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Abstract

In this paper optimal experimental designs for inverse quadratic regression models
are determined. We consider two different parameterizations of the model and inves-
tigate local optimal designs with respect to the c-, D- and E-criteria, which reflect
various aspects of the precision of the maximum likelihood estimator for the parame-
ters in inverse quadratic regression models. In particular it is demonstrated that for
a sufficiently large design space geometric allocation rules are optimal with respect
to many optimality criteria. Moreover, in numerous cases the designs with respect
to the different criteria are supported at the same points. Finally, the efficiencies of
different optimal designs with respect to various optimality criteria are studied, and
the efficiency of some commonly used designs are investigated.

Keywords and Phrases: rational regression models, optimal designs, Chebyshev systems,

E−, c−, D−optimality

1. Introduction. Inverse polynomials define a flexible family of nonlinear regression mod-

els which are used to describe the relationship between a response, say Y , and a univariate

predictor, say u [see eg. Nelder (1966)]. The model is defined by the expected response

E(Y |u) =
u

Pn(u, θ)
, u ≥ 0, (1.1)
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where Pn(u, θ) is a polynomial of degree n with coefficients θ0, . . . , θn defining the shape of

the curve. Nelder (1966) compared the properties of inverse and ordinary polynomial models

for analyzing data. In contrast to ordinary polynomials inverse polynomial regression models

are bounded and can be used to describe a saturation effect, in which case the response does

not exceed a finite amount. Similarly, a toxic effect can be produced, in which case the

response eventually falls to zero.

An important class of inverse polynomial models are defined by inverse quadratic re-

gression models, which correspond to the case n = 2 in (1.1). These models have numer-

ous applications, in particular in chemistry and agriculture [see Ratkowski (1990), Sparrow

(1979a, 1979b), Nelder (1960), Serchand, McNew, Kellogg and Johnson (1995) and Landete-

Castillejos and Gallego (2000) among others]. For example, Sparrow (1979a, 1979b) ana-

lyzed data from several series of experiments designed to study the relationship between crop

yield and fertilizer input. He concluded that among several competing models the inverse

quadratic model produced the best fit to data obtained from yields of barley and grass crops.

Similarly, Serchand et al. (1995) argued that inverse polynomials can produce a dramatically

steep rise and might realistically describe lactation curves.

While much attention has been paid to the construction of various optimal designs for

the inverse linear or Michaelis Menten model [see Song and Wong (1998), Lopez-Fidalgo and

Wong (2002), Dette, Melas and Pepelyshev (2003), Dette and Biedermann (2003), among

many others], optimal designs for the inverse quadratic regression model have not been stud-

ied in so much detail. Cobby, Chapman and Pike (1986) determined local D-optimal designs

numerically and Haines (1992) provided some analytical results for D-optimal designs in

the inverse quadratic regression model. In particular, in these references it is demonstrated

that geometric allocation rules are D-optimal. The present paper is devoted to a more sys-

tematic study of local optimal designs for inverse quadratic models. We consider the c-,

D-, D1- and E-optimality criterion and determine local optimal designs for two different

parameterizations of the inverse quadratic regression model. In Section 2 we introduce two

parameterizations of the inverse quadratic regression model and describe some basic facts of

approximate design theory. In Section 3 we discuss several c-optimal designs. In particular

D1-optimal designs are determined, which are of particular importance if discrimination be-

tween an inverse linear and inverse quadratic model is one of the interests of the experiment.

As a further special case of the c-optimality criterion we determine optimal extrapolation

designs. Section 4 deals with the local D-optimality and E-optimality criterion. It is shown

that for all criteria under consideration geometric designs are local optimal, whenever the

design space is sufficiently large. We also determine the structure of the local optimal de-

signs in the case of a bounded design space. These findings extend the observations made

by Cobby, Chapman and Pike (1986) and Haines (1992) for the D-optimality criterion to
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other optimality criteria, different design spaces and a slightly different inverse quadratic

regression model.

2. Preliminaries. We consider two parameterizations of the inverse quadratic regression

model

E(Y |u) = η(u, θ) , (2.1)

where θ = (θ0, θ1, θ2)
T denotes the vector of unknown parameters and the expected response

is given by

η1(u, θ) =
u

θ0 + θ1u + θ2u2
(2.2a)

or

η2(u, θ) =
θ0u

θ1 + u + θ2u2
(2.2b)

The explanatory variable varies in the interval U = [s, t], where s ≥ 0 and 0 < s < t < ∞,

or in the unbounded set U = [s,∞) with s ≥ 0. The assumptions regarding the parameters

vary with the different parameterizations and should assure, that the numerator in (2.2a)

and (2.2b) is positive on U . Under such assumptions the regression functions have no points

of discontinuity. Moreover, both functions are strictly increasing to a maximum of size

(θ1 +2
√

θ0θ2)
−1 at the point umax1 =

√
θ0/θ2 for parameterization (2.2a) and to a maximum

of size θ0(1+
√

θ1θ2)
−1 at the point umax2 =

√
θ1/θ2 for parameterization (2.2b) and then the

functions are strictly decreasing to a zero asymptote. A sufficient condition for the positivity

of the numerator is θ0, θ2 > 0, | θ1 | ≤ 2
√

θ0θ2 for model (2.2a) and θ0, θ1, θ2 > 0, 2
√

θ1θ2 >

1 for model (2.2b), respectively. We assume that at each u ∈ U a normally distributed

observation is available with mean η(u, θ) and variance σ2 > 0, where the function η is

either η1 or η2, and different observations are assumed to be independent. An experimental

design ξ is a probability measure with finite support defined on the set U [see Kiefer (1974)].

The information matrix of an experimental design ξ is defined by

M(ξ, θ) =

∫

U
f(u, θ)fT (u, θ)dξ(u), (2.3)

where

f(u, θ) =
∂

∂θ
η(u, θ) (2.4)

denotes the gradient of the expected response with respect to the parameter θ. For the two

parameterizations (2.2a) and (2.2b) the vectors of the partial derivatives are given by

fpar1(u, θ) =
−u

(θ0 + θ1u + θ2u2)2

(
1, u, u2

)T
(2.5)
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and

fpar2(u, θ) =
u

θ1 + u + θ2u2

(
1,− θ0

θ1 + u + θ2u2
,− θ0u

2

θ1 + u + θ2u2

)T

, (2.6)

respectively.

If N observations can be made and the design ξ concentrates mass wi at the points ui,

i = 1, . . . , r, the quantities wiN are rounded to integers such that
∑r

j=1 ni = N [see

Pukelsheim and Rieder (1992)], and the experimenter takes ni observations at each point ui,

i = 1, . . . , r. If the sample size N converges to infinity, then (under appropriate assumptions

of regularity) the covariance matrix of the maximum likelihood estimator for the parameter

θ is approximately proportional to the matrix σ2

N
M−1(ξ, θ), provided that the inverse of the

information matrix exists [see Jennrich (1969)]. An optimal experimental design maximizes

or minimizes an appropriate functional of the information matrix or its inverse, and there are

numerous optimality criteria which can be used to discriminate between competing designs

[see Silvey (1980) or Pukelsheim (1993)]. In this paper we will investigate the D-optimality

criterion, which maximizes the determinant of the inverse of the information matrix with

respect to the design ξ, the c-optimality criterion, which minimizes the variance of the max-

imum likelihood estimate for the linear combination cT θ and the E-optimality criterion,

which maximizes the minimum eigenvalue of the information matrix M(ξ, θ).

3. Local c-optimal designs. Recall that for a given vector c ∈ R3 a design ξc is called

c-optimal if the linear combination cT θ is estimable by the design ξc, that is Range(c) ⊂
Range(M(ξc, θ)), and the design ξc minimizes

cT M−(ξ, θ)c (3.1)

among all designs for which cT θ is estimable, where M−(ξ, θ) denotes a generalized inverse

of the matrix M(ξ, θ). It is shown in Pukelsheim (1993) that the expression (3.1) does not

depend on the specific choice of the generalized inverse. Moreover, a design ξc is c-optimal

if and only if there exists a generalized inverse G of M(ξc, θ) such that the inequality

(f ′(u, θ)Gc)2 ≤ c′M−(ξc, θ)c (3.2)

holds for all u ∈ U [see Pukelsheim (1993)]. A further important tool to determine c-optimal

designs is the theory of Chebyshev systems, which will be briefly described here for the sake

of completeness.

Following Karlin and Studden (1966) a set of functions {g0, . . . , gn} defined on the set U
is called Chebychev-system, if every linear combination

∑n
i=0 aigi(x) with

∑n
i=0 a2

i > 0 has

at most n distinct roots on U . This property is equivalent to the fact that

det(g(u0), . . . , g(un)) 6= 0 (3.3)
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holds for all u0, . . . , un ∈ U with ui 6= uj (i 6= j), where g(u) = (g0(u), . . . , gn(u))T denotes the

vector of all functions [see Karlin and Studden (1966)]. If the functions g0, . . . , gn constitute

a Chebyshev-system on the set U , then there exists a unique “polynomial”

φ(u) :=
n∑

i=0

α∗i gi(u) (α∗0, . . . , α
∗
n ∈ R) (3.4)

with the following properties

(i) | φ(u) | ≤ 1 ∀t ∈ U
(ii) There exist n + 1 points s0 < · · · < sn such that φ(si) = (−1)n−i for i = 0, . . . , n.

The function φ(u) is called the Chebychev-polynomial, and the points s0, . . . , sn are called

Chebychev-points, which are not necessarily unique. Kiefer and Wolfowitz (1965) defined

the set A∗ ⊂ Rn+1 as the set of all vectors c ∈ Rn+1 satisfying

∣∣∣∣∣∣∣∣∣

g0(x1) . . . g0(xn) c0

g1(x1) . . . g1(xn) c1

...
...

...

gn(x1) . . . gn(xn) cn

∣∣∣∣∣∣∣∣∣
6= 0, (3.5)

whenever the points x1, . . . , xn ∈ U are distinct. They showed that for each c ∈ A∗ the

c-optimal design, which minimizes

cT

(∫

U
g(u)gT (u)dξ(u)

)−1

c

among all designs on U , is supported by the entire set of the Chebychev-points s0, . . . , sn.

The corresponding optimal weights w∗
0, . . . , w

∗
n can then easily be found using Lagrange

multipliers and are given by

w∗
i =

|vi|∑n
j=0 |vj| i = 0, . . . , n, (3.6)

where the vector v is defined by

v = (XXT )−1Xc,

and the (n + 1) × (n + 1)-matrix X is given by X = (gi(sj))
n
i,j=0 [see also Pukelsheim and

Torsney (1991)].

In the following discussion we will use these results to determine local optimal design for

two specifical goals in the data analysis with inverse quadratic regression models: discrim-

ination between inverse linear and quadratic models and extrapolation or prediction at a
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specific point xe. We will begin with the discrimination problem, which has been extensively

studied for ordinary polynomial regression models [see Stigler (1971), Studden (1982) or

Dette (1995), among many others]. To our knowledge the problem of constructing designs

for the discrimination between inverse rational models has not been studied in the literature.

We consider the inverse quadratic regression model (2.2a) and are interested to determine

a design, which can be used to discriminate between this and the inverse linear regression

model

η(u, θ) =
u

θ0 + θ1u
.

The decision, which model should be used could be based on the likelihood ratio test for

the hypothesis H0 : θ2 = 0 in the model (2.2a), and a standard calculation shows that

the (asymptotic) power of this test is a decreasing function of the quantity (3.1), where the

vector c is given by c = (0, 0, 1)T . Thus a design maximizing the power of the likelihood ratio

test for discriminating between the inverse linear and quadratic model is a local c-optimal

for the vector c = (0, 0, 1)T . Following Stigler (1971) we call this design local D1-optimal.

Our first results determine the local D1-optimal design for the two parameterizations of the

inverse quadratic regression model explicitly.

Theorem 3.1 The local D1-optimal design ξ∗D1
for the inverse quadratic regression model

(2.2a) on the design space U = [0,∞) is given by

ξ∗D1
=

(
1
ρ

√
θ0

θ2

√
θ0

θ2
ρ
√

θ0

θ2

w0 w1 1− w0 − w1

)
(3.7)

with weights

w0 =
θ2

(
θ0 + θ1

√
θ0

θ2
ρ + θ0ρ

2
)2

θ0

(
1 + ρ

)(
θ0θ2

(
1 + 6ρ2 + ρ4

)
+ 2θ1ρ

(
θ1ρ +

√
θ0θ2

(
1 + ρ

)2))

w1 =

(
2θ0 + θ1

√
θ0

θ2

)2

θ2ρ
2

θ0

(
θ0θ2

(
1 + 6ρ2 + ρ4

)
+ 2θ1ρ

(
θ1ρ +

√
θ0θ2

(
1 + ρ

)2))

The geometric scaling factor ρ is defined by

ρ = ρ(γ) = 1 +
2 + γ√

2
+

√
2(1 +

√
2) + (2 +

√
2)γ +

γ2

2
(3.8)
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with γ = θ1√
θ0θ2

. This design is also local D1-optimal on the design space U = [s, t] (0 < s < t),

if the inequalities 0 ≤ s ≤ 1
ρ

√
θ0

θ2
and t ≥ ρ

√
θ0

θ2
are satisfied.

The local D1-optimal design on the design space U = [s, t] for model (2.2a) is of the form

ξ∗D1
=

(
s u′1 u′2
w′

0 w′
1 1− w′

0 − w′
1

)
, (3.9)

if the inequalities s ≥ 1
ρ

√
θ0

θ2
and t > ρ

√
θ0

θ2
hold, of the form

ξ∗D1
=

(
u′′0 u′′1 t

w′′
0 w′′

1 1− w′′
0 − w′′

1

)
, (3.10)

if the inequalities s < 1
ρ

√
θ0

θ2
and t ≤ ρ

√
θ0

θ2
are satisfied, and is of the form

ξ∗D1
=

(
s u′′′1 t

w′′′
0 w′′′

1 1− w′′′
0 − w′′′

1

)
, (3.11)

if the inequalities s ≥ 1
ρ

√
θ0

θ2
and t ≤ ρ

√
θ0

θ2
hold.

Proof: The proof is performed in three steps:

(A) At first we identify a candidate for the local D1-optimal design on the interval [0,∞)

using the theory of Chebyshev polynomials.

(B) We use the properties of the Chebyshev polynomial (3.4) to prove the local D1-

optimality of this candidate.

(C) We consider the case of a bounded design space and determine how the constraints

interfere with the support points of the local optimal design on the unbounded design

space.

(A): Let f(u, θ) be the vector of the partial derivatives in parameterization (2.2a) defined

in (2.5). It is easy to see, that the components of the vector fpar1(u, θ), say

{ f0(u, θ), f1(u, θ), f2(u, θ) }
constitute a Chebyshev-system on any bounded interval [s, t] ⊂ (0,∞). Furthermore for

y0, y1 > 0 with y0 6= y1 we get
∣∣∣∣∣∣

f0(y0, θ) f0(y1, θ) 0

f1(y0, θ) f1(y1, θ) 0

f2(y0, θ) f2(y1, θ) 1

∣∣∣∣∣∣
6= 0,
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and it follows that the vector (0, 0, 1)T is an element of the set A∗ defined in (3.5). Therefore

we obtain from the results of Kiefer and Wolfowitz (1965), that the local D1-optimal de-

sign is supported on the entire set of Chebyshev-points {u∗0, u∗1, u∗2} of the Chebyshev-system

{f0(u, θ), f1(u, θ), f2(u, θ)}. If the support points are given, say u0, u1, u2 the corresponding

weights can be determined by (3.6) such that the function defined in (3.1) is maximal.

Consequently the D1-optimality criterion can be expressed as a function of the points

u0, u1, u2, which will now be optimized analytically. For this purpose we obtain by a te-

dious computation

T (ũ, θ) :=
|M(ξ, θ)|
|M̃(ξ, θ)| =

u2
0(u0 − u1)

2u2
1(u1 − u2)

2u2
2

N
(3.12)

where M̃(ξ, θ) denotes the matrix obtained from M(ξ, θ) by deleting the last row and column,

ũ = (u0, u1, u2), θ = (θ0, θ1, θ2) and

N =(4θ0u0u1(θ1 + θ2u1)u2 + θ2
0(u1(u2 − u1) + u0(u1 + u2))

+ u0u1u2(2θ
2
1u1 + 2θ1θ2(u0(u1 − u2) + u1(u1 + u2))

+ θ2
2(u

2
0(u1 − u2) + u0(u1 − u2)u2 + u1(u

2
1 + u2

2))))
2.

The support points of the D1-optimal design are obtained by maximizing the function T (ũ, θ)

with respect to u0, u1, u2. The necessary conditions for a maximum yield the following system

of nonlinear equations

∂T

∂u0

(ũ, θ) =4θ0u
2
0u1(θ1 + θ2u1)u2 + θ2

0(−2u0u1(u1 − u2)

+ u2
1(u1 − u2) + u2

0(u1 + u2)) + u2
0u1u2(2θ

2
1u1 + 4θ1θ2u

2
1

+ θ2
2(2u0u1(u1 − u2) + u2

0(u2 − u1) + u2
1(u1 + u2))) ·R1 = 0, (3.13)

∂T

∂u1

(ũ, θ) =4θ0u0u
2
1u2(−(θ2u

2
1) + θ2u0u2 + θ1(u0 − 2u1 + u2))

+ θ2
0(u

2
1(u1 − u2)

2 − 2u0u1(u
2
1 + u1u2 − u2

2) + u2
0(u

2
1 + 2u1u2 − u2

2))

− u0u
2
1u2(2θ

2
1(u

2
1 − u0u2) + 4θ1θ2u1(u0(u1 − 2u2) + u1u2)

+ θ2
2(u

2
0(u1 − u2)

2 + 2u0u1(u
2
1 − u1u2 − u2

2)

+ u2
1(−u2

1 + 2u1u2 + u2
2))) ·R2 = 0, (3.14)

∂T

∂u2

(ũ, θ) =4θ0u0u1(θ1 + θ2u1)u
2
2 + θ2

0(u1(u1 − u2)
2 + u0(−u2

1 + 2u1u2 + u2
2))

+ u0u1u
2
2(2θ

2
1u1 + 4θ1θ2u

2
1 + θ2

2(u0(u1 − u2)
2

+ u1(u
2
1 + 2u1u2 − u2

2))) ·R3 = 0, (3.15)
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where R1, R2 and R3 are rational functions, which do not vanish for all u0, u1, u2 with 0 <

u0 < u1 < u2. In order to solve this system of equations, we assume that

u0 =
u1

r
, u2 = r · u1 (3.16)

holds for some factor r > 1, which will be specified later. Inserting this expression in (3.14)

provides as the only positive solution

u∗1 =

√
θ0

θ2

.

Substituting this term into (3.13) or (3.15) yields the following equation for the factor r

2θ1(θ1 + 4
√

θ0θ2)r
2 − θ0θ2(1− 4r − 2r2 − 4r3 + r4) = 0

with four roots given by

r1/2 = 1± (2 + γ)√
2

±
√

2(1 +
√

2) + (2 +
√

2)γ +
γ2

2
, (3.17)

r3/4 = 1± (2 + γ)√
2

∓
√

2(1 +
√

2) + (2 +
√

2)γ +
γ2

2
.

where γ = 1√
θ1θ2

. The factor r has to be strict greater 1 according to our assumption on

the relation between u0, u1 and u2. This provides only the first solution in (3.17) and the

geometric scaling factor is given by (3.8). Therefore it remains to justify assumption (3.16),

which will be done in the second part of the proof.

(B) Because the calculation of the support points 1
ρ

√
θ0

θ2
,
√

θ0

θ2
and ρ

√
θ0

θ2
in step (A) is

based on assumption (3.16), we still have prove, that these points are the support points

of the local D1-optimal design. For this purpose we show that the unique oscillating

polynomial defined by (3.4) attends minima and maxima exactly in these support points.

Recall that the vector of the partial derivatives of the regression function fpar1(u, θ) =

(f0(u, θ), f1(u, θ), f2(u, θ)) is given by (2.5). We now define a polynomial t(u) by

t(u) = f0(u, θ) + α1f1(u, θ) + α2f2(u, θ) (3.18)

and determine the factors α1 and α2 such that it is equioscillating, i.e.

t′(u∗i ) = 0 i = 0, 1, 2 (3.19a)

t(u∗i ) = c(−1)i−1 i = 0, 1, 2 (3.19b)
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for some constant c ∈ R. By this choice the polynomial t(u) must be proportional to the

polynomial φ(u) defined in (3.4). For the determination of the coefficients we differentiate

the polynomial t(u) and get

t′(u) =
−(θ0(1 + 2uα1 + 3u2α2)) + u(θ1(1− u2α2) + θ2u(3 + 2uα1 + u2α2))

(θ0 + u(θ1 + θ2u))3
(3.20)

Substituting the support points u∗1 =
√

θ0

θ2
and u∗2 = ρ

√
θ0

θ2
in (3.20) we obtain from (3.19a)

two equations

0 =

√
θ0(θ1 + 2

√
θ0θ2)(θ2 − θ0α2)√
θ2θ2

0 =

√
θ0θ2(θ1ρ +

√
θ0θ2(3ρ

2 − 1) + 2θ0ρ(ρ2 − 1)α1)√
θ2θ2

+

√
θ0θ0ρ

2(−(θ1ρ) +
√

θ0θ2(ρ
2 − 3))α2√

θ2θ2

.

The solution with respect to α1 and α2 is given by

α1 = −
√

θ0θ2 − θ1ρ +
√

θ0θ2ρ
2

2θ0ρ
, α2 =

θ2

θ0

,

which yields for the polynomial t(u) and its derivate

t(u) =
u(−2θ0ρ +

√
θ0θ2(1 + ρ2)u− ρu(θ1 + 2θ2u))

2θ0ρ(θ0 + u(θ1 + θ2u))2
.

t′(u) = −(
√

θ0 −
√

θ2u)(
√

θ0ρ−
√

θ2u)(
√

θ0 +
√

θ2u)(
√

θ0 −
√

θ2ρu)

θ0ρ(θ0 + u(θ1 + θ2u))3
(3.21)

respectively. A straightforward calculation shows that the third support point u∗0 = 1
ρ

√
θ0

θ2

satisfies t′(u∗0) = 0 and that the three equations in (3.19b) are satisfied. Therefore it only

remains to prove, that the inequality | t(u) | ≤ c holds on the interval [0,∞). In this case the

polynomial t(u) must be proportional to the equioscillating polynomial φ(u) and the design

with support points 1
ρ

√
θ0

θ2
,
√

θ0

θ2
and ρ

√
θ0

θ2
and optimal weights is local D1-optimal.

Observing the representation (3.21) shows that the equation t′(u) = 0 is equivalent to

(
√

θ0 −
√

θ2u)(
√

θ0ρ−
√

θ2u)(
√

θ0 +
√

θ2u)(
√

θ0 −
√

θ2ρu) = 0 (3.22)

with roots

n0 = −
√

θ0

θ2

, n1 =
1

ρ

√
θ0

θ2

, n2 =

√
θ0

θ2

and n3 = ρ

√
θ0

θ2

.

Therefore the function t(u) has exactly three extrema on R+. Furthermore if u → ∞, we

have t(u) → 0 and it follows that | t(u) | ≤ c holds for all u ≥ 0. Consequently, the functions
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t(u) and φ(u) are proportional and the points u∗0 = 1
ρ

√
θ0

θ2
, u∗1 =

√
θ0

θ2
, u∗2 = ρ

√
θ0

θ2
are the

support points of the local D1-optimal design. The explicit construction of the weights w0

and w1 is obtained by substituting the support points u∗0, u∗1 and u∗2 into (3.6).

(C) We finally consider the cases (3.9), (3.10) and (3.11) in the second part of Theorem 3.1,

which correspond to a bounded design space. For the sake of brevity we restrict ourselves

to the case (3.9), all other cases are treated similarly. Obviously the assertion follows from

the existence of a point u∗0 > 0, such that the function T (u0, u
∗
1, u

∗
2, θ) is increasing in u0 on

the interval (0, u∗0) and decreasing on (u∗0, u
∗
1).

For a proof of this property we fix u1, u2, and note that the function T̄ (u0) := T (u0, u1, u2, θ)

has minima in u0 = 0 and u0 = u1, since the inequality T̄ (u0) ≥ 0 holds for all u0 ∈ [0, u1]

and T̄ (0) = T̄ (u1) = 0. Because T̄ (u0) is not constant, there is at least one maximum in the

interval (0, u1). In order to prove that there is exactly one maximum, we calculate

T̄ ′(u0) =
∂T

∂u0

(u0, u1, u2, θ) = 2u0(u0 − u1)u
2
1(u1 − u2)

2u2
2

P4(u0)

P9(u0)
, (3.23)

where P9 is a polynomial of degree 9 (which is in the following discussion without interest)

and the polynomial P4 in the numerator is given by

P4(u0) =4θ0u
2
0u1(θ1 + θ2u1)u2

+ θ2
0(−2u0u1(u1 − u2) + u2

1(u1 − u2) + u2
0(u1 + u2))

+ u2
0u1u2(2θ

2
1u1 + 4θ1θ2u

2
1 + θ2

2(2u0u1(u1 − u2) + u2
0(u2 − u1) + u2

1(u1 + u2))).

The roots of the function T̄ ′ are given by the roots of the polynomial P4. Differentiating this

polynomial yields the function

∂P4

∂u0

(u0) = 8θ0u0u1(θ1 + θ2u1)u2 + 2θ2
0(u1(u2 − u1) + u0(u1 + u2))

+ 2u0u1u2(2θ
2
1u1 + 4θ1θ2u

2
1 + θ2

2(−2u2
0(u1 − u2) + 3u0u1(u1 − u2) + u2

1(u1 + u2))),

which has only one real root. Consequently P4(u0) has just one extremum and therefore at

most two roots. The case of no roots has been excluded above. If P4(u0) would have two

roots, then the function T̄ (u0) has at most two extrema in the interval (0, u1). However, the

function T̄ (u0) is equal to zero in the two pints 0 and u1 and in the interval (0, u1) strictly

positive. Therefore the number of its extrema has to be odd and T̄ (u0) has exactly one

maximum on (0, u1), which is attained for given (u1, u2) = (u∗1, u
∗
2) at a point u∗0 ∈ (0, u∗1).

Assume that the design space is of the form U = [s, t]. If the inequality s < u∗0 holds, (3.7)

remains the local D1-optimal design. However if the inequality s > u∗0 holds, the function

T̄ (u0) is maximal in s, and it follows that (3.9) is the local D1-optimal design.
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Remark 3.1 Note that part (A) of the proof essentially follows the arguments presented

in Haines (1992) for the D-optimality criterion. However, the proof in this paper is not

complete, because Haines (1992) did neither justify the use of the geometric design, nor

proves that the system of necessary conditions has only one solution. In this paper we

present a tool for closing this gap, as demonstrated in part (B) of the preceding proof. ¤

The following theorem states the corresponding results for the inverse quadratic regression

model with parameterization (2.2b). The proof is similar to the proof of the previous theorem

and therefore omitted.

Theorem 3.2 The local D1-optimal design ξ∗D1
for the inverse quadratic regression model

(2.2b) on the design space U = [0,∞) is given by

ξ∗D1
=

(
1
ρ

√
θ1

θ2

√
θ1

θ2
ρ
√

θ1

θ2

w0 w1 1− w0 − w1

)
(3.24)

with

w0 =
(
θ2(θ1 +

√
θ1

θ2

ρ + θ1ρ
2)2(1 +

√
θ1θ2(1 + ρ))

)

×
(
θ1(1 + ρ)(ρ(2ρ + 3

√
θ1θ2(1 + ρ)2)

+ θ1θ2(1 + 2
√

θ1θ2(1 + ρ)2(1 + ρ2) + ρ(8 + ρ(6 + ρ(8 + ρ)))))
)−1

w1 =
(
(2θ1 +

√
θ1θ2)

2ρ(ρ +
√

θ1θ2(1 + ρ2))
)

×
(
θ1(ρ(2ρ + 3

√
θ1θ2(1 + ρ)2)

+ θ1θ2(1 + 2
√

θ1θ2(1 + ρ)2(1 + ρ2) + ρ(8 + ρ(6 + ρ(8 + ρ)))))
)−1

The geometric scaling factor ρ is given by (3.8) with γ = 1√
θ1θ2

. This design is also local

D1-optimal on the design space U = [s, t] (0 < s < t), if the inequalities 0 ≤ s ≤ 1
ρ

√
θ1

θ2
and

t ≥ ρ
√

θ1

θ2
are satisfied.

The local D1-optimal design on the design space U = [s, t] for the inverse quadratic regression

model (2.2b) is of the form (3.9) if the inequalities s ≥ 1
ρ

√
θ1

θ2
and t > ρ

√
θ1

θ2
hold, of the

form (3.10) if the inequalities s < 1
ρ

√
θ1

θ2
and t ≤ ρ

√
θ1

θ2
are satisfied and is of the form (3.11)

if the inequalities s ≥ 1
ρ

√
θ1

θ2
and t ≤ ρ

√
θ1

θ2
hold.
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In the following discussion we concentrate on the problem of extrapolation in the inverse

quadratic regression model. An optimal design for this purpose minimizes the variance of

the estimate of the expected response at a point xe and is therefore c-optimal for the vector

ce = fpar1(xe, θ) in the case of paramterization (2.2a), and for the vector ce = fpar2(xe, θ) in

the case of paramterization (2.2b), respectively. If xe is an element of the design space U
it is obviously optimal to take all observations at the point xe, and therefore we assume for

the remaining part of this section that U = [s, t], where 0 ≤ s < t and 0 < xe < s or xe > t.

The following result specifies local optimal extrapolation designs for the inverse quadratic

regression model which are called local ce-designs in the following discussion. The proofs are

similar to the proofs for D1-optimality and therefore omitted.

Theorem 3.3 Assume that U = [s, t], where 0 ≤ s < t and 0 < xe < s or xe > t, and

let ρ denote the geometric scaling factor defined in (3.8) with γ = θ1√
θ0θ2

. If 0 ≤ s ≤ 1
ρ

√
θ0

θ2

and t ≥ ρ
√

θ0

θ2
, then the local ce-optimal design ξ∗ce

for the inverse quadratic regression model

(2.2a) is given by

ξ∗ce
=

(
1
ρ

√
θ0

θ2

√
θ0

θ2
ρ
√

θ0

θ2

w0 w1 1− w0 − w1

)
(3.25)

where

w0 =
θ2
2

(√
θ0

θ2
− xe

)(
− xe +

√
θ0

θ2
ρ
)(

θ0 + θ1

√
θ0

θ2
ρ + θ0ρ

2
)2

θ0

(
1 + ρ

)(
θ2
0θ2

(
1 + 6ρ2 + ρ4

)
+ s1 + s2

)

w1 =

(
2θ0 + θ1

√
θ0

θ2

)2

θ2
2ρ

(
− xe +

√
θ0

θ2
ρ
)(√

θ0

θ2
− xeρ

)

θ0

(
θ2
0θ2

(
1 + 6ρ2 + ρ4

)
+ t1 + s2

)

and the constants s1 and t1 are given by

s1 = θ0

(
2θ2

1ρ
2+2θ1θ2ρ

(√θ0

θ2

(
1+ρ

)2−4xe

(
1+ρ2

))
+θ2

2xe

(−2

√
θ0

θ2

(
1+ρ

)2(
1+ρ2

)
+xe

(
1+6ρ2+ρ4

)))
,

t1 = θ0

(
2θ2

1ρ
2+2θ1θ2ρ

(√θ0

θ2

(
1+ρ

)2−4xe

(
1+ρ2

))
+θ2

2xe

(−2

√
θ0

θ2

(
1+ρ

)2(
1+ρ2

)
+xe

(
1+6ρ2+ρ4

)))

and

s2 = θ1θ2xeρ
(
2

√
θ0

θ2

θ2xe

(
1 + ρ

)2 − θ1

(√θ0

θ2

+ ρ
(− 2xe +

√
θ0

θ2

(
2 + ρ

))))
.
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The local ce-optimal design for the inverse quadratic model (2.2a) is of the form (3.9) if the

inequalities s ≥ 1
ρ

√
θ0

θ2
and t > ρ

√
θ0

θ2
hold, of the form (3.10) if the inequalities s < 1

ρ

√
θ0

θ2

and t ≤ ρ
√

θ0

θ2
are satisfied and of the form (3.11) if the inequalities s ≥ 1

ρ

√
θ0

θ2
and t ≤ ρ

√
θ0

θ2

hold.

Theorem 3.4 Assume that U = [s, t], where 0 ≤ s < t and 0 < xe < s or xe > t, and let

ρ denote the geometric scaling factor ρ defined in (3.8) with γ = 1√
θ1θ2

. If 0 ≤ s ≤ 1
ρ

√
θ1

θ2

and t ≥ ρ
√

θ1

θ2
, then the local ce-optimal design ξ∗ce

for the inverse quadratic regression model

(2.2b) on the design space U = [0,∞) is given by

ξ∗ce
=

(
1
ρ

√
θ1

θ2

√
θ1

θ2
ρ
√

θ1

θ2

w0 w1 1− w0 − w1

)
(3.26)

with

w0 =
θ2
2

(√
θ1

θ2
− xe

)(
− xe +

√
θ1

θ2
ρ
)(

θ1 +
√

θ1

θ2
ρ + θ1ρ

2
)2

θ1

(
1 + ρ

)(
θ2
1θ2

(
1 + 6ρ2 + ρ4

)
+ s1 + s2

)

w1 =

(
2θ1 +

√
θ1

θ2

)2

θ2
2ρ

(
− xe +

√
θ1

θ2
ρ
)(√

θ1

θ2
− xeρ

)

θ1

(
θ2
1θ2

(
1 + 6ρ2 + ρ4

)
+ t1 + s2

)

with

s1 = θ2xeρ
(
−

√
θ1

θ2

+ 2

√
θ1

θ2

θ2xe

(
1 + ρ

)2 − ρ
(− 2xe +

√
θ1

θ2

(
2 + ρ

)))
,

t1 = θ2xeρ
(
−

√
θ1

θ2

− 2

√
θ1

θ2

ρ + 2xeρ−
√

θ1

θ2

ρ2 + 2

√
θ1

θ2

θ2xe

(
1 + ρ

)2
)

and

s2 = θ1

(
2ρ2+2θ2ρ

(√θ1

θ2

(
1+ρ

)2−4xe

(
1+ρ2

))
+θ2

2xe

(−2

√
θ1

θ2

(
1+ρ

)2(
1+ρ2

)
+xe

(
1+6ρ2+ρ4

)))
.

If the design space is given by a finite interval [s, t], 0 < s < t, then the local ce-optimal

design for model (2.2a) is of the form (3.9), if the inequalities s ≥ 1
ρ

√
θ1

θ2
and t > ρ

√
θ1

θ2
hold,

of the form (3.10), if the inequalities s < 1
ρ

√
θ1

θ2
and t ≤ ρ

√
θ1

θ2
are satisfied, and of the form

(3.11) if the inequalities s ≥ 1
ρ

√
θ1

θ2
and t ≤ ρ

√
θ1

θ2
hold.
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Note that for a sufficiently large design interval all designs presented in this section are

supported at the same points, the Chebyshev points corresponding to the Chebyshev system

of the components of the gradient of the regression function. In the next section we will

demonstrate that these points are also the support points of the local E-optimal design for

the inverse quadratic regression model.

4. Local D- and E-optimal designs We begin stating the corresponding result for the

D-optimality criterion. The proof is omitted because it requires arguments which are similar

as those presented in Haines (1992) and in the proof of theorem 3.1.

Theorem 4.1 The local D-optimal design ξ∗D for the inverse quadratic regression model

(2.2a) on the design space U = [0,∞) is given by

ξ∗D =

(
1
ρ

√
θ0

θ2

√
θ0

θ2
ρ
√

θ0

θ2

1
3

1
3

1
3

)
(4.1)

with the geometric scaling factor

ρ =
δ +

√
δ2 − 4

2
, (4.2)

where the constants δ and γ are defined by δ =
γ+1+

√
γ2+6γ+33

2
and γ = θ1√

θ0θ2
, respectively.

This design is also local D-optimal on the design space U = [s, t] (0 < s < t), if the

inequalities 0 ≤ s ≤ 1
ρ

√
θ0

θ2
and t ≥ ρ

√
θ0

θ2
are satisfied.

The local D-optimal design on the design space U = [s, t] for the inverse quadratic regression

model (2.2b) is of the form (3.9), if the inequalities s ≥ 1
ρ

√
θ1

θ2
and t > ρ

√
θ1

θ2
hold, of the

form (3.10), if the inequalities s < 1
ρ

√
θ1

θ2
and t ≤ ρ

√
θ1

θ2
are satisfied, and is of the form

(3.11), if the inequalities s ≥ 1
ρ

√
θ1

θ2
and t ≤ ρ

√
θ1

θ2
hold.

Theorem 4.2 The local D-optimal design ξ∗D for the inverse quadratic regression model

(2.2b) on the design space U = [0,∞) is given by

ξ∗D =

(
1
ρ

√
θ1

θ2

√
θ1

θ2
ρ
√

θ1

θ2

1
3

1
3

1
3

)
(4.3)
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with the geometric scaling factor

ρ =
1

4

(
1 + γ + δ +

√
2
√

γ2 + 4γ + δ + γδ + 9
)
,

where the constants γ and δ are defined by γ = 1√
θ1θ2

and δ =
√

γ2 + 33 + 6γ, respectively.

This design is also D-optimal on the design space U = [s, t] (0 < s < t), if the inequalities

0 ≤ s ≤ 1
ρ

√
θ1

θ2
and t ≥ ρ

√
θ1

θ2
are satisfied.

The local D-optimal design on the design space U = [s, t] for the inverse quadratic regression

model (2.2b) is of the form (3.9), if the inequalities s ≥ 1
ρ

√
θ1

θ2
and t > ρ

√
θ1

θ2
hold, of the

form (3.10), if the inequalities s < 1
ρ

√
θ1

θ2
and t ≤ ρ

√
θ1

θ2
are satisfied, and is of the form

(3.11), if the inequalities s ≥ 1
ρ

√
θ1

θ2
and t ≤ ρ

√
θ1

θ2
hold.

We will conclude this section with the discussion of the E-optimality criterion. For

this purpose recall that a design ξE is local E-optimal if and only if there exists a matrix

E ∈ conv(S) such that the inequality

f ′(u, θ)Ef(u, θ) ≤ λmin (4.4)

holds for all u ∈ U , where λmin denotes the minimum eigenvalue of the matrix M(ξE, θ) and

S = { zz′ | ‖z‖2 = 1, z is an eigenvector of M(ξE, θ) corresponding to λmin } . (4.5)

The following two results specify the local E-optimal designs for the inverse quadratic regres-

sion models with parameterization (2.2a) and (2.2b). Because both statements are proved

similarly, we restrict ourselves to a proof of the first theorem.

Theorem 4.3 The local E-optimal design ξ∗E for the inverse quadratic regression model

(2.2a) on the design space U = [0,∞) is given by

ξ∗E =

(
1
ρ

√
θ0

θ2

√
θ0

θ2
ρ
√

θ0

θ2

w0 w1 1− w0 − w1

)
(4.6)

where the weights w0, w1 are given by (3.6) and c is the vector with components given by the

coefficients of the Chebyshev polynomial, that is

c =
(
−
√

θ0(2θ
2
1ρ

2 + 2
√

θ0θ1

√
θ2ρ(1 + ρ)2 + θ0θ2(1 + 6ρ2 + ρ4))√
θ2(−1 + ρ)2ρ

,

θ2
1ρ(1 + ρ)2 + 8

√
θ0θ1

√
θ2ρ(1 + ρ2) + 2θ0θ2(1 + ρ)2(1 + ρ2)

(−1 + ρ)2ρ
,

−
√

θ2(2θ
2
1ρ

2 + 2
√

θ0θ1

√
θ2ρ(1 + ρ)2 + θ0θ2(1 + 6ρ2 + ρ4))√
θ0(−1 + ρ)2ρ

)T

.



Local D- and E-optimal designs 17

The geometric scaling factor is given by (3.8) with γ = θ1√
θ0θ2

. This design is also local E-

optimal on the design space U = [s, t] (0 < s < t), if the inequalities 0 ≤ s ≤ 1
ρ

√
θ0

θ2
and

t ≥ ρ
√

θ0

θ2
are satisfied.

The local E-optimal design on the design space U = [s, t] for model (2.2a) is of the form

(3.9), if the inequalities s ≥ 1
ρ

√
θ0

θ2
and t > ρ

√
θ0

θ2
hold, of the form (3.10), if the inequalities

s < 1
ρ

√
θ0

θ2
and t ≤ ρ

√
θ0

θ2
are satisfied, and of the form (3.11), if the inequalities s ≥ 1

ρ

√
θ0

θ2

and t ≤ ρ
√

θ0

θ2
hold.

Proof: It is straightforward to show that every subset of {f0(u, θ), f1(u, θ), f2(u, θ)}, the

components of the vector fpar1(u, θ), which consists of 2 elements, is a (weak) Chebychev-

system. Therefore it follows from Theorem 2.1 in Imhof, Studden (2001) that the local

E-optimal is supported at the Chebyshev points. The assertion regarding the weights finally

follows from (3.6) observing that the results of Imhof and Studden (2001) imply that the local

E-optimal design is also c-optimal for the vector c with components given by the coefficients

of the Chebyshev polynomial. ¤

Theorem 4.4 The local E-optimal design ξ∗E for the inverse quadratic regression model

(2.2b) on the design space U = [0,∞) is given by

ξ∗E =

(
1
ρ

√
θ1

θ2

√
θ1

θ2
ρ
√

θ1

θ2

w0 w1 1− w0 − w1

)
, (4.7)

where the weights w0, w1 are given by (3.6) and c is the vector with components given by the

coefficients of the Chebyshev polynomial, that is

c =
(
− 1− 2

√
θ1θ2 − 2(2ρ +

√
θ1θ2(1 + ρ)2)(ρ +

√
θ1θ2(1 + ρ2))

(−1 + ρ)2ρ
,

−
√

θ1(1 + 2
√

θ1θ2)(2ρ +
√

θ1θ2(1 + ρ)2)(ρ +
√

θ1θ2(1 + ρ2))

θ0

√
θ2(−1 + ρ)2ρ

,

−
√

θ2(1 + 2
√

θ1θ2)(2ρ +
√

θ1θ2(1 + ρ)2)(ρ +
√

θ1θ2(1 + ρ2))

θ0

√
θ1(−1 + ρ)2ρ

)T

.

The geometric scaling factor is given by (3.8) with γ = 1√
θ1θ2

. This design is also local E-

optimal on the design space U = [s, t] (0 < s < t), if the inequalities 0 ≤ s ≤ 1
ρ

√
θ1

θ2
and
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t ≥ ρ
√

θ1

θ2
are satisfied.

The local E-optimal design on the design space U = [s, t] for model (2.2a) is of the form

(3.9), if the inequalities s ≥ 1
ρ

√
θ1

θ2
and t > ρ

√
θ1

θ2
hold, of the form (3.10), if the inequalities

s < 1
ρ

√
θ1

θ2
and t ≤ ρ

√
θ1

θ2
are satisfied, and of the form (3.11), if the inequalities s ≥ 1

ρ

√
θ1

θ2

and t ≤ ρ
√

θ1

θ2
hold.

5. Further discussion In this Section we discuss some practical aspects of the local

optimal designs derived in the previous sections. In particular, we calculate the efficiency

of a design, which has recently been used in practice and investigate the efficiency of local

optimal designs with respect to other optimality criteria.

Landete-Castillejos and Gallego (2000) used the inverse quadratic regression model to

analyze data, which were obtained from lactating red deer hinds (Cervus elaphus). They

concluded that inverse quadratic polynomials with parameterization (2.2a) can adequately

describe the common lactation curves. The design space was given by the interval U =

[1, 14], and the design used by these authors was a uniform design with support points

(1, 2, 3, 4, 5, 6, 10, 14), which is denoted by ξu throughout this section. The estimates for the

parameters of model (2.2a) are given by â = 0.0002865, b̂ = 0.0002117 and ĉ = 0.0000301.

Table 5.1 shows the local optimal designs and the efficiency of the design ξu for the different

optimality criteria considered in Section 3 and 4, where we used the point xe = 21 for the

calculation of the optimal extrapolation design. We observe that the design of Landete-

Castillejos and Gallego (2000) yields rather low efficiencies with respect to all optimality

criteria, and the efficiency of the statistical analysis could have been improved by allocating

observations according to local optimal design. For example a confidence interval based on

the local D1-optimal design would yield 66% shorter confidence intervals for the parameter

c as the design actually used by Landete-Castillejos and Gallego (2000). The advantages of

the local optimal designs are also clearly visible for the other criteria.

Criterion Optimal design Efficiency

points : 1 3.4089 14
D

weights : 1/3 1/3 1/3
69.92

points : 1 3.3561 14
E

weights : 0.3972 0.3914 0.2114
50.33

points : 1 3.3561 14
D1 weights : 0.1239 0.2884 0.5877

45.85

points : 1 3.3561 14
ce weights : 0.0582 0.1535 0.7883

33.82
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Table 5.1. D-, E-, D1- and ce-optimal designs and efficiency of the design (1, 2, 3, 4, 5, 6, 10, 14)

with equal weights for parametrization (2.2a).

Note that the data is usually used for several purposes, for example for discrimination

between a linear and a quadratic inverse polynomial and for extrapolation using the identified

model. Therefore it is important that an optimal design for a specific optimality criterion

yields also reasonable efficiencies with respect to alternative criteria, which reflect other

aspects of the statistical analysis. In Table 5.2 we compare the efficiency of a given local

optimal design with respect to the other optimality criteria. We consider again the situation

described in Landete-Castillejos and Gallego (2000). For example, the local D-optimal design

has efficiencies 94.18%, 75.28% and 43.60% with respect to the E-, D1 and ce-optimality

criterion, respectively. Thus this design is rather efficient for the D1- and E-optimality

criterion, but less efficient for extrapolation. The situation for the D1-optimal design is

similar, where the role of the ce- and E-criterion have to be interchanged. On the other hand

the performance of the local E- and ce-optimal design depends strongly on the underlying

optimality criterion. The local E-optimal design yields only a satisfactory D-efficiency, but

is less efficient with respect to the ce- and D1-optimality criterion, while the local ce-optimal

design yields only a satisfactory D1-efficiency.

D E D1 ce

D 100 94.18 75.28 43.60

E 93.96 100 51.89 25.71

D1 74.63 53.05 100 80.40

ce 51.23 33.24 85.73 100

Table 5.2. Efficiencies of local optimal designs for the inverse quadratic model (parame-

terization (2.2a)) with respect to various alternative criteria (in percent). The design space

is the interval U = [1, 14], and the estimates of the parameters are given by â = 0.0002865,

b̂ = 0.0002117 and ĉ = 0.0000301. The local extrapolation optimal design is calculated for

the point xe = 21.
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