwa dem erwarteten 5386bp großen DNA-Bruchstück entspricht.

DNA-Spaltungsversuche:

Einfluß von Cyclononylprodigiosin 19 und Analoga/Cu(II)-Komplexe auf die PlasmidDNA.

I supercoiled DNA
II nicked DNA
III concatemere DNA $(\bigcirc)_{n}$

IV lineare DNA

Abb. 40: Elektropherogramm. Position: (1): Blindprobe (nur DNA), (2): + Verb. 51 (3): + $\mathrm{Cu}(\mathrm{II})$, (4): +Verb. $\mathbf{5 1}+\mathrm{Cu}(\mathrm{II}),(5):+$ Verb. $76+\mathrm{Cu}(\mathrm{II}),(6):+$ Verb. $77+\mathrm{Cu}(\mathrm{OAc})_{2}-$ Lsg., (7): + Verb. 19 + Cu(II), (8): + Verb. 67 + Cu(II), (9): + Verb. $66+\mathrm{Cu}(I I),(10):+$ Verb. $65+$ $\mathrm{Cu}(\mathrm{II})$, (11): + Verb. $68+\mathrm{Cu}(\mathrm{II})$, (12): DNA + Verb. $59+\mathrm{Cu}(\mathrm{II})$, (13): lineare DNA, (14): DNA-Marker (500 bp), (15): DNA-Marker (1000 bp). Reaktionsmischung (20 $\mu \mathrm{l}$ Gesamtvolumen) : supercoiled Plasmid-DNA (ca. 300 ng), 10 mM MOPS Puffer (pH 7.4), 75 $\mathrm{mM} \mathrm{NaCl}-$ Lsg., $10 \% \mathrm{CH}_{3} \mathrm{CN}, 30 \mu \mathrm{M}$ Prodigiosinderivat-Lsg. und $30 \mu \mathrm{M} \mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg. Inkubation: 1 h bei $37^{\circ} \mathrm{C}$.

Im oben abgebildeten Elektropherogramm (Abb. 40) wird die Aktivität von Cyclononylprodigiosin 19 und Analoga/Cu(II)-Komplexe gegenüber Plasmid-DNA dargestellt. Nach 1 h Inkubationszeit bei $37^{\circ} \mathrm{C}$ wird die supercoiled DNA-Bande (I) durch

Einwirkung von 4 aus 9 Prodigiosinderivaten (Abb. 41) vollständig abgebaut (Abb. 40, Position 4-7). Die Bande der nicked Form (II), die durch Spalten eines Stranges der Doppelhelix zustande kommt, nimmt stark an Intensität zu. In den Spalten 4-7 kommt außerdem eine neue Bande zum Vorschein, die über der nicked Form (II) liegt. Diese zusätzliche Bande (IV) kann anhand der Referenz in Position 13 der linearen DNA-Form zugeordnet werden. Diese Zuordnung wird durch die Molekular-Marker in den Positionen 14 und 15 unterstützt. Die übrigen Prodigiosin-Derivate mit Ausnahme der Verbindung 65 (Position 10), wo die Zunahme der nicked Form (II) noch beobachtbar ist, zeigen keine signifikante Aktivität. Diese Ergebnisse zeigen, daß die Spaltung der supercoiled PlasmidDNA nur bei Derivaten mit tripyrrolischem System und in Gegenwart von Cu (II) möglich ist (s. Position 2 und 3).

(4) 51

(5) 76

(6) 77

(7) 19

(8) 67

(9) 66

(10) 65

(11) 68

(12) 59

Abb. 41: Prodigiosin-Derivate. Die Zahl in der Klammer bezieht sich auf die Position im Elektropherogramm (Abb. 40). Die andere Zahl ist die Nummer der Verbindung.

Einwirkung von Cyclononylprodigiosin 19/Cu(II)-Komplex auf die Plasmid-DNA.

 Kinetik.In diesem Versuch wurde die Zeitabhängigkeit des Effekts von Cyclononylprodigiosin 19/Cu(II)-Komplex auf Plasmid-DNA gemessen. Die Plasmid-DNA wurde mit $30 \mu \mathrm{M}$ 19/Cu(II)-Gemisch behandelt und die Wirkung durch Quenchen mit „loading buffer" (s. Kap. 7.6.3) nach bestimmter Zeit abgebrochen (s. Abb. 43; die relevanten Positionen 4-13 sind grau hervorgehoben, unterhalb Zeitangabe in [min]). Im Laufe der Zeit nimmt die Intensität der supercoiled Bande (I) konstant ab und die der nicked DNA (II) entsprechend zu. Nach 1 h Reaktionszeit ist die supercoiled Form (I) fast vollständig abgebaut und am Ende des Experiments nach 90 bzw. 120 min nicht mehr existent. Zur gleichen Zeit erscheint eine neue Bande, die im Elektropherogramm auf der selben Höhe wie die in Position 14 aufgetragene lineare DNA liegt. Diese Evidenz wird durch die beiden Molekularmarker (Position 15 und 16) bekräftigt. Wird die Plasmid-DNA über die gesamte Dauer des Experiments nur mit einer der Komponenten von $19 / \mathrm{Cu}(\mathrm{II})$-Komplex behandelt, so kann keine Wirkung festgestellt werden (s. Position 2 und 3).

19

Abb. 42: Cyclononylprodigiosin 19.

I supercoiled DNA
II nicked DNA
III concatemere DNA

IV lineare DNA

Abb. 43: Elektropherogramm. Position: (1): Blindprobe (nur DNA), (2): + Verb. 19, (3): DNA $+\mathrm{Cu}(\mathrm{II}),(4)-(13):+$ Verb. $19+\mathrm{Cu}(\mathrm{II})$, Inkubationszeit s . Elektropherogramm, (14): lineare DNA, (15): DNA-Marker (500 bp), (16): DNA-Marker (1000 bp). Reaktionsmischung ($20 \mu \mathrm{l}$ Gesamtvolumen) : supercoiled Plasmid-DNA (ca. 300 ng), 10 mM MOPS Puffer (pH 7.4), 75 mM NaCl -Lsg., $10 \% \mathrm{CH}_{3} \mathrm{CN}, 30 \mu \mathrm{M}$ Cyclononylprodigiosin 19-Lsg. und $30 \mu \mathrm{M}$ $\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg. Inkubation bei $37^{\circ} \mathrm{C}$. Inkubationszeit für (1)-(3): 120 min ; für (4)-(13): s. Elektropherogramm.

Einwirkung von Roseophilin 7 und Analoga/Cu(II)-Komplexe auf die Plasmid-DNA.

Im letzten Spaltungsversuch wurde eine Reihe von Roseophilin-Derivaten, ${ }^{18 f, 21}$ die mit den bisher untersuchten Prodigiosinen strukturell nah verwandt sind, untersucht (Abb. 44). Der Naturstoff Roseophilin 7 (s. auch Kapitel 2.1) besteht ebenfalls aus einem heterocyclischen konjugierten System, wobei hier die mittlere Pyrrol-Einheit durch ein Methoxyfuran ausgetauscht ist. Ferner ist die Azafulven-Einheit über eine 8-C-gliedrige Alkylkette ansaverbrückt. Einer der Pyrrol-Ringe (A-Ring bei Prodigiosinen) trägt zusätzlich eine Chlorfunktion.

Wegen der pharmakologischen Bedeutung war es interessant auch diese Verbindungen in die DNA-Spaltungsversuche einzubeziehen.

7

79

81

78

80

Abb. 44: Roseophilin 7 und ihre Analoga.

Die Durchführung erfolgte unter denselben Bedingungen wie im Versuch mit den Prodigiosinen (Abb. 45). Die Plasmid-DNA wird 1 h bei $37^{\circ} \mathrm{C}$ mit $30 \mu \mathrm{M}$ des betreffenden Roseophilin-Derivats und $\mathrm{Cu}(\mathrm{II})$ behandelt. Als einzige aktive Spezies erwies sich, neben der als Referenz eingesetzten Prodigiosin-Verbindung 51, der einfachste Vertreter der Roseophilin-Reihe - die Verbindung 81. Alle übrigen Derivate waren inaktiv. Dieses Resultat spiegelt das Ergebnis der Prodigiosin-Reihe wider, wo die Rolle des triheterocyclischen Systems für die Aktivität entscheidend war. Der Effekt bleibt aus, gleichgültig ob der mittlere B- oder äußere A-Pyrrol-Ring durch einen anderen Heterocyclus ausgetauscht wird.

I supercoiled DNA
II nicked DNA
III concatemere DNA

IV lineare DNA

Abb. 45: Elektropherogramm. Position: (1): DNA-Marker (1000 bp), (2): Blindprobe (nur DNA), (3): + Verb. 7, (4): + Cu(II), (5): + Verb. $7+\mathrm{Cu}(\mathrm{II}),(6):+$ Verb. $78+\mathrm{Cu}(\mathrm{II}),(7):+$ Verb. $\mathbf{7 9}+\mathrm{Cu}(\mathrm{II}),(8):+$ Verb. $\mathbf{8 0}+\mathrm{Cu}(\mathrm{II}),(9):+$ Verb. $\mathbf{8 1}+\mathrm{Cu}(\mathrm{II}),(10):+$ Verb. $\mathbf{5 1}+$ $\mathrm{Cu}(\mathrm{II})$, (11): lineare DNA. Reaktionsmischung ($20 \mu \mathrm{l}$ Gesamtvolumen) : supercoiled PlasmidDNA (ca. 300 ng), 10 mM MOPS Puffer (pH 7.4), $75 \mathrm{mM} \mathrm{NaCl-Lsg.} 10 \,% \mathrm{CH}_{3} \mathrm{CN}, 30 \mu \mathrm{M}$ Roseophilinderivat-Lsg. und $30 \mu \mathrm{M} \mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg. Inkubation: 1 h bei $37^{\circ} \mathrm{C}$.

In allen drei Tests, d. h. (i) Einfluß auf B- und T-Zellen-Proliferation (immunsuppressive Wirkung), (ii) Einwirkung auf die vakuolare Acidifizierung und (iii) Effekt auf die PlasmidDNA zeigt sich eine unverkennbare Tendenz: die tripyrrolischen Systeme spielen eine essentielle Rolle für die biologische Aktivität. Ein Einfluß der festgelegten Konformation von Cyclononylprodigiosin ist nicht ausgeprägt.

Totalsynthese von Sophorolipid

4 Einleitung

4.1 Alkinmetathese

Die Alkinmetathese war bis vor kurzem eine wenig bekannte Methode in der organischen Synthese. Die bisherigen Anwendungen beschränkten sich auf die Kreuzmetathese einfacher Acetylenderivate ${ }^{69}$ und auf die Darstellung bestimmter Polymere. ${ }^{70}$ Bei den ersten Synthesen von großen Ringen via Alkinmetathese ${ }^{17,71} 1998$ wurde der von SChROCK et al. ${ }^{72}$ entwickelte Wolfram-Alkylidin-Komplex $\left[(\mathrm{tBuO})_{3} \mathrm{~W} \equiv \mathrm{CCMe}_{3}\right] 82$ verwendet. Dieser strukturell wohl definierte Katalysator besitzt eine hohe Aktivität und ist bereits mechanistisch gut untersucht. ${ }^{72}$ Er reagiert auf einem Reaktionsweg, der zu dem von ChaUvin ${ }^{16}$ für die Metathese von Alkenen vorgeschlagenen analog ist. Dieser besteht aus einer Abfolge formaler [2+2]-Cycloadditions- und Cycloreversionsschritte, wobei hier Metallalkylidin- und Metallacyclobutadienstufen durchlaufen werden (Abb. 46). ${ }^{73}$

Abb. 46: Mechanismus der Alkinmetathese.

Ein weiterer strukturell definierter Alkinmetathese-(Prä)Katalysator, der in situ aus dem Trisamidomolybdän-Komplex $\mathbf{8 3}{ }^{74}$ und Halogenquellen wie $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ oder TMSCl entsteht, ist der in unserem Arbeitskreis entwickelte Molybdän-Komplex $\mathbf{8 4}^{75}$ (Abb. 47). Diese Verbindung besitzt sowohl eine sehr hohe Effizienz als auch eine ausgezeichnete Toleranz gegenüber vielen funktionellen Gruppen, die zum Teil die Kompatibilität des WolframKatalysators $\mathbf{8 2}$ übertrifft. ${ }^{75,76}$

84

Abb. 47: Darstellung des aktivierten Molybdän-Katalysators 84 durch Initiierung mit $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Obwohl sowohl die Ringschluß-Alkinmetathese (RCAM) als auch die RingschlußAlkenmetathese (RCM), einen sehr guten Zugang zu Makrocyclen erlauben, ${ }^{2}$ unterscheiden sie sich voneinander in einem entscheidenden Punkt. Der Unterschied wird deutlich, wenn die Cyclisierungsprodukte der beiden Reaktionen genauer betrachtet werden. Die in der RCMMethode entstehenden Alkene sind in der Regel Gemische aus den (E)- und (Z)-Isomeren, wobei der Gehalt an ersterem in den meisten Fällen dominiert. ${ }^{18,19,24}$ Das Fehlen der Kontrolle über die Geometrie der Makrocyclisierungs-produkte ist ein nicht zu unterschätzender Nachteil der RCM. In vielen Naturstoffen kommen stereochemisch definierte Doppelbindungen vor, die auf diesem Weg nur schlecht oder überhaupt nicht zugänglich sind. Eine mögliche Lösung des bei der RCM auftauchenden Problems bietet die RingschlußAlkinmetathese. ${ }^{17,76,77,78,79}$ Hier kann das Makrocyclisierungsprodukt - ein Cycloalkin durch anschließende partielle Hydrierung in eine stereoisomerenreine Cycloalken-Verbindung umgewandelt werden (Abb. 48).

Abb. 48: Makrocyclisierung via Ringschluß-Alkinmetathese und anschließende LINDLARReduktion.

Ein repräsentatives Beispiel für eine derartige Strategie ist die Synthese des zur Insektenabwehr dienenden Azamakrolids Homoepilachnen 87 (Abb. 49). ${ }^{17}$ Die Makrocyclisierung des Dialkins $\mathbf{8 5}$ und anschließende Lindlar-Reduktion des Makrocyclus 86 führt zur diastereomerenreinen Verbindung 87.

Abb. 49: Synthese von Homoepilachnen 87 durch RCAM/LINDLAR-Strategie.

Auf dem konventionellen RCM-Weg mit GrubBs-Komplex 2b als Katalysator wird dagegen ausgehend vom Dialken 88 ein Diastereomerengemisch 89 erhalten, wobei das E-Isomer als Hauptkomponente vorliegt (Abb. 50). ${ }^{80}$ Dieses und viele andere Beispiele zeigen die Notwendigkeit einer weiteren Entwicklung der RCM-Katalysatoren, um die Cyclisierungen stereoselektiv zu gestalten.

Abb. 50: Synthese von Homoepilachnen 89 durch konventionelle RCM.

4.2 Sophorolipide

Die Sophorolipide (SL) gehören zur Substanzklasse der Glykolipide und wurden zuerst von Gorin et al. ${ }^{15} 1961$ aus der Fermentationsbrühe der Hefe Torulopsis bombicola isoliert. Diese gedeiht, wenn ausreichende Mengen von Zuckern, Kohlenhydraten, pflanzlichen Ölen oder deren Gemischen zur Verfügung stehen. Ihre amphiphilen Metabolite - Sophorolipide - sind von großem kommerziellen Interesse wegen ihrer ausgeprägten Emulgator-Eigenschaften mit einer niedrigen kritischen Micell-Konzentration (KMK). Moderne Fermentationsmethoden erlauben heute die Gewinnung dieser nicht ionischen Tenside mit Ausbeuten bis zu 700g/L der Fermentationsbrühe. ${ }^{81}$
Aufgrund ihrer Eigenschaften können diese Biosurfactants (surface active agents) eine potentielle Anwendung in der Kosmetik-Industrie, Pharmazie, Futterproduktion und für spezielle Zwecke als Bekämpfungsmittel bei Ölverschmutzung des Meerwassers finden. ${ }^{82,83}$ Genaue Untersuchungen zeigten, daß die Sophorolipide aus einer Mischung von bis zu 14 Komponenten bestehen. ${ }^{84}$ Die Zusammensetzung des Gemisches hängt von den Fermentationsbedingungen und der Kohlenstoffquelle im Kulturmedium ab. Die Hauptbestandteile dieser Gemische sind das Sophorose-Glycosid 90^{85} und dessen $1^{\prime}, 4^{\prime \prime}$ Lacton 91 (Abb. 51). ${ }^{86}$ Alle andere Komponenten unterscheiden sich von ihnen nur im Acylierungsmuster der Hydroxylgruppen.

90

91

Abb. 51: Hauptvertreter der Sophorolipide.

Über die chemischen und insbesondere über die biologischen Eigenschaften der einzelnen Komponenten wie $\mathbf{9 0}$ und $\mathbf{9 1}$ ist in der Literatur wenig bekannt, obwohl diese für künftige Anwendungen von Bedeutung wären. Das natürliche Sophorolipid-Gemisch wird als nicht
toxisches Biotensid angesehen. ${ }^{83 e}$ Die gereinigten einzelnen Komponenten zeigen dagegen eine signifikante cytotoxische Wirkung ($\mathrm{LC}_{50} 15 \mathrm{mg} / \mathrm{L}$), welche die der natürlichen SLMischung übersteigt. ${ }^{83 b}$ Desweiteren fungiert SL als Inhibitor der Phospholipid- und Ca^{+}abhängigen Proteinkinase und kann die Zell-Differenzierung der menschlichen Leukämiezellen HL 60 in Monocyten induzieren. ${ }^{87}$ Obwohl die Glykolipide in den letzten Jahren zunehmend mehr an Beachtung gefunden haben und Träger spezifischer Informationen für die Zell-Zell-Wechselwirkung und ähnliche Erkennungsprozesse in biologischen Systemen sind, wurde dieser Aspekt bisher wenig untersucht. ${ }^{88}$ Studien mit dem Ziel das biologische Profil der Hauptbestandteile des natürlichen SL-Produkts aufzuklären, könnten von Bedeutung für weitere potentielle Anwendungen in Lebensmittel-, Kosmetik- oder Pharmazeutikaproduktion sein. Da die Gewinnung analytisch reiner Produkte durch konventionelle Isolierungsmethoden äußerst problematisch ist, beschlossen wir das Sophorolipid-Lacton 91, aus dem die freie Säure 90 durch Hydrolyse zugänglich ist, auf präparativem Weg darzustellen.

5 Ergebnisse und Diskussion

5.1 Strategie und retrosynthetische Analyse

Die Synthese des SL-Naturstoffs 91 sollte nicht auf dem konservativen Weg über Macrolactonisierug stattfinden, ${ }^{89}$ sondern viel mehr auf einer neuen und bis jetzt noch nicht angewandten Methode zur Darstellung von Kohlenhydraten basieren. In einer vor kurzem veröffentlichten Totalsynthese des biochemisch aktiven Harzglycosids Tricolorin A konnte auf eindrucksvolle Weise das Potential der Ruthenium-katalysierten RingschlußAlkenmetathese (RCM) gezeigt werden. ${ }^{18 a, b}$ Auf dem Weg zum Zielprodukt bildete das disaccharidische Lacton 93 eine Schlüsselverbindung (Abb. 52). Obwohl diese Verbindung eine nicht zu verkennende Ähnlichkeit mit Sophorolipid 91 aufweist, läßt eine nähere Betrachtung des Produkts 93 eine Anwendung dieser RCM-basierenden Strategie auf 91 wenig aussichtsreich erscheinen. Unabhängig von den verwendeten Metathese-Katalysatoren wurde durch Cyclisierung des Diens 92 stets ein Gemisch der Stereoisomeren erhalten, wobei das (E)-konfigurierte Alken überwog. Dieses Ergebnis steht im Einklang mit der Mehrzahl anderer auf RCM-basierender Makrocyclisierungen. ${ }^{18,19,24}$ Aufgrund der benötigten (Z)Konfiguration in der Alkylkette des Glykolipids 91 schien der Syntheseweg über RCM daher wenig geeignet. Im Gegensatz dazu bot die angesprochene Alkinmetathese/LindLaR-Reduktion-Strategie (s. Kap. 4.1) eine mögliche Lösung des Problems aufgrund der hier vorhandenen Kontrolle über die Geometrie der Doppelbindung. ${ }^{71}$

[^1]Im Schlüsselschritt der Synthese, der Makrocyclisierung, soll wegen seiner ausgezeichneten Eigenschaften (s. Kap. 4.1) der Molybdän-Katalysator 84 angewandt werden. Die übrigen relevanten Schritte bei der Darstellung des Makrolactons 91 sind die beiden Glycosylierungen, die unter anderem stereoselektiv zur $\beta(1 \rightarrow 2)$-glycosidischen Verknüpfung der beiden Glucose-Einheiten führen sollen, und die regioselektive Veresterung am C-4"-OH-Akzeptor, die ihrerseits durch geeignete Schutztechnik gewährleistet werden muß (Abb. 53).

Abb. 53: Sythesestrategie bei Darstellung des Sophorolipid-Lactons 91.

Die entsprechende Wahl der Schutzgruppen ist in dieser Synthese von großer Bedeutung. Die reaktiven Hydroxyl-Funktionen müssen im Verlauf der Synthese stets geschützt bleiben, im letzten Schritt jedoch allesamt ohne Beeinträchtigung des ungesättigten Macrolactons 91 entfernt werden können. Seine Sensibilität gegenüber basischen (Verseifung) als auch sauren Bedingungen (Acyl-Wanderung) und nicht zuletzt die Inkompatibilität der Alken-Funktion mit reduktiver Schutzgruppen-Abspaltung, ließ nur eine Entfernungsmethode, nämlich die oxidative Abspaltung, zu. Diese Anforderungen werden am besten durch die p-Methoxybenzylether (PMB) als die alleinige Schutzgruppe im letzten Schritt der Synthese erfüllt. ${ }^{90}$

5.2 Totalsynthese von Sophorolipid

Der für die erste Glycosylierung benötigte Alkohol 96 wurde in enantiomerenreiner Form (ee ≥ 99.5) durch $\mathrm{Cu}(\mathrm{I})$-katalysierte Ringöffnung von (S)-Propenoxid 95^{91} mit dem GrignardReagenz 94, das aus dem 1-Bromo-6-octin zugänglich ist, erhalten (Abb.54).

Abb. 54: Darstellung des (S)-Alkohols 96.

Ein weiteres Ausgangsmaterial, das kommerziell erhältliche D-Glucal 97, wurde mit NaH als Base und $(n-\mathrm{Bu})_{4} \mathrm{NI}$ als Katalysator in den Tri- O-PMB-Ether 98 überführt (Abb. 55). Im folgenden Schritt wurden die beiden Verbindungen $\mathbf{1 0 0}$ und $\mathbf{9 6}$ nach der Glycal-EpoxidMethode von Danishefsky glycosyliert. ${ }^{92}$ Das geschützte Glucal 98 wurde dabei bei $-25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mit einem Überschuß an Dimethyldioxiran 99 versetzt. ${ }^{93}$ Nach anschließendem Entfernen leichtflüchtiger Bestandteile im Vakuum wurde das so erhaltene Epoxid 100 in Gegenwart von ZnCl_{2} als Promotor in THF mit Alkohol 96 umgesetzt.

[^2]Obwohl die Ausbeute des β-konfigurierten Glycosids 101 nur 42% betrug, sind andere Zugangswege weniger effizient und erfordern mehrere Schritte. Zum Beispiel kann ein alternativer Weg zum Erhalt eines C-2 Akzeptors über einen Orthoester führen, verlangt jedoch eine 6 -stufige Synthese, die insgesamt weniger effizient ist. ${ }^{94}$

Die Synthese des zweiten Saccharid-Bausteins ging von D-Glucose aus, die in MultigrammMaßstab mit p-Methoxybenzaldehyd-dimethylacetal und p-TsOH als Katalysator in die 4, 6-O-p-methoxybenzyliden-geschützte Verbindung $\mathbf{1 0 2}$ überführt wurde (Abb. 56). ${ }^{95}$ Anschließend wurde das Acetal $\mathbf{1 0 2}$ unter konventionellen Bedingungen peracetyliert und durch Behandeln der Verbindung 103 mit Benzylamin in THF selektiv am anomeren Zentrum entschützt, was die Glucopyranose 104 lieferte. Die sensitive Acetal-Verbindung 104 konnte dann unter neutralen Bedingungen mit Br_{2} unter Aktivierung mit $\mathrm{P}(\mathrm{OPh})_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in das Glycosylbromid $\mathbf{1 0 5}$ überführt werden. ${ }^{96}$ Eine alternative Methode zur Darstellung eines α-Halogenids unter neutralen Bedingungen durch Einsetzen des GHosEz-Reagenzes ${ }^{97}$ erwies sich als weniger effizient. Das Produkt 105 war stabil genug, um chromatographisch gereinigt und unter Argon bei $-18^{\circ} \mathrm{C}$ aufbewahrt zu werden.

$\xrightarrow[76 \%]{$| Benzylamin |
| :---: |
| THF, RT |$}$

Abb. 56: Synthese des α-Glycosylbromids 105 .

Die beiden Zuckereinheiten $\mathbf{1 0 1}$ und $\mathbf{1 0 5}$ wurden danach in einer leicht modifizierten Koenigs-Knorr-Reaktion ${ }^{98}$ unter Ausnutzung des Nachbargruppeneffekts ${ }^{99}$ in das β konfigurierte Sophorose-Glycosid 106 überführt. Diese Reaktion konnte in Gegenwart von $\operatorname{AgOTf}\left(1.8\right.$ Äq.) ${ }^{100}$ als Promotor und 2,6-Di-tert-butylpyridin (3.2 Äq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ bei $-5^{\circ} \mathrm{C}$ mit einer Ausbeute von 89% durchgeführt werden (Abb. 57). Die Glykosylierung in Gegenwart von $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ oder VAN BoECKEL-Katalysator ${ }^{101}\left(\mathrm{AgNO}_{3}\right.$ auf Silicium/AluminiumTräger) führten dagegen zu sehr niedrigen Umsätzen. Nach Entschützen der Verbindung 106 wurde das Diol 107 in das geschützte Disaccharid 108 umgewandelt. Im nächsten Schritt wurde eine reduktive Spaltung der 4,6-O-p-Methoxybenzyliden-Gruppe in $\mathbf{1 0 8}$ durch $\mathrm{NaBH}_{3} \mathrm{CN}$ und $\mathrm{F}_{3} \mathrm{CCOOH}$ induziert, die regioselektiv zu dem Disaccharid $\mathbf{1 0 9}$ mit freier OHGruppe in 4"-Position führte. ${ }^{102}$ Das ungewünschte Regioisomer mit freier 6"-OH-Gruppe wurde nur in geringer Form gebildet ($<5 \%$) und konnte chromatographisch abgetrennt werden.

Abb. 57: Synthese von Disaccharid 109.

Die DMAP-katalysierte Veresterung der Verbindung 109 mit 9-Undecinsäure $\mathbf{1 1 0}^{17}$ in Gegenwart von DCC lieferte das Diin 111 (Abb. 58). Im Schlüsselschritt der Synthese fand durch den in situ erzeugten Molybdän-Komplex 84^{75} (s. Abb. 47) in Toluol bei $80^{\circ} \mathrm{C}$ die katalysierte Cyclisierung von 111 statt, die das Cycloalkin 112 in 78% iger Ausbeute ergab. Diese Ringschluß-Reaktion via Alkinmetathese zeigt die Effizienz und Toleranz dieser neuartigen Methode. Es wurden weder die PMB-Schutzgruppen noch die glycosidischen Verknüpfungen angegriffen, obwohl die Reaktion durch einen LEwIS-sauren Metallkomplex katalysiert wurde. Das hier gezeigte Profil der RCAM beweist, daß dieser Reaktionstyp auch im Fall anspruchsvoller Naturstoffe eine zuverlässige und effiziente Methode darstellt.

78% 组 | Mo-Kat. 84 (10 Mol-\%) |
| :--- |
| Toluol, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |

Abb. 58: Synthese von Sophorolipid-Makrolacton 91 durch Ringschluß-Alkinmetathese/
LINDLAR-Reduktion.

Im NMR-Spektrum zeigte das Cycloalkin 112 einen doppelten Signalsatz. Ausführliche Untersuchungen ergaben, daß die Verknüpfungsarten in diesen Molekülen identisch sind. Dieses Phänomen muß daher dem Entstehen von Rotameren zugeschrieben werden, die sich während der Ringschluß-Alkinmetathese bilden. Eine identische Situation im NMR-Spektrum liegt auch im LindLar-Hydrierungsprodukt 113 vor. Erst das Spektrum des entschützten Sophorolipid-Lactons 91 zeigt einen einfachen Signalsatz. Die Zuordnung aller Resonanzen zu jedem einzelnen Rotamer wurde durch umfangreiche 1D und 2D Korrelationsspektren erreicht und die entsprechenden Datensätze sind im Kapitel 7.8 (Ergänzende Analytik) zu finden.

Das Cycloalkin 112 wurde anschließend mit Hilfe eines Lindlar-Katalysators in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ partiell zum (Z)-konfigurierten Cycloalken 113 reduziert (Abb. 58). Im letzten Schritt der Synthese wurden sämtliche PMB-Schutzgruppen oxidativ mit DDQ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ (18:1) entfernt, was das Sophorolipid 91 als Zielmolekül lieferte. Aufgrund des amphiphilen Charakters der Verbindung war die Isolierung des Produkts erschwert. Trotzdem konnte die Verbindung auf konventionelle Weise durch Chromatographie weitgehend gereinigt werden (93%). Aufgrund der nicht korrekten Elementaranalyse wurde jedoch die Verbindung anschließend durch präparative HPLC gereinigt. Diese Maßnahme lieferte analytisch reines Makrolacton 91, das alle erforderlichen Reinheitskriterien erfüllte.

Damit gelang erstmals die Totalsynthese des Hauptbestandteils von natürlichem Sophorolipid durch die zuvor in der Kohlenhydrat-Chemie nicht angewandte Ringschluß-Alkinmetathese.

6 Zusammenfassung

In der vorliegenden Arbeit werden zwei Totalsynthesen von biologisch aktiven Naturstoffen durch ringschließende Metathese beschrieben.

Im ersten Teil wird die Synthese des Alkaloids Cyclononylprodigiosin vorgestellt, das 1970 aus Actinomadura madurae von Gerber et al. ${ }^{14}$ isoliert wurde. Die Naturstoffklasse der Prodigiosine besitzt ein breites Wirkspektrum und ist deshalb von großem pharmakologischen Interesse. Diese triheterocyclischen Wirkstoffe besitzen neben cytotoxischen, antibiotischen und anticancerogenen Eigenschaften eine ausgeprägte immunsuppressive Aktivität. ${ }^{28,29}$
Die Makrocyclisierung des heterocyclischen Gerüsts erfolgte durch eine RingschlußAlkenmetathese (RCM), ${ }^{2}$

unter Anwendung des Ruthenium-Phenylindenyliden-Komplexes $\mathbf{3}^{10}$ als Katalysator, der sich durch eine sehr hohe Toleranz gegenüber vielen funktionellen Gruppen auszeichnet.

3
Des weiteren konnte auf analogem Wege eine Reihe von Prodigiosinderivaten dargestellt werden, die sich durch den Austausch des pyrrolischen A-Rings gegen andere aromatische Systeme oder durch eine variierte Alkylkette am C-Ring des tripyrrolischen Gerüsts von den natürlichen Prodigiosinen unterscheiden. Die Kupplung des jeweiligen A-Rings mit dem bipyrrolischen B-C System erfolgte über Palladium-katalysierte SuzUKi-Reaktionen, ${ }^{38}$ die gute bis sehr gute Ausbeuten lieferten.

66

59

51

67

65

76

68

77

Diese modifizierten Analoga wurden anschließend drei unterschiedlichen biologischen Tests unterzogen:
A. Einfluß auf die durch Lipopolysaccharid (LPS) und Concanavalin A induzierte Proliferation der B- und T-Zellen in Mäuse-Milz,
B. Einwirkung auf die vakuolare Acidifizierung in BHK-Zellen (BHK = baby hamster kidney),
C. Strangspaltungsaktivität gegenüber doppelsträngiger Plasmid-DNA (ФX174 RF1 DNA).

Von den im Test (A) untersuchten Substanzen (18, 19, 59, 65, 66, 67 und 68) zeigten nur Nonylprodigiosin 18 (als Referenz) und Cyclononylprodigiosin 19 eine signifikante immunsuppressive Wirkung, die sich durch eine spezifische Inhibierung der Con Ainduzierten T-Zellen-Proliferation auszeichnet. Im zweiten Test (B) konnte gezeigt werden, daß die Prodigiosine 18, 19 und $\mathbf{6 5}$ die vakuolare Acidifizierung der Lysosome in BHKZellen beeinflussen, indem sie den relativ niedrigen pH -Wert dieser Zellorganellen erhöhen. Im letzten Test (C) wurde der Einfluß von allen dargestellten Analoga (19, 51, 59, 65, 66, 67, 68, 76 und 77) auf die Aktivität gegenüber supercoiled Plasmid-DNA untersucht, wobei die Verbindungen 19, 51, 76 und 77 in Gegenwart von $\mathrm{Cu}(\mathrm{II})$ zur Spaltung der doppelsträngigen DNA führten. Bei allen Tests zeichnete sich eine unverkennbare Tendenz ab, daß die tripyrrolische Einheit, die allen natürlichen Prodigiosinen gemeinsam ist, eine essentielle Rolle für die biologische Aktivität spielt.

Im zweiten Teil der Arbeit gelang erstmals die Totalsynthese des aus der Hefe Torulopsis bombicola 1961 von Gorin et al. ${ }^{15}$ isolierten glykolipidischen Makrolactons Sophorolipid 91. Dieser amphiphile Naturstoff mit starken Emulgator-Eigenschaften konnte durch eine neuartige Methode - die Ringschluß-Alkinmetathese (RCAM) ${ }^{72}$ - dargestellt werden, die hier ihre erste Anwendung in der Kohlenhydrat-Chemie fand. Die Kombination der RCAM mit der Lindlar-Hydrierung ermöglichte die stereoselektive Bildung der (Z)-konfigurierten Alken-Funktion im Lipidteil.

91

Die Makrocyclisierung erfolgte mit dem kürzlich entwickelten Molybdänkatalysator $\mathbf{8 4}{ }^{74,75}$ der sich sowohl durch eine hohe Effizienz als auch durch eine hervorragende Kompatibilität gegenüber dem hochfunktionalisierten System auszeichnet.

84

Die im Zuge dieser Doktorarbeit angewendeten Ringschluß-Alkenmetathese (RCM) sowie die Ringschluß-Alkinmetathese (RCAM) haben sich als hervorragende und komplementäre Methoden bei der Darstellung von makrocyclischen Naturstoffen erwiesen, die durch ihre Effizienz, Flexibilität und nicht zuletzt ihre ausgezeichnete Kompatibilität gegenüber funktionellen Gruppen zu weiteren Anwendungen in der Synthese von strukturell anspruchsvollen Verbindungen verleiten.

Teile der vorliegenden Arbeit sind in mehreren Publikationen zusammengefaßt worden. ${ }^{103,104,105}$

$7 \quad$ Experimenteller Teil

7.1 Allgemeine Hinweise

Feuchtigkeits- und oxidationsempfindliche Reaktionen wurden unter Argon-Atmosphäre durchgeführt. Die dabei verwendeten Lösungsmittel wurden durch Destillation über folgenden Reagenzien getrocknet und unter Argon aufbewahrt: THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg -Anthracen), EtOH, $\mathrm{MeOH}(\mathrm{Mg}) ; \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right) ;$ DMF (Desmodur ${ }^{\circledR}$, ${ }^{106}$ Dibutylzinndilaurat); Pyridin, Triethylamin (erst KOH , dann CaH_{2}); Pentan, Hexan, Toluol (Na / K Legierung), DMSO, Aceton (erst $3 \AA$ MS, dann CaH_{2}).

Die Reaktionen wurden, soweit in der jeweiligen Versuchsvorschrift nicht anders vermerkt, bis zum vollständigen Umsatz der Ausgangsverbindungen durchgeführt. Die Reaktionskontrolle erfolgte mittels Fertigfolien für die DC (Polygram SIL G/UV oder Polygram Alox N/UV der Firma Macherey \& Nagel) mit Hexan/Ethylacetat oder Hexan/MTBE in unterschiedlichen Mischungsverhältnissen. Die Detektion wurde über UV 254 bzw. 366 nm oder durch Ansprühen mit Molybdatophosphorsäure - Cer(IV)sulfat ${ }^{107}$ vorgenommen.

Säulenchromatographische Reinigungen wurden mit leicht erhöhtem Druck (FlashChromatographie) ${ }^{108}$ an Merck Silica Gel 60 (230-400 mesh) oder Aluminiumoxid (neutral, 70 - 250 mesh, Firma Macherey \& Nagel) durchgeführt. Als Elutionsmittel wurden üblicherweise Mischungen aus n-Hexan und Ethylacetat in den jeweils angegebenen Verhältnissen verwendet.

7.2 Analytische Methoden

7.2.1 NMR-Spektroskopie

NMR-spektroskopische Untersuchungen wurden in 5 mm NMR Röhrchen an folgenden Bruker-Geräten mit dazugehörigen Meßfrequenzen vorgenommen: AC 200: $200.1 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$, 50.3 MHz $\left({ }^{13} \mathrm{C}\right)$; AMX 300 und DPX 300: $300.1 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$, $75.5 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$; AMX 400 : 400.1 MHz $\left({ }^{1} \mathrm{H}\right), 100.6 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$; DMX 600: $600.2 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$, $150.9 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. Die chemischen Verschiebungen (δ) wurden in ppm relativ zu Tetramethylsilan (${ }^{1} \mathrm{H}$-Spektren) bzw. zum Solvens (${ }^{13} \mathrm{C}$-Spektren) und die Kopplungskonstanten (J) in Hertz angegeben. Die Spektren wurden nach den Regeln für Spektren „erster Ordnung" ausgewertet.

7.2.2 Infrarotspektroskopie

Die Infrarotspektren wurden an einem Nicolet FT-7199 aufgenommen. Charakteristische und besonders starke Absorptionsbanden wurden in Wellenzahlen $\left[\mathrm{cm}^{-1}\right]$ angegeben.

7.2.3 Massenspektroskopie

Zur Aufnahme von Massenspektren wurde ein Varian CH-5 (70 eV) verwendet. Die hochauflösende Massenspektroskopie erfolgte an einem Finnigan MAT 95 (70 eV). ESIMessungen erfolgten an einem Hewlett Packard HP 5989. GC/MS Kopplungen wurden mit einem Finningan MAT SSQ $7000(70 \mathrm{eV})$ gemessen.

7.2.4 Analytische Gaschromatographie

Zur quantitativen Analyse der Reaktionsmischungen wurde die analytische Gaschromatographie an den Geräten Siemens Sichromat 1 und Hewlett Packard 5890 (Serie II) unter Verwendung einer „fused silica"-Säule mit Polysiloxananfüllung ($1=15 \mathrm{~m}, \varnothing=0.25$ mm) verwendet. Der quantitativen Auswertung lag die Integration über die Substanzpeaks ohne Berücksichtigung von Responsefaktoren zugrunde.

7.2.5 Drehwertbestimmungen

Die optischen Rotationen wurden an dem Polarimeter 343 plus der Firma Perkin Elmer bei $\lambda=$ 589 nm (Natrium-D-Linie) und $20^{\circ} \mathrm{C}$ in einer 10 cm Küvette gemessen.

7.2.6 Schmelzpunktbestimmungen

Die Schmelzpunkte wurden an einem Gallenkamp Melting Point Apparat bestimmt und sind nicht korrigiert.

7.2.7 Kristallstrukturanalysen

Röntgenstrukturanalysen der Verbindungen $\mathbf{2 4}$ und $\mathbf{6 8}$ wurden im Arbeitskreis von Herrn Dr. Lehmann durchgeführt.

7.2.8 Elektrophorese

Bei den Reaktionsdurchführungen wurden folgende Geräte benutzt: Thermomixer comfort der Firma Eppendorf, Biofuge pico der Firma Heraeus und ein Minishaker MS1 der Firma K IKA ${ }^{\circledR}$ Works. Inc. Zur DNA Konzentrierung wurde außerdem ein Vakuumkonzentrator Christ Alpha RVC und eine Gefriertrocknungsanlage Christ Alpha 1-4 der Firma Christ verwendet. Für die Gel-Elektrophoresen wurde das komplette System Powerpac 300 der Firma BioRad ${ }^{\circledR}$ benutzt. Die Dokumentation der Gel-Elektrophoresen erfolgte mit dem Bio Doc $\mathrm{II}^{\mathrm{TM}}$ System der Firma Biometra ${ }^{\circledR}$.

7.3 Ausgangsmaterialien

7.3.1 Kommerziell erhältliche Chemikalien

5-Brom-1-penten, 4-Pentensäure, Triphenylphosphin, MeMgCl , Dipyridil-2-disulfid, NaBH_{4}, KH, Phosphoroxychlorid, Trifluoromethansulfonsäureanhydrid, 4-Dimethylaminopyridin (DMAP), Di-tert-butyldicarbonat, 2,2,6,6-Tetramethylpiperidin, Trimethylborat, n-Butyllithium, Tetrakis-(triphenylphosphin)-palladium(0), $\quad \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$, Trimethylzinnchlorid, Diethanolamin, Triethylamin, Ruthenium-Carben-Komplexe 2a und 2b, [Chlorotris (triphenyphosphin) rhodium(I)], [\{($\left.\left.\left.\eta^{6}-\mathrm{Cumol}\right) \mathrm{RuCl}_{2}\right\}_{2}\right]$, Tricyclohexylphosphin (PCy), Methylmagnesiumiodid, Lithiumdiisopropylamid, 4-Methoxy-3-pyrrolin-2-on, 2-(m -Bromphenyl)-ethanol, Lithiumbromid, Lithiumchlorid, Imidazol, Allylmagnesiumchlorid, $\mathrm{Li}_{2} \mathrm{CuCl}_{4}$, Zinkchlorid, Silbercarbonat, Dicyclohexylcarbodiimid, Pyrydiniumchlorochromat, Triphenylphosphit, D-Glucose, Anisaldehyd-dimethylacetal, Natriumcyanoborhydrid, Chlorameisensäuretrichlormethylester (Diphosgen), Benzylamin, Lindlar-Katalysator (Pd-$\mathrm{CaCO}_{3}-\mathrm{PbO}$), Chinolin, 4,5-Dichlor-3,6-dioxo-cyclohexa-1,4-dien-1,2-dicarbonitril (DDQ), Kupfer(II)diacetat, 3,8-Diamino-5-ethyl-6-phenylphenanthridiniumbromid (Ethidiumbromid).

7.3.2 Arbeitskreis-interne Chemikalien

Ruthenium-Phenylindenyliden-Komplex 3, ${ }^{10}$ 12-Brom-1-dodecen, 9-Undecinol, $\mathrm{Mo}[\mathrm{N}(t-$ $\mathrm{Bu})(3,5 \text {-dimethylphenyl) }]_{3} \mathbf{8 4}^{74,75}$, Silberaluminiumsilikat (VAN BoECKEL-Katalysator). ${ }^{101}$

7.3.3 Nach Literaturvorschrift synthetisierte Chemikalien

1-tert-Butoxycarbonylpyrrol 49, ${ }^{44}$ GHOSEZ-Reagenz. ${ }^{97}$

7.4 Totalsynthese von Cyclononylprodigiosin

7.4.1 Hex-5-en-säure (32)

Zu einer Suspension von Mg -Spänen ($3.43 \mathrm{~g}, 141 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{ml})$ wird 5-Bromo-1penten $31(19.84 \mathrm{~g}, 133 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{ml})$ bei RT zugetropft und die Mischung 6 h bei $34^{\circ} \mathrm{C}$ gerührt. Die restlichen Mg -Späne werden abfiltriert und das Filtrat wird bei $-20^{\circ} \mathrm{C}$ innerhalb 2 h zu einer mit CO_{2}-gesättigten $\mathrm{Et}_{2} \mathrm{O}$-Lösung zugetropft, wobei ein CO_{2}-Strom durch die Lösung geleitet wird. Die Mischung wird auf RT erwärmt und mit einer wäßrigen HCl-Lösung (v/v, 1:1, konz. HCl/Wasser; 100 ml) versetzt. Nach Trocknen der organischen Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ wird das Lösungsmittel im Vakuum entfernt und das Rohprodukt destilliert (Sdp.: $51-52^{\circ} \mathrm{C} / 10^{-2} \mathrm{mbar}$), wobei Verbindung $\mathbf{3 2}^{109}(10.32 \mathrm{~g}, 68 \%)$ als klare Flüssigkeit erhalten wird. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.57$ (bs, 1 H), 5.75 (ddt, $J=17.1$, $10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.95(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.3,137.4,115.5,33.3,32.9,23.7$.

7.4.2 1-(1 H -Pyrrol-2-yl)-hex-5-en-1-on (34)

Eine Lösung von Hex-5-en-säure 32 ($4.78 \mathrm{~g}, 41.87 \mathrm{mmol}$), 2, $2^{〔}$-Dipyridyldisulfid (12.00 g , 54.47 mmol) und Triphenylphosphin ($14.28 \mathrm{~g}, 54.47 \mathrm{mmol}$) in Toluol (60 ml) wird 4 h bei RT gerührt. Anschließend wird die Reaktionslösung auf $-78^{\circ} \mathrm{C}$ gekühlt und eine Lösung von Pyrrolylmagnesiumchlorid [wurde erhalten durch Deprotonierung von Pyrrol ($11.7 \mathrm{ml}, 168.46$ mmol) mit Methylmagnesiumchlorid (3 M in THF, $42 \mathrm{ml}, 126.0 \mathrm{mmol}$) in Toluol (270 ml) bei $-40^{\circ} \mathrm{C}$] zugetropft. Nach 1 h Rühren wird die Reaktion durch Zugabe von ges. $\mathrm{NH}_{4} \mathrm{Cl}$-Lösung bei $-78^{\circ} \mathrm{C}$ abgebrochen. Nach Abtrennen der wäßrigen Phase wird diese mit MTBE extrahiert. Die vereinigten organischen Phasen werden mit 5%-iger $\mathrm{K}_{2} \mathrm{CO}_{3}$-Lösung, Wasser und mit ges. NaCl -Lösung gewaschen, und anschließend über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet. Nach Entfernen des Lösungsmittels im Vakuum und säulenchromatographischer Reinigung des Rückstands (SiO_{2}, Hexan/Ethylacetat 6:1) wird Verbindung 34 (6.67 g , 97.5\%) als farbloses Öl erhalten. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.89(\mathrm{bs}, 1 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.23$ (m, 1H), 5.80 (ddt, $J=17.1,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.94(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.18-2.07 (m, 2H), 1.89-1.74 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.9,138.0,132.1$, 124.6, 116.2, 115.2, 110.5, 37.1, 33.3, 24.3. IR (Film): 3285, 3078, 2932, 1638, 1546, 1428, 1405, 1301, 1136, 1114, 1044, 994, 912, 842, $749,606 \mathrm{~cm}^{-1}$. MS (EI): m/z (relative Intensität)

163 ([$\left.\left.\mathrm{M}^{+}\right], 21\right), 109$ (100), 94 (66), 80 (8), 67 (12), 66 (22), 39 (21). $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}$ (163.22): ber.: C 73.59, H 8.03, N 8.58; gef.: C 73.34, H 7.95, N 8.62.

7.4.3 1-(1H-Pyrrol-2-yl)-pent-4-en-1-on (38)

Verbindung 38 ($5.93 \mathrm{~g}, 95 \%$) wird auf dieselbe Weise wie 1-(1H-Pyrrol-2-yl) hex-5-en-1-on 34, ausgehend von Pent-4-en-säure $36(4.20 \mathrm{~g}, 41.9 \mathrm{mmol})$, als farbloses Öl erhalten. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.71$ (bs, 1H), 7.03-7.01 (m, 1H), 6.92-6.90 (m, 1H), 6.27-6.24 $(\mathrm{m}, 1 \mathrm{H}), 5.86(\mathrm{ddt}, J=17.0,10.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.95(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.50-2.42 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 190.0, 137.3, 131.9, 124.6, 116.2, 115.2, 110.6, 37.0, 28.9. IR (Film): 3286, 3080, 2978, 2919, 1639, 1546, 1428, 1405, 1136, 1114, 1051, 999, 925, 837, 750, $606 \mathrm{~cm}^{-1}$. MS (EI): m/z (relative Intensität) 149 ([M $\left.{ }^{+}\right], 21$), 94 (100), 80 (6), 67 (10), 66 (19), 39 (18). $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$ (149.19): ber.: C 72.46, H 7.43, N 9.39; gef.: C 72.43, H 7.47, N 9.31.

7.4.4 2-Hex-5-enyl-1H-pyrrol (35)

Zu einer Suspension von $\mathrm{NaBH}_{4}(2.95 \mathrm{~g}, 78.0 \mathrm{mmol})$ in 2-Propanol (100 ml) wird eine Lösung von Pyrrol 34 in 2-Propanol (150 ml) zugetropft und 24 h unter Rückfluß gerührt. Nach Abkühlen auf RT wird die Reaktion durch Zugabe von Wasser abgebrochen und die wäßrige Phase mit Ethylacetat extrahiert. Die organische Phase wird über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird durch Säulenchromatographie (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat 20:1) gereinigt, wobei Verbindung $35(2.73 \mathrm{~g}, 65 \%)$ als farbloses Öl anfällt. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.97$ (bs, 1H), 6.65$6.62(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.78(\mathrm{~m}, 2 \mathrm{H}), 5.07-4.95(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.41(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 139.0$, 132.6, 115.9, 114.2, 108.1, 104.9, 33.6, 29.3, 28.7, 27.5. IR (Film): 3386, 3076, 2976, 2931, 2856, 1640, 1568, 1439, 1117, 1094, 1024, 993, 911, 787, 714, 637, $560 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): m/z (relative Intensität) 149 ([$\left.\left.\mathrm{M}^{+}\right], 19\right), 106$ (14), 94 (10), 81 (24), 80 (100), 67 (5), 53 (11). $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}$ (149.24): ber.: C 80.48, H 10.13, N 9.39; gef.: C 80.29, H 10.06, N 9.42.

7.4.5 2-Pent-4-enyl-1 H-pyrrol (39)

Verbindung 39 ($3.43 \mathrm{~g}, 63 \%$) wird auf dieselbe Weise wie 2 -Hex-5-enyl-1 H-pyrrol 35, ausgehend von 1-(1H-Pyrrol-2-yl)-pent-4-en-1-on $\mathbf{3 8}$ ($5.95 \mathrm{~g}, 39.9 \mathrm{mmol}$), als farbloses Öl
erhalten. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.98(\mathrm{bs}, 1 \mathrm{H}), 6.65-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.08-6.06(\mathrm{~m}$, $1 \mathrm{H}), 5.93-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.76-$ $1.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 138.6,132.3,116.0,114.6,108.1,105.0,33.4$, 29.1, 27.0. IR (Film): 3386, 3077, 2932, 2858, 1640, 1568, 1439, 1117, 1095, 1025, 992, 912, 884, 787, $714 \mathrm{~cm}^{-1}$. MS (EI): m/z (relative Intensität) 135 ([M $\left.{ }^{+}\right], 15$), 93 (16), 81 (21), 80 (100), 53 (15), 39 (10). $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}$ (135.21): ber.: C 79.95, H 9.69, N 10.36; gef.: C 79.73, H 9.62, N 10.40 .

7.4.6 5-Hex-5-enyl-1H-pyrrol-2-carbaldehyd (30)

Phosphorylchlorid ($2.91 \mathrm{~g}, 19.0 \mathrm{mmol}$) wird zu DMF ($1.39 \mathrm{~g}, 19.0 \mathrm{mmol}$) tropfenweise bei $0^{\circ} \mathrm{C}$ zugegeben. Die Mischung wird mit 1,2-Dichlorethan (5 ml) verdünnt und mit einer Lösung von Pyrrol 35 in 1,2-Dichlorethan (10 ml) innerhalb von 30 min bei $0^{\circ} \mathrm{C}$ versetzt. Anschließend wird die Lösung 20 min unter Rückfluß gerührt und nach Abkühlen auf RT mit $\mathrm{NaOAc}(8.20 \mathrm{~g}, 100.0 \mathrm{mmol})$ in Wasser $(25 \mathrm{ml})$ versetzt. Die Mischung wird weitere 15 min unter Rückfluß gerührt. Nach Abkühlen auf RT wird die organische Phase abgetrennt und die wäßrige Phase mit MTBE extrahiert. Die vereinigten organischen Phasen werden über $\mathrm{Na}_{2} \mathrm{CO}_{3}$ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (SiO_{2}, Hexan/Ethylacetat 6:1) wird Verbindung 30 als farbloser Feststoff erhalten (2.45 g , 80%). Smp.: $37-38^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 10.61$ (bs, 1 H), $9.36(\mathrm{~s}, 1 \mathrm{H}), 6.94$ (dd, $J=3.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.12-6.10(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{ddt}, J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.92(\mathrm{~m}$, $2 \mathrm{H}), 2.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 178.2$, 144.1, 138.8, 132.0, 123.2, 114.4, 109.5, 33.5, 28.6, 28.5, 27.6. IR (KBr): 3250, 3126, 2934, 2854, 2810, 1631, 1560, 1499, 1424, 1411, 1347, 1189, 1046, 997, 921, 805, $773 \mathrm{~cm}^{-1}$. MS (EI): m/z (relative Intensität) 177 ([$\left.\mathrm{M}^{+}\right], 31$), 148 (8), 134 (13), 121 (13), 109 (51), 108 (100), 94 (11), 80 (44), 53 (16). $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$ (177.25): ber.: C 74.54, H 8.53, N 7.90; gef.: C 74.51, H 8.48, N 7.85.

7.4.7 5-(5-Hex-5-enyl-1H-pyrrol-2-ylmethylen)-4-methoxy-1,5-dihydro-pyrrol-2-on (28)

Eine Lösung von Aldehyd $\mathbf{3 0}$ ($2.03 \mathrm{~g}, 11.4 \mathrm{mmol}$) und 4-Methoxy-3-pyrrolin-2-on 29 (2.59 g , $22.8 \mathrm{mmol})$ in DMSO (40 ml) wird mit NaOH-Lösung ($2 \mathrm{~N}, 32 \mathrm{ml}$) versetzt und 24 h bei $60^{\circ} \mathrm{C}$ gerührt. Die Reaktionslösung wird mit Wasser (140 ml) verdünnt und mit $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extrahiert. Die vereinigten organischen Phasen werden mit Wasser und ges. NaCl-Lösung gewaschen,
über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Waschen des Rückstands mit Hexan und Abtrennen des Feststoffs durch Filtration wird Verbindung 28 ($2.92 \mathrm{~g}, 94 \%$) als gelber kristalliner Feststoff erhalten. Smp.: 139-140 ${ }^{\circ} \mathrm{C} .{ }^{1}{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 10.99(\mathrm{bs}, 1 \mathrm{H}), 10.43(\mathrm{bs}, 1 \mathrm{H}), 6.36-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.96-5.95(\mathrm{~m}, 1 \mathrm{H})$, $5.80(\mathrm{ddt}, J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.02-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}) 1.52-1.42(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3} : $\delta 173.1,168.0,140.7,138.2,125.5,122.7,117.7,114.4,107.7,102.9,89.9,58.1$, 33.6, 29.2, 28.7, 28.0. IR (KBr): 3346, 2935, 1675, 1651, 1594, 1578, 1488, 1432, 1357, 1222, $1179,1044,1008,872,786,770,681 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ (relative Intensität) $272\left(\left[\mathrm{M}^{+}\right]\right.$, 70), 229 (5), 204 (14), 203 (100), 162 (7), 119 (11). $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ (272.35): ber.: C 70.56, H 7.40, N 10.29; gef.: C 70.66, H 7.43, N 10.19 .

7.4.8 1,1,1-Trifluoro-methansulfonsäure 5-(5-hex-5-enyl-pyrrol-2-ylidenmethyl)-4-methoxy-1H-pyrrol-2-yl ester (26)

Eine Lösung von Lactam $\mathbf{2 8}(700 \mathrm{mg}, 2.57 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ wird tropfenweise mit Trifluoromethansulfonsäureanhydrid ($0.50 \mathrm{ml}, 3.05 \mathrm{mmol}$) bei $0^{\circ} \mathrm{C}$ versetzt und 1 h bei $0^{\circ} \mathrm{C}$ weiter gerührt. Anschließend wird die Reaktionslösung auf eine 2%-ige NaHCO_{3}-Lösung gegossen und mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit $\mathrm{NaCl}-\mathrm{Lösung}$ gewaschen, über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Säulenchromatographie (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat 6:1) wird Verbindung 26 als gelber Feststoff erhalten ($972 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 10.87 (bs, 1H), 7.02 (s, 1H), 6.66 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79$ (ddt, $J=$ $17.1,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.03-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.12-2.04 (m, 2H), 1.74-163 (m, 2H), 1.51-1.41 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $167.9,160.9,145.3,138.4,128.4,123.1,122.0,118.6$ (q), 114.7, 110.3, 110.2, 87.1, 58.7, 33.4, 28.4, 28.2, 28.2. IR (Film): 3343, 3080, 2975, 2935, 2859, 1630, 1568, 1550, 1485, 1421, 1238, 1216, 1174, 1135, 1085, 1040, 973, 913, 885, 828, 765, $603 \mathrm{~cm}^{-1} . \mathrm{MS}(E I): \mathrm{m} / \mathrm{z}$ (relative Intensität) $404\left(\left[\mathrm{M}^{+}\right], 22\right), 272$ (19), 271 (100), 203 (21), 119 (14), 69 (24), 41 (16). $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (404.41): ber.: C 50.49, H 4.74, N 6.93; gef.: C 50.26, H 4.73, N 7.06.

7.4.9 2-Pent-4-enyl-pyrrol-1-carboxylsäure tert-butyl ester (40)

Zu einer Lösung von Pyrrol 39 ($546 \mathrm{mg}, 4.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ wird DMAP (50 mg , 0.40 mmol) und $\mathrm{Boc}_{2} \mathrm{O}(1.057 \mathrm{~g}, 4.84 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ bei RT zugegeben. Die

Mischung wird 4 h gerührt und danach das Lösungsmittel im Vakuum entfernt. Die säulenchromatographische Reinigung des Rückstandes $\left(\mathrm{SiO}_{2}\right.$, Hexan/MTBE 50:1) liefert Verbindung 40 als farbloses O l ($875 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18$ (dd, $J=$ $3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.83$ (ddt, $J=17.0,10.2,6.6$, $1 \mathrm{H}), 5.06-4.94(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.6,2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.5,138.6,136.0,120.8,114.6,110.9,109.8,83.2$, 33.4, 28.3, 28.1, 28.0. IR (Film): 3467, 3077, 2979, 2934, 2864, 1741, 1641, 1571, 1495, 1478, 1458, 1408, 1332, 1167, 1128, 1064, 1100, 993, 911, $719 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): m/z (relative Intensität) 235 ([$\left.\left.\mathrm{M}^{+}\right], 2\right), 179$ (34), 137 (14), 125 (12), 124 (10), 93 (12), 81 (23), 80 (37), 57 (100), 41 (16). $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ (235.33): ber.: C 71.46, H 8.99, N 5.95; gef.: C 71.26, H 9.12, N 6.02.

7.4.10 (5-pent-4-en-1-tert-butoxycarbonylpyrrol-2-yl) boronsäure (27)

Eine Lösung von 2,2,6,6-Tetramethylpiperidin ($434 \mu \mathrm{l}, 2.57 \mathrm{mmol}$) in THF (10 ml) wird tropfenweise mit $n-B u L i(1.6 \mathrm{M}$ in Hexan, $1.84 \mathrm{ml}, 2.95 \mathrm{mmol}$) versetzt, so daß die Temperatur stets unterhalb von -65° bleibt. Nach weiteren 15 min Rühren wird die Temperatur innerhalb von 30 min auf $0^{\circ} \mathrm{C}$ erhöht. Anschließend wird wieder auf $-78^{\circ} \mathrm{C}$ gekühlt und eine Lösung von N-Boc-Pyrrol 40 ($561 \mathrm{mg}, 2.38 \mathrm{mmol}$) in THF (10 ml) zugegeben, so daß die Reaktionstemperatur nicht über $-65^{\circ} \mathrm{C}$ steigt. Nach 2 h Rühren bei $-78^{\circ} \mathrm{C}$ wird Trimethylborat ($1.24 \mathrm{~g}, 11.9 \mathrm{mmol}$) in THF (10 ml) zugetropft und die Temperatur über Nacht auf RT erhöht. Die Mischung wird dann mit aq. $\mathrm{HCl}(0.25 \mathrm{~N}, 15 \mathrm{ml}$, 3.75 mmol) versetzt und die organische Phase im Vakuum entfernt. Der Rückstand wird mit $\mathrm{Et}_{2} \mathrm{O}$ extrahiert und die organische Phase mit Wasser gewaschen. Nach Trocknen über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ wird die Lösung langsam konzentriert, so daß das Rohprodukt teilweise ausfällt. Nach anschließendem Abkühlen auf $0^{\circ} \mathrm{C}$ wird das feste Produkt abfiltriert und mit kaltem $\mathrm{Et}_{2} \mathrm{O}$ gewaschen. Nach Entfernen des Lösungsmittels im Vakuum wird Verbindung 27 als heller beige gefärbter Feststoff erhalten ($386 \mathrm{mg}, 58 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.99$ (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{bs}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.92$ $(\mathrm{m}, 2 \mathrm{H}), 2.85-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.2,142.0,138.2,127.3,115.0,112.6,85.8,33.4,30.1,28.3,28.0 .{ }^{11} \mathrm{~B}$ NMR ($64 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.0$.

7.4.11 5‘-(5-Hex-5-enyl-1 H -pyrrol-2-ylmethylen)-4'-methoxy-5-pent-4-enyl-1 $\mathrm{H}, \mathbf{5}^{\text {‘}} \mathrm{H}$ [2,2‘] bipyrrolyl•Hydrochlorid ($\mathbf{2 5} \cdot \mathbf{H C l}$)

Eine Lösung von Triflat 26 ($268 \mathrm{mg}, 0.66 \mathrm{mmol}$), $\mathrm{LiCl}(85 \mathrm{mg}, 1.98 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(38$ $\mathrm{mg}, 0.033 \mathrm{mmol}$), Boronsäure $27(370 \mathrm{mg}, 1.32 \mathrm{mmol})$ in DME (20 ml) wird mit 2 M aq . $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2 N in Wasser, $1.3 \mathrm{ml}, 2.6 \mathrm{mmol}$) versetzt und 15 h unter Argon bei $85^{\circ} \mathrm{C}$ gerührt. Die Reaktionsmischung wird auf Eiswasser gegossen und mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl - und $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen und über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet. Die säulenchromatographische Reingung (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/ Ethylacetat $15: 1 \rightarrow 2: 1$) liefert Verbindung 25, die nach Behandlung mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ und Entfernen des Lösungsmittels das Hydrochlorid $\mathbf{2 5} \cdot \mathrm{HCl}(159 \mathrm{mg}, 56 \%)$ als roten Feststoff ergibt. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 12.81$ (bs, 1 H), 12.70 (bs, 2 H), $6.97-6.95$ ($\mathrm{m}, 2 \mathrm{H}$), 6.82-6.80 (m, 1H), $6.20(\mathrm{dd}, J=3.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=3.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.77(\mathrm{~m}, 2 \mathrm{H}), 5.10-4.91(\mathrm{~m}, 4 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.78$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 166.4,151.0,148.9,145.0,139.0,138.3,127.7,125.9,122.2,121.0,119.6$, $114.9,114.7,114.2,111.8,111.0,92.9,59.0,33.6,33.3,28.9,28.6,28.2,28.1,27.6$. IR $(\mathrm{KBr}): 3160,3121,2975,2929,2858,1633,1608,1552,1536,1409,1372,1280,1264,1181$, 1041, 972, $911,776 \mathrm{~cm}^{-1}$. UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}=539,392,374,297 \mathrm{~nm}$. MS (ESI pos.): m/z (relative Intensität) $390\left(\left[(\mathrm{M}-\mathrm{Cl})^{+}\right], 100\right) . \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{HCl}(426.01)$: ber.: C 70.49, H 7.57, N 9.86 gef.: C 70.28, H 7.69, N 9.95 .

7.4.12 Verbindung $24 \cdot \mathbf{H C l}$

Eine Lösung von Dien $\mathbf{2 5} \cdot \mathrm{HCl}(58 \mathrm{mg}, 0.136 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ wird tropfenweise zum Ruthenium-Phenylindenyliden-Komplex 3 ($13.4 \mathrm{mg}, 0.014 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) gegeben und 16 h bei $40^{\circ} \mathrm{C}$ unter Ar gerührt. Die Mischung wird mit ges. $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen, die organische Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat 6:1) wird Verbindung 24 erhalten, die nach Einengen mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ versetzt wird. Nach Entfernen des Lösungsmittels im Vakuum wird das Hydrochlorid 24•HCl ($35 \mathrm{mg}, 65 \%$) als roter Feststoff erhalten. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 12.85(\mathrm{bs}, 1 \mathrm{H}), 12.70(\mathrm{bs}, 1 \mathrm{H}), 12.58$ (bs, 1H), 6.96-6.93 (m, 2H), 6.75 (dd, $J=3.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.15-6.12 (m, 2H), 6.07 (d, $J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.57(\mathrm{dt}, J=15.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dt}, J=15.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.96-$ $2.80(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz ,
$\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 167.2,150.9,149.5,144.8,131.2,129.1,127.2,126.6,123.1,121.1,119.8,115.3$, $112.1,111.6,92.7,59.1,32.1,30.5,29.6,28.9,28.3,26.7,25.9$. IR (KBr): 3435, 3160, 3105, 3059 , 2926, 2851, 1605, 1546, 1534, 1375, 1279, 1244, 1178, 1036, 971, $780 \mathrm{~cm}^{-1}$. MS (GCEI): m/z (relative Intensität) $361\left(\left[(\mathrm{M}-\mathrm{HCl})^{+}\right], 100\right), 346$ (12), 318 (14), 266 (13), 104 (28). HR-MS ($\left.\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}\right)$: ber.: 361.215412 ; gef.: 361.217201.

7.4.13 Cyclononylprodigiosin•Hydrochlorid (19•HCl)

Eine Lösung von Makrocyclus $\mathbf{2 4} \cdot \mathrm{HCl}(81 \mathrm{mg}, 0.203 \mathrm{mmol})$ und Wilkinson-Katalysator $\left[\left(\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](97 \mathrm{mg}, 0.105 \mathrm{mmol})\right.$ in EtOH $(30 \mathrm{ml})$ wird bei RT unter H_{2}-Atmosphäre (1 atm) 6 h gerührt. Die Mischung wird mit ges. $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen und mit $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extrahiert. Nach Trocknen über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ und Entfernen des Lösungsmittels im Vakuum wird der Rückstand säulenchromatographisch gereinigt (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat $10: 1 \rightarrow 6: 1$). Die vereinigten Fraktionen werden eingeengt und mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ versetzt. Anschließend wird das Lösungsmittel im Vakuum entfernt, wobei das Produkt 19•HCl (73 $\mathrm{mg}, 90 \%$) als roter Feststoff anfällt. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 12.85(\mathrm{bs}, 1 \mathrm{H}), 12.65$ (bs, $2 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=3.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=3.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ (dd, $J=3.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.87$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.13(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta$ $167.1,151.3,149.4,145.2,127.1,126.7,123.0,121.0,119.7,115.2,111.9,111.2,92.7,59.1$, 30.2, 29.5, 28.3, 28.2, 27.9, 27.8, 27.7, 27.3, 26.6. MS (EI): m/z (relative Intensität) 363 $\left(\left[(\mathrm{M}-\mathrm{HCl})^{+}\right], 100\right), 348(11), 278(5), 104$ (11). HR-MS $\left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}\right)$: ber.: 363.231062; gef.: 363. 229082.

7.5 Synthese der Prodigiosinanaloga

7.5.1 (1-tert-Butoxycarbonylpyrrol-2-yl)boronsäure (50)

Zu einer Lösung von 2,2,6,6-Tetramethylpiperidin ($765 \mathrm{mg}, 5.41 \mathrm{mmol}$) in THF (11 ml) wird langsam $n-B u L i\left(1.6 \mathrm{M}\right.$ in Hexan, $3.90 \mathrm{ml}, 6.24 \mathrm{mmol}$) bei $-78^{\circ} \mathrm{C}$ unter Ar zugegeben. Nach 10 min Rühren bei $-78^{\circ} \mathrm{C}$ wird die Temperatur auf $0^{\circ} \mathrm{C}$ innerhalb von 30 min erhöht. Anschließend wird wieder auf $-78^{\circ} \mathrm{C}$ abgekühlt und eine Lösung von N-Boc-pyrrol 49 (830 $\mathrm{mg}, 4.96 \mathrm{mmol}$) in THF (20 ml) so zugetropft, daß die Temperatur unterhalb $-65^{\circ} \mathrm{C}$ bleibt. Nach 2 h Rühren bei $-78^{\circ} \mathrm{C}$ wird zu diesem Reaktionsgemisch eine Lösung von Trimethylborat ($1.54 \mathrm{~g}, 14.82 \mathrm{mmol}$) in THF (40 ml) gegeben. Anschließend wird die Temperatur über Nacht auf RT gebracht und die Reaktionsmischung mit aq. HCl ($0.25 \mathrm{M}, 14$ $\mathrm{ml}, 3.5 \mathrm{mmol}$) versetzt. Nach Entfernen des Lösungsmittels im Vakuum wird der Rückstand mit $\mathrm{Et}_{2} \mathrm{O}$ (3 x 15 ml) extrahiert, mit Wasser (2 x 6 ml) gewaschen, und die organische Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet. Das Lösungsmittel wird konzentriert, so daß das Produkt auszukristallisieren beginnt. Nach anschließendem Abkühlen auf $0^{\circ} \mathrm{C}$ wird der Feststoff abfiltriert und mit kaltem $\mathrm{Et}_{2} \mathrm{O}$ gewaschen. Nach Trocknen im Vakuum wird die Boronsäure $50(660 \mathrm{mg}, 63 \%){ }^{39 \mathrm{a}}$ als farbloser Feststoff erhalten. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42$ (dd, $1 \mathrm{H}, J=3.2,1.6 \mathrm{~Hz}$), $7.28(\mathrm{bs}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=3.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60$ ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 152.2, 128.7, 127.0, 112.0, 85.5, 27.9. ${ }^{11}$ B NMR (64 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 26.2. MS (EI): m / z (relative Intensität) 211 ($\left[\mathrm{M}^{+}\right], 10$), 155 (19), 138 (9), 111 (62), 110 (15), 93 (11), 57 (100), 41 (25), 29 (13).

7.5.2 5‘-(5-Hex-5-enyl-1H-pyrrol-2-ylmethylen)-4'-methoxy-1H,5‘ $H\left[2,2^{〔}\right]$ bipyrrolyl (51)

Eine Lösung von Triflat 26 ($243 \mathrm{mg}, 0.60 \mathrm{mmol}$), Boronsäure $50(380 \mathrm{mg}, 1.80 \mathrm{mmol})$, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{LiCl}(76 \mathrm{mg}, 1.80 \mathrm{mmol})$ und $\mathrm{Na}_{2} \mathrm{CO}_{3}(381 \mathrm{mg}, 3.60 \mathrm{mmol})$ in DME (12 ml) wird auf $80^{\circ} \mathrm{C}$ erhitzt, mit 1.80 ml Wasser versetzt, und 21 h bei $80^{\circ} \mathrm{C}$ unter Argon gerührt. Die Reaktionsmischung wird auf Eiswasser gegossen und mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl - und $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen und über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet. Nach Säulenchromatographie (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat 6:1 $\rightarrow 2: 1$) fällt Verbindung $51(141 \mathrm{mg}, 73 \%)$ als roter Feststoff an. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=3.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=2.5,1.3$
$\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=3.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79$ (ddt, $J=16.9,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.91(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 169.5$, 160.6, 144.4, 139.0, 138.8, 128.4, 128.3, 122.8, 121.3, 116.0, 114.1, 113.2, 110.4, 108.8, 95.9, 58.6, 33.5, 28.9, 28.9, 27.1. IR (KBr): 3430, 3152, 3101, 2963, 2926, 2853, 1722, 1634, 1604, 1549, 1512, 1461, 1408, 1371, 1262, 1181, 1135, 1100, 1037, 958, 800, $746 \mathrm{~cm}^{-1}$. MS (EI): m / z (relative Intensität) 321 ([M $\left.\left.{ }^{+}\right], 100\right), 306$ (12), 266 (10), 253 (31), 252 (69), 238 (26), 221 (7), 118 (11), 91 (33). HR-MS $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}\right)$: ber.: 321.184112; gef.: 321.184020 .

7.5.3 Verbindung 65.2HCl

Eine Lösung von $\mathbf{5 1} \cdot \mathrm{HCl}(28 \mathrm{mg}, 0.078 \mathrm{mmol})$ [erhalten durch Versetzen der Verbindung $\mathbf{5 1}$ mit einer Lösung von HCl in $\mathrm{Et}_{2} \mathrm{O}$ und Entfernen des Lösungsmittels im Vakuum] und Ruthenium-Phenylindenyliden-Komplex 3 ($3.6 \mathrm{mg}, 0.004 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ wird 30 h bei $40^{\circ} \mathrm{C}$ unter Ar gerührt. Die Mischung wird mit ges. $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen, die organische Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat $4: 1 \rightarrow 1: 1$) wird das eingeengte Produkt 65 mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ versetzt. Nach Entfernen des Lösungsmittels im Vakuum fällt Verbindung $\mathbf{6 5} \cdot 2 \mathrm{HCl}(25 \mathrm{mg}, 93 \%)$ als dunkelroter Feststoff an. Isomerenverhältnis $E: Z=2.7: 1 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 12.92$ (bs, 2H), 12.72 (bs, $2 \mathrm{H}), 12.69(\mathrm{bs}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.93-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 2 \mathrm{H})$, 6.32-6.29 (m, 2H), $6.15(\mathrm{dd}, J=3.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.39-5.36(\mathrm{~m}, 2 \mathrm{H})$, $3.93(\mathrm{~s}, 6 \mathrm{H}), 2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.33(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) (E)-Isomer: $\delta 166.6,152.7,149.0,130.3,129.2,127.3$, 126.0, 122.3 121.6, 117.9, 116.3, 112.5, 112.0, 93.2, 59.0, 32.3, 29.2, 28.7, 28.1; (Z)-Isomer (ausgewählte Signale): $\delta 132.0,129.8,110.3,29.4,28.8,28.2,27.0$. HR-MS $\left(\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{2}\right)$: ber.: 615.344748; gef.: 615.343202 .

7.5.4 2-Pent-4-enyl-furan (54)

$\mathrm{Zu} n-\mathrm{BuLi}(1.6 \mathrm{~N}$ in Hexan, $28.0 \mathrm{ml}, 44.8 \mathrm{mmol}$) in THF (18 ml) wird Furan ($3.07 \mathrm{ml}, 42.27$ mmol) bei $-15^{\circ} \mathrm{C}$ zugetropft. Anschließend wird die Temperatur innerhalb von 1 h auf RT erhöht und 24 h gerührt. Danach wird 5-Bromo-1-penten 52 ($6.30 \mathrm{~g}, 42.27 \mathrm{mmol}$) in THF (10 $\mathrm{ml})$ zugegeben und weitere 24 h bei RT gerührt. Das Reaktionsgemisch wird auf Eiswasser gegossen und mit $\mathrm{Et}_{2} \mathrm{O}$ extrahiert. Nach Trocknen über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ und Konzentrierung im

Vakuum wird der Rückstand säulenchromatographisch $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gereinigt, wobei Verbindung $54(2.73 \mathrm{~g}, 65 \%)^{49}$ als farblose Flüssigkeit anfällt. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.29(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=3.3,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.81(\mathrm{ddt}, J=16.9,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-4.95(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.06$ $(\mathrm{m}, 2 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.1,140.7,138.2,114.9,110.0$, 104.8, 33.1, 27.3, 27.2. IR (Film): 3115, 3078, 2978, 2935, 2862, 1641, 1597, 1508, 1438 1384, 1345, 1237, 1175, 1147, 1077, 1007, 914, 885, 798, 729, $599 \mathrm{~cm}^{-1}$. MS (EI): m / z (relative Intensität) 136 ([M $\left.\left.{ }^{+}\right], 19\right), 107$ (7), 94 (76), 92 (13), 82 (20), 81 (100), 53 (29), 39 (17), 27 (15).

7.5.5 5-(5-Hex-5-enyl-1 H-pyrrol-2-ylmethylen)-4-methoxy-2-(5-pent-4-enyl-furan-2-yl)-5H-pyrrol \cdot Hydrochlorid ($\mathbf{5 7} \cdot \mathbf{H C l}$)

Eine Lösung von Furan $54(170 \mathrm{mg}, 1.25 \mathrm{mmol})$ in THF (3 ml) wird mit n-BuLi (1.6 M in Hexan, $0.78 \mathrm{ml}, 1.25 \mathrm{mmol}$) bei $-78^{\circ} \mathrm{C}$ unter Ar versetzt. Die Reaktionslösung wird auf $0^{\circ} \mathrm{C}$ erwärmt und 1 h bei dieser Temperatur gerührt. Anschließend wird auf $-78^{\circ} \mathrm{C}$ abgekühlt und Trimethylborat ($167 \mu \mathrm{l}, 1.50 \mathrm{mmol}$) eingespritzt. Danach wird die Temperatur auf $0^{\circ} \mathrm{C}$ erhöht und weitere 2 h gerührt. In einem separaten Kolben werden Triflat 26 ($104 \mathrm{mg}, 0.27 \mathrm{mmol}$) und $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25 \mathrm{mg}, 0.022 \mathrm{mmol})$ in DME (5 ml) gelöst. Diese Reaktionslösung wird mit der zuvor hergestellten Reaktionsmischung des Borats bei $40^{\circ} \mathrm{C}$ versetzt. Anschließend wird aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 1.10 \mathrm{ml}, 2.20 \mathrm{mmol})$ zugegeben und die resultierende Mischung 3 h bei $80^{\circ} \mathrm{C}$ gerührt. Die Reaktionslösung wird mit ges. $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen, die organische Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat $50: 1 \rightarrow 6: 1$) und Einengen wird Verbindung 57 mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ versetzt. Entfernen des Lösungsmittels im Vakuum liefert das Hydrochlorid $\mathbf{5 7} \cdot \mathrm{HCl}(86 \mathrm{mg}, 78 \%)$ als roten Feststoff. ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 14.20(\mathrm{bs}, 1 \mathrm{H}), 13.73(\mathrm{bs}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.01-$ $6.97(\mathrm{~m}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.27(\mathrm{~m}, 2 \mathrm{H}), 5.92-5.75(\mathrm{~m}, 2 \mathrm{H}), 5.10-4.91(\mathrm{~m}$, $4 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 4 \mathrm{H})$, 1.79-1.68 (m, 4H), 1.48-1.39 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 166.6,162.2,155.7$, $146.0,143.6,138.8,138.0,131.5,127.0,121.3,120.3,118.9,115,1,114.3,113.9,110.1,93.3$, 59.1, 33.5, 33.1, 28.6 (2x), 28.2, 27.8, 27.0. IR (KBr): 3423, 3088, 2927, 2856, 1640, 1611, 1547, 1411, 1286, 1233, 1184, 1136, 1047, 989, 964, $909,783 \mathrm{~cm}^{-1}$. MS (EI): m / z (relative

Intensität) $390\left(\left[(\mathrm{M}-\mathrm{HCl})^{+}\right], 100\right), 375$ (14), 335 (25), 322 (24), 321 (32), 307 (15), 140 (9), 118 (15), 105 (16), 41 (14). HR-MS ($\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$): ber.: 390.230727; gef.: 390.229664.

7.5.6 Verbindung $\mathbf{6 6} \cdot \mathbf{H C l}$

Eine Lösung von Dien $\mathbf{5 7} \cdot \mathrm{HCl}(26 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ wird langsam zu einer Lösung von Ruthenium-Carben-Komplex $\mathbf{3}$ ($5 \mathrm{mg}, 0.006 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) zugetropft und 40 h bei $40^{\circ} \mathrm{C}$ unter Ar gerührt. Die Mischung wird mit ges. $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen, die organische Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat 20:1 $\rightarrow 6: 1$) und Einengen wird Verbindung 66 mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ versetzt. Nach Entfernen des Lösungsmittels im Vakuum wird das Hydrochlorid $\mathbf{6 6} \cdot \mathrm{HCl}(15.5 \mathrm{mg}, 64 \%)$ als roter Feststoff erhalten. Isomerenverhältnis $E: Z=4: 1 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 14.14(\mathrm{bs}, 1 \mathrm{H}), 13.22(\mathrm{bs}, 1 \mathrm{H})$, $7.13(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27-6.22(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.93-5.84(\mathrm{~m}, 1 \mathrm{H})$, 5.57-5.48 (m, 1H), 4.00(s,3H), 2.93-2.83(m, 4H), 2.18-1.77 (m, 8H), 1.50-1.40(m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) (E-Isomer: $\delta 167.2,163.0,155.5,145.7,142.7,130.9,130.7,129.7$, 128.1, 122.1, 119.6, 118.5, 114.4, 109.8, 92.8, 59.4, 31.7, 31.2, 29.3, 28.3, 28.2, 27.3, 26.9; (Z)-Isomer (ausgewählte Signale): δ 131.1, 130.1, 130.0, 127.7, 119.7, 117.7, 109.7, 92.7, 59.3, 28.8, 28.7, 28.1 (2C), 27.6, 27.5, 27.4. IR (KBr): 3423, 3071, 2923, 2851, 1616, 1540, $1501,1415,1345,1247,1237,1177,1130,1032,968,884,799,781,703,667 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): m / z (relative Intensität) $362\left(\left[(\mathrm{M}-\mathrm{HCl})^{+}\right], 100\right), 347$ (15), 280 (11), 105 (8). HR-MS $\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: ber.: 362.199427 ; gef.: 362. 200162.

7.5.7 2-Dodec-11-enyl-furan (55)

$\mathrm{Zu} n-\mathrm{BuLi}(1.6 \mathrm{~N}$ in Hexan, $5.53 \mathrm{ml}, 8.85 \mathrm{mmol})$ in THF (4 ml) wird Furan ($643 \mu \mathrm{l}, 8.85$ mmol) bei $-15^{\circ} \mathrm{C}$ zugetropft. Anschließend wird die Temperatur innerhalb von 1 h auf RT erhöht und weitere 20 h gerührt. Danach wird eine Lösung von Alken 53 ($2.187 \mathrm{~g}, 8.85 \mathrm{mmol}$) in THF (3 ml) zugegeben und 24 h bei RT gerührt. Das Reaktionsgemisch wird auf Eiswasser gegossen und mit $\mathrm{Et}_{2} \mathrm{O}$ extrahiert. Nach Trocknen über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ und Konzentrierung im Vakuum wird der Rückstand säulenchromatographisch (SiO_{2}, Hexan) gereinigt, wobei Verbindung 55 ($1.954 \mathrm{~g}, 93 \%$) als farbloses Öl anfällt. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.29$ (dd, $J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.83(\mathrm{ddt}, J=$ $16.9,13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.90(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.68-$ $1.51(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.29(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 156.9,140.7,139.4,113.9$,
110.1, 104.6, 33.9, 29.7, 29.7, 29.6, 29.5, 29.3, 29.3, 29.1, 28.2, 28.0. IR (Film): 3115, 3077, 2926, 2854, 1641, 1597, 1507, 1465, 1440, 1147, 1007, 994, 910, 885, 795, $726 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): m / z (relative Intensität) 234 ($\left[\mathrm{M}^{+}\right], 16$), 123 (10), 95 (44), 94 (16), 82 (35), 81 (100), 67 (10), 55 (17), 41 (24). HR-MS ($\left.\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}\right)$: ber.: 234.198365; gef.: 234.198907.

7.5.8 5-(5-Hex-5-enyl-1H-pyrrol-2-ylmethylen)-4-methoxy-2-(5-dodec-11-enyl-furan-2-yl)-5H-pyrrol-Hydrochlorid ($\mathbf{5 8} \cdot \mathbf{H C l}$)

Eine Lösung von Furan $55(465 \mathrm{mg}, 1.98 \mathrm{mmol})$ in THF (5 ml) wird mit $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in Hexan, $1.24 \mathrm{ml}, 1.98 \mathrm{mmol}$) bei $-78^{\circ} \mathrm{C}$ unter Ar versetzt. Die Reaktionslösung wird auf $0^{\circ} \mathrm{C}$ erwärmt und 1 h bei dieser Temperatur gerührt. Anschließend wird auf $-78^{\circ} \mathrm{C}$ abgekühlt und Trimethylborat ($264 \mu \mathrm{l}, 2.38 \mathrm{mmol}$) eingespritzt. Danach wird die Temperatur auf $0^{\circ} \mathrm{C}$ erhöht und 2 h gerührt. In einem separaten Kolben werden Triflat 26 ($192 \mathrm{mg}, 0.47 \mathrm{mmol}$) und $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(52 \mathrm{mg}, 0.045 \mathrm{mmol})$ in DME (15 ml) gelöst. Diese Reaktionslösung wird mit der zuvor hergestellten Reaktionsmischung des Borats bei $40^{\circ} \mathrm{C}$ versetzt. Anschließend wird aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.2 \mathrm{M}, 1.80 \mathrm{ml}, 3.96 \mathrm{mmol})$ zugegeben und das resultierende Gemisch 3 h bei $80^{\circ} \mathrm{C}$ gerührt. Die Reaktionslösung wird mit ges. $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen, die organische Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat $50: 1 \rightarrow 6: 1$) und Konzentrierung wird Verbindung $\mathbf{5 8}$ mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ versetzt. Nach Entfernen des Lösungsmittels im Vakuum fällt das Hydrochlorid $\mathbf{5 8} \cdot \mathrm{HCl}$ ($158 \mathrm{mg}, 64 \%$) als roter Feststoff an. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 14.03(\mathrm{bs}, 1 \mathrm{H}), 13.58(\mathrm{bs}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.27(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.75$ $(\mathrm{m}, 2 \mathrm{H}), 5.05-4.90(\mathrm{~m}, 4 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.15-2.00 (m, 4H), 1.84-1.69 (m, 4H), 1.67-1.29 (m, 16H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ $166.6,162.8,155.7,146.2,143.5,139.4,138.9,131.4,126.0,121.3,120.5,118.9,114.3$, $113.9,113.9,110.0,93.2,59.1,33.9,33.5,29.6,29.6,29.5,29.4,29.2$ (2x), 29.0, 28.6 (2x), 28.4, 28.2, 27.8. IR (KBr): 3439, 3081, 2996, 2927, 2854, 1631, 1611, 1554, 1544, 1495, 1441, 1360, 1288, 1226, 1181, 1039, 978, 969, $906,781 \mathrm{~cm}^{-1}$. HR-MS (FAB pos.) $\left(\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: ber.: 489.348102 ; gef.: 489.347792 .

7.5.9 Verbindung $67 \cdot \mathbf{H C l}$

Eine Lösung von Dien $\mathbf{5 8} \cdot \mathrm{HCl}(131 \mathrm{mg}, 0.249 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ wird langsam zu einer Lösung von Ruthenium-Phenylindenyliden-Komplex $\mathbf{3}(5 \mathrm{mg}, 0.006 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(50 ml) gegeben und 22 h bei $40^{\circ} \mathrm{C}$ unter Ar gerührt. Nach Abkühlen auf RT wird die Lösung mit ges. $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen, die organische Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Die säulenchromatographische Reinigung des Rückstandes (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat $30: 1 \rightarrow 6: 1$) liefert das Produkt 67, das mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ versetzt wird. Nach Entfernen des Lösungsmittels im Vakuum wird das Hydrochlorid 67. $\mathrm{HCl}(71 \mathrm{mg}, 57 \%)$ als roter Feststoff erhalten. Isomerenverhältnis $E: Z=2.4: 1 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.98(\mathrm{bs}, 1 \mathrm{H}), 13.47(\mathrm{bs}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, 6.87-6.85 (m, 1H), $6.22(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.07(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.19(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~s}$, $3 \mathrm{H}), 3.01-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.41-1.03(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(E)$-Isomer: $\delta 166.2,162.4,156.2,145.6,143.2,131.3,130.7,129.4,126.9$, 121.1, 120.1, 118.9, 114.2, 110.7, 92.8, 58.9, 32.9, 31.7, 29.6, 29.2, 28.9, 28.8, 28.7, 28.5, 28.3, 28.2, 28.1, 28.0, 27.8, 26.9; (Z)-Isomer (ausgewählte Signale): $\delta 166.0,162.9,156.1$, $145.1,143.1,131.4,130.3,126.9,120.8,119.3,114.0,110.1,92.7,28.9,28.6,27.9,27.0$, 26.7. IR (KBr): 34325, 3111, 2923, 2851, 1626, 1547, 1506, 1451, 1384, 1352, 1278, 1244, 1181, 1129, 1043, 966, 884, 838, 793, $776 \mathrm{~cm}^{-1}$. HR-MS $\left(\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: ber.: 460.308977; gef.: 460.307802 .

7.5.10 2-Pent-4-enyl-thiophen (56)

Zu einer Lösung von $n-\mathrm{BuLi}(1.6 \mathrm{M}, 21.13 \mathrm{ml}, 33.81 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ wird Thiophen $(2.84 \mathrm{~g}, 33.81 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ bei $0^{\circ} \mathrm{C}$ zugetropft. Die Reaktionsmischung wird auf RT erwärmt und 90 min gerührt. Anschließend wird auf $-15^{\circ} \mathrm{C}$ gekühlt und eine Lösung von 5-Bromo-1-penten $52(4.00 \mathrm{ml}, 33.81 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ zugetropft. Nach 30 h Rühren bei $35^{\circ} \mathrm{C}$ wird die Reaktionslösung auf RT gekühlt und auf Eiswasser gegossen. Die wäßrige Phase wird mit MTBE extrahiert, über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und im Vakuum konzentriert. Das Rohprodukt wird durch Destillation (Sdp.: $80-81^{\circ} \mathrm{C} / 20 \mathrm{mbar}$) gereinigt, wobei Verbindung 56 $(1.84 \mathrm{~g}, 36 \%)$ als farblose Füssigkeit erhalten wird. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.11$ (d, J $=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddt}, J=17.1$, $10.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.95(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.69$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 145.5,138.4,126.7,124.2,122.9,114.7,33.1,31.1$, 29.3. IR (Film): 3076, 2976, 2933, 2856, 1641, 1535, 1440, 1240, 1076, 991, 912, 851, 819, $693 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}): m / z$ (relative Intensität) 152 ($\left[\mathrm{M}^{+}\right], 14$), 123 (7), 110 (67), 98 (29), 97 (100), 53 (10), 45 (14), 39 (12). $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~S}$ (152.26): ber.: C 71.00, H 7.94; gef.: C 70.92, H 8.06.

7.5.11 5-(5-Hex-5-enyl-1H-pyrrol-2-ylmethylen)-4-methoxy-2-(5-pent-4-enyl-thiophen-2-yl)-5H-pyrrol•Hydrochlorid ($\mathbf{5 9} \cdot \mathbf{H C l}$)

Zu einer Lösung von $n-\mathrm{BuLi}(1.6 \mathrm{M}, 625 \mu \mathrm{l}, 1.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ wird Thiophen 56 ($152 \mathrm{mg}, 1.00 \mathrm{mmol}$) bei $0^{\circ} \mathrm{C}$ unter Ar gegeben. Die Reaktionslösung wird auf RT erwärmt und 90 min bei dieser Temperatur gerührt. Anschließend wird auf $-15^{\circ} \mathrm{C}$ abgekühlt und Trimethylborat ($139 \mu \mathrm{l}, 1.25 \mathrm{mmol}$) eingespritzt. Danach wird die Temperatur auf $0^{\circ} \mathrm{C}$ erhöht und 1 h bei dieser Temperatur und anschließend 30 min bei RT gerührt. Die Reaktionsmischung wird konzentriert und zu einer Lösung von Triflat 26 ($62 \mathrm{mg}, 0.15 \mathrm{mmol}$) und $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18 \mathrm{mg}, 0.156 \mathrm{mmol})$ in $\mathrm{DME}(5 \mathrm{ml})$ gegeben. Das resultierende Reaktionsgemisch wird mit aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 1.00 \mathrm{ml}, 2.00 \mathrm{mmol})$ versetzt und 3 h bei $80^{\circ} \mathrm{C}$ gerührt. Die Mischung wird mit ges. $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen, die organische Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat $30: 1 \rightarrow 6: 1$) wird das Dien 59 erhalten, das mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ versetzt wird. Nach Entfernen des Lösungsmittels im Vakuum fällt das Hydrochlorid $\mathbf{5 9} \cdot \mathrm{HCl}(55 \mathrm{mg}, 81 \%)$ als roter Feststoff an. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 14.19(\mathrm{bs}, 1 \mathrm{H}), 13.52(\mathrm{bs}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.98-$ 6.95 (m, 2H), 6.29 (dd, $J=3.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.77(\mathrm{~m}, 2 \mathrm{H})$, 5.10-4.92 (m, 4H), $4.00(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.08$ $(\mathrm{m}, 4 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 166.7,156.0$, $153.8,150.1,138.8,137.9,134.1,131.8,129.42,127.5,126.9,121.1,119.0,115.1,114.3$, $114.0,94.6,59.1,33.5,33.0,30.6,29.8,28.6,28.5,28.2$. IR (KBr): 3413, 3169, 3052, 2926, 2856, 1723, 1639, 1583, 1548, 1505, 1447, 1409, 1383, 1286, 1185, 1045, 989, 906, 807, 771 $\mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{EI}): m / z$ (relative Intensität) $406\left(\left[(\mathrm{M}-\mathrm{HCl})^{+}\right], 100\right), 351$ (18), 337 (33), 192 (5), 148 (8), 121 (17). HR-MS ($\left.\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OS}\right)$: ber.: 406.207885; gef.: 406.208770.

7.5.12 1-Bromo-3-(2-iodo-ethyl)-benzol (61)

Zu einer Lösung von Triphenylphosphin ($5.475 \mathrm{~g}, 20.89 \mathrm{mmol}$) und Imidazol ($1.422 \mathrm{~g}, 20.89$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ wird $\operatorname{Iod}(5.300 \mathrm{~g}, 20.89 \mathrm{mmol})$ innerhalb von 30 min und Alkohol $60(3.146 \mathrm{~g}, 5.65 \mathrm{mmol})$ innerhalb von 5 min bei $0^{\circ} \mathrm{C}$ zugegeben. Nach 20 min Rühren bei dieser Temperatur wird eine Lösung von $\mathrm{Na}_{2} \mathrm{SO}_{3}(3.00 \mathrm{~g}, 18.97 \mathrm{mmol})$ in Wasser (15 ml) zugegeben und danach weitere 10 min gerührt. Die wäßrige Phase wird getrennt und mit $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extrahiert. Die vereinigten organischen Phasen werden mit NaCl-Lösung gewaschen, über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Die säulenchromato-
graphische Reinigung des Rückstandes $\left(\mathrm{SiO}_{2}\right.$, Hexan) liefert Verbindung 61 als farblose Flüssigkeit ($4.59 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.35(\mathrm{~m}, 2 \mathrm{H})$, 7.26-7.11 (m, $2 \mathrm{H}), 3.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.7$, 131.4, 130.2, 130.0, 127.0, 122.6, 39.7, 4.7. MS (EI): m/z (relative Intensität) 312 ($\left.\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right)\right], 6\right), 310(6), 185$ (74), 183 (72), 105 (9), 104 (100), 103 (30), 78 (14), 77 (31), 76 (8), 75 (9), 51 (16), 50 (12). IR (Film): 3056, 3013, 2957, 2857, 1597, 1568, 1473, 1427, $1305,1235,1199,1071,997,883,845,783,773,731,698,689,666,629,515 \mathrm{~cm}^{-1} . \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrI}$ (310.96): ber.: C 30.90 , H 2.59 gef.: C 30.78 , H 2.64 .

7.5.13 1-Bromo-3-pent-4-enyl-benzol (62)

Zu einer Lösung von Iodid $61(4.45 \mathrm{~g}, 14.31 \mathrm{mmol})$ in THF (30 mL) und $\mathrm{Li}_{2} \mathrm{CuCl}_{4}(0.1 \mathrm{M}$ in THF, $7.10 \mathrm{~mL}, 0.71 \mathrm{mmol}$) wird Allylmagnesiumchlorid (2 M in THF, $7.16 \mathrm{~mL}, 14.32 \mathrm{mmol}$) bei $0^{\circ} \mathrm{C}$ zugetropft. Danach wird das das Gemisch auf RT erwärmt und 18 h gerührt. Anschließend wird die Reaktionslösung mit gesättigter $\mathrm{NH}_{4} \mathrm{Cl}$-Lösung versetzt und die wäßrige Phase mit $\mathrm{Et}_{2} \mathrm{O}$ extrahiert. Die vereinigten organischen Phasen werden mit Wasser gewaschen, über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und im Vakuum eingeengt. Nach einer säulenchromatographischen Reinigung $\left(\mathrm{SiO}_{2}, \mathrm{Hexan}\right)$ des Rückstandes fällt Verbindung 62 $(2.516 \mathrm{~g}, 78 \%)$ als farblose Flüssigkeit an. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.37-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{ddt}, J=17.0,10.3 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-4.97(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 145.2$, $138.5,131.5,130.0,128.8,127.3,122.3,114.7,35.0,33.2,30.5 . \mathrm{MS}$ (EI): m/z (relative Intensität) 226 ([M $\left.\left.{ }^{+}\left({ }^{81} \mathrm{Br}\right)\right], 6\right), 224$ (7), 184 (92), 182 (99), 172 (21), 171(45), 170 (22), 169 (43), 145 (36), 104 (39), 103 (27), 91(100), 90 (37), 89 (30), 77 (26), 63 (15), 55 (39), 39 (24). IR (Film): 3444, 3076, 2976, 2931, 2857, 1641, 1596, 1568, 1473, 1437, 1425, 1071, 1017, 996, 912, $881,778,692,669 \mathrm{~cm}^{-1} . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Br}$ (225.13): ber.: C 58.69 , H 5.82 gef.: C 58.88, Н 5.88.

7.5.14 3-Pent-4-enyl-phenylboronsäure (63)

Zu einer Lösung von Verbindung $62(901 \mathrm{mg}, 4.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ wird $n-\mathrm{BuLi}(1.6$ M in Hexan, $5.00 \mathrm{ml}, 8.00 \mathrm{mmol}$) bei $0^{\circ} \mathrm{C}$ gegeben. Nach 90 min Rühren bei $0^{\circ} \mathrm{C}$ wird die Temperatur auf RT erhöht und weitere 3 h gerührt. Nach Abkühlen auf $-78^{\circ} \mathrm{C}$ wird zu diesem Gemisch eine Lösung von Trimethylborat ($831 \mathrm{mg}, 8.00 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ gegeben. Die Reaktionslösung wird auf $0^{\circ} \mathrm{C}$ erwärmt und mit aq. HCl versetzt. Das Gemisch wird mit $\mathrm{Et}_{2} \mathrm{O}$
extrahiert. Anschließend wird die organische Phase mit 10\%-iger NaOH-Lösung (3x) extrahiert und die gesamten alkalischen Phasen mit 10%-iger HCl -Lösung angesäuert ($\mathrm{pH} \approx$ 1-2). Der ausgefallene Feststoff wird abfiltriert und die wäßrige Phase mit $\mathrm{Et}_{2} \mathrm{O}$ extrahiert. Trocknen über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ und Entfernen des Lösungsmittels liefert eine zweite Charge des Rohproduktes. Das so erhaltene Produkt 63 (195 mg) wird ohne weitere Reinigung im nächsten Schritt eingesetzt.

7.5.15 5-(5-Hex-5-enyl-1H-pyrrol-2-ylmethylen)-4-methoxy-2-(3-pent-4-enyl-phenyl)$\mathbf{5 H}$-pyrrol $\cdot \mathrm{Hydrochlorid} \mathbf{(\mathbf { 6 4 } \cdot \mathrm { HCl })}$

Eine Lösung von Triflat 26 ($110 \mathrm{mg}, 0.27 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($31 \mathrm{mg}, 0.027 \mathrm{mmol}$) und Boronsäure 63 (195 mg des Rohprodukts) in DME (15 ml) wird mit aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.2 \mathrm{M}, 0.9$ $\mathrm{ml}, 1.98 \mathrm{mmol}$) versetzt und 2.5 h bei $85^{\circ} \mathrm{C}$ gerührt. Die Mischung wird mit ges. $\mathrm{Na}_{2} \mathrm{CO}_{3^{-}}$ Lösung gewaschen, die organische Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat $50: 1 \rightarrow 10: 1$) wird Verbindung 64 erhalten, die anschließend mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ versetzt wird. Nach Entfernen des Lösungsmittels im Vakuum fällt das Hydrochlorid 64. $\mathrm{HCl}(71 \mathrm{mg}, 60 \%)$ als roter Feststoff an. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 14.58(\mathrm{bs}, 1 \mathrm{H})$, 13.47 (bs, 1H), $8.24(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.34-6.32(\mathrm{~m}, 2 \mathrm{H}), 5.95-5.77(\mathrm{~m}, 2 \mathrm{H}), 5.09-4.92(\mathrm{~m}$, $4 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.91-$ $1.76(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 166.8,157.7,156.6,143.6$, $138.8,138.7,133.3,132.1,128.9,128.8,128.5,127.2,126.3,120.9,120.8,114.7,114.5$, 114.3, 94.7, 59.1, 35.1, 33.5, 33.4, 30.5, 28.6, 28.5, 28.3. IR (KBr): 3396, 3334, 3073, 2996, 2927, 2856, 2752, 1622, 1572, 1545, 1525, 1484, 1459, 1362, 1269, 1239, 1183, 1133, 1048, 982, $949,911,815,778,694 \mathrm{~cm}^{-1}$. HR-MS (FAB pos.) $\left(\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}\right)$: ber.: 401.259288 ; gef.: 401.258099 .

7.5.16 Verbindung $68 \cdot \mathbf{H C l}$

Eine Lösung von Dien $\mathbf{6 4} \cdot \mathrm{HCl}(67 \mathrm{mg}, 0.153 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ wird tropfenweise zu einer Lösung von Ruthenium-Carben-Komplex 3 ($14 \mathrm{mg}, 0.015 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) zugegeben und 24 h bei $40^{\circ} \mathrm{C}$ unter Ar gerührt. Die Mischung wird mit ges. $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen, die organische Phase über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat 20:1)
wird das Lösungsmittel eingeengt und mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ versetzt. Nach Entfernen des Lösungsmittels im Vakuum wird das Hydrochlorid $\mathbf{6 8} \cdot \mathrm{HCl}(49 \mathrm{mg}, 86 \%)$ als roter Feststoff erhalten. Isomerenverhältnis $E: Z=10: 1 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.55$ (dd, $J=6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.58$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.49(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, 2.79-2.73 (m, 4H), 2.19-2.15 (m, 2H), 2.02-1.98 (m, 2H), 1.87-1.77 (m, 4H), 1.64-1.55 (m, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) (E)-Isomer : δ 168.5, 165.4, 143.3, 142.9, 141.1, 134.5, 130.7, 130.7, 130.3, 130.0, 128.6, 126.6, 125.0, 119.9, 117.7, 110.2, 94.6, 58.4, 33.2, 32.3, 30.0, 29.6, 29.4, 28.6, 28.2; (Z)-Isomer (ausgewählte Signale): $\delta 130.5,130.1,128.4,125.8$, $120.5,117.9,110.1,94.8,35.0,31.0,28.3,28.0,27.3,26.7,26.2$. IR (KBr): 3453, 3092, 3040, 3008, 2925, 2848, 1629, 1583, 1566, 1547, 1492, 1453, 1359, 1227, 1189, 1157, 1113, 1042, 939, 902, 776, 761,695, 676, $654 \mathrm{~cm}^{-1}$. MS (EI): m / z (relative Intensität) $372\left(\left[(\mathrm{M}-\mathrm{HCl})^{+}\right]\right.$, 100), 357 (22), 329 (7), 290 (18), 275 (5), 186 (3), 165 (3), 118 (7). HR-MS ($\left.\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}\right)$: ber.: 372.220163 ; gef.: 372.221209 .

7.5.17 5-Ethyl-1H-pyrrol-2-carbaldehyd (70)

Phosphorylchlorid ($965 \mathrm{mg}, 6.29 \mathrm{mmol}$) wird tropfenweise zu DMF ($456 \mathrm{mg}, 6.24 \mathrm{mmol}$) bei $0^{\circ} \mathrm{C}$ gegeben. Die Mischung wird mit 1,2-Dichlorethan (2.80 ml) verdünnt und mit einer Lösung von Pyrrol 69 in 1,2-Dichlorethan (1.40 ml) innerhalb 30 min bei $0^{\circ} \mathrm{C}$ versetzt. Anschließend wird die Lösung 20 min bei $83^{\circ} \mathrm{C}$ gerührt und nach Abkühlen auf RT mit $\mathrm{NaOAc}(2.75 \mathrm{~g}, 33.50 \mathrm{mmol})$ in Wasser (8 ml) versetzt. Die Mischung wird weitere 15 min bei $83^{\circ} \mathrm{C}$ gerührt. Nach Abkühlen auf RT wird die organische Phase abgetrennt und die wäßrige Phase mit MTBE extrahiert. Die vereinigten organischen Phasen werden über $\mathrm{Na}_{2} \mathrm{CO}_{3}$ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (SiO_{2}, Hexan/Ethylacetat 6:1) wird Verbindung 70 als farbloser Feststoff erhalten (505 mg , 73%). Smp.: $41-42^{\circ}{ }^{\circ}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 9.99$ (bs, 1 H), 9.36 ($\mathrm{s}, 1 \mathrm{H}$), 6.91 (dd, J $=3.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=3.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ 178.1, 144.8, 132.0, 122.6, 108.7, 21.1, 13.0. IR (KBr): $3422,3172,3142,3105,2967,1635,1569,1501,1431,1386,1358,1335,1247,1188,1048$, 817, 778, 769, $644 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): m/z (relative Intensität) 123 ([M $\left.\mathrm{M}^{+}\right], 84$), 108(100), 94(13), 80(28), 65(9), 53(20), 52(10), 41(11), $39(20) . \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$ (123.15): ber.: C 68.27, H 7.37, N 11.37; gef.: C 68.25, H 7.39, N 11.35.

7.5.18 5-(5-Ethyl-1H-pyrrol-2-ylmethylen)-4-methoxy-1,5-dihydro-pyrrol-2-on (72)

Eine Lösung von Aldehyd 70 ($437 \mathrm{mg}, 3.55 \mathrm{mmol}$) und 4-Methoxy-3-pyrrolin-2-on 29 (803 $\mathrm{mg}, 7.10 \mathrm{mmol}$) in DMSO (15 ml) wird mit NaOH -Lösung ($2 \mathrm{~N}, 10 \mathrm{ml}$) versetzt und 21 h bei $60^{\circ} \mathrm{C}$ gerührt. Die Reaktionslösung wird mit Wasser (40 ml) verdünnt und mit $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×50 ml) extrahiert. Die vereinigten organischen Phasen werden mit Wasser und ges. NaCl-Lösung gewaschen und über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Waschen des Rückstandes mit Hexan und nach Abtrennen des Feststoffes durch Filtration wird Verbindung 72 ($762 \mathrm{mg}, 99 \%$) als gelber kristalliner Feststoff erhalten. Smp.: 197$198^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.96(\mathrm{bs}, 1 \mathrm{H}), 10.41(\mathrm{bs}, 1 \mathrm{H}), 6.35(\mathrm{t}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$,) $5.07(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.2,168.0,142.2,125.6$, $122.8,117.6,106.9,102.8,90.0,58.2,21.3,13.7$. IR (KBr): 3347, 3182, 3152, 2972, 2935, $1680,1652,1592,1580,1488,1438,1383,1354,1332,1223,1178,1037,1013,1003,975$, 870, 788, 764, 690, $640 \mathrm{~cm}^{-1}$. MS (EI): m/z (relative Intensität) 218 ([$\left.\mathrm{M}^{+}\right], 100$), 204(12), 203(97), 175(7), 171(7), 133(6), 119(15), 69(8). $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ (218.25): ber.: C 66.04, H 6.47, N 12.84; gef.: C 65.80, H 6.40, N 12.65 .

7.5.19 1,1,1-Trifluoro-methansulfonsäure 5-(5- ethyl - pyrrol - 2 - ylidenmethyl)-4methoxy -1H-pyrrol-2-yl ester (74)

Eine Lösung von Lactam $72(273 \mathrm{mg}, 1.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ wird tropfenweise mit Trifluoromethansulfonsäureanhydrid ($260 \mu \mathrm{l}, 1.54 \mathrm{mmol}$) bei $0^{\circ} \mathrm{C}$ versetzt und 1 h bei $0^{\circ} \mathrm{C}$ gerührt. Anschließend wird die Reaktionslösung auf eine 2%-ige NaHCO_{3}-Lösung gegossen und mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit NaCl-Lösung gewaschen, über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Säulenchromatographie (SiO_{2}, Hexan/Ethylacetat 6:1) fällt Verbindung 74 als gelber Feststoff an ($422 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 10.82(\mathrm{bs}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$,) $5.44(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 168.2,161.2,147.0,132.3,128.5$, 123.4, 122.1, 118.8 (q), 109.8, 87.2, 59.0, 21.6, 12.6. IR (Film): 3348, 3145, 2976, 2944, 2822, 1625, 1566, 1547, 1486, 1422, 1372, 1328, 1274, 1240, 1222, 1200, 1169, 1134, 1043, $1011,998,974,833,837,764,676,595 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ (relative Intensität) $350\left(\left[\mathrm{M}^{+}\right]\right.$, 20), 217(100), 202(9), 187(6), 133(7), 118(7), 69(7). $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (350.31): ber.: C 44.57, H 3.74, N 8.00; gef.: C 44.62, H 3.67, N 7.88.

7.5.20 $\quad 5^{〔}$-(5-Ethyl-1 H-pyrrol-2-ylmethylen)-4'-methoxy- $\mathbf{H} \boldsymbol{H}, \mathbf{5}^{`} \boldsymbol{H}$-[2,2‘]bipyrrolylHydrochlorid $(\mathbf{7 6} \cdot \mathbf{H C l})$

Eine Lösung von Triflat $74(175 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{LiCl}(63 \mathrm{mg}, 1.50 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29$ $\mathrm{mg}, 0.028 \mathrm{mmol}$), Boronsäure $50(316 \mathrm{mg}, 1.50 \mathrm{mmol})$ in DME (10 ml) und $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (318 $\mathrm{mg}, 3.00 \mathrm{mmol}$) in DME (10 ml) wird mit Wasser (1.5 ml) bei $60^{\circ} \mathrm{C}$ versetzt und anschließend 21 h unter Argon bei $85^{\circ} \mathrm{C}$ gerührt. Die Reaktionsmischung wird auf Eiswasser gegossen und mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl - und $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen und über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet. Nach Säulenchromatographie (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat $15: 1 \rightarrow 2: 1$) und Versetzen mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ wird das Lösungsmittel im Vakuum enfernt, wobei das Hydrochlorid 76•HCl (94 mg, 61\%) als roter Feststoff anfällt. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.82(\mathrm{bs}, 1 \mathrm{H}), 12.66(\mathrm{bs}, 2 \mathrm{H}), 7.21$ $(\mathrm{s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=$ $3.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,154.0,148.9,129.2,127.6,126.0,122.1$, 121.5, 117.9, 116.4, 112.0, 111.8, 93.1, 58.8, 21.7, 13.3. IR (KBr): 3100, 2963, 2925, 2849, $1637,1609,1575,1548,1514,1458,1410,1338,1289,1254,1232,1184,1146,1138,1042$, 959, 815, 747, 718, $595 \mathrm{~cm}^{-1}$. MS (EI): m/z (relative Intensität) 267 ([(M-HCl) $\left.{ }^{+}\right], 100$), 253(12), 252(69), 133(7), 118(13), 91(26). HR-MS ($\left.\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}\right)$: ber.: 267.137162; gef.: 267.137041.

7.5.21 4-Methoxy-5-(1H-pyrrol-2-ylmethylen)-1,5-dihydro-pyrrol-2-on (73)

Eine Lösung von Aldehyd 71 ($221 \mathrm{mg}, 2.32 \mathrm{mmol}$) und 4-Methoxy-3-pyrrolin-2-on 29 (526 $\mathrm{mg}, 4.65 \mathrm{mmol})$ in DMSO $(10 \mathrm{ml})$ wird mit NaOH -Lösung ($2 \mathrm{~N}, 6.5 \mathrm{ml}$) versetzt und 16 h bei $60^{\circ} \mathrm{C}$ gerührt. Die Reaktionslösung wird mit Wasser (30 ml) verdünnt und mit $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×50 ml) extrahiert. Die vereinigten organischen Phasen werden mit Wasser und ges. NaCl-Lösung gewaschen, über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung $\left(\mathrm{SiO}_{2}\right.$, Hexan/Ethylacetat $4: 1 \rightarrow \mathrm{EE}$) wird Verbindung 73 ($346 \mathrm{mg}, 78 \%$) als gelber Feststoff erhalten. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.66$ (bs, $1 \mathrm{H}), 10.49(\mathrm{bs}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.45-6.43(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.26-6.24(\mathrm{~m}, 1 \mathrm{H})$, $5.16(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.5,168.1,126.7$, 124.3, 123.8, 116.4, 110.0, 102.3, 90.7, 58.2. IR (KBr): 3340, 3184, 3119, 3017, 2935, 1684, $1665,1591,1561,1432,1419,1383,1356,1220,1133,1006,976,869,727,684 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): m/z (relative Intensität) 190 ([$\left.\left.\mathrm{M}^{+}\right], 100\right), 175(12), 147(12), 133(12), 119(11), 107(13)$,

106(13) 80(12), 79(12), 69(16), 52(11). $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ (190.20): ber.: C 63.15, H 5.30, N 14.73; gef.: C 62.97, H 5.22, N 14.48

7.5.2 1,1,1-Trifluoro-methansulfonsäure 5-(pyrrol-2-ylidenmethyl)-4-methoxy- 1 H -pyrrol-2-yl ester (75)

Eine Lösung von Lactam 73 ($316 \mathrm{mg}, 1.67 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ wird tropfenweise mit Trifluoromethansulfonsäureanhydrid ($345 \mu \mathrm{l}, 2.04 \mathrm{mmol}$) bei $0^{\circ} \mathrm{C}$ versetzt und 45 min bei $0^{\circ} \mathrm{C}$ weiter gerührt. Anschließend wird die Reaktionslösung auf eine 2% ige NaHCO_{3}-Lösung gegossen und mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl -Lösung und Wasser gewaschen, über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Säulenchromatographie (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat 10:1) fällt Verbindung 75 als gelber Feststoff an ($509 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 10.88$ (bs, 1H), $7.19(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.33-6.30(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~s}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 168.9,162.6,134.1,129.3,128.1,122.2$, 121.6, 118.7 (q), 111.7, 87.8, 59.1. IR (Film): 3368, 2977, 2938, 1636, 1570, 1542, 1487, 1430, 1420, 1372, 1339, 1288, 1228, 1134, 1111, 1085, 1037, 1007, 971, 882, 838, 767, 743, $706,692,665,595 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ (relative Intensität) 322 ([M $\left.{ }^{+}\right], 29$), 190(11), 189(100), 174(10), 134(15), 105(11), 69(24). $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (322.26): ber.: C 41.00, H 2.81, N 8.69; gef.: C 41.00, H 2.76, N 8.62.

7.5.23 4'-Methoxy-5‘-(1H-pyrrol-2-ylmethylen)-1H,5‘ \boldsymbol{H}-[2,2‘] bipyrrolyl \cdot Hydrochlorid (77-HCl)

Eine Lösung von Triflat 75 ($133 \mathrm{mg}, 0.41 \mathrm{mmol}$), $\mathrm{LiCl}(53 \mathrm{mg}, 1.24 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24$ $\mathrm{mg}, 0.021 \mathrm{mmol})$, Boronsäure $50(262 \mathrm{mg}, 1.24 \mathrm{mmol})$ und $\mathrm{Na}_{2} \mathrm{CO}_{3}(263 \mathrm{mg}, 2.48 \mathrm{mmol})$ in DME (8 ml) wird mit Wasser (1.3 ml) bei $60^{\circ} \mathrm{C}$ versetzt und anschließend 15 h unter Argon bei $85^{\circ} \mathrm{C}$ gerührt. Die Reaktionsmischung wird auf Eiswasser gegossen und mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl und $\mathrm{Na}_{2} \mathrm{CO}_{3}$-Lösung gewaschen, über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Säulenchromatographie (neutr. $\mathrm{Al}_{2} \mathrm{O}_{3}$, Hexan/Ethylacetat $6: 1 \rightarrow 1: 1$) wird Verbindung 77 erhalten, die nach Behandlung mit HCl in $\mathrm{Et}_{2} \mathrm{O}$ und Entfernen des Lösungsmittels das Hydrochlorid $77 \cdot \mathrm{HCl}(35 \mathrm{mg}, 30 \%)$ als roten Feststoff liefert. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $12.88(\mathrm{bs}, 1 \mathrm{H}), 12.82(\mathrm{bs}, 1 \mathrm{H}), 12.70(\mathrm{bs}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.34(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{~d}, ~, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,150.8,132.9,128.9,127.0,126.4,123.2$, $121.8,119.6,116.5,112.9,112.6,93.5,59.0$. IR (KBr): 3156, 3100, 3076, 3007, 2962, 2927, $2855,1632,1605,1552,1511,1409,1372,1292,1255,1136,1032,954,771,746 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): m/z (relative Intensität) 239 ([(M-HCl) $\left.\left.{ }^{+}\right], 100\right), 224(29), 196(8), 157(11), 105(18)$, 91(23). HR-MS $\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}\right)$: ber.: 239.105862; gef.: 239.105927.

7.6 Biologische Untersuchungen

7.6.1 Proliferation der B- und T- Zellen in Mäuse-Milz

Mäuse-Milz-Zellen von C57BL/6 Mäusen ${ }^{29,59}$ (weiblich, 6-10 Wochen alt) wurden mit 10 $\mu \mathrm{g} \cdot \mathrm{ml}^{-1}$ Lipopolysaccharid (LPS) bzw. $2 \mu \mathrm{~g} \cdot \mathrm{ml}^{-1}$ Concanavalin A induziert und 3 Tage lang unterschiedlichen Konzentrationen von Prodigiosin-Derivaten-Lösungen ausgesetzt (s. Kap. 3.3.1). Anschließend wurden die Zellen mit $0.5 \mu \mathrm{~g} \cdot \mathrm{ml}^{-1} 3$-(4,5-Dimethylthiazol-2-yl)2,5diphenyltetrazoliumbromid (MTT) 8 h lang behandelt. Nach Lösen des Farbstoffes in Natriumdodecylsulfat (SDS) wurde die Absorption bei $\lambda=595 \mathrm{~nm}$ gemessen.
Diese Experimente wurden in Kooperation mit Prof. K. Nagai und Dr. T. Kataoka, Tokyo Institute of Technology (Yokohama / Japan), durchgeführt.

7.6.2 Vakuolare Acidifizierung in BHK-Zellen

BHK-Zellen (BHK = baby hamster kidney) wurden 30 min lang mit unterschiedlichen Konzentrationen von Prodigiosin-Derivaten-Lösungen behandelt und anschließend mit $5 \mu \mathrm{~g} \cdot \mathrm{ml}^{-1}$ Acridinorange versetzt. Nach 30 min wurden die gefärbten Zellen mit einer phosphatgepufferten Salzlösung gewaschen und fluoreszenzmikroskopisch untersucht.
Diese Experimente wurden in Kooperation mit Prof. K. Nagai und Dr. T. Kataoka, Tokyo Institute of Technology (Yokohama / Japan), durchgeführt.

7.6.3 DNA-Untersuchungen

Diese biologischen Untersuchungen wurden am Max-Planck-Institut für Kohlenforschung in Mülheim/Ruhr durchgeführt.

Allgemeines:

Für alle wäßrigen Lösungen wurde destilliertes, deionisiertes und sterilisiertes Wasser verwendet. Gel-Elektrophoresen wurden in Tris/Borsäure-Puffer (89 mmol Tris, 89 mmol Borsäure, 2 mmol EDTA, pH 8.3; BIORAD Laboratories) ausgeführt. Zum Quenchen der

Reaktionsgemische wurde „loading buffer" mit folgender Zusammensetzung benutzt: 25% Glycerin, 50 mM Tris/HCl pH 8.0, 5 mM EDTA 0.2% Bromphenolblau, 0.2% Xylencyanol FF (BIORAD Laboratories).

Herstellung von Agarose-Gel:

In einem Kolben mit Tris/Borsäure-Puffer (100 ml) wird Agarose ($0.8-1.0 \mathrm{~g}$) unter Rühren gegeben. Die Lösung wird erhitzt und solange gerührt bis sie ganz klar wird. Die Lösung wird langsam gekühlt und bei ca. $60^{\circ} \mathrm{C}$ Ethidiumbromid-Lösung [1 $\mu \mathrm{l}$ (Ethidiumbromid-Lösung) / 10 ml (Tris/Borsäure-Puffer); c (Ethidiumbromid-Lösung) $=10 \mathrm{mg} / \mathrm{ml}$] zugegeben. Danach wird das Gel auf eine Elektrophorese-Platte mit eingesetzten Kämmen gegossen. Nach ca. 1 h werden die Kämme entfernt und das Gel mit Tris/Borsäure-Puffer überdeckt.

DNA -Reinigung:

ФX174 RF1 DNA-Lösung ($100 \mu \mathrm{l}, \mathrm{c}=500 \mu \mathrm{~g} / \mathrm{ml}$; MBI Fermentas GmbH) in Tris-HClPuffer (10 mmol) und EDTA-Lösung (2 mmol) werden mittels des Qiaex II Gel Extraction Kit's nach Qiaex II Protokol für Entsalzen und Konzentrierung von DNA-Lösungen gereinigt:

1. $90 \mu \mathrm{l}$ der $Ф \mathrm{X} 174$ RF1 DNA-Lösung wird auf 9 Proben je $10 \mu \mathrm{l}$ verteilt und zu jeder Probe $30 \mu \mathrm{~L}$ QX1 Puffer und $20 \mu \mathrm{l}$ Wasser gegeben.
2. Zu jeder Probe wird $11 \mu \mathrm{l}$ homogenisierter (30 s lang in Minishaker gemischt) QX2 Lösung gegeben und 10 min bei RT inkubiert, wobei jede Probe alle 2 min kurz gemischt wird.
3. Zu jeder Probe wird $500 \mu \mathrm{l}$ PE Puffer gegeben und kurz gemischt. Nach Zentrifugieren (1 min, 13000 rpm) wird die überstehende Flüssigkeit vollständig abpipettiert. Der Waschvorgang wird insgesamt 2 x ausgeführt.
4. Die Proben werden an der Luft getrocknet (Das Pellet sollte schneeweiß werden).
5. Zu jeder Probe wird $20 \mu \mathrm{l}$ Wasser gegeben und kurz gemischt. Nach Zentrifugieren ($1 \mathrm{~min}, 13000 \mathrm{rpm}$) werden die wäßrigen Phasen abpippetiert (ohne feste Phase) und vereinigt.
6. Die wäßrige DNA-Lösung wird anschließend in einem Vakuumkonzentrator auf $100 \mu \mathrm{l}$ ($50 \mathrm{mbar}, 25^{\circ} \mathrm{C}$) eingeengt.

Die auf diese Weise erhaltene wäßrige DNA-Lösung wird mit der originalen DNA im Elektrophorese-Test verglichen und die Konzentration visuell abgeschätzt.

Elektrophorese-Bedingungen: $85 \mathrm{~V}, 1 \mathrm{~h}, 0.8 \%$ iges Agarose-Gel.

Elektrophorese-Gel:
Position: (1): $0.1 \mu \mathrm{l}$ original DNA-Lösung, $4.9 \mu \mathrm{l}$ Wasser, $5 \mu \mathrm{l}$ „loading buffer", (2): $0.1 \mu \mathrm{l}$ gereinigte DNA-Lösung, $4.9 \mu \mathrm{l}$ Wasser, $5 \mu \mathrm{l}$ „loading buffer".

Die behandelte DNA-Lösung besitzt eine Konzentration von ca. $300 \mu \mathrm{~g} / \mathrm{ml}$.

In allen weiteren Versuchen wird die gereinigte DNA eingesetzt.

Darstellung von linearer DNA mit einer Restriktionsendonuclease (Xho I)

Ansatz 1: $1 \mu \mathrm{l}$ DNA-Lösung und $9 \mu \mathrm{l}$ Wasser werden kurz gemischt und 90 min bei $37^{\circ} \mathrm{C}$ inkubiert. Danach wird die Reaktionslösung mit $5 \mu 1$ „loading buffer" gequencht.

Ansatz 2: 1μ l DNA-Lösung, 1μ l Restriktionsendonuclease-Puffer, $0.25 \mu \mathrm{l}$ Xho I (10 u) und $7.75 \mu \mathrm{l}$ Wasser werden kurz gemischt und 90 min bei $37^{\circ} \mathrm{C}$ inkubiert. Danach wird die Reaktionslösung mit $5 \mu \mathrm{l}$ „loading buffer" gequencht.

Elektrophorese-Bedingungen: $85 \mathrm{~V}, 1 \mathrm{~h}, 0.8 \%$ iges Agarose-Gel.

Elektrophorese-Gel:
Position: (1): 5μ l DNA-Lösung aus dem Ansatz 1, (2): $5 \mu \mathrm{l}$ DNA- Lösung aus dem Ansatz 2, (3): $2.5 \mu \mathrm{l}$ DNA-Marker (1000bp).

Elektropherogramm, s. Abb. 38

Einfluß von Cyclononylprodigiosin 19 und Analoga/Cu(II)-Komplexe auf die PlasmidDNA

Reaktionsbedingungen:

Reaktionsgemische (totales Volumen $20 \mu \mathrm{l}$): supercoiled Plasmid-DNA (ca. 300 ng), 10 mM MOPS Puffer (pH 7.4), 75 mM NaCl-Lsg., $10 \% \mathrm{CH}_{3} \mathrm{CN}$, verschiedene $30 \mu \mathrm{M}$ Prodigiosinderivaten-Lsg. (s. unten) und $30 \mu \mathrm{M} \mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg. werden bei $37^{\circ} \mathrm{C} 1 \mathrm{~h}$ inkubiert. Anschließend werden die Gemische mit $5 \mu 1$ „loading buffer" gequencht und auf Agarose-Gel geladen.

Elektrophorese-Bedingungen: $85 \mathrm{~V}, 1 \mathrm{~h}, 0.8 \%$ iges Agarose-Gel.

Elektrophorese-Gel:

Position: (1): Blindprobe, reine DNA ohne Zusatz von Prodigiosinderivat/Cu(II)-Lösung, (2): DNA + Verb. 51 (3): DNA $+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (4): DNA + Verb. $51+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (5): DNA + Verb. $76+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (6): DNA + Verb. $77+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (7): DNA + Verb. $\mathbf{1 9}+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (8): DNA + Verb. $\mathbf{6 7}+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (9): DNA + Verb. $\mathbf{6 6}+$ $\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (10): DNA + Verb. $\mathbf{6 5}+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (11): DNA + Verb. $\mathbf{6 8}+\mathrm{Cu}(\mathrm{OAc})_{2^{-}}$ Lsg., (12): DNA + Verb. $59+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (13): lineare DNA, (14): DNA-Marker (500 bp), (15): DNA-Marker (1000 bp).

Elektropherogramm, s. Abb. 40

Einwirkung von Cyclononylprodigiosin 19/Cu (II) - Komplex auf die Plasmid-DNA.
 Kinetik.

Reaktionsbedingungen:
Reaktionsgemische (totales Volumen $20 \mu \mathrm{l}$): supercoiled Plasmid-DNA (ca. 300 ng), 10 mM MOPS Puffer (pH 7.4), 75 mM NaCl-Lsg., $10 \% \mathrm{CH}_{3} \mathrm{CN}, 30 \mu \mathrm{M}$ Cyclononylprodigiosin 19Lsg. und $30 \mu \mathrm{M} \mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg. werden bei $37^{\circ} \mathrm{C}$ inkubiert. Anschließend werden die Gemische nach angegebener Zeit (s. unten) mit $5 \mu \mathrm{l}$ „loading buffer" gequencht und auf Agarose-Gel geladen.

Elektrophorese-Bedingungen: $85 \mathrm{~V}, 1 \mathrm{~h}, 0.8 \%$ iges Agarose-Gel.

Elektrophorese-Gel:

Position: (1): Blindprobe, reine DNA ohne Zusatz von Cyclononylprodigiosin 19/Cu(II)Lösung, $120 \mathrm{~min},(2):$ DNA + Verb. 19, 120 min , (3): DNA $+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., 120 min , (4): DNA +Verb. $19+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., $0 \mathrm{~min},(5): \mathrm{DNA}+$ Verb. $19+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., 5 min , (6): DNA + Verb. $19+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., $10 \mathrm{~min},(7): \mathrm{DNA}+$ Verb. $19+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., 15 min, (8): DNA + Verb. $19+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., 20 min , (9): DNA + Verb. $19+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., 30 $\min ,(10):$ DNA + Verb. $19+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., 45 min , (11): DNA + Verb. $19+\mathrm{Cu}(\mathrm{OAc})_{2}{ }^{-}$ Lsg., 60 min , (12): DNA + Verb. $19+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., 90 min , (13): DNA + Verb. $19+$ $\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., 120 min , (14): lineare DNA, (15): DNA-Marker (500 bp), (16): DNA-Marker (1000 bp).

Elektropherogramm, s. Abb. 43

Einwirkung von Roseophilin 7 und Analoga/Cu(II)-Komplexe auf die Plasmid-DNA

Reaktionsbedingungen:

Reaktionsgemische (totales Volumen $20 \mu \mathrm{l}$): supercoiled Plasmid-DNA (ca. 300 ng), 10 mM MOPS Puffer (pH 7.4), 75 mM NaCl-Lsg., $10 \% \mathrm{CH}_{3} \mathrm{CN}$, verschiedene $30 \mu \mathrm{M}$ Roseophilinderivaten-Lsg. und $30 \mu \mathrm{M} \mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg. werden bei $37^{\circ} \mathrm{C} 1 \mathrm{~h}$ inkubiert. Anschließend werden die Gemische mit $5 \mu \mathrm{l}$,"loading buffer" gequencht und auf Agarose-Gel geladen.

Elektrophorese-Bedingungen: $85 \mathrm{~V}, 1 \mathrm{~h}, 0.8 \%$ iges Agarose-Gel.

Elektrophorese-Gel:
Position: (1): DNA-Marker (1000 bp), (2): Blindprobe, reine DNA ohne Zusatz von Roseophilinderivat/ Cu (II)-Lösung, (3): DNA + Verb. 7, (4): DNA $+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (5): DNA + Verb. $7+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (6): DNA + Verb. $78+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (7): DNA + Verb. $79+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (8): DNA + Verb. $\mathbf{8 0}+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (9): DNA + Verb. $\mathbf{8 1}+$ $\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (10): DNA + Verb. $\mathbf{5 1}+\mathrm{Cu}(\mathrm{OAc})_{2}$-Lsg., (11): lineare DNA.

Elektropherogramm, s. Abb. 45

7.7 Totalsynthese von Sophorolipid

7.7.1 4,6-O-(p-Methoxybenzyliden)-D-glucopyranose (102)

Eine Lösung von D-Glucose ($5.0 \mathrm{~g}, 27.75 \mathrm{mmol}$), p-Methoxybenzaldehyd-dimethylacetal (5.2 $\mathrm{ml}, 30.54 \mathrm{mmol})$ und $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(4.4 \mathrm{mg}, 0.023 \mathrm{mmol})$ in DMF (20 ml) wird 30 min bei $60^{\circ} \mathrm{C}$ im Vakuum (ca. 250 mbar) bei ständigem Einleiten von Argon zum Entfernen von entstehendem Methanol gerührt. Die Mischung wird mit $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{ml})$ versetzt und die leichtflüchtigen Komponenten im Vakuum entfernt. Der Rückstand wird säulenchromatographisch $\left(\mathrm{SiO}_{2}\right.$, Ethylacetat mit 0.1%-igem Zusatz von $\left.\mathrm{Et}_{3} \mathrm{~N}\right)$ gereinigt, wobei Verbindung 102 als farbloser Feststoff (4.25 g, 51\%) anfällt. IR (KBr): 3431, 2935, 2866, $2838,1657,1616,1590,1519,1465,1383,1305,1254,1177,1145,1083,1032,984,821 \mathrm{~cm}^{-}$ ${ }^{1}$. MS (EI) m / z (relative Intensität) 298 (20), 209 (16), 137 (100), 136 (29), 135 (50), 109 (12). $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{7}$ (298.30) ber.: C 56.37, H 6.08; gef.: 56.18, H 5.96. Eine Zusammenstellung und eindeutige Zuweisung der NMR-Daten befinden sich in Kap. 7.8 (Ergänzende Analytik).

7.7.2 1,2,3-Tri-O-acetyl-4,6-O-(p-methoxybenzyliden)- α, β-D-glucopyranose (103)

Zu einer Suspension der Verbindung 102 ($4.20 \mathrm{~g}, 14.1 \mathrm{mmol}$) in Pyridin (10 ml) wird $\mathrm{Ac}_{2} \mathrm{O}$ $(5 \mathrm{ml})$ gegeben und die Mischung 19 h bei RT gerührt. Anschließend werden flüchtige Bestandteile im Vakuum entfernt. Das Rohprodukt wird mit $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 25 \mathrm{ml}$) und Pentan (10 $\mathrm{ml})$ vorsichtig gespült. Nach Trocknen im Vakuum wird Verbindung 103 ($5.70 \mathrm{~g}, 95 \%$) in analytisch reiner Form als farbloser Feststoff erhalten. IR (KBr): 2940, 2873, 2842, 1758, 1746, 1616, 1519, 1441, 1374, 1248, 1223, 1101, 1082, 1070, 1056, 1033, 971, 935, 835, 822 $\mathrm{cm}^{-1} . \mathrm{MS}(E I) m / z$ (relative Intensität) 424 ($\left[\mathrm{M}^{+}\right], 37$), 423 (20), 245 (13), 179 (17), 137 (52), 136 (59), 135 (62), 115 (19), 43 (100). $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{10}$ (424.42) ber.: C 56.60, H 5.70; gef.: C 56.75, H 5.72. Eine Zusammenstellung und eindeutige Zuweisung der NMR-Daten befinden sich in Kap. 7.8 (Ergänzende Analytik).

7.7.3 2,3-Di-O-acetyl-4,6-O-(p-methoxybenzyliden)- α, β-D-glucopyranose (104)

Eine Lösung der geschützten Glucose $\mathbf{1 0 3}$ ($1045 \mathrm{mg}, 2.46 \mathrm{mmol}$) in THF (10 ml) wird mit Benzylamin ($392 \mathrm{mg}, 3.66 \mathrm{mmol}$) versetzt und 22 h bei RT gerührt. Die Reaktionsmischung wird mit einer verdünnten HCl -Lösung ($0.25 \mathrm{~N}, 5 \mathrm{ml}$) versetzt und die organische Phase
sofort getrennt, anschließend mit gesättigter NaHCO_{3}-Lösung gewaschen und über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet. Nach Entfernung des Lösungsmittels wird das Rohprodukt durch Säulenchromatographie $\left(\mathrm{SiO}_{2}\right.$, Hexan/Ethylacetat $2: 1 \rightarrow 1.5: 1$) gereinigt, wobei das Produkt 104 (720 $\mathrm{mg}, 76$ \%) als farbloser Feststoff anfällt. Smp.: 196-197${ }^{\circ} \mathrm{C}$. IR (KBr): 3504, 2967, 2942, 2875, 2844, 1745, 1616, 1521, 1437, 1374, 1315, 1250, 1222, 1173, 1096, 1063, 1031, 988, 934, $834,821 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): m/z (rel. Intensität): 382 ([M $\left.{ }^{+}\right], 30$), 381 (15), 203 (8), 152 (4), 137 (100), 136 (47), 135 (65), 43 (96). $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{9}$ (382.38) ber.: C 56.54, H 5.80; gef.: C 56.43, H 5.89. Eine Zusammenstellung und eindeutige Zuweisung der NMR-Daten befinden sich in Kap. 7.8 (Ergänzende Analytik).

7.7.4 2,3-Di-O-acetyl-4,6-O-(p-methoxybenzyliden)- α-D-glucopyranosylbromid (105)

Zu einer Lösung von $\mathrm{Br}_{2}(180 \mathrm{mg}, 1.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ wird $(\mathrm{PhO})_{3} \mathrm{P}(327 \mathrm{mg}, 1.05$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ bei $0^{\circ} \mathrm{C}$ gegeben und 25 min bei RT gerührt. Anschließend wird eine Lösung der Verbindung 104 ($310 \mathrm{mg}, 0.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{ml})$ und Pyridin (0.1 $\mathrm{ml})$ zugegeben und 1.5 h gerührt. Die Reaktionslösung wird mit gesättigter NaHCO_{3}-Lösung $(8 \mathrm{ml})$ versetzt und die wäßrige Phase mit Ethylacetat (50 ml , in mehreren Portionen) extrahiert. Die vereinigten organischen Phasen werden mit NaCl-Lösung gewaschen, über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und eingeengt. Nach einer säulenchromatographischen Reinigung (SiO_{2}, Pentan/Ethylacetat 3:1) wird das Bromid 105 ($216 \mathrm{mg}, 60 \%$) als farbloser Feststoff erhalten, und unter Ar bei $-18^{\circ} \mathrm{C}$ aufbewahrt. $[\alpha]_{D}^{20}=+157.9^{\circ}\left(\mathrm{c} 0.57, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.81(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.55(\mathrm{~d}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 5.50(\mathrm{t}$, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.77 \mathrm{dd}, 1 \mathrm{H}, J=9.7,4.1 \mathrm{~Hz}), 4.19-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 3.65-3.73 (m, 2H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 170.2,169.9$, 160.7, 129.6, 127.9, 114.0, 102.2, 88.1, 78.4, 71.8, 69.1, 68.2, 67.5, 55.7, 20.9, 20.8. IR (KBr): 2964, 2936, 2858, 1750, 1617, 1518, 1372, 1304, 1240, 1222, 1124, 1098, 1074, 1035, $1008,971,821,646,604,548 \mathrm{~cm}^{-1}$. MS (EI) m / z (relative Intensität) 446/444 ([$\left.\mathrm{M}^{+}\right], 21$), 445 (16), 443 (12), 263 (13), 179 (12), 137 (30), 136 (100), 135 (61), 43 (72). $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrO}_{8}$ (445.26) ber.: C 48.56, H 4.75; gef.: C 48.73, H 4.70 .

7.7.5 [2,3-Di- O-acetyl-4,6- O-(p-methoxymethylbenzyliden)- β-D-glucopyranosyl$(1 \rightarrow 2)]-(1 S)-1-m e t h y l-d e c-8$-inyl-3,4,6-tri- O-p-methoxybenzyl- β-D-glucopyranosid (106)

Zu einer gekühlten Suspension $\left(-5^{\circ} \mathrm{C}\right)$ von Bromid 105 ($102 \mathrm{mg}, 0.229 \mathrm{mmol}$), gepulvertem Molekularsieb ($4 \AA, 300 \mathrm{mg}$), Verbindung $101(106 \mathrm{mg}, 0.153 \mathrm{mmol})$ und 2,6-Di-tertbutylpyridin ($0.11 \mathrm{ml}, 0.49 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.6 \mathrm{ml})$ wird $\mathrm{AgOTf}(70 \mathrm{mg}, 0.27 \mathrm{mmol})$ gegeben. Nach 3 h Rühren bei $-5^{\circ} \mathrm{C}$ wird mittels Dünnschichtchromatographie der vollständige Umsatz festgestellt. Die Reaktionslösung wird durch ein Kieselgelbett filtriert und mit getrocknetem Ethylacetat (30 ml) nachgespült. Die vereinigten organischen Phasen werden an Celite ${ }^{\circledR}$ adsorbiert und das Rohprodukt durch Flashchromatographie $\left(\mathrm{SiO}_{2}\right.$, Pentan/Ethylacetat 3:1 mit 0.1\%-igem Zusatz von $\mathrm{Et}_{3} \mathrm{~N}$) gereinigt, wobei Verbindung 106 als farbloser Sirup anfällt ($144 \mathrm{mg}, 89 \%$). $[\alpha]_{D}^{20}=-38.1^{\circ}\left(\mathrm{c} 0.53, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (KBr): 2997, 2920, 2859, 1752, 1615, 1586, 1515, 1465, 1442, 1383, 1303, 1240, 1171, 1094, 1021, 933, 904, 884, $824 \mathrm{~cm}^{-1}$. MS (EI) m / z (relative Intensität) 933 (1), 765 (2), 365 (10), 229 (2), 169 (4), 135 (3), 121 (100). $\mathrm{C}_{59} \mathrm{H}_{74} \mathrm{O}_{17}$ (1055.25) ber.: C 67.16, H 7.07; gef.: C 67.04, H 6.89. Eine Zusammenstellung und eindeutige Zuweisung der NMR-Daten befinden sich in Kap. 7.8 (Ergänzende Analytik).

7.7.6 [2,3-Di- O-p-methoxybenzyl-4,6- O-(p-methoxymethylbenzyliden)- β-D-gluco-pyranosyl-(1 $\rightarrow 2$)]-(1S)-1-methyl-dec-8-inyl-3,4,6-tri- O-p-methoxybenzyl- β-Dglucopyranosid (108)

Eine Lösung von Disaccharid 106 ($175 \mathrm{mg}, 0.166 \mathrm{mmol}$) in $\mathrm{MeOH}(15 \mathrm{ml})$ wird mit NaOMe ($11 \mathrm{mg}, 0.204 \mathrm{mmol}$) bei RT versetzt und mittels Dünnschichtchromatographie ein vollständiger Umsatz nach 20 h festgestellt. Anschließend werden alle flüchtigen Komponenten im Vakuum entfernt. Zum Enfernen von Methanolresten wird das Rohprodukt zuerst in Ethylacetat (10 ml), dann in $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{ml})$ aufgenommen, und das Lösungsmittel jeweils im Vakuum abdestilliert. Das auf diese Weise erhaltene Produkt 107 ($160 \mathrm{mg}, 99 \%$) wird ohne weitere Reinigung im nächsten Reaktionsschritt eingesetzt.
Zu einer Lösung der Verbindung 107 ($101 \mathrm{mg}, 0.104 \mathrm{mmol}$) in DMF (1.6 ml) wird NaH (60% ige Dispersion in Mineralöl, $20.7 \mathrm{mg}, 0.518 \mathrm{mmol}$) bei $0^{\circ} \mathrm{C}$ zugegeben und die resultierende Mischung 30 min gerührt. Anschließend wird p-Methoxybenzylchlorid ($70 \mu \mathrm{l}$, $0.516 \mathrm{mmol})$ und $(n-\mathrm{Bu})_{4} \mathrm{NI}(4.0 \mathrm{mg}, 0.011 \mathrm{mmol})$ gegeben und die Reaktionslösung 22 h bei RT gerührt. Nach Standardaufarbeitung und Flashchromatographie (SiO_{2}, Pentan/Ethylacetat
$4: 1 \rightarrow 2: 1$ mit 0.1%-igem Zusatz von $\mathrm{Et}_{3} \mathrm{~N}$) wird Verbindung 108 als farbloser Sirup erhalten, der nach Stehen erstarrt ($115 \mathrm{mg}, 91 \%$). Das Produkt wird unter Ar bei $-18^{\circ} \mathrm{C}$ aufbewahrt. $[\alpha]_{D}^{20}=-4.7^{\circ}$ (c 1.11, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KBr): 2999, 2962, 2927, 2856, 1631, 1614, 1586, 1515, 1463, 1369, 1302, 1254, 1173, 1089, 1033, 962, 819. MS (ESI-pos.) m / z (relative Intensität) $1233\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right], 100\right) . \mathrm{C}_{71} \mathrm{H}_{86} \mathrm{O}_{17}$ (1211.5) ber.: C 70.39, H 7.16; gef.: C 70.24, H 7.08. Eine Zusammenstellung und eindeutige Zuweisung der NMR-Daten befinden sich in Kap. 7.8 (Ergänzende Analytik).

7.7.7 [2,3,6-Tri- O-p-methoxybenzyl- β-D-glucopyranosyl-($\mathbf{1 \rightarrow 2)] - (1 S) - 1 - m e t h y l - d e c - 8 - ~}$ inyl-3,4,6-tri- O-p-methoxybenzyl- β-D-glucopyranosid (109)

Zu einer Suspension von Verbindung 108 ($340 \mathrm{mg}, 0.28 \mathrm{mmol}$), $\mathrm{NaBH}_{3} \mathrm{CN}$ ($176 \mathrm{mg}, 2.8$ mmol) und gepulvertem Molekularsieb ($4 \AA, 1.05 \mathrm{~g}$) in DMF (6 ml) wird tropfenweise eine Lösung von Trifluoroessigsäure ($0.55 \mathrm{~mL}, 7.1 \mathrm{mmol}$) in DMF (1.5 ml) gegeben. Nach 3 Tagen Rühren bei RT wird die Lösung über ein kurzes Kieselgelbett filtriert und mit Ethylacetat (100 ml) nachgespült. Die vereinigten organischen Phasen werden mit ges. NaHCO_{3}-Lösung ($3 \times 30 \mathrm{ml}$) und ges. NaCl -Lösung ($2 \times 20 \mathrm{ml}$) gewaschen, über $\mathrm{Na}_{2} \mathrm{SO}_{4}$ getrocknet und im Vakuum konzentriert. Nach Flashchromatographie (SiO_{2}, Pentan/Ethylacetat $2: 1$ mit 0.1%-igem Zusatz von $\mathrm{Et}_{3} \mathrm{~N}$) fällt Verbindung 109 als farbloser Sirup ($300 \mathrm{mg}, 88 \%$) an. $[\alpha]_{D}^{20}=-10.3^{\circ}\left(\mathrm{c} 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). IR (Film): 3438, 3000, 2931, 2857, $1613,1514,1465,1359,1303,1249,1174,1066,1035,820 \mathrm{~cm}^{-1}$. MS (ESI-pos.) m / z (relative Intensität) $1235\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right], 100\right) . \mathrm{C}_{71} \mathrm{H}_{88} \mathrm{O}_{17}$ (1213.5) ber.: C 70.28, H 7.31; gef.: C 70.38, H 7.34. Eine Zusammenstellung und eindeutige Zuweisung der NMR-Daten befinden sich in Kap. 7.8 (Ergänzende Analytik).

7.7.8 [2,3,6-Tri-O-p-methoxybenzyl-4-O-oxo-undec-9-inyl- β-D-glucopyranosyl$(1 \rightarrow 2)]-(1 S)-1-m e t h y l-d e c-8-i n y l-3,4,6-t r i-O-p-m e t h o x y b e n z y l-\beta-D-g l u c o-$ pyranosid (111)

Zu einer Lösung von Disaccharid 109 ($85 \mathrm{mg}, 0.070 \mathrm{mmol}$), DMAP ($4.8 \mathrm{mg}, 0.039 \mathrm{mmol}$) und DCC ($17.2 \mathrm{mg}, 0.083 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{ml})$ wird nach vollständiger Lösung des DCC (ca. 5 min) 9-Undecinsäure $110(14.8 \mathrm{mg}, 0.081 \mathrm{mmol})$ zugetropft und 3 Tage bei RT gerührt. Die Reaktionslösung wird über ein kurzes Kieselgelbett filtriert, mit $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml) gewaschen und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wird
säulenchromatographisch $\left(\mathrm{SiO}_{2}\right.$, Hexan/Essigester $\left.4: 1 \rightarrow 3: 1\right)$ gereinigt, wobei Verbindung 111 als farbloser Sirup erhalten wird ($90 \mathrm{mg}, 93 \%$). $[\alpha]_{D}^{20}=+3.8^{\circ}$ (c 1.58, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (Film): 3439, 2997, 2930, 2857, 1744, 1612, 1586, 1514, 1464, 1358, 1302, 1248, 1173, 1065, 1035, $820,760 \mathrm{~cm}^{-1}$. MS (MALDI-pos.) m / z (relative Intensität) $\left(\mathrm{C}_{82} \mathrm{H}_{104} \mathrm{O}_{18}+\mathrm{Na}\right)$ ber.: 1399.7115; gef.: 1399.7101. $\mathrm{C}_{82} \mathrm{H}_{104} \mathrm{O}_{18}$ (1377.75) ber.: C 71.49, H 7.61; gef.: C 71.56, H 7.73. Eine Zusammenstellung und eindeutige Zuweisung der NMR-Daten befinden sich in Kap. 7.8 (Ergänzende Analytik).

7.7.9 (17S)-17-[[2,3,6-Tri-O-p-methoxybenzyl- β-D-glucopyranosyl-($1 \rightarrow 2$)]-3,4,6-tri-O-p-methoxybenzyl- β-D-glucopyranosyl]oxy]-intramol.-1,4"-octadec-9-in-säureester (112)

Zu einer Lösung von Molybdän-Komplex $\mathbf{8 4}(2 \mathrm{mg}, 0.003 \mathrm{mmol})$ in Toluol (3 ml) wird $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{l})$ und dann eine Lösung der Verbindung $\mathbf{1 1 1}(51 \mathrm{mg}, 0.037 \mathrm{mmol})$ in Toluol (1 $\mathrm{ml})$ gegeben. Die resultierende Lösung wird 24 h bei $80^{\circ} \mathrm{C}$ gerührt. Danach wird das Lösungsmittel im Vakuum entfernt und der Rückstand säulenchromatographisch (SiO_{2}, Hexan/Ethylacetat 3:1) gereinigt, wobei Verbindung 112 als farbloser Sirup anfällt (38 mg , 78%). $[\alpha]_{D}^{20}=+4.5^{\circ}\left(\mathrm{c} 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). IR (Film): 2998, 2929, 2856, 1743, 1612, 1586, 1513, 1463, 1442, 1359, 1302, 1249, 1173, 1076, 1035, 819, $760 \mathrm{~cm}^{-1}$. MS (ESI pos): m / z (rel intensity) $1345\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right], 100\right) . \mathrm{C}_{78} \mathrm{H}_{98} \mathrm{O}_{18}$ (1323.65) ber.: C 70.78, H 7.46; gef.: C 70.84, H 7.38. Eine Zusammenstellung und eindeutige Zuweisung der NMR-Daten befinden sich in Kap. 7.8 (Ergänzende Analytik).

7.7.10 (17S)-17-[[2,3,6-Tri-O-p-methoxybenzyl- β-D-glucopyranosyl-($1 \rightarrow 2$)]-3,4,6-tri-O-p-methoxybenzyl- β-D-glucopyranosyl]oxy]-intramol.-1,4"-octadec-9-(Z)-ensäureester (113)

Eine Suspension von Cycloalkin 112 ($64 \mathrm{mg}, 0.048 \mathrm{mmol}$), Chinolin ($0.15 \mathrm{ml}, 57 \mathrm{mg}$ Chinolin in 10 ml Hexan) und LindLar-Katalysator ($33.5 \mathrm{mg}, 5 \% \mathrm{Pd} / \mathrm{Pb}$ auf CaCO_{3},) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ wird unter H_{2}-Atmosphäre (1 atm) 5.5 h bei RT gerührt. Die Lösung wird über ein kurzes Kieselgelbett filtriert und das Lösungsmittel im Vakuum entfernt. Die auf diese Weise analytisch reine Verbindung 113 (64 mg , quant.) wird ohne weitere Reinigung im nächsten Schritt eingesetzt. Eine Zusammenstellung und eindeutige Zuweisung der NMRDaten befinden sich in Kap. 7.8 (Ergänzende Analytik).

7.7.11 Sophorolipid (91): (17S)-17-[[- β-D-glucopyranosyl-(1 $\rightarrow 2$)]- β-D-glucopyranosyl] oxy]-intramol.-1,4"'octadec-9-(Z)-en-säureester (91)

Eine Lösung der Verbindung 113 ($64 \mathrm{mg}, 0.048 \mathrm{mmol}$), DDQ ($67.3 \mathrm{mg}, 0.30 \mathrm{mmol}$) in Wasser (0.2 ml) und $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.6 \mathrm{ml})$ wird bei RT gerührt und mittels Dünnschichtchromatographie ein vollständiger Umsatz nach 8 h festgestellt. Die Lösung wird in Ethylacetat aufgenommen und über ein Celite ${ }^{\circledR}$-Polster filtriert. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand säulenchromatographisch (SiO_{2}, Ethylacetat, dann Ethylacetat/Methanol 20:1) gereinigt, wobei das Sophorolipid 91 als farbloser Sirup anfällt ($27 \mathrm{mg}, 93 \%$). Die analytisch reine Verbindung 91 wird nach präparativer HPLC-Reinigung (Shimadzu LC-8A; 250 mm x 20 mm BIAX-Säule, mobile Phase: $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 7: 3$) als wachsartiger Feststoff (64\%) erhalten. IR (Film): 3422, 3004, 2927, 2856, 1741, 1636, 1457, 1404, 1377, 1347, 1241, 1198, 1167, 1081, $1041 \mathrm{~cm}^{-1}$. MS (ESI pos): m / z (relative Intensität) $627\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right], 100\right) . \mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{12}$ (604.73) ber.: C 59.58 H 8.67; gef.: C 59.54, H 8.73. Eine Zusammenstellung und eindeutige Zuweisung der NMR-Daten befinden sich in Kap. 7.8 (Ergänzende Analytik).

7.8 Ergänzende Analytik

${ }^{1} \mathbf{H}$ - und ${ }^{13} \mathbf{C}$-NMR-Daten der Verbindung 102

Alle vorgenommenen Zuordnungen sind eindeutig und stützen sich auf COSY, NOESY und ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\delta$-korrelierte NMR-Spektren (letztere für ${ }^{1} J(\mathrm{C}, \mathrm{H})$ und ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$ optimiert).

$\beta-102$

$\alpha-102$

Solvens: DMSO- $_{6}$. Anomerenverhältnis, $\alpha: \beta \approx 40: 60$.

Position	β-Anomer		α-Anomer	
	$\delta{ }^{\mathbf{1 3}} \mathbf{C}(\mathbf{p p m})$	$\delta{ }^{\mathbf{1}} \mathbf{H} \mathbf{(p p m)}$	$\delta{ }^{\mathbf{1 3}} \mathbf{C}(\mathbf{p p m})$	$\delta{ }^{\mathbf{1}} \mathbf{H}(\mathbf{p p m})$
$\mathbf{1}$	97.57	$4.44(7.9 \mathrm{~Hz})$	93.13	$4.97(3.2 \mathrm{~Hz})$
$\mathbf{2}$	75.75	3.01	72.85	3.25
$\mathbf{3}$	72.90	3.38	69.63	3.61
$\mathbf{4}$	80.84	3.31	81.67	3.29
$\mathbf{5}$	65.74	3.31	61.95	3.76
$\mathbf{6}$	67.98	$3.63,4.13$	68.35	$3.62,4.06$
$\mathbf{7}$	100.59	5.49	100.74	5.48
$\mathbf{8}$	130.23		130.29	
$\mathbf{9}$	127.62	7.35	127.66	7.35
$\mathbf{1 0}$	113.25	6.90	113.25	6.90
$\mathbf{1 1}$	159.47		159.47	
$\mathbf{1 2}$	55.08	3.74	55.08	3.74

${ }^{1} \mathbf{H}$ - und ${ }^{13} \mathbf{C}$-NMR-Daten der Verbindung 103

Alle vorgenommenen Zuordnungen sind mit Ausnahme der durch ${ }^{*},{ }^{\circ}, \wedge$ gekennzeichneten Einträge eindeutig, und stützen sich auf COSY, NOESY und ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\delta$-korrelierte NMRSpektren (letztere für ${ }^{1} J(\mathrm{C}, \mathrm{H})$ und ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$ optimiert).

Solvens: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Anomerenverhältnis, $\alpha: \beta \approx 50: 50$.

Position	β-Anomer		α-Anomer	
	$\delta^{\mathbf{1 3}} \mathbf{C}(\mathbf{p p m})$	$\delta{ }^{\mathbf{1}} \mathbf{H}(\mathbf{p p m})$	$\delta{ }^{\mathbf{1 3}} \mathbf{C}(\mathbf{p p m})$	$\delta^{\mathbf{1}} \mathbf{H}(\mathbf{p p m})$
$\mathbf{1}$	92.60	$5.79(8.1 \mathrm{~Hz})$	89.91	$6.28(3.9 \mathrm{~Hz})$
$\mathbf{2}$	71.48	5.10	70.32	5.08
$\mathbf{3}$	72.03	5.33	69.09	5.53
$\mathbf{4}$	78.44	3.74	79.02	3.72
$\mathbf{5}$	67.42	3.67	65.29	4.03
$\mathbf{6}$	68.61	$4.34,3.75$	68.82	$4.28,3.73$
$\mathbf{7}$	101.96	5.47	102.01	5.48
$\mathbf{8}$	129.82^{*}		129.75^{*}	
$\mathbf{9}$	127.87	7.35^{*}	127.82	7.36^{*}
$\mathbf{1 0}$	113.89°	6.89°	113.88°	6.88°
$\mathbf{1 1}$	160.67^{\wedge}		160.65^{\wedge}	
$\mathbf{1 2}$	55.62	3.80^{\wedge}	55.62	3.79^{\wedge}
$\mathbf{1 3}$	169.17		169.48	
$\mathbf{1 4}$	20.93	2.09	21.07	2.17
$\mathbf{1 5}$	169.69		170.19	
$\mathbf{1 6}$	20.74	2.03		20.67
$\mathbf{1 7}$	170.20		170.20	2.02
$\mathbf{1 8}$	20.88	2.03		20.93

Signale gekennzeichnet mit $*,{ }^{\circ} \wedge$ sind nicht eindeutig einem der beiden Anomere zugeordnet und können untereinander paarweise vertauscht sein.

${ }^{1} \mathbf{H}$ - und ${ }^{13} \mathbf{C}$-NMR-Daten der Verbindung 104

Alle vorgenommenen Zuordnungen sind mit Ausnahme der durch * gekennzeichneten Einträge eindeutig, und stützen sich auf COSY, NOESY und ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\delta$-korrelierte NMRSpektren (letztere für ${ }^{1} J(\mathrm{C}, \mathrm{H})$ und ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$ optimiert).

$\beta-104$

$\alpha-104$

Solvens: DMSO- $_{6}$. Anomerenverhältnis, $\alpha: \beta \approx 50: 50$.

Position	β-Anomer		α-Anomer	
	$\delta{ }^{\mathbf{1 3}} \mathbf{C}(\mathbf{p p m})$	$\delta{ }^{\mathbf{1}} \mathbf{H}(\mathbf{p p m})$	$\delta{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{(\mathbf { p p m })}$	$\delta{ }^{\mathbf{1}} \mathbf{H}(\mathbf{p p m})$
$\mathbf{1}$	94.56	$4.88(7.7 \mathrm{~Hz})$	89.96	$5.23(3.6 \mathrm{~Hz})$
$\mathbf{2}$	73.45	4.71	71.66	4.73
$\mathbf{3}$	71.63	5.23	68.48	5.37
$\mathbf{4}$	77.73	3.74	78.14	3.77
$\mathbf{5}$	65.32	3.64	62.00	3.92
$\mathbf{6}$	67.60	$4.19,3.72$	67.85	$4.14,3.72$
$\mathbf{7}$	100.33	5.56	100.52	5.56
$\mathbf{8}$	129.65^{*}		129.67^{*}	
$\mathbf{9}$	127.44	7.29	127.48	7.30
$\mathbf{1 0}$	113.40	6.90	113.40	6.90
$\mathbf{1 1}$	159.59		159.56	
$\mathbf{1 2}$	55.08	3.74	55.08	3.74
$\mathbf{1 3}$	169.12		169.83	
$\mathbf{1 4}$	20.51	2.01	20.44	1.98
$\mathbf{1 5}$	169.55		169.57	
$\mathbf{1 6}$	20.46	1.96	20.47	1.99
$\mathbf{1 - O H}$		7.28		7.18

Signale gekennzeichnet mit * sind nicht eindeutig einem der beiden Anomere zugeordnet und können untereinander paarweise vertauscht sein.

${ }^{1} \mathbf{H}$ - und ${ }^{13} \mathbf{C}$-NMR-Daten der Verbindung 106

Alle vorgenommenen Zuordnungen sind eindeutig und stützen sich auf COSY, NOESY und ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ - δ-korrelierte NMR-Spektren (letztere für ${ }^{1} J(\mathrm{C}, \mathrm{H})$ und ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$ optimiert).

Solvens: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Position	$\delta^{\mathbf{1 3}} \mathbf{C}$ (ppm)	$\delta^{\mathbf{1}} \mathbf{H}$ (ppm)	Position	$\delta{ }^{\mathbf{1 3}} \mathbf{C}(\mathbf{p p m})$	$\delta{ }^{\mathbf{1}} \mathbf{H}$ (ppm)
$\mathbf{1}$	21.69	1.24	$\mathbf{3 8}$	130.01	
$\mathbf{2}$	77.21	3.73	$\mathbf{3 9}$	127.87	7.36
$\mathbf{3}$	37.05	$1.60,1.42$	$\mathbf{4 0}$	113.85	6.89
$\mathbf{4}$	25.50	1.42	$\mathbf{4 1}$	160.61	
$\mathbf{5}$	29.83	1.36	$\mathbf{4 2}$	55.62	3.80
$\mathbf{6}$	29.47	1.44	$\mathbf{4 3}$	169.72	
$\mathbf{7}$	29.63	1.51	$\mathbf{4 4}$	21.00	1.99
$\mathbf{8}$	19.06	2.15	$\mathbf{4 5}$	170.39	
$\mathbf{9}$	79.60		$\mathbf{4 6}$	20.94	2.02
$\mathbf{1 0}$	75.56		$\mathbf{2 3 / 1}$	75.35	$4.75,4.71$
$\mathbf{1 1}$	3.49	1.75	$\mathbf{2 3 / 2}$	131.00	
$\mathbf{2 1}$	101.7	$4.37(7.5 \mathrm{~Hz})$	$\mathbf{2 3 / 3}$	129.94	7.33
$\mathbf{2 2}$	79.49	3.62	$\mathbf{2 3 / 4}$	114.10	6.90
$\mathbf{2 3}$	85.06	3.53	$\mathbf{2 3 / 5}$	159.71	
$\mathbf{2 4}$	78.51	3.52	$\mathbf{2 4 / 1}$	74.68	$4.68,4.48$
$\mathbf{2 5}$	75.04	3.37	$\mathbf{2 4 / 2}$	130.82	
$\mathbf{2 6}$	69.01	$3.65,3.64$	$\mathbf{2 4 / 3}$	129.79	7.10
$\mathbf{3 1}$	100.59	$5.159 .9 \mathrm{~Hz})$	$\mathbf{2 4 / 4}$	113.99	6.82
$\mathbf{3 2}$	73.66	4.95	$\mathbf{2 4 / 5}$	159.70	
$\mathbf{3 3}$	72.58	5.23	$\mathbf{2 6 / 1}$	73.33	$4.53,4.46$
$\mathbf{3 4}$	78.85	3.72	$\mathbf{2 6 / 2}$	130.81	
$\mathbf{3 5}$	66.74	3.43	$\mathbf{2 6 / 3}$	129.73	7.27
$\mathbf{3 6}$	68.98	$4.33,3.77$	$\mathbf{2 6 / 4}$	114.03	6.87
$\mathbf{3 7}$	101.86	5.48	$\mathbf{2 6 / 5}$	159.66	
			$\mathbf{n} / \mathbf{6}$	$55.58,55.56$,	$3.80,3.78(2)$
				55.55	

${ }^{1} \mathbf{H}$ - und ${ }^{13} \mathbf{C}$-NMR-Daten der Verbindung 108

Alle vorgenommenen Zuordnungen sind eindeutig und stützen sich auf COSY, NOESY und ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\delta$-korrelierte NMR-Spektren (letztere für ${ }^{1} J(\mathrm{C}, \mathrm{H})$ und ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$ optimiert).

Solvens: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Position	$\delta^{\mathbf{1 3}} \mathbf{C}$ (ppm)	$\delta^{\mathbf{1}} \mathbf{H}$ (ppm)	Position	$\delta{ }^{\mathbf{1 3}} \mathbf{C}$ (ppm)	$\delta{ }^{\mathbf{1}} \mathbf{H}$ (ppm)
$\mathbf{1}$	21.84	1.24	$\mathbf{2 3 / 1}$	75.15	$4.75,4.71$
$\mathbf{2}$	77.52	3.72	$\mathbf{2 3 / 2}$	131.15	
$\mathbf{3}$	37.21	$1.59,1.43$	$\mathbf{2 3 / 3}$	130.00	7.24
$\mathbf{4}$	25.43	$1.50,1.41$	$\mathbf{2 3 / \mathbf { 4 }}$	113.98	6.79
$\mathbf{5}$	29.84	1.33	$\mathbf{2 3 / 5}$	159.58	
$\mathbf{6}$	29.46	1.42	$\mathbf{2 4 / 1}$	74.76	$4.74,4.51$
$\mathbf{7}$	29.67	1.49	$\mathbf{2 4 / 2}$	130.90	
$\mathbf{8}$	19.07	2.12	$\mathbf{2 4 / 3}$	129.85	7.14
$\mathbf{9}$	79.56		$\mathbf{2 4 / 4}$	114.02	6.83
$\mathbf{1 0}$	75.58		$\mathbf{2 4 / 5}$	159.71	
$\mathbf{1 1}$	3.49	1.73	$\mathbf{2 6 / 1}$	73.32	$4.55,4.47$
$\mathbf{2 1}$	102.13	$4.38(7.5 \mathrm{~Hz})$	$\mathbf{2 6 / 2}$	130.92	
$\mathbf{2 2}$	78.02	3.70	$\mathbf{2 6 / 3}$	129.69	7.28
$\mathbf{2 3}$	86.02	3.60	$\mathbf{2 6 / \mathbf { 4 }}$	114.02	6.88
$\mathbf{2 4}$	78.25	3.52	$\mathbf{2 6 / 5}$	159.64	
$\mathbf{2 5}$	75.20	3,43	$\mathbf{3 2 / \mathbf { 1 }}$	75.20	$4.84,4.72$
$\mathbf{2 6}$	69.20	$3.69,3.65$	$\mathbf{3 2 / 2}$	131.25	
$\mathbf{3 1}$	102.52	$5.03(7.5 \mathrm{~Hz})$	$\mathbf{3 2 / 3}$	130.09	7.27
$\mathbf{3 2}$	89.95	3.35	$\mathbf{3 2 / 4}$	113.83	6.82
$\mathbf{3 3}$	81.04	3.64	$\mathbf{3 2 / 5}$	159.56	
$\mathbf{3 4}$	82.10	3.64	$\mathbf{3 3 / 1}$	74.61	$4.82,4.74$
$\mathbf{3 5}$	66.25	3.25	$\mathbf{3 3 / 2}$	131.38	
$\mathbf{3 6}$	69.20	$4.28,3.73$	$\mathbf{3 3 / 3}$	129.91	7.27
$\mathbf{3 7}$	101.38	5.53	$\mathbf{3 3 / 4}$	113.89	6.83
$\mathbf{3 8}$	130.60		$\mathbf{3 3 / 5}$	159.58	
$\mathbf{3 9}$	127.73	7.41	$\mathbf{n} / \mathbf{6}$	55.57	$3.79(3)$,
$\mathbf{4 0}$	113.78	6.91		$55.55(2)$,	$3.77(2)$
$\mathbf{4 1}$	160.41			$55.52(2)$	
$\mathbf{4 2}$	55.61	3.82			

${ }^{1} \mathbf{H}$ - und ${ }^{13} \mathrm{C}$-NMR-Daten der Verbindung 109

Alle vorgenommenen Zuordnungen sind eindeutig und stützen sich auf COSY, NOESY und ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\delta$-korrelierte NMR-Spektren (letztere für ${ }^{1} J(\mathrm{C}, \mathrm{H})$ und ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$ optimiert).

Solvens: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Position	$\delta{ }^{13} \mathbf{C}$ (ppm)	$\delta{ }^{1} \mathbf{H}(\mathbf{p p m})$	Position	$\delta{ }^{13} \mathbf{C}$ (ppm)	$\delta^{1} \mathbf{H}$ (ppm)
1	21.89	1.21	35	74.54	3.23
2	77.49	3.71	36	70.34	3.67
3	37.17	1.55, 1.39	34-OH		2.55
4	25.44	1.47, 1.38	23/1	75.10	4.76, 4.72
5	29.76	1.26	23/2	131.21	
6	29.43	1.35	23/3	129.98	7.26
7	29.66	1.45	24/1	74.74	4.73, 4.50
8	19.03	2.08	24/2	130.92	
9	79.59		24/3	129.85	7.13
10	75.50		26/1	73.31	4.55, 4.47
11	3.49	1.73	26/2	130.92	
21	102.16	4.40 (7.5 Hz)	26/3	129.70	7.28
22	77.55	3.71	32/1	74.81	4.91, 4.70
23	86.32	3.63	32/2	131.33	
24	78.50	3.52	32/3	130.08	7.30
25	75.18	3.43	33/1	74.88	4.85, 4.69
26	69.23	3.68, 3.64	33/2	131.49	
31	102.35	4.91 (7.5 Hz)	33/3	129.88	7.25
32	82.57	3.29	36/1	73.75	4.53
33	84.08	3.31	36/2	130.81	
34	72.36	3.52	36/3	129.81	7.28

Signale der $\mathbf{n} / \mathbf{4}$ Position von PMB : ${ }^{13} \mathrm{C}$ NMR: 114.07, 114.05, 114.02(2), 113.97, 113.89; ${ }^{1} \mathrm{H}$ NMR: 6.87(2), 6.86, 6.83(2), 6.81
Signale der $\mathbf{n} / \mathbf{5}$ Position von PMB: ${ }^{13}$ C NMR: 159.70, 159.66, 159.65, 159.63, 159.56(2)
Signale der $\mathbf{n} / \mathbf{6}$ Position von PMB: ${ }^{13} \mathrm{C}$ NMR: 55.57, 55.56 , $55.55(2), 55.54,55.53 ;{ }^{1} \mathrm{H}$ NMR: 3.79(2), 3.78(3), 3.76.

${ }^{1} \mathbf{H}$ - und ${ }^{13} \mathbf{C}$-NMR-Daten der Verbindung $\mathbf{1 1 1}$

Alle vorgenommenen Zuordnungen sind eindeutig und stützen sich auf COSY, NOESY und ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\delta$-korrelierte NMR-Spektren (letztere für ${ }^{1} J(\mathrm{C}, \mathrm{H})$ und ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$ optimiert).

Solvens: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Position	$\delta{ }^{\mathbf{1 3}} \mathbf{C}$ (ppm)	$\delta{ }^{\mathbf{1}} \mathbf{H}$ (ppm)	Position	$\delta{ }^{\mathbf{1 3}} \mathbf{C}$ (ppm)	$\delta{ }^{\mathbf{1}} \mathbf{H}$ (ppm)
$\mathbf{1}$	21.89	1.21	$\mathbf{4 7}$	29.22	1.25
$\mathbf{2}$	77.44	3.72	$\mathbf{4 8}$	29.46	1.25
$\mathbf{3}$	37.15	$1.57,1.39$	$\mathbf{4 9}$	25.08	1.5
$\mathbf{4}$	25.46	$1.48,1.38$	$\mathbf{5 0}$	34.54	2.11
$\mathbf{5}$	29.75	1.28	$\mathbf{5 1}$	172.62	
$\mathbf{6}$	29.44	1.37	$\mathbf{2 3 / 1}$	75.14	$4.77,4.74$
$\mathbf{7}$	29.67	1.46	$\mathbf{2 3 / 2}$	131.30	
$\mathbf{8}$	19.01	2.08	$\mathbf{2 3 / 3}$	129.97	7.27
$\mathbf{9}$	79.66		$\mathbf{2 3 / 4}$	114.03	6.83
$\mathbf{1 0}$	75.43		$\mathbf{2 4 / 1}$	74.74	$4.74,4.51$
$\mathbf{1 1}$	3.50	1.73	$\mathbf{2 4 / 2}$	130.93	
$\mathbf{2 1}$	102.08	$4.42(7.6 \mathrm{~Hz})$	$\mathbf{2 4 / 3}$	129.86	7.14
$\mathbf{2 2}$	77.86	3.72	$\mathbf{2 4 / 4}$	113.95	6.83
$\mathbf{2 3}$	86.29	3.64	$\mathbf{2 6 / 1}$	73.32	$4.56,4.48$
$\mathbf{2 4}$	78.54	3.53	$\mathbf{2 6 / 2}$	130.93	
$\mathbf{2 5}$	75.19	3.43	$\mathbf{2 6 / 3}$	129.70	7.29
$\mathbf{2 6}$	69.22	$3.69,3.65$	$\mathbf{2 6 / 4}$	114.03	6.87
$\mathbf{3 1}$	102.26	4.92	$\mathbf{3 2 / \mathbf { 1 }}$	74.93	$4.9,4.69$
$\mathbf{3 2}$	82.72	3.35	$\mathbf{3 2 / 2}$	131.18	

$\mathbf{3 3}$	81.97	3.46	$\mathbf{3 2 / 3}$	130.16	7.29
$\mathbf{3 4}$	71.07	4.91	$\mathbf{3 2 / 4}$	113.90	6.82
$\mathbf{3 5}$	74.03	3.34	$\mathbf{3 3 / 1}$	74.83	$4.73,4.54$
$\mathbf{3 6}$	69.59	$3.50,3.45$	$\mathbf{3 3 / 2}$	131.17	
$\mathbf{4 1}$	3.50	1.75	$\mathbf{3 3 / 3}$	129.68	7.15
$\mathbf{4 2}$	75.52		$\mathbf{3 3 / 4}$	113.93	6.84
$\mathbf{4 3}$	79.49		$\mathbf{3 6} / \mathbf{1}$	73.75	$4.51,4.45$
$\mathbf{4 4}$	18.97	2.09	$\mathbf{3 6 / 2}$	130.99	
$\mathbf{4 5}$	29.47	1.44	$\mathbf{3 6 / 3}$	129.84	7.27
$\mathbf{4 6}$	29.08	1.33	$\mathbf{3 6} / \mathbf{4}$	113.95	6.85

Signale der $\mathbf{n} / \mathbf{5}$ Position von PMB: ${ }^{13} \mathrm{C}$ NMR: 159.71, 159.64, 159.60, 159.58, 159.56(2).
Signale der n/6 Position von PMB: ${ }^{13} \mathrm{C}$ NMR: 55.56, 55.54, 55.53, 55.52, 55.5; ${ }^{1} \mathrm{H}$ NMR: 3.79(3), 3.78, 3.77(2).

${ }^{1} \mathbf{H}$ - und ${ }^{13} \mathbf{C}$-NMR-Daten der Verbindung $\mathbf{1 1 2}$

Alle vorgenommenen Zuordnungen sind eindeutig und stützen sich auf COSY, NOESY und ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\delta$-korrelierte NMR-Spektren (letztere für ${ }^{1} J(\mathrm{C}, \mathrm{H})$ und ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$ optimiert).

112
${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Position	Rotamer A	Rotamer B	
$\mathbf{1}$	1.25		1.24
$\mathbf{2}$	3.84	3.67	
$\mathbf{8}$		$2.10-2.16$	
$\mathbf{1 7}$	2.19		2.23
$\mathbf{2 1}$	$3.6 \mathrm{~Hz})$	$4.70(7.0 \mathrm{~Hz})$	
$\mathbf{2 2}$	3.61	3.77	
$\mathbf{2 3}$	3.50	3.78	
$\mathbf{2 4}$	3.44	3.54	
$\mathbf{2 5}$	$3.70,3.65$	3.41	
$\mathbf{2 6}$	$4.92(7.5 \mathrm{~Hz})$	$4.99(7.7 \mathrm{~Hz})$	
$\mathbf{3 1}$	3.29	3.41	
$\mathbf{3 2}$	3.54	3.57	
$\mathbf{3 3}$	4.85	3.05	
$\mathbf{3 4}$	3.45	3.53	
$\mathbf{3 5}$	$3.54,3.52$		
$\mathbf{3 6}$		$4.91-4.42$	
$\mathbf{n} / \mathbf{1}$		$7.29-7.12$	
$\mathbf{n} / \mathbf{3}$		$6.88-6.77$	
$\mathbf{n} / \mathbf{4}$		$3.81-3.74$	
$\mathbf{n} / \mathbf{6}$			

${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Position	Rotamer A	Rotamer B	Position	Rotamer A	Rotamer B
$\mathbf{1}$	21.99	21.46	$\mathbf{3 2}$	82.73	83.23
$\mathbf{2}$	79.54	76.99	$\mathbf{3 3}$	81.49	82.52
$\mathbf{3}$	38.20	37.20	$\mathbf{3 4}$	71.88	70.33
$\mathbf{4}$	25.85	25.08	$\mathbf{3 5}$	73.82	73.65
$\mathbf{8}$	19.30^{*}	18.81^{*}	$\mathbf{3 6}$	70.45	69.21
$\mathbf{9}$	81.47°	80.85°	$\mathbf{2 3 / 1}$	75.16	75.53
$\mathbf{1 0}$	80.34°	80.01°	$\mathbf{2 3 / 2}$	131.29	131.49
$\mathbf{1 1}$	18.90^{*}	18.69^{*}	$\mathbf{2 4 / 1}$	74.75	74.73
$\mathbf{1 6}$	23.81	25.11	$\mathbf{2 4 / 2}$	130.93	131.06
$\mathbf{1 7}$	33.74	35.19	$\mathbf{2 6 / 1}$	73.30	73.30
$\mathbf{1 8}$	172.95	172.52	$\mathbf{2 6 / 2}$	130.95	130.90
$\mathbf{2 1}$	103.20	101.59	$\mathbf{3 2 / 1}$	74.83	74.37
$\mathbf{2 2}$	77.64	81.34	$\mathbf{3 2 / 2}$	130.99	131.37
$\mathbf{2 3}$	86.43	84.84	$\mathbf{3 3 / 1}$	74.80	75.00
$\mathbf{2 4}$	78.51	78.17	$\mathbf{3 3 / 2}$	131.19	131.15
$\mathbf{2 5}$	75.23	74.90	$\mathbf{3 6 / 1}$	73.72	73.65
$\mathbf{2 6}$	69.29	69.36	$\mathbf{3 6 / 2}$	131.15	130.50
$\mathbf{3 1}$	102.14	101.19			

Signale der C-Atome 5, 6, 7, 12, 13, 14, $\mathbf{1 5}$ sind nicht eindeutig einem der Rotamere zugeordnet: 30.71, 30.49, 30.07, 29.79, 29.64, 29.47, 29.35, 28.91, 28.76, 28.72, 28.49, 28.35, 27.61, 27.51.

Signale der $\mathbf{n} / \mathbf{3}$ Position von PMB sind nicht eindeutig einem der Rotamere zugeordnet: 130.30, 130.10, 129.98, 129.93, 129.88(2), 129.71, 129.69, 129.67(2) 129.64, 129.54.

Signale der $\mathbf{n} / \mathbf{4}$ Position von PMB sind nicht eindeutig einem der Rotamere zugeordnet: 114.02(5), 113.98, 113.94(3), 113.88, 113.85, 113.77.

Signale der $\mathbf{n} / \mathbf{5}$ Position von PMB sind nicht eindeutig einem der Rotamere zugeordnet: $159.72,159.68,159.65,159.64,159.62(2), 159.58,159.57,159.55,159.51,159.48,159.41$.

Signale der $\mathbf{n} / \mathbf{6}$ Position von PMB sind nicht eindeutig einem der Rotamere zugeordnet: 55.56, 55.54, 55.53, 55.51, 55.49.

${ }^{1} \mathbf{H}$ - und ${ }^{13} \mathbf{C}$-NMR-Daten der Verbindung $\mathbf{1 1 3}$

Alle vorgenommenen Zuordnungen sind eindeutig und stützen sich auf COSY, NOESY und ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\delta$-korrelierte NMR-Spektren (letztere für ${ }^{1} J(\mathrm{C}, \mathrm{H})$ und ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$ optimiert).

$R=P M B$

113
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Position	Rotamer A	Rotamer B
$\mathbf{1}$	1.22	1.21
$\mathbf{2}$	3.67	3.79
$\mathbf{3}$	$1.48,1.42$	$1.62,1.40$
$\mathbf{8}$	$2.11,2.04^{\circ}$	2.00°
$\mathbf{9}$	5.39^{*}	5.34^{*}
$\mathbf{1 0}$	5.32^{*}	5.30^{*}
$\mathbf{1 1}$	$1.99,1.93^{\circ}$	2.03°
$\mathbf{1 7}$	2.17	2.17
$\mathbf{2 1}$	$4.29(7.7 \mathrm{~Hz})$	$4.63(7.2 \mathrm{~Hz})$
$\mathbf{2 2}$	3.69	3.74
$\mathbf{2 3}$	3.60	3.69
$\mathbf{2 4}$	3.47	3.53
$\mathbf{2 5}$	3.42	3.40
$\mathbf{2 6}$	$3.68,3.63$	$3.63,3.61$
$\mathbf{3 1}$	$4.89(7.5 \mathrm{~Hz})$	$5.02(7.6 \mathrm{~Hz})$
$\mathbf{3 2}$	3.34	3.37
$\mathbf{3 3}$	3.49	3.55
$\mathbf{3 4}$	4.84	5.04
$\mathbf{3 5}$	3.36	3.49
$\mathbf{3 6}$	$3.49,3.46$	$3.53,3.42$
$\mathbf{4 , 5 , 6 , 7 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6}$		

$\mathbf{2 3 / 1}$	$4.74,4.70$	4.78
$\mathbf{2 4 / 1}$	$4.72,4.50$	$4.73,4.48$
$\mathbf{2 6 / 1}$	$4.55,4.48$	$4.51,4.44$
$\mathbf{3 2 / 1}$	$4.87,4.74$	$4.79,4.43$
$\mathbf{3 3 / 1}$	$4.74,4.59$	$4.68,4.50$
$\mathbf{3 6 / 1}$	$4.56,4.40$	$4.43,4.38$
$\mathbf{n} \mathbf{3}$	$7.27-7.08$	
$\mathbf{n} / \mathbf{4}$	$6.86-6.77$	
$\mathbf{n} / \mathbf{6}$	$3.79,3.78,3.77,3.76,3.75,3.71$	

Signale gekennzeichnet mit *, ${ }^{\circ}, \wedge$ sind nicht eindeutig einem der beiden Rotamere zugeordnet und können untereinander paarweise vertauscht sein.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Position	Rotamer A	Rotamer B	Position	Rotamer A	Rotamer B
$\mathbf{1}$	21.98	21.38	$\mathbf{2 5}$	75.29	74.93
$\mathbf{2}$	79.32	77.46	$\mathbf{2 6}$	69.26	69.32
$\mathbf{3}$	38.19	37.35	$\mathbf{3 1}$	102.18	101.31
$\mathbf{4}$	25.86^{*}	25.94^{*}	$\mathbf{3 2}$	82.66	83.35
$\mathbf{8}$	27.86^{\wedge}	27.34^{\wedge}	$\mathbf{3 3}$	81.45	82.70
$\mathbf{9}$	130.98°	130.43°	$\mathbf{3 4}$	71.68	70.05
$\mathbf{1 0}$	129.79°	130.01°	$\mathbf{3 5}$	73.92	73.66
$\mathbf{1 1}$	27.15^{\wedge}	26.94^{\wedge}	$\mathbf{3 6}$	70.24	69.04
$\mathbf{1 6}$	23.95^{*}	25.07^{*}	$\mathbf{2 3 / 1}$	75.21	75.72
$\mathbf{1 7}$	33.50	34.91	$\mathbf{2 4 / 1}$	74.77	74.74
$\mathbf{1 8}$	172.85	172.39	$\mathbf{2 6} / \mathbf{1}$	73.28	73.31
$\mathbf{2 1}$	103.04	102.17	$\mathbf{3 2 / 1}$	74.93	74.32
$\mathbf{2 2}$	77.16	81.42	$\mathbf{3 3} / \mathbf{1}$	74.79	74.93
$\mathbf{2 3}$	86.58	84.76	$\mathbf{3 6} / \mathbf{1}$	73.72	73.65
$\mathbf{2 4}$	78.54	78.12			

Signale gekennzeichnet mit *, ${ }^{\circ},{ }^{\wedge}$ sind nicht eindeutig einem der beiden Rotamere zugeordnet und können untereinander paarweise vertauscht sein.

Signale der C-Atome 5, 6, 7, 12, 13, 14, 15 sind nicht eindeutig einem der Rotamere zugeordnet: 31.36, 31.24, 30.49, 30.28, 30.08, 29.96, 29.25, 28.91, 28.56, 28.37, 28.31, 28.10, 27.58, 27.51.

Signale der $\mathbf{n} / \mathbf{2}$ Position von PMB sind nicht eindeutig einem der Rotamere zugeordnet: $131.43,131.38,131.25,131.24,131.12,131.11,131.05,130.99,130.98,130.97,130.92$, 130.90,

Signale der $\mathbf{n} / \mathbf{3}$ Position von PMB sind nicht eindeutig einem der Rotamere zugeordnet: 130.08, 129.97, 129.93, 129.84, 129.86, 129.70, 129.68, 129.65, 129.86, 129.70, 129.68, 129.65, 129.60. 129.58.

Signale der $\mathbf{n} / \mathbf{4}$ Position von PMB sind nicht eindeutig einem der Rotamere zugeordnet: 114.01(4), 113.99(2), 113.96, 113.95, 113.92, 113.89, 113.83, 113,75.

Signale der $\mathbf{n} / \mathbf{5}$ Position von PMB sind nicht eindeutig einem der Rotamere zugeordnet: 159.72, 159.71, 159.66, 159.65, 159.62, 159.61(2), 159.59, 159.50(2), 159.43, 159.38.

Signale der $\mathbf{n} / \mathbf{6}$ Position von PMB sind nicht eindeutig einem der Rotamere zugeordnet: 55.58(2), 55.55(7), 55.52, 55.51, 55.49.

${ }^{1} \mathbf{H}$ - und ${ }^{13} \mathbf{C}$-NMR-Daten der Verbindung 91

Alle vorgenommenen Zuordnungen sind eindeutig und stützen sich auf COSY, NOESY und ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\delta$-korrelierte NMR-Spektren (letztere für ${ }^{1} J(\mathrm{C}, \mathrm{H})$ und ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$ optimiert).

91

Spektrometer: Bruker DMX-600; Solvens: Pyridin-d ${ }_{5}$ bzw. MeOH-d ${ }_{4}$.

Position	$\delta{ }^{13} \mathbf{C}$ (ppm)		Position	$\delta^{1} \mathbf{H}$ (ppm)	
	Pyridin-d ${ }_{5}$	MeOH-d		Pyridin-d5	MeOH-d
1	21.51	21.77	1	1.34	1.25
2	78.59	80.32	2	3.85	3.79
3	37.87	28.60	3	1.82, 1.63	1.55, 1.47
4	25.60	26.40	4	1.43	1.54, 1.36
8	27.56*	27.88*	8	2.10°	2.06*
9	130.62°	131.25°	9	5.49*	5.33
10	130.03°	130.59°	10	5.44*	5.33
11	27.36*	28.34*	11	2.16°	2.02*
16	25.21	25.43	16	1.74, 1.58	1.68, 1.62
17	34.63	34.74	17	2.43, 2.35	2.39
18	173.02	174.76	18		
21	103.73	103.59	21	4.88 (7.7 Hz)	4.43 (7.7 Hz)
22	84.23	82.32	22	4.16	3.46
23	77.75	78.11	23	4.30	3.55
24	71.50	71.52	24	4.19	3.28
25	78.03	77.68	25	3.85	3.27
26	62.60	62.77	26	4.48, 4.32	3.84, 3.64
31	106.11	104.71	31	5.27 (7.7Hz)	4.67 (7.7)
32	77.57	76.57	32	4.09	3.29
33	75.12	75.22	33	4.30	3.57
34	71.81	72.23	34	5.82	4.80
35	76.39	76.32	35	3.93	3.43
36	61.61	62.53	36	4.23, 4.05	3.59, 3.52

Signale gekennzeichnet mit *, ${ }^{\circ}, \wedge$ sind nicht eindeutig zugeordnet und können untereinander paarweise vertauscht sein.

Signale der C-Atome 5, $\mathbf{6 , 7 , 1 2 , 1 3 , 1 4 , 1 5}$ sind nicht eindeutig einem der genannten CAtome zugeordnet: ${ }^{13} \mathrm{C}$ NMR (Pyridin $-\mathrm{d}_{5}$): 30.65, 30.45, 29.91, 29.33, 28.92, 28.68, 28.55. ${ }^{13} \mathrm{C}$ NMR (MeOH-d d_{4}): 31.64, 31.54, 31.13, 29.84, 29.39, 29.16, 28.93. ${ }^{1} \mathrm{H}$ NMR (Pyridin- d_{5}): 1.4-1.2; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{MeOH}-\mathrm{d}_{4}$): 1.47-1.32.

Kristallstruktur von (\boldsymbol{E})-24•HCI

Kristalldaten:

Formel:	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}$	
Molmasse:	$482.86 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Kristallgröße:	$0.67 \times 0.21 \times 0.08 \mathrm{~mm}$	
Raumgruppe:	$\mathbf{C 2} / \mathbf{c}(\mathbf{n o . ~ 1 5})$	
Z	8	
Kristallsystem:	monoklin	
Gitterkonstanten:	$\mathrm{a}=26.091(5) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=8.3912(17) \AA$	$\beta=104.99(3)$
	$\mathrm{c}=22.571(5) \AA$	$\gamma=90^{\circ}$
Volumen:	$4773.4(17) \AA^{3}$	
Dichte (berechnet):	$1.344 \mathrm{Mg} \cdot \mathrm{m}^{-3}$	

Meßbedingungen:

Wellenlänge:
$0.71073 \AA$
Temperatur:
100 K

Auswertung:

Gemessene Reflexe:
21146
Unabhängige Reflexe:
5173
R-Werte:
$\mathrm{R}_{1}=0.2004$
$w R^{2}=0.2337$

Bindungslängen (angegeben in \AA):

$\mathrm{CL}(2)-\mathrm{C}(30)$	$1.773(1)$	$\mathrm{CL}(3)-\mathrm{C}(40)$	$1.768(2)$
$\mathrm{O}(1)-\mathrm{C}(16)$	$1.340(6)$	$\mathrm{O}(1)-\mathrm{C}\left(16^{‘}\right)$	$1.443(7)$
$\mathrm{N}(1)-\mathrm{C}(10)$	$1.362(7)$	$\mathrm{N}(1)-\mathrm{C}(13)$	$1.402(7)$
$\mathrm{N}(2)-\mathrm{C}(15)$	$1.429(6)$	$\mathrm{N}(2)-\mathrm{C}(18)$	$1.363(7)$
$\mathrm{N}(3)-\mathrm{C}(19)$	$1.396(6)$	$\mathrm{N}(3)-\mathrm{C}(22)$	$1.375(7)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.516(8)$	$\mathrm{C}(1)-\mathrm{C}(22)$	$1.499(7)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.518(8)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.507(8)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.329(8)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.476(8)$

$\mathrm{C}(6)-\mathrm{C}(7)$	$1.547(8)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.527(8)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.388(7)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.401(7)$
$\mathrm{C}(14)-\mathrm{C}(5)$	$1.355(7)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.369(7)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.429(7)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.397(7)$

$\mathrm{C}(7)-\mathrm{C}(8)$	$1.523(7)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.505(7)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.396(7)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.420(7)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.435(7)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.414(7)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.384(7)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.383(7)$

Bindungswinkel (angegeben in ${ }^{\circ}$):

$\mathrm{C}\left(16^{\circ}\right)-\mathrm{O}(1)-\mathrm{C}(16)$	$115.2(4)$	$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(10)$	$108.7(4)$
$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(15)$	$108.6(4)$	$\mathrm{C}(22)-\mathrm{N}(3)-\mathrm{C}(19)$	$108.7(4)$
$\mathrm{C}(22)-\mathrm{C}(1)-\mathrm{C}(2)$	$115.3(4)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$113.3(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$116.0(5)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$127.7(5)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$126.7(5)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$113.7(5)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$112.0(4)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$113.3(4)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$113.5(4)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$131.8(5)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(1)$	$108.9(4)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1)$	$119.3(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$107.6(5)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$107.8(5)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$126.1(5)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{N}(1)$	$126.9(5)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(1)$	$107.0(4)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$131.3(5)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$127.3(5)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{N}(2)$	$104.9(4)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(2)$	$126.9(5)$	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$109.8(4)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{O}(1)$	$130.6(5)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(1)$	$119.5(4)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$106.9(5)$	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$127.0(5)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{N}(2)$	$123.0(4)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{N}(2)$	$109.7(4)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$129.3(5)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{N}(3)$	$107.5(4)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(3)$	$121.9(4)$	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$107.7(5)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$108.3(5)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(1)$	$130.2(5)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{N}(3)$	$107.8(4)$	$\mathrm{C}(1)-\mathrm{C}(22)-\mathrm{C}(3)$	$122.0(5)$
$\mathrm{CL}(2)^{*}-\mathrm{C}(30)-\mathrm{CL}(2)$	$110.6(4)$	$\mathrm{CL}(3)^{*}-\mathrm{C}(40)-\mathrm{CL}(3)$	$112.0(4)$

Kristallstruktur der Verbindung 68

Kristalldaten:

Formel:	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$	
Molmasse:	$372.49 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Kristallgröße:	$0.12 \times 0.08 \times 0.08 \mathrm{~mm}$	
Raumgruppe:	$\mathbf{P 2} \mathbf{1} / \mathbf{n}(\mathbf{n o . ~ 1 4)}$	
Z	4	
Kristallsystem:	monoklin	
Gitterkonstanten:	$\mathrm{a}=5.6390(7) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=41.094(4) \AA$	$\beta=107.811(4)$
	$\mathrm{c}=9.1933(5) \AA$	$\gamma=90^{\circ}$
Volumen:	$2028.2(4) \AA^{3}$	
Dichte (berechnet):	$1.220 \mathrm{Mg} \cdot \mathrm{m}^{-3}$	

Meßbedingungen:

Wellenlänge:
$0.71073 \AA$
Temperatur:
100 K

Auswertung:

Gemessene Reflexe: 5375
Unabhängige Reflexe:
3036
R-Werte:
$\mathrm{R}_{1}=0.1824$
$w R^{2}=0.1426$

Bindungslängen (angegeben in \AA):

$\mathrm{O}(1)-\mathrm{C}(24)$	$1.355(4)$	$\mathrm{O}(1)-\mathrm{C}(25)$	$1.439(4)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.408(4)$	$\mathrm{N}(1)-\mathrm{C}(22)$	$1.325(5)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.393(5)$	$\mathrm{N}(2)-\mathrm{C}(6)$	$1.353(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.364(5)$	$\mathrm{C}(1)-\mathrm{C}(24)$	$1.451(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.405(6)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.395(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.383(6)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.379(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.496(5)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.521(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.531(5)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.529(5)$

$\mathrm{C}(10)-\mathrm{C}(11)$	$1.482(6)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.467(6)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.516(5)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.381(6)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.385(6)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.383(5)$
$\mathrm{C}(20)-\mathrm{C}(22)$	$1.492(5)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.341(5)$

$\mathrm{C}(11)-\mathrm{C}(12)$	$1.297(8)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.536(6)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.504(6)$
$\mathrm{C}(16)-\mathrm{C}(21)$	$1.392(5)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.383(5)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.384(5)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.448(5)$

Bindungswinkel (angegeben in ${ }^{\circ}$):

$\mathrm{C}(25)-\mathrm{O}(1)-\mathrm{C}(24)$	$114.6(3)$	$\mathrm{C}(22)-\mathrm{N}(1)-\mathrm{C}(1)$	$104.1(3)$
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(3)$	$109.5(3)$	$\mathrm{C}(24)-\mathrm{C}(1)-\mathrm{C}(2)$	$126.7(3)$
$\mathrm{C}(24)-\mathrm{C}(1)-\mathrm{N}(1)$	$109.2(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$124.0(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$129.5(3)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$129.4(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(2)$	$106.2(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(2)$	$124.3(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$108.0(3)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$108.1(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$126.6(3)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(2)$	$125.3(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	$108.1(3)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$118.5(3)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$109.5(3)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$115.1(3)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$113.2(4)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$127.3(5)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$128.9(5)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$109.7(3)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$113.4(3)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$113.8(3)$
$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)$	$117.6(4)$	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(15)$	$120.3(3)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$122.1(3)$	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$121.6(3)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$119.3(4)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$120.7(4)$
$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{C}(21)$	$120.6(3)$	$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.7(3)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$118.7(3)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	$122.0(3)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(20)$	$124.2(3)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{N}(1)$	$113.9(3)$
$\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{N}(1)$	$121.9(3)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$104.9(3)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(1)$	$107.8(3)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{O}(1)$	$132.1(4)$
$\mathrm{C}(1)-\mathrm{C}(24)-\mathrm{O}(1)$	$120.1(3)$		

8 Literaturverzeichnis

[1] Anderson, A. W.; Merckling, M. G. (du Pont de Nemours \& Co.), US-A 2.721.189, 1995. CA: 1995, 50, 3008i.
[2] (a) Fürstner, A. Alkene Metathesis in Organic Synthesis, Springer, Heidelberg, 1998.
(b) Ivin. K. J.; Mol, J. C. Olefin Metathesis and Metathesis Polymerization, Academic Press, New York, 1997. Reviews zur Olefinmetathese: (c) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446. (d) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. (e) Koert, U. Nachr. Chem. Techn. Lab. 1995, 43, 809. (f) Schuster, M.; Blechert, S. Angew. Chem. 1997, 109, 2124. Angew. Chem. Int. Ed. Engl. 1997, 36, 2036. (g) Fürstner, A. Top. Catal. 1997, 4, 285. (h) Fürstner, A. Top. Organomet. Chem. 1998, 1, 37. (i) Fürstner, A. Angew. Chem. 2000, 112, 3140. Angew. Chem. Int. Ed. 2000, 39, 3012.
[3] (a) Grubbs, R. H.; Tumus, W. Science, 1989, 243, 907. (b) Schrock, R. R. Ring Opening Polymerization (Hrsg: Brunelle, D. J.), Hanser, München, 1993, 129-156. (c) Schrock, R. R. Pure Appl. Chem. 1994, 66, 1447.
(a) Lindmark-Hamberg, M.; Wagener, K. B. Macromolecules 1987, 20, 2949. (b) Forbes, M. D. E.; Patton, J. T.; Myers, T. L.; Smith. Jr., D. W.; Schulz, G. R.; Wagener, K. B. J. Am. Chem. Soc. 1992, 114, 10978. (c) Konzelman, J.; Wagener, K. B. Macromolecules 1996, 29, 7657.
[5] Fox, H. H.; Schrock, R. R. Organometallics 1994, 13, 635.
[6] Ref.: 2b, Seiten 1-49.
[7] Schrock, R. R. Acc. Chem. Res. 1979, 12, 98.
[8] (a) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O’Regan, M. J. Am. Chem. Soc. 1990, 112, 3875. (b) Oskam, J. H.; Fox, H. H.; Yap, K. B.; McConville, D. H.; O’Dell, R.; Lichtenstein, B. J.; Schrock, R. R. J. Organomet. Chem. 1993, 459, 185. (c) Feldman, J.; Murdzek, J. S.; Davis, W. M.; Schrock, R. R. Organometallics 1989, 8, 2260.
[9] (a) Nguyen, S.-T.; Johnson, L. K.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 3974.
(b) Nguyen, S.-T.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1993, 115, 9858.
(c) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem. 1995, 107, 2179. Angew. Chem. Int. Ed. Engl. 1995, 107, 2039. (d) Schwab, P.; Grubbs, R. H.;

Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100. (e) Belderrain, T. R.; Grubbs, R. H. Organometallics 1997, 16, 4001.
[10] Für die Synthese, siehe: (a) Harlow, K. J.; Hill, A. F.; Wilton-Ely, J. D. E. T. J. Chem. Soc. Dalton Trans. 1999, 285. (b) Jafarpour, L.; Schanz, H.-J.; Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 5416. Für die Anwendung in der RCM, siehe: (c) Fürstner, A.; Hill, A. F.; Liebl, M.; Wilton-Ely, J. D. E. T. Chem. Commun. 1999, 601. (d) Fürstner, A.; Thiel, O. R. J. Org. Chem. 2000, 65, 1738. (e) Fürstner, A.; Picquet, M.; Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1998, 1315. (f) Ackermann, L.; Fürstner, A.; Weskamp, T.; Kohl, F. J.; Herrmann, W. A. Tetrahedron Lett. 1999, 40, 4787.
[11] (a) Huang, J.; Stevens, E. D.; Nolan, S. P.; Peterson, J. L. J. Am. Chem. Soc. 1999, 121, 2674. (b) Huang, J.; Schanz, H.-J.; Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 5375.
[12] (a) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247. (b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953. (c) Chatterjee, A. K.; Grubbs, R. H. Org. Lett. 1999, 1, 1751. (d) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783.
[13] (a) Fürstner, A.; Thiel, O. R.; Ackermann, L.; Schanz, H.-J.; Nolan, S. P. J. Org. Chem. 2000, 65, 2204. (b) Weskamp, T.; Kohl, F. J.; Hieringer, W.; Gleich, D.; Herrmann, W. A. Angew. Chem. 1999, 111, 2573. Angew. Chem. Int. Ed. 1999, 111, 2416. (c) Weskamp, T.; Kohl, F. J.; Herrmann, W. A. J. Organomet. Chem. 1999, 582, 362.
[14] (a) Gerber, N. N. Tetrahedron Lett. 1970, 809. (b) Gerber, N. N. J. Antibiot. 1971, 24, 636. (c) Gerber, N. N. J. Heterocycl. Chem. 1973, 10, 925.
[15] (a) Gorin, P. A. J.; Spencer, J. F. T.; Tulloch, A. P. Can. J. Chem. 1961, 39, 846. (b) Tulloch, A. P.; Spencer, J. F. T.; Gorin, P. A. J Can. J. Chem. 1962, 40, 1326.
[16] Herisson, J.-L.; Chauvin, Y. Makromol. Chem. 1970, 141, 161.
[17] Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc., 1999, 21, 11108.
[18] Synthesen von Naturstoffen durch RCM in unserem Arbeitskreis, siehe: (a) Fürstner, A.; Müller, T. J. Am. Chem. Soc. 1999, 121, 7814. (b) Fürstner, A.; Müller, T. J. Org. Chem. 1998, 63, 424. (c) Fürstner, A.; Seidel, G.; Kindler, N. Tetrahedron 1999, 55, 8215 (d) Fürstner, A.; Kindler, N. Tetrahedron Lett. 1996, 37, 7005 (e) Fürstner, A.; Langemann, K. J. Am. Chem. Soc. 1997, 119, 9130. (f) Fürstner, A.;

Gastner, T.; Weintritt, H. J. Org. Chem. 1999, 64, 2361. (g) Fürstner, A.; Langemann, K. J. Org. Chem. 1996, 61, 8746. (h) Fürstner, A.; Langemann, K. J. Org. Chem. 1996, 61, 3942. (i) Fürstner, A.; Müller, T. Synlett 1997, 1010.
[19] Ausgewählte Totalsynthesen von Naturstoffen durch RCM in anderen Gruppen, siehe: (a) Nicolaou, K. C.; King, N. B.; He, Y. Top. Organomet. Chem. 1998, 1, 73. (b) Hoveyda, A. H. Top. Organomet. Chem. 1998, 1, 105. (c) Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 9606. (d) Bertinato, P.; Sorensen, E. J.; Meng, D.; Danishefsky, S. J. J. Org. Chem. 1996, 61, 8000. (e) Martin, S. F.; Humphrey, J. M.; Ali, A.; Hillier, M. C. J. Am. Chem. Soc. 1999, 121, 866. (f) Magnier, E.; Langlois, Y. Tetrahedron Lett. 1998, 837. (g) Kim, S. H.; Figueroa, I.; Fuchs, P. L. Tetrahedron Lett. 1997, 38, 2601. (h) Martin, S. F.; Humphrey, J. M.; Ali, A.; Hillier, M. C. J. Am. Chem. Soc. 1999, 121, 866. (i) Irie, O.; Samizu, K.; Henry, J. R.; Weinreb, S. M. J. Org. Chem. 1999, 64, 587. (j) Arakawa, K.; Eguchi, T.; Kakinuma, K. J. Org. Chem. 1998, 63, 4741. (k) May, S. A.; Grieco, P. A. Chem. Commun. 1998, 1597.
[20] Hayakawa, Y.; Kawakami, K.; Seto, H.; Furihata, K. Tetrahedron Lett. 1992, 33, 2701.
[21] (a) Fürstner, A.; Weintritt, H. J. Am. Chem. Soc. 1998, 120, 2817. (b) Weintritt, H. Dissertation Max-Planck-Institut für Kohlenforschung 1998.
[22] Lax, A. R.; Templeton, G. E.; Meyer, W. L. Phytopathology 1982, 74, 503.

Fürstner, A.; Thiel, O. R.; Kindler, N.; Bartkowska, B. J. Org. Chem. 2000, 65, 7990.
[25] Gaughran, E. R. L. Trans. N. Y. Acad. Sci. Ser. II, 1969, 31, 3.
[26] (a) Castro, A. J. Nature 1967, 213, 903. (b) Gerber, N. N. Crit. Rev. Microbiol. 1974, 3, 469 .
[27] Für die Synthesen von Prodigiosinen, siehe: (a) Hearn, W. R.; Elson, M. K.; Williams, R. H.; Medina-Castro, J. J. Org. Chem. 1970, 35, 142. (b) Wasserman, H. H.; Lombardo, L. J. Tetahedron Lett. 1989, 1725. (c) Rapoport, H.; Holden, K. G. J. Am. Chem. Soc. 1962, 84, 635. (d) Boger, D. L.; Patel, M. Tetrahedron Lett. 1987, 28, 2499. (e) Boger, D. L.; Patel, M. J. Org. Chem. 1988, 53, 1405. (f) Wasserman, H. H.; Rodgers, G. C.; Keith, D. D. J. Am. Chem. Soc. 1969, 91, 1263. (g) Wasserman, H. H.; Keith, D. D.; Nadelson, J. J. Am. Chem. Soc. 1969, 91, 1264. (h)

Wasserman, H. H.; Keith, D. D.; Rodgers, G. C.. Tetrahedron 1976, 32, 1855. (i) Wasserman, H. H.; Gosselink, E.; Keith, D. D.; Nadelson, J.; Sykes, R. J. Tetrahedron 1976, 32, 1863. (j) Wasserman, H. H.; Keith, D. D.; Nadelson, J. Tetrahedron 1976, 32, 1867.
[28] Synthese und Bestimmung der biologischen Aktivität von Prodigiosin-Analoga, siehe: (a) Brown, D.; Griffiths, D.; Rider, M. E.; Smith, R. C. J. Chem. Soc. Perkin Trans. 1 1986, 455. (b) Blake, A. J.; Hunter, G. A.; McNab, H. J. Chem. Soc. Chem. Commun. 1990, 734. (c) Berner, H.; Schulz, G.; Reinshagen, H. Monatsh. Chem. 1977, 108, 233. (d) Berner, H.; Schulz, G.; Reinshagen, H. Monatsh. Chem. 1978, 109, 137. (e) Berner, H.; Schulz, G.; Reinshagen, H. Monatsh. Chem. 1977, 108, 285. (f) Berner, H.; Schulz, G.; Fischer, G.; Reinshagen, H. Monatsh. Chem. 1978, 109, 557. (g) Castro, A. J.; Gale, G. R.; Means, G. E.; Tertzakian, G. J. Med. Chem. 1967, 10, 29. (h) D’Auria, M.; De Luca, E.; Mauriello, G.; Racioppi, R. Synth. Comтии. 1999, 29, 35.
[29] (a) Lin, J. Immunology Today 1993, 14, 290; (b) Nakamura, A.; Nagai, K.; Ando, K.; Tamura, G. J. Antibiot. 1986, 39, 1155. (c) Tsuji, R. F.; Yamamoto, M.; Nakamura, A.; Kataoka, T.; Magae, J.; Nagai, K.; Yamasaki, M. J. Antibiot. 1990, 43, 1293. (d) Kataoka, T.; Magae, J.; Nariuchi, H.; Yamasaki, M.; Nagai, K. J. Antibiot. 1992, 45, 1303. (e) Tsuji, R. F.; Magae, J.; Yamashita, M.; Nagai, K.; Yamasaki, M. J. Antibiot. 1992, 45, 1295. (f) Kataoka, T.; Magae, J.; Kasamo, K.; Yamanishi, H.; Endo, A.; Yamasaki, M.; Nagai, K. J. Antibiot. 1992, 45, 1618. (g) Kataoka, T.; Muroi, M.; Ohkuma, S.; Waritani, T.; Magae, J.; Takatsuki, A.; Kondo, S.; Yamasaki, M.; Nagai, K. FEBS Lett. 1995, 359, 53. (h) Lee, M-H; Yamashita, M.; Tsuji, R. F.; Yamasaki, M.; Kataoka, T.; Magae, J.; Nagai, K. J. Antibiot. 1998, 51, 92. (i) Han, S. B.; Kim, H. M.; Kim, Y. H.; Lee, C. W.; Jang, E.-S.; Son, K. H.; Kim, S. U.; Kim, Y. K. Int. J. Immunopharmacology 1998, 20, 1. (j) Togashi, K.; Kataoka, T.; Nagai, K. Immunol. Lett. 1997, 55, 139. (k) Nakamura, A.; Magae, J.; Tsuji, R. F., Yamasaki, M.; Nagai, K. Transplantation 1989, 47, 1013. (1) Nakamura, A.; Nagai, K.; Ando, K.; Tamura, G. J. Antibiot. 1986, 39, 1155. (m) Lee, M-H.; Kataoka, T.; Magae, J.; Nagai, K. Biosci. Biotechol. Biochem. 1995, 59, 1417. (n) Lee, M-H.; Kataoka, T.; Honjo, N.; Magae, J.; Nagai, K. Immunol. 2000, 99, 243.
[30] Songia, S.; Mortellaro, A.; Taverna, S.; Fornasiero, C.; Schreiber, E. A.; Erba, E.; Colotta, F.; Mantovani, A.; Isetta, A.-M.; Golay, J. J. Immunol. 1997, 158, 3987.
[31] Rosen, M. K.; Schreiber, S. L. Angew. Chem. 1992, 104, 413. Angew. Chem. Int. Ed. Engl. 1992, 31, 384.
[32] D'Alessio, R.; Bargiotti, A.; Carlini, O.; Colotta, F.; Ferrari, M.; Gnocchi, P.; Isetta, A.; Mongelli, N.; Motta, P.; Rossi, A.; Rossi, M.; Tiboll, M.; Vanotti, E. J. Med. Chem. 2000, 43, 2557.
[33] Sudbeck, E. A.; Uckun, F. M. IDrugs, 1999, 2, 1026.
[34] Ferrari, M.; Gnocchi, P.; Fornasiero, M. C.; Colotta, F.; D'Alessio, R.; Isetta, A. M. (Pharmacia \& Upjohn), WO 98/11894 A1 (1998).
[35] (a) Rizzo, V.; Morelli, A.; Pinciroli, V.; Sciangula, D.; D’Alessio, R. J. Pharm. Sci. 1999, 88, 73. (b) Mortellaro, A.; Songia, S.; Gnocchi, P.; Ferrari, M.; Fornasiero, C.; D'Alessio, R.; Isetta, A.; Colotta, F.; Golay, J. J. Immunol. 1999, 162, 7102.
[36] Fürstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305.
[37] D'Alessio, R.; Rossi, A. Synlett 1996, 513.
[38] Review, siehe: (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. Für Anwendung in unserem Arbeitskreis, siehe: (b) Fürstner, A.; Seidel, G. Tetrahedron 1995, 51, 11165. (c) Fürstner, A.; Nikolakis, K. Liebigs Ann. 1996, 2107.
[39] Für die Borylierung von N-Boc-Pyrrolen, siehe: (a) Martina, S.; Enkelmann, V., Wegner, G.; Schlüter, A.-D. Synthesis 1991, 613. Für die $\operatorname{Pd}(0)$-katalysierte Kreuzkupplung-Reaktionen von (N-Boc-pyrrol-2-yl)-Boronsäuren, siehe: (b) Johnson, C. N.; Stemp, G.; Anand, N., Stephen, S. C.; Gallagher, T. Synlett 1998, 1025.
[40] Bowen, D. M. Org. Synth. 1955, II, 553.
[41] Nicolaou, K. C.; Claremon, D. A.; Papahatjis, D. P. Tetrahedron Lett. 1981, 22, 4647.
[42] Greenhouse, R.; Ramirez, C.; Muchowski, J. M. J. Org. Chem. 1985, 50, 2961.
[43] Silverstein, R. M.; Ryskiewicz, R. R.; Willard, C. Org. Synth. 1956, 36, 74.
[44] Grehn, L.; Ragnarsson, U. Angew. Chem. 1984, 96, 291. Angew. Chem. Int. Ed. Engl. 1984, 23, 296.
[45] Review, siehe: (a) Stille, J. K. Angew. Chem. 1986, 98, 504. Angew. Chem. Int. Ed. Engl. 1986, 25, 508. Für Palladium-katalysierte Kreuzkupplungen von Triflaten mit Organozinn-Verbindungen, siehe: (b) Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1987, 109, 5478. (c) Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033. (d) Farina, V.; Roth, G. P. Tetrahedron Lett. 1991, 32, 4243.
[46] (a) Negishi, E-i., King, A. O. Okukado, N. J. Org. Chem, 1977, 42, 1821. (b) Minato, A.; Tamao, K.; Hayashi, T.; Suzuki, K.; Kumada, M. Tetrahedron Lett. 1981, 22, 5319. (c) Filippini, L.; Gusmeroli, M.; Riva, R. Tetrahedron Lett. 1992, 33, 1755.
[47] Fürstner, A.; Ackermann, L. Chem. Commun. 1999, 95.
[48] Falk, H.; Streßler, G.; Müller, N. Monatsh. Chem. 1988, 119, 505.
[49] McKeown, N. B.; Chambrier, I.; Cook, M. J. J. Chem. Soc. Perkin Trans. 1, 1990, 1169-1177.
[50] Ramanathan, V.; Levine, R. J. Org. Chem, 1962, 27, 1667.
(a) Christofoli, W. A.; Keay, B. A. Tetrahedron Lett. 1991, 32, 5881. (b) Maddaford, S. P.; Keay, B. A. J. Org. Chem. 1994, 59, 6501 (c) Kobayashi, Y.; Ikeda, E. J. Chem. Soc. Chem. Commun. 1994, 1789.
[52] Baldwin, J. E.; Bischoff, L.; Claridge, T. D. W.; Heupel, F. A.; Spring, D. R.; Whitehead, R.C. Tetrahedron, 1997, 53, 2271.
[53] Nunomoto, S.; Kawakami, Y.; Yamashita, Y. J. Org. Chem, 1983, 48, 1912.
[54] Für die Reaktionsbedingungen, siehe: Brümmer, O.; Rückert, A.; Blechert, S. Chem. Eur. J. 1997, 3, 441.
[55] Diver, S. T.; Schreiber, S. L. J. Am. Chem. Soc. 1997, 119, 5106.
[56] Für andere Thiophen-beinhaltende Prodigiosinanaloga, siehe: (a) Blake, A. J.; Hunter, G. A.; McNab, H. J. Chem. Soc. Chem. Commun. 1990, 734. (b) D'Auria, M.; De Luca, E.; Mauriello, G.; Racioppi, R. Synth. Commun. 1999, 29, 35.
[57] (a) Shon, Y.-S.; Lee, T. R. Tetrahedron Lett. 1997, 38, 1283. (b) Armstrong, S. K.; Christie, B. A. Tetrahedron Lett. 1996, 37, 9373.
[58] Riede, U-N.; Schaefer, H-E. Allgemeine und spezielle Pathologie, Thieme, Stuttgart, 1999.
[59] (a) Kataoka, T.; Takaku, K.; Magae, J.; Shinohara, N.; Takayama, H.; Kondo, S.; Nagai, K. J. Immunol. 1994, 153, 3938. (b) Kataoka, T.; Shinohara, N.; Takayama, H.; Takaku, K.; Kondo, S.; Yonehara, S.; Nagai, K. J. Immunol. 1996, 156, 3678. (c) Kataoka, T.; Sato, M.; Kondo, S.; Nagai, K. Biosci. Biotech. Biochem. 1996, 60, 1729. (d) Kataoka, T.; Togashi, K.; Takayama, H.; Takaku, K.; Nagai, K. Immunol. 1997, 91, 493. (e) Togashi, K.; Kataoka, T.; Nagai, K. Cytotechnol. 1997, 25, 127.
[60] (a) Sato, T.; Konno, H.; Tanaka, Y.; Kataoka, T.; Nagai, K.; Wasserman, H. H.; Ohkuma, S. J. Biol. Chem. 1998, 273, 21455. (b) Ohkuma, S.; Sato, T.; Okamato, M.; Matsuya, H.; Arai, K.; Kataoka, T.; Nagai, K. Biochem. J. 1998, 334, 731.
[61] Bowman, E. J.; Siebers, A.; Altendorf, K. Proc. Natl. Acad. Sci. USA 1988, 85, 7972.
[62] Dröse, S.; Bindseil, K. U.; Bowman, E. J.; Siebers, A.; Zeeck, A.; Altendorf, K. Biochemistry. 1993, 32, 3902.
[63] Melvin, M. S.; Ferguson, D. C.; Lindquist, N.; Manderville, R. A. J. Org. Chem. 1999, 334, 731.
[64] Wilson, W. D.; Tanious, F. A.; Ding, D.; Kumar, A.; Boykin, D.; Colson, P.; Houssier, C.; Bailly, C. J. Am. Chem. Soc. 1998, 120, 10310.
[65] (a) Manderville, R. A.; Ellena, J. F.; Hecht, S. M. J. Am. Chem. Soc. 1995, 117, 7891. (b) Wu, W.; Vanderwall, D. E.; Liu, S. M.; Tang, X.-J.; Turner, C. J.; Kozarich, J. W.; Stubbe, J. J. Am. Chem. Soc. 1996, 118, 10843. (c) Sucheck, S. J.; Ellena, J. F.; Hecht, S. M. J. Am. Chem. Soc. 1998, 120, 7450. (d) Cortes, J. C.; Sugiyama, H.; Ikudome, K.; Saito, I.; Wang, A. H.-J. Biochemistry 1997, 36, 9995.
[66] Melvin, M. S.; Tomlinson, J. T.; Saluta, G. R.; Kucera, G. L.; Lindquist, N.; Manderville, R. A. J. Am. Chem. Soc. 2000, 122, 6333.
[67] (a) Sanger, F.; Air, G. M.; Barrell, B. G.; Brown, N. L.; Coulson, A. R.; Fiddes, C. A.; Hutchinson, C. A.; Slocombe, P. M.; Smith, M. Nature 1977, 265, 687. (b) Sanger, F.; Coulson, A. R.; Friedmann, T.; Air, G. M.; Barrell, B. G.; Brown, N. L.; Fiddes, C. A.; Hutchinson, C. A. III.; Slocombe, P. M.; Smith, M. J. Mol. Biol. 1978, 125, 225.
[68] Hardy, K. Bacterial Plasmids, Van Nostrand Reinhold, 2. Aufl., Wokingham, 1986.
[69] (a) Villemin, D.; Cadiot, P. Tetrahedron Lett. 1982, 23, 5139. (b) Kaneka, N.; Hikichi, K.; Asaka, S. I.; Uemura, M.; Mori, M. Chem. Lett. 1995, 1055. (c) Pschirer, N. G.; Bunz, U. H. F. Tetrahedron Lett. 1999, 40, 2481.
[70] (a) Krouse, S. A.; Schrock, R. R. Macromolecules 1989, 22, 2569. (b) Zhang, X.-P.; Bazan, G. C. Macromolecules 1994, 27, 4627. (c) Weiss, K.; Michel, A.; Auth, E.M.; Bunz, U. H. F.; Mangel, T.; Müllen, K. Angew. Chem. 1997, 109, 522. Angew. Chem. Int. Ed. Engl. 1997, 36, 506.
[71] Fürstner, A.; Seidel, G. Angew. Chem. 1998, 110, 1758. Angew. Chem. Int. Ed. 1998, 37, 1734.
[72] (a) Schrock, R. R.; Clark, D. N.; Sancho, J.; Wengrovius, J. H.; Rocklage, S. M.; Pedersen, S. F Organometallics 1982, 1, 1645. (b) Freudenberger, J. H.; Schrock, R. R.; Churchill, M. R.; Rheingold, A. L.; Ziller, J. W. Organometallics 1984, 3, 1563. (c) Schrock, R. R. Polyhedron 1995, 14, 3177.
[73] (a) Katz, T. J.; McGinnis, J. J. Am. Chem. Soc. 1975, 97, 1592. (b) Wengrovius, J. H.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 3932.
[74] Zur Synthese von 83, siehe: (a) Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C.; Protasiewicz, J. D. J. Am. Chem. Soc. 1995, 117, 4999. (b) Cummins, C. C. Chem. Commun. 1988, 1777.
[75] Fürstner, A.; Mathes, C.; Lehmann, C. W. J. Am. Chem. Soc. 1999, 121, 9453.
[76] (a) Fürstner, A.; Grela, K. Angew. Chem. 2000, 112, 1292. Angew. Chem. Int. Ed. 2000, 39, 1234. (b) Fürstner, A.; Grela, K.; Mathes, C.; Lehmann, C. W. J. Am. Chem. Soc. 2000, 122, 11799.
[77] Fürstner, A.; Seidel, G. J. Organomet. Chem. 2000, 606, 75.
[78] Fürstner, A.; Rumbo, A. J.Org. Chem. 2000, 65, 2608.
[79] Fürstner, A.; Dierkes, T. Org. Lett. 2000, 2, 2463.
[80] Fürstner, A.; Langemann, K. Synthesis 1997, 792.
[81] Marchal, R.; Lemal, J.; Sulzer, C. U.S. Patent 5,616,479, 1997.
[82] Review, siehe: Karanth, N. G. K.; Deo. P.G.; Veenanadig, N. K. Curr. Sci. 1999, 77, 116.
[83] (a) Asmer, H-J.; Lang, S.; Wagner, F.; Wray, V. J. Am. Oil. Chem. Soc. 1988, 65, 1460. (b) Otto, R. T.; Daniel, H.-J.; Pekin, G.; Müller-Decker, K.; Fürstenberger, G.; Reuss, M.; Syldatk, C. Appl. Microbiol. Biotechnol. 1999, 52, 495. (c) Zhou, Q-H.; Kosaric, N. J. Am. Oil. Chem. Soc. 1995, 72, 67. (d) Daniel, H.-J.; Otto, R. T.; Binder, M.; Reuss, M.; Syldatk, C. Appl. Microbiol. Biotechnol. 1999, 51, 40. (e) Inoue, S.; Ito, S. Biotechnol. Lett. 1982, 4, 3. (f) Krivobok, S.; Guiraud, P.; SeigleMurandi, F.; Steiman, R. J. Agric. Food Chem. 1994, 42, 1247. (g) Cooper, D. G.; Paddock, D. A. Appl. Environ. Microbiol. 1984, 47, 173.
[84] (a) Davilla, A. M.; Marchal, R.; Monin. N.; Vandecasteele, J. P. J. Chromatogr. 1993, 648, 139. (b) de Koster, C. G.; Heerma, W.; Pepermans, H. A. M.; Groenewegen, A.; Peters, H.; Haverkamp, J. Anal. Biochem. 1995, 230,135.
[85] Sophorose ist ein Trivialname für das Disaccharid 2-O-(β-D-Glucopyranosyl)-Dglucopyranose.
[86] Für NMR-Studien, siehe: Tulloch, A. P.; Hill, A.; Spencer, J. F. T. Can. J. Chem. 1968, 46, 3337.
[87] Isoda, H.; Kitamoto, D.; Shinmoto, H.; Matsumara, M.; Nakahara, T. Biosci. Biotechn. Biochem. 1997, 61, 609.
[88] Li, Y.-T.; Li, S.-C. Adv. Carbohydr. Chem. Biochem. 1982, 40, 235.
[89] Versuchte Enzym-katalysierte Makrolatonisierung von Säure 90 führt nicht zum gewünschten Lacton 91, siehe: Bisht, K. S.; Gross, R. A.; Kaplan, D. L. J.Org. Chem. 1999, 64, 780.
[90] Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, Wiley, New York, 1991.
[91] (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936. (b) Furrow, M. E.; Schaus, S. E.; Jacobsen, E. N. J.Org. Chem. 1998, 63, 6776.
[92] (a) Halcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6661. Review, siehe: (b) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem. 1996, 108, 1482. Angew. Chem. Int. Ed. Engl. 1996, 35, 1380.
[93] Adam, W.; Bialas, J.; Hadjiarapoglou, L. Chem. Ber. 1991, 124, 2377.
[94] Für eine Sequenz via Orthoester in der Synthese von Caloporosid, siehe: (a) Fürstner, A.; Konetzki, I. J.Org. Chem. 1998, 63, 3072. (b) Fürstner, A.; Konetzki, I. Tetrahedron 1996, 52, 15071.
[95] Barili, P. L.; Berti, G.; Catelani, G.; Cini, C.; D'Andrea, F.; Mastrorilli, E. Carbohydr. Res. 1955, 278, 43.
[96] (a) Mani, N. S.; Kanakamma, P.P. Synth. Commun. 1992, 22, 2175. (b) Spencer, R. P.; Cavallaro, C. L.; Schwartz, J. J.Org. Chem. 1999, 64, 3987.
[97] Darstellung des Reagenzes, siehe: (a) Haveaux, B.; Dekoker, A.; Rens, M.; Sidani, A. R.; Toye, J.; Ghosez, L. Org. Synth. 1979, 59, 26. Für Anwendung, siehe: (b) Ernst, B.; Winkler, T. Tetrahedron Lett. 1989, 30, 3081.
[98] (a) Koenigs, W.; Knorr, E. Chem. Ber. 1901, 34, 957. Reviews, siehe: (b) Paulsen, H. Angew. Chem. 1982, 94, 184. Angew. Chem. Int. Ed. Engl. 1982, 21, 155. (c) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503. (d) Paulsen, H. Angew. Chem. 1990, 102, 851. Angew. Chem. Int. Ed. Engl. 1990, 102, 823. (e) Sinay, P. Pure Appl. Chem. 1991, 63, 539.
[99] Capon, B.; McManus, S. P. Neighbouring Group Participation, Plenum Press, New York, 1976.
[100] Hannessian, S.; Banoub, J. Carbohydr. Res. 1977, 53, C13.
[101] Beetz, T.; Kock-van Dalen, A. C.; van Bekkum, H.; van Boeckel, C. A. A. Recl. Trav. Chim. Pays-Bas 1987, 106, 596.
[102] (a) Johanson, R.; Samuelson, B. J. Chem. Soc., Perkin Trans. 1 1984, 2371. (b) Garreg, P. J. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.: Marcel Dekker, New York, 1997; S. 53.
[103] Totalsynthese von Cyclononylprodigiosin, siehe: Fürstner, A.; Grabowski, J.; Lehmann, C. W. J. Org. Chem. 1999, 64, 8275.
[104] Synthese von Prodigiosinanaloga und biologische Untersuchungen, siehe: Fürstner, A.; Grabowski, J.; Lehmann, C. W.; Kataoka, T.; Nagai, K. ChemBioChem 2001, 2, 60.
[105] Totalsynthese von Sophorolipid, siehe: Fürstner, A.; Radkowski, K.; Grabowski, J.; Wirtz, C.; Mynott, R. J. Org. Chem. 2000, 65, 8758.
[106] Desmodur ${ }^{\circledR}$ ist ein Naphthyldiisocyanat der BAYER AG.
[107] Jork, H.; Funk, W.; Fischer, W.; Wimmer, H. Dünnschicht-Chromatographie, VCH Verlagsgesellschaft mbH, Weinheim, 1989.
[108] Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
[109] (a) Juaristi, E.; Jimenez-Vazquez, H. A. J. Org. Chem. 1991, 56, 1623. (b) Giesbaum, K.; Krieger-Beck, P.; Beck, J. Chem. Ber. 1991, 124, 391.

[^0]: Abb. 37: Bakterienzelle.

[^1]: Abb. 52: Darstellung des Disaccharid-Lactons 93 via Ringschluß-Alkenmetathese in der Totalsynthese von Tricolorin A. ${ }^{18 a, b}$

[^2]: Abb. 55: Glycosylierung nach der Glycal-Epoxid-Methode von DANISHEFSKY.

