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Abstract. We present a time discretization for the single phase Stefan problem with Gibbs–
Thomson law. The method resembles an operator splitting scheme with an evolution step for the
temperature distribution and a transport step for the dynamics of the free boundary. The evolution
step involves only the solution of a linear equation that is posed on the old domain. We prove that
the proposed scheme is stable in function spaces of high regularity. In the limit ∆t → 0 we find
strong solutions of the continuous problem. This proves consistency of the scheme, and additionally
it yields a new short-time existence result for the continuous problem.
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1. Introduction. The Stefan problem is a set of equations that describe the
melting of ice or the growth of ice cristals. At time t the ice (or the water) occupies
a region Ωt, and the second phase occupies the complement of Ωt. The position of
the interface ∂Ωt is not known a priori but must be determined together with the
temperature distribution Θ(t). Several sets of evolution equations can be found in
the extensive literature (see [11] for equations and further references). Commonly
used is the heat equation (2.1) in the domain Ωt (in the two phase problem another
heat equation is posed in the complement of Ωt). The latent heat relates the normal
heat flux on the free boundary (or its jump across the boundary) with the speed of
the free boundary as in (2.2). In order to determine the evolution we need one more
boundary condition. Various possibilities are studied for that: (a) fixed temperature
Θ = 0, (b) the Gibbs–Thomson relation Θ ∼ κ with κ being the mean curvature of
the boundary, and (c) kinetic undercooling: temperature plus a multiple of the speed
is proportional to the mean curvature. In the paper at hand we are interested in case
(b), the Gibbs–Thomson relation (2.3).

The aim of this paper is to introduce a stable time discretization of the two-
dimensional free boundary value problem. We consider the single phase problem for
simplicity; the two phase problem can be treated with the same method. Since the
domain changes with time, it is not clear what equations we should pose at every time
step, how to define a new domain, and how to define a temperature distribution on
the new domain. Thinking of the numerical use of the scheme it is desirable that at
each time step only a linear equation must be solved. This linear equation should be
posed on the old domain. Our scheme will provide exactly this. As a by-product of
our stability result in Theorem 2.2 we find a short-time existence result for (2.1)–(2.3)
in Corollary 2.3. Such a result (in different function spaces) was proved earlier by
Radkevich in [8]. Our approach is more elementary in the sense that it involves less
functional-analytic machinery.
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Another time discretization for the Gibbs–Thomson law was introduced by Luck-
haus in [6]. His approach assumes only very low regularity such that solutions can
be defined past geometric singularities. For that it is necessary to use explicitly the
new domain in the definition of the time step. In this context we wish to mention the
work of Bänsch [3] dealing with a time discretization for the Navier–Stokes equations
with a free boundary. Also in these more complicated equations the new geometry is
needed in the definition of the new iterate.

Let us compare the Gibbs-Thomson law (b) with kinetic undercooling (c). The
term introduced in case (c) is regularizing; mathematically it has the effect that one
can regard the equations as a coupled system of a heat equation and an equation
for the motion of the free boundary. The regularity properties of the two evolution
equations allow us to iterate the two solution operators. The fixed point is a solution
of the original problem. Such an iteration is used by Chen and Reitich in [4] and
by Abergel et al. in [1] in order to derive an existence result in case (c). A spatial
semidiscretization was studied by Veeser in [10]. In contrast to case (c), it seems
impossible to decouple the equations in case (b).

This paper is organized as follows. In section 2 we present the operator splitting
scheme (OS) for a time discretization. Each time step consists of (1) defining an
auxiliary velocity field v, (2) solving a linear equation with transport term v · ∇, and
(3) defining the new domain and a temperature field on the new domain by advection.
In Theorem 2.2 and Corollary 2.3 we state our main result: the proposed scheme (OS)
is stable and consistent.

Within this paper we introduce three different schemes. Scheme (OS) is the
numerically applicable scheme in physical variables. The analysis of (OS) is the goal
of this paper, and the results are collected in section 2. In order to prove our results
we introduce a linear Crank–Nicolson-type scheme (CN) for unknowns (u, h). (CN)
is defined on a fixed domain and considers a given right-hand side f ; detailed a priori
estimates are derived in section 3. The next step is to consider scheme (CN) with a
right-hand side of the form f = f(u, h). Note that this is in general not a practical
numerical scheme, since f may depend on the values of the solution at later times.
The special choice of f(u, h) in section 4 is motivated by the original equations and
their transformation to a fixed domain. We prove the existence of solutions and a
priori estimates. In section 5 we conclude that the original scheme (OS) inherits
these properties.

As already mentioned, our analysis is based on the study of a linear problem.
This linear problem is obtained by transforming the equations onto a rectangle and
linearizing them. This defines an operator in the unknown quantities temperature
distribution u and height function of the free boundary h. This linear operator has
a compact inverse with regularizing properties. It allows us to solve instationary
problems with a time discretization (CN). The discretization can be proven to be
stable by a testing procedure. Since the nonlinearity requires regular solutions, we
apply the results also to discrete time derivatives and to second spatial derivatives of
the time-discrete solutions. This yields estimates in function spaces of high regularity.
In section 3 we collect estimates for (CN), the semidiscrete equations on a fixed
domain. Some care must be taken of compatibility conditions of the initial values.

Note that similar facts of the corresponding linearized problem were used in [9]
in order to treat the Navier–Stokes equations with a free boundary. Let us again
compare cases (b) and (c): in case (c) the properties of the linear operator can be
shown with an iteration that solves successively for u and h. In the case at hand one
actually has to study the coupled system.
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In section 4 we consider a time discretization of transformed equations and apply
the results of section 3. It turns out to be of importance in which point we linearize
the equations. Concerning the mean curvature operator of the Gibbs–Thomson law it
is sufficient to linearize it about the initial values. This is different for the nonlinearity
introduced by the domain transformation: it has a different structure and cannot be
treated by introducing error terms on the right-hand side (see Lemma 3.2 and remarks
thereafter). We have to use in every time step the linearization of the equations on
the current “old” domain. This introduces time-dependent coefficient matrices in the
equations, but this way the transformation respects the variational character of the
problem. As it turns out, the scheme (OS) mimics this strategy of linearization.

We encounter the fact that the solution of the discrete equations does not satisfy
maximal regularity estimates. Therefore we have to be careful in the discretization of
the nonlinearity.

In section 5 we prove Theorem 2.2 for scheme (OS). The idea is to transform the
operator splitting scheme onto a reference domain and to apply the results of section
3. It will turn out that the transformation of scheme (OS) is actually identical to the
scheme of section 4. The results of section 4 imply the stability of the transformed
scheme and therefore the stability of the original scheme. Since (OS) is consistent with
the continuous equations we can conclude that weak limits of the discrete solutions
define strong solutions of the original problem.

2. The free boundary problem and the time discretization. We denote
the domain that is covered with ice (or water) at time t by Ωt. For notational con-
venience we assume that the free boundary is given as the graph of a single function.
We study the two-dimensional case and write S := [0, 1]per for the unit interval with
identified endpoints. A function defined on S is automatically periodic; in particular,
all derivatives (if defined) coincide in the endpoints. We write the domain as

Ωt = {(x, y)|x ∈ S, 0 < y < h(t, x)} .
The height function h will be close to 1, and we can always parametrize Ωt over the
standard rectangle S × (0, 1). Again, all functions on the rectangle are automati-
cally periodic on the lateral boundaries. We introduce the time-dependent function
H(t, x) = (x, h(t, x)) to parametrize the upper boundary of Ωt. In the following we
will often omit the argument t. By a rescaling argument we can assume that the
physical constants latent heat, surface tension, and thermal diffusion are all equal to
1. The physical equations then read

∂tΘ = ∆Θ in
⋃
t>0

{t} × Ωt,(2.1)

∂th = −(n · ∇Θ) ◦H
√
1 + |∂xh|2 on {(t, x)|t > 0, x ∈ S},(2.2)

Θ ◦H = κ on {(t, x)|t > 0, x ∈ S}.(2.3)

Here

κ := −∂x
(

∂xh√
1 + |∂xh|2

)

is the mean curvature of the free boundary, n is the exterior normal of Ω, and n2 =
(1 + |∂xh|2)−1/2 the second component of n. The above equations are complemented
with a boundary condition for Θ on the lower boundary, say,

Θ(t, x, 0) = ψ(t, x).
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For notational convenience we will use ψ ≡ 0 in the following. All results remain valid
for smooth ψ. Additionally, initial values Θ(t = 0) = Θ0 and h(t = 0) = h0 > 0 are
imposed.

Later on we will use the linearization of the mean curvature operator about h =
h0,

∆h := −Dκ(h0) · h = ∂x

(
∂xh√

1 + |∂xh0|23

)
.

For smooth and small h0 the properties of ∆ are similar to those of ∆x = ∂2
x, therefore

the notation.
We now introduce a uniform discretization of the time interval (0, T ) by tk :=

k·∆t. Note that nonuniform time partitions can also be treated with our method. The
pair (Θk, hk) is meant to approximate (Θ(tk), h(tk)). We set (Θ0, h0) := (Θ0, h0). The
function hk defines the domain Ωk := {(x, y)|x ∈ S, 0 < y < hk(x)} and the normal
vector nk. We use Hk(x) := (x, hk(x)) ∈ R

2. In the following definition we need
functions Θ(−1) := Θ̃(−1) := Θ0 for the first execution of Step 1. We define H(−1)

and n(−1) via h(−1) := h0.
Let us motivate in advance (2.5): let Θ solve ∂tΘ = ∆Θ on the time-dependent

domain Ωt. We consider Θ̃(t, .) := Θ(t,Φ(t, .)), where Φ(t, .) parametrizes Ωt over the
fixed domain Ωt0 : Φ(t, .) : Ωt0 → Ωt. Then Θ̃ satisfies

∂tΘ̃ = (∂tΘ) ◦ Φ+ (∇Θ) ◦ Φ · ∂tΦ = ∆Θ|Φ + ∂tΦ · ∇Θ|Φ.
If we want to calculate on a given domain (the “old” domain Ωt0), then we have to
include a convective term in the heat equation. In the numerical scheme it remains
to choose a guess for the corresponding velocity field.

Definition 2.1. We assume that an initial domain Ω0 is given by h0 and an
initial temperature by Θ0 : Ω0 → R. Let X0 : R → Ω0 be a parametrization of Ω0.

The operator splitting scheme (OS) for a time discretization of (2.1)–(2.3) is
defined by the following three steps; they are executed beginning with k = 0.

Step 1. We use the temperature data of the last time step in order to define a
vertical velocity field vk = (v1, v2) = (0, v2) : Ω

k → R
2 with boundary values

nk−1 ◦Hk−1 · vk ◦Hk =
(
nk−1 · ∇Θk−1 + Θ̃k−1

2

)
◦Hk−1

by the linear interpolation

vk(x, y) =
y

hk(x)
vk(x, hk(x)).(2.4)

Step 2. Find Θ̃k : Ωk → R and hk+1 : [0, 1] → R with

Θ̃k −Θk

∆t
= ∆

(
Θk + Θ̃k

2

)
+ vk · ∇Θk + Θ̃k

2
in Ωk,(2.5)

hk+1 − hk

∆t
= −

√
1 + |∂xhk|2

(
nk · ∇Θk + Θ̃k

2

)
◦Hk in [0, 1],(2.6)

Θ̃k ◦Hk +∆(hk+1 − hk) = κ(hk) in [0, 1].(2.7)
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On the lower boundary we impose Θ̃k(x, 0) = ψ(x, tk). We slightly change the def-
inition in the first time step k = 0. There we use Θ0 instead of 1

2 (Θ
0 + Θ̃0) in the

convective term of (2.5).
Step 3. The function hk+1 defines the new domain Ωk+1. We now want to define

a temperature field Θk+1 on the new domain. We set

Xk+1(x, y) := Xk(x, y) +

(
0,
Xk2 (x, y)

hk(x)

)
· (hk+1 − hk)(x),(2.8)

Θk+1 ◦Xk+1 := Θ̃k ◦Xk in R.(2.9)

We will show that the above scheme can be used to define uniquely
(Θk, Xk)k=0,...,K . The functions Θk are defined on domains that depend on time
(on k). The domains are always parametrized by Xk = (Xk1 , X

k
2 ). In order to formu-

late estimates we introduce the pairs (uk, hk) := (Θk ◦Xk, hk). The functions uk are
then defined on the time-independent domain R.

The main result of this paper is the following theorem. It is proved together with
its corollary in section 5.

Theorem 2.2. Let the initial values (u0, h0) satisfy the regularity and compati-
bility assumption, Assumption 5.1, and let h0 − 1 be small in C0,1(S). Let the initial
domain be parametrized over the rectangle R = S × (0, 1) with a diffeomorphism
X0 ∈ H4+1/2(R) with X0 − id small in C0,1(R), X0

1 (x, y) = x and ∂2X
0
2 (., 1) = 1.

Then, on a small time interval I = (0, T ) the scheme (OS) has a unique solution
for k = 1, . . . ,K with tK < T . The scheme is stable: the linear interpolant (u, h) of
(uk, hk)k satisfies the estimate

‖h‖L∞(I;H4+1/2(S)) + ‖h‖W 1,∞(I;H2+1/2(S))

+ ‖u‖L∞(I;H3(R)) + ‖u‖W 1,∞(I;H1(R)) ≤ C.

The number C and the time interval I depend only on the initial values (Θ0, h0). They
are independent of the time-step size ∆t.

Corollary 2.3. Consider solutions (u,X)∆t as in Theorem 2.2. For a subse-
quence ∆t → 0 there holds

(u,X)∆t −→ (ũ, X̃) for ∆t → 0(2.10)

in the norms of L2(I;H2(R))∩H1(I;L2(R)) and of H1(I;H3(R)). The limit function
(Θ, X) := (ũ ◦ X̃−1, X̃) is a strong solution of the physical problem (2.1)–(2.3).

Note that in the above results no smallness assumption is made on Θ0; the velocity
of the boundary can be large, and convective effects must be included in the scheme.
On the other hand, we assume smallness of X0. This is not a severe restriction, since
one could parametrize all domains Ωk over a reference domain that is close to Ω0.
Then smallness of X0 is guaranteed.

A remark on implementations of the scheme. In the stability result we use the
assumption that initially the height function is almost constant. This is done in order
to simplify the proofs. It would be sufficient to have the initial domain close to a
smooth reference domain (which is no restriction if the initial values are smooth).

Running the scheme is possible only for small times. This is because one of the
following may happen: (1) The domain transformation onto the reference domain
introduces large errors. (2) Using the linearization of the mean curvature operator
about the initial values is no longer appropriate. (3) A geometric singularity makes a
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smooth parametrization impossible. Note that this is possible also for the continuous
equations.

The best we can expect of the discretization is to work well as long as there exist
continuous solutions of the system, that is, until problem (3) appears. In general, our
method will fail to work before that time, due to problem (1) or (2). In this case one
may continue with a restart: choose a new smooth reference domain, calculate the
new linearized mean curvature operator, and restart the scheme.

3. A Crank–Nicolson scheme on the reference domain. After a transfor-
mation of (2.1)–(2.3) onto the reference domain R = S × (0, 1) the equations have
a linearization of the form (3.1)–(3.3). This section is devoted to the study of these
linear equations on the rectangle.

∂tu = ∇ ·A(t)∇u+ f0 in R,(3.1)

∂th = −a(t) · ∇u(., 1) + f1 on S,(3.2)

u(., 1) = −∆h+ f2 on S.(3.3)

We assume a(t) = e2 · A(t) and A(t) : R → R
2×2. In the following we always impose

without further mentioning the condition u = ψ = 0 (and uk = 0) on the lower
boundary {(x, y)|y = 0}. This also enables us to make use of the Poincaré inequality
in what follows. A natural time discretization of (3.1)–(3.3) is the following Crank–
Nicolson scheme.

Definition 3.1. We denote the following scheme by (CN). In every time step
we define uk+1 : R → R, hk+1 : S → R as the solution of

uk+1 − uk

∆t
= ∇ ·Ak∇uk + uk+1

2
+ fk0 in R,(3.4)

hk+1 − hk

∆t
= −ak · ∇

(
uk + uk+1

2

)
(., 1) + fk1 on S,(3.5)

uk+1(., 1) = −∆hk+1 + fk+1
2 on S.(3.6)

Notation. In the following we will denote the averages of solutions at intermediate

points as uk+1/2 := uk+uk+1

2 . The linear interpolant of the values (uk, hk) will always
be denoted by (u, h), and linear interpolants of fk = (fk0 , f

k
1 , f

k
2 ) are denoted by

f = (f0, f1, f2). We will once also use the linear interpolant of the values uk+1/2; it
will be denoted by ū.

In the scheme (CN) the matrices Ak will be uniformly close to the identity I2 ∈
R

2×2. Nevertheless, it will be of importance to use the coefficient matrices in (3.4)
and the corresponding oblique derivatives in (3.5). Loosely speaking, we must avoid
any error term fk1 in (3.5). This statement is made precise in the subsequent lemma.
The lemma gives a result on the resolvent problem corresponding to (3.1)–(3.3). It
introduces function spaces that are natural for the problem.

Lemma 3.2 (the resolvent problem in energy spaces). Let A : R → R
2×2 be a

field of uniformly elliptic and symmetric matrices. Then for λ > 0 the equations

λu−∇ ·A∇u = g0 in R,(3.7)

λh+ e2 ·A · ∇u(., 1) = g1 on S,(3.8)

u(., 1) + ∆xh = g2 on S,(3.9)



1190 BEN SCHWEIZER

together with u(., 0) = 0, have a unique solution (u, h). It satisfies the resolvent
estimate

λ2‖u‖2
0 + ‖∇ ·A∇u‖2

0 + λ2

∫
S

|∂xh|2 + λ‖h‖2
2+1/2

≤ C (‖g0‖2
0 + ‖g1‖2

1 + λ2‖g2‖2
−1 + λ‖g2‖2

1/2),

(3.10)

with C independent of λ. Here ‖.‖s denotes the norm of Hs.
Proof. To prove existence we assume g2 = 0; this can be achieved by defining the

new unknown to be h−∆−1
x g2. We find u as the minimizer of

E(u) :=λ

∫
R

u2 +

∫
R

A∇u · ∇u− λ

∫
S

∆−1
x u(., 1) · u(., 1)

− 2

∫
R

g0 · u+ 2

∫
S

g1 · u(., 1)

in {u ∈ H1(R)|u(., 0) = 0,
∫
S
u(., 1) = 0}. Here the operator ∆−1

x is defined by

prescribing vanishing averages. With the function h̃ := ∆−1
x u(., 1) the pair (u, h̃)

solves (3.7), (3.9) exactly and (3.8) up to a constant function. Defining h(x) :=
h̄+ h̃(x) with an appropriate constant h̄ we obtain a solution to (3.7)–(3.9).

To find the a priori estimate we multiply (3.7) with λu−∇ · A∇u and integrate
over R. This yields

λ2

∫
R

|u|2 +
∫
R

|∇ ·A∇u|2 − 2λ

∫
R

u∇ ·A∇u =

∫
R

(λu−∇ ·A∇u)g0.

With another integration by parts we find

λ2

∫
R

|u|2 +
∫
R

|∇ ·A∇u|2 + 2λ

∫
R

∇u ·A∇u

+ 2λ

∫
S

(g2 −∆xh)(λh− g1) =

∫
R

(λu−∇ ·A∇u)g0.

The third term is positive, and in the fourth term we perform an integration by parts
over S. We find an estimate for the first three terms on the left-hand side of (3.10).
The estimate for

√
λh ∈ H2+1/2(S) then follows from regularity for (3.9).

We read the above lemma as follows: the linearized problem has a good resolvent
operator, and we can expect high regularity of solutions of the coupled problem. There
are two restrictive points. In (3.10) an estimate of λg2 is needed on the right-hand
side. This means that in the time-dependent problem the time derivative of f2 must
be controlled. The second difficulty is the regularity property that is assumed for g1.
In particular, we cannot insert an error of the form “trace of a first derivative of u.”
This is the reason why we use the oblique derivatives in (3.5).

Definition 3.3. For a solution (u, h) we define the Banach space Y := Yu × Yh
with

Yu := L∞(0, T ;H1(R)) ∩H1(0, T ;L2(R)),

Yh := L∞(0, T ;H2+1/2(S)) ∩H1(0, T ;H1(S)).

To control the right-hand side we define the Banach spaces

X0 := L2(0, T ;L2(R)),

X1 := L2(0, T ;H1(S)),

X2 := L∞(0, T ;H1/2(S)) ∩H1(0, T ;H−1(S)).
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Observe that the above are not the maximal regularity spaces of the continuous
equations. For that we would expect additional estimates for u ∈ L2(I;H2) and
h ∈ L2(I;H3+1/2). However, the above Crank–Nicolson scheme will not provide such
an estimate. It can provide it at best for the interpolant of the midpoints 1

2 (u
k+uk+1).

Lemma 3.4 (the scheme (CN) in energy spaces). Assume that the coefficient
matrices Ak in Definition 3.1 are symmetric and satisfy

sup
k

‖Ak − I2‖L∞(R) +
∑
k

∥∥∥∥Ak+1 −Ak

∆t

∥∥∥∥
L∞(R)

∆t < δ.(3.11)

We consider initial values u0 ∈ H1(R), h0 ∈ H2+1/2(S). Let (3.6) be satisfied for
the initial values (u0, h0) := (u0, h0); that is, (3.6) holds for k = −1. Given a right-
hand side (fk)k we will write estimates in terms of the linear interpolant f : I →
L2(R)2 ×L2(S)×L2(S). Let the time interval I = (0, T ) and δ > 0 be small enough.

Then for every K ∈ N with K ·∆t ≤ T the linear scheme (CN) of Definition 3.1
has a unique solution (uk, hk)k=0,...,K . The linear interpolant (u, h) of (u

k, hk)k sat-
isfies the estimate

‖(u, h)‖Y ≤ C1‖u0‖H1(R) + C2 (‖f0‖X0 + ‖f1‖X1 + ‖f2‖X2)(3.12)

with C1 and C2 independent of ∆t.
The estimate (3.12) can be improved: on the right-hand side we can replace ‖f2‖X2

by ‖f2‖H1(0,T ;H−1(S)) + C�, where C� has the property that for some C > 0 every
solution of (3.6) satisfies

‖hk+1‖H2+1/2(S) ≤ C� + C‖uk+1‖H1(R).

Proof. The proof of this lemma relies on a testing procedure; it is analogous
to the proof of the resolvent estimate of Lemma 3.2. We multiply (3.4) with −∇ ·
Ak∇(u

k+uk+1

2 ). An integration over R yields

∫
R

∇uk+1 − uk

∆t
·Ak∇uk + uk+1

2
+

∥∥∥∥∇ ·Ak∇uk + uk+1

2

∥∥∥∥
2

L2(R)

−
∫
S

ak · ∇
(
uk + uk+1

2

)
uk+1 − uk

∆t
= −

∫
R

fk0 · ∇ ·Ak∇uk + uk+1

2
.

(3.13)

We use the symmetry of Ak to calculate for the first term∫
R

∇uk+1 − uk

∆t
·Ak∇uk + uk+1

2

=
1

2∆t

∫
R

Ak∇uk+1 · ∇uk+1 − 1

2∆t

∫
R

Ak∇uk · ∇uk.

To evaluate the boundary integral we use (3.5) with index k and (3.6) with the indices
k and k + 1: ∫

S

ak · ∇
(
uk + uk+1

2

)(
uk+1 − uk

∆t

)

=

∫
S

(
hk+1 − hk

∆t
− fk1

)
·
(
∆
hk+1 − hk

∆t
− fk+1

2 − fk2
∆t

)
.
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Inserting this into (3.13) we find

1

2∆t

∫
R

Ak+1∇uk+1 · ∇uk+1 − 1

2∆t

∫
R

Ak∇uk · ∇uk

+

∥∥∥∥∇ ·Ak∇uk + uk+1

2

∥∥∥∥
2

L2(R)

−
∫
S

hk+1 − hk

∆t
·∆hk+1 − hk

∆t

= −
∫
R

fk0 · ∇ ·Ak∇uk + uk+1

2
+

∫
R

Ak+1 −Ak

2∆t
∇uk+1 · ∇uk+1

−
∫
S

(
hk+1 − hk

∆t
− fk1

)
· f
k+1
2 − fk2

∆t
−
∫
S

fk1 ·∆hk+1 − hk

∆t
.

Multiplication with ∆t and summing up over k = 0, . . . ,K − 1 we find

∫
R

AK∇uK · ∇uK +
∑
k

∥∥∥∥∇ ·Ak∇uk + uk+1

2

∥∥∥∥
2

L2(R)

∆t

+
∑
k

∫
S

∣∣∣∣∂x
(
hk+1 − hk

∆t

)∣∣∣∣
2

∆t ≤ 2‖∇u0‖2
L2(R)

+ 2
∑
k

∥∥∥∥Ak+1 −Ak

∆t

∥∥∥∥
L∞(R)

· ∥∥∇uk+1
∥∥2

L2(R)
∆t

+ C
∑
k


‖fk0 ‖2

0 +

∫
S

[|∂xfk1 |2 + |fk1 |2] +
∥∥∥∥∥f

k+1
2 − fk2

∆t

∥∥∥∥∥
2

−1


∆t.

(3.14)

For the linear interpolant (u, h) of the sequence (uk, hk) we find with (3.4) the
estimate

‖u‖L∞(I;H1(R)) + ‖∂tu‖L2(I;L2(R)) + ‖∂x∂th‖L2(I;L2(S)) ≤ C.(3.15)

It remains to prove spatial regularity properties of h. Since traces of uk are
bounded in the space l∞({0, . . . ,K};H1/2(S)), (3.6) implies the regularity of h. The
improved version of the estimate mimics this argument.

The nonlinearity of the original problem requires the control of the domain in
regular norms. Estimates of higher order can be derived by considering derivatives
of solutions. They satisfy again equations of the type (3.4)–(3.6), and we can apply
Lemma 3.4.

We introduce a notation. As before we write g for the linear interpolant of a set
of functions (gk)k. We will write ∂̄tg for the linear interpolant of the discrete time

derivatives gk−gk−1

∆t . In this way we can use also time derivatives of ∂̄tg; they are

piecewise constant functions with values g
k+1−2gk+gk−1

(∆t)2 . The function ∂̄tg is defined

on the time interval (∆t, T ), and all norms are calculated on that interval.
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Proposition 3.5 (the scheme (CN) with higher regularity). Let the compatibil-
ity assumption, Assumption 3.6, on the initial values be satisfied. Assume that the
coefficient matrices are symmetric and satisfy

sup
k

‖Ak − I2‖C0(R̄) < δ,

∑
k

{
‖∇Ak‖2

H2(R) + ‖∇Ak(., 1)‖2
H2(S)

}
∆t < δ2,

∑
k

{∥∥∥∥Ak+1 −Ak

∆t

∥∥∥∥
2

H1(R)∩L∞(R)

+

∥∥∥∥Ak+1 −Ak

∆t
(., 1)

∥∥∥∥
2

H1(S)

}
∆t < δ2.

(3.16)

On the initial values we assume ‖h0 − 1‖C0,1(S) < δ. Let T > 0 and δ > 0 be small

enough and (uk, hk)k be a solution of scheme (CN). Then the linear interpolant (u, h)
satisfies

‖∂̄t(u, h)‖Y + ‖∂2
x(u, h)‖Y

≤ C1

[‖∇ ·A(0)∇u0 + f0(0)‖H1(R) + ‖∂2
xu0‖H1(R)

]
+ C2

[‖∂̄tf0‖X0 + ‖∂̄tf1‖X1 + ‖∂̄tf2‖X2

]
+ C3

[‖∂2
xf0‖X0 + ‖∂2

xf1‖X1 + ‖∂2
xf2‖X2

]
+ C4δ

[‖f0‖L∞(I;H1(R)) + ‖A‖L∞(I;H2(R))

]
.

(3.17)

The linear interpolant ū of the midpoint values uk+1/2 satisfies additionally the regu-
larity estimate

‖ū‖L∞(I;H3(R)) ≤ C5(c0 + ‖f0‖L∞(I;H1(R)) + sup
k

‖Ak‖H2(R)),(3.18)

where c0 denotes the right-hand side of (3.17).
Proof. The assumptions on A are stronger than those in Lemma 3.4. In particular,

we know that a unique discrete solution exists on a small time interval and that it
satisfies the estimate (3.12).

Part I. Time derivatives. We introduce discrete derivatives

ũk :=
uk − uk−1

∆t
, h̃k :=

hk − hk−1

∆t
(3.19)

for all k = 1, . . . ,K. We now use the definition of (uk, hk) in (3.4)–(3.6). Taking the
equations with index k and subtracting the equations with index k − 1 yields for the
new functions the following set of equations:

ũk+1 − ũk

∆t
= ∇ ·Ak∇ ũk + ũk+1

2
+
fk0 − fk−1

0

∆t

+∇ ·
(
Ak −Ak−1

∆t
∇uk−1 + uk

2

)
,

(3.20)

h̃k+1 − h̃k

∆t
= −ak · ∇

(
ũk + ũk+1

2

)
(., 1) +

fk1 − fk−1
1

∆t

− ak − ak−1

∆t
· ∇

(
uk−1 + uk

2

)
(., 1),

(3.21)

ũk+1(., 1) = −∆h̃k+1 +
fk+1
2 − fk2

∆t
.(3.22)
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We read these equations as follows: (ũk, h̃k)k=1,...,K is a solution of the scheme (CN)

of Definition 3.1 with initial values (ũ1, h̃1). The right-hand side is

f̃k0 :=
fk0 − fk−1

0

∆t
+∇ ·

(
Ak −Ak−1

∆t
∇uk + uk−1

2

)
,

f̃k1 :=
fk1 − fk−1

1

∆t
− ak − ak−1

∆t
· ∇

(
uk + uk−1

2

)
(., 1),

f̃k2 :=
fk2 − fk−1

2

∆t

for k = 1, . . . ,K. We next apply Lemma 3.4 on the sequence (ũk, h̃k)k. We recall
the notation (ũ, h̃) for the linear interpolant of (ũk, h̃k)k and introduce f̃i for the
linear interpolant of (f̃ki )k. Note that the domain of definition is (∆t, T ); on this time
interval we have by Lemma 3.4

‖(ũ, h̃)‖Y ≤ c0‖ũ1‖H1(R) + c1

[
‖f̃0‖X0 + ‖f̃1‖X1 + ‖f̃2‖X2

]
.(3.23)

The discrete time derivatives ∂̄tfi of fi enter the bound (3.17) explicitly. It remains
to estimate the contributions

∇ ·
(
Ak −Ak−1

∆t
∇uk + uk−1

2

)
∈ X0,

ak − ak−1

∆t
· ∇

(
uk + uk−1

2

)
(., 1) ∈ X1.

We find c > 0 such that

∑
k

∥∥∥∥∇ ·
(
Ak −Ak−1

∆t
∇uk + uk−1

2

)∥∥∥∥
2

L2(R)

∆t

≤ c
∑
k

∥∥∥∥Ak −Ak−1

∆t

∥∥∥∥
2

H1(R)

∆t · sup
k

∥∥∥∥∇uk + uk−1

2

∥∥∥∥
2

H2(R)

,

∑
k

∥∥∥∥ak − ak−1

∆t
· ∇

(
uk + uk−1

2

)
(., 1)

∥∥∥∥
2

H1(S)

∆t

≤ c
∑
k

∥∥∥∥ak − ak−1

∆t
(., 1)

∥∥∥∥
2

H1(S)

∆t · sup
k

∥∥∥∥∇uk + uk−1

2
(., 1)

∥∥∥∥
2

H1(S)

.

With the assumptions on A and fi Lemma 3.4 yields for ∂̄t(u, h) = (ũ, h̃) the estimate

‖∂̄t(u, h)‖Y ≤ c0 ‖ũ1‖H1(R) + c1δ sup
k

∥∥∥∥uk + uk−1

2

∥∥∥∥
H3(R)

+ c2,(3.24)

where c2 depends only on the norms of ∂̄tfi.
In order to treat the second term on the right-hand side we now show estimate

(3.18). This is done with the help of the original equation (3.4). The elliptic equation
with the boundary condition (3.5) yields the estimate∥∥∥uk+1/2

∥∥∥
H3(R)

≤ C
(‖fk0 ‖H1(R) + ‖fk1 ‖H3/2(S)

+‖∂̄t(u, h)‖Y + ‖Ak‖H2(R)

)
.
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Here the norm of f1 is controlled by the right-hand side of (3.17). We have ∂̄tf1

bounded in L2(0, T ;H1(S)) and f1 bounded in L2(0, T ;H3(S)). An interpolation
yields an estimate in L∞(0, T ;H3/2(S)) for f1,

sup
k

‖fk1 ‖H3/2(S) ≤ C
{‖∂tf1‖X1

+ ‖∂2
xf1‖X1

}
.

Equation (3.18) is shown.
We now insert (3.18) into estimate (3.24) and find with new constants c0, c1, and

c2,

‖∂̄t(u, h)‖Y ≤ c0 ‖ũ1‖H1(R)

+ c1δ
(‖f0‖L∞(I;H1(R)) + ‖A‖L∞(I;H2(R))

)
+ c2,

(3.25)

where c2 depends only on the norms of ∂̄tfi.
Part II. Spatial derivatives. Estimate (3.25) does not suffice for the analysis

of the nonlinear problem. Note that the best spatial estimate for the boundary so far
is h ∈ Cα(I;H2+1/2). We next want to derive an estimate for h ∈ L∞(I;H4+1/2(S))
to have good control of the regularity of the boundary. This estimate could be derived
from an estimate for u ∈ L∞(I;H3(R)). A similar estimate does appear in (3.18) but
only for interpolants of 1

2 (u
k+uk+1) and not for interpolants of uk. In order to derive

the regularity estimate on h we perform an analysis of second spatial derivatives of
the semidiscrete solution. While we used discrete derivatives in Part I we can now
use classical derivatives. We introduce

ûk := ∂2
xu
k, ĥk := ∂2

xh
k.(3.26)

As in Part I we will use the fact that (ûk, ĥk)k is a solution of scheme (CN) for

an appropriate right-hand side. To be precise, (ûk, ĥk)k satisfies (3.4)–(3.6) with

(fk0 , f
k
1 , f

k
2 )k replaced by (f̂k0 , f̂

k
1 , f̂

k
2 )k, defined by

f̂k0 := ∂2
xf
k
0 +∇ ·

([
∂2
x, A

k
]∇uk + uk+1

2

)
,(3.27) [

∂2
x, A

k
]
w = (∂2

xA
k)w + 2(∂xA

k)∂xw ∀w,

f̂k1 := ∂2
xf
k
1 − [

∂2
x, a

k
] · ∇uk + uk+1

2
,(3.28) [

∂2
x, a

k
] · w = (∂2

xa
k)w + 2(∂xa

k)∂xw ∀w,
f̂k2 := ∂2

xf
k
2 − ∂x

([
∂2
x, γ0

]
∂xh

k
)
,(3.29) [

∂2
x, γ0

]
w =

(
∂2
xγ0

)
w + 2∂xγ0∂xw ∀w,

where we introduced the abbreviation

γ0 =
1√

1 + |h′0|2
3 .

We now use Lemma 3.4. With the notation IK = {0, . . . ,K} and ūk := uk+uk+1

2 we
have to show estimates for

∇∂2
xA
k · ∇ūk, ∇∂xAk · ∇∂xūk,

∂2
xA
k ·∆ūk, ∂xAk ·∆∂xūk ∈ l2(IK ;L

2(R)),

∂2
xa
k · ∇ūk(., 1), ∂xak · ∇∂xūk(., 1) ∈ l2(IK ;H

1(S)),
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and additionally estimates in l2(IK ;H
−1/2(S)) for the discrete time derivatives of the

functions

∂4
xh0 · ∂xhk, ∂3

xh0 · ∂2
xh
k, ∂2

xh0 · ∂3
xh
k.

On the functions of the last line we additionally have to give an estimate in
l∞(IK ;H

1/2(S)) or we use the improved version of estimate (3.12). We use the
latter and see from the original equation (3.6) for hk+1 that we can use C� =
C‖fk2 ‖H2+1/2(S) ≤ C(‖∂2

xf2‖X2
+ ‖∂tf2‖X2

), where C depends only on ‖h0‖H4+1/2(S).
All the above error terms can be estimated by a small multiple of the solution norm
in (3.17). While the other terms can be estimated directly, the most intricate term is
the one containing second derivatives of the trace of derivatives of ūk. It suffices to
estimate for the interpolation

∂2
x∇ū(., 1) ∈ L2(I;L2(S))

by the norms of u and f in (3.17). This estimate can be derived from (3.4) if we
differentiate that equation twice with respect to x. We use ∂t∂

2
xu, ∂

2
xf0 ∈ L2(I;L2(R)),

and, for the boundary condition, ∂t∂
2
xh ∈ L2(I;H1(S)). Elliptic theory yields ∂2

xū ∈
L2(I;H2(R)) and therefore the result.

We can now apply Lemma 3.4 which yields the Y -estimates for ∂2
x(u, h). The

compatibility condition ((3.6) is satisfied for k = −1) holds, since we took only second
derivatives on both sides. Note that without the estimates of the time derivative we
could not have derived the spatial estimates on ū but only estimates on higher x-
derivatives of u.

Part III. The first time step. It remains to control the first discrete time
derivative ũ1 ∈ H1(R) of (3.25) by the first term on the right-hand side of (3.17).
This is done in the subsequent lemma which concludes the proof of the prop-
osition.

Assumption 3.6. We assume that A = A(0) is a Sym(R2)-valued function of
class H3(R), sufficiently close to the identity in L∞(R).

The compatibility conditions for the discrete scheme read

u0(., 1) = −∆h0 + f0
2 ,(3.30)

(∇ ·A∇u0 + f0
0 )(., 1) = ∆(a · ∇u0(., 1)− f0

1 ) +
f1
2 − f0

2

∆t
.(3.31)

Lemma 3.7. Let Assumption 3.6 be satisfied. Then the solution (u1, h1) for the
first time step in scheme (CN) satisfies∥∥∥∥u1 − u0

∆t

∥∥∥∥
H1(R)

≤ C ‖∇ ·A∇u0 + f0‖H1(R)(3.32)

with C independent of ∆t.
Proof. We write ∆ = ∂x(γ0∂x) with γ0 close to 1 in L∞(S). We use a = e2 · A

and study the operator

B :
(u
h

)
�→

( ∇ ·A∇u
−a · ∇u(., 1)

)

defined on

D(B) :=
{
(u, h) ∈ X0|u ∈ H2(R), u(., 1) = −∆h, u(., 0) = 0

}
,
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a subset of the space

X0 :=

{
(u, h)|

∫ 1

0

h = 0

}
⊂ X := L2(R)×H1(S).

On X0 we use the scalar product〈(u
h

)
,

(
û

ĥ

)〉
:=

∫
R

u · û+
∫
S

γ0 ∂xh · ∂xĥ.

Then the operator B is densely defined in X0, it has a compact inverse by Lemma 3.2,
and it is symmetric. By the spectral theorem we find a complete set of eigenfunctions
(σj , ηj) of B; that is,

λjσ
j −∇ ·A∇σj = 0,(3.33)

λjη
j + a · ∇σj(., 1) = 0,(3.34)

σj(., 1) + ∆ηj = 0.(3.35)

In order to have a basis (σj , ηj) of X (and not only on X0) we extend the basis by
eigenfunctions of the form σ(x, y) = U(y), h(x) = 1.

The functions (σj , ηj) can be normalized such that∫
R

σj · σl +
∫
S

γ0 ∂xη
j∂xη

l = δjl.(3.36)

Furthermore, one verifies that all eigenvalues are negative, and orthogonality also
holds with the scalar product∫

R

A∇σj · ∇σl = −λjδjl.(3.37)

This scalar product defines a norm equivalent to theH1-norm by the Poincaré inequal-
ity. We denote the Hilbert space corresponding to the product (v, w) �→ ∫

R
Av·w in the

following by L2
A. We next consider pairs (u, h) =

∑∞
j=1 cj(σ

j , ηj). For (u, h) ∈ D(B)

we can conclude with uN :=
∑N
j=1 cjσ

j that ‖∇uN‖L2
A
≤ ‖∇u‖L2

A
and∥∥∥∥∥∥∇

∞∑
j

cjσ
j

∥∥∥∥∥∥
2

L2
A(R)

=

∞∑
j

|cj |2 |λj |.(3.38)

In particular, if one side in this equality is finite, then the other is also finite.
We now expand the initial values and the right-hand side in terms of eigenfunc-

tions and write

(u0, h0 −∆−1f0
2 ) =

∑
j

aj(σ
j , ηj), (u1, h1 −∆−1f1

2 ) =
∑
j

bj(σ
j , ηj),

(
f0
0 , f

0
1 −∆−1 f

1
2 − f0

2

∆t

)
=
∑
j

dj(σ
j , ηj).

Here ∆−1 denotes any right inverse of ∆. Equations (3.4), (3.5) for the first time step
translate into

bj − aj
∆t

= λj
bj + aj

2
+ dj ∀j ∈ N.(3.39)
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We find

bj =
1

1
∆t − 1

2λj

(
aj

[
1

∆t
+

1

2
λj

]
+ dj

)
.

Therefore

bj − aj
∆t

=
λjaj + dj

1− 1
2λj∆t

.(3.40)

We have to estimate the H1-norm of the function
∑
j
bj−aj

∆t σj by the H1-norm of the

function
∑
j(λjaj + dj)σ

j . We use (3.38) for the following two pairs that are both in
D(B) by the compatibility assumption:(

u1 − u0, h1 − h0 −∆−1(f1
2 − f0

2 )
)
,

(
∇ ·A∇u0 + f0

0 ,−a · ∇u0(., 1) + f0
1 −∆−1 f

1
2 − f0

2

∆t

)
.

We can calculate∥∥∥∥∥∥∇
∑
j

bj − aj
∆t

σj

∥∥∥∥∥∥
2

L2
A(R)

=
∑
j

|λj |
∣∣∣∣bj − aj

∆t

∣∣∣∣
2

≤
∑
j

|λj | |λjaj + dj |2 =
∥∥∥∥∥∥∇

∑
j

(λjaj + dj)σj

∥∥∥∥∥∥
2

L2
A(R)

≤ C‖∇ ·A∇u0 + f0
0 ‖2
H1 .

This concludes the proof.

4. A discretization of the transformed equations. We perform some el-
ementary calculations for the transformation of (2.1)–(2.3) onto a reference do-
main. Our aim is to replace the temperature Θ(t) : Ωt → R by the new unknown
u(t) : R → R. We denote the upper boundary of Ω by Γ and the upper boundary
of R by ΓR = {(x, 1) : x ∈ S}. Given a domain transformation Ψ : Ω → R we use
u ◦Ψ = Θ and, in the calculation below, also v ◦Ψ = ϕ. We define

Bij := ∇jΨi, J := det(B)−1, A := J ·B ·Bt.(4.1)

We see that the equation∫
Ω

∇Θ · ∇ϕ+

∫
Ω

f ◦Ψϕ−
∫

Γ

g ◦Ψϕ = 0 ∀ϕ ∈ C1(Ω)

transforms into ∫
R

(Bt · ∇u) · (Bt · ∇v) J +

∫
R

fv J

−
∫

ΓR

gv
√
1 + |∂xh|2 = 0 ∀v ∈ C1(R).
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We conclude that the equation

∆Θ = f ◦Ψ in Ω, n · ∇Θ = g ◦Ψ on Γ

transforms into

∇ ·A∇u = J f in R, e2 ·A∇u = g
√
1 + |h′|2 on ΓR.

Therefore the physical equations (2.1)–(2.3) transform into

J∂tu+ J∂tΨ · ∇u = ∇ ·A∇u,(4.2)

∂th = −e2 ·A∇u,(4.3)

u|h +∆h = ∆h+ κ(h).(4.4)

The equations formally coincide with (3.1)–(3.3) if we set

f0 := (1− J)∂tu− J (∂tΨ) · ∇u,(4.5)

f1 := 0, f2 := ∆h+ κ(h).(4.6)

We now want to choose a discretization of (4.2)–(4.4). The idea is to define
matrices Ak as in (4.1) and to define fki as in (4.5), (4.6). In order to proceed we
have to define domain transformations Ψk : Ωk → R that we can insert in (4.1). We
define Ψk as the inverse of functions Xk : R → Ωk with

Xk+1(x, y)−Xk(x, y) =
Xk2 (x, y)

hk(x)
(hk+1(x)− hk(x))e2.

We choose an initial parametrization X0 as in Theorem 2.2.
To discretize formula (4.5) we have to discretize ∂tΨ. Since the definition of X is

consistent with the continuous equation

∂tΨ
−1(t, x, y) =

(Ψ−1)2(x, y)

h(x)
∂th(t, x) e2,

we find from ∂t(Ψ ◦Ψ−1) = 0 the continuous equation

∂tΨ(t, ξ, ζ) = −∂ζΨ · ζ
h
∂th(t, ξ).

Because of J = (∂ζΨ2)
−1 the right-hand side of the discrete scheme can be defined

consistently by

fk0 := (1− Jk)
uk+1 − uk

∆t
+
Xk2
hk

hk − hk−1

∆t
∂y
uk + uk+1

2
,

fk1 := 0, fk+1
2 := ∆hk + κ(hk).

(4.7)

In the definition of f0
0 , the first time step, we insert the formal time derivative of h

instead of h
0−h−1

∆t , and we use u0 instead of u
0+u1

2 . To have f2 defined on the whole
time interval we set f0

2 = ∆h0 + κ(h0) ≡ f1
2 . This defines a discrete scheme that is

consistent with (4.2)–(4.4). Note that in the above definition fk0 depends on uk+1.
An assumption concerning the compatibility of the initial values will be needed.

This is not an artifact of the discretization—the same is true for the continuous
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equations. Let (u, h) be a classical solution such that ∂t(u, h) is continuous in t = 0.
We conclude that the formal time derivative ∂̃t(u, h) defined by (4.2) and (4.3) must
satisfy on the boundary the time derivative of (4.4). We will therefore use later on
the following assumption.

Assumption 4.1. We say that the compatibility conditions for the continu-
ous equations are satisfied if for u0 ∈ H3(R) the formal time derivative ∂̃tu0 is in
H1(R) and

u0(., 1)− κ(h0) = 0,(4.8)

∂̃tu0(., 1) + ∆∂̃th0 = 0.(4.9)

Theorem 4.2. Let the initial values (u0, h0) satisfy the compatibility condition
of Assumption 4.1 and let h0 −1 be small in C0,1(S). We consider scheme (CN) with
fki as in (4.7) and Ak defined by (4.1).

Then there exists T > 0 such that the scheme (CN) has a unique solution
(uk, hk)k. The linear interpolants (u, h) of (u

k, hk)k and ū of
1
2 (u

k+uk+1) satisfy the
estimate

‖∂̄t(u, h)‖Y + ‖∂2
x(u, h)‖Y + ‖ū‖L∞(I;H3(R)) ≤ C,(4.10)

where C and T depend only on the norm of the initial values and are independent of ∆t.
Proof. The proof is given in three parts (A)–(C). Part (A) is concerned with the

initial values and their compatibility. In part (B) the crucial estimates on solutions are
derived with the help of Proposition 3.5 on the scheme (CN) with a fixed right-hand
side. In part (C) we show the existence of a bounded solution.

(A) Compatibility of initial values. We want to use Proposition 3.5. In order
to do so, we have to guarantee that the compatibility assumption, Assumption 3.6,
is satisfied. By definition of f0

2 , (3.30) holds. Concerning (3.31) we observe that

f1
2 − f0

2 = 0. In the above scheme the time derivative u1−u0

∆t appears in f0
0 . This in

general changes the compatibility condition for the scheme. However, our construction
imposed J0 = 1 on the upper boundary and therefore

f0
0 (., 1) = −∂̃th(0) ∂yu0(., 1).

Then the discrete compatibility assumption (3.31) coincides with the continuous ver-
sion (4.9).

(B) Improvement of a priori bounds. This part of the proof is based on
estimate (3.17). We use the constant C1 and the first term of the right-hand side of
that estimate and define

C0 := 2C1

[‖∇ ·A(0)∇u0 + f0(0)‖H1(R) + ‖∂2
xu0‖H1(R)

]
.

We will show that given δ > 0 we can choose a small T > 0 and a small a priori bound
for ‖h0 − 1‖C0,1(S) such that for every solution (u, h)

‖∂̄t(u, h)‖Y + ‖∂2
x(u, h)‖Y ≤ 2C0

⇒‖∂̄t(u, h)‖Y + ‖∂2
x(u, h)‖Y ≤ C0.

(4.11)

This is shown in four steps. With a constant C independent of δ and T there
holds the following:

1. ū ∈ L∞(I;H2(R)) is bounded by C.
2. The coefficients Ak defined by (4.1) satisfy (3.16)δ.
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3. The norms of ∂̄tf and of ∂2
xf on the right-hand side of (3.17) are bounded

by Cδ.
4. The norms of f0 ∈ L∞(I;H1(R)) and of A ∈ L∞(I;H2(R)) are bounded

by C.
Once we have shown 1–4, we can choose a new δ > 0 and T > 0 and use Proposition
3.5 to obtain the implication (4.11).

Now consider a solution (u, h) with the bound 2C0 as in (4.11).
1. Regularity of ū. The function f0 is bounded in L∞(I;L2(R)) (see below).

We use the elliptic equation (3.4) for uk+1/2:

∇ ·Ak∇uk+1/2 =
uk+1 − uk

∆t
− fk0 ∈ L2(R).

The boundary condition (3.5) is smooth enough to imply the desired estimate for
supk ‖uk+1/2‖H2(R).

2. Estimates for A. By an interpolation we see that for some α > 0 the
function h is also bounded as

h ∈ Cα(I;H4(S)).

Then the matrix B = ∇Ψ satisfies

B ∈ Cα(I;H3(R)), B(., 1) ∈ Cα(I;H3(S)).

Since H3(R) is an algebra (see, e.g., [2]), the matrix A satisfies estimates in the same
spaces. Choosing T small we immediately infer the first two lines in (3.16).

In order to verify the third line we again use an interpolation: with p > 2 we find
an estimate for

∂th ∈ Lp(I;H3(S)).

This implies an estimate for

∂tB ∈ Lp(I;H2(R)).

Again, ∂tA satisfies estimates in the same space. If necessary we choose a smaller T
in order to infer the third line in (3.16).

We turn to the estimates for fi. The function f1 vanishes identically, and all
estimates are trivial.

3. and 4. Estimates for f0. We first consider the term (1−J)∂tu. The factor
(1− J) is small in L∞(I;L∞(R)) by smallness of h0 in C0,1(S). We use

∂tu ∈ Yu ⇒ ∂2
t u ∈ L2L2 ⇒ ∂t[(1− J)∂tu] ∈ L2L2,

∂2
xu ∈ Yu ⇒ ∂t∂

2
xu ∈ L2L2 ⇒ ∂2

x[(1− J)∂tu] ∈ L2L2,

∂tu ∈ Yu ⇒ ∂tu ∈ L∞H1 ⇒ [(1− J)∂tu] ∈ L∞H1.

These implications together with their corresponding estimates give the desired es-
timate for the first term in f0. Note that the smallness of, e.g., ∂t[(1 − J)∂tu] =
(1 − J)∂2

t u − ∂tJ∂tu follows for the first term by smallness of 1 − J , for the second
term by a compactness argument: ∂tJ ∈ L∞H3/2 and ∂tu ∈ L∞H1 imply (for small
T ) smallness of the second term in L2L2. The estimate of (1−J)∂2

t u is the only place
where we use the smallness of h0.
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The other term of f0 has the regularity properties of ∂̃tΨ · ∇ū. We use step 1
with the estimate for ū ∈ L∞H2. It yields

∂̃tΨ ∈ L∞(I;H2+1/2(R)), ∇ū ∈ L∞(I;H1(R)),

and we find the estimate for f0 ∈ L∞(I;H1(R)). The estimates for ∂tf0 and ∂2
xf0 are

direct. Smallness of the L2(I)-norms follows by the compactness argument.
Estimates for f2. Concerning f2 we have to take special care of the first time

step. However, let us first consider f2 as defined by f1
2 , . . . , f

K
2 : the functions fk2 are

composed from first and second derivatives of h. Remember that the operator −∆h
is the linearization of the mean curvature κ(h) in h = h0. By the 2C0-bound of (4.11)
we can estimate the differences ∂xh−∂xh0 pointwise by a small number (depending on
T ). Then f2 has the form f2 = −κ(h)−∆h = G(∂xh, ∂xh0) · (1, ∂2

xh) with G(0, 0) = 0
and G differentiable. We find the estimate

‖f2‖ ≤ C ε ‖h‖,

where the norms are those of (3.17) and of (4.11), and ε is arbitrarily small for T
small.

Let us now consider the first time step. f0
2 ∈ H2+1/2(S) by Assumption 4.1.

There holds f1
2 −f0

2 = 0, and we find the estimate for the first discrete time derivative
of f2. The second discrete time derivative is

∂̄2
t f2(0) :=

f2
2 − 2f1

2 + f0
2

(∆t)2
=

f2
2 − f1

2

(∆t)2
=

κ(h1) + ∆h1 − κ(h0)−∆h0

(∆t)2
.

We introduce T [∂xh] :=
∂xh√

1+|∂xh|2
to write

∂̄2
t f2(0) = − 1

(∆t)2
∂x

(
T [∂xh

1]− T [∂xh
0]− T ′[∂xh0] · ∂x(h1 − h0)

)
.

We find

‖∂̄2
t f2(0)‖H−1(S) ≤ C

∥∥∥∥∂x(h1 − h0)

∆t

∥∥∥∥
2

L∞(S)

≤ C

∥∥∥∥u1 − u0

∆t

∥∥∥∥
2

H1(R)

.

(C) Existence of a solution—the continuity argument. Note that a time
step of scheme (CN) with f as in (4.7) is still a linear equation for (uk+1, hk+1). We

see that the single time step can always be solved as long as 1− Jk and
Xk

2

hk
hk−hk−1

∆t

are small in L∞. Still, it could happen that on the time interval (0, tk) the solution
has norm less than C0 and on the time interval (0, tk+1) the solution has a norm larger
than 2C0. We will show that this cannot happen.

We connect the initial values (u0, h0) with a continuous path (uλ, hλ)λ∈[0,1] with
the trivial initial values (u1, h1) = 0. This can be done in such a way that (uλ, hλ)
satisfies the compatibility condition for all λ ∈ [0, 1]. If scheme (CN) with f as in (4.7)
and with initial values (uλ, hλ) has a solution on I = (0, T ) we denote this solution
by (uλ, hλ). This family of solutions has the following two properties.

1. Every weak limit limλ→λ0(u
λ, hλ) in the topology of (4.11) of bounded solutions

is again a bounded solution. This follows immediately, since we can take the limit in
all equations.
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2. If (uλ0 , hλ0) is a solution, bounded by C0, then also in a neighborhood (λ0 −
ε, λ0 + ε) of λ0 there exist solutions that are bounded by C0. This follows because
we deal with a fixed (finite) number of time steps. The norm of the solution depends
continuously on λ. In general the norm might exceed the value C0, but we can
achieve that it does not exceed 2C0. Now property (4.11) ensures that the norm
remains bounded by C0.

We combine the above facts 1 and 2 to conclude. The set

{λ ∈ [0, 1]| a solution (u, h)λ exists and ‖(u, h)λ‖ ≤ C0}
is a nonempty (λ = 1 is in the set), closed (by property 1), and open (by property 2)
subset of [0, 1]. Therefore λ = 0 is in the above set, and therefore a solution (u0, h0)
to initial values (u0, h0) exists and satisfies the estimate. This concludes the proof of
the theorem.

Corollary 4.3. Let h0, u0, and T > 0 as in the last theorem. Then, for a
subsequence ∆t → 0, the solutions (uk, hk) converge to solutions of (4.2)–(4.4). In
particular, (2.1)–(2.3) with compatible initial conditions possess a solution on a short-
time interval.

Proof. By the above theorem the solutions (u, h)∆t of the discrete problems
are uniformly bounded. Therefore there exists a subsequence with a weak limit
(u, h). The convergence is strong for u ∈ L2(I;H2(R)) ∩ H1(I;L2(R)) and for
h ∈ L2(I;H5(R)) ∩ H1(I;H3(R)). Because of consistency in the definition of A
and f we can conclude that (u, h) is a strong solution to the transformed equa-
tions (4.2)–(4.4). The transformed solution (Θ, h) is a solution of the original prob-
lem.

5. Proof of Theorem 2.2. Theorem 4.2 yields a stable discretization of the
original equations. The drawback for a use as a numerical scheme is the need to
transform all equations onto a fixed domain. It is more natural to use the operator
splitting scheme (OS). We will prove in this section the stability of scheme (OS) as it
was stated in Theorem 2.2. The proof uses a transformation of the discrete scheme
onto a fixed domain. It will turn out that scheme (OS) is in fact identical to the
scheme (CN) of section 4.

Assumption 5.1. Let n be the normal vector of the initial domain given by h0.
We introduce the formal time derivatives in t = 0 by

∂̃tΘ|t=0 := ∆Θ0,

∂̃th|t=0 := −n−1
2 (n · ∇Θ0) ◦H0.

We impose on the initial values the regularity ∂̃tΘ|t=0 ∈ H1(Ω0) and the compatibility
conditions

Θ ◦H0 = κ(h0),

∂̃tΘ|t=0(x, h0(x)) + ∂2Θ0(x, h0(x)) · ∂̃th|t=0(x) = Dκ(h0)∂̃th|t=0(x).

Proof of Theorem 2.2. We introduce the following functions:

uk := Θk ◦Xk : R → R,

v̄k := vk ◦Xk : R → {0} × R ⊂ R
2,

ũk := Θ̃k ◦Xk.
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We now interpret scheme (OS) as a scheme for (uk, hk). Step 3 of (OS) reads in the
new notation

ũk = uk+1.

We use this identity to write the equations of Step 2 in terms of uk+1. We use the
transformation of section 4 with corresponding Bk, Ak, Jk.

Jk
uk+1 − uk

∆t
= ∇ ·

(
Ak∇uk + uk+1

2

)
(5.1)

+ Jk v̄k · (Bk)t · ∇uk + uk+1

2
in R,

hk+1 − hk

∆t
= −e2 ·Ak · ∇uk + uk+1

2
(., 1) in [0, 1],(5.2)

uk+1(., 1) + ∆hk+1 = κ(hk) + ∆hk in [0, 1].(5.3)

This is nothing but scheme (CN) with the right-hand side

fk0 := (1− Jk)
uk+1 − uk

∆t
− Jk v̄k · (Bk)t · ∇uk + uk+1

2
,

fk1 := 0, fk+1
2 := κ(hk) + ∆hk,

where in the definition of f0
0 the convective term is calculated explicitly. The scheme

is identical to that of section 4, since

Jk e2 · (Bk)t = e2 and v̄k(x, y) =
Xk2 (x, y)

hk(x)

hk(x)− hk−1(x)

∆t
e2.

Theorem 2.2 is a consequence of Theorem 4.2.
Corollary 2.3 follows from the theorem just as Corollary 4.3 followed from Theo-

rem 4.2. Let us demonstrate without referring to section 4 that the scheme is consis-
tent. From (2.9) and (2.5) we conclude

Θk+1 ◦Xk+1 −Θk ◦Xk =
(
∆
Θk + Θ̃k

2

)
◦Xk +

(
v · ∇Θk + Θ̃k

2

)
◦Xk.

In the limit ∆t → 0 we infer

∂t(Θ ◦X) = (∆Θ) ◦X + (v · ∇Θ) ◦X.
This yields the original equation (2.1), since by definition of v in (2.4)

∇Θ · ∂tX(x, y) = ∇Θ ·
(
X2(x, y)

h(x)
∂th

)
e2 = v · ∇Θ.
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