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Abstract. We consider the free boundary problem of a liquid drop with viscosity and surface
tension. We study the linearized equations with semigroup methods to get existence results for
the nonlinear problem. The spectrum of the generator is computed. Large surface tension creates
nonreal eigenvalues, and an exterior force results in a Hopf bifurcation. The methods are used to
study wind-generated surface waves.
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1. Introduction. We consider two examples of a finite mass of viscous fluid
with a free boundary. In contrast to the case of a fixed domain, the fluid is capable of
showing damped oscillations. Due to surface tension the surface area carries potential
energy, and oscillations correspond to an exchange of energy between its kinetic and its
potential form. The time-dependent problem has parabolic and hyperbolic features,
and Beale calls it “mixed in character.” The work at hand contributes to the study
of this dynamical system.

We assume the system to be close to a stationary solution. The theory is written
down for an almost spherical liquid drop but applies also to water in a container with
periodic lateral boundaries. We rewrite the equations in semigroup form; the study
of the generator reveals some nonstandard properties regarding the choice of function
spaces, the spectrum, and the resolvent.

In sections 2–4 we derive an existence theory using the language of semigroup
theory and maximal regularity results. In sections 5–7 we study qualitative proper-
ties of the spectrum of the generator, such as nonreal or (with an external forcing)
imaginary eigenvalues. The two parts interact: the existence theory allows the proof
of a Hopf bifurcation in two examples.

The existence theory begins with a proof that the spectrum of the generator
consists of eigenvalues and is contained in a sector of the complex plane. Therefore,
a natural idea is to apply the semigroup theory for sectorial operators. But the
analysis of the resolvent shows that the problem does not fit into this framework: the
estimates are valid only on a subspace. On the other hand, due to the kinematic
boundary condition, the nonlinearity is always contained in the same subspace. We
show that the methods of semigroup theory can be adapted and derive an existence
result for the linear problem in section 3 and for the nonlinear problem in section
4. The solutions provide differentiable flows on a Banach manifold. This will be the
setting to prove a Hopf bifurcation in section 6.
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Regarding other works, we wish to mention first Beale [2], who studied infinite
domains. He derives the resolvent estimate with the help of Fourier transforms. His
proof is considerably longer than ours, since the infinite domain corresponds to a
continuous spectrum.

Concerning finite domains, we refer to the numerous works of Solonnikov, who
gave the first existence result. He derives estimates with methods from potential
theory, after having transformed the equations in a half-space [15]. We mention a
related article on Hopf bifurcation in a two-phase fluid system by Renardy and Joseph
[13]. In their more physical model the transversal crossing of eigenvalues appears as
an assumption. They do not treat the initial value problem. For a more geometric
approach, see Bemelmans [4] and Wagner [17].

In the second part of this article we prove qualitative properties of the spectrum.
We describe the basic idea for the case where we have only one physical parameter,
a nondimensional surface tension β. We are interested in how an eigenvalue λ of the
operator Lβ depends on β. We do this indirectly. For some function β̃ every complex

number λ is an eigenvalue of the operator Lβ̃(λ). The study of the function β̃ on the

real axis gives us insight into the behavior of λ(β).
In section 5, we see that for vanishing surface tension the spectrum of L consists

of both the Stokes eigenvalues in a fixed domain and the interfacial eigenvalue 0. For
a fixed interfacial eigenmode with increasing β, the first two eigenvalues move towards
each other and must leave the real axis, while the other eigenvalues remain trapped
in fixed intervals.

We use the same general idea in two examples with an exterior force. In section
6, we assume that the liquid drop experiences negative damping. We can count the
eigenvalues inside a ball and prove that if the force reaches a critical strength a pair
of eigenvalues crosses transversally the imaginary axis. Using the existence results,
we can prove a Hopf bifurcation.

In section 7 we apply the idea to a model for the generation of water waves by
wind. A strong wind leads to a Hopf bifurcation. We also gain insight into the shape
of the eigenfunctions for strong wind: two of them show the structure of an ideal fluid;
the other, approximate Stokes eigenfunctions. There are works (e.g., [10], [11]) that
give asymptotic formulas for the eigenvalues for a vanishing exterior force. Our results
confirm their qualitative properties and provide additional mathematical insight and
proofs.

2. The liquid-drop equations. We first collect the nonlinear equations de-
scribing a liquid drop. Let Ω be the subdomain of R3 occupied by liquid. The velocity
field and the pressure within the liquid drop are denoted by u and p, respectively. The
exterior normal vector of ∂Ω is denoted by nΩ; tangential vectors are denoted by τΩ

i .
We use the dimensionless viscosity ν.

The surface tension will become important. The physical quantity is a number
β > 0: if the surface has a mean curvature H(η), then the surface tension creates a
pressure 2βH(η).

We introduce the strain-tensor

(Su)ij =
1

2
(∂iuj + ∂jui)

and the product (Su) : (Sw) :=
∑
i,j(Su)ij(Sw)ij , and we define additionally

Snu := n · Su · n.
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We deal with a free boundary problem. The unknown functions are not only u and
p but also the domain Ω. We assume small perturbations of the unit sphere and
parametrize the surface of the liquid drop with a function η : S2 → R. The domain
occupied by liquid is

Ω(t) = {rξ ∈ R3| ξ ∈ S2, 0 ≤ r < 1 + η(ξ)}.

The velocity field is a function

u(t, .) : Ω(t)→ R3.

In the interior, the following Navier–Stokes equations hold:

∂tu+ (u · ∇)u− ν∆u+∇p = 0,(1)

∇ · u = 0.(2)

The boundary conditions are the geometric condition that η always parametrizes the
surface, the additional pressure created by surface tension, the condition of vanishing
tangential stress, plus initial conditions:

∂tη + (∂ϕη)uϕ + (∂ϑη)uϑ = ur,(3)

p− 2νnΩ · Su · nΩ = 2β H(η),(4)

τΩ
i · Su · nΩ = 0,(5)

(u, η)(t = 0) = (u0, η0).(6)

Equation (3) can be derived by considering a particle at the boundary with position
(r(t), ϕ(t), ϑ(t)) in spherical coordinates using η(t, ϕ(t), ϑ(t)) = r(t).

We will return to these nonlinear equations in section 4. We now give the lin-
earization of the problem in u = 0, η = 0. We replace the domain Ω by the unit ball
B3. nΩ and τΩ

i are replaced by the normal and tangential vectors of the unit sphere,
n(ξ) = ξ and τi. The radial velocity will now be written as un|∂ = n · u|∂ .

The linearization of the mean curvature of ∂Ω = {ξ(1 + η(ξ))| ξ ∈ S2} is denoted
by − 1

2∆η. With the Laplace–Beltrami operator of the sphere ∆B , there holds

∆ = ∆B + 2 · id.

The linearized equations are

u : B3 → R3, p : B3 → R, η : S2 → R,
d

dt
u− ν∆u+∇p = 0,

∇ · u = 0,

d

dt
η = un|∂ ,

(−p+ 2νSnu )|∂ = β∆η,

(τi · Su · n)|∂ = 0.

In the equation for the pressure, we omitted the constant pressure induced by the
surface tension of the unit sphere.

Before we start the analysis of the linearized liquid-drop equations, we collect
some facts concerning the Stokes equation. We write Hr = Hr,2 for Sobolev spaces.
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If the domain is the unit ball B = B3, we often omit this argument: Hr = Hr(B3).
The Stokes operator A : (u, p) 7→ (−ν∆u+∇p,∇·u) is elliptic in the sense of Agmon,
Douglis, and Nirenberg [1] with any of the boundary conditions

u|∂ = 0,

or un|∂ = 0, τ · Su|∂ · n = 0,

or (p− 2νSnu )|∂ = 0, τ · Su|∂ · n = 0.

Solutions to inhomogeneous boundary data have maximal regularity.
We introduce the operator

H : Hr−1/2(S2)→ Hr(B3),

which maps a function to its harmonic extension.
We will use integration by parts in the following form.
Lemma 2.1. For smooth functions u,w : B3 → R3 with ∇ · u = ∇ · w = 0 and

τ · Su · n = 0,

2

∫
B

Su : Sw =

∫
B

{−∆u+∇H(2Snu )} · w.

We now return to the liquid-drop equations. Our aim is to write the linear liquid-
drop equations in the form d

dtx + Lx = 0 and to satisfy the boundary conditions by
the choice of appropriate function spaces.

We start by rewriting the boundary condition for the pressure. The pressure p is
a harmonic function; therefore

p = H(2νSnu |∂)−H(β∆η).

The physical quantities volume, momentum, and angular momentum are conserved.
We use this fact in the definition of the function spaces.

The following point of view is useful: the first eigenspace of ∆B corresponds to
constant functions Φ(x) = a; the second eigenspace, to translations Φ(x) = b · x. The
physical conditions imply that the projection of η onto the first two eigenspaces of
∆B vanishes.

Definition 2.2. Define the Hilbert spaces

Y r :=

{
u ∈ Hr(B3)3|∇ · u = 0;

∫
B3

u = 0;

∫
B3

u ∧ γ = 0 ∀γ ∈ R3

}
,

Xr :=

{
(u, η) ∈ Y r ×Hr+1−1/2(S2)|

∫
S2

η = 0;

∫
S2

n · η = 0

}
,

X̃r := {(u, η) ∈ Xr|n · Su(z) · τ |∂ = 0 ∀τ ∈ TzS2},

and the operator

L : Xr → Xr, X̃r ⊃ D(L) ⊃ X̃r+2

by

L
(
u
η

)
:=

(
−ν∆u+∇H(2νSnu |∂)−∇H(β∆η)

−un|∂

)
.
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Easy calculations show that L maps to X: the liquid drop does not start to move
its center of mass, it does not start to rotate, and it keeps its volume.

The linearized liquid-drop equation reads

d

dt
x+ Lx = 0, x ∈ X̃.(7)

In the case of a pure rotation the integral
∫
B
|Su|2 vanishes without u being a

constant. But in our function spaces a Korn inequality holds: there exists a constant
CK such that for all u ∈ Y

1

CK
‖Du‖2L2 ≤ 2ν

∫
B3

|Su|2 ≤ CK‖Du‖2L2 .(8)

See, e.g., [16]. Here ‖Du‖L2 may be replaced by ‖u‖H1 because the mean of u vanishes.
Definition 2.3 (energy norms). For functions u, v : B3 → R3 and η, σ : S2 → R

we define

〈u, v〉E :=

∫
B

ū · v,

〈η, σ〉E := β

∫
S

(−∆η̄) · σ,〈(
u
η

)
,

(
v
σ

)〉
E

:= 〈u, v〉E + 〈η, σ〉E .

The corresponding norms are denoted by ‖.‖E.
Lemma 2.4 (position of eigenvalues of L). Let (u, η) ∈ X̃2 be an eigenvector of

L with eigenvalue µ. Then

Re(µ)‖(u, η)‖2E = 2ν

∫
B

|Su|2,

Im(µ)‖(u, η)‖2E = 2βIm

(∫
S

un|∂∆η̄

)
.

In the case of Im(µ) 6= 0 the following energy equality holds:

‖u‖2E = ‖η‖2E =
1

2
‖(u, η)‖2E .

Proof.

µ

∥∥∥∥( u
η

)∥∥∥∥2

E

=

〈(
u
η

)
,L
(
u
η

)〉
E

=

〈(
u
η

)
,

(
−ν∆u+∇H(2νSnu )−∇H(β∆η)

−un|∂

)〉
E

=

∫
B

{ū · (−ν∆u+∇H(2νSnu ))}

−
∫
B

ū∇H(β∆η)− β
∫
S

(−∆η̄)(un)|∂

= 2ν

∫
B

|Su|2 + β

∫
S

{un|∂∆η̄ − ūn|∂∆η}.
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This implies the assertion on the real and the imaginary part of µ.
To prove the energy equality we use the second part of the eigenvalue equation,

−un|∂ = µη:

Im(µ)

∥∥∥∥( u
η

)∥∥∥∥2

E

= 2βIm

(∫
S

un|∂∆η̄

)
= 2Im(µ)‖η‖2E .

Using the properties of the Stokes operator one easily proves the following lemma
for β 6= 0.

Lemma 2.5. The operator L−1 : Xr → X̃r+1 is bounded.
We point out that L−1 : X0 → X̃2 is not bounded: let (u, η) solve L(u, η) =

(0, g). A bound for ‖u‖H2 would imply g = un|∂ ∈ H3/2,2(S2). But a priori, only
g ∈ H1/2,2(S2) holds.

The Lumer–Phillips theorem implies the following lemma.
Lemma 2.6. L generates a C0-semigroup in the space XE corresponding to the

energy norms.
We want to split X into a direct sum of L-invariant subspaces (Xn)n∈N according

to spherical harmonics. The functions {ψn,k|n ∈ N, k ∈ {−n, ..., n}} shall span Ψn, the
nth eigenspace of the Laplace–Beltrami operator of S2. We denote the corresponding
eigenvalue by Λn > 0 and the eigenvalue of −∆ by Λn = Λn − 2. Let ν be the
normal vector, ∇T the tangential gradient, and ∇⊥T = ν∧∇ the orthogonal tangential
gradient.

A vector field is in Xn if on any sphere of radius r the function can be represented
by ψn,k ν, ∇Tψn,k, and ∇⊥T ψn,k, k ∈ {−n, ..., n}.

Proposition 2.7. The spectrum of L consists only of eigenvalues which are
contained in a sector

SC := {µ| |Im(µ)| < CRe(µ)}.(9)

Proof. By Lemma 2.5, L has a compact resolvent and therefore a pure point
spectrum. We prove that eigenvalues are contained in a sector SC . Let µ be an
eigenvalue with eigenvector (u, η) ∈ X̃k. If Im(µ) = 0, then µ is contained in any
sector SC . We can therefore assume Im(µ) 6= 0.

We use Lemma 2.4 and the fact that u depends on the radius r like e
√

Λk+|µ| r.

|Im(µ)|
∥∥∥∥( u

η

)∥∥∥∥2

E

= 2β

∣∣∣∣Im(∫
S

un|∂∆η̄

)∣∣∣∣
≤ β

∫
S

|∆η|2 + β

∫
S

|un|∂ |2

≤ |Λk|‖η‖2E + βCT

√
Λk + |µ| ‖u‖2L2(B).

Therefore,

|Im(µ)| ≤ C1|Λk|+ βC2Re(µ).

Using Lemma 2.4 and the Korn inequality yields

Re(µ)

∥∥∥∥( u
η

)∥∥∥∥2

E

= 2ν

∫
B

|Su|2
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≥ 1

CK
‖∇Tu‖2L2

≥ 1

2CK
|Λk|

∥∥∥∥( u
η

)∥∥∥∥2

E

.

The assertion follows with the constant C = 2C1CK + βC2.

3. An estimate for resolvents and the time-dependent problem. In this
section we collect estimates for the resolvent. A first type of estimate concerns solu-
tions (u, η) of (λ−L)(u, η) = (f, 0). Such estimates are known in similar contexts [2],
[13]. We indicate how they can be derived more easily in our case of only one fluid in
a compact domain.

As a corollary, we get a second type of estimate concerning the resolvent on the
full space: we show that L is a sectorial operator.

To solve nonlinear equations, it will be necessary to increase the regularity of the
function spaces. In this section we use X = Xr and X̃++ = X̃2+r with r = 0 or
r = 2.

Theorem 3.1. There exists CR > 0 such that solutions (u, η) ∈ X̃++ of

(λ− L)

(
u
η

)
=

(
f
0

)
with λ ∈ C \ SC satisfy the regularity

‖(u, η)‖X++ ≤ CR‖(f, 0)‖X(10)

and the resolvents estimate

‖(u, η)‖X ≤ CR
1

|λ| ‖(f, 0)‖X .(11)

Proof. We indicate the ideas of the proof. One writes the equation as

λu+ ν∆u−∇H(2νSnu )− 1

λ
∇H(β∆un|∂) = f.(12)

Testing with ∆Bū and taking real and imaginary parts shows that β 1
|λ|
∫
S2 |∆un|∂ |2

and ‖u‖2H2 can be estimated by ‖f‖L2 and |λ|2‖u‖2L2 .
Testing (12) with ū and taking the imaginary part yields

|λ|2‖u‖2L2 ≤ β
∫
S2

ūn∆un + const‖f‖L2 |λ|‖u‖L2

≤ βCc‖u‖1/2L2 ‖u‖3/2H2 + const‖f‖2L2 +
1

2
|λ|2‖u‖2L2 .

This yields the estimates for u. Equation (12) provides the estimates for η.
Corollary 3.2. L is a sectorial operator on Xr+2, r ≥ 0. The spectrum σ(L)

is contained in a sector SC , and with a constant M > 0, for every λ ∈ C \ SC ,

(λ− L)

(
u
η

)
=

(
f
g

)
⇒

∥∥∥∥( u
η

)∥∥∥∥
Xr+2

≤ M

|λ|

∥∥∥∥( f
g

)∥∥∥∥
Xr+2

.
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Proof. Instead of (12),

λu+ ν∆u−∇H(2νSnu )− 1

λ
∇H(β∆un|∂) = f − 1

λ
∇H(β∆g|∂).(13)

For f = 0 Theorem 3.1 yields

‖(u, η)‖Xr+2 + |λ| ‖(u, η)‖Xr ≤ const
1

|λ| ‖g‖Hr+3−1/2(S2)

≤ const
1

|λ| ‖(0, g)‖Xr+2 .

The preceding corollary verifies one of the assumptions in the Hopf bifurcation
theorem of [5]; nevertheless, that theorem cannot be applied since it assumes the
nonlinearity to be of lower order.

Using Theorem 3.1 we can solve the initial value problem with the ideas of semi-
group theory. Unlike in other approaches, this will provide a time-t map for the
nonlinear evolution system. In particular, this tool allows an elementary proof of a
Hopf bifurcation theorem.

Definition 3.3. Let I := [0, T ] be a fixed time interval, T > 0. We introduce
the spaces

Z := Cα(I,X),

Z̃++ := C1,α(I,X) ∩ Cα(I, X̃++).

For the regularity of the initial values we define

DL,α := {x ∈ X| ‖x‖K,α := ‖t 7→ e−tLx‖Z++ <∞}.

As in the semigroup theory, we choose a path of integration Γ in the complex plane
containing SC and write functions in L as integrals over Γ. Following the standard
lines we get the special semigroup estimates

‖e−tL(f, 0)‖X + ‖tLe−tL(f, 0)‖X + ‖(tL)2e−tL(f, 0)‖X ≤ C‖(f, 0)‖X ,
‖L−1e−tL(f, 0)‖X++ + ‖te−tL(f, 0)‖X++ + ‖t2Le−tL(f, 0)‖X++ ≤ C‖(f, 0)‖X .

We can now prove a result of maximal regularity, i.e., solutions of ∂tx+ Lx = F are
in Z++ if F is in Z. The underlying idea is taken from [6], which proves a regularity
result in the case when the resolvent of the generator has optimal regularity properties.

Theorem 3.4. Let F ∈ Z = Cα(I,X) be of the form F =
(

f
0

)
and let

x0 ∈ X̃++ satisfy the compatibility condition

x0 − L−1F (0) ∈ DL,α.

Then the equation

∂tx+ Lx =

(
f
0

)
,

x(0) = x0
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has a unique solution x ∈ Z̃++ bounded by

‖x‖Z++ ≤ C1(T,M,α){‖x0‖X++ + ‖x0 − L−1F (0)‖K,α + ‖F‖Z}.

The compatibility condition is always satisfied:

‖x(t)− L−1F (t)‖K,α ≤ C2(T,M,α) · {‖x0‖X++ + ‖x0 − L−1F (0)‖K,α + ‖F‖Z}.

Proof. One proves that x(.) is in Cα(I,X++) by decomposing x(t) as

x(t) = e−tLx0 +

∫ t

0

e−(t−s)LF (s)ds

= e−tL(x0 − L−1F (0)) + e−tLL−1(F (0)− F (t))

+

∫ t

0

e−(t−s)L(F (s)− F (t))ds+ L−1F (t).

The first term is in Cα(I,X++) by the compatibility condition; for the other terms we
can use the special semigroup estimates. The compatibility condition in t is proved
in a similar manner.

We complete our analysis of the nonstationary equation with a remark about the
size of the space DL,α. The preceding theorem shows that it contains all functions
(u(t), η(t)) that can be reached with solutions starting from 0. It furthermore contains
all smooth functions with appropriate boundary data. By writing e−tLx0 − x0 as a
complex integral one proves, for X = Xr,

{x0 ∈ X̃|Lx0 ∈ X̃r+4} ⊂ DL,α.

Concerning the time-dependent problem, we finally remark that the equations for the
center of mass and rotations can now be solved with one additional integration.

4. The nonlinear liquid-drop equation. We now consider the full free bound-
ary problem. We will need high orders of regularity and set X = X2, X++ = X4. In
this section we do not impose the conditions of vanishing momentum and vanishing
angular momentum and extend L−1 trivially.

The transformation of the equations (1)–(6) to a fixed domain is done in the
standard way, as in Beale [2]. Using the operator L, the transformed equations read

∂t

(
v
η

)
+ L

(
v
η

)
=

(
F (v, η)

0

)
(14)

with the boundary condition

τi · Sv · n = Gi(v, η).(15)

In the case r ≥ 1,

F : Xr+2 → Hr(B3)3, F (0, 0) = 0, DF exists, and DF (0, 0) = 0,

G : Xr+2 → Hr+1− 1
2 (S2)2, G(0, 0) = 0, DG exists, and DG(0, 0) = 0.

We solve the time-dependent problem by means of an iteration. The boundary
condition (15) is satisfied with the help of a function Φ.
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Definition 4.1. For functions gi we define a vector field Φ(g) : B3 → R3 which
has the correct boundary values. With the help of the Stokes operator A we define
Φ(g) : B3 → R3 as the solution of

AΦ(g) = 0 in B3,

Φn(g) = 0 on S2,

τi · SΦ(g) · n = gi on S
2.

We consider new variables, namely,

x̃ = x−
(

Φ(G(x))
0

)
(16)

with inverse x = ξ(x̃). The boundary condition (15) is satisfied if we construct x̃ ∈ X̃.
In the x̃-variable the equations read

(∂t + L)x̃ =

(
F̃ (x̃)

0

)
:=

(
F ◦ ξ(x̃)

0

)
− (∂t + L)

(
Φ ◦G ◦ ξ(x̃)

0

)
,

x̃(0) = ξ−1(x0) = x0 − (Φ ◦G(x0), 0).(17)

We remark that we have a vanishing second component in the right-hand side.
In the following, we impose the conditions that initial values satisfy (5) and that

the formal time derivative at 0 has the appropriate regularity.
Definition 4.2. x0 satisfies the nonlinear compatibility conditions in X++ if

x̃0 := x0 −
(

Φ(G(x0))
0

)
∈ X̃++,(18)

z := x̃0 − L−1(F̃ (x̃0), 0) ∈ DL,α.(19)

Before we state the theorem of local existence and uniqueness, we investigate the
compatibility conditions in more detail. The following proposition states that the
permitted small initial values form a Banach manifold. We will use this fact to prove
a Hopf bifurcation; the idea is taken from Koch [9].

Proposition 4.3. There exists U = Bε(0) ⊂ DL,α and a mapping ζ : U → X++

such that every x0 = ζ(z) satisfies the nonlinear compatibility conditions with small
norms. We denote the manifold ζ(U) by M. ζ can be constructed with Dζ(0) = id.

Proof. We only have to invert the equation (19) with x0 ∈ X̃++. We use the
contraction mapping principle for the map

X̃++ 3 x̃0 7→ z + L−1(F̃ (x̃0), 0) ∈ X̃++.

This yields the fixed point x̃0 = ζ̃(z). We define ζ := ξ ◦ ζ̃.
Theorem 4.4. According to small initial values x0 satisfying the compatibility

conditions, i.e.,

x0 = ζ(z) ∈M, ‖z‖K,α small,

there exists a unique small solution of the nonlinear liquid-drop equation in

Z++ = C1,α(I,X2) ∩ Cα(I,X4).

As a map on the Banach manifold M, the flow is differentiable.
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Proof. We construct the solution with the help of an iteration map T : Z̃++ →
Z̃++. Let (v, σ) ∈ Z̃++ be given. We define f̃ = F̃ (v, σ) and solve

(∂t + L)x̃ = (f̃ , 0),

x̃(0) = x0 − (Φ ◦G(x0), 0) = ζ̃(z)

for x̃ ∈ Z̃++ with the help of Theorem 3.4. Because of DF (0, 0) = 0 and DG(0, 0) = 0,
the solution operator is contracting in a small ball Bε(0) ⊂ Z++ and there exists a
unique fixed point x̃. The function ξ(x̃) is a solution of the nonlinear equation.

We have to take care that in the iteration the right-hand side is contained in the
function space. The condition of vanishing divergence can be assured with the usual
projection. This yields an additional pressure that vanishes at the boundary.

It remains to show the differentiability of the flow x0 7→ x(t) on the manifold, i.e.,
the differentiability of

Φt : x̄0 7→ζ−1x(t) = x(t)− L−1F̃ (x(t)) with

x̄0 = ζ−1(x0) = x0 − L−1F̃ (x0) = x̄0.

We omit the straightforward calculation, proving that the derivative of Φt can be
written as

DΦt : w̄0 7→ (id− L−1 ◦DF̃ |x(t))w(t),

where w(.) solves

(∂t + L)w(.) = DF̃ |x(.) · w(.),

w(0) = w0 = (id− L−1 ◦DF̃ |x(t))
−1w̄0.

5. The spectrum of L. The eigenvalues of L can be calculated explicitly for
β = 0. We investigate the movement of the eigenvalues in the complex plane as
β → ∞. We prove the qualitative behavior that has been observed numerically
(compare [3]).

We will make fundamental use of the fact that the liquid-drop problem has an
O(3) symmetry, in other words, that L is O(3)-equivariant. The group action will be
denoted by *. We use the decomposition X =

⊕
Xn, and we describe the spectrum

on Xn for n ≥ 2.
The nth eigenspace of ∆B , Ψn has the standard basis (ψn,−n, ..., ψn,n) with

ψn,k(θ, ϕ) = Pn,k(cos(θ))eikϕ.

The function Φ0 := ψn,0 has an isotropy subgroup Γ isomorphic to O(2). Any function
ψ : S2 → R can be Γ-symmetrized by

ψ̄(ξ) := −
∫

Γ

γ ∗ ψ(ξ)dγ.

The same can be done with functions v : B3 → R3.
In this and the following section we consider only eigenfunctions (u, η) ∈ Xn

with η = Φ0. This is no restriction since every eigenfunction can be projected and
symmetrized such that the second component is a multiple of Φ0.
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We make constant use of the following observation: given an eigenvalue z of L,
we can construct the eigenfunction (u,Φ0) as the solution of a Stokes problem.

Definition 5.1. By AN we denote the Stokes operator in the space of functions
with vanishing normal component at the boundary. The eigenvalues of AN are de-
noted by {κj}j∈N. The corresponding eigenfunctions with symmetry Γ are denoted by
{uj}j∈N; and the pressure, by {pj}j∈N. Their signs are determined in (24).

For z ∈ C \ {κj |j ∈ N} we define (ũ(z), p̃(z)) as the unique solution of the system

zũ(z) + ν∆ũ(z)−∇p̃(z)= 0,
∇ · ũ(z)= 0,

τ · Sũ(z)|∂ · n= 0,
ũn(z)|∂= −zΦ0.

(20)

The solution has the same symmetry as Φ0, i.e., Γ. In particular, (p̃(z)− 2νSnũ(z))|∂
has the symmetry Γ and is a multiple of Φ0. We define r̃(z) ∈ C by

(p̃(z)− 2νn · Sũ(z) · n)|∂ =: r̃(z)Φ0.(21)

We remark that z ∈ R implies r̃(z) ∈ R.
Any z ∈ C \ {κj |j ∈ N} is an eigenvalue of L with eigenfunction (ũ(z),Φ0) if it

satisfies

r̃(z) = Λkβ.(22)

We remark that the functions ũ(z) and p̃(z) can be computed explicitly in terms of
Bessel functions; this can be used to analyze the function r̃(z) numerically. In the
following, ‖.‖ denotes the L2-norm.

Proposition 5.2 (properties of ũ(z)). ũ(z) is a differentiable family of functions
for z ∈ C \ {κj |j ∈ N}. In κj,

‖ũ(z)‖ → ∞ for z → κj .(23)

The rescaled functions approximate the Stokes eigenfunctions

uj = lim
R3z↗κj

ũ(z)

‖ũ(z)‖ = lim
R3z↘κj

−ũ(z)

‖ũ(z)‖ .(24)

Furthermore,

‖ũ(z)‖ → ∞ for |z| → ∞.(25)

Proof. We define a family of functions (u(z), p(z)) which depends smoothly on z
in a neighborhood of κj by solving

zu(z) + ν∆u(z)−∇p(z) = 0,

∇ · u = 0,

τ · Su(z) · n|∂ = 0, (p(z)− 2νSnu(z))|∂ = Φ0.

The solution is unique; therefore, u(κj) is a multiple of uj . With the notation

un(z)|∂ =: s(z)Φ0,
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s(.) is continuous and s(κj) = 0. (23) is proved by observing

ũ(z) =
−z
s(z)

u(z).

(24) is proved by showing that the function s(.)|R changes sign in κj .
Assume ∂zs(κj) = 0. Then v := ∂zu(κj), q := ∂zp(κj) satisfies the boundary

conditions

τ · Sv|∂ · n = 0, vn|∂ = 0, (q − 2νSnv )|∂ = 0.

Additionally,

κjv + ν∆v −∇q = −u(κj).

Multiplying with u(κj) and integrating yields 0 = −‖u(κj)‖2—a contradiction.
(25) can be proved directly. As the solution of the Stokes system (20), ũ satisfies

an estimate

‖ũ(z)‖H2 ≤ CS {|z| ‖ũ(z)‖L2 + |z| ‖Φ0‖H3/2(S2)}.

We now use ũn(z)|∂ = −zΦ0, a trace formula, and an interpolation to calculate

|z|2‖Φ0‖2L2(S2) = ‖ũn(z)|∂‖2L2(S2)

≤ CT ‖ũ(z)‖2H1

≤ CTCc‖ũ(z)‖L2‖ũ(z)‖H2

≤ CTCcCS‖ũ(z)‖L2{|z|‖ũ(z)‖L2 + |z|‖Φ0‖H3/2(S2)}.

This yields ‖ũ(z)‖2L2 ≥ const · |z|, and the proposition is proved.
Proposition 5.3 (properties of r̃(z)). The function r̃(z) satisfies

r̃(z)→ 0 for R 3 z ↘ 0,
r̃(z)→ −∞ for R 3 z ↗ κj ,
r̃(z)→ +∞ for R 3 z ↘ κj .

(26)

r̃(z) is positive for small z > 0,

∂z r̃(0) > 0.(27)

Between κj and κj+1, there is at most one turning point. Critical values of r̃(z) are
positive.

Proof. The assertion of (26) for z → 0 is trivial. uj satisfies

uj = lim
z↗κj

ũ(z)

‖ũ(z)‖ .

We test the eigenvalue equation of uj with v :=
ũ(κj−ε)
‖ũ(κj−ε)‖ to get

0 = 〈(κj −A)uj , v〉

= 〈uj , (κj −A)v〉 −
∫
S

(pj − 2νSnuj )|∂vn|∂

= ε 〈uj , v〉 −
∫
S

(pj − 2νSnuj )|∂vn|∂ .
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By (24) the first term is positive for small |ε|; the second has the sign of r̃(κj − |ε|).
To prove (27) we consider the functions v := ∂zũ(0), q = ∂z p̃(0). They solve

ν∆v −∇q = 0,

τ · Sv|∂ · n = 0, vn|∂ = −Φ0, (q − 2νSnv )|∂ = ∂z r̃(0)Φ0.

Multiplying this equation with v yields

−
∫
B3

|Sv|2 + ∂z r̃(0)‖Φ0‖2 = 0,

which proves (27).
We claim that turning points of r̃(z), z ∈ R, are the critical points of ‖ũ(z)‖,

z ∈ R. We consider the functions v(z) := ∂zũ(z), q(z) := ∂z p̃(z), which solve

ũ(z) + zv(z) + ν∆v(z)−∇q(z) = 0,(28)

τ · Sv(z)|∂ · n = 0, vn(z)|∂ = −Φ0,

(q(z)− 2νSnv(z))|∂ = ∂z r̃(z)Φ0.

Multiplying (28) by ũ(z) yields

‖ũ(z)‖2 + z∂z r̃(z)‖Φ0‖2 − r̃(z)‖Φ0‖2 = 0,(29)

and differentiating gives

∂z‖ũ(z)‖2 + z∂2
z r̃(z)‖Φ0‖2 = 0.(30)

Consider w := ∂2
z ũ(z0), r := ∂2

z p̃(z0), which solve

2v + κjw + ν∆w −∇r = 0,(31)

τ · Sw|∂ · n = 0, wn|∂ = 0,

(r − 2νSnw)|∂ = ∂2
z r̃(z0)Φ0.

Multiplying (31) with v yields

2‖v‖2 − 〈ũ(z0), w〉+ ∂2
z r̃(z0)‖Φ0‖2 = 0.(32)

Assume there is more than one point with ∂2
z r̃ = 0. By (30) they coincide with critical

points of ‖ũ(z)‖. At least one of them satisfies ∂2
z‖ũ(z)‖2 ≤ 0. This contradicts

equation (32), which implies

∂2
z‖ũ(z)‖2 = 2 〈ũ(z0), w〉+ 2‖v‖2 = 6‖v‖2 > 0.

The last assertion of the proposition follows from (29).
We denote the Stokes operator with boundary condition (p− 2νSnu )|∂ = 0 by AS

and the eigenvalues of AS by {ρj}j∈N.
Theorem 5.4 (the spectrum of L in dependence of β). It holds that

ρ0 < κ0 < ρ1 < · · · < ρj < κj < · · · .

For β = 0 all the eigenvalues of Lβ are real. Denoting them by (µj)j∈N,

µ0 = 0, µj+1 = ρj .
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For small β the eigenvalues stay real. With increasing β the first eigenvalue moves to
the right while the other eigenvalues move to the left. For some β0 > 0 the first two
eigenvalues merge and leave the real axis.

Given a radius k there exists βk > 0 such that for β > βk the following is true.
The norm of nonreal eigenvalues of Lβ is larger than k. Every interval [κj , κj+1] with
κj+1 < k contains one and only one eigenvalue µ(β) of Lβ. This eigenvalue satisfies

µ(β)↘ κj for β →∞.

Proof. The numbers ρj , j ∈ N are the zeros of r̃(z). The shape of r̃ implies
the assertion on the position of the Stokes eigenvalues. For β = 0 we can compute a
complete set of eigenfunctions in Xk: µ0 = 0 with eigenfunction (0,Φ0) and µj+1 = ρj
with eigenfunctions (ũ(ρj),Φ0). By the shape of r̃(z) and (22) the first two eigenvalues
meet at the maximum of r̃ and must leave the real axis. Eigenfunctions (u(β),Φ0) of
Lβ with nonreal eigenvalues µ(β) satisfy the energy equality

‖u‖L2 = βΛk‖Φ0‖2L2(S2).

Therefore, nonreal eigenvalues cannot stay bounded for β → ∞. The shape of r̃
together with (22) prescribes the movement of the real eigenvalues as stated. The
theorem is proved.

Remark 5.5. Eigenvalues leave the real axis with an infinite speed. The qualita-
tive shape of r̃ν(z) is independent of the viscosity ν:

r̃αν(αz) = α2r̃ν(z).

Proof. Eigenvalues leave the real axis in a critical point z0 of r̃, an analytic

function in C \ {κj |j ∈ N}. It holds that ∂Re(r̃(z0))
∂Imz = 0, and (22) implies

Λk =
∂Re(r̃(z(β)))

∂β
=
∂Re(r̃(z))

∂z

∂z

∂β
.

The speed of z(β) gets infinite.
The statement on the shape of r̃ν(z) is proved by multiplying the equation for ũ

by α2:

(αz)(αu) + (αν)∆(αu)−∇(α2p) = 0,

(αu)n|∂ = −(αz)Φ0,

(α2p− 2(αν)Snαu)|∂ = α2r̃ν(z).

By definition of r̃ the last line coincides with r̃αν(αz).

6. A Hopf bifurcation for liquid drops. In this section we show how our
analysis can be used to study the effect of an exterior force. In the previous section,
we achieved a complete picture of the spectrum of L. On a fixed subspace Xk, the
spectrum consists of a countable number of eigenvalues that correspond to eigenvalues
of the Stokes operator and two additional eigenvalues (interfacial eigenvalues) that are
real for small surface tension and nonreal for large surface tension.

Starting from this situation, a Hopf bifurcation can occur if an exterior force
moves the additional eigenvalues across the imaginary axis. We prove this behavior
in the case of a force that preserves symmetry. A more physical force will not preserve
symmetry; we study that case in section 7.
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In this section we assume that the force acts on the surface and that its strength
depends linearly on the position and the speed of the boundary. The symmetric force
has only two parts; the one proportional to η acts as the surface tension, and we
restrict our analysis to a force proportional to ∂tη(x, t) = un|∂ . We introduce the real
number λ for its strength and have the boundary condition

(p− νSnu )|∂ + β∆η = λun|∂ .

We write the linear equations again as

d

dt
x+ Lλx = 0, x ∈ X̃,

now with the operator

Lλ
(
u
η

)
:=

(
−ν∆u+∇H(2νSnu )−∇H(β∆η)−∇H(λun|∂)

−un|∂

)
.

This operator is a lower order perturbation of L; its spectrum consists of eigenvalues
and we have the local existence results as before. The following analogue of Lemma
2.4 holds.

Lemma 6.1. Let (u, η) ∈ X̃2 be an eigenvector of Lλ with eigenvalue µ. Then

Re(µ)‖(u, η)‖2E = 2ν

(∫
B

|Su|2
)
− λ|µ|2‖η‖2L2(S2),(33)

Im(µ)‖(u, η)‖2E = 2βIm

(∫
S

un|∂∆η̄

)
.

In the case of nonreal eigenvalues, Im(µ) 6= 0, the following energy equality holds:

‖u‖2E = ‖η‖2E =
1

2
‖(u, η)‖2E .(34)

Proof. This lemma is proved as Lemma 2.4.
We again want to get a global picture of the position of eigenvalues, now in de-

pendence of the parameter λ. There are two important differences from the previous
section:

— the eigenvalues may have a negative real part and
— the energy equality for eigenvectors implies that nonreal eigenvalues are bounded

independent of λ.
For any z ∈ R+ \ {κj |j ∈ N} we have defined the function ũ(z). The pair (ũ(z),Φ0)

is an eigenfunction of Lλ̃, with λ̃(z) defined by

r̃(z)Φ0 = (p̃(z)− 2νSnũ(z))|∂ = βΛkΦ0 + λ̃(z)zΦ0.(35)

Proposition 6.2 (properties of λ̃(z)). There exists a constant λ0 > 0 such that

|λ| > λ0 ⇒ all eigenvalues of Lλare real ,(36)

λ̃(z)→ −∞ for R 3 z → 0,(37)

λ̃(z)→ −∞ for R 3 z ↗ κj ,(38)

λ̃(z)→ +∞ for R 3 z ↘ κj .(39)
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Proof. Equation (33) implies, for nonreal eigenvalues, |λ| → ∞ ⇒
∫
|Su|2 → ∞

or |µ| → ∞ or |µ| → 0. Therefore, |µ| → ∞ or |µ| → 0. (25) implies ‖u‖ → ∞ or
‖u‖ → 0. This contradicts (34). (37)–(39) follow from λ̃(z) = 1

z (r̃(z)− βΛk).
Theorem 6.3 (the spectrum of L in dependence of λ). For λ < −λ0, all ei-

genvalues of Lλ are real. Denoting the ordered sequence of them by (µj(λ))j∈N, they
satisfy

0 < µ0(λ) < µ1(λ) < κ0, κj < µj+2 < κj+1,

µ0(λ)↘ 0 for λ→ −∞ and

µj+2(λ)↗ κj+1 for λ→ −∞.

For λ > λ0 the ordered eigenvalues satisfy

µ0(λ), µ1(λ) < 0, κj < µj+2 < κj+1,

µj+2(λ)↘ κj for λ→∞.

In a point λ̄ ∈ [−λ0, λ0], a pair of conjugate complex eigenvalues crosses the imaginary
axis transversally. The imaginary axis can be crossed only from right to left.

Proof. Proposition 6.2 implies the assertion for the position of positive real eigen-
values for |λ| → ∞. We have to prove the existence of the pair of negative eigenvalues.
We do this by counting eigenvalues. (25), together with the energy equality (34), im-
plies that nonreal eigenvalues are bounded independent of λ. Let κJ be larger than
this bound. We restrict ourselves to the J + 2 eigenvalues of L−λ0

with norm smaller
than κJ .

For λ → +∞ (and, in particular, λ > λ0) there are J eigenvalues with positive
real part and norm less than κJ . The two remaining eigenvalues must be negative.

To count the eigenvalues, we used the fact that geometric and algebraic multi-
plicity coincide for |λ| → ∞. We now prove this fact.

Assumption. There exist normed functions (u, η), (v, σ) satisfying

L
(
u
η

)
= µ

(
u
η

)
, L

(
v
σ

)
= µ

(
v
σ

)
+ α

(
u
η

)
, v⊥u.

Let p denote the pressure function corresponding to u. We know (u, η) → (uj , 0) for
λ→∞. We define (v0, σ0) = limλ→∞(v, σ). It holds that

−ν∆v +∇H(2νSnv )−∇H(β∆σ + λvn|∂) = µv + αu,(40)

−vn = µσ + αη.(41)

To prove that α is bounded we multiply (40) by uj and integrate to get

α 〈u, uj〉 = 〈−µv − ν∆v +∇H(2νSnv )−∇H(β∆σ + λvn|∂), uj〉

= 〈v, (AN − µ)uj〉+

∫
S2

vn(pj − 2νSnuj )

= (κj − µ) 〈v, uj〉+

∫
S2

vn(pj − 2νSnuj ).

Using η → 0, this implies that α is bounded. Equation (40) implies (v0)n = 0, and
we get, from equation (41), σ0 = 0. With α0 := limα,

(AN − κj)v0 = α0uj ,
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a contradiction to the simplicity of the Stokes eigenvalues.
We now derive explicit equations for the velocity of eigenvalues. We consider a

differentiable family of eigenvalues µ(λ) ∈ C \ R with eigenfunctions (u(λ),Φ0).
We first need an equation for Im〈u, ∂λu〉. We multiply the eigenvalue equation

by ∂λu to get, with the help of ∂λun|∂ = −∂λµ(λ)Φ0,

〈µ(λ)u(λ), ∂λu(λ)〉 = 2ν

∫
B3

Su : S∂λū − (βΛk + λµ(λ))∂λµ̄(λ)‖Φ0‖2L2 .

Taking the real part and using Lemma 6.1 yields

Re 〈µu, ∂λu〉 =
1

2
∂λ

(
2ν

∫
B3

Su(λ) : Sū(λ)

)
−βΛk‖Φ0‖2L2Re(∂λµ(λ))− λ1

2
∂λ|µ(λ)|2‖Φ0‖2L2

=
1

2
∂λ{Re(µ(λ))2βΛk‖Φ0‖2L2 + λ|µ(λ)|2‖Φ0‖2L2}

−βΛk‖Φ0‖2L2Re(∂λµ(λ))− λ1

2
∂λ|µ(λ)|2‖Φ0‖2L2

=
1

2
|µ(λ)|2‖Φ0‖2L2 .

Using Re 〈u, ∂λu〉 = 0, we arrive at

Im 〈u, ∂λu〉 Im(µ) = −1

2
|µ(λ)|2‖Φ0‖2L2 .(42)

Now we differentiate the eigenvalue equation with respect to λ, multiply with ∂λu,
and take the imaginary part:

0 = Im 〈∂λ(−µu), ∂λu〉+ Im 〈−ν∆∂λu+∇∂λp, ∂λu〉
= −Re(∂λµ)Im 〈u, ∂λu〉 − Im(µ)‖∂λu‖2 − Im{∂λ(βΛk + λµ)∂λµ̄}‖Φ0‖2L2 .

Multiplying with 2Im(µ) and inserting (42) yields

Re(∂λµ)|µ|2‖Φ0‖2L2 − 2|Im(µ)|2‖∂λu‖2 = 2Im(µ)Im(µ∂λµ̄)‖Φ0‖2L2 .

On the imaginary axis, Re(µ) = 0, this formula simplifies to

−Re(∂λµ)‖Φ0‖2L2 = 2‖∂λu‖2.

It proves transversality and the direction of the crossing.
The above results lead to a Hopf bifurcation. Due to the restricted regularity,

one has to avoid the implicit function theorem in the proof and use degree theory. It
allows us to replace the assumption of transversality by the following. The eigenvalue
cannot follow the imaginary axis, i.e.,

µ(λ̄) ∈ iR⇒ ∀ε > 0 : Re(µ(λ̄− ε)) > 0, Re(µ(λ̄+ ε)) < 0.(43)

Theorem 6.4. For fixed wave number k0, there exists a critical value for λ such
that a pair of eigenvalues µ± of Lλ are purely imaginary. Assume that there is no
resonance, i.e., the eigenvalues for different k are no integer multiples of µ+. Then
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a Hopf bifurcation occurs and there exists a continuous branch of O(2)-symmetric,
periodic solutions of the nonlinear equations.

Proof. In Proposition 4.3 we parametrized small initial values for the nonlinear
equation over U = Bε(0) ⊂ DL,α with a mapping ζ : U → X4. We want to restrict
ourselves to functions of the prescribed symmetry group Γ ' O(2). We parametrize
small compatible initial values with symmetry Γ over V := U ∩ Fix(Γ) with a map
ζΓ : V → Fix(Γ) ⊂ X4 and consider the flow

Φ : V × R× R 3 (z, t, λ) 7→ ζ−1
Γ x(t)− z ∈ V.

Here x(t) is the solution of the nonlinear equation with parameter λ to the initial
value ζΓ(z). We used the fact that the nonlinear equation preserves the Γ-symmetry.
We want to solve Φ(z, t, λ) = z with nontrivial z. The linearization of Φ in (0, t̄ =

2π
Im(µ0(λ̄))

, λ̄) is

DzΦ : V → V, z 7→ e−Lλ̄ t̄z,

and the kernel of DzΦ(., t̄, λ̄)− id is two-dimensional. One can perform a Liapunov–
Schmidt reduction and solve the bifurcation equation with degree theory.

7. Water waves generated by wind. We analyze a simple two-dimensional
model for a wind-generated instability of a water surface. The wind changes the
pressure along the surface. We assume that the pressure profile follows the sinusoidal
profile of the surface and is shifted by an angle φ. Measurements of Elliott [7] justify
this assumption and give the value of 135◦ for φ.

We mention the two major simplifications of this model: it neglects the tangential
stress, and we linearize about the zero-solution instead of assuming an underlying
shear flow. The method could be extended, but the desirable further development
would be a two-phase model to explore the dependence of the force of the wave
number. For qualitative studies we refer to [12] and references therein.

With a surface elevation η we write the additional pressure as eiφβ∗η. This is
equivalent to saying that we treat the complex surface tension β + eiφβ∗Λ−1

k . We fix
the direction of the wind by setting 0 < φ < π. The eigenvalue equations are

λu+ ν∆u−∇p = 0,(44)

∇ · u = 0,(45)

un|∂ = −λη,(46)

(p− 2νSnu )|∂ = −β∆η + eiφβ∗η.(47)

Every eigenspace is (at least) two-dimensional due to the equivariance under trans-
lations. Choosing η(x) = Φ0(x) = eikx, we select one of the eigenfunctions. On the
other hand, a positive β∗ destroys the symmetry of reflections x 7→ −x. The conjugate
complex of an eigenvalue need not be an eigenvalue for the same η.

Lemma 7.1. For positive β∗ there is precisely one eigenvalue with positive imag-
inary part. The other eigenvalues are below the real axis and have a positive real
part.

Proof. As in section 5 we can write the eigenvalue equation as

r̃(z) = Λkβ + eiφβ∗.(48)

The proof of the lemma is based on the study of r̃ in Proposition 5.3.
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For β∗ = 0 we consider two cases.
Case 1. The surface tension is above its critical value. Then there are two nonreal

eigenvalues with multiplicity 2. Due to the reflection symmetry, they can both be
represented with an eigenfunction with η(x) = Φ0(x).

The function r̃ : R → R was shown to have a negative derivative in the real
eigenvalues. Since the function r̃ is analytic in a neighborhood of the eigenvalue and
β∗ acts like an imaginary component of the surface tension, we conclude that for
small, positive β∗ the eigenvalues get a negative imaginary part.

Case 2. The surface tension is below its critical value. Then the derivative of
r̃ : R → R is positive in the first eigenvalue, negative in all other eigenvalues. The
same reasoning as before proves that for small positive β∗ the first eigenvalue gets a
positive imaginary part, and the other eigenvalues get a negative imaginary part.

In both cases a return to the real axis is not possible for finite β∗ since real
eigenvalues correspond to real surface tension or β∗ = 0.

We derive an equation for λ by testing the eigenvalue equation with (u, η) in the
energy space and using the integration by parts:∫

(−ν∆u+∇p)ū = 2ν

∫
|Su|2 +

∫
∂

(p− 2νSnu )ūn

= 2ν

∫
|Su|2 −

∫
∂

(−β∆η + eiφβ∗η)λ̄η̄.

In analogy to Lemma 2.4, we get

λ{‖u‖2 + ‖η‖2E} = 2ν

∫
|Su|2 + 2iImλ‖η‖2E − eiφβ∗λ̄‖η‖2L2 .(49)

Taking the real part of this equation, we get

Reλ = 0⇒ 0 < Re(e−iφλ)⇒ Im(λ) > 0.

This proves that the eigenvalues with negative imaginary part cannot cross the imag-
inary axis.

The only eigenvalue that can create an instability is the one with positive imagi-
nary part, further denoted by λ+. We turn to an analysis of this eigenvalue.

We know that for eigenvalues λ in a compact subset of C − {κj |j ∈ N} the
corresponding values of β∗ = e−iφ(r̃(λ)− Λkβ) are finite. Therefore, for β∗ →∞,

∃j : λ+(β∗)→ κj

or |λ+(β∗)| → ∞.

We take the imaginary part of (49) and get

Imλ+{‖u‖2 − ‖η‖2E} = −β∗Im(eiφλ̄+)‖η‖2L2 .(50)

Assume that Im(λ+) stays bounded. Then we know |Re(λ+)| → ∞. The left-hand
side of (50) is bounded from below. We conclude that Re(λ+)→ −∞.

The eigenvalue must cross the imaginary axis, by the following lemma.
Lemma 7.2. An eigenvalue λ with |Imλ| → ∞ or Re(λ) → −∞ as β∗ → ∞

satisfies

arg(λ)→ φ± π
2

for β∗ →∞.
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Proof. To prove this proposition we use the explicit formulas for eigenfunctions.
We introduce

v = u− 1

λ
∇p,(51)

which solves λv + ν∆v = 0. With constants A = (A1, A2), B = (B1, B2), P , and Q
we write

p(x, y) = Pekyeikx +Qe−kyeikx,

v(x, y) = Aeµyeikx +Be−µyeikx,

µ2 = k2 − λ

ν
,

where we take µ as the root with positive real part, Reµ→∞.
The incompressibility reads

ikA1 + µA2 = 0, ikB1 − µB2 = 0.(52)

We get an equation for P and Q if we construct

0 = iku1(−h) + µu2(−h)

=
k2

λ
(Pe−kh +Qekh)− kµ

λ
(Pe−kh −Qekh),

which proves that |Q/P | is bounded, and then(
1− Q

P
e2kh

)
=

1

P
(P −Qe2kh)→ 0.(53)

Using u(x,−h) = 0, this implies

B1

|A1|+ |P |
→ 0 and

B2

|A2|+ |P |
→ 0 exponentially in µ.

We use the boundary condition of vanishing tangential stress,

0 = A1µ−B1µ+A2ik +B2ik +
2ik2

λ
(P −Q),

to conclude that

A1µλ

ik2(P −Q)
→ −1.(54)

The boundary condition for the normal stress reads

0 = (P +Q)− 2ν(A2 −B2)µ− 2ν

λ
k2(P +Q)− βΛk − eiφβ∗.

Collecting the dominant terms yields

P +Q

β∗
→ eiφ.(55)
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The kinematic boundary equation is

A2 +B2 +
k

λ
(P −Q) = −λ.

Using (54), this implies

k

λ2
(P −Q)→ −1.(56)

Combining (53), (55), and (56) gives

λ2

eiφβ∗
→ −k 1− e−2kh

1 + e−2kh
.(57)

Remark 7.3. The basic idea in the above proof was to show that the dominat-
ing term in the stress equation is the pressure. In this sense the following formal
calculation for infinite height and vanishing viscosity is justified:

∆p = 0, p|∂ = eiφβ∗η, u =
1

λ
∇p,

−λη = un|∂ =
1

λ
∂np =

k

λ
eiφβ∗η.

Remark 7.4. To reduce the formula to the case of vanishing wind but variable
surface tension T , one can insert β∗ = ΛkT = k2T to get the asymptotic formula

(−iλ)2 = Tk3 1− e−2kh

1 + e−2kh
.(58)

Formulas that include the viscous effect and give a similar expression for the real part
of λ can be found in [11].

In this example it is not easy to prove transversality of the crossing. On the other
hand, we can easily verify property (43). If the eigenvalue followed the imaginary axis
then e−iφr̃(z) were real on an interval of the imaginary axis. By analyticity, it would
be real on the whole of the imaginary axis, which contradicts the last lemma.

With the proof of the last section we arrived at the following theorem.
Theorem 7.5. Assuming the nonresonance condition, for some critical value of

β∗ a Hopf bifurcation occurs and periodic solutions of the nonlinear evolution equations
exist.

We remark that the constructed solution is a propagating wave but not necessarily
a travelling wave.
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