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Abstract

Security in information systems aims at various, possibly conflicting goals, two of which
are availablility and confidentiality. On the one hand, as much information as possible
should be provided to the user. On the other hand, certain information may be confidential
and must not be disclosed. In this context, inferences are a major problem: The user might
combine a priori knowledge and public information gained from the answers in order to
infer secret information.

Controlled Query Evaluation (CQE) is a dynamic, policy-driven mechanism for the
enforcement of confidentiality in information systems, namely by the distortion of certain
answers, by means of either lying or refusal. CQE prevents harmful inferences, and tries
to provide the best possible availability while still preserving confidentiality. In this thesis,
we present a framework for Controlled Query Evaluation in incomplete logic databases.

In the first part of the thesis, we consider CQE from a declarative point of view. We
present three different types of confidentiality policy languages with different simplicity
and expressibility – propositional potential secrets, confidentiality targets, and epistemic
potential secrets – and show how they relate to each other. We also give a formal, declar-
ative definition of the requirements for a method protecting these types of policies. As it
turns out, epistemic potential secrets are the most expressive policies of the three types
studied, so we concentrate on these policies in the second part of the thesis.

In that second part, we show how to operationally enforce confidentiality policies based
on epistemic potential secrets. We first present an abstract framework in which two pa-
rameters are left open: 1. Does the user know the elements of the confidentiality policy?
2. Do we allow only refusal, only lying, or both distortion methods? For five of the six
resulting cases, we present instantiations of the framework and prove the confidentiality
according to the declarative definition from the first part of the thesis. For the remain-
ing case (combined lying and refusal under unknown policies), we show that no suitable
enforcement method can be constructed using the naive heuristics.

Finally, we compare the enforcement methods to those constructed for complete
databases in earlier work, and we discuss the properties of our algorithms when relax-
ing the assumptions about the user’s computational abilities.
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1 Introduction

1.1 Confidentiality, Availability and the Inference Problem

Security in information systems aims at various goals, two of which are availability and
confidentiality. On the one hand, the information system should make its contents available
to its users, in a way that the users can request and receive the desired information. On
the other hand, part of the information might be confidential : It must not under any
circumstances be disclosed to certain users.

Trivially, these two requirements are conflicting: An information system cannot provide
full availability when, at the same time, certain information may not be passed to the user.
The goal is to design the information system in a way that as much non-secret information
as possible is made available to the user, while any confidential information is kept secret.

A common approach to this problem is the use of access control : The administrator
assigns static access rights to the particular instances of the data structures within the
information system, e. g., to the tables of a relational database system. The access rights
are then checked whenever a user tries to access these data structures. This approach is
very cheap in terms of complexity, as it can usually be implemented by means of simple
table look-ups. Nevertheless, static access control bears some problems, in particular the
inference problem.

To illustrate the inference problem, imagine an information system in which a company
keeps a list of its employees and their salaries. Furthermore, assume that a certain user
must not find out the salary of a particular person. However, the user could issue the
following queries:

• “What is Alice’s position?” — Answer: “Manager.”

• “How much is a manager’s salary?” — Answer: “$50,000.”

Obviously, the user has never explicitly queried Alice’s salary. Neither answer – “Alice
is a manager.”, and “A manager’s salary is $50,000.” – reveals any secret information.
However, one can combine the two answers, and the (meta) knowledge that all managers
have the same salary, and figure out that Alice’s salary must in fact be $50,000.

As the example demonstrates, harmful inferences can originate from two sources: the
public data retrieved from the information system, and the meta data, for example seman-
tic constraints on the actual data (in the example above, the fact that all managers have
the same salary).

The inference problem was first identified and studied in the context of statistical
databases, which contain data about a group of people or objects, and allow to issue
aggregate queries on this data, e. g., the sum or average of some data value wrt. some
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1 Introduction

group of objects. For example, a user could query the average salary of all female employ-
ees of a given department. However, if the user knows that there is exactly one female
among this group, he can easily determine the exact income of that person. For an in-
troduction to the inference problem in statistical databases, see [19, 21, 27]. More recent
work can be found in e. g. [34, 35, 37].

Extensive studies have also been performed in the context of secure multilevel databases.
In these databases, each piece of data is assigned a security level (classification), for exam-
ple “public”, “confidential” or “secret”. Each user is assigned a similar level (clearance),
and he may only read data classified at or below this level. For example, a user cleared
as confidential may only access confidential and public data, but no secret data. This is
also called mandatory access control (MAC). Harmful inferences occur when, e. g., secret
data can be deduced by combining public and confidential data. A common technique
is to selectively upgrade the classification of certain pieces of information until no such
inferences are possible anymore. For the inference problem in secure multilevel databases,
see e. g. [18, 19, 20, 26, 29, 30, 32, 36].

A good overview of the respective approaches to inference problem in various contexts
can be found in [23]. That paper also gives some hints about modern fields of research
like data mining and web services.

All of the aforementioned approaches consider a particular data model. In contrast,
the purpose of this thesis and the related research is to study the inference problem
from a more fundamental point of view, thereby understanding the requirements and
techniques applicable to any kind of information system. This is achieved by considering
logic databases, in which all data and queries are modelled by means of some underlying
logic. At first glance, logic databases are of rather low interest for real-world applications.
However, most kinds of information systems can be regarded as a special case of a logic
database. For example, the relational data model can be described as a logic database
using first-order logic.

1.2 Controlled Query Evaluation

In this thesis, we study a concept named Controlled Query Evaluation, which was first
proposed by Sicherman et al. [31] and Bonatti et al. [16], respectively, and later further
investigated by Biskup [1] and Biskup and Bonatti [2, 3, 4, 5, 6]

Controlled Query Evaluation is a policy-driven, dynamic approach to the above outlined
problem of confidentiality and inferences. Policy-driven means that the administrator
specifies a confidentiality policy which determines the information to be kept secret. This
is differs from traditional access control, where the access rights are assigned to the data.
This confidentiality policy is then enforced dynamically by checking each query and answer
for a possible violation, and distorting the answer in case it is considered dangerous. We
consider two types of distortion:

• Lying: An answer different from the original query value is returned.

• Refusal: No (real) answer is returned at all.
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1.3 Incomplete Logic Databases

In particular, Biskup and Bonatti consider closed (yes/no) queries to complete databases
under three parameters:

1. Two types of confidentiality policies:

• Potential secrets (a single sentence is protected).

• Secrecies (the actual truth value of some sentence is protected).

2. Two possible assumptions about the awareness of the user:

• The user knows the elements of the confidentiality policy.

• The user does not know the elements of the confidentiality policy.

3. Three different distortion policies:

• Uniform lying (lies may be returned, but no answer may be refused).

• Uniform refusal (answers may be refused, but no lies may be returned).

• Combined lying and refusal (both distortions method may be applied).

All of the resulting twelve cases were studied by the authors. For nine of these cases,
algorithms were specified and proved to preserve confidentiality. For one case (uniform
lying under known secrecies), it was shown that there is no algorithm capable of preserving
confidentiality under these parameters. For the remaining two cases (combined lying and
refusal under unknown potential secrets or secrecies, respectively), no suitable algorithms
could be identified which exploit the fact that the user does not know the elements of the
confidentiality policy; however, the algorithms for the “known policy” can be employed
instead. The results for closed queries to complete databases are summarized in [5].

Further aspects of Controlled Query Evaluation which have been studied so far in-
clude: open queries within a decidable first-order sub-model [7, 8], pre-processing of static
“inference-proof” database instances [9, 14, 15], and the correlation with traditional access
control in relational databases [10, 11].

1.3 Incomplete Logic Databases

This thesis presents a framework for Controlled Query Evaluation in incomplete logic
databases. An incomplete database is an information system in which some information
might be missing, and which thus might not be able to provide an answer to each query.

A logic database is an information system in which any data and queries are expressed
by the means of some underlying logic. In particular, a closed query Φ can be expressed
as a sentence of that logic, and database instances can be expressed in one of three ways:

Model-theoretic approach The database instance corresponds to a structure or interpre-
tation I of the underlying logic. The value of a closed query Φ in a database instance
I is true if I is a model of Φ. Otherwise, the value of Φ is false.

Proof-theoretic approach with closed world assumption The database instance is a con-
sistent set Σ of sentences of the underlying logic. The value of a closed query Φ in
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1 Introduction

a database instance Σ is true if Σ logically implies Φ. Otherwise, the value of Φ is
false.

Proof-theoretic approach with open world assumption The database instance is a con-
sistent set Σ of sentences of the underlying logic. The value of a closed query Φ in
a database instance Σ is true if Σ logically implies Φ, and the value is false if Σ
logically implies ¬Φ. Otherwise, the value of Φ is undefined.

In this thesis, we rely on the latter formalization, which is a suitable approach when mod-
elling incomplete logic databases. Moreover, we restrict our considerations to propositional
logic, and we define database schemas and instances as follows:

Definition 1.1 (Database schema). A database schema DS is a finite set of propositions.

Definition 1.2 (Database instance). A database instance db over the database schema
DS is a consistent set of propositional sentences, using only propositions from DS.

Query evaluation can then be performed by the means of logical implication:

Definition 1.3 (Queries and ordinary query evaluation). A query Φ on the database
schema DS is a propositional sentence, using only propositions from DS. A query Φ is
evaluated in the database instance db by the function

eval(Φ)(db) :=











true if db |=PL Φ,

false if db |=PL ¬Φ,

undef otherwise,

(1.1)

where |=PL denotes logical implication in propositional logic.

In general, we assume that the user does not issue a single query but a sequence of
queries, which are answered sequentially one by one:

Definition 1.4 (Query sequences). A query sequence Q on the database schema DS is a
finite sequence of queries 〈Φi, . . . ,Φn〉 on DS. It is evaluated in the database instance db
by the function

ord eval(Q, db) = 〈ans1, . . . , ansn〉

with

ansi := eval(Φi, db) ∈ {true, false, undef}.

Previous work on complete databases remains fairly abstract and considers Controlled
Query Evaluation for “some [suitable] logic” [5]. In the present thesis, however, we decided
to explicitly consider propositional logic, for a number of reasons:

• Simplicity: This thesis aims at studying the fundamentals of inference control in in-
complete databases. It is favorable to base the investigations on a simple framework,
bearing in mind that it might be easily adapted to other logics.
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1.4 Outline of this Thesis

• Modality: In order to specify confidentiality policies, and to keep track of the infor-
mation disclosed to the user, we introduce a modal operator K and use the well-
known concept of epistemic modal logic (S5). Propositional modal logic has been
studied very well, but we would need to take a closer look at the desired properties
if we applied modal logic to other logics, which should not be the topic of this thesis.

• Efficiency and decidability: Our framework relies on logical implication, which is
not decidable for many logics, including first-order logic. We could not implement
these concepts without restricting those logics to a decidable fragment.

Considering other logics, or determining the exact requirements for the underlying logic,
could be the topic of future work. See the conclusion for further comments.

Example 1.5. We illustrate these concepts by a running example, which will be picked
up several times in the remainder of this thesis. Imagine a medical information system
storing information about a (single) sick person, in particular the symptoms he is suffering
from, and the diagnosed diseases. To keep the example simple, imagine that we have three
different possible symptoms s1, s2 and s3, and the diseases aids, cancer and flu, formalized
by the database schema

DS := { s1, s2, s3, aids, cancer, flu }. (1.2)

We consider a particular situation: The person suffers from both symptoms s1 and s2.
However, it is not known whether the person also suffers from symptom s3, perhaps
because a required examination has not yet been performed. Furthermore, assume that
the person suffers from aids but not from flu, while it is not known whether he also suffers
from cancer.

db := { s1, s2, aids, ¬flu } (1.3)

Accordingly, we have, e. g., eval(aids)(db) = true, eval(flu)(db) = false and
eval(cancer)(db) = undef. We can also issue and evaluate more complicated queries, e. g.,
eval(s1 ∧ (aids ∨ cancer))(db) = true.

1.4 Outline of this Thesis

This thesis consists of two parts.
In Part I, “Declarative Layer”, we study Controlled Query Evaluation from a declar-

ative point of view. In particular, we present three different policy languages which can
be used to formalize the confidentiality policy: propositional potential secrets (Chap-
ter 2), confidentiality targets (Chapter 3) and epistemic potential secrets (Chapter 4).
These policy language have different strength in terms of syntactical simplicity and ex-
pressiveness. Propositional potential secrets are the easiest but also the least expressive
language; confidentiality targets are more powerful, and also simple to handle, but still
lack certain expressiveness; epistemic potential secrets is the most sophisticated policy
language, although the use of modal logic might make life harder for the administrator.
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1 Introduction

For each language, we present a declarative definition of confidentiality. We also show
how propositional potential secrets can be converted into confidentiality targets, and how
confidentiality targets can be converted into epistemic potential secrets, and under which
circumstances a reduction is possible, i. e., which properties an enforcement method must
satisfy in order to safely handle the converted policies while still preserving confidentiality
wrt. the original policy language.

In Part II, “Operational Layer”, we consider epistemic potential secrets (as the most
expressive policy language, and basis for the above mentioned reductions) and develop
an operational framework for Controlled Query Evaluation. The framework is given in
Chapter 5; however, some gaps are left open which need to be filled according to two
parameters: 1. Does the user know the elements of the confidentiality policy? 2. Do we
only allow refusal, or only allow lying, or allow both distortion methods?

In Chapter 6, we first consider the “known policy” case, and we present four instanti-
ations of our framework: uniform lying, uniform refusal, uniform refusal with improved
availability, and combined lying and refusal. For each case, we prove that the resulting
enforcement method satisfies the declarative confidentiality definition from Chapter 4.

Chapter 7 examines how the algorithms can be relaxed if we assume that the user
does not know the elements of the confidentiality policy. For uniform lying and uniform
refusal, it is possible to establish an adapted algorithm which provides higher availability.
For combined lying and refusal, such an algorithm could not be identified.

In Chapter 8, we take a closer look at the algorithms from Chapters 6 and 7 with regard
to certain special cases. In particular, we examine how our algorithms operate on database
instances which happen to be complete, and we point out similarities to the algorithms
for complete databases from [5]. We also consider the case that the user is not a powerful
reasoner as is assumed by the confidentiality definition.

We finally conclude in Chapter 9, summarizing the results and pointing out open ques-
tions and starting points for future work.

1.5 Previous Publications

Parts of this thesis have been published as a journal article and a conference paper.
The framework for the enforcement of potential secrets was first published in [13]. Al-

though that paper only considers propositional potential secrets, the algorithms and proof
ideas are similar to those found in this thesis. That paper also presents enforcement meth-
ods for known potential secrets (found in Chapter 6 of this thesis), and a comparison of
that methods with the corresponding algorithms for complete information systems, which
is picked up and further elaborated in Section 8.1 of this thesis.

The concept of confidentiality targets, found in Chapter 3 of this thesis, was introduced
in [12]. That paper also proposes the use of epistemic potential secrets and shows the
reduction from confidentiality targets from epistemic potential secrets. The requirements
for a successful reduction stated in that paper are implicitly contained in the confidentiality
definition for epistemic potential secrets found in this thesis (Definition 4.27).
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1.6 Contribution to Joint Work

1.6 Contribution to Joint Work

The two publications [12] and [13], on which this thesis is based, are co-authored by
my advisor Joachim Biskup. His contribution comprised joint exploration of potential
approaches, ongoing discussions, proof-reading and general advisory. All elaborations in
that papers, including the proofs and the writing, are my original work.
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Declarative Layer
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2 Policies Based on Propositional Potential
Secrets

Controlled Query Evaluation dynamically protects confidentiality according to some con-
fidentiality policy specified by the administrator. A suitable policy language is needed for
the specification of this policy. In this chapter, and in the following two chapters, we will
present three different policy languages: propositional potential secrets, confidentiality
targets, and epistemic potential secrets. These languages vary in terms of expressiveness
and syntactical simplicity. Basically, we have a trade-off between these two properties:
the language with the most simple syntax is least expressive, and vice versa.

For each language, we formally introduce CQE methods as functions, and specify an
associated notion of confidentiality wrt. these functions. However, we remain on a purely
abstract, declarative level: At this stage, we do not specify a concrete implementation of
these functions. This is done in the second part of this thesis.

2.1 Confidentiality Policies

The first policy language that is subject to our study propositional potential secrets. For-
mally, a propositional potential secret is nothing but a propositional sentence, and a
confidentiality policy is a set of potential secrets.

Definition 2.1 (Propositional potential secret). A propositional potential secret is a
propositional sentence ψ. We also say simply potential secret when the context is clear
and confusion with epistemic potential secrets (introduced in Chapter 4) is unlikely to
occur.

Definition 2.2 (Confidentiality policy based on propositional potential secrets). A con-
fidentiality policy based on propositional potential secrets is a set policy = {ψ1, . . . , ψm} of
propositional potential secrets.

The semantics of a potential secret ψ, as formally given in Definition 2.8 below, can
be summarized as follows: In case ψ is true in the actual database instance db, the user
may not infer this fact. Otherwise, if ψ is false or undef in db, this information may be
disclosed. In other words, it must, at any time, appear possible to the user that ψ is not
true in the actual database instance.

A common use case for potential secrets may be sentences like “person X suffers from
aids”: If the person does suffer from aids, this information must be kept secret. On the
other hand, if the person is healthy, this information may be disclosed.

11



2 Policies Based on Propositional Potential Secrets

Example 2.3. We pick up the scenario given in Example 1.5. Imagine the person under
consideration applies for an employment. In case he suffers from a terminal disease – aids
or cancer –, this fact must be kept secret (as it might be an obstacle for being chosen
for the job). On the other hand, if the applicant is healthy, this information may be
disclosed. The sentences “the person suffers from aids” and “the person suffers from
cancer”, respectively, can be formalized as potential secrets:

policy := { aids, cancer } (2.1)

Note that the confidentiality policy is defined independently from the actual truth values
in the database instance. In the instance db from our running example (cf. Example 1.5),
aids is actually true (which must be kept secret), while cancer is undefined (which may
be disclosed).

This concept of potential secrets can also be found in the work on complete databases [5].
In fact, the syntactical and semantical definition is identical – except for the fact that, in
complete databases, “is not true” implies “must be false”, while for the case of incomplete
databases, this information implies “must either be false or undef ”. Accordingly, the
confidentiality definition for complete databases demands that the value false appears
possible to the user, while in this thesis, we allow false or undef to appear possible.

2.2 Declarative Confidentiality

In Definition 1.4, we have introduced the ordinary query evaluation function ord eval
which transforms a sequence Q of queries and a database instance db into a corresponding
sequence of (undistorted) answers. Accordingly, we can formally define a method for
Controlled Query Evaluation as a function cqe, which also returns an answer sequence,
but which has two additional parameters:

1. The confidentiality policy policy.

2. The user’s a priori assumptions prior.

This latter parameter allows us to account for facts the user might know in advance,
for example semantic constraints which hold in the database instance db. The a priori
assumptions are expressed in the same language as the confidentiality policy:

Definition 2.4 (A priori assumptions). The user’s a priori assumptions is a set prior of
propositional sentences.

Example 2.5. Assume the following information to be publicly known: Anybody with
symptom s1 suffers from aids or flu; symptom s2 is a safe indicator that you do not have
flu; if you have symptom s2 but not symptom s3, you suffer from cancer ; symptom s3
means that you have aids.

prior := { s1 → aids ∨ flu, s2 → ¬flu, (s2 ∧ ¬s3) → cancer, s3 → aids } (2.2)

12



2.2 Declarative Confidentiality

Given these considerations, we can now specify a formal definition for CQE methods.

Definition 2.6 (CQE method for propositional potential secrets). A CQE method for
propositional potential secrets is a function

cqe(Q, db, prior, policy) = 〈ans1, . . . , ansn〉

with

ansi ∈ {true, false, undef, refuse},

where Q is a query sequence, db a database instance, prior the user’s a priori assumptions,
and policy a confidentiality policy, given as a set of propositional potential secrets.

Each method cqe goes along with a function

precondition(db, prior, policy) ∈ {true, false}

which defines the admissible arguments for cqe. The precondition allows the CQE method
to reject certain arguments, for example when one of the potential secrets already follows
from the a priori assumptions and thus cannot be protected at all.

Unlike ordinary query evaluation, a CQE method may choose to return an answer
ansi which does not correspond to the original query value eval(Φi)(db). When ansi =
refuse, we say that the answer was refused. When ansi ∈ {true, false, undef} but ansi 6=
eval(Φi)(db), we say that a lie was given. This leads to the following classification of CQE
methods which we use throughout this thesis (also for CQE methods concerning the other
kinds of policy languages studied in the following chapters).

Definition 2.7 (Classification of CQE methods). CQE methods can be classified wrt.
the distortion methods employed:

• A CQE method which possibly issues lies but does never refuse an answer is called
a uniform lying method.

• A CQE method which possibly issues refusals but does never lie is called a uniform
refusal method.

• A CQE method which possibly issues both lies and refusals is called a combined lying
and refusal method.

In the previous section, we have already outlined the idea of our declarative notion of
confidentiality: Given a potential secret ψ, it must appear possible to the user that ψ is
false or undef in the actual database instance db. With the means of the cqe function, we
can specify a formal definition for this property:

Definition 2.8 (Confidentiality for propositional potential secrets). Let cqe be a CQE
method for propositional potential secrets with precondition as its associated precondition
for admissible arguments. cqe is defined to preserve confidentiality iff
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2 Policies Based on Propositional Potential Secrets

for all finite query sequences Q,
for all instances db,
for all sets of potential secrets policy,
for all potential secrets ψ ∈ policy,
for all a priori assumptions prior
so that (db, prior, policy) satisfies precondition,
there exists an instance db′ and a set policy′ of potential secrets
so that (db′, prior, policy′) satisfies precondition
and the following two conditions hold:

(a) [(db, policy) and (db′, policy′) produce the same answers]
cqe(Q, db, prior, policy) = cqe(Q, db′, prior, policy′)

(b) [ψ is not true in db′]
eval(ψ)(db′) ∈ {false, undef}

In case the user is assumed to know the elements of policy, we additionally
demand that

(c) [same policy]
policy = policy′.

Remember that this definition is purely declarative. It does not give any hint on how
to implement this kind of function.

2.3 Benefits and Limitations

With regard to syntax, the language of propositional potential secrets is the most simple
policy language presented in this thesis. In particular, using propositional logic for policy
and prior bears two advantages:

1. The database instance is given in propositional language as well. Thus, the same
language is used for db, policy and prior.

2. Policies based on potential secrets designed for complete databases as specified in
[5] can be reused for incomplete databases without modification – however, a slight
difference in the confidentiality definition must be noted: we do not consider the
value undef dangerous.

In the following, we investigate a number of disadvantages going along with the use of
propositional potential secrets.

undef cannot be protected

Due to the lack of expressiveness, it is not possible to protect information like “ψ is undef
in the actual database instance”.
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2.3 Benefits and Limitations

Disjunctions cannot be protected

Likewise, it is not possible to protect information like “ψ is either true or false, but not
undef ”. Naively, one would try to construct a potential secret ψ ∨ ¬ψ, however, this is a
tautology in propositional logic.

Limited emulation of “secrecies”

For complete information systems, a second type of confidentiality policies has been inves-
tigated: secrecies [5]. Syntactically, a secrecy is a pair (ψ,¬ψ) of propositional sentences.
Semantically, the user may not infer which of the alternatives actually holds in the current
database instance. In other words, the user must regard both true and false a possible
query value.

For complete databases, secrecies can be reduced to potential secrets by converting each
secrecy (ψ,¬ψ) into two potential secrets ψ and ¬ψ [3]. The same technique is possible
in our framework for incomplete databases: By adding both ψ and ¬ψ to policy, the CQE
methods makes sure that there is

• at least one “suitable” database instance db′ in which ψ is false or undef, and

• at least one “suitable” database instance db′′ in which ¬ψ is false or undef, which
means that ψ is true or undef.

Thus, the user can neither conclude that ψ must be true, nor that ψ must be false.
However, it might be still possible to infer that ψ is undef (if eval(ψ)(db′) = undef for any
suitable instance db′). Hence, it is not possible to enforce that the user does not learn any
information about the query value.
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3 Policies Based on Confidentiality Targets

In the previous chapter, we introduced propositional potential secrets. Although this
policy language has a simple, familiar syntax, it contains a number of drawbacks, in
particular: You cannot protect undef, you cannot protect the disjunction of two values,
and it’s impossible to emulate full-featured “secrecies” which protect any information
about the value of a sentence ψ. See Section 2.3 for details.

In this chapter, we present an alternative policy language: confidentiality targets. Again,
we give formal definitions of both CQE methods and a corresponding notion of confiden-
tiality, however still on a declarative level. Additionally, we investigate the reduction from
propositional potential secrets to confidentiality targets, i. e., we show how to use a (suit-
able) CQE method for confidentiality targets in order to protect propositional potential
secrets.

3.1 Confidentiality Policies

Confidentiality targets consist of two parts: 1. The (propositional) sentence under con-
sideration, and 2. a set of query values. We first give a formal definition of this concept
and then discuss its semantics.

Definition 3.1 (Value set). A value set V is a non-empty subset of {true, false, undef}.

Definition 3.2 (Confidentiality target). Let DS be a database schema. A confi-
dentiality target is a pair (ψ, V ), where ψ is a propositional sentence over DS, and
V ⊂ {true, false, undef} with ∅ 6= V 6= {true, false, undef} is a value set.

Definition 3.3 (Confidentiality policy based on confidentiality targets). A confidentiality
policy based on confidentiality targets is a set

policyct = {(ψ1, V1), . . . , (ψm, Vm)}

of confidentiality targets.

We read “(ψ, V )” as “ψ has one of the values from V ”. For example, “(ψ, {true, false})”
is to be read as “ψ is either true or false (but not undef )”. This can be formalized by an
evaluation function evalct.

Definition 3.4 (Truth value of a confidentiality target, function evalct). Let db be a
database instance, and (ψ, V ) a confidentiality target. The truth value of (ψ, V ) in db is
determined by the function

evalct((ψ, V ))(db) :=

{

true if eval(ψ)(db) ∈ V,

false otherwise.
(3.1)
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3 Policies Based on Confidentiality Targets

Depending on the cardinality of V , confidentiality targets can be divided into two dis-
tinct classes:

• If V = {v1} is unary, (ψ, V ) represents definite information about the truth value ψ
(only one value v1 appears possible).

• If V = {v1, v2} is binary, (ψ, V ) represents disjunctive information about the truth
value ψ (two values – v1 and v2 – appear possible).

Being used as an element of the confidentiality policy, a confidentiality target (ψ, V ) has
the following semantics: The user may not infer that ψ has one of the values from V .
However, it is safe to learn that ψ has a value from V := {true, false, undef} \ V . We can
use unary sets in order to protect the definitive value of a sentence ψ.

Example 3.5. The confidentiality policy (based on propositional potential secrets) given
in Example 2.3 can be equivalently expressed as the following set of confidentiality targets:

policyct := { (aids, {true}), (cancer, {true}) }

We can also use binary sets in order to protect disjunctive information about a sentence.

Example 3.6. The following confidentiality policy declares that the user may not learn
any information about the value of aids:

policy′ct := { (aids, {true, false}), (aids, {true, undef}), (aids, {false, undef}) }

Any disjunctive information about the value of aids is forbidden (and implicitly also any
information about the definitive value).

3.2 Declarative Confidentiality

Based on the notions above, we now give a formal definition of a CQE method for con-
fidentiality targets, again formalized as a function cqect with four parameters: the query
sequence Q, the actual database instance db, the a priori assumptions priorct, and the con-
fidentiality policy policyct. The a priori assumptions are expressed in the same language
as the confidentiality policy:

Definition 3.7 (A priori assumptions). The user’s a priori assumptions priorct is a set
of confidentiality targets.

Example 3.8. The a priori assumptions (for propositional potential secrets) from Exam-
ple 2.5 can be equivalently expressed as follows:

priorct := { (s1 → aids ∨ flu, {true}),

(s2 → ¬flu, {true}),

((s2 ∧ ¬s3) → cancer, {true}),

(s3 → aids, {true}) }
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3.2 Declarative Confidentiality

Due to the extended expressiveness of confidentiality targets, we are now able to formalize
additional assumptions. For example, imagine that each person undergoes an HIV test
before being treated in the hospital, so it must be known whether the person has aids or
not:

(aids, {true, false})

Given these considerations, a CQE method for confidentiality targets can be formalized
as follows:

Definition 3.9 (CQE method for confidentiality targets). A CQE method for confiden-
tiality targets is a function

cqect(Q, db, priorct, policyct) = 〈ans1, . . . , ansn〉

with

ansi ∈ {true, false, undef, refuse},

whereQ is a query sequence, db a database instance, priorct the user’s a priori assumptions,
and policyct a confidentiality policy, given as a set of confidentiality targets.

Each method cqect goes along with a function

preconditionct(db, priorct, policyct) ∈ {true, false}

which defines the admissible arguments for cqect. For example, a common precondition
could be that the a priori assumptions do not reveal any secret information in the first
place.

Our notion of confidentiality is very similar to the one for propositional potential secrets
given in Definition 2.8. We now demand that evalct((ψ, V ))(db′) = false in the alternative
database instance db′, which means that ψ has a value different from those in V . This
meets the intended semantics described above.

Definition 3.10 (Confidentiality for Confidentiality Targets). Let cqect be a CQE method
for confidentiality targets with preconditionct as its associated precondition for admissible
arguments. cqect is defined to preserve confidentiality iff

for all finite query sequences Q,
for all instances db,
for all sets of confidentiality targets policyct,
for all confidentiality targets (ψ, V ) ∈ policyct,
for all a priori assumptions priorct

so that (db, priorct, policyct) satisfies preconditionct,
there exists an instance db′ and a set of confidentiality targets policy′ct
so that (db′, priorct, policy

′
ct) satisfies preconditionct

and the following two conditions hold:

19



3 Policies Based on Confidentiality Targets

(a) [(db, policyct) and (db′, policy′ct) produce the same answers]
cqect(Q, db, priorct, policyct) = cqect(Q, db

′, priorct, policy
′
ct)

(b) [(ψ, V ) is false in db′]
evalct((ψ, V ))(db′) = false

In case the user is assumed to know the elements of the confidentiality policy
policy′ct, we additionally demand that

(c) [same policy]
policyct = policy′ct.

Again, this is a purely declarative definition and does not state which algorithm to use
in order to meet these requirements.

3.3 Reduction from Propositional Potential Secrets

So far, we have introduced two policy languages: propositional potential secrets and con-
fidentiality targets. Obviously, the latter is the more expressive one. The question arises
whether it is possible to convert propositional potential secrets to confidentiality targets,
and then use a CQE method for confidentiality targets in order to operationally protect
these derived confidentiality targets, while still meeting the confidentiality requirements
of the original propositional potential secrets. In this section, we show that this kind of
reduction is possible if the target CQE method cqect meets a certain requirement, called
ct-normality-preservation.

Recall the semantics of evalct from Definition 3.4. Obviously, evalct((ψ, {true}))(db) =
true holds exactly if eval(ψ)(db) = true. It is therefore obvious to define a conversion from
propositional sentences to confidentiality targets as follows:

Definition 3.11 (Conversion from propositional sentences to confidentiality targets). Let
Σ be a set of propositional sentences. We define the function

convct(Σ) := { (α, {true}) | α ∈ Σ }

which converts Σ into a set of confidentiality targets.

An important property of the convct function is invertibility, i. e., given a generated
set convct(Σ) of confidentiality targets, we can restore the original set Σ of propositional
sentences. We will later need this property to prove the reduction theorem.

Lemma 3.12. convct is invertible.

Proof. By construction, convct is injective.

Each confidentiality target generated by convct has the form (ψ, {true}), where ψ is
a propositional sentence. We give a formal definition of this property and call these
confidentiality targets ct-normal.
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3.3 Reduction from Propositional Potential Secrets

Definition 3.13 (ct-normality). A confidentiality target (ψ, V ) is called ct-normal iff V =
{true}. A set of confidentiality targets policyct is called ct-normal if each (ψ, V ) ∈ policyct

is ct-normal.

Lemma 3.14. Let Σ be a set of propositional sentences. Then convct(Σ) is ct-normal.

Proof. Follows immediately from the definition of convct.

We can then use convct in order to convert a set of propositional sentences policy
and a priori assumptions prior into the corresponding sets policyct := convct(policy) and
priorct := convct(prior) of confidentiality targets. These sets can then – combined with
the query sequence Q and the database instance db – be used as the input to a suitable,
confidentiality-preserving CQE method cqect for confidentiality targets. This method will
ensure that there is an alternative database instance db′ and an alternative set of confiden-
tiality targets policy′ct in a way that the conditions mentioned in Definition 3.10 are met.
We can now argue that there is also a suitable instance db′ and a suitable set of proposi-
tional potential secrets policy′ so that the conditions of the confidentiality Definition 2.8
are satisfied.

Now a major problem arises: Assume that the user does not know the elements of the
confidentiality policy, which means that condition (c) of Definition 3.10 is ineffective. This
allows policy′ct to be different from policyct. In particular, it might happen that policy′ct
is not ct-normal. Then, there is no set of propositional potential secrets policy′ such that
policy′ct = convct(policy

′). The reduction has failed.
We overcome this problem by defining the notion of ct-normality-preservation, which

can be expressed by means of the original confidentiality definition, but with a stronger
precondition.

Definition 3.15 (ct-normality-preservation). A method cqect with the associated precon-
dition preconditionct is called ct-normality-preserving iff it preserves confidentiality in the
sense of Definition 3.10 under the stronger precondition

preconditionct-normal
ct (db, priorct, policyct) :=

preconditionct(db, priorct, policyct) ∧ “policyct is ct-normal”.

In other words: If the original set of confidentiality targets policyct is ct-normal, a ct-
normality-preserving method guarantees that there is also an alternative database instance
db′ and an alternative set of ct-normal confidentiality targets policy′ct which satisfy the
conditions from Definition 3.10.

Note that, despite the similar definitions, the concepts of confidentiality (according to
Definition 3.10) and ct-normality (according to Definition 3.15) are totally independent
from each other. A method which preserves confidentiality does not necessarily need to
preserve ct-normality as well, and vice versa. Nevertheless, it is of course favorable to
construct enforcement methods which satisfy both definitions, meaning that they can be
employed for arbitrary confidentiality targets as well as for converted potential secrets.

However, we can state this type of inclusion property for the case that the user is
assumed to know the confidentiality policy:
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3 Policies Based on Confidentiality Targets

Lemma 3.16. Assume that the user knows the confidentiality policy, and let cqect preserve
confidentiality in the sense of Definition 3.10. Then cqect also preserves ct-normality.

Proof. Follows trivially from condition (c) of Definition 3.10, which demands that
policyct = policy′ct.

We can now formally define the reduction outlined above, and prove that the CQE
method for propositional potential secrets constructed in this manner does in fact preserve
confidentiality if the underlying method cqect preserves ct-normality.

Theorem 3.17 (Reduction from propositional potential secrets to confidentiality targets).
Let cqect be a CQE method for confidentiality targets, preserving ct-normality in the sense
of Definition 3.15. Let preconditionct be the associated precondition. Then the function

cqe(Q, db, prior, policy) := cqect(Q, db, convct(prior), convct(policy))

with the precondition

precondition(db, prior, policy) := preconditionct(db, convct(prior), convct(policy)) (3.2)

preserves confidentiality in the sense of Definition 2.8.

Proof. Let db be a database instance, policy a set of propositional potential secrets,
prior the a priori assumptions so that the pertinent precondition is satisfied, and Q =
〈Φ1, . . . ,Φn〉 a query sequence. Let ψ ∈ policy be a potential secret.

As precondition(db, prior, policy) is satisfied, the equivalent condition

preconditionct(db, convct(prior), convct(policy)) (3.3)

is satisfied as well. Furthermore, convct(policy) is ct-normal. So also

preconditionct-normal
ct (db, convct(prior), convct(policy)) (3.4)

is satisfied. Then, following Definition 3.15, a database instance db′ and a set of confiden-
tiality targets policy′ct exist, so that – in particular – the precondition

preconditionct-normal
ct (db, convct(prior), policy

′
ct) (3.5)

is satisfied, which implies that policy′ct must be ct-normal. Thus, we can construct a set
policy of propositional potential secrets by inverting the convct function:

policy′ := { ψ | (ψ, {true}) ∈ policy′ct }. (3.6)

We then have

convct(policy
′) = policy′ct. (3.7)

We show that db′ and policy′ satisfy all of the conditions from Definition 2.8.
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3.3 Reduction from Propositional Potential Secrets

• By preconditionct-normal
ct (db, convct(prior), policy

′
ct), we have

preconditionct(db, convct(prior), policy
′
ct), (3.8)

which is by (3.7) equivalent to

preconditionct(db, convct(prior), convct(policy
′)), (3.9)

and by (3.2) also equivalent to

precondition(db′, prior, policy′). (3.10)

So the precondition is satisfied for db′ and policy′.

• By condition (a) of Definition 3.10, (db, convct(policy)) and (db′, policy′ct) produce the
same answers, so we have

cqe(Q, db, prior, policy) (3.11)

= cqect(Q, db, convct(prior), convct(policy)) (3.12)

= cqect(Q, db
′, convct(prior), policy

′
ct) (3.13)

= cqect(Q, db
′, convct(prior), convct(policy

′)) (3.14)

= cqe(Q, db′, prior, policy′). (3.15)

This satisfies condition (a) of Definition 2.8.

• By condition (b) of Definition 3.10, we have

evalct((ψ, {true}))(db′) = false. (3.16)

By the definition of evalct (3.1), this is equivalent to

eval(ψ)(db′) ∈ {false, undef}. (3.17)

This satisfies condition (b) of Definition 2.8.

• In case we assume that the user knows the confidentiality policy, condition (c) of
Definition 3.10 guarantees that policy′ct = policyct. Thus, we also have

convct(policy
′) = convct(policy) (3.18)

and also

policy′ = policy. (3.19)

This satisfies condition (c) of Definition 2.8.

Thus, all of the conditions of Definition 2.8 are satisfied for db′ and policy′.

This result releases us from constructing specific enforcement methods for propositional
potential secrets, in case we have suitable, ct-normality-preserving methods for confi-
dentiality targets. In Chapter 4, we will go one step further and define a reduction from
confidentiality targets to epistemic potential secrets, resulting in a ct-normality-preserving
method for confidentiality targets. Then it is even possible to handle propositional poten-
tial secrets in the framework of epistemic potential secrets (for which case we will construct
specific methods in the second part of this thesis).
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3 Policies Based on Confidentiality Targets

3.4 Benefits and Limitations

The motivation to establish another kind of policy language was to overcome the lim-
itations of propositional potential secrets, as listed in Section 2.3. In this section, we
will reconsider these issues. We also show that confidentiality targets still entail some
limitations.

Protection of undef

It is now possible to protect the fact that a sentence ψ has the value undef in the actual
database instance, by the means of the confidentiality target (ψ, {undef}).

Protection of disjunctions

Disjunctive information can be protected by using binary value sets V . For example,
(ψ, {true, false}) protects the information that the query value is either true or false (but
not undef ). In other words, this confidentiality target disguises the fact that the database
actually “knows” the value of ψ.

Full-featured “secrecies”

It is now possible to define a set of confidentiality targets which enforce that the user does
not learn anything about the value of some sentence ψ:

policyct = {(ψ, {true, false}), (ψ, {true, undef}), (ψ, {false, undef})}

Applying the semantics of cqect, there must be

• at least one “suitable” db′ in which ψ is neither true nor false,

• at least one “suitable” db′′ in which ψ is neither true nor undef, and

• at least one “suitable” db′′′ in which ψ is neither false nor undef.

As a result, any query value appears possible to the user.
We can also define weaker versions of secrecies. For example, the policy

policyct = {(ψ, {true}), (ψ, {false}), (ψ, {undef})}

ensures that the user does not learn any definite information about the query value of ψ;
however, it is still possible to exclude one value and thus learn disjunction information.

Unfortunately, there are still two limitations when using confidentiality targets:
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Combinations of different sentences cannot be protected

Imagine you wanted to protect the information that

“ψ is true, and φ is either false or undef ”.

Formalizing this information as a confidentiality target is not possible, as it involves two
different propositional sentences with different value sets. A policy containing the two
sub-sentences expressed as distinct confidentiality targets

policyct = {(ψ, {true}), (φ, {true, false})}

wouldn’t have the same semantics; according to Definition 3.10, there are alternative
database instances db′ in which at least one given confidentiality target is false. But you
cannot enforce both to be false at the same time. In essence, the problem is that our
policy language does not provide any logical operators between confidentiality targets.

Implementation issues

The confidentiality and ct-normality-preservation properties specified in this section are
solely declarative. There is no hint on how to implement a method meeting these require-
ments. The methods for complete databases from [5] suggest that it is favorable to employ
logical implication. However, as confidentiality targets are our own, proprietary concept,
there is no notion of logical implication. And even if there was, we lack a formal proof
system, and an implementation thereof. Thus, confidentiality targets are a descriptive con-
cept for theoretical considerations, but a less suitable foundation for an implementable,
concrete CQE system. It is favorable to find an expressive policy language based on a well
known logic with an established notion of logical implication, and for which implementa-
tions of proof systems are available. In the following chapter, we will show that modal
epistemic logic meets these requirements.
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4 Policies Based on Epistemic Potential
Secrets

While confidentiality targets, presented in the previous chapter, offer a useful expressive-
ness when defining confidentiality policies, they lack the requirements for the practical
design and implementation of concrete enforcement methods: there is no notion of logical
implication, and there are no proof systems available either.

In this chapter, we finally present the full-featured policy language LPS, which is a
subset of epistemic modal logic. This allows us to employ the notion of logical implication
known for modal logic for the construction of enforcement methods. We can also use the
various available theorem proving systems when implementing these enforcement methods.
CQE methods for the various parameters (known vs. unknown policies, lying vs. refusal
vs. combined lying and refusal) are presented in Chapters 6 and 7. Some of them have
already been implemented [33] using the Logics Workbench proving system [25].

As in the previous chapters, we start with the syntactical and semantical definition of
our policy language (Section 4.1), and then give a formal definition of a CQE method
using this language, as well as of the corresponding notion of confidentiality (Section 4.2).

Sections 4.3 and 4.4 investigate the reduction from confidentiality targets and propo-
sitional potential secrets, respectively, to epistemic potential secrets. We formally inves-
tigate the requirements for the underlying CQE method which make these reductions
possible. In Chapters 6 and 7, you will see that most of the methods presented there meet
these requirements.

4.1 Epistemic Logic and the Policy Language

We first introduce the language LDS of epistemic logic (S5), and then define its subset
LPS which we employ as a policy language.

4.1.1 Epistemic logic LDS

An excellent discussion of epistemic logic can be found in [22]. In the following, we will
briefly summarize the syntax of modal logic in general, and the particular semantics of
epistemic logic.

Modal logic is established by introducing the modal operator � of necessity (and the
dual operator ⋄ of possibility). In the context of knowledge, � is usually written as K,
which is to be read as “it is known that . . . ”. Given a database schema (set of propositions)
DS, we denote the resulting language by LDS .
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4 Policies Based on Epistemic Potential Secrets

Definition 4.1 (Language LDS). Let DS be a database schema, i. e., a set of propositions.
The language LDS is inductively defined along the following five rules:

1. Each propositional sentence over DS is an LDS-sentence.

2. If φ is an LDS-sentence, so is ¬φ.

3. If φ and ψ are LDS-sentences, so is φ ∧ ψ.

4. If φ and ψ are LDS-sentences, so is φ ∨ ψ.

5. If φ is an LDS-sentence, so is Kφ.

In order to evaluate an LDS-sentence, we use the common Kripke-style semantics, which
considers sets of states (or “worlds”) and a possibility relation between these states, de-
termining which states are considered “possible” from the perspective of a given state.

Definition 4.2 (MDS-structure). An MDS-structure is a triple M = (S,K, π), where S
is a set of states, K a binary equivalence relation on S, and π : S×DS → {true, false} a
function which assigns a truth value to each proposition from DS under each state s ∈ S.

Note that we demand K to be an equivalence relation, i. e., reflexive, symmetric and
transitive. This kind of logic is called epistemic logic, and this is the most common way
to formalize knowledge by the means of modal logic (although philosophers have argued
that it might not be an appropriate formalization of “real world knowledge”).

Another way to characterize a certain modal logic is using an axiom schema; in the
most commonly used schema, epistemic logic is identified by satisfying the following four
axioms:

• Distribution axiom (K): (Kφ ∧K(φ→ ψ)) → Kψ

• Knowledge axiom (T): Kφ→ φ

• Positive introspection (4): Kφ→ KKφ

• Negative introspection (5): ¬Kφ→ K¬Kφ

Epistemic logic is thus called KT45, or simply S5, a denomination introduced in a very
early publication by Lewis [28].

The semantics of LDS is defined with the means of these MDS-structures:

Definition 4.3 (Truth value of LDS-sentences). Let M = (S,K, π) be an MDS-structure
and s ∈ S a state. The truth value of an LDS-sentence in (M,s) is inductively defined as
follows (where p ∈ DS denotes a proposition and φ and ψ denote LDS-sentences):

(M,s) |= p iff π(s)(p) = true (4.1)

(M,s) |= ¬φ iff (M,s) 6|= φ (4.2)

(M,s) |= φ ∧ ψ iff (M,s) |= φ and (M,s) |= ψ (4.3)

(M,s) |= φ ∨ ψ iff (M,s) |= φ or (M,s) |= ψ (4.4)

(M,s) |= Kφ iff (M,s′) |= φ for all s′ ∈ S such that (s, s′) ∈ K (4.5)
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4.1 Epistemic Logic and the Policy Language

Logical implication is defined in the usual way:

Definition 4.4 (Logical implication in epistemic logic). Let Σ be a set of LDS-sentences,
and φ a single LDS-sentence. We say that Σ logically implies φ wrt. MDS (in formulae:
Σ |=S5 φ) iff for every MDS-structure M = (S,K, π) and every state s ∈ S it holds that

if (M,s) |= Σ then (M,s) |= φ.

4.1.2 Policy language LPS

Based on LDS, we can now define the subset we are going to use as a policy language.
In particular, we are interested in a sub-language in which all propositional sentences are
prefixed by K. We call this language LPS.

Definition 4.5 (Language LPS). The language LPS ⊂ LDS is defined as follows:

1. If α is a propositional sentence, then Kα is an LPS-sentence.

2. If φ is an LPS-sentence, so is ¬φ.

3. If φ and ψ are LPS-sentences, so is φ ∧ ψ.

4. If φ and ψ are LPS-sentences, so is φ ∨ ψ.

In the following, we will demonstrate some properties of LPS. First, we define two
functions that convert a propositional sentence α and a value set V (or a single value v,
respectively) into an LPS-sentence, and we also present an alternative evaluation function.

Definition 4.6 (Functions ∆, ∆∗). Let α be a propositional sentence and ∅ 6= V ⊆
{true, false, undef} a non-empty value set. We define the function

∆∗(α, V ) :=
∨

v∈V

∆(α, v) (4.6)

with

∆(α, true) := Kα,

∆(α, false) := K¬α, and

∆(α, undef) := ¬Kα ∧ ¬K¬α.

which converts (α, V ) into an epistemic sentence.

Example 4.7. Let α be a propositional sentence. Then we have:

∆∗(α, {true}) = Kα

∆∗(α, {true, false}) = Kα ∨ K¬α

∆∗(α, {false, undef}) = K¬α ∨ ¬Kα ∧ ¬K¬α
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4 Policies Based on Epistemic Potential Secrets

Definition 4.8 (Function eval∗). The evaluation function eval∗, which returns the value
of some sentence α in a database instance db, converted into an LPS-sentence, is defined
as follows (similar to the eval∗ function for complete databases from [5]):

eval∗(α)(db) := ∆(α, eval(α)(db)) (4.7)

Example 4.9. Considering the database instance db = {a, b ∨ c,¬d}, we have:

eval∗(a)(db) = Ka

eval∗(d)(db) = K¬d

eval∗(a ∧ b)(db) = ¬K(a ∧ b) ∧ ¬K¬(a ∧ b)

Lemma 4.10. Let α be a propositional sentence. Then ∆(α, v) (for any v ∈
{true, false, undef}) and ∆∗(α, V ) (for any ∅ 6= V ⊆ {true, false, undef}) are LPS-sentences.

Proof. Follows from the definition of ∆, which only allows K-prefixed propositional sen-
tences, and ∆∗, which only uses the ∨ operator to connect these kinds of sentences.

The following property follows from the fact that any propositional sentence occurring
in an LPS-sentence is prefixed by K. It states that, given an MDS-structure M , any
LPS-sentence has the same truth value in all states s of the same equivalence class.

Lemma 4.11. Let M = (S,K, π) be an MDS-structure and s1, s2 ∈ S two states such
that (s1, s2) ∈ K. Let φ be an LPS-sentence. Then we have

(M,s1) |= φ ⇔ (M,s2) |= φ.

Proof. We only show one direction. The other direction then follows easily from the
symmetry of K.

Due to the inductive definition of LPS and the semantics of epistemic logic, it is sufficient
to show the proposition for φ = Kα, such that α is propositional. The left hand side is
then equivalent to

(M,s1) |= Kα (4.8)

and equivalent to

(M,s′) |= α for all s′ such that (s1, s
′) ∈ K. (4.9)

As (s1, s2) ∈ K, and K is an equivalence relation, we have

(s1, s
′) ∈ K ⇔ (s2, s

′) ∈ K. (4.10)

Thus, (4.9) is equivalent to

(M,s′) |= α for all s′ such that (s2, s
′) ∈ K, (4.11)

and also to

(M,s2) |= Kα, (4.12)

which is finally equivalent to

(M,s2) |= φ. (4.13)
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4.1.3 Evaluation of LPS-sentences

We want to consider the truth value of an LPS-sentence φ within a database instance db.
However, the truth value of an LPS-sentence is only defined by the Kripke-style semantics
given above, wrt. an MDS-structure M = (s,K, π) and a state s ∈ S (cf. Definition 4.3).
In order to evaluate an LPS-sentence φ within a database instance db, we first need to
convert db into an appropriate structure M and state s, and then check whether (M,s) is
a model of φ.

This kind of conversion is given in Definition 4.12 below: We choose S as the set of
all propositional interpretations over the associated database schema DS. The relation
K connects all states (interpretations) which make db true; any other interpretation is
only connected to itself to ensure the reflexivity property demanded by S5. Finally, the
π function evaluates a proposition p within a state s according to the usual propositional
semantics.

Definition 4.12 (Structure Mdb). Let DS be a database schema and db a database
instance over DS. The Kripke-structure Mdb = (S+

db ∪ S
−
db,Kdb, πDS) is defined as follows

(where DS∗ is the set of interpretations over DS, p ∈ DS a proposition, s ∈ DS∗ an
interpretation, and |= the model operator of propositional logic):

S+
db := { s ∈ DS∗ | s |= db }

S−
db := { s ∈ DS∗ | s 6|= db }

Kdb := { (s, s′) | s, s′ ∈ S+
db } ∪ { (s, s) | s ∈ S−

db }

πDS(s)(p) := s |= p

It is easy to see that Kdb is an equivalence relation: All states (interpretations) s ∈ S+
db

which are a model of db are joined in one equivalence class; each other state s ∈ S−
db forms

a class of its own. Thus, Mdb is a valid MDS-structure.

Lemma 4.13. Let Mdb = (S+
db ∪ S−

db,Kdb, πDS) be constructed as specified in Defini-
tion 4.12. Let s ∈ DS∗ be a database instance (and thus also a state from S+

db ∪ S
−
db). Let

α be a propositional sentence. Then we have

s |= α ⇔ (Mdb, s) |= α.

Proof. By structural induction.

Case 1 (α is a proposition p). By the definition of the πDS function from Definition 4.12,
the left hand side is then equivalent to

πDS(s)(α) = true, (4.14)

which is by Definition 4.3 equivalent to

(Mdb, s) |= α. (4.15)
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Case 2 (α = ¬φ). Then we have

s 6|= α, (4.16)

which is by the induction hypothesis equivalent to

(Mdb, s) 6|= α, (4.17)

and by Definition 4.3 also equivalent to

(Mdb, s) |= ¬α. (4.18)

Case 3 (α = φ ∧ ψ). Then we have

s |= φ and s |= ψ, (4.19)

which is by the induction hypothesis equivalent to

(Mdb, s) |= φ and (Mdb, s) |= ψ, (4.20)

and by Definition 4.3 also equivalent to

(Mdb, s) |= φ ∧ ψ. (4.21)

Case 4 (α = φ ∨ ψ). Then we have

s |= φ or s |= ψ, (4.22)

which is by the induction hypothesis equivalent to

(Mdb, s) |= φ or (Mdb, s) |= ψ, (4.23)

and by Definition 4.3 also equivalent to

(Mdb, s) |= φ ∨ ψ. (4.24)

Based on Mdb, we can define an evaluation function evalps.

Definition 4.14 (Function evalps). Let DS be a database schema, and db an instance
over DS. Let Mdb = (S+

db ∪ S−
db,Kdb, πDS) be the MDS-structure derived from db. We

define the evaluation function

evalps : LPS ×DS∗ → {true, false}

with

evalps(φ)(db) := (Mdb, s) |= φ for all s ∈ S+
db.

According to Lemma 4.11, this can be equivalently expressed as

evalps(φ)(db) := (Mdb, s) |= φ for at least one s ∈ S+
db.
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We first show that the common logic connectors ¬, ∧ and ∨ have their usual semantics
when applied to evalps.

Lemma 4.15. The following equivalences hold for all database instances db and LPS-
sentences φ and ψ:

(1) evalps(¬φ)(db) = true ⇔ evalps(φ)(db) = false

(2) evalps(φ ∧ ψ)(db) = true ⇔ evalps(φ)(db) = true and evalps(ψ)(db) = true

(3) evalps(φ ∨ ψ)(db) = true ⇔ evalps(φ)(db) = true or evalps(ψ)(db) = true

Proof. Follows from Definition 4.3 and Definition 4.14.

We will now show a number of properties of evalps which demonstrate the seman-
tic relationship between evalps and the original evaluation function eval. First, we can
prove that a propositional sentence α is implied by a database instance db exactly if
evalps(Kα)(db) = true.

Lemma 4.16. Let db be a database instance and α a propositional sentence. Let Mdb =
(S+

db ∪ S
−
db,Kdb, πDS) be the MDS-structure derived from db. Then we have

db |=PL α ⇔ evalps(Kα)(db) = true,

or, according to Definition 4.14, equivalently

db |=PL α ⇔ (Mdb, s) |= Kα for all s ∈ S+
db.

Proof. By Lemma 4.11, the proposition is also equivalent to

db |=PL α ⇔ (Mdb, s) |= Kα for at least one s ∈ S+
db. (4.25)

We show the latter equivalence.
Let s ∈ S+

db. As db is consistent, S+
db is non-empty, so there must be at least one such s.

The right hand side of (4.25) is then equivalent to

(Mdb, s
′) |= α for all s′ such that (s, s′) ∈ K, (4.26)

which is by Lemma 4.13 equivalent to

s′ |= α for all s′ such that (s, s′) ∈ K. (4.27)

By the construction of MDS , the states which are related to s are exactly those from S+
db

(as s is also contained in S+
db). So we can equivalently rewrite (4.27) as

s′ |= α for all s′ ∈ S+
db. (4.28)

Remember that S+
db exactly contains all interpretations which make db true, so we equiva-

lently have

s′ |= α for all s′ such that db |= s, (4.29)
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which is by the generic definition of logical implication equivalent to

db |=PL α. (4.30)

We now know that eval(α)(db) = true (which corresponds to db |=PL α) is equivalent to
evalps(Kα)(db) = true. We can extend these considerations to the other two query values,
and show that, in general, eval(α)(db) = v (with v ∈ {true, false, undef}) is equivalent to
evalps(∆(α, v))(db) = true, where ∆ is the conversion function introduced in Definition 4.6.

Lemma 4.17. Let α be a propositional sentence, v ∈ {true, false, undef} a query value,
and db a database instance. Then we have

eval(α)(db) = v ⇔ evalps(∆(α, v))(db) = true.

Proof. Follows from the semantics of evalps given in Definition 4.14:

Case 1 (v = true, ∆(α, v) = Kα). Then we have by the definition (1.1) of eval

db |=PL α, (4.31)

and the proposition follows from Lemma 4.16.

Case 2 (v = false, ∆(α, v) = K¬α). Then we have by the definition (1.1) of eval

db |=PL ¬α, (4.32)

and the proposition follows from Lemma 4.16.

Case 3 (v = undef, ∆(α, v) = ¬Kα∧K¬α). Then we have by the definition (1.1) of eval

db 6|=PL α and (4.33)

db 6|=PL ¬α, (4.34)

which is by Lemma 4.16 equivalent to

evalps(Kα)(db) = false and (4.35)

evalps(K¬α)(db) = false, (4.36)

and by Definition 4.14 to

(Mdb, s
′) 6|= Kα for some s′ ∈ S+

db and (4.37)

(Mdb, s
′′) 6|= K¬α for some s′′ ∈ S+

db. (4.38)

According to the semantics definition, this is equivalent to

(Mdb, s
′) |= ¬Kα for some s′ ∈ S+

db and (4.39)

(Mdb, s
′′) |= ¬K¬α for some s′′ ∈ S+

db. (4.40)
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By Lemma 4.11, any sentence satisfied in Mdb and some state s1 ∈ S+
db is also satisfied in

Mdb and any other state s2 ∈ S+
db, so we have for all s ∈ S+

db:

(Mdb, s) |= ¬Kα and (4.41)

(Mdb, s) |= ¬K¬α. (4.42)

This is equivalent to

(Mdb, s) |= ¬Kα ∧ ¬K¬α (4.43)

for all s ∈ S+
db. By Definition 4.14, we finally get the equivalent property

evalps(¬Kα ∧ ¬K¬α)(db) = true. (4.44)

Corollary 4.18. Let α be a propositional sentence, v ∈ {true, false, undef} a query value
and db a database instance. Then we have

eval(α)(db) = v ⇔ evalps(∆
∗(α, {v}))(db) = true.

Proof. Direct consequence of Lemma 4.17. Note that ∆∗(α, {v}) = ∆(α, v).

Corollary 4.19. Let α be a propositional sentence, and db a database instance. Then we
have

evalps(eval
∗(α)(db))(db) = true.

Proof. Let v := eval(α)(db). Then the proposition follows from the definition of eval∗ (4.7)
and Corollary 4.18.

Corollary 4.20. Let α be a propositional sentence and db and db′ two database instances
such that

evalps(eval
∗(α)(db′))(db) = true.

Then we have eval(α)(db) = eval(α)(db′).

Proof. The proposition can be rewritten as

evalps(∆(α, eval(α)(db′))) = true, (4.45)

which is by Lemma 4.17 equivalent to

eval(α)(db) = eval(α)(db′). (4.46)
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4.1.4 Alternative Semantics

The formal definition of evalps given in Definition 4.14 – based on Kripke-semantics and the
MDS-structure Mdb derived from db – is a feasible approach when formally investigating
the properties of Controlled Query Evaluation. On the other hand, it might make things
difficult when implementing a CQE method based on epistemic potential secrets. For
example, the enforcement methods for unknown policies presented in Chapter 7 need to
consider which of the potential secrets are actually true in the given database instance.
The necessity to generate Mdb could be a major drawback for the implementation then.

Fortunately, evalps can be equivalently replaced by an alternative, inductively defined
evaluation function.

Lemma 4.21. The function evalind
ps , inductively defined as follows, is equivalent to evalps,

i. e., for each LPS-sentence φ and database instance db, evalind
ps (φ)(db) = true if and only

if evalps(φ)(db) = true.

(1) evalind
ps (Kα)(db) :=

{

true if eval(α)(db) = true

false otherwise

(2) evalind
ps (¬φ)(db) :=

{

true if evalind
ps (φ)(db) = false

false otherwise

(3) evalind
ps (φ ∧ ψ)(db) :=

{

true if evalind
ps (φ)(db) = true and evalind

ps (ψ)(db) = true

false otherwise

(4) evalind
ps (φ ∨ ψ)(db) :=

{

true if evalind
ps (φ)(db) = true or evalind

ps (ψ)(db) = true

false otherwise

Proof. By structural induction.
Assume that φ = Kα, where α is propositional, and evalind

ps (K)(α) = true. This is by
rule (1) above equivalent to

eval(α)(db) = true, (4.47)

and by Lemma 4.17 equivalent to

evalps(Kα)(db) = true. (4.48)

For the composed sentences ¬φ, φ ∧ ψ, and φ ∨ ψ, note that rules (2), (3) and (4) of this
lemma correspond to the properties (1), (2) and (3) of Lemma 4.15. Thus, these sentences
have the same truth value wrt. evalps and evalind

ps , given that the particular components
have the same truth value, which is ensured by the induction hypothesis.

Using evalind
ps instead of evalps might be easier for a specific implementation of CQE:

Given an LPS-sentence φ and a suitable parser for LPS, you can evaluate the atomic (K-
prefixed) sub-formulas of φ with the means of eval (i. e., logical implication in propositional
logic), and then inductively determine the truth value of φ.
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4.1.5 Epistemic potential secrets

The policy language LPS is used to define the confidentiality policy. The elements of the
confidentiality policy are called epistemic potential secrets. Basically, epistemic potential
secrets have the same semantics as the propositional potential secrets introduced in Chap-
ter 2: Given a potential secret Ψ, the user may not learn that Ψ is true in the actual
database instance db; on the other hand, if Ψ is not true in db, this fact may be disclosed.
The truth value of Ψ is determined by the means of the evalps function. The modal oper-
ator K and the semantics of LPS allow us to express and protect any combination of facts
about truth values in db. For example, (¬Ka ∧ ¬K¬a) ∨ (K¬b ∧K¬c) means that “a is
undef or both b and c are false in db”. These kinds of sentences couldn’t be expressed
with propositional potential secrets, and neither with confidentiality targets.

Definition 4.22 (Epistemic potential secret). An epistemic potential secret is an LPS-
sentence Ψ. We also say simply potential secret when the context is clear and confusion
with propositional potential secrets is unlikely to occur.

Definition 4.23 (Confidentiality policy based on epistemic potential secrets). A confi-
dentiality policy based on epistemic potential secrets is a set policyps = {Ψ1, . . . ,Ψm} of
LPS-sentences (potential secrets).

Example 4.24. The confidentiality policies (based on confidentiality targets) from Ex-
ample 3.5 and Example 3.6 can be equivalently expressed by epistemic potential secrets as
follows. The first policy states that the user may not learn that aids is true in the actual
database instance, and may also not learn that cancer is true:

policyps := { Kaids, Kcancer }

The second policy prohibits any disjunctive information about the truth value of aids:

policy′ps := { Kaids ∨ K¬aids,

Kaids ∨ ¬Kaids ∧ ¬K¬aids,

K¬aids ∨ ¬Kaids ∧ ¬K¬aids }

As usual, we assume that the a priori assumptions are expressed in the same language
as the confidentiality policy.

Definition 4.25 (A priori assumptions). The user’s a priori assumptions are a set priorps

of LPS-sentences.

4.2 Declarative Confidentiality

Given the concept of epistemic potential secrets, we can now formally define a CQE
method for epistemic potential secrets as a function cqeps, similar to cqe (for propositional
potential secrets) and cqect (for confidentiality targets).
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Definition 4.26 (CQE method for epistemic potential secrets). A CQE method for epis-
temic potential secrets is a function

cqeps(Q, db, priorps, policyps) = 〈ans1, . . . , ansn〉

with

ansi ∈ {true, false, undef, refuse},

whereQ is a query sequence, priorps the user’s a priori assumptions, db a database instance,
and policyps a confidentiality policy, given as a set of epistemic potential secrets.

Each method cqeps goes along with a function

preconditionps(db, priorps, policyps) ∈ {true, false}

which defines the admissible arguments for cqeps.

We also define the notion of confidentiality in the usual way.

Definition 4.27 (Confidentiality for epistemic potential secrets). Let cqeps be a CQE
method for epistemic potential secrets with preconditionps as its associated precondition
for admissible arguments. cqeps is defined to preserve confidentiality iff

for all finite query sequences Q,
for all instances db,
for all sets of potential secrets policyps,
for all potential secrets Ψ ∈ policyps,
for all a priori assumptions priorps

so that (db, priorps, policyps) satisfies preconditionps,
there exists an instance db′ and a set policy′ps of potential secrets
so that (db′, priorps, policy

′
ps) satisfies preconditionps

and the following two conditions hold:

(a) [(db, policyps) and (db′, policy′ps) produce the same answers]
cqeps(Q, db, priorps, policyps) = cqeps(Q, db

′, priorps, policy
′
ps)

(b) [Ψ is false in db′]
evalps(Ψ)(db′) = false

In case the user is assumed to know the elements of policyps, we additionally
demand that

(c) [same policy]
policyps = policy′ps.

Just like the respective definitions for propositional potential secrets (cf. Definition 2.8)
and confidentiality targets (cf. Definition 3.10), this notion of confidentiality is purely
declarative. In the second part of this thesis, we will present a number of operational
enforcement methods. In the remainder of this chapter, we show that confidentiality
targets and propositional potential secrets can be handled by those methods as well, in
case the methods meet certain requirements.
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4.3 Reduction from Confidentiality Targets

First, we will show how a confidentiality policy policyct based on confidentiality targets can
be enforced by the means of a method cqeps for epistemic potential secrets. In particular,
we will demonstrate how to convert a set of confidentiality targets into a set of LPS-
sentences, and specify the requirements for cqeps in a way that the reduction preserves
confidentiality.

We start with a basic property of the respective evaluation functions evalct and evalps:
They are equivalent when the ∆∗ function is used to convert a confidentiality target (ψ, V )
into an LPS-sentence.

Lemma 4.28. Let (ψ, V ) be a confidentiality target and db a database instance. Then
we have

evalct((ψ, V ))(db) = evalps(∆
∗(ψ, V ))(db).

Proof. As both evalct and evalps return either true or false, the proposition can be rewritten
as

evalct((ψ, V ))(db) = true ⇔ evalps(∆
∗(ψ, V ))(db) = true. (4.49)

According to Definition 3.4, the left hand side is equivalent to

eval(ψ)(db) ∈ V (4.50)

or, equivalently,

(∃v ∈ V )[ eval(ψ)(db) = v ]. (4.51)

According to Lemma 4.17, this is equivalent to

(∃v ∈ V )[ evalps(∆(ψ, v))(db) = true ]. (4.52)

Since ∆∗(ψ, V ) is the disjunction of ∆(ψ, v) for all v ∈ V , we can apply rule (4) of
Definition 4.14, which results in the equivalent condition

evalps(∆
∗(ψ, V ))(db) = true. (4.53)

The above stated relationship between evalct and evalps allows us to convert a set of
confidentiality targets into a set of epistemic sentences, while still preserving the semantics
wrt. the respective evaluation function.

Definition 4.29 (Function convps). We define a function convps which transforms a set
of confidentiality targets into the corresponding epistemic sentences:

convps({(ψ1, V1), . . . , (ψk, Vk)}) := {∆∗(ψ1, V1), . . . ,∆
∗(ψk, Vk)} (4.54)
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All of the sentences generated by convps have a certain syntactical form, as they are
generated by the ∆∗ function. We call these sentences ps-normal.

Definition 4.30 (ps-normal LPS-sentences). Let Ψ be an LPS-sentence. Ψ is defined
as ps-normal iff there is a propositional sentence α and a non-empty value set ∅ 6= V 6=
{true, false, undef} so that Ψ = ∆∗(α, V ). In other words, Ψ is ps-normal iff it has one of
the following syntactical forms, where α is a propositional sentence:

(1) Kα

(2) K¬α

(3) ¬Kα ∧ ¬K¬α

(4) Kα ∨ K¬α

(5) Kα ∨ ¬Kα ∧ ¬K¬α

(6) K¬α ∨ ¬Kα ∧ ¬K¬α

(Note that sentences of the form (2) are also sentences of the form (1) when we consider
α′ := ¬α.)

A set of LPS-sentences policyps = {Ψ1, . . . ,Ψm} is called ps-normal iff each Ψi ∈ policyps

is ps-normal.

Lemma 4.31. Let policyct be a set of confidentiality targets. Then convps(policyct) is
ps-normal.

Proof. Follows immediately from the definition of the convps function (4.54): each element
of the generated set of potential secret is established by the ∆∗ function.

Unfortunately, convps lacks a useful property: It is not invertible, i. e., when converting
a set of confidentiality targets into a set of epistemic sentences, there is no function which
converts these epistemic sentences back into confidentiality targets while ensuring that the
result corresponds to the original set of confidentiality targets.

Lemma 4.32. convps is not invertible.

Proof. convps is not injective:

convps({(α, {false})}) = {K¬α} = convps({(¬α, {true})}) (4.55)

However, as convps is surjective (with the set of ps-normal LPS-sentences as the
codomain), we can specify a right inverse:
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Definition 4.33 (Function convps). Let Σ = {Ψ1, . . . ,Ψm} be a set of ps-normal LPS-
sentences. We define the function convps that converts Σ into a set of confidentiality
targets as follows:

convps(Σ) := {(α1, V1), . . . , (αm, Vm)}

with

(αi, Vi) :=































(α, {true}) if Ψi = Kα

(α, {undef}) if Ψi = ¬Kα ∧ ¬K¬α

(α, {true, false}) if Ψi = Kα ∨ K¬α

(α, {true, undef}) if Ψi = Kα ∨ ¬Kα ∧ ¬K¬α

(α, {false, undef}) if Ψi = K¬α ∨ ¬Kα ∧ ¬K¬α

where α is a propositional sentence. (Note that, by Definition 4.30, each ps-normal LPS-
sentence has one of these syntactical forms – however, the first case captures both form
(1) and form (2) specified in that definition.)

Lemma 4.34. Let Σ = {Ψi, . . . ,Ψn} be a set of ps-normal LPS-sentences. Then we have

convps(convps(Σ)) = Σ.

Proof. Follows directly from Definition 4.30 and Definition 4.33.

The idea of our reduction is to convert a confidentiality policy policyct into a ps-normal
set of epistemic potential secrets policyps, which is then used as the input to a suitable
enforcement method cqeps for epistemic potential secrets. The confidentiality property of
this enforcement method will then ensure that there is an alternative database instance db′

and an alternative set of epistemic potential secrets policy′ps such that the usual conditions
(precondition satisfied, same answers returned, given potential secret is false, possibly the
same policy used) hold. If policy′ps is ps-normal, we can use convps in order to convert
policy′ps into a set of confidentiality targets policy′ct. db

′ and policy′ct will then satisfy the
conditions of the confidentiality definition for confidentiality targets. However, it must
be guaranteed that policy′ps is in fact ps-normal. We call this property ps-normality-
preserving : If the original set of epistemic potential secrets policyps is ps-normal, then
there is also a suitable alternative set policy′ps which is also ps-normal. Enforcement
methods which preserve ps-normality can be used for the reduction. We can formally
define ps-normality-preservation by means of a stronger precondition.

Definition 4.35 (ps-normality-preserving). A method cqeps with the associated precon-
dition preconditionps is called ps-normality-preserving iff it preserves confidentiality in the
sense of Definition 4.27 under the stronger precondition

preconditionps-normal
ps (db, priorps, policyps) :=

preconditionps(db, priorps, policyps) ∧ “policyps is ps-normal”.
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Note that preservation of ps-normality does not imply that the respective method also
preserves “ordinary” confidentiality in the sense of Definition 4.27, as Definition 4.35
does not state anything about non-ps-normal policies. Thus, both properties must be
shown individually for each method. However, in case we assume that the user knows the
confidentiality policy, the converse is true: Each confidentiality preserving method does
also preserve ps-normality.

Lemma 4.36. Assuming that the user knows the set of potential secrets, each
confidentiality-preserving method cqeps is also ps-normality-preserving.

Proof. Follows trivially from condition (c) of Definition 4.27, which demands that the
alternative set of potential secrets policy′ps corresponds to the original set policyps.

We can now specify the main theorem of this section, which formally defines the reduc-
tion and proves its confidentiality.

Theorem 4.37 (Reduction from confidentiality targets to epistemic potential secrets).
Let cqeps be an enforcement method for Controlled Query Evaluation based on epistemic
potential secrets, preserving ps-normality in the sense of Definition 4.35. Let preconditionps

be the associated precondition. Then the function

cqect(Q, db, priorct, policyct) := cqeps(Q, db, convps(priorct), convps(policyct))

with the precondition

preconditionct(db, priorct, policyct) :=

preconditionps(db, convps(priorct), convps(policyct)) (4.56)

preserves confidentiality wrt. confidentiality targets in the sense of Definition 3.10.

Proof. Let db be a database instance, policyct a set of confidentiality targets, priorct the a
priori assumptions so that the pertinent preconditionct is satisfied, and Q = 〈Φ1, . . . ,Φn〉
a query sequence. Let (ψ, V ) ∈ policyct be a confidentiality target.

As preconditionct(db, priorct, policyct) is satisfied, the equivalent condition

preconditionps(db, convps(priorct), convps(policyct)) (4.57)

is satisfied as well. Furthermore, convps(policyct) is ct-normal. So

preconditionps-normal
ps (db, convps(priorct), convps(policyct)) (4.58)

is also satisfied. Then, by Definition 4.35, there exists a database instance
db′ and a set of epistemic potential secrets policy′ps, so that – in particular –

preconditionps-normal
ps (db, convps(priorct), policy

′
ps) is satisfied, and policy′ps must be ps-

normal.
The construction of policy′ct depends on the question whether the user is assumed to

know the confidentiality policy or not.
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4.3 Reduction from Confidentiality Targets

Case 1 (The user knows the confidentiality policy). In this case, condition (c) of Defi-
nition 4.27 guarantees that policy′ps = policyps. We can then choose policy′ct = policyct,
which satisfies condition (c) of Definition 3.10. Furthermore, it is trivial that

convps(policy
′
ct) = convps(policyct) = policyps = policy′ps. (4.59)

Case 2 (The user does not know the confidentiality policy). Then we construct a set
policy′ct of confidentiality targets as follows:

policy′ct := convps(policy
′
ps). (4.60)

By Lemma 4.34, we then have

convps(policy
′
ct) = policy′ps. (4.61)

Finally, we show that db′ and policy′ct also satisfy the precondition and conditions (a)
and (b) of Definition 3.10.

• By preconditionps-normal
ps (db, convps(priorct), policy

′
ps), we have

preconditionps(db, convps(priorct), policy
′
ps), (4.62)

which is by (4.59) (or (4.61), respectively) equivalent to

preconditionps(db, convct(priorct), convct(policy
′
ct)), (4.63)

and by (4.56) also equivalent to

preconditionct(db
′, priorct, policy

′
ct). (4.64)

So the precondition is satisfied for db′ and policy′ct.

• By condition (a) of Definition 4.27, (db, convps(policyct)) and (db′, policy′ps) produce
the same answers, so we have

cqect(Q, db, priorct, policyct) (4.65)

= cqeps(Q, db, convps(priorct), convps(policyct)) (4.66)

= cqeps(Q, db
′, convps(priorct), policy

′
ps) (4.67)

= cqeps(Q, db
′, convps(priorct), convps(policy

′
ct)) (4.68)

= cqect(Q, db
′, priorct, policy

′
ct). (4.69)

This satisfies condition (a) of Definition 3.10.

• By condition (b) of Definition 4.27, we have

evalps(∆
∗(ψ, {true}))(db′) = false. (4.70)

By Lemma 4.28, this is equivalent to

evalct((ψ, V ))(db′) = false. (4.71)

This satisfies condition (b) of Definition 3.10.

Thus, all of the conditions of Definition 3.10 are satisfied for db′ and policy′ct.
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4 Policies Based on Epistemic Potential Secrets

4.4 Reduction from Propositional Potential Secrets

In the previous section, we showed how to employ an enforcement method for epistemic
potential secrets for the protection of a confidentiality policy based on confidentiality
targets. In this section, we will investigate yet another reduction: from propositional
potential secrets (introduced in Chapter 2) to epistemic potential secrets. This can be
achieved by linking the two reductions presented above: First from propositional potential
secrets to confidentiality targets (Section 3.3), and then from confidentiality targets to
epistemic potential secrets (Section 4.3).

For simplicity and easier reading, we use three abbreviating notations:

• A CQE method for propositional potential secrets is called a pps-method.

• A CQE method for confidentiality targets is called a ct-method.

• A CQE method for epistemic potential secrets is called a eps-method.

Theorem 3.17 states that a ct-method can be used for the reduction from propositional
potential secrets if it is ct-normality-preserving, i. e., there is a ct-normal alternative con-
fidentiality policy. Likewise, Theorem 4.37 states that an eps-method can be used for
the reduction from confidentiality targets if it is ps-normality-preserving, i. e., there is a
ps-normal alternative confidentiality policy, which means that it can be converted into a
set of confidentiality targets policy′ct := convps(policy

′
ps). However, in order to concatenate

these two reductions as

cqe(Q, db, prior, policy) := cqect(Q, db, convct(prior), convct(policy))

:= cqeps(Q, db, convps(convct(prior)), convps(convct(policy)))

we need to make sure that policy′ct = convps(policy
′
ps) can be further converted into a set of

propositional sentences, i. e., policy′ct is ct-normal. This is possible iff policy′ps only contains
epistemic sentences of the form Kψ, where ψ is a propositional sentence. policy′ps is then
called ps/ct-normal.

Definition 4.38 (ps/ct-normal LPS-sentences). Let Ψ be an LPS-sentence. Ψ is defined
as ps/ct-normal iff there is a propositional sentence ψ such that Ψ = ∆∗(ψ, {true}). In
other words, Ψ is ps/ct-normal iff it has the syntactical formKψ, where ψ is a propositional
sentence.

A set of LPS-sentences policyps = {Ψ1, . . . ,Ψm} is called ps/ct-normal iff each Ψi ∈
policyps is ps/ct-normal.

Lemma 4.39. Let policyct be a ct-normal set of confidentiality targets. Then
convps(policyct) is ps/ct-normal.

Proof. By the definition of the convps function (4.54), each element of convps(policyct) is
established by the ∆∗ function. Additionally, as the V -component of each confidentiality
target (ψ, V ) is either {true} or {false}, the resulting potential secret is either ∆∗(ψ, {true})
or ∆∗(ψ, {false}). In the latter case, the potential secret is equivalent to ∆∗(¬ψ, {true}).
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4.4 Reduction from Propositional Potential Secrets

Corollary 4.40. Let policy be a set of propositional sentences. Then convps(convct(policy)))
is ps/ct-normal.

Proof. Follows from Lemma 3.14 and Lemma 4.39.

Lemma 4.41. Let policy′ps be ps/ct-normal. Then convps(policy
′
ps) is ct-normal.

Proof. By the ps/ct-normality, each sentence in policy′ps has the syntactical form Kψ,
where ψ is a propositional sentence. Thus, by Definition 4.33, each confidentiality target
in convps(policy

′
ps) has the form (ψ, {true}).

As usual, we can now define the notion of preservation of ps/ct-normality by specifying
a stronger precondition.

Definition 4.42 (ps/ct-normality-preserving). An eps-method cqeps with the associated
precondition preconditionps is called ps/ct-normality-preserving iff it preserves confiden-
tiality in the sense of Definition 4.27 under the stronger precondition

preconditionps/ct-normal
ps (db, priorps, policyps) :=

preconditionps(db, priorps, policyps) ∧ “policyps is ps/ct-normal”.

Again, this definition is independent from the preservation of “ordinary” confidentiality
according to Definition 4.27, but we can state an inclusion property for the case of a known
policy:

Lemma 4.43. Assuming that the user knows the set of potential secrets, each
confidentiality-preserving method cqeps is also ps/ct-normality-preserving.

Proof. Follows immediately from condition (c) of Definition 4.27, which demands that the
alternative set of potential secrets policy′ps corresponds to the original set policyps.

We now construct the reduction from propositional potential secrets to epistemic poten-
tial secrets. The first step is to show that an eps-method which preserves ps/ct-normality
can be used to derive a ct-normality-preserving ct-method.

Theorem 4.44 (Reduction from ct-normal confidentiality targets to epistemic potential
secrets). Let cqeps be an eps-method, preserving ps/ct-normality in the sense of Defini-
tion 4.42. Let preconditionps be the associated precondition. Then the function

cqect(Q, db, priorct, policyct) := cqeps(Q, db, convps(priorct), convps(policyct))

with the precondition

preconditionct(db, priorct, policyct) :=

preconditionps(db, convps(priorct), convps(policyct)) (4.72)

preserves ct-normality confidentiality wrt. confidentiality targets in the sense of Defini-
tion 3.15.
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4 Policies Based on Epistemic Potential Secrets

Proof. We follow the outline of the proof of Theorem 4.37 and only state the changed
assumptions and effects.

We now assume that policyct is ct-normal (due to the stronger precondition stated in
Definition 3.15). According to Lemma 4.39, convps(policyps) is then ps/ct-normal. As cqeps

is ps/ct-normality-preserving, policy′ps is ps/ct-normal was well. Thus, by Lemma 4.41,

convps(policy
′
ps) is ct-normal. This means that preconditionct-normal

ct (db′, priorct, policy
′
ct) is

satisfied.
The remainder of the proof corresponds to the one from Theorem 4.37.

Corollary 4.45 (Reduction from propositional to epistemic potential secrets). Let cqeps

be an enforcement method for Controlled Query Evaluation based on epistemic potential
secrets, preserving both confidentiality in the sense of Definition 4.27 and ps/ct-normality
in the sense of Definition 4.42. Let preconditionps be the associated precondition. Then
the function

cqe(Q, db, prior, policy) := cqeps(Q, db, convps(convct(prior)), convps(convct(policy)))

with the precondition

precondition(db, prior,policy) :=

preconditionps(db, convps(convct(prior)), convps(convct(policy)))

preserves confidentiality wrt. propositional potential secrets in the sense of Definition 2.8.

Proof. Follows from Theorem 4.44 and Theorem 3.17.

As we have shown, a ps/ct-normal eps-method can be used to handle any kind of
confidentiality policy: propositional potential secrets, confidentiality targets and of course
epistemic potential secrets. We are now ready for the second part of this thesis, where
we introduce an operational framework for eps-methods and construct several specific
enforcement methods, most of which are in fact ps/ct-normal.
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Operational Layer
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5 An Operational Framework for Epistemic
Potential Secrets

In the previous chapter, we defined confidentiality policies based on epistemic potential
secrets, gave a formal but abstract definition of an enforcement method cqeps for these
policies, and introduced the notion of confidentiality in Definition 4.27. Furthermore, we
proved a method for epistemic potential secrets to be employable for the protection of
both policies based on propositional potential secrets and policies based on confidentiality
targets, given a certain property, which we call normality-preservation.

In the second part of this thesis, we show how to construct enforcement methods for epis-
temic potential secrets that operationally meet the requirements stated in Definition 4.27.
The presentation consists of two steps: First, we introduce a general framework acting as
the foundation of all enforcement methods, while at the same time leaving a few parame-
ters open, which have to be filled in according to the requirements of the target method.
In particular, these parameters are the functions inference, violates, censor, and possibly
precondition. This framework is given in the current chapter. We also present different
versions of some of the above mentioned functions. In Chapter 6 and Chapter 7, we will
then instantiate the framework by selecting or specifying the missing functions, and prove
the confidentiality property of the resulting enforcement methods.

5.1 Basic Architecture

The architecture of our framework is visualized in Figure 5.1. It can be summarized as
follows:

• The system keeps a log file logi which represents the information disclosed to the user
at a given time i, i. e., up to the point where the i-th query Φi has been answered.
The log file is initialized with the a priori assumptions log0 = priorps. After each
query Φi, the information provided by the answer ansi is added to the log file. This
information is called the inference from that answer. It is left to the enforcement
method to decide what information to keep from an answer. Some will only store
the (encoded) answer, some will also account for additional meta inferences.

• When the user issues a query Φi, the system tentatively adds any possible inference
to the log file.

• It then checks which of these inferences would generate a log file that violates the
confidentiality policy. The exact definition of a security violation depends on the
enforcement method again.

49
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Query Φ

eval(Φ)(db) ∈
{true, false, undef}

Query Evaluation

Censor

Possibly modified answer ans ∈ {true, false, undef, refuse}

Policy policyps

Confidentiality

Log File log
C

Security Configuration

Inference

Database db

Figure 5.1: The operational framework for epistemic potential secrets

• All of these “violating” inferences are gathered in a set which is called the security
configuration C of the query in the given situation.

• The security configuration C and the actual query value eval(Φi)(db) are passed to
a censor function which chooses an appropriate answer ansi.

• The answer is passed to the user, and the inference from the answer is stored in the
log file.

In the following sections, we give a formal specification of this framework. We define a
number of functions for the various steps, and show how they interact with each other.
Some of the functions have a different implementation depending on the enforcement
method. In that case, we present all possible versions in this section, and each enforcement
method presented in Chapters 6 and 7 will later pick one of these.

5.2 Inferences and the Log File

The main advantage of Controlled Query Evaluation over existing static approaches is
the fact that it addresses the inference problem: The user may not combine an answer
given by the system with information gained from previous answers in order to infer any
of the potential secrets. Obviously, this goal can only be achieved if the systems keeps
track of the information already disclosed to the user throughout the query sequence. In
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5.2 Inferences and the Log File

this section, we introduce a log file which contains this information, and show how it is
encoded using epistemic logic.

We denote the log file by log and consider its state logi at a given time i. Prior to the
first query, we have the initial log file log0, containing the (possibly empty) set of a priori
assumptions priorps. Then, after each query Φi, the subsequent log file logi is established
by logging the query and a representation of the corresponding answer ansi or, generally
speaking, the information provided by this answer ansi. We denote the latter as the
inference from that answer, generally defined as the set of values that appear possible
wrt. the actual query value, and formalized as a value set ∅ 6= V ⊆ {true, false, undef}
(which we have introduced in the context of confidentiality targets, cf. Definition 3.1). In
this context, we also speak of inference sets and classify them by their cardinality:

1. Unary inference sets ({true}, {false}, and {undef }): These represent definite infor-
mation about the query value. For example, the inference set {true} represents the
information “the actual query value is true, but not false or undef ”.

2. Binary inference sets ({true,false}, {true,undef }, and {false,undef }). These rep-
resent disjunctive information: For example, {true,false} means that “the actual
query value is true or false, but not undef ”.

3. The set {true, false, undef} represents no information about the actual query value:
any value appears possible.

The methods described in Chapters 6 and 7 employ two different strategies when deter-
mining the inference set from an answer ans: answer inferences and meta inferences. In
the remainder of this section, we will briefly discuss the main ideas of these two strategies,
and provide a formalization as a function

inference(censor, C, ans)

where ans is the answer, censor the algorithm of the censor function employed, and C

the security configuration, introduced in Section 5.3 below, which describes the threats
to confidentiality in the given situation. The censor function is formally introduced in
Section 5.4 below; in a nutshell, it chooses a suitable answer according to the current
security configuration and the actual query value. It is also important to be aware of the
range of a particular inference function, so that the censor function can enumerate and
analyze any possible inference. We denote the range of inference by I.

Answer inferences It is assumed that each non-refused answer ans ∈ {true, false, undef}
provides the information that the query value is exactly ans (although this might
be a lie), so the inference set would be V := {ans}. A refused answer is assumed to
carry no “useful” information, which we express by V := {true, false, undef}. This
is formalized by the function

inferenceans(censor, C, ans) :=

{

{ans} if ans ∈ {true, false, undef}

{true, false, undef} otherwise
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5 A Framework for Epistemic Potential Secrets

(5.1)

with the range

Ians = {{true}, {false}, {undef}, {true, false, undef}}.

This is the most simple way to keep a log file of the past queries and answers, though
it might discard certain facts (for example, that a certain answer was refused). Thus,
we have to make sure that any enforcement method making use of this approach
does not rely on the possibly missing information. Most of the enforcement methods
presented in Chapter 6 and Chapter 7 rely on this approach: the uniform lying
method and the combined lying and refusal method for known policies, as well as
the uniform lying method and the uniform refusal method for unknown policies.

Meta inferences Instead of simply “consuming” an answer ansi, a highly sophisticated
user might reflect on the origin of that answer and consider the following question:

What is the set of actual query values v ∈ {true, false, undef} that would
have resulted in this answer ansi?

In other words, the user might compute the pre-image of the answer ansi wrt. the
possible query values in the actual database instance db. This is formalized by the
function

inferencemeta(censor, C, ans) :=

{ v | v ∈ {true, false, undef} and censor(C, v) = ans } (5.2)

with the range

Imeta = P+({true, false, undef})

where P+ denotes the power set operator, excluding the empty set (the empty set
cannot occur as there is always at least one value that would result in the observed
answer).

Of course, calculating this pre-image requires certain knowledge: First, the user
needs to be aware of the algorithm of the enforcement method, which we assume,
as we follow the principle of open design. Second, the user needs knowledge about
the other input parameters of the cqeps function, in particular the set of potential
secrets policyps. If we assume that this confidentiality policy is known to the user, it
is possible to draw this kind of meta inferences. This is demonstrated in Section 6.2.

The meta inferences approach is employed by the uniform refusal methods for known
potential secrets. In particular, it allows us to account for meta inference from
refused answers. However, it involves a certain overhead, as we need to consider
a larger number of inference sets when calculating the security configuration (note
that |Imeta| = 7, while |Ians| = 4).
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5.3 Security Violations

Having determined the inference V from an answer ans to query Φ, we need to find a
way to store it in the log file log, along with the query Φ that caused this inference. The
log file is a set of LPS-sentences. In Section 4.1, we have already demonstrated how to
convert a pair (Φ, V ) (in that context, a confidentiality target) into an LPS-sentence: by
the means of the function ∆∗ (4.6). We reuse this function here, and the update of the
log file can be formalized as

logi := logi−1 ∪ {∆∗(Φi, Vi)}

where Φi is the i-th query, and Vi := inference(censor, Ci, ansi) is the inference from the
answer ansi.

5.3 Security Violations

In the previous section, we showed how the information gained from the answers are stored
in the log file: At any time i, the log file logi is a representation of the information that
has already been disclosed to the user, plus his initial assumptions priorps. The goal of
Controlled Query Evaluation is to keep the user from inferring any of the potential secrets
from the information disclosed to him. By means of the log file, we state that log may not
violate the confidentiality policy at any time.

In general, having encoded both the log file and the potential secrets as LPS-sentences,
the violation of the confidentiality policy can be expressed by the means of logical impli-
cation: a log file log violates a confidentiality policy (given as a set of potential secrets)
if at least one potential secret is logically implied by log. However, this condition must
be hardened or can be weakened for some of the methods presented in Chapters 6 and 7.
Thus, we abstractly define a function

violates(db, log, policyps) ∈ {true, false}

where db is the database instance, log the log file and policyps the set of potential secrets.
In total, there are four different versions of this function. The first two versions protect
all potential secrets, and are therefore independent from the database instance db:

Violation wrt. a single potential secret The log file log is defined to violate the confi-
dentiality policy policyps iff at least one potential secret Ψ ∈ policyps is logically
implied by log:

violatessingle(db, log, policyps) := (∃Ψ ∈ policyps)[ log |=S5 Ψ ] (5.3)

This is the basic condition, employed by the uniform refusal method for known
potential secrets and the combined lying and refusal method for known potential
secrets.

Violation wrt. the disjunction of all potential secrets The log file log is defined to vio-
late the confidentiality policy policyps iff it logically implies the disjunction of all
potential secrets from policyps:

violatesdisj(db, log, policyps) := log |=S5 pot sec disj (5.4)
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with

pot sec disj :=
∨

Ψ∈policyps

Ψ (5.5)

This is a stricter condition than violatessingle, as the log file is even considered vi-
olating if only the fact is disclosed that at least one secret must be true, without
revealing which secret it is. This function is employed by the uniform lying censor
for known policies in order to prevent a “hopeless situation” in which no answer
may be given without disclosing at least one potential secret. Details are given in
Section 6.1.2 below.

When the user is assumed not to know the elements of the confidentiality policy, we can
use a weaker version of either function: We only consider those potential secrets which
are actually true in the given database instance db. The two enforcement methods for
unknown policies presented in Chapter 7 are constructed according to this heuristics.

Violation wrt. a single true potential secret The log file log is defined to violate the
confidentiality policy policyps iff at least one true potential secret Ψ ∈ policyps is
logically implied by log:

violatestruesingle(db, log, policyps) :=

(∃Ψ ∈ policyps)[ evalps(Ψ)(db) = true and log |=S5 Ψ ] (5.6)

This function is employed by the uniform refusal method for unknown potential
secrets.

Violation wrt. the disjunction of all true potential secrets The log file log is defined to
violate the confidentiality policy policyps iff it logically implies the disjunction of all
true potential secrets from policyps, formalized as

violatestruedisj(db, log, policyps) := log |=S5 true pot sec disj (5.7)

with

true pot sec disj :=

{

∨

true pot sec if true pot sec 6= ∅

⊥ if true pot sec = ∅
(5.8)

and

true pot sec := { Ψ ∈ policyps | evalps(Ψ)(db) = true }. (5.9)

This function is employed by the uniform lying censor for unknown potential secrets,
again to avoid the “hopeless situation” in which any answer would be harmful.
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We have now formally defined the notion of a security violation, by means of the function
violates. Before returning an answer ansi to a query Φi, we have to make sure that the
resulting log file

logi−1 ∪ {∆∗(Φi, inference(censor, Ci, ansi))}

will not result in this kind of violation. The censors we construct avoid these security
violations as follows: First, all inference sets which would (combined with the current log
file) lead to such a violation are identified. We call this set of all violating inference sets
the security configuration of the given situation. Then, an answer is chosen which does
not result in one of the inference sets from the security configuration.

Definition 5.1 (Security configuration). Let policyps be a set of potential secrets, log a
log file and Φ a query. Further, let I be the range of the inference function associated
with the respective enforcement method, i. e., the set of all inference sets that may occur
under this version of inference. The set

sec conf(db, log, policyps,Φ) :=

{ V | V ∈ I and violates(db, log ∪ {∆∗(Φ, V )}, policyps) } (5.10)

of all inference sets that would lead to a violation of the confidentiality policy is called the
security configuration of the query Φ wrt. policyps and log under the database instance
db.

Note that the range of sec conf is limited by four constraints:

1. The range I of the underlying inference function. Only inference sets produced by
this function may occur as elements of a security configuration C.

2. The exact definition of the underlying violates function. As mentioned earlier and
demonstrated in Section 6.1.2 and below, the uniform lying methods protect the
disjunction of all (or all true) potential secrets in order to avoid a “hopeless situation”
in which neither answer may be given without revealing at least one potential secret.
By avoiding this situation, the inferences {true}, {false} and {undef} will never be
harmful at the same time, and thus {{true}, {false}, {undef}} cannot occur as a
security configuration.

3. The fact that disjunctive information can only be harmful if the more precise infor-
mation is: If it is harmful to learn that the value of a query is either v1 or v2, it is
also harmful to learn that the value of a query is exactly v1 (or exactly v2). Thus,
an inference set {v1, v2} can only occur as an element of a security configuration C

if both of its non-empty subsets {v1} and {v2} are elements of C as well.

4. The fact that the inference set {true, false, undef} can only be harmful if also the
preceding log file has been violating the confidentiality policy, which we avoid by
appropriate preconditions, and which we keep as an invariant later on. (Note that

∆∗(Φi, {true, false, undef}) = KΦi ∨K¬Φi ∨ (¬KΦi ∧ ¬K¬Φi)
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is a tautology and has no impact on the logical consequences when added to the log
file.) Thus, this inference set will never occur as an element of a security configura-
tion.

Note that, in principle, each method could choose an arbitrary inference function and thus
produce arbitrary log files which might neglect certain pieces of information disclosed to
the user. For example, remember that the answer inference mechanism presented above
discards the information about refused answers. This will only work if the corresponding
censor functions do not rely on the missing information. As a result, the fact that the log
file, according to violates, does not violate the confidentiality policy does not necessarily
guarantee that confidentiality is preserved. Thus, for each method, we have to prove the
formal conditions required by Definition 4.27, considering the other components of the
method as well.

5.4 The Censor

The censor is the core of Controlled Query Evaluation. Based on the components presented
above, it decides whether an answer to a query needs to be distorted in order to preserve
confidentiality, and, if so, in which manner. In order to come to a decision, the censor
considers two questions:

1. What is the security configuration of the query, i. e., what are the inferences to avoid
in order to preserve confidentiality?

2. What is the actual value of the query?

Thus, we can formally define a censor as a function with two parameters.

Definition 5.2 (Censor function). A censor is a function

censor : P(P+({true, false, undef})) × {true, false, undef}

→ {true, false, undef, refuse}

which assigns an answer to each combination of a (valid) security configuration and an
actual query value. P and P+ denote the power set operator, including and excluding the
empty set, respectively.

The actual definition of the censor function depends on the constraints of the given
enforcement method, and is presented in the various sections of Chapter 6 and Chapter 7.
Moreover, some elements of P(P+({true, false, undef})) will never occur as a security con-
figuration under a specific method, according to the constraints mentioned in Section 5.3,
in particular depending on the exact definition of the functions violates and inference. The
set of valid security configurations under a specific method – i. e., the range of sec conf
considering its underlying functions violates and inference – is denoted by C∗, and we
implicitly allow the function value of a specific censor function to be undefined for any
other input (X, v) with X 6∈ C∗ and v ∈ {true, false, undef}.

56



5.5 Putting it All Together

5.5 Putting it All Together

As introduced in Chapter 4, a CQE method is a function

cqeps(Q, db, priorps, policyps) := 〈ans1, . . . , ansn〉, (5.11)

where Q = 〈Φ1, ...,Φn〉 is a query sequence, priorps = log0 the initial log file, db a database
instance, and policyps a set of potential secrets. Unless otherwise noted, we demand that
the a priori assumptions priorps do not violate the confidentiality policy in the first place:

preconditionps(db, priorps, policyps) := ¬violates(db, priorps, policyps) (5.12)

Note that this precondition does not require priorps to be true in db. The system is also
able to deal with situations where the user believes in “false” information. The answers
will be adjusted accordingly, which means that true, harmless answers might be distorted
in order to match the false assumptions. This design is debatable – one could argue that
the a priori assumptions will never be inconsistent with the actual database instance, in
particular if they only reflect semantic constraints. We however believe that this strict
kind of precondition is not necessary, especially for the lying methods; as soon as the
first lie is returned, the log file will become inconsistent with the actual database instance
anyway. Due to the way the alternative database instance db′ is constructed, we also ensure
that db′ makes all sentences from logn (and thus also priorps) true (cf. Definition 5.3 and
Lemma 5.5 below). Thus, the user will be able to imagine a database instance which does
not only satisfy the conditions mentioned in Definition 4.27, but which is also consistent
with his a priori assumptions.

After each query Φi, the answer ansi and the subsequent log file logi are generated as
follows:

1. Determine the security configuration (implicitly using the function violates):

Ci := sec conf(db, logi−1, policyps,Φi)

2. Let the censor choose the answer:

ansi := censor(Ci, eval(Φi)(db))

3. Add the inference to the log file, encoded as an epistemic sentence:

logi := logi−1 ∪ {∆∗(Φi, inference(censor, Ci, ansi))} (5.13)

An enforcement method is completely identified if the functions inference, violates and
censor are specified. Although censor is only one of them, we will often refer to these
functions as “the algorithm of the censor”.
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5.6 Proving Confidentiality

According to Definition 4.27, a method for Controlled Query Evaluation preserves confi-
dentiality if – under any “appropriate” input parameters, and for an arbitrary potential
secret Ψ ∈ policyps – there is always an indistinguishable database instance db′ in which
Ψ is false, under which the same answers are returned, and both even under the same
confidentiality policy, in case it is assumed to be known by the user. We will have to prove
this confidentiality property individually for each of the enforcement methods presented
in Chapter 6 and Chapter 7. However, the proofs are similar to a certain extend, and
share some common ideas. The purpose of this section is to present the main common
proof idea, and provide some lemmas which will later help to streamline the proofs.

In particular, we have to construct the “alternative” database instance db′. This is
achieved by means of the log file. For each method, it will be shown that the final log file
logn does not imply any potential secret Ψ (or any true potential secret Ψ, in case of a
method for unknown policies):

logn 6|=S5 Ψ (5.14)

Then, by the definition of the logical implication operator |=S5, there must be at least one
MDS-structure M = (S,K, π) and a state s ∈ S so that (M,s) is a model of logn but not
a model of Ψ. We can then construct a database instance dbM,s from M and s which will
serve as the alternative instance db′ demanded by Definition 4.27.

Definition 5.3 (Alternative database instance). Let M = (S,K, π) be an MDS-structure
and s ∈ S a state. The “alternative” database instance dbM,s is constructed as follows:

dbM,s := { α | α is a propositional sentence and (M,s) |= Kα } (5.15)

In order to qualify as a valid database instance, dbM,s needs to be consistent (cf. Defi-
nition 1.2). It is also important to note that dbM,s is closed under logical implication.

Lemma 5.4. For any structure M = (S,K, π) and state s ∈ S, dbM,s is both consistent
and closed under logical implication |=PL.

Proof. By (5.15), we have

(M,s) |= Kα for all α ∈ dbM,s, (5.16)

and by the reflexivity of K also

(M,s) |= α for all α ∈ dbM,s. (5.17)

Hence, (M,s) can be regarded as a propositional interpretation which is a model of dbM,s.
So dbM,s must be consistent.

For the closure under implication, choose an arbitrary propositional sentence α so that
dbM,s |=PL α. Recall (5.17) and consider that (M,s′) is a model of dbM,s for each s′ with
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(s, s′) ∈ K. By dbM,s |=PL α and the definition of the logical implication operator |=PL, if
(M,s′) is a model of dbM,s, it is a model of α as well, so we have

(M,s′) |= α for all s′ such that (s, s′) ∈ K, (5.18)

and thus

(M,s) |= Kα, (5.19)

which means by (5.15) that α ∈ dbM,s. Thus, dbM,s is closed under logical implication.

One of the properties of db′ = dbM,s to show in the confidentiality proof is that the
potential secret Ψ is false in that alternative database instance. The following lemma
states an even more general property, i. e., the equivalence of the value of some LPS-
sentence in the instance and state (M,s), and the value defined by evalps wrt. dbM,s. As
a corollary, we can then see that Ψ must be false in dbM,s.

Lemma 5.5. Let logn be a set of LPS-sentences, and Ψ an LPS-sentence so that logn 6|=S5

Ψ. Let (M,s) be a structure and a state that witness this relationship, i. e.,

(M,s) |= logn,

(M,s) 6|= Ψ.

Then it holds for each LPS-sentence φ:

(M,s) |= φ ⇔ evalps(φ)(dbM,s) = true.

Proof. We prove this property by structural induction, according to the syntactical defi-
nition of LPS given in Definition 4.5.

Case 1 (φ = Kα, where α is propositional). The left hand side

(M,s) |= Kα (5.20)

is by Definition 5.3 equivalent to

α ∈ dbM,s, (5.21)

and, as dbM,s is consistent and closed under logical implication, also equivalent to

dbM,s |=PL α. (5.22)

By the definition of the eval function (1.1), this is equivalent to

eval(α)(dbM,s) = true (5.23)

and by Lemma 4.17 also equivalent to

evalps(Kα)(dbM,s) = true. (5.24)
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For the following cases, assume as induction hypothesis that the property has already been
proved for ψ and ρ.

Case 2 (φ = ¬ψ). Then we have

(M,s) |= ¬ψ (5.25)

which is equivalent to

(M,s) 6|= ψ, (5.26)

by the induction hypothesis equivalent to

evalps(ψ)(dbM,s) = false, (5.27)

and by Lemma 4.15 finally to

evalps(¬ψ)(dbM,s) = true. (5.28)

Case 3 (φ = ψ ∧ ρ). Then we have

(M,s) |= ψ ∧ ρ (5.29)

which is equivalent to

(M,s) |= ψ and (5.30)

(M,s) |= ρ, (5.31)

by the induction hypothesis equivalent to

evalps(ψ)(dbM,s) = true and (5.32)

evalps(ρ)(dbM,s) = true, (5.33)

and by Lemma 4.15 finally to

evalps(ψ ∧ ρ)(dbM,s) = true. (5.34)

Case 4 (φ = ψ ∨ ρ). Then we have

(M,s) |= ψ ∨ ρ (5.35)

which is equivalent to

(M,s) |= ψ or (5.36)

(M,s) |= ρ, (5.37)

by the induction hypothesis equivalent to

evalps(ψ)(dbM,s) = true or (5.38)

evalps(ρ)(dbM,s) = true, (5.39)

and by Lemma 4.15 finally to

evalps(ψ ∨ ρ)(dbM,s) = true. (5.40)
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Corollary 5.6. Let logn be a log file and Ψ a potential secret so that logn 6|=S5 Ψ. Let
(M,s) be a witness for the non-implication. Then we have evalps(Ψ)(dbM,s) = false.

Proof. Immediate consequence of Lemma 5.5.

A second corollary will be useful when showing that the answers coincide under db and
db′, as demanded by condition (a) of Definition 4.27: When we have a query Φ and add a
non-refused answer ans ∈ {true, false, undef}, encoded as ∆∗(Φ, {ans}), to the log file, Φ
will have exactly the value ans in the resulting instance dbM,s.

Corollary 5.7. Let db be a database instance, Φ a query, ans ∈ {true, false, undef} an
answer and logn a set of LPS-sentences so that ∆∗(Φ, {ans}) ∈ logn. Let Ψ be an LPS-
sentence with logn 6|=S5 Ψ, M = (K, s, π) an MDS-structure and s ∈ S a state that witness
this relationship, and dbM,s the alternative database instance wrt. (M,s). constructed as
specified in Definition 5.3. Then we have eval(Φ)(dbM,s) = ans.

Proof. Due to the assumption

∆∗(Φ, {ans}) ∈ logn (5.41)

we have

logn |=S5 ∆∗(Φ, {ans}) (5.42)

and as given in Lemma 5.5 also

(M,s) |= ∆∗(Φ, {ans}). (5.43)

By Lemma 5.5, it then holds that

evalps(∆
∗(Φ, {ans)}))(dbM,s) = true, (5.44)

which is by Corollary 4.18 equivalent to

eval(Φ)(dbM,s) = ans. (5.45)
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In this chapter, we assume that the user knows the elements of the confidentiality policy,
and we present four enforcement methods: Uniform lying, uniform refusal, uniform refusal
with improved availability, and combined lying and refusal. The user’s knowledge of the
confidentiality policy has an impact on the confidentiality proofs: We need to ensure the
existence of an alternative, “harmless” database instance which returns the same sequence
of answers even under the original set of potential secrets. This is captured by condition
(c) of Definition 4.27.

As it turns out, the uniform methods have special requirements with regard to the
notion of inferences and confidentiality violations. The two uniform refusal methods need
to consider meta inferences drawn from refused answers; the uniform lying method needs to
protect the disjunction of the potential secrets in order to protect a “hopeless situation” in
which no suitable lie can be returned without violating the confidentiality. The combined
lying and refusal method, however, overcomes these disadvantages. It does neither need
to consider meta inferences, nor protect the disjunction of the potential secrets.

Note that, according to Lemma 4.43, all methods presented in this chapter also pre-
serve ps/ct-normality, which means that they can be employed for the construction of
enforcement methods for confidentiality targets and propositional potential secrets, by
the reductions given in Section 4.3 and Section 4.4, respectively.

6.1 Uniform Lying

The first enforcement method we present is uniform lying. As the name suggests, this
method preserves confidentiality only by lying, i. e., choosing an answer true, false or
undef possibly different from the actual query value. Answering refuse is not allowed.
As specified in Chapter 5, we need to pick a specific version of the inference function, a
specific version of the violates function, and we also need to specify a censor function.

6.1.1 Inferences

We use answer inferences, i. e., we employ the version of inference that simply adds the
answer (as a definite, unary value set) to the log file, while discarding refusals (which
cannot occur under this method anyway):

inferenceans(censor, C, ans) :=

{

{true, false, undef} if ans = refuse

{ans} otherwise
(6.1)

As refusals are not allowed in this method, only unary inference sets will occur and need
to be considered when determining the security configuration.
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6.1.2 Security Violations

Generally, a log file is considered violating the confidentiality policy if it logically implies
at least one potential secret. In Section 5.3, we already suggested the necessity to tighten
this condition for the uniform lying method. We now motivate this by an example.

Example 6.1. Imagine the following situation:

policyps := { Ks1, Ks2, Ks3 }

logi−1 := { Kα→ Ks1, K¬α→ Ks2, (¬Kα ∧ ¬K¬α) → Ks3 }

The user issues the query Φi = α. As refusal is not allowed, the system may only return
one of the answers true, false, or undef. The epistemic sentences added to the log files are:

• For ansi = true: ∆∗(α, {true}) = Kα

• For ansi = false: ∆∗(α, {false}) = K¬α

• For ansi = undef: ∆∗(α, {undef}) = ¬Kα ∧ ¬K¬α

Whatever answer ansi the system gives – true, false or undef – the resulting log file

logi−1 ∪ {∆∗(α, ansi)}

would imply one of the potential secrets. Obviously, we have a “hopeless situation”,
identified by the security configuration C = {{true}, {false}, {undef}}. What answer will
the censor give?

Our solution to this problem is to avoid this “hopeless situation” in the first place.
Taking a closer look at the example, one can see that the log file logi−1 implies the fact
that at least one of the potentials secrets s1, s2 and s3 must be true, depending on the
value of α. More formally, we have

logi−1 |=S5 Ks1 ∨Ks2 ∨Ks3

Obviously, this knowledge enables the user to maneuver the censor into the above men-
tioned hopeless situation. We overcome this problem by tightening our definition of se-
curity violations: We say that a log file log even violates a security policy policyps if log
implies only the disjunction of all potential secrets, formalized by

violatesdisj(db, log, policyps) := log |=S5 pot sec disj (6.2)

with

pot sec disj :=
∨

Ψ∈policyps

Ψ.

For log0, this condition is assured by the precondition. For the subsequent log files, it is
kept as an invariant. Now that the “hopeless situation” cannot occur, the only security
configurations to be considered by the uniform lying censor are

C∗
ans,disj = { {{true}, {false}}, {{true}, {undef}}, {{false}, {undef}},

{{true}}, {{false}}, {{undef}}, ∅ }.
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Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}} undef undef undef
{{true}, {undef}} false false false
{{false}, {undef}} true true true

{{true}} undef false undef
{{false}} true undef undef
{{undef}} true false false

∅ true false undef

Figure 6.1: A safe uniform lying censor

6.1.3 The Censor

We can now construct a censor function for uniform lying. As described in Section 5.4,
the censor function takes two parameters: the security configuration C ∈ C∗ (where only
C∗

ans,disj is relevant here) and the actual query value v ∈ {true, false, undef}. We construct
the censor function according to the following heuristics:

• If two answers lead to a violating log file (binary security configuration), always
return the remaining safe answer.

• If only one answer is harmful (unary security configuration), and if this harmful
answer corresponds to the actual query value, return any of the two remaining safe
answers.

• In all other cases, return the actual query value.

Censors constructed accordingly are called safe.

Definition 6.2 (Safe uniform lying censor). A censor function censor is called safe
uniform lying censor iff for each security configuration C ∈ C∗

ans,disj and each value
v ∈ {true, false, undef} the following two conditions hold:

(a) [safe answers]
{censor(C, v)} 6∈ C

(b) [only lie if necessary]
if {v} 6∈ C then censor(C, v) = v

An example of a safe uniform lying censor is given in Figure 6.1. The black cells denote
the situations in which a distorted answer is given. Note that the second constraint from
our heuristics leaves a certain freedom to the design of the censor: For each of the three
unary security configurations, there are two safe answers to choose from. So there is a
total of eight safe uniform lying censors.
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6.1.4 Confidentiality

Let cqek,L
ps be an enforcement method for uniform lying under known potential secrets, i. e.,

built up of inferenceans, violatesdisj, and an arbitrary safe uniform lying censor (cf. Defi-
nition 6.2). (As mentioned above, there are eight of these safe censors, so there are eight

different cqek,L
ps methods as well.)

In the following, we will prove cqek,L
ps to preserve confidentiality in the sense of Definition

4.27. First, we show the expanded precondition

preconditionk,L
ps (db, priorps, policyps) := ¬violatesdisj(db, priorps, policyps)

≡ priorps 6|=S5 pot sec disj
(6.3)

to be kept as an invariant for all log files logi, 0 ≤ i ≤ n.

Lemma 6.3. Let db be a database instance, policyps a set of potential secrets and priorps

a set of a priori assumptions so that the pertinent preconditionk,L
ps (db, priorps, policyps) is

satisfied. Let Q = 〈Φ1, . . . ,Φn〉 be a query sequence. Then we have for each 0 ≤ i ≤ n:
logi 6|=S5 pot sec disj.

Proof. By induction on i. Let i = 0. As the precondition (6.3) is satisfied for
(db, priorps, policyps), and log0 = priorps, we have

log0 6|=S5 pot sec disj. (6.4)

Now, let i > 0. Let Φi be the i-th query, Ci the associated security configuration and

ansi := censor(Ci, eval(Φi)(db)) ∈ {true, false, undef} (6.5)

the answer given by the censor. By Definition 6.2, condition (a), we have for all cases

{censor(Ci, ansi)} 6∈ Ci. (6.6)

By (6.6) and according to condition (b) of Definition 6.2, we also have

censor(Ci, ansi) = ansi (6.7)

and by (6.6) also

{ansi} 6∈ Ci. (6.8)

Thus, according to the generic construction of the security configuration (5.10), the infe-
rence set {ansi} cannot lead to a security violation:

¬violatesdisj(db, logi−1 ∪ {∆∗(Φi, {ansi})}, policyps) (6.9)

By the definition of the specific violatesdisj function (5.4), we then have

logi−1 ∪ {∆∗(Φi, {ansi})} 6|=S5 pot sec disj, (6.10)
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and finally, by the generic construction of the subsequent log file (5.13), together with the
specific inferenceans function (6.1),

logi 6|=S5 pot sec disj. (6.11)

Now we can prove that the uniform lying method preserves confidentiality.

Theorem 6.4 (Confidentiality of the uniform lying method for known policies). cqek,L
ps

preserves confidentiality in the sense of Definition 4.27.

Proof. Let db be a database instance, policyps a set of potential secrets, pot sec disj the cor-
responding disjunction of the potential secrets, priorps a set of a priori assumptions so that

the pertinent preconditionk,L
ps (db, priorps, policyps) (6.3) is satisfied, and Q = 〈Φ1, . . . ,Φn〉

a query sequence.
By Lemma 6.3, we have

logn 6|=S5 pot sec disj (6.12)

and also

logn 6|=S5 Ψ. (6.13)

Let (M,s) be an MDS-structure and state that witness this relationship, i. e.,

(M,s) |= logn and (6.14)

(M,s) 6|= Ψ. (6.15)

Let db′ := dbM,s the alternative database instance as specified in Definition 5.3. According
to Lemma 5.4, db′ is consistent and deductively closed wrt. |=PL. Furthermore, by
Corollary 5.6, we have

evalps(Ψ)(db′) = false (6.16)

which satisfies condition (b) of Definition 4.27.
Next, we show that preconditionk,L

ps (db′, priorps, policyps) is satisfied. Apparently, the
definition of the precondition (6.3) is independent from the database instance. So, if it is
satisfied for (db, priorps, policyps), it is satisfied for (db′, priorps, policyps) as well.

Finally, we prove by induction on the query number i that the same answers are genera-
ted under both db and db′. Let ansi (ans′i) be the answer to the i-th query Φi given under
db (db′). We assume that the answers (and thereby the log files) up to the i-th query are
identical, which is trivially true for i = 0.

For i > 0, ansi is either true, false or undef, as we do not allow the answer to be refused.
By Corollary 5.7, we have

eval(Φi)(db
′) = ansi. (6.17)
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We show that the censor does not distort this query value. Let Ci :=
sec conf(db, logi−1, policyps,Φi) be the security configuration in the given situation. Con-
dition (a) of Definition 6.2 guarantees that the answer ansi := censor(Ci, eval(Φi)(db))
given under db is safe:

{ansi} 6∈ Ci (6.18)

By condition (b) of Definition 6.2, we then have

censor(Ci, ansi) = ansi, (6.19)

and by (6.17) finally

ans′i := censor(Ci, eval(Φi)(db
′)) = censor(Ci, ansi) = ansi. (6.20)

Thus, condition (a) of Definition 4.27 is satisfied.

Theorem 6.5 (Normality-preservation of the uniform lying method for known policies).

cqek,L
ps is both ps-normality-preserving in the sense of Definition 4.35 and ps/ct-normality-

preserving in the sense of Definition 4.42.

Proof. Follows immediately from Lemmas 4.36 and 4.43, respectively.

Corollary 6.6. The function

cqek,L
ct (Q, db, priorct, policyct) := cqek,L

ps (Q, db, convps(priorct), convps(policyct))

with the precondition

preconditionk,L
ct (db, priorct, policyct) :=

preconditionk,L
ps (db, convps(priorct), convps(policyct))

preserves confidentiality wrt. confidentiality targets in the sense of of Definition 3.10.

Corollary 6.7. The function

cqek,L(Q, db, prior, policy) :=

cqek,L
ps (Q, db, convps(convct(prior)), convps(convct(policy)))

with the precondition

preconditionk,L(db, prior, policy) :=

preconditionk,L
ps (db, convps(convct(prior)), convps(convct(policy)))

preserves confidentiality wrt. propositional potential secrets in the sense of of Defini-
tion 2.8.

68



6.2 Uniform Refusal

6.2 Uniform Refusal

The next enforcement method we are going to present is uniform refusal. It follows the
exact opposite idea of uniform lying: In case returning the actual query value is regarded
harmful, the answer may be refused (which is indicated by returning the special answer
refuse), but no lies may be returned. Again, we start with the definition of the inference
function, considering the problem of meta inferences from refused answers. Then, we
define our notion of security violations, specify a class of censor functions and prove their
confidentiality.

6.2.1 Meta Inferences

When using refusal as a distortion method, meta inferences evolve as a major problem:
The user may combine an answer with knowledge about the environment, i. e., the algo-
rithm and the state of the inference control system. Interestingly, even a refused answer
may disclose information, because of two basic assumptions made here:

1. As assumed in this chapter, the user knows the elements of the confidentiality policy
policyps (but of course not their respective values in the actual database instance).

2. Following the principle of open design, we also assume that the user knows the
algorithm of our enforcement method, i. e., the exact definition of the function censor
and its accompanying functions.

The censor function takes two parameters: The actual query value eval(Φ)(db) (which is
invisible to the user) and the security configuration C which is determined by

C := sec conf(db, log, policyps,Φ)

= { V | V ∈ I and violates(db, log ∪ {∆∗(Φ, V )}, policyps) }.

As it turns out, the latter can be computed by the user: He knows the security policy
policyps, the query Φ, and also the current log file log, which only depends on the initial
assumptions and the past queries and answers. He does not know the database instance
db, indeed – however, the violatessingle function given below, to which db is passed, works
independently from this parameter, and so does sec conf.

As a result, having received an answer ans, the user can determine the pre-image of the
censor function wrt. ans and C, i. e., the set of query values v ∈ {true, false, undef} such
that censor(C, v) = ans, formalized by the function

inferencemeta(censor, C, ans) :=

{ v | v ∈ {true, false, undef} and censor(C, v) = ans } (6.21)

with the range

Imeta = P+({true, false, undef}).
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(The empty set cannot occur as, in any case, at least one value results in the received
answer.) Depending on the algorithm of the censor, even refused answers may allow the
user to draw this kind of meta inferences.

Example 6.8. The user issues the query Φ and receives the answer refuse. He can deter-
mine the corresponding security configuration C := sec conf(db, log, policyps,Φ). Suppose
the censor under consideration provides the following answers under this security configu-
ration:

censor(C, true) = refuse

censor(C, false) = false

censor(C, undef) = refuse

So the user knows that the value eval(Φ)(db) must either be true or undef, as the value
false would have produced a different answer. Thus, the meta inference from this answer
is inferencemeta(censor, C, refuse) = {true, undef}.

The uniform refusal method uses inferencemeta in order to calculate the meta inferences
and store them in the log file. Obviously, compared to the simple version inferenceans (cf.
Section 6.1.1), this involves computational overhead. On the other hand, we are able to
identify the information disclosed by refused answers and account for it later.

6.2.2 Security Violations

Unlike the uniform lying method, it is not necessary to protect the disjunction of the
potential secrets here. Instead, we employ the original semantics of a security violation
and say that a log file log violates a confidentiality policy policyps iff at least one of the
potential secrets from policyps is logically implied by log:

violatessingle(db, log, policyps) := (∃Ψ ∈ policyps)[log |=S5 Ψ] (6.22)

What is the set of the possible security configurations C∗
meta,single under inferencemeta and

violatessingle? There are |Imeta| = 7 different meta inference sets and |P(Imeta)| = 128
different combinations of these. But due to the constraints mentioned in Section 5.3, only
18 sets qualify as a valid security configuration and have to be considered by the censor
function.

6.2.3 The Censor

Again, we will specify a heuristics from which we derive a class of safe censors. As we
consider meta inferences, the goal is to prevent that any answer results in a harmful meta
inference, i. e., an inference set which is included in the security configuration. How can
this be achieved?

Example 6.9. Remember the censor from Example 6.8 which returns the following ans-
wers under a certain security configuration C: censor(C, true) = refuse, censor(C, false) =
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false, censor(C, undef) = refuse. The meta inference from ans = refuse is V =
{true, undef}.

Imagine that C = {true, undef}. Then the meta inference violates the confidentiality
policy, which must be avoided.

We modify the censor function so that refuse is returned as well if the actual query
value is false: censor(C, false) = refuse. The meta inference from ans = refuse is now
{true, false, undef}. This set represents no information about the query value, which is
considered harmless, and thus this set is never an element of the security configuration
(cf. Section 5.3).

Obviously, confidentiality can be achieved by introducing additional refuse-conditions,
constructing censors according to the following heuristics:

• For each security configuration C and value v, if {v} ∈ C, set censor(C, v) = refuse.
This is a basic refusal in case an answer is harmful.

• For each security configuration C, check whether the meta inference resulting from
the answer refuse is an element of the confidentiality policy. If so, add an additional
refusal so that this condition does not hold any longer.

Censors constructed accordingly have two important properties: 1. They only use refusal
as a distortion method, i. e., censor(C, v) ∈ {v, refuse} for each C and v, as required by
the uniform refusal method. 2. They ensure that neither answer will result in a harmful
meta inference, which is the foundation of the confidentiality proof given below. The latter
property can be formalized as follows:

Definition 6.10 (Safe uniform refusal censor). A censor function censor is called a safe
uniform refusal censor iff for each security configuration C ∈ C∗

meta,single, each value v ∈
{true, false, undef} and each answer ans := censor(C, v) ∈ {true, false, undef, refuse} it
holds that

inferencemeta(censor, C, ans) 6∈ C

and

censor(C, v) ∈ {v, refuse}.

The second condition ensures that no lying is employed. However, it is not necessary for
the actual protection of confidentiality; the security proofs below do not depend on it. One
could easily omit this condition and construct a lying censor based on meta inferences.
But this entails a number of risks when dealing with plain users. See Chapter 8.2 for a
discussion.

An example of a safe uniform refusal censor is given in Figure 6.2. The black cells in-
dicate the original refuse-cases. Each gray cell denotes an additional refuse introduced in
order to prevent harmful meta inferences. For each of the three unary security configura-
tions, there are two possibilities to choose from when placing the additional refuse. So, in
total, there are eight different censors which can be constructed by the above mentioned
heuristics.
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6 Methods for Known Potential Secrets

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}, {undef}, ...} refuse refuse refuse
{{true}, {false}, {true, false}} refuse refuse refuse

{{true}, {false}} refuse refuse undef
{{true}, {undef}, {true, undef}} refuse refuse refuse

{{true}, {undef}} refuse false refuse
{{true}} refuse false refuse

{{false}, {undef}, {false, undef}} refuse refuse refuse
{{false}, {undef}} true refuse refuse

{{false}} true refuse refuse
{{undef}} true refuse refuse

∅ true false undef

Figure 6.2: A safe uniform refusal censor

6.2.4 Confidentiality

Let cqek,R
ps be an enforcement method for uniform refusal under known potential secrets,

i. e., built up of inferencemeta, violatessingle, and an arbitrary safe uniform refusal censor
(cf. Definition 6.10). (Note that there are eight safe refusal censors, so there are eight

different cqek,R
ps methods as well.)

In the following, we will prove that cqek,R
ps preserves confidentiality in the sense of Defi-

nition 4.27. The security proof is very similar to the one of uniform lying, as presented in
Section 6.1.4. First, we show that the the expanded precondition

preconditionk,R
ps (db, log, policyps) := ¬violatessingle(db, log, policyps)

≡ log 6|=S5 Ψ for all Ψ ∈ policyps.
(6.23)

is kept as an invariant for all log files logi, 0 ≤ i ≤ n.

Lemma 6.11. Let db be a database instance, policyps a set of potential secrets and priorps

a set of a priori assumptions so that the pertinent preconditionk,R
ps (db, priorps, policyps) is

satisfied. Let Q = 〈Φ1, . . . ,Φn〉 be a query sequence. Then we have for each Ψ ∈ policyps

and 0 ≤ i ≤ n: logi 6|=S5 Ψ.

Proof. By induction on i. Let i = 0. As the precondition (6.23) is satisfied for
(db, priorps, policyps), and log0 = priorps, we have

log0 6|=S5 Ψ for all Ψ ∈ policyps. (6.24)

Now, let i > 0. Let Φi be the i-th query, ansi the answer returned by the censor and

Ci := sec conf(db, logi−1, policyps,Φi) (6.25)

the associated security configuration. By Definition 6.10, we have

inferencemeta(censor, Ci, ansi) 6∈ Ci, (6.26)
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which is – by the generic construction of the security configuration (5.10) – equivalent to

¬violatessingle(db, logi−1∪{∆∗(Φi, inferencemeta(censor, Ci,Φi), ansi))}, policyps) (6.27)

and – by the generic construction of the subsequent log file (5.13) – also to

¬violatessingle(db, logi, policyps). (6.28)

By the definition of violatessingle (5.3), this means that

logi 6|=S5 Ψ for all Ψ ∈ policyps. (6.29)

Based on this observation, we can prove the confidentiality of cqek,R
ps .

Theorem 6.12 (Confidentiality of the uniform refusal method for known policies). cqek,R
ps

preserves confidentiality in the sense of Definition 4.27.

Proof. Let db be a database instance, policyps a set of potential secrets, priorps a set of

a priori assumptions so that the pertinent preconditionk,R
ps (db, priorps, policyps) (6.23) is

satisfied, and Q = 〈Φ1, . . . ,Φn〉 a query sequence. Let logn be the log file at the end of
the query sequence.

Let Ψ ∈ policyps be a potential secret. By Lemma 6.11, we have

logn 6|=S5 Ψ. (6.30)

Let (M,s) be an MDS-structure and state that witness this relationship, i. e.,

(M,s) |= logn and (6.31)

(M,s) 6|= Ψ. (6.32)

Let db′ := dbM,s the alternative database instance as specified in Definition 5.3. According
to Lemma 5.4, db′ is consistent and deductively closed wrt. |=PL. Furthermore, by
Corollary 5.6, we have

evalps(Ψ)(db′) = false (6.33)

which satisfies condition (b) of Definition 4.27.
Next, we show that preconditionk,R

ps (db′, priorps, policyps) is satisfied. Apparently, the
definition of the precondition (6.23) is independent from the database instance. So, if it
is satisfied for (db, priorps, policyps), it is satisfied for (db′, priorps, policyps) as well.

Finally, we prove by induction on the query number i that the same answers are genera-
ted under both db and db′. Let ansi (ans′i) be the answer to the i-th query Φi given under
db (db′). We assume that the answers (and thereby the log files) up to the i-th query are
identical, which is trivially true for i = 0.
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Let ansi (ans′i) be the answer to the i-th query given under db (db′) and

Ci = sec conf(db, logi−1, policyps,Φi) (6.34)

the associated security configuration. (Note that the security configuration is independent
from the database instance and thereby identical under both db and db′.)

The meta inference from the answer ansi is

Vi := inferencemeta(censor, Ci, ansi) (6.35)

In particular, note that the actual query value eval(Φi)(db) is one of the values which lead
to the answer ansi, so we have eval(Φi)(db) ∈ Vi.

The inference set Vi is added to the log file logi−1 by the means of the ∆∗ function, so
we have

∆∗(Φi, Vi) ∈ logn (6.36)

and thus also

logn |=S5 ∆∗(Φi, Vi) (6.37)

and

(M,s) |= ∆∗(Φi, Vi). (6.38)

Expanding the definition of ∆∗ (4.6), we get

(M,s) |=
∨

v∈Vi

∆(Φi, v). (6.39)

Thus, there must be at least one v ∈ Vi so that

(M,s) |= ∆(Φi, v). (6.40)

By Lemma 5.5, this is equivalent to

evalps(∆(Φi, v))(db
′) = true (6.41)

and by Corollary 4.18 also to

eval(Φi)(db
′) = v. (6.42)

By the definition of inferencemeta (6.21), all values from the meta inference set Vi – in
particular, v and eval(Φi)(db) – lead to the same answer, so we have

ans′i := censor(Ci, eval(Φi)(db
′))

= censor(Ci, v)

= censor(Ci, eval(Φi)(db))

= ansi.

(6.43)

Thus, the same answers are returned under db and db′.
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Theorem 6.13 (Normality-preservation of the uniform refusal method for known poli-

cies). cqek,R
ps is both ps-normality-preserving in the sense of Definition 4.35 and ps/ct-

normality-preserving in the sense of Definition 4.42.

Proof. Follows trivially from Lemmas 4.36 and 4.43, respectively.

Corollary 6.14. The function

cqek,R
ct (Q, db, priorct, policyct) := cqek,R

ps (Q, db, convps(priorct), convps(policyct))

with the precondition

preconditionk,R
ct (db, priorct, policyct) :=

preconditionk,R
ps (db, convps(priorct), convps(policyct))

preserves confidentiality wrt. confidentiality targets in the sense of of Definition 3.10.

Corollary 6.15. The function

cqek,R(Q, db, prior, policy) :=

cqek,R
ps (Q, db, convps(convct(prior)), convps(convct(policy)))

with the precondition

preconditionk,R(db, prior, policy) :=

preconditionk,R
ps (db, convps(convct(prior)), convps(convct(policy)))

preserves confidentiality wrt. propositional potential secrets in the sense of of Defini-
tion 2.8.

6.3 Uniform Refusal with Improved Availability

In Section 6.2, we have presented the uniform refusal method for known potential se-
crets, and we have shown that it preserves confidentiality. However, the additional refuse-
conditions reduce the availability of the system. In this section, we show that some of these
additional refuse-conditions can be omitted when we take another question into account:
Does the user already know the value of the query, or is he at least able to exclude one
possible query value? If so, it might not be necessary to refuse a certain answer.

6.3.1 Motivation

Sometimes, an answer is refused even though it would not lead to the disclosure of a
potential secret. In particular, we have introduced additional refuse-conditions which
protect other refusals that would lead to such a disclosure, or sometimes would only
make the log file inconsistent (which, by the definition of logical implication, leads to the
disclosure of all potential secrets).
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Example 6.16. Consider the following input to the uniform refusal method cqek,R
ps :

Q := 〈 s 〉

db := { ¬s }

priorps := { Ks ∨ K¬s }

policyps := { Kt }

We consider the query Φ1 = s. The inference {undef} would make log inconsistent, any
other inference is harmless, so the security configuration is

C1 := sec conf(db, log0, policyps,Φ1) = {{undef}}.

Furthermore, the ordinary query value is

eval(s)(db) = false.

According to the censor table from Figure 6.2, the answer returned is

censor({{undef}}, false) = refuse.

This refusal arises from an additional refuse-condition which protects the ordinary refuse
for censor({{undef}}, undef). We argue that this refusal is not necessary, and we establish

an optimized method cqek,R∗
ps which provides a higher availability in this, and in similar

situations. In particular, we rely on the following observations from the above example:

1. The actual truth value of s cannot be undef, so the “real” refuse will not occur.

2. The user can tell this fact from his knowledge, i. e., from the log file, which implies
that s must be true or false, but not undef.

The idea is to account for this disjunctive “a priori” knowledge about the query value,
and use a special censor function for this situation, which does not need the additional
refuse-condition.

6.3.2 Construction

We want to take into account the user’s knowledge about the possible values of a certain
query. First of all, it is important to ensure that this knowledge is consistent with the
actual database instance: the user may not believe that a query has a certain value different
from the actual value. We achieve this by introducing a stronger precondition which states
that the log file must not imply any of the potential secrets, and additionally must only
contain sentences which are true in db:

preconditionk,R∗
ps (db, priorps, policyps) :=

¬violatessingle(db, priorps, policyps) ∧

(∀φ ∈ priorps)[ evalps(φ)(db) = true ]

(6.44)
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When the user issues a query Φ, we can determine those possible query values of Φ which
are consistent with the current log file log, i. e., the values the user considers possible,
and the values he can rule out in the first place. We call this set of possible values the
pre-inference of Φ wrt. log, determined by the function

pre inf(log,Φ) := { v ∈ {true, false, undef} | log ∪ {∆(Φ, v)} is consistent }. (6.45)

Similar to our general notion of inferences (cf. Section 5.2), we have three different types of
pre-inferences: unary pre-inferences (when the user already knows the value of Φ), binary
pre-inferences (when the user can exclude one value, but the other two values appear
possible), and {true, false, undef} (all values appear possible to the user). The empty set
cannot occur, as log is consistent at any time.

We denote the pre-inference of a query by P . Based on P , we can define a family of
inferencemeta functions that restrict the meta inference to the values of P :

inferencemeta
P (censor, C, ans) := { v | v ∈ P and censor(C, v) = ans }. (6.46)

This function has the range

Imeta
P = P+(P ).

Likewise, we denote the set of possible security configurations wrt. violatessingle and a
particular version of inferencemeta

P by C∗
P ⊂ P(Imeta

P ). Again, this set is restricted by the
constraints mentioned in Section 5.3. In particular, we have P 6∈ C∗

P (it’s never harmful
to learn that the query has one of the values of P). As a result, we have

• under the pre-inference {true, false, undef}, the same set of security configurations
as for the original refusal method from Section 6.2;

• under a binary pre-inference P = {v1, v2}, four security configurations: {v1, v2},
{v1}, {v2} and ∅;

• under a unary pre-inference, only one security configuration: ∅.

Finally, we define a family of censor functions, each of which operates on a particular pre-
inference P , i. e., it only considers C∗

P as possible security configurations, it only considers
P as possible query values, and it only returns answers from P or refuse:

censorP : C∗
P × P → P ∪ {refuse}

The fact that only query values from P need to be considered by a particular censor is
justified by the following lemma. Given that the log file contains only sentences which are
true in the actual database instance, it states that the actual value of a query is among
those the user considers possible according to the log file.

Lemma 6.17. Let log be a log file and db a database instance so that evalps(φ)(db) = true

for each φ ∈ log. Then we have for each propositional sentence α:

eval(α)(db) ∈ pre inf(log, α).
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Proof. By Corollary 4.18, we have evalps(∆(Φ, eval(α, db)))(db) = true. So log ∪
∆(Φ, eval(α, db)) must be consistent, and thus eval(α)(db) must be included in
pre inf(log, α).

For each of these censor functions, we can define a safeness property:

Definition 6.18 (Safe uniform refusal censor wrt. a particular pre-inference). A censor
function censorP is called a safe uniform refusal censor wrt. the pre-inference P iff for each
security configuration C ∈ C∗

P , each value v ∈ P and each answer ans := censorP (C, v) ∈
P ∪ {refuse} it holds that

inferencemeta
P (censorP , C, ans) 6∈ C

and

censorP (C, v) ∈ {v, refuse}.

This safeness property is similar to the one found in Definition 6.10. In fact, the original
refusal censor described in the previous section serves as the censor for the weakest pre-
inference {true, false, undef}. For the other six possible pre-inferences, we need to specify a
valid safe censor function. For the three unary pre-inferences {true}, {false} and {undef},
the respective censor function is trivially given by

censorP (C, v) := v, (6.47)

so it just returns the value which is already known by the user. For the three binary pre-
inferences {true, false}, {true, undef} and {false, undef}, a censor can easily be constructed
according to the following heuristics: If there is at least one v ∈ P so that {v} ∈ C, answer
refuse. Otherwise, return the ordinary answer.1

censorP (C, v) :=

{

refuse if (∃v ∈ P )[ {v} ∈ C ]

v otherwise
(6.48)

Note that this involves one additional refuse-condition for each of the two unary security
configurations {v1} and {v2} (assuming that P = {v1, v2}).

A family of safe censor functions is given in Figure 6.3.
We can now formally specify the algorithm of cqek,R∗

ps . For each pre-inference P ⊆+

{true, false, undef}, we need a safe censor function. For each query Φi of the query sequence
Q, the answer ansi and the subsequent log file logi are generated by the following steps:

1. Determine the pre-inference:

Pi := pre inf(logi−1,Φ)

1Not surprisingly, this heuristics coincides with the uniform refusal method for known potential secrets
under complete databases, a fact which we will address in Section 8.1, when we compare our methods
to those for complete databases.
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Pre-Inference Censor Table

{true, false, undef}

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}, {undef}, ...} refuse refuse refuse
{{true}, {false}, {true, false}} refuse refuse refuse

{{true}, {false}} refuse refuse undef
{{true}, {undef}, {true, undef}} refuse refuse refuse

{{true}, {undef}} refuse false refuse
{{true}} refuse false refuse

{{false}, {undef}, {false, undef}} refuse refuse refuse
{{false}, {undef}} true refuse refuse

{{false}} true refuse refuse
{{undef}} true refuse refuse

∅ true false undef

{true, false}

Security Configuration eval(Φ)(db) = ...
C true false

{{true}, {false}} refuse refuse
{{true}} refuse refuse
{{false}} refuse refuse

∅ true false

{true, undef}

Security Configuration eval(Φ)(db) = ...
C true undef

{{true}, {undef}} refuse refuse
{{true}} refuse refuse
{{undef}} refuse refuse

∅ true undef

{false, undef}

Security Configuration eval(Φ)(db) = ...
C false undef

{{false}, {undef}} refuse refuse
{{false}} refuse refuse
{{undef}} refuse refuse

∅ false undef

{true}
Security Configuration eval(Φ)(db) = ...

∅ true

{false}
Security Configuration eval(Φ)(db) = ...

∅ false

{undef}
Security Configuration eval(Φ)(db) = ...

∅ undef

Figure 6.3: A family of censor functions, safe wrt. their respective pre-inference
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2. Determine the security configuration wrt. Pi:

Ci := { V | V ∈ Imeta
Pi

and violatessingle(db, log ∪ {∆∗(Φ, V )}, policyps) } (6.49)

3. Let the appropriate censor function choose the answer:

ansi := censorPi
(Ci, eval(Φi)(db))

4. Add the meta inference (restricted to Pi) to the log file:

logi := logi−1 ∪ {∆∗(Φi, inferencemeta
Pi

(censorPi
, Ci, ansi))}

6.3.3 Confidentiality

We prove the confidentiality of cqek,R∗
ps as usual. First, we show that the log file logi does

not imply any of the potential secrets at any time.

Lemma 6.19. Let db be a database instance, policyps a set of potential secrets and priorps

a set of a priori assumptions so that the pertinent preconditionk,R∗
ps (db, priorps, policyps) is

satisfied. Let Q = 〈Φ1, . . . ,Φn〉 be a query sequence. Then we have for each Ψ ∈ policyps

and 0 ≤ i ≤ n:

logi 6|=S5 Ψ

Proof. By induction on i. Let i = 0. As the precondition (6.23) is satisfied for
(db, priorps, policyps), and log0 = priorps, we have

log0 6|=S5 Ψ for all Ψ ∈ policyps. (6.50)

Now, let i > 0. Let Φi be the i-th query, Pi the pre-inference of the query, Ci the security
configuration and ansi the answer returned by the censor function censorPi

. The inference
added to the user log is then

Vi := inferencemeta
Pi

(censorPi
, Ci, ansi) ⊆ P. (6.51)

for the pre-inference Pi. From the global safeness of the censor (cf. Definition 6.18), we
know that

Vi 6∈ Ci (6.52)

which is by the construction of Ci (6.49) equivalent to

Vi 6∈ { V | V ∈ Imeta
Pi

and violatessingle(db, logi−1 ∪ {∆∗(Φ, V )}, policyps) }. (6.53)

As Vi ∈ Imeta
Pi

, we can rewrite this condition as

¬violatessingle(db, log ∪ {∆∗(Φi, Vi)}, policyps). (6.54)
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or equivalently as

¬violatessingle(db, logi, policyps). (6.55)

By the definition of violatessingle (5.3), this means that

logi 6|=S5 Ψ for all Ψ ∈ policyps. (6.56)

We can now prove that cqek,R∗
ps satisfies our notion of confidentiality.

Theorem 6.20 (Confidentiality of the improved uniform refusal method for known poli-

cies). cqek,R∗
ps preserves confidentiality in the sense of Definition 4.27.

Proof. Let db be a database instance, policyps a set of potential secrets, priorps a set of a

priori assumptions so that the pertinent preconditionk,R∗
ps (db, priorps, policyps) is satisfied,

and Q = 〈Φ1, . . . ,Φn〉 a query sequence. Let logn be the log file at the end of the query
sequence. Let Ψ ∈ policyps be a potential secret.

By Lemma 6.19, we have

logn 6|=S5 Ψ. (6.57)

Let (M,s) an MDS-structure and state that witness this relationship, i. e.,

(M,s) |= logn and (6.58)

(M,s) 6|= Ψ. (6.59)

Let db′ := dbM,s the alternative database instance as specified in Definition 5.3. According
to Lemma 5.4, db′ is consistent and deductively closed wrt. |=PL. Furthermore, by
Corollary 5.6, we have

evalps(Ψ)(db′) = false (6.60)

which satisfies condition (b) of Definition 4.27.
Next, we show that preconditionk,R∗

ps (db′, priorps, policyps) is satisfied. The first part

(priorps does not violate policyps) follows from preconditionk,R∗
ps (db, priorps, policyps). For

the second part (elements of priorps are true in db′), choose an arbitrary φ ∈ priorps. By
priorps ⊆ logn, we have

logn |=S5 φ (6.61)

and thus also

(M,s) |= φ. (6.62)

By Lemma 5.5, we then have

evalps(φ)(db′) = true. (6.63)
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Thus, preconditionk,R∗
ps (db′, priorps, policyps) is satisfied.

Finally, we prove by induction on the query number i that the same answers are gene-
rated under both db and db′. Let ansi (ans′i) be the answer to the i-th query given under
db (db′). Let Pi the pre-inference of the query and Ci the associated security configura-
tion. (Note that both Pi and Ci are independent from the database instance and thereby
identical under both db and db′.)

We assume that the answers ansi and ans′i (and thereby the user logs and security
configurations) up to query i are identical, which is obviously true for i = 0.

For i > 0, the meta inference set is

Vi := inferencemeta
Pi

(censorPi
, Ci, ansi) (6.64)

In particular, we have

eval(Φi)(db) ∈ Vi. (6.65)

The inference set Vi is added to the log file logi−1 by the means of the ∆∗ function, so we
have

∆∗(Φi, Vi) ∈ logn (6.66)

and thus also

logn |=S5 ∆∗(Φi, Vi) (6.67)

and

(M,s) |= ∆∗(Φi, Vi). (6.68)

Expanding the definition of ∆∗ (4.6), we get

(M,s) |=
∨

v∈Vi

∆(Φi, v). (6.69)

Thus, there must be at least one v ∈ Vi so that

(M,s) |= ∆(Φi, v). (6.70)

By Lemma 5.5, this is equivalent to

evalps(∆(Φi, v))(db
′) = true (6.71)

and by Corollary 4.18 also to

eval(Φi)(db
′) = v. (6.72)

By the definition of inferencemeta
Pi

(6.46), all values from the meta inference set Vi – in
particular, v and eval(Φi)(db) – lead to the same answer, so we have

ans′i := censorPi
(Ci, eval(Φi)(db

′))

= censorPi
(Ci, v)

= censorPi
(Ci, eval(Φi)(db))

= ansi.

(6.73)

Thus, the same answers are returned under db and db′.
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Theorem 6.21 (Normality-preservation of the improved uniform refusal method for

known policies). cqek,R∗
ps is both ps-normality-preserving in the sense of Definition 4.35

and ps/ct-normality-preserving in the sense of Definition 4.42.

Proof. Follows trivially from Lemmas 4.36 and 4.43, respectively.

Corollary 6.22. The function

cqek,R∗
ct (Q, db, priorct, policyct) := cqek,R∗

ps (Q, db, convps(priorct), convps(policyct))

with the precondition

preconditionk,R∗
ct (db, priorct, policyct) :=

preconditionk,R∗
ps (db, convps(priorct), convps(policyct))

preserves confidentiality wrt. confidentiality targets in the sense of of Definition 3.10.

Corollary 6.23. The function

cqek,R∗(Q, db, prior, policy) :=

cqek,R∗
ps (Q, db, convps(convct(prior)), convps(convct(policy)))

with the precondition

preconditionk,R∗(db, prior, policy) :=

preconditionk,R∗
ps (db, convps(convct(prior)), convps(convct(policy)))

preserves confidentiality wrt. propositional potential secrets in the sense of of Defini-
tion 2.8.

6.3.4 Impact on the Availability

Having improved the uniform refusal method, we are now going to reconsider the situation
from Example 6.16.

Example 6.24. Consider the following input to the uniform refusal method cqek,R∗
ps :

Q = 〈 s 〉

db = { ¬s }

log0 = { Ks ∨ K¬s }

policyps = { Kt }

We consider the query Φ1 = s. The pre-inference is

Pi = {true, false}
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(as the user can tell from the log file that the value must be true or false). We now
determine the security configuration Ci wrt. the pre-inference Pi: Neither {true} nor
{false} is a harmful inference, so the security configuration is empty:

Ci = ∅

The ordinary query value is

eval(s)(db) = false,

so the answer returned by the {true, false}-censor (cf. Figure 6.3) is

censor{true,false}(∅, false) = false.

Obviously, we successfully improved the refusal method in terms of availability, while,
in general, still preserving confidentiality.

6.4 Combined Lying and Refusal

In the previous sections, we presented the uniform lying and the uniform refusal method
(in two different variants), which use different versions of the functions inference and
violates:

• The uniform refusal methods rely on meta inferences, calculated by inferencemeta.
Thus, also disjunctive inferences have to be considered when determining the security
configuration. This results in computational overhead compared to the uniform lying
method, where the simple version inferenceans is employed. Furthermore, we had to
introduce additional refuse-conditions which prevent harmful meta inferences. This
leads to a lower availability.

• The uniform lying method protects the disjunction of the potential secrets, formal-
ized by violatesdisj, in order to prevent the “hopeless situation” in which neither
answer may be given. This is a stronger condition compared to the protection of
each single secret, as formalized by violatessingle, and it results in a loss of availability,
as more answers might be distorted.

In this section, we establish another enforcement method, involving both lying and refusal.
It combines the advantages of the respective uniform methods while eliminating their
disadvantages. In particular, we make use of the two favorable functions inferenceans and
violatessingle.

6.4.1 The Censor

The combined lying and refusal censor adopts its basic functioning from the uniform lying
censor: In case an original value is harmful, a lie is returned as an answer. As opposed
to uniform lying, we do not protect the disjunction of the potential secrets. Instead,
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Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}, {undef}} refuse refuse refuse
{{true}, {false}} undef undef undef
{{true}, {undef}} false false false
{{false}, {undef}} true true true

{{true}} undef false undef
{{false}} true undef undef
{{undef}} true false false

∅ true false undef

Figure 6.4: A safe combined lying and refusal censor, derived from the uniform lying censor
from Figure 6.1

we protect each potential secret independently, thus allowing the “hopeless situation”
to occur again in which each value v ∈ {true, false, undef} would lead to a violating log
file, identified by the security configuration Chopeless = {{true}, {false}, {undef}}. In this
situation, the combined censor refuses the answer, regardless of the query value, thus
preventing any useful meta inference from this refusal (as censor(Chopeless, v) = refuse for
each v ∈ {true, false, undef}). Figure 6.4 demonstrates how a combined lying and refusal
censor is established based on the uniform lying censor by adding the newly introduced
security configuration Chopeless = {{true}, {false}, {undef}} under which the answer is
refused. We then have the set of possible security configurations

C∗
ans,single = C∗

ans,disj ∪ {{{true}, {false}, {undef}}}.

Again, we define the notion of safeness.

Definition 6.25 (Safe combined lying and refusal censor). A censor function censor is
called a safe combined lying and refusal censor iff for each security configuration C ∈
C∗

ans,single and each value v ∈ {true, false, undef} the following three conditions hold:

(a) [safe answers]
for each v ∈ {true, false, undef}: {censor(C, v)} 6∈ C,

(b) [only lie if necessary]
for each v ∈ {true, false, undef}: if {v} 6∈ C then censor(C, v) = v,

(c) [safe refusals]
if censor(C, v) = refuse for any v ∈ {true, false, undef},
then censor(C, v) = refuse for all v ∈ {true, false, undef}.

Conditions (a) and (b) coincide with the respective conditions for safe uniform lying
censors from Definition 6.2. Condition (c) guarantees that the user cannot draw any
non-empty meta inferences from refusals. This justifies the fact that we use the answer
inference approach (which logs refusals as the trivial inference set {true, false, undef}, and
thus disposes any information about a refused answer and possible meta inferences from
that refusal).
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6.4.2 Confidentiality

Let cqek,C
ps be an enforcement method for combined lying and refusal under known potential

secrets, i. e., built up of inferenceans, violatessingle, and an arbitrary safe combined lying
and refusal censor (cf. Definition 6.25). (Note that there are eight safe censors, so there

are eight different cqek,C
ps methods as well.)

In the following, we will prove that cqek,C
ps preserves confidentiality in the sense of De-

finition 4.27. The security proof corresponds to the one for uniform lying from Section
6.1.4. But now we also have to consider refusals. First, we show that the the expanded
precondition

preconditionk,R
ps (db, log, policyps) := ¬violatessingle(db, log, policyps)

≡ log 6|=S5 Ψ for all Ψ ∈ policyps.
(6.74)

is kept as an invariant for all log files logi, 0 ≤ i ≤ n.

Lemma 6.26. Let db be a database instance, policyps a set of potential secrets and log0

a set of a priori assumptions so that the pertinent preconditionk,C
ps (db, priorps, policyps) is

satisfied. Let Q = 〈Φ1, . . . ,Φn〉 be a query sequence. Then we have for each Ψ ∈ policyps

and 0 ≤ i ≤ n:

logi 6|=S5 Ψ.

Proof. By induction on i. Let i = 0. As the precondition (6.74) is satisfied for
(db, priorps, policyps), and log0 = priorps, we have

log0 6|=S5 Ψ for all Ψ ∈ policyps. (6.75)

Now, let i > 0. Let Φi be the i-th query, Ci the associated security configuration and

ansi := censor(Ci, eval(Φi)(db)) ∈ {true, false, undef, refuse} (6.76)

the answer given by the censor.
If ansi = refuse, the sentence

∆∗(Φi, {true, false, undef}) = KΦi ∨K¬Φi ∨ (¬KΦi ∧ ¬K¬Φi) (6.77)

is added to logi−1. This sentence is a tautology. Thus, logi implies the exact same sentences
as does logi−1, so the proposition is satisfied.

If ansi ∈ {true, false, undef}, we have by Definition 6.25, condition (a)

{censor(Ci, ansi)} 6∈ Ci. (6.78)

By (6.78) and according to condition (b) of Definition 6.25, we also have

censor(Ci, ansi) = ansi (6.79)
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and by (6.78) also

{ansi} 6∈ Ci. (6.80)

Thus, according to the generic construction of the security configuration (5.10), the infe-
rence set {ansi} cannot lead to a security violation:

¬violatessingle(db, logi−1 ∪ {∆∗(Φi, {ansi})}, policyps) (6.81)

By the definition of the specific violatessingle function (5.3), we then have

logi−1 ∪ {∆∗(Φi, {ansi})} 6|=S5 Ψ for all Ψ ∈ policyps, (6.82)

and finally, by the generic construction of the subsequent log file (5.13), together with the
specific inferenceans function (5.1),

logi 6|=S5 Ψ for all Ψ ∈ policyps. (6.83)

Theorem 6.27 (Confidentiality of the combined lying and refusal method for known

policies). cqek,C
ps preserves confidentiality in the sense of Definition 4.27.

Proof. Let db be a database instance, policyps a set of potential secrets, priorps a set of

a priori assumptions so that the pertinent preconditionk,C
ps (db, priorps, policyps) is satisfied,

and Q = 〈Φ1, . . . ,Φn〉 a query sequence. Let Ψ ∈ policyps be a potential secret.
By Lemma 6.26, we have

logn 6|=S5 Ψ. (6.84)

Let (M,s) an MDS-structure and state that witness this relationship, i. e.,

(M,s) |= logn and (6.85)

(M,s) 6|= Ψ. (6.86)

Let db′ := dbM,s the alternative database instance as specified in Definition 5.3. According
to Lemma 5.4, db′ is consistent and deductively closed wrt. |=PL. Furthermore, by
Corollary 5.6, we have

evalps(Ψ)(db′) = false (6.87)

which satisfies condition (b) of Definition 4.27.
Next, we show that preconditionk,C

ps (db′, priorps, policyps) is satisfied. Apparently, the
definition of the precondition (6.74) is independent from the database instance. So, if it
is satisfied for (db, priorps, policyps), it is satisfied for (db′, priorps, policyps) as well.

Finally, we prove by induction on the query number i that the same answers are genera-
ted under both db and db′. Let ansi (ans′i) be the answer to the i-th query Φi given under
db (db′). We assume that the answers (and thereby the log files) up to the i-th query are
identical, which is trivially true for i = 0.

For i > 0, ansi is either a regular answer (true, false, undef ) or refuse.
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Case 1 (ansi ∈ {true, false, undef}). The sentence added to the log file is

∆∗(Φi, {ansi}). (6.88)

By Corollary 5.7, we have

eval(Φi)(db
′) = ansi. (6.89)

We show that the censor does not distort this query value. Let Ci :=
sec conf(db, logi−1, policyps,Φi) be the security configuration in the given situation. Con-
dition (a) of Definition 6.2 guarantees that the answer ansi := censor(Ci, eval(Φi)(db))
given under db is safe:

{ansi} 6∈ Ci (6.90)

By condition (b) of Definition 6.2, we then have

censor(Ci, ansi) = ansi, (6.91)

and by (6.89) finally

ans′i := censor(Ci, eval(Φi)(db
′)) = censor(Ci, ansi) = ansi. (6.92)

Case 2 (ansi = refuse). Condition (c) of Definition 6.25 states that, under a particular
security configuration, if the answer is refused for at least one query value, it must be
refused for any other query value as well, so we have

ans′i := censor(Ci, eval(Φi)(db
′)) = refuse. (6.93)

So condition (a) of Definition 4.27 is satisfied.

Theorem 6.28 (Normality-preservation of the combined lying and refusal method for

known policies). cqek,C
ps is both ps-normality-preserving in the sense of Definition 4.35 and

ps/ct-normality-preserving in the sense of Definition 4.42.

Proof. Follows trivially from Lemmas 4.36 and 4.43, respectively.

Corollary 6.29. The function

cqek,C
ct (Q, db, priorct, policyct) := cqek,C

ps (Q, db, convps(priorct), convps(policyct))

with the precondition

preconditionk,C
ct (db, priorct, policyct) :=

preconditionk,C
ps (db, convps(priorct), convps(policyct))

preserves confidentiality wrt. confidentiality targets in the sense of of Definition 3.10.
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Corollary 6.30. The function

cqek,C(Q, db, prior, policy) :=

cqek,C
ps (Q, db, convps(convct(prior)), convps(convct(policy)))

with the precondition

preconditionk,C(db, prior, policy) :=

preconditionk,C
ps (db, convps(convct(prior)), convps(convct(policy)))

preserves confidentiality wrt. propositional potential secrets in the sense of of Defini-
tion 2.8.
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In this chapter, we study another set of enforcement methods. This time, we assume that
the user does not know the elements of the confidentiality policy policyps. With regard
to confidentiality, Definition 4.27 states that confidentiality is preserved when the same
answers are returned even under a different confidentiality policy policy′ps (and an alter-
native database instance db′). In other words: The user cannot distinguish (db, policyps)
from (db′, policy′ps).

In the context of complete information systems [1, 5], it was shown that this additional
freedom might be exploited as follows: Instead of protecting all potential secrets, only
the true potential secrets are considered by the censor. This results in higher availability,
because the implication of a (false) potential secret will not lead to a refusal or lie anymore.

This heuristics can be successfully applied to the uniform lying method and the uniform
refusal method from Chapter 6, which is demonstrated in Section 7.1 and Section 7.2,
respectively. Additionally, the uniform refusal method does not need to consider any meta
inferences anymore. Therefore, it is also not necessary to construct an improved refusal
method, as we did for the known policy case.

Unfortunately, the heuristics does not work for the combined lying and refusal method.
This is shown in Section 7.3 by means of a counter-example. Of course, the combined
method for known policies from Section 6.4 can also be used when the policy is unknown.
However, the question remains whether it can be improved in any way when we assume
that the user is not aware of the confidentiality policy. This coincides with the results for
complete information systems from [5].

7.1 Uniform Lying

The uniform lying method for unknown potential secrets is designed exactly according
to the heuristics mentioned in the introduction of this chapter: We reuse the algorithm
for known potential secrets, however, we now only consider those potential secrets which
are true in the actual database instance. This can easily be achieved by adapting the
originally used function violatessingle and modifying it as follows: We say that a log file log
violates a confidentiality policy policyps if and only if the disjunction of all true potential
secrets Ψ ∈ policyps is logically implied by log, formalized by the function

violatestruedisj(db, log, policyps) := log |=S5 true pot sec disj (7.1)

with

true pot sec disj :=

{

∨

true pot sec if true pot sec 6= ∅

⊥ if true pot sec = ∅
(7.2)
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and

true pot sec := { Ψ ∈ policyps | evalps(Ψ)(db) = true }. (7.3)

Just like the method for known potential secrets, we use answer log update

inferenceans(censor, C, ans) :=

{

{true, false, undef} if ans = refuse

{ans} otherwise
(7.4)

with the range

Ians = {{true}, {false}, {undef}, {true, false, undef}}.

The resulting set of possible security configurations is

C∗
ans,truedisj = { {{true}, {false}}, {{true}, {undef}}, {{false}, {undef}},

{{true}}, {{false}}, {{undef}}, ∅ },

and coincides with C∗
ans,disj. This allows us to use the same class of safe censors as for the

“known policy” case (cf. Definition 6.2).
We denote an enforcement method for uniform lying under unknown potential secrets

(built up of inferenceans, violatestruedisj, and an arbitrary safe uniform lying censor) by
cqeu,L

ps . Note that there are eight safe censors, so there are eight different cqeu,L
ps methods

as well. In the following, we will prove that cqeu,L
ps preserves confidentiality in the sense of

Definition 4.27. First, we show that the precondition (5.12), expanded as

preconditionu,L
ps (db, priorps, policyps) := ¬violatestruedisj(db, priorps, policyps)

≡ priorps 6|=S5 true pot sec disj,
(7.5)

is kept as an invariant for all log files logi, 0 ≤ i ≤ n.

Lemma 7.1. Let db be a database instance, policyps a set of potential secrets and priorps

a set of a priori assumptions so that the pertinent preconditionu,L
ps (db, priorps, policyps) is

satisfied. Let Q = 〈Φ1, . . . ,Φn〉 be a query sequence. Then we have for each 0 ≤ i ≤ n:
logi 6|=S5 true pot sec disj.

Proof. By induction on i. Let i = 0. Then, by the precondition (7.5) and log0 = priorps,
we have

log0 6|=S5 true pot sec disj. (7.6)

Now, let i > 0. Let Φi be the i-th query, Ci the associated security configuration and

ansi := censor(Ci, eval(Φi)(db)) ∈ {true, false, undef} (7.7)

the answer given by the censor. By Definition 6.2, condition (a), we have for all cases

{censor(Ci, ansi)} 6∈ Ci. (7.8)
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By (7.8) and according to condition (b) of Definition 6.2, we also have

censor(Ci, ansi) = ansi, (7.9)

and by (7.8) also

{ansi} 6∈ Ci. (7.10)

Thus, according to the generic construction of the security configuration (5.10), the infe-
rence set {ansi} cannot lead to a security violation:

¬violatestruedisj(db, logi−1 ∪ {∆∗(Φi, {ansi})}, policyps) (7.11)

By the definition of the specific violatestruedisj function (5.7), we then have

logi−1 ∪ {∆∗(Φi, {ansi})} 6|=S5 true pot sec disj, (7.12)

and finally, by the generic construction of the subsequent log file (5.13), together with the
specific inferenceans function, (7.8),

logi 6|=S5 true pot sec disj. (7.13)

Theorem 7.2 (Confidentiality of the uniform lying method for unknown policies). cqeu,L
ps

preserves confidentiality in the sense of Definition 4.27.

Proof. Let db be a database instance, policyps a set of potential secrets, priorps a set of

a priori assumptions so that the pertinent preconditionu,L
ps (db, priorps, policyps) is satisfied,

and Q = 〈Φ1, . . . ,Φn〉 a query sequence. Let Ψ ∈ policyps be a potential secret.

Case 1 (evalps(Ψ)(db) = false). Then we choose db′ := db and policy′ps := policyps, and it

is trivial that (db′, priorps, policy
′
ps) satisfies preconditionu,L

ps , and that conditions (a), (b)
and (c) of Definition 4.27 hold.

Case 2. evalps(Ψ)(db) = true Then we have by Lemma 7.1

logn 6|=S5 true pot sec disj (7.14)

and, as Ψ is true in db, also

logn 6|=S5 Ψ. (7.15)

Thus, there must be a structure M = (S,K, π) and a state s ∈ S such that

(M,s) |= logn and (7.16)

(M,s) 6|= Ψ. (7.17)
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We generate a second database instance db′ := dbM,s, as specified in Definition 5.3. Ac-
cording to Lemma 5.4, db′ is consistent and deductively closed wrt. |=PL. Furthermore,
by Corollary 5.6, we have

evalps(Ψ)(db′) = false (7.18)

which satisfies condition (b) of Definition 4.27.
Furthermore, we consider the empty confidentiality policy policy′ps := ∅ with its disjunc-

tion true pot sec disj′ = ⊥. Then we have

¬violatestruedisj(db′, priorps, policy
′
ps) (7.19)

which satisfies the precondition.
Finally, we prove by induction on the query number i that the same answers are gene-

rated under both (db, policyps) and (db′, policy′ps).
Let ansi (ans′i) be the answer to the i-th query Φi given under (db, policyps)

((db′, policy′ps)). We assume that the answers (and thereby the log files) up to the i-th
query are identical, which is obviously true for i = 0.

For i > 1, ansi is either true, false or undef, as we do not allow the answer to be refused.
As we use inferenceans, the sentence added to the log file is

∆∗(Φi, {ansi}). (7.20)

This sentence is also contained in the final log file logn, and as (M,s) is a model of logn,
we have

(M,s) |= ∆∗(Φi, {ansi}). (7.21)

By Lemma 5.5, this means that

evalps(∆
∗(Φi, {ansi}))(db

′) = true, (7.22)

and by Corollary 4.18 that

eval(Φi)(db
′) = ansi. (7.23)

As policy′ps is empty, there are no harmful answers under (db′, policy′ps), so the security
configuration under (db′, policy′ps) is C ′

i = ∅. In other words, the censor will never lie under
(db′, policy′ps), but will always return the true answer. Thus, we have

ans′i = eval(Φi)(db
′) = ansi. (7.24)

The following theorem states that cqeu,L
ps preserves both ps-normality and ps/ct-

normality. This means that we can employ this method for the reduction from confi-
dentiality targets to epistemic potential secrets (cf. Section 4.3) and from propositional
potential secrets to epistemic potential secrets (cf. Section 4.4).
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Theorem 7.3 (Normality-preservation of the uniform lying method for unknown poli-
cies). cqeu,L

ps is ps-normality-preserving in the sense of Definition 4.35 and ps/ct-normality-
preserving in the sense of Definition 4.42.

Proof. policy′ps is empty and thus trivially both ps-normal and ps/ct-normal.

Corollary 7.4. The function

cqeu,L
ct (Q, db, priorct, policyct) := cqeu,L

ps (Q, db, convps(priorct), convps(policyct))

with the precondition

preconditionu,L
ct (db, priorct, policyct) :=

preconditionu,L
ps (db, convps(priorct), convps(policyct))

preserves confidentiality wrt. confidentiality targets in the sense of of Definition 3.10.

Corollary 7.5. The function

cqeu,L(Q, db, prior, policy) :=

cqeu,L
ps (Q, db, convps(convct(prior)), convps(convct(policy)))

with the precondition

preconditionu,L(db, prior, policy) :=

preconditionu,L
ps (db, convps(convct(prior)), convps(convct(policy)))

preserves confidentiality wrt. propositional potential secrets in the sense of of Defini-
tion 2.8.

7.2 Uniform Refusal

In this section, we construct an enforcement method for uniform refusal under unknown
potential secrets. The fact that the user does not know the confidentiality policy has a
threefold positive effect on the resulting algorithm:

1. We only need to protect the true potential secrets, according to the basic heuristics
outlined in the introduction of this chapter. We say that a log file log violates a
confidentiality policy policyps if and only if at least one potential secret Ψ ∈ policyps,
which is true in db, is logically implied by log:

violatestruesingle(db, log, policyps) :=

(∃Ψ ∈ policyps)[ evalps(Ψ)(db) = true and log |=S5 Ψ ] (7.25)
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Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}, {undef}} refuse refuse refuse
{{true}, {false}} refuse refuse undef
{{true}, {undef}} refuse false refuse
{{false}, {undef}} true refuse refuse

{{true}} refuse false undef
{{false}} true refuse undef
{{undef}} true false refuse

∅ true false undef

Figure 7.1: censoru,R, the refusal censor for unknown potential secrets

2. Meta inferences (cf. Section 6.2.1) cannot occur: As the user does not know the
elements of policyps, he is not able to calculate the pre-image of a given answer.
Therefore, we do not need to formally consider meta inferences anymore, and we
can use the simple answer inference approach, namely the function

inferenceans(censor, C, ans) :=

{

{true, false, undef} if ans = refuse

{ans} otherwise
(7.26)

with the range

Ians = {{true}, {false}, {undef}, {true, false, undef}}. (7.27)

The resulting set of possible security configurations is

C∗
ans,truesingle = { {{true}, {false}, {undef}},

{{true}, {false}}, {{true}, {undef}}, {{false}, {undef}},

{{true}}, {{false}}, {{undef}}, ∅ }.

(7.28)

3. As meta inferences cannot occur, the censor for unknown policies does not re-
quire any additional refuse-conditions, unlike the censor for known policies (cf. Sec-
tion 6.2.3). Instead, the censor needs to refuse the answer if and only if the actual
query result v would violate the confidentiality policy, i. e., {v} ∈ C, where C is
the security configuration. There is exactly one censor function which meets these
requirements, so it is not necessary to define a class of safe censors. Instead, we
formally define the censor as follows:

censoru,R(C, v) :=

{

refuse if {v} ∈ C

v otherwise
(7.29)

The decision table of this censor is given in Figure 7.1.
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We denote the resulting enforcement method (built up of inferencemeta, violatessingle, and
censoru,R) as cqeu,R

ps . Expanding violatestruesingle, inferenceans, sec conf, censoru,R and ∆∗,
the answer generation can be rewritten as:

ansi :=











refuse
if ∃Ψ ∈ policyps such that evalps(Ψ)(db) = true and

logi−1 ∪ {eval∗(Φi)(db)} |=S5 Ψ

eval(Φi)(db) otherwise

(7.30)

Furthermore, we need a stronger precondition which guarantees that priorps = log0 does
only contain true information:

preconditionu,R
ps (db, priorps, policyps) :=

¬violatestruesingle(db, priorps, policyps) ∧

(∀φ ∈ priorps)[ evalps(φ)(db) = true ]

(7.31)

The security proof follows the usual outline: First, we show that the precondition is
kept as an invariant throughout the query sequence. Then, we prove cqeu,R

ps to preserve
confidentiality.

Lemma 7.6. Let db be a database instance, policyps a set of potential secrets and priorps

a set of a priori assumptions so that the pertinent preconditionu,R
ps (db, priorps, policyps) is

satisfied. Let Q = 〈Φ1, . . . ,Φn〉 be a query sequence. Then we have for each Ψ ∈ policyps

with evalps(Ψ)(db) = true and each 0 ≤ i ≤ n: logi 6|=S5 Ψ.

Proof. By induction on i. By preconditionu,R
ps (db, priorps, policyps) and log0 = priorps, we

have

¬violatestruesingle(db, log0, policyps), (7.32)

which is by (7.25) equivalent to

log0 6|=S5 Ψ for all Ψ ∈ policyps with evalps(Ψ)(db) = true. (7.33)

Now, let i > 0. Let Φi be the i-th query, ansi the answer returned by the censor.

Case 1 (ansi=refuse). Then, by the definition of inferenceans (7.26), the sentence added
to the log file is

∆∗(Φi, {true, false, undef}), (7.34)

which is a tautology. Thus, logi implies exactly the same set of sentences as logi−1 does,
and we have

logi 6|=S5 Ψ. (7.35)
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Case 2 (ansi ∈ {true, false, undef}). By the definition of censoru,R (7.29), we have

{ansi} 6∈ Ci. (7.36)

By the definition of sec conf (5.10), this means that

¬violatestruesingle(db, logi−1 ∪ {∆∗(Φi, {ansi})}, policyps), (7.37)

which is, by the definition of violatestruesingle (7.25), equivalent to

logi−1 ∪ {∆∗(Φi, {ansi}} 6|=S5 Ψ (7.38)

for all Ψ ∈ policyps with evalps(Ψ)(db) = true. As we use the answer inference approach
(7.26) in order to construct the subsequent log file logi, this coincides with

logi 6|=S5 Ψ (7.39)

for all Ψ ∈ policyps with evalps(Ψ)(db) = true.

We are now able to prove that the uniform refusal method for unknown potential secrets
preserves confidentiality. In the proof, we construct an alternative confidentiality policy
policy′ps by collecting the actual query values in db′ of all queries which were refused under
db, and encoding these as epistemic sentences in the usual ways. The following example
demonstrates this:

Example 7.7. We pick up on the scenario from Example 1.5. The confidentiality policy
demands that the user may not learn that aids is true, and may also not learn that cancer
is true:

policyps := { Kaids, Kcancer }

Imagine a user with no a priori assumptions (priorps = ∅), and a situation in which the
person under consideration suffers from aids:

db1 := {aids}

When issuing the query Φ = aids, the answer is refused: If we had given the actual answer
true, the sentence Kaids would have been added to the log file, so the log file would have
implied the potential secret Kaids which happens to be true in db1.

On the other hand, if the actual database instance is

db2 := ∅,

the correct answer undef is returned, because the new log file entry ¬Kaids ∧ ¬K¬aids
does not lead to the implication of any true potential secret. This demonstrates the
gain of availability when only protecting true potential secrets — under the approach for
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known policies from Section 6.2, the answer would have been refused as well, due to an
additional refuse-condition which protects the refuse for the actual query value true under
the security configuration C = {{true}} (see the censor table in Figure 6.2 for reference).

Let’s take a closer look at the meta inference caused by the refusal under db1. As the
answer was refused, the user knows that there must be a potential secret, which is true
in the actual database instance, and which is implied by the resulting log file. However,
the user does neither know the actual query value of Φ = aids, nor the elements of the
confidentiality policy. So, according to his observations, it could also be the case that, for
example, aids is actually false,

db′1 := {¬aids},

and that the confidentiality policy actually prohibits to learn that aids is false,

policy′ps := {K¬aids}.

Being able to provide an alternative confidentiality policy, the enforcement method for
unknown potential secrets is always able to provide an “alibi” for a refusal which would
otherwise have led to a harmful meta inference.

Theorem 7.8 (Confidentiality of the refusal method for unknown policies). cqeu,R
ps pre-

serves confidentiality in the sense of Definition 4.27.

Proof. Let db be a database instance, policyps a set of potential secrets, priorps a set of

a priori assumptions so that the pertinent preconditionu,R
ps (db, priorps, policyps) is satisfied,

and Q = 〈Φ1, . . . ,Φn〉 a query sequence. Let Ψ ∈ policyps be a potential secret.
In case evalps(Ψ)(db) = false, choose db′ := db and policy′ps := policyps. Then, it is trivial

that (db′, priorps, policy
′
ps) satisfies preconditionu,R

ps , and that conditions (a), (b) and (c) of
Definition 4.27 hold.

In case evalps(Ψ)(db) = true, we have by Lemma 7.6

logn 6|=S5 Ψ. (7.40)

Thus, there must be a structure M = (S,K, π) and a state s ∈ S such that

(M,s) |= logn and (7.41)

(M,s) 6|= Ψ. (7.42)

We generate a second database instance db′ := dbM,s as specified in Definition 5.3. Ac-
cording to Lemma 5.4, db′ is consistent and deductively closed wrt. |=PL. Furthermore,
by Corollary 5.6, we have

evalps(Ψ)(db′) = false, (7.43)

which satisfies condition (b) of Definition 4.27. We construct a confidentiality policy
policy′ps by

policy′ps := { eval∗(Φj)(db
′) | ansj was refused under (db, policyps) }. (7.44)
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By Corollary 4.19, we have for each propositional sentence Φj

evalps(eval
∗(Φj)(db

′))(db′) = true, (7.45)

and thus

evalps(Ψ
′)(db′) = true for each Ψ′ ∈ policy′ps. (7.46)

First, we show that preconditionu,R
ps (db′, priorps, policy

′
ps) holds. The second part, (∀φ ∈

priorps)[ evalps(φ)(db′) = true ], follows from Lemma 5.5. For the first part,

¬violatestruesingle(db′, priorps, policy
′
ps), (7.47)

or equivalently

priorps 6|=S5 Ψ′ for all Ψ′ ∈ policy′ps (7.48)

(as evalps(Ψ)(db′) = true for all Ψ ∈ policy′ps, as shown above), let

Ψ′ = eval∗(Φj)(db
′) ∈ policy′ps (7.49)

be one of these potential secrets. Indirectly assume that

priorps |=S5 eval∗(Φj)(db
′). (7.50)

As priorps ⊆ logn, this means that also

logn |=S5 eval∗(Φj)(db
′). (7.51)

As (M,s) is a model of logn, we then have

(M,s) |= eval∗(Φj)(db
′), (7.52)

and by Lemma 5.5 also

evalps(eval
∗(Φj)(db

′))(db) = true. (7.53)

By Corollary 4.20, we then get

eval(Φj)(db) = eval(Φj)(db
′). (7.54)

We can thus rewrite (7.51) as

logn |=S5 eval∗(Φj)(db). (7.55)

Now remember that the answer to Φj was refused under (db, policyps), which means by
definition of the censor function that

logj−1 ∪ {eval∗(Φj)(db)} |=S5 Ψ∗ (7.56)
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for some Ψ∗ ∈ policyps with evalps(Ψ
∗)(db) = true, and by logj−1 ⊆ logn also

logn ∪ {eval∗(Φj)(db)} |=S5 Ψ∗. (7.57)

From (7.55) and (7.57), we then get

logn |=S5 Ψ∗, (7.58)

which is a contradiction to Lemma 7.6.
Finally, we show by induction on the query number i that the answers ansi (ans′i) are

identical under (db, policyps) and (db′, policy′ps). Note that, if the answers are the same,
the log files are identical as well. For i = 0, this condition is trivial. We now assume
i > 0 and consider the answer ansi given under (db, policyps). As lies are not allowed, the
answer is either refuse or eval(Φi)(db).

Case 1 (ansi = refuse). As the i-th query was refused under (db, policyps), and by the
construction of policy′ps (7.44), there is a potential secret

Ψ′ = eval∗(Φi)(db) ∈ policy′ps. (7.59)

Trivially, we have

logi−1 ∪ {eval∗(Φi)(db
′)} |=S5 eval∗(Φi)(db

′), (7.60)

and thus also

logi−1 ∪ {eval∗(Φi)(db
′)} |=S5 Ψ′. (7.61)

As shown above, all potential secrets Ψ′ ∈ policy′ps are true in db′. By the definition of the
censor (7.30), we thus have

ans′i = refuse. (7.62)

Case 2 (ansi = eval(Φi)(db)). Then the sentence

∆∗(Φi, {eval(Φi)(db)}) (7.63)

= eval∗(Φi)(db) (7.64)

is added to the log file logi−1 in order to establish logi, and that sentence is also contained
in logn at the end of the query sequence: By Corollary 5.7, we then have

eval(Φi)(db
′) = eval(Φi)(db). (7.65)

We thus know that Φi has the same value in db and db′, and as lies are not allowed, we
have

ans′i ∈ {eval(Φi)(db), refuse}. (7.66)
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We will now indirectly prove that ans′i = eval(Φi)(db), and assume that

ans′i = refuse. (7.67)

By the definition of the censor function (7.30), there must be a potential secret Ψ′ ∈
policy′ps with evalps(Ψ

′)(db′) = true (which is the case for all potential secrets from policy′ps,
as shown above) so that

logi−1 ∪ {eval∗(Φi)(db
′)} |=S5 Ψ′. (7.68)

Due to (7.65), we can substitute eval∗(Φi)(db
′) by eval∗(Φi)(db):

logi−1 ∪ {eval∗(Φi)(db)} |=S5 Ψ′. (7.69)

As eval∗(Φi)(db) is the sentence added to the log file logi−1 under (db, policyps), we have

logi |=S5 Ψ′. (7.70)

By the construction of policy′ps, Ψ′ has the form eval∗(Φj)(db
′), where Φj is a query which

was refused under (db, policyps), so we have

logi |=S5 eval∗(Φj)(db
′). (7.71)

Note that logi does only contain information which is true in db: The precondition (7.31)
guarantees that any sentence from log0 = prior is true in db. Furthermore, as no lies are
given, any sentence added to the log file is also true in db. We thus have

evalps(ψ)(db) = true for all ψ ∈ logi, (7.72)

and by (7.71) also

evalps(eval
∗(Φj)(db

′))(db) = true. (7.73)

From Corollary 4.20, we then conclude that

eval(Φj)(db) = eval(Φj)(db
′), (7.74)

and thus also

eval∗(Φj)(db) = eval∗(Φj)(db
′). (7.75)

By (7.71), we then have

logi |=S5 eval∗(Φj)(db), (7.76)

and as logi ⊆ logn also

logn |=S5 eval∗(Φj)(db). (7.77)
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Remember that ansj = refuse, so there must be a potential secret Ψ∗ ∈ policyps so that
evalps(Ψ

∗)(db) = true and

logj−1 ∪ {eval∗(Φj)(db)} |=S5 Ψ∗. (7.78)

As logj−1 ⊆ logn, and by (7.77), we then have

logn |=S5 Ψ∗, (7.79)

which is a contradiction to Lemma 7.6. Thus, ans′i 6= refuse. As lies aren’t allowed either,
we have ans′i = eval(Φi)(db) = ansi.

We will now show that cqeu,R
ps preserves ps-normality, which means that it is suitable

for the reduction from confidentiality targets.

Theorem 7.9 (Normality-preservation of the uniform refusal method for unknown poli-
cies). cqeu,R

ps is ps-normality-preserving in the sense of Definition 4.35.

Proof. Reconsider the way the alternative database instance (7.44) in the proof of Theo-
rem 7.8. Each potential secret Ψ′ ∈ policy′ is a sentence

eval∗(Φj)(db
′) = ∆(Φj, eval(Φj)(db

′)),

where Φj is a query which was refused under (db, policyps). According to Definition 4.30,
these sentences are ps-normal.

Corollary 7.10. The function

cqeu,R
ct (Q, db, priorct, policyct) := cqeu,R

ps (Q, db, convps(priorct), convps(policyct))

with the precondition

preconditionu,R
ct (db, priorct, policyct) :=

preconditionu,R
ps (db, convps(priorct), convps(policyct))

preserves confidentiality wrt. confidentiality targets in the sense of of Definition 3.10.

The question remains whether cqeu,R
ps is also ps/ct-normality-preserving, i. e., suitable

for the reduction from propositional potential secrets to epistemic potential secrets. The
corresponding Definition 4.42 demands the potential secrets from policy′ps to be ps/ct-
normal, i. e., that they have the form Kα, where α is propositional. When we construct
policy′ps in the above mentioned manner, this is not necessarily true: it might happen
that eval(Φj)(db

′) = undef. Then eval∗(Φj)(db) is not ps/ct-normal. In a proof for ps/ct-
normality, we would have to show that this cannot happen if the input policy policyct, only
consists of ps/ct-normal potential secrets. However, it might also be possible to construct
a situation in which policyps is in fact ps/ct-normal, but there is no database instance db′

and ps/ct-normal policy′ps so that the properties stated in Definition 4.27 are satisfied. In

that case, we would be able to show that cqeu,R
ps does not preserve ps/ct-normality.
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7 Methods for Unknown Potential Secrets

7.3 Combined Lying and Refusal

We will now try to apply the basic heuristics – “only protect the true potential secrets” –
to the algorithm for combined lying and refusal from Section 6.4.

Let cqeu,C
ps be an enforcement method for combined lying and refusal under unknown

potential secrets, i. e., built up of inferenceans, violatestruesingle, and an arbitrary safe lying
and refusal censor (cf. Definition 6.25). (Note that there are eight safe censors, so there
are eight different cqeu,C

ps methods as well.)
Unfortunately, the resulting enforcement method does not preserve confidentiality.

Theorem 7.11 (Non-confidentiality of the combined lying and refusal method for un-
known policies). cqeu,C

ps does not preserve confidentiality in the sense of Definition 4.27.

Proof. We give a counter-example:

DS := { a, b, c }

db := { a,¬b }

policyps := { K(a ∨ b ∨ c), K¬b, ¬Ka ∨ ¬Kb ∨ ¬Kc }

priorps := ∅

Q := 〈 a ∨ b ∨ c 〉

Then we have

evalps(Ψ)(db) = true for each Ψ ∈ policyps, (7.80)

and for each v ∈ {true, false, undef} there exists a Ψ ∈ policyps so that

{∆∗(a ∨ b ∨ c, {v})} |=S5 Ψ. (7.81)

Thus, the security configuration for the query Φ1 = a ∨ b ∨ c is

C1 = {{true}, {false}, {undef}}, (7.82)

and the answer will be refused. Indirectly assume that cqec,U
ps preserves confidentiality. We

pick the potential secret Ψ = K(a∨ b∨ c), and Definition 4.27 guarantees that there is an
argument (db′, policy′ps) so that preconditionps(db

′, priorps, policy
′
ps) is satisfied, for which

evalps(K(a ∨ b ∨ c))(db′) = false, (7.83)

and so that the same answers are returned. ans1 = refuse, so the security configuration
must be C ′

1 = {{true}, {false}, {undef}}. In particular, by definition of violatestruesingle

(5.6), there must be a potential secret Ψ′ ∈ policy′ps with

evalps(Ψ
′)(db′) = true (7.84)

and, as priorps is the empty set,

{K(a ∨ b ∨ c)} |=S5 Ψ′. (7.85)
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Since the vocabulary is DS = {a, b, c}, we either have Ψ′ ≡ K(a ∨ b ∨ c), or Ψ′ must be
a tautology. In the former case, (7.83) and (7.84) are contradictory. In the latter case,
preconditionps(db

′, priorps, policy
′
ps) is not satisfied, as a tautology is also implied by the

empty set priorps. Thus, there is no suitable argument (db′, policy′ps).

Obviously, the refusal causes a meta inference: The user does not only learn that there
is a certain potential secret, but also that this secret must be true in the actual database
instance.

This negative result does not come as a surprise. The corresponding attempts to find
a combined lying and refusal method for unknown potential secrets in the context of
complete databases failed as well, and a similar counter-example can be constructed [5].

Of course, one can still use the algorithm for known policies, even if the policy is
assumed to be unknown. However, that algorithm protects all potential secrets, and has
a potentially lower availability. All attempts to design a special, confidentiality-preserving
algorithm for combined lying and refusal under unknown policies have failed so far. The
question remains how to take advantage of the “unknown policy” assumption when lying
and refusal is combined.
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In the previous chapters, we have presented various enforcement methods, and we have
shown that they all preserve confidentiality in the sense of Definition 4.27. The purpose
of this chapter is to point out further properties of our enforcement methods for special
cases. In particular, we consider the situation in which the actual database instance db
is complete, and we compare our methods to those specifically designed for complete
databases. Additionally, we consider users who are not as powerful or have less knowledge
about the system as assumed by Definition 4.27.

8.1 Dealing with Complete Databases

Enforcement methods for uniform lying, uniform refusal and combined lying and refusal,
and for known and unknown potential secrets, have been presented in the Chapters 6 and 7,
respectively. Similar enforcement methods can be found in literature in the context of
complete databases, namely in the work by Biskup and Bonatti [5].

In this section, we investigate how our methods for incomplete databases relate to those
for complete databases. In particular, we show how complete databases can be modelled
within our framework for incomplete databases. We also discuss how to account for the
fact that the user might be aware of the completeness of the database. As you will see, this
is easily possible by extending the initial log file by a special sentence. Finally, we compare
the algorithms from [5] to those from this thesis when operating on a complete database.
However, we remain on a fairly informal level. Future work might introduce a formal
notion of equivalence and analyze the respective enforcement methods more precisely.

Also note that the methods from [5] sometimes use different notations. For example, in
the framework for complete databases, the answer ans to a query Φ is denoted by either
Φ, ¬Φ or mum instead of true, false or refuse. Throughout this section, we will implicitly
adapt the notations from Chapter 5 in order to ensure an easier comparison.

We start our investigations with a general comparison of the enforcement methods for
complete databases and those for incomplete databases; we then take a closer look at the
underlying database models, the log update mechanisms and the confidentiality definitions.

Model-theoretic vs. proof-theoretic approach

Previous work on complete databases relies on a model-theoretic approach: A (complete)
logic database db is defined as a structure of some logic, for example, a propositional
interpretation over some database schema (set of propositions) DS. A query Φ within db
is evaluated as follows: If db is a model of Φ, the value is true, otherwise the value is false.
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In the proof-theoretic approach used in this thesis, we can define a complete logic database
as follows:

Definition 8.1 (Complete logic database). A complete logic database db over a schema
DS is a consistent set of propositional sentences, using only propositions from DS, so that
for each proposition Π ∈ DS either db |=PL Π or db |=PL ¬Π holds.

Lemma 8.2. Let db be a complete logic database according to Definition 8.1. Then we
have for each query Φ: eval(Φ)(db) ∈ {true, false}.

Propositional vs. epistemic potential secrets

In the context of complete databases, the confidentiality policy is specified as a set of
propositional potential secrets. In contrast, our methods for incomplete databases expect
the potential secrets to be epistemic sentences of the restricted language LPS (cf. Defi-
nition 4.5). However, in Chapters 2 and 3, we have shown that propositional sentences
can be protected as potential secrets in the context of incomplete databases as well: We
can convert them into confidentiality targets (using the function convct) and then into
epistemic potential secrets (using the function convps). This reduction is possible if the
underlying enforcement method preserves ps/ct-normality (cf. Corollary 4.45).

Completeness

It might be useful to assume that the user is aware of the fact that the database is complete.
In other words, the user knows that each proposition Π ∈ DS evaluates to either true or
false. This knowledge can be incorporated into the user’s initial assumptions by adding
the following epistemic sentence to the initial log file log0:

complete(DS) :=
∧

Π∈DS

KΠ ∨K¬Π (8.1)

The awareness of a complete database does also have an impact on our notion of confiden-
tiality as stated in Definition 4.27, which requires an alternative database instance db′ in
which a given potential secret Ψ is not true, and so that the same answers are returned.
It is reasonable to demand this alternative database instance to be a complete one as well.

Fortunately, the inclusion of complete(DS) into log0 guarantees this property. The
alternative database db′ is constructed as stated in Definition 5.3: We choose an MDS-
structure M = (S,K, π) and a state s ∈ S such that (M,s) is a model of logn but not
a model of Ψ, and we derive db′ := dbM,s from (M,s). As complete(DS) is included in
logn, (M,s) is a model of complete(DS). Hence, each proposition Π from DS will occur
as either Π or ¬Π in db′. Thus, db′ is also complete according to Definition 8.1.

Log update

In our framework for incomplete databases, the log file is a set of epistemic sentences, and
we use two different approaches when adding the information gained from an answer to
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the log file: answer inferences and meta inferences. In contrast, the methods for complete
databases only allow propositional logic within the log file, and all methods use the same
log file update mechanism:

logi :=











logi−1 ∪ {Φi} if ansi = true,

logi−1 ∪ {¬Φi} if ansi = false,

logi−1 otherwise

This mechanism is similar to answer inferences approach (5.1). In particular, note that
answer log update uses the inference {true, false, undef} in order to represent refusal, which
results in a tautology being added to the log file. This has the same effect on the logical
consequences as keeping the previous log file.

How about meta inferences? Any non-empty subset of {true, false, undef} can occur as
a meta inference V . However, as complete(DS) is already included in the log file, the
user can implicitly rule out the value undef. Formally, we say that the user is able to
draw a secondary meta inference V ′ := V ∩ {true, false}, which, in general, contains more
information than the original meta inference. This secondary meta inference is either
{true, false} (which means no gain of information, as this disjunction is already implied by
complete(DS)), {true} or {false}, where the latter two inference sets represent definitive
information about the query value. Thus, in principle, we have the same three cases as
with answer log update.

Despite these similarities, we must be careful when claiming two methods to be equiv-
alent (as we do in the sections below) just because the censors make the same decision,
and the sentences added to the log file are similar to a certain extend. For example, for a
true functional equivalence we would have to prove that adding KΦ to an epistemic log
file has the same effect (wrt. logical implication) as adding Φ to a propositional log file.

The censor

In the following, we assume that we have a complete database db and that complete(DS) is
included in log0, and we compare the censors of our methods to those from [5]. In general,
the completeness of db has a twofold effect on our algorithm when issuing a query Φ:

1. The original query value eval(Φ)(db) can never be undef, so we can eliminate the
undef -column from the censor table.

2. It is always harmful to “learn” that the query value is undef, as this would contradict
to complete(DS) and thus lead to the inconsistency of the log file. Thus, {undef} is
always a harmful inference, and we only need to consider the security configurations
(and rows in the censor table) which contain {undef}.

We can therefore specify a restricted censor table for each method and then easily compare
the remaining cases to the algorithm of the respective method for complete databases.

There is one exception: The improved uniform refusal method for known policies from
Section 6.3 explicitly considers the user’s a priori knowledge about a certain query value
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Security Configuration eval(Φ)(db) = ...
C true false

{{true}, {undef}} false false
{{false}, {undef}} true true

{{undef}} true false

Figure 8.1: The uniform lying censor from Section 6.1, restricted to the relevant cases for
complete databases

and picks a particular censor function. Thus, only the censor functions for the pre-
inferences {true, false}, {true} and {false} will be relevant.

We are now ready to investigate the particular enforcement methods for similarities and
equivalence.

Known Potential Secrets

Uniform Lying (Section 6.1)

The algorithm of the uniform lying censor for known potential secrets from [5] can be
summarized as follows:

If adding the correct answer to the log file implies the disjunction of all potential
secrets, then return the negation of the correct answer (i. e., false instead of
true, and true instead of false).
Otherwise, return the correct answer.

Figure 8.1 shows the uniform lying censor table restricted by the constraints mentioned
above. Only three possible security configurations remain. Apparently, this censor pursues
the same strategy as the one for complete databases: If an answer (and undef ) is harmful,
choose the respective harmless answer. If no answer (only undef ) is harmful, return the
correct answer. This corresponds to the above sketched algorithm of the uniform lying
censor for complete databases.

Uniform Refusal (Section 6.2)

The algorithm of the uniform refusal censor for known potential secrets from [5] can be
summarized as follows:

If adding the correct answer or adding the negated answer to the log file implies
any potential secret, then return refuse.
Otherwise, return the correct answer.

Implicitly, this censor uses additional refuse-conditions as introduced in Section 6.2: A
refusal is issued even if only the negated answer would reveal a secret, in order to protect
the “real” refusal under the correct answer.

110



8.1 Dealing with Complete Databases

Security Configuration eval(Φ)(db) = ...
C true false

{{true}, {false}, {undef}, ...} refuse refuse
{{true}, {undef}, {true, undef}} refuse refuse
{{false}, {undef}, {false, undef}} refuse refuse

{{undef}} true refuse

Figure 8.2: The uniform refusal censor from Section 6.2, restricted to the relevant cases
for complete databases

Figure 8.2 shows the restricted censor table of the uniform refusal censor from Sec-
tion 6.2. The first line represents all supersets of {{true}, {false}, {undef}}, all of which
are handled in the same way. In the second line, {true} is a harmful inference, and of
course also {undef}. As the user knows that the actual query value cannot be undef, the
disjunctive inference {true, undef} must be harmful as well, as its secondary meta inference
{true, undef} ∩ {true, false} = {true} is harmful. The same argument applies to the third
line of the censor table: When {false} is harmful, {false, undef} must be harmful as well.

The first three lines of the restricted censor table exactly correspond to the algorithm
for complete databases. Interestingly, under the last security configuration {undef} (where
neither answer true or false is harmful), our new censor behaves differently: If the actual
query value is false, the answer is refused. But why? This refusal originates from an
additional refuse-condition introduced in order to protect a harmful meta inference from
the original refusal for eval(Φ)(db) = undef. Although the original refusal will never occur,
the additional refuse-condition is still active. This has a negative impact on the availability
of the censor, as more answers will be refused.

What is the impact of the secondary meta inference V ′? For the first three lines of
the censor table, the secondary meta inference is {true, false}. This results in the log file
entry KΦ∨K¬Φ, which is a consequence of complete(DS) anyway and thus adds no new
information to the log file. In the last line of the censor table, we have the following
situation:

• For ans = true, the secondary meta inference is {true}, and thus coincides with the
primary meta inference.

• For ans = refuse, the primary meta inference is {false, undef} (cf. Figure 6.2, line 10),
whereas the secondary meta inference is {false, undef}∩{true, false} = {false}. In this
case, the awareness of the completeness of db does lead to a gain of information: The
user learns that the actual query value must be false. However, this information is not
harmful in the case of this security configuration (as we have {false} 6∈ {{undef}}).

Thus, the secondary meta inference has no serious impact in any case, and it does not
need to be considered formally.
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Uniform Refusal with Improved Availability (Section 6.3)

Unlike the other enforcement methods, the improved uniform refusal method cqek,R∗
ps ex-

plicitly considers the user’s a priori knowledge about a certain query value and then
employs a specific censor for this pre-inference. As complete(DS) is included in log0,
learning that a query value is undef will always make the log file inconsistent. Thus, the
pre-inference will always be a non-empty subset of {true, false}. As a result, only the
censor functions for the pre-inferences {true, false}, {true} and {false} are relevant when
db is complete. The censor tables are given in Figure 6.3.

In principle, cqek,R∗
ps uses meta log update. However, note that under the above men-

tioned assumptions there are only three possible meta inferences: {true, false}, {true}, and
{false}. In particular, any refusal will result in the meta inference {true, false}, which does
not provide any useful information to the user as it coincides with the least pre-inference.
On the other hand, each non-refused answer will result in either {true} or {false}. We
thus have the same behavior as the log file update for complete databases: If the answer
is not refused, the definite information about the answer is added to the log file. If the
answer is refused, no information is added to the log file.

For complete databases, the algorithm of the uniform refusal censor [5] can be summa-
rized as follows:

If adding the correct answer or adding the negated answer to the log file implies
any potential secret, then return refuse.
Otherwise, return the correct answer.

Obviously, this algorithm corresponds to censor{true,false} from Figure 6.3. Hence, in case
the user does not have any useful pre-inference about the query value (apart from the

knowledge that db is complete), the method for complete databases and cqek,R∗
ps work in

the same way and are equivalent. But what if the user does already know the value of the
query?

• cqek,R∗
ps will detect the unary pre-inference and choose one of the censors censor{true}

or censor{false}. These censors always return the correct answer (cf. Figure 6.3).

• The method for complete databases will consider that adding the false answer to
the log file will lead to an inconsistency, and thus to the implication of all potential
secrets. Hence, the answer is refused.

With regard to these observations, cqek,R∗
ps provides better availability for the special case

in which a query value is already known to the user. However, [6] proposes an “improved”
refusal method, with a pre-processing step filtering out this type of queries, and returning
the correct answer before employing the censor in the first place. This is similar to the
idea of our improved refusal method, which considers the pre-inference of the query. This
improved refusal method is then fully equivalent to cqek,R∗

ps .

Combined Lying and Refusal (Section 6.4)

The combined lying and refusal censor for complete information systems works as follows:
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8.1 Dealing with Complete Databases

Security Configuration eval(Φ)(db) = ...
C true false

{{true}, {false}, {undef}} refuse refuse
{{true}, {undef}} false false
{{false}, {undef}} true true

{{undef}} true false

Figure 8.3: The combined lying and refusal censor from Section 6.4, restricted to the rel-
evant cases for complete databases

If both, adding the correct answer, and adding the negated answer to the log
file implies any potential secret, then return refuse.
Else, if adding the correct answer to the log file implies any potential secret,
return the negated answer.
Otherwise, return the correct answer.

With regard to the censor table, the same restrictions apply as in the case of uniform
lying (see above): We only have to consider the query values true and undef, and only the
security configurations C with {undef} ∈ C. The resulting censor is given in Figure 8.3.
Again, the censor coincides with the one for complete databases from [5].

Unknown Potential Secrets

Uniform Lying (Section 7.1)

For complete databases, the uniform lying method for unknown potential secrets has been
established by modifying the respective method for known potential secrets in a way that
only those secrets are protected which are actually true in the given database instance.
In particular, the disjunction of all true potential secrets is now protected, instead of the
disjunction of all potential secrets.

For incomplete databases, we designed the respective enforcement method in the exact
same manner, introducing the function violatestruedisj . Given these considerations, our
enforcement method is equivalent to the one for complete databases.

Uniform Refusal (Section 7.2)

The same arguments apply for the uniform refusal method for unknown potential se-
crets cqeu,R

ps : Only the true potential secrets are protected, by using the function
violatestruesingle. This corresponds to the way the algorithm for complete databases from
[5] is constructed. We also use simple answer log update, just like the enforcement method
for complete databases.

Note that we have not been able to show whether cqeu,R
ps preserves ps/ct-normality or

not. The protection of propositional potential secrets – as used in the framework for
complete databases – is only possible if preservation of ps/ct-normality is in fact given.
This remains to be an open question.
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8.2 Dealing with Plain Users

Our notion of confidentiality, as formalized in Definition 4.27, is very careful when it
comes to the assumptions about the user and his knowledge and abilities: The user is
expected to be aware of the presence of an inference control mechanism and to know its
algorithm. Additionally, the user is assumed to have unlimited computational power. In
Chapters 6 and 7, we have shown that even then confidentiality can be preserved under the
various parameters. However, our notion of confidentiality does not consider the opposite
case: What happens if the user is not as powerful as assumed? The following example
demonstrates how we might run into problems then.

Example 8.3. Imagine an enforcement method which returns the answer true on any
query:

cqetrue
ps (Q, db, priorps, policyps) := 〈true, true, true, . . .〉

Clearly, this enforcement method preserves confidentiality in the sense of Definition 4.27,
as any other database instance db′ would produce the same answer sequence.

Furthermore, suppose a system run with the following parameters:

Q := 〈s〉

db := {s}

priorps := ∅

policyps := {s}

The answer sequence is 〈true〉. Did the system disclose the potential secret s?

The answer to this question depends on the user and his assumptions and capabilities.
A highly sophisticated user who knows the algorithm of cqetrue

ps will surely not believe in
the answer returned by the system – as he knows that any database instance would have
produced the answer true, and it is thus not reliable at all. However, there might be “plain”
users who do not know the algorithm of the enforcement method, do not know about or
neglect the existence of an inference control mechanism at all, or lack the computational
power needed to reason about the possible existence of db′. These users might simply
believe in the answers returned by the system. This is certainly undesirable.

In essence, the problem is that Definition 4.27 allows the user to know the algorithm of
the enforcement methods (and possibly the confidentiality policy policyps, and what the
system regards as his a priori assumptions priorps). However, the confidentiality defini-
tion does not inhibit the construction of an enforcement method which explicitly depends
on this initial knowledge and capabilities. The task of establishing a “well-behaving”
enforcement method is left to the designer.

While we believe that the enforcement methods presented in Chapter 6 and 7 are “well-
behaving” in this respect, we cannot provide a proof for this proposition unless we establish
a formal notion for this property. The purpose of this section is to provide this kind of
formal “definition” of confidentiality in the presence of “plain” users.
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8.2 Dealing with Plain Users

The idea can be summarized as follows: While the original confidentiality definition
demands that there is an alternative database instance db′ so that Controlled Query Eval-
uation would have returned the same answers, we now demand that there is a db′ so that
the same answers are returned under ordinary query evaluation, i. e., without any inference
control mechanism. We thus implicitly ensure that there is an indistinguishable database
instance in which a given potential secret is false; the user does not need to know anything
about Controlled Query Evaluation or its functioning.

Definition 8.4 (Confidentiality for Plain Users). Let cqeps be a method for Controlled
Query Evaluation with preconditionps as its associated precondition for admissible argu-
ments. cqeps is defined to preserve confidentiality for plain users iff

for all finite query sequences Q = 〈Φ1, . . . ,Φn〉,
for all instances db,
for all sets of potential secrets policyps,
for all potential secrets Ψ ∈ policyps,
for all a priori assumptions priorps

such that (db, priorps, policyps) satisfies preconditionps,
there exists an instance db′

such that evalps(φ)(db′) = true for each φ ∈ priorps

and the following two conditions hold:

(a) [same answers]
cqeps(Q, db, priorps, policyps) = 〈ans1, . . . , ansn〉
with ansi = eval(Φi)(db

′)

(b) [Ψ is false in db′]
evalps(Ψ)(db′) = false

Obviously, this notion of confidentiality is only suitable for a uniform lying method – as
soon as an answer is refused, there will be no database instance db′ that returns the same
answer under ordinary query evaluation, as the latter only produces the answers true,
false, or undef. How can we handle refusals? The easiest way is to assume that a “really
plain” user will simply ignore refused answers, and does not reflect on the reason for the
refusal. We can therefore modify our definition and restrict the “same answers”-condition
to the non-refused answers:

Definition 8.5 (Confidentiality for Really Plain Users). Let cqeps be a method for Con-
trolled Query Evaluation with preconditionps as its associated precondition for admissible
arguments. cqeps is defined to preserve confidentiality for really plain users iff

for all finite query sequences Q = 〈Φ1, . . . ,Φn〉,
for all instances db,
for all sets of potential secrets policyps,
for all potential secrets Ψ ∈ policyps,
for all a priori assumptions priorps

such that (db, priorps, policyps) satisfies preconditionps,

115



8 Additional Properties

there exists an instance db′

such that evalps(φ)(db′) = true for each φ ∈ priorps

and the following two conditions hold:

(a) [same answers if no refusal]
cqeps(Q, db, priorps, policyps) = 〈ans1, . . . , ansn〉
with ansi ∈ {eval(Φi)(db

′), refuse}

(b) [Ψ is false in db′]
evalps(Ψ)(db′) = false

It is fairly obvious to see that the former definition is stronger than the latter, and that
both definitions are equivalent in case no refusals are involved.

Lemma 8.6. Let cqeps be an enforcement method, preserving confidentiality for plain
users in the sense of Definition 8.4. Then cqeps preserves confidentiality for really plain
users in the sense of Definition 8.5 as well.

Proof. Follows from the fact that condition (b) of Definition 8.4 is stronger that the
corresponding condition (b) of Definition 8.5.

Lemma 8.7. Let cqeps be a uniform lying enforcement method, i. e., it never returns
refuse as an answer. Then Definition 8.4 and Definition 8.5 are equivalent.

Comparing Definitions 8.4 and 8.5 to the original Definition 4.27, we observe two dif-
ferences:

• Instead of demanding satisfaction of some specific precondition for db′, the new
definitions require that the initial user assumptions priorps hold in the alternative
database instance db′. This is a reasonable requirement, as it guarantees that the
(ordinary) answers returned by the system under db′ do not contradict to priorps.
However, the original confidentiality definition does not require this condition, nei-
ther for the original database instance db nor for the alternative database instance
db′. This was discussed in Section 5.5.

• Both definitions do not distinguish between known and unknown policies. There are
two arguments why this kind of differentiation does not make sense here, a formal
and an intuitive one.

For the formal argument, take a closer look at the original Definition 4.27: A poten-
tial secret Ψ is considered protected if there is an alternative database instance db′

and an alternative set of potential secrets policy′ps so that Ψ is false in db′ and the
same answers are returned under under (db, policyps) and (db′, policy′ps). In case the
user is assumed to know the confidentiality policy, policy′ps must also correspond to
policyps. On the other hand, our confidentiality definitions for plain users demand
that the same answers are returned under ordinary query evaluation. However, or-
dinary query evaluation does not incorporate any confidentiality policy, so we don’t
consider an alternative policy policy′ps anyway, and it is irrelevant if it was identical
to policyps or not.
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Intuitively, remember that the user does not assume an inference control mechanism
to be present, and thus also no confidentiality policy. In this respect, the confiden-
tiality policy is always “unknown” to the user.

In the following, we will investigate whether the enforcement methods from Chap-
ters 6 and 7 satisfy these definitions. For the uniform lying methods, we will investigate
confidentiality for plain users, and for the uniform refusal methods and the combined lying
and refusal methods, we will consider confidentiality for really plain users.

Known Potential Secrets

Uniform Lying (Section 6.1)

Theorem 8.8 (Confidentiality for plain users of the uniform lying method for known

policies). cqek,L
ps preserves confidentiality for plain users in the sense of Definition 8.4.

Proof. Consider the alternative database instance db′ constructed in the proof of The-
orem 6.4 by choosing an MDS-structure M = (s,K, π) and a state s ∈ S so that
(M,s) |= logn and (M,s) 6|= Ψ.

As priorps ⊆ logn, (M,s) |= φ holds for each φ ∈ priorps. By Lemma 5.5, we then have

evalps(φ)(db′) = true for each φ ∈ priorps. (8.2)

Condition (b) of Definition 8.4 is satisfied by (6.16). Furthermore, it is shown in that
proof that no query value is distorted under db′. We thus have

ansi = eval(Φi)(db
′) for each 1 ≤ i ≤ n, (8.3)

which satisfies condition (a) of Definition 8.4.

Uniform Refusal (Section 6.2)

Theorem 8.9 (Confidentiality for really plain users of the uniform refusal method for

known policies). cqek,R
ps preserves confidentiality for really plain users in the sense of De-

finition 8.5.

Proof. Consider the alternative database instance db′ constructed in the proof of The-
orem 6.12 by choosing an MDS-structure M = (s,K, π) and a state s ∈ S so that
(M,s) |= logn and (M,s) 6|= Ψ.

As priorps ⊆ logn, (M,s) |= φ holds for each φ ∈ priorps. By Lemma 5.5, we then have

evalps(φ)(db′) = true for each φ ∈ priorps. (8.4)

Condition (b) of Definition 8.5 is satisfied by (6.33). Furthermore, cqek,R
ps does never lie,

so we have

ansi ∈ {eval(Φi)(db
′), refuse} for each 1 ≤ i ≤ n, (8.5)

which satisfies condition (a) of Definition 8.5.
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Uniform Refusal with Improved Availability (Section 6.3)

Theorem 8.10 (Confidentiality for really plain users of the improved uniform refusal

method for known policies). cqek,R∗
ps preserves confidentiality for really plain users in the

sense of Definition 8.5.

Proof. Consider the alternative database instance db′ constructed in the proof of The-
orem 6.20 by choosing an MDS-structure M = (s,K, π) and a state s ∈ S so that
(M,s) |= logn and (M,s) 6|= Ψ.

As priorps ⊆ logn, (M,s) |= φ holds for each φ ∈ priorps. By Lemma 5.5, we then have

evalps(φ)(db′) = true for each φ ∈ priorps. (8.6)

Condition (b) of Definition 8.5 is satisfied by (6.60). Furthermore, cqek,R∗
ps does never lie,

so we have

ansi ∈ {eval(Φi)(db
′), refuse} for each 1 ≤ i ≤ n, (8.7)

which satisfies condition (a) of Definition 8.5.

Combined Lying and Refusal (Section 6.4)

Theorem 8.11 (Confidentiality for really plain users of the combined lying and refusal

method for known policies). cqek,C
ps preserves confidentiality for really plain users in the

sense of Definition 8.5.

Proof. Consider the alternative database instance db′ constructed in the proof of The-
orem 6.27 by choosing an MDS-structure M = (s,K, π) and a state s ∈ S such that
(M,s) |= logn and (M,s) 6|= Ψ.

As priorps ⊆ logn, (M,s) |= φ holds for each φ ∈ priorps. By Lemma 5.5, we then have

evalps(φ)(db′) = true for each φ ∈ priorps. (8.8)

Condition (b) of Definition 8.5 is satisfied by (6.87). Furthermore, it is shown in that
proof that no lies are returned under db′. We thus have

ansi = {eval(Φi)(db
′), refuse} for each 1 ≤ i ≤ n, (8.9)

which satisfies condition (a) of Definition 8.5.

Unknown Potential Secrets

Uniform Lying (Section 7.1)

Theorem 8.12 (Non-confidentiality for plain users of the uniform lying method for un-
known policies). cqeu,L

ps does not preserve confidentiality for plain users in the sense of
Definition 8.4.
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Proof. We specify a counter-example:

DS := { s1, s2 }

Q := 〈 s2 〉

db := { s1 }

priorps := { Ks1 ∨Ks2 }

policyps := { Ks1, Ks2 }

This is a valid input to cqeu,L
ps according to preconditionu,L

ps (7.5), as priorps does not
imply the disjunction of all true potential secrets true pot sec disj = Ks1. Regarding
the query Φ1 = s2, the security configuration is C1 = {{false}, {undef}, {false, undef}},
because learning that Ks2 does not hold would imply that Ks1 must hold, which is a true
potential secret. The resulting answer is ans1 = true.

It is easy to see that there is no instance db′ with eval(s2)(db
′) = true (to return the

same answer under ordinary query evaluation) and evalps(Ks2)(db
′) = false (to make the

potential secret false).

We encounter a paradox behavior: Assuming that the user knows the confidentiality
policy and is also aware of the presence and the algorithm of CQE, cqeu,L

ps is unsafe (this can
be verified by the same counter-example). When we assume that the user does know the
CQE algorithm but not the confidentiality policy, cqeu,L

ps is safe (cf. Theorem 7.2). When
we assume that the user does neither know the CQE algorithm nor the confidentiality
policy, cqeu,L

ps is unsafe again.

What is the reason for this oddity? Obviously, cqeu,L
ps explicitly relies on the fact that the

user knows the CQE algorithm, and that he can tentatively test other database instances
and confidentiality policies for the resulting answer sequence. In the example given above,
the system did claim s2 to be true; however, the user might still assume that Ks2 is not
a potential secret, in which case an indistinguishable input (db′, policy′ps) can be found.

This result suggests that we should be careful when employing the methods for unknown
potential secrets – implicitly, they assume that the user does know about CQE and its
algorithm. If he doesn’t, confidentiality might be threatened.

Uniform Refusal (Section 7.2)

Theorem 8.13 (Confidentiality for really plain users of the uniform refusal method for
unknown policies). cqeu,R

ps preserves confidentiality for really plain users in the sense of
Definition 8.5.

Proof. Let Ψ be the potential secret under consideration, as given in Definition 8.5.
If evalps(Ψ)(db) = false, choose db′ := db. Condition (b) of Definition 8.5 is then trivially

satisfied. By the precondition (7.31) for the uniform refusal method, and by db′ = db, we
have

(∀φ ∈ priorps)[ evalps(φ)(db′) = true ]. (8.10)
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Furthermore, the uniform refusal method does never lie, so we have for all 1 ≤ i ≤ n,

ansi ∈ {eval(Φi)(db
′), refuse}, (8.11)

which satisfies condition (a).
Otherwise, if evalps(Ψ)(db) = true, consider the alternative database instance db′ con-

structed in the proof of Theorem 7.8 which satisfied the conditions from the ordinary
confidentiality Definition 4.27. The required properties can then be extracted from that
proof:

• As preconditionu,R
ps (7.31) is satisfied for (db′, priorps, policy

′
ps), we have

evalps(φ)(db′) = true for all φ ∈ priorps.

• By condition (a) of Definition 4.27, the same answers are returned under both
(db, policyps) and (db′, policy′ps). Furthermore, the system will never lie, so we have
ansi ∈ {evalps(Φi)(db), refuse} for all 1 ≤ i ≤ n.

• By condition (b) of Definition 4.27, we have evalps(Ψ)(db′) = false.

Discussion

The results from this section indicate that the user model implicitly incorporated in our
fundamental notion of confidentiality stated in Definition 4.27 does not necessarily cover
all aspects of a “reasonable” user. If we only rely on that definition when constructing
an enforcement method, we might end up in a situation in which confidentiality is only
protected against a sophisticated user, but not against other “reasonable” users.

The plain user model established in this section reveals two properties not found in the
original “sophisticated” user model:

• Consistency: The plain user only accepts answers that are consistent with each other
and with his a priori assumptions.

• No secret told: As the plain user believes in any information returned by the system,
it is not acceptable to “tell” a secret and implicitly “hope” that the user does not
believe in what he was told. This is different from the sophisticated user, who is
assumed to challenge all answers.

It would be favorable to establish a user model which fits all kinds of “reasonable” users.
This user model could be incorporated into a common confidentiality definition for all
kinds of users, which combines the requirements stated in the current Definitions 4.27, 8.4
and 8.5. This is goes beyond the scope of this thesis and could be the topic of future work.
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9 Conclusion

In this thesis, we have presented a framework for policy-driven inference control in in-
complete logic databases. We have studied three different kinds of confidentiality policies
with varying expressiveness: propositional potential secrets, confidentiality targets, and
epistemic potential secrets. For each kind of policy, we have introduced an abstract defi-
nition of an enforcement method, and established a declarative notion of confidentiality,
based on the idea that the actual database instance must always be indistinguishable from
an alternative one in which certain secret information is not true. Furthermore, we have
shown that policies of a less expressive kind can be converted into a different, more ex-
pressive kind, and that confidentiality is still preserved under this reduction, given that
the underlying enforcement method satisfies certain properties of normality-preservation.

For the most expressive kind of confidentiality policies, epistemic potential secrets, we
have then constructed an operational framework and presented multiple instantiations
thereof: for known policies, we have studied uniform lying, uniform refusal, uniform re-
fusal with improved availability, and combined lying and refusal; for unknown policies,
we have considered uniform lying and uniform refusal, and we have also shown that there
is no (naively constructed) combined lying and refusal method which takes advantage
of the extra freedom provided by unknown policies. For each of the resulting enforce-
ment methods, we have shown that it satisfies the declarative confidentiality definition
for epistemic potential secrets. We have also shown that most of the methods satisfy the
normality-preservation requirements which make them suitable for the reduction from the
other kinds of confidentiality policies.

Furthermore, we have analyzed all enforcement methods wrt. certain additional prop-
erties they might have or not have. We have informally shown that they are, to a certain
extend, equivalent to the respective existing methods for complete databases from [5]. We
have also considered an alternative user model, “plain users”, which revealed additional
insights on “useful” assumptions about a real-world user, his abilities and his behavior.

A complete overview of all enforcement methods studied in this thesis, along with their
respective properties, is given in Figure 9.1.

The starting point for this thesis was the work by Biskup and Bonatti [5], who investi-
gated Controlled Query Evaluation for complete databases and thereby considered three
parameters: user awareness (known or unknown policy), the kind of confidentiality policy
(potential secrets or secrecies) and the allowed distortion methods (uniform lying, uniform
refusal, combined lying and refusal). Two of these parameters – user awareness and al-
lowed kinds of distortion – can also explicitly be found in the framework presented in this
thesis. The remaining parameter – the kind of confidentiality policy – is implicitly encoded
into our definition of epistemic potential secrets. In the work by Biskup and Bonatti, a
secrecy (Ψ,¬Ψ) declares that the user may not learn the exact value of some sentence Ψ.
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Known Policies Unknown Policies

Uniform Lying

Inferences inference
ans

inference
ans

Security violations violates
disj

violates
truedisj

Confidentiality yes yes

Confidentiality for plain users plain no

Normality-preservation ps/ct-normality ps/ct-normality

Uniform Refusal

Inferences inference
meta

inference
ans

Security violations violates
single

violates
truesingle

Confidentiality yes yes

Confidentiality for plain users really plain really plain

Normality-preservation ps/ct-normality ps-normalitya

Improved Uniform Refusal

Inferences inference
meta

(no algorithm needed)

Security violations violates
single

Confidentiality yes

Confidentiality for plain users really plain

Normality ps/ct-normality

Combined Lying and Refusal

Inferences inference
ans

(no algorithm found)

Security violations violates
single

Confidentiality yes

Plain users really plain

Normality-preservation ps/ct-normality

amight even preserve ps/ct-normality, no proof found

Figure 9.1: Overview of the algorithms and their properties
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For our framework, we have shown that this can be achieved by introducing three dis-
tinct potential secrets ∆∗(Ψ, {true, false}), ∆∗(Ψ, {true, undef}) and ∆∗(Ψ, {false, undef}).
In total, these secrets prevent the user from learning any (even disjunctive) information
about the actual value of Ψ. (The same technique – emulating secrecies by means of a
set of potential secrets – has been introduced as a “naive reduction” for complete infor-
mation systems, see e. g. [3]). This is why we don’t need to consider special enforcement
methods for “secrecy-like” confidentiality policies, and why we only had to consider six
cases instead of twelve. Generally speaking, our results coincide with those for complete
databases:

• All algorithms are designed in a similar way and share the main ideas.

• We have shown that there is no way to “naively” design a specific algorithm for
combined lying and refusal under unknown potential secrets. The same result can
be found for complete databases in [3].

• For complete information systems, it was shown that it is not possible to perform
uniform lying under known secrecies [5]: Given a secrecy (Ψ,¬Ψ), the user could
simply issue the query Φ = Ψ, and he would know that the answer is exactly the
negation of the actual query value.

Although we haven’t explicitly introduced a concept like secrecies for incomplete in-
formation systems, we can show that the same property also holds for our “emulated”
secrecies. Given the three potential secrets ∆∗(Ψ, {true, false}), ∆∗(Ψ, {true, undef})
and ∆∗(Ψ, {false, undef}), the disjunction of these three secrets

KΨ ∨ K¬Ψ ∨ KΨ ∨ ¬KΨ ∧ ¬K¬Ψ ∨ K¬Ψ ∨ ¬KΨ ∧ ¬K¬Ψ

is a tautology, so pot sec disj will always be implied by priorps, and accordingly the
precondition will never be satisfied.

Despite the comprehensive results, this thesis still leaves open some questions. In the
following, we will reconsider these issues and provide hints for future work.

Higher logics

The framework established in this thesis is restricted to propositional logic. However,
propositional logic is of low interest for real-world applications. It is therefore favorable to
adapt this framework to higher logics, for example to first-order logic. In particular, one
will have to take special care of properties of the resulting modal logic when introducing
the K operator on top of the underlying logic. For first-order logic, the textbook by Fitting
and Mendelsohn [24] would be a good starting point.

For complete databases, Biskup and Bonatti [5] have even gone one step further: They
did not choose a particular, fixed logic, but considered an abstract, “suitable” logic in
the first place. For incomplete databases and the framework from this thesis, it should
be possible to identify the exact requirements for the underlying logic, as well. The main
task would be to review the definitions and lemmas of Chapter 4, and the construction
and properties of the alternative database instance dbM,s in Chapter 5.
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Complexity issues

Even with propositional logic, we run into a very high complexity. The main reason is the
implication problems which need to be solved for both the eval function and the various
versions of the violates function. A first analysis of the computational complexity can be
found in [17]. In a nutshell, our methods have a time-complexity of O(2Nv ), where Nv is
the number of propositions in the “needed” part of the database schema (i. e., occurring
in at least one query, the a priori assumptions or the confidentiality policy).

If we extended our framework to first-order logic, things get even worse. In unrestricted
first-order logic, logical implication is not decidable, and so are our algorithms.

In order to make CQE a useful approach for real-world applications, it is necessary
to maintain decidability, or even lower the complexity. One promising approach is to
restrict the query and/or policy language to certain syntactical sentences, for example
horn clauses or sentences of the Bernays-Schönfinkel fragment of first-order logic. This
has been proposed for open queries to complete databases in [8]. The questions remains
open whether similar restrictions may be a useful approach for incomplete databases as
well, and, in particular, whether these restrictions are affected by our use of modal logic
in the log file.

Explicit availability

This thesis addresses the conflict between confidentiality and availability: We want to give
as many “useful” answers while still protecting confidential information. Confidentiality
is addressed by our central Definition 4.27, on which most of our considerations are based.

However, we have no formal definition for availability. For example, take a look at the
enforcement method sketched in Example 8.3, which always returns the answer true to
each query. According to Definition 4.27, this enforcement method does in fact preserve
confidentiality, but it is obvious that it provides very little availability (in terms of non-
distorted answers).

It is also easy to construct an enforcement method which preserves confidentiality both
in the ordinary way (Definition 4.27) and for plain users (Definition 8.4): Simply choose
an arbitrary “inference-proof” database instance db′ in which all potential secrets are false.
As the precondition, ensure that the disjunction of all potential secrets is no tautology
(otherwise, no suitable db′ can be found which makes all secrets false at the same time).
Finally, answer each query within db′ using ordinary query evaluation. Depending on how
much the (arbitrarily chosen) db′ differs from db, this method does also provide fairly low
availability, as there might be a large number of unnecessary lies. In [14, 15], Biskup
and Wiese present a similar technique as an alternative to (dynamic) CQE. However, as
an explicit availability constraint, they demand that the alternative database instance
should have a minimal distance to the original database instance (where both instances
are represented by propositional interpretations), i. e., the number of propositions with a
different value should be as low as possible.

The enforcement methods presented in this thesis were implicitly designed in a way that
they distort the least number of answers as possible. For example, property (b) of the
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safeness definition for uniform lying censors (cf. Definition 6.2) demands that an answer
must not be distorted if it is safe to return the true answer. For uniform refusal, we have
added only the required number of additional refuse-conditions so that no harmful meta
inferences are possible and the safeness according to Definition 6.10 is given. If we took
away any refuse from the censor table, this property would be violated.

However, there is still no formal definition for “maximum” availability. It would be nice
to have this kind of formal notion. We could then try to prove that our mechanisms do
in fact provide the best possible availability.

Combined lying and refusal for unknown policies

In Section 7.3, we have shown that the naive design heuristics for unknown policies —
“protect only the true potential secrets instead of all potential secrets” — does not work
for the combined lying and refusal method. The questions remains open whether the
combined lying and refusal approach can take advantage of unknown policies in any way.

The counter-example used in the proof of Theorem 7.11 indicates that the problem must
be related to meta inferences caused by refusals: The user can infer that a certain potential
secret must exist, and that this secret must in fact be true in the actual database instance.
Against this background, one idea is to modify the algorithm so that refusals are made
instance dependent (i. e., the answer is refused if any potential secret could be inferred
otherwise, just like the algorithm for known policies does), while the lying condition only
checks for the true potential secrets. In the context of this thesis, we haven’t been able to
determine whether this approach is successful or not. This remains to be an open question.
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