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shown that the solution of this martingale problem can be approximated by solutions of the
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1 Introduction

It is well-known that a re-scaled version of the classical Galton-Watson process (GWP) with
offspring variance σ2 weakly converges to the unique solution of the following one-dimensional
stochastic differential equation (SDE)

dXt = σ
√
|Xt| dWt (1)

where W is a one-dimensional Brownian motion (cf. [14]). One might ask whether it is possible
to approximate more general SDEs, driven by a Brownian motion, by generalized GWPs. In
[21] it will be shown that this is actually possible. In fact, in [21] the solution of the SDE

dXt = δ(t,Xt)dt+ σ(t,Xt)
√
|Xt| dWt (2)

is weakly approximated by two different types of population-size-dependent GWPs (in the
sense of [5], [8], [10], [11]) with immigration, where δ and σ are suitable nonnegative continu-
ous functions on R+ × R. Here the methods of [14] do not apply anymore (cf. Section 3). In
the present article, we establish a general criterion for the weak approximation of SDEs by
discrete-time processes, which is the crux of the analysis of [21].

To be exact, we focus on the following one-dimensional SDE

dXt = b(t,Xt)dt+ a(t,Xt)dWt, X0 = x0 (3)

where x0 ∈ R and W is a one-dimensional Brownian motion. The coefficients a and b are
continuous functions on R+ × R satisfying

|a(t, x)|+ |b(t, x)| ≤ K(1 + |x|) ∀ t ∈ R+, x ∈ R (4)

for some finite constant K > 0. We assume that SDE (3) has a weak solution. It means
that there exists a triplet {X;W ; (Ω,F , (Ft),P)} where (Ω,F , (Ft),P) is a filtered probability
space with (Ft) satisfying the usual conditions, W = (Wt : t ≥ 0) is an (Ft)-Brownian motion
and X = (Xt : t ≥ 0) is a real-valued continuous (Ft)-adapted process such that P-almost
surely,

Xt = x0 +
∫ t

0
b(r,Xr)dr +

∫ t

0
a(r,Xr)dWr ∀ t ≥ 0.

Here the latter is an Itô-integral. Moreover we require the solution to be weakly unique, which
means that any two solutions coincide in law. For instance, the existence of a unique weak
solution is implied by Lipschitz continuity of b in x (uniformly in t) and

|a(t, x)− a(t, x′)| ≤ h(|x− x′|) ∀ t ∈ R+, x, x
′ ∈ R (5)

for some strictly increasing h : R+ → R+ with
∫ 0+
0 h−2(u)du = ∞. Note that (5) and Lips-

chitz continuity of b even imply the existence of a strongly unique strong solution (Yamada-
Watanabe criterion [20]). But the notion of strong solutions and strong uniqueness is beyond
our interest.

Our starting point is the fact that any weak solution of (3) is a solution of the following
martingale problem and vice versa (cf. Section 5.4.B of [9], or Theorem 1.27 of [1]).
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Definition 1.1 A tuple {X; (Ω,F , (Ft),P)} is said to be a solution of the (a,b,x0)-martingale
problem if (Ω,F , (Ft),P) is a filtered probability space with (Ft) satisfying the usual conditions
and X = (Xt : t ≥ 0) is a real-valued continuous (Ft)-adapted process such that

Mt = Xt − x0 −
∫ t

0
b(r,Xr)dr (6)

provides a (continuous, mean-zero) square-integrable (Ft)-martingale with compensator

〈M〉t =
∫ t

0
a2(r,Xr)dr. (7)

The solution is said to be unique if any two solutions coincide in law.

In view of the weak equivalence of the SDE to the martingale problem, discrete-time pro-
cesses solving the discrete analogue (Definition 2.1) of the (a,b,x0)-martingale problem should
approximate weakly the unique solution of SDE (3). Theorem 2.2 below shows that this is
true under an additional assumption on the moments of the increments (condition (10)).

Note that the characterization of discrete or continuous population processes as solutions of
martingale problems of the form (6)-(7) respectively (8)-(9) is fairly useful and also common
(see e.g. [16], [17], [19]). Especially for real-valued discrete-time processes these characteri-
zations are often easy to see, so that, according to the criterion, the only thing to check is
condition (10). Also note that the conditions of the famous criterion of Stroock and Varadhan
for the weak convergence of Markov chains to SDEs ([18] Theorem 11.2.3) are different. In
particular, in our framework we do not insist on the Markov property of the approximating
processes (cf. the discussion at the end of Section 4). Another alternative approach to the
discrete-time approximation of SDEs can be found in the seminal paper [13], see also refer-
ences therein. In [13] general conditions are given under which the convergence in distribution
(Yα, Zα)→ (Y,Z) in the cádlàg space implies convergence in distribution

∫
YαdZα →

∫
Y dZ

of the corresponding stochastic integrals in the cádlàg space.

In Section 3 we will demonstrate that the criterion of Theorem 2.2 yields an easy proof of the
convergence result discussed at the beginning of the Introduction. Moreover, in Section 4 we
will apply our criterion to obtain a weak Euler scheme approximation of SDEs under fairly
weak assumptions on the driving force of the approximating processes.

2 Main result

We will regard discrete-time processes as continuous-time cádlàg processes. For this reason
we denote by D(R) the space of cádlàg functions from R+ to R. We equip D(R) with the
topology generated by the Skohorod convergence on compacts and consider it as a measurable
space with respect to its Borel σ-algebra. Moreover we set tεn = nε for every n ∈ N0 and ε > 0.

For every α ∈ N we fix some εα > 0 such that εα → 0. For the sake of clarity we also
set tαn = tεαn (= nεα) for all n ∈ N0. Now suppose aα and bα are measurable functions on
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R+ × R such that ‖a − aα‖∞ and ‖b − bα‖∞ converge to 0 as α → ∞, where ‖.‖∞ is the
usual supremum norm. Let (xα) ⊂ R satisfy xα → x0, and suppose that Xα is a solution of
the following (εα, aα, bα, xα)-martingale problem for every α ≥ 1. Here we write nα(t) for the
largest n ∈ N0 with tαn ≤ t.

Definition 2.1 Suppose Xα = (Xα
t : t ≥ 0) is a real-valued process on some probability space

(Ω,F ,P) whose trajectories are constant on the intervals [tαn, t
α
n+1), n ∈ N0. Then Xα is called

solution of the (εα, aα, bα, xα)-martingale problem if

Mα
t = Xα

t − xα −
nα(t)−1∑
i=0

bα(tαi , X
α
tαi

) εα (8)

provides a (zero-mean) square-integrable martingale (w.r.t. the natural filtration) with com-
pensator

〈Mα〉t =
nα(t)−1∑
i=0

a2
α(tαi , X

α
tαi

) εα. (9)

The Xα could be defined on different probability spaces (Ωα,Fα,Pα). However we assume
without loss of generality Ωα = D(R), Fα = B(D(R)) and that Xα is the coordinate process
of Pα (each cádlàg process induces a corresponding law on D(R)). We further assume that
there are some q > 2 and δ > 1 such that

Eα
[
|Xα

tαn
−Xα

tαn−1
|q
]
≤ CT

(
1 + Eα

[
|Xα

tαn−1
|q
])

εδα (10)

for every α ≥ 1 and n ∈ N with tαn ≤ T , where CT > 0 is some finite constant that may
depend on T . (By an induction on n, (10) implies immediately that Eα[|Xα

tαn
|q] < ∞ for all

α and n. Lemma 5.1 will provide an even stronger statement.) The following theorem shows
that Xα converges in distribution to the unique solution of (3).

Theorem 2.2 Suppose SDE (3) subject to (4) has a unique weak solution, and denote by
P the corresponding law on D(R). Moreover, let Pα be the law (on D(R)) of Xα subject to
(8)-(10). Then Pα ⇒ P as α→∞.

Here⇒ symbolizes weak convergence. The proof of Theorem 2.2 will be carried out in Section
5. The finiteness of the q-th moments for some q > 2 is not always necessary, it is true.
From time to time the finiteness of the second moments is sufficient. However for a general
statement involving convenient moment conditions as (10), a weakening of q > 2 to q = 2 is
hardly possible. The assumption q > 2 is common in the theory of functional, time-discrete
approximations of SDEs, SDDEs and SPDEs (see e.g. [15], [19]).

3 Example 1: Convergence of re-scaled GWP to (1)

As a first application of Theorem 2.2, we show that a re-scaled GWP weakly converges to
Feller’s branching diffusion ([4]), i.e., to the solution of SDE (1). Lindvall [14] showed this ap-
proximation via the convergence of the finite-dimensional distributions, for which the shape
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of the Laplace transforms of the transition probabilities is essential. Here we shall exploit
the martingale property of the Galton-Watson process (with offspring variance σ2). The lat-
ter is an N0-valued Markov process Z = (Zn : n ∈ N0) that can be defined recursively as
follows. Choose an initial state Z0 ∈ N and set Zn =

∑Zn−1

i=1 Nn−1,i for all n ≥ 1, where
{Nn,i : n ≥ 0, i ≥ 1} is a family of i.i.d. N0-valued random variables with mean 1 and vari-
ance σ2. In addition we require that the 4-th moment of N1,1 is finite. Thereby Zn has a
finite 4-th moment for every n ∈ N0. Actually, in [14] the finiteness of the 4-th moments was
not required. On the other hand, the methods used there break down when considering a
population-size-dependent branching intensity or an additional general immigration into the
system. In contrast, the procedure below still works in that cases (cf. [21]).

Setting Zεtεn = εZn we obtain a re-scaled version, Zε, of Z. Recall tεn = nε, hence Zε is a process
having εN0 = {0, ε, 2ε, . . .} as both its index set and its state space. Now pick (εα) ⊂ R+ such
that εα → 0, and recall our convention tαn = tεαn and that btcε denotes the largest element
s of εN0 with s ≤ t. Regard the process Zεα as continuous-time process, Xα, by setting
Xα
t = Zεαbtcεα

, and suppose Xα
0 = bx0cεα . The latter requires that Z0 actually depends on

α. The domain of Xα is denoted by (Ωα,Fα,Pα). It is easy to see that Mα defined in (8)
provides a (zero-mean) square-integrable martingale. Moreover the compensator of Mα is
given by 〈Mα〉t = σ2

∑nα(t)−1
i=0 Xα

tαi
εα since in this case,

Eα
[(

(Mα
tαn

)2 − 〈Mα〉tαn
)
−
(

(Mα
tαn−1

)2 − 〈Mα〉tαn−1

)∣∣∣FXα

tαn−1

]
= 0

can be checked easily with help of

Eα
[
Xα
tαn
|Xα

tαn−1

]
= Xα

tαn−1
and Varα

[
Xα
tαn
|Xα

tαn−1

]
= σ2Xα

tαn−1
εα. (11)

The formulae in (11) are immediate consequences of the well-known moment formulae for Z
(see [7] p.6) and (FXα

tαn
) denotes the natural filtration induced by Xα. Hence Xα solves the

(εα, a, b, xα)-martingale problem of Definition 2.1 with a(t, x) =
√
|x|, b ≡ 0 and xα = bx0cεα .

It remains to show (10). To this end we state the following lemma.

Lemma 3.1 Assume ξ1, ξ2, . . . are independent random variables on some probability space
(Ω,F ,P) with E[ξi] = 0 and supi∈N E[ξ4i ] <∞. Let ν be a further random variable on (Ω,F ,P)
being independent of (ξi), taking values in N and satisfying E[ν4] < ∞. Then there is some
finite constant C > 0, depending only on the second and the fourth moments of the ξi, such
that E[(

∑ν
i=1 ξi)

4] ≤ CE[ν2].

Proof By the finiteness of the fourth moments the law of total expectation yields

E
[( ν∑

i=1

ξi

)4
]

=
∑
n∈N

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E
[
ξi1ξi2ξi3ξi4

]
P[ν = n].

Since the ξi are independent and centered, the summand on the right-hand side might differ
from 0 only if either i1 = i2 = i3 = i4, or i1 = i2 and i3 = i4 6= i1, or i1 = i3 and i2 = i4 6= i1,
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or i1 = i4 and i2 = i3 6= i1. Hence,

E
[( ν∑

i=1

ξi

)4
]
≤
∑
n∈N

{
(n+ 3n(n− 1)) sup

i,j∈N
E
[
ξ2i ξ

2
j

]}
P[ν = n] ≤ 4 sup

i,j∈N
E
[
ξ2i ξ

2
j

]
E
[
ν2
]
.

This yields the claim of the lemma with C = 4 supi,j∈N E[ξ2i ξ
2
j ]. 2

With help of Lemma 3.1 we obtain

Eα
[
|Xα

tαn
−Xα

tαn−1
|4
]

= Eα
[∣∣∣ ε

−1
α Xα

tαn−1∑
i=1

(εαNn−1,i − εα)
∣∣∣4] = Eα

[∣∣∣ ε
−1
α Xα

tαn−1∑
i=1

(Nn−1,i − 1)
∣∣∣4]ε4α

≤ C Eα
[
(ε−1
α Xα

tαn−1
)2
]
ε4α ≤ C

(
1 + Eα

[
(Xα

tαn−1
)4
])
ε2α

for some suitable constant C > 0. This shows that (10) holds, too. Hence the assumptions of
Theorem 2.2 are fulfilled, and the theorem implies that Xα converges in distribution to the
unique solution of (1).

4 Example 2: Weak Euler scheme approximation of (3)

As a second application of Theorem 2.2, we establish a weak Euler scheme approximation of
SDE (3). Our assumptions are partially weaker then the assumptions of classical results on
weak functional Euler scheme approximations. A standard reference for Euler schemes is the
monograph [12]; see also references therein. As before we suppose that a and b are continuous
functions on R+ ×R satisfying (4), and that SDE (3) possesses a unique weak solution. Now
let ε > 0, recall the notation introduced in Section 2 and consider the following stochastic
difference equation (weak Euler scheme)

Xε
tεn
−Xε

tεn−1
= b(tεn−1, X

ε
tεn−1

) ε + a(tεn−1, X
ε
tεn−1

) V ε
tεn
, Xε

tε0
= xε. (12)

Here (xε) is a sequence in R satisfying xε → x0 as ε → 0, and V ε = {V ε
tεn

: n ∈ N} is a
family of independent centered random variables with variance ε and Eε[|V ε

tεn
|q] ≤ Cεq/2 for

all n ∈ N, ε ∈ (0, 1], some q > 2 and some finite constant C > 0, where (Ωε,Fε,Pε) denotes
the domain of V ε. For instance, one may set V ε

tεn
=
√
ε ξn where {ξn : n ∈ N} is a family

of independent centered random variables with variance 1 and q-th moment being bounded
uniformly in n. Note that we do not require that the random variables {V ε

tεn
: n ∈ N} are

identically distributed. Below we will see that the independence is necessary neither.

By virtue of (4), Xε
tεn

has a finite q-th moment if Xε
tεn−1

has. It follows by induction that the
solution Xε = (Xε

tεn
: n ∈ N0) of (12) is q-integrable, and hence square-integrable. Equation

(12) is obviously equivalent to the stochastic sum equation

Xε
tεn

= xε +
n−1∑
i=0

b(tεi , X
ε
tεi

) ε +
n−1∑
i=0

a(tεi , X
ε
tεi

) V ε
tεi+1

. (13)
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Suppose (εα) is an arbitrary sequence with εα ∈ (0, 1] and εα → 0, set xα = xεα and recall
our convention Eα = Eεα , Xα ≡ Xεα , tαn = tεαn . Then it is easy to see that Mα defined in
(8) provides a (mean-zero) square-integrable (FXα

t )-martingale. Moreover Mα
tαn

coincides with
the second sum on the right-hand side of (13). Therefore we also obtain

〈Mα〉tαn =
n∑
i=1

Eα
[(
a(tαi−1, X

α
tαi−1

) V εα
tαi

)2 ∣∣∣ FXα

tαn−1

]

=
n−1∑
i=0

a2(tαi , X
α
tαi

) Eα
[
(V εα
tαi+1

)2
]

=
n−1∑
i=0

a2(tαi , X
α
tαi

) εα (14)

which shows that Xα solves the (εα, a, b, xα)-martingale problem of Definition 2.1. For an
application of Theorem 2.2 it thus remains to show (10). But (10) follows from

Eα
[
|Xα

tαn
−Xα

tαn−1
|q
]

≤ 2q−1
{

Eα
[
|b(tαn−1, X

α
tαn−1

)εα|q
]

+ Eα
[
|a(tαn−1, X

α
tαn−1

)|q
]

Eα
[
|V εα
tαn
|q
]}

≤ 2q−1
{
K2q−1

(
1 + Eα[|Xα

tαn−1
|q]
)
εqα +K2q−1

(
1 + Eα[|Xα

tαn−1
|q]
)
Cεq/2α

}
(15)

for which we used (12), the independence of Xα
tαn−1

of V εα , (4) and Eα[|V εα
tαn
|q] ≤ Cεq/2α . Hence

Theorem 2.2 ensures that Xα converges in distribution to the unique solution of SDE (3).

As mentioned above, the independence of the random variables {V ε
tεn

: n ∈ N} is not necessary.
The independence was used for (14), (15) and the martingale property of Mα. But these
relations may be valid even if the V ε

tεn
are not independent. For instance, let {ξn(i) : n, i ∈ N}

be an array of independent centered random variables with variance 1 and q-th moments
being bounded above by some C > 0 uniformly in n, i, for some q > 2. Then the martingale
property of Mα and the main statements of (14) and (15) remain true for V ε

tε1
=
√
ε ξ1(1)

and V ε
tεn

=
√
ε ξn(fn(V ε

tε1
, . . . , V ε

tεn−1
)), n ≥ 2, where fn is any measurable mapping from Rn−1

to N. This follows from the following relations which can be shown easily with help of the
functional representation theorem for conditional expectations respectively by conditioning:

Eα
[
V εα
tαn
|FXα

tαn−1

]
= 0, Eα

[
(V εα
tαi+1

)2|FXα

tαn−1

]
= εα (1 ≤ i ≤ n− 1)

and
Eα
[
|a(tαn−1, X

α
tαn−1

)V εα
tαn
|q
]
≤ Cεq/2α .

If the ξn(i) are not identically distributed, then the V ε
tεn

are typically not independent. In
particular, the approximating process Xε may be non-Markovian.

5 Proof of Theorem 2.2

Theorem 2.2 is an immediate consequence of Propositions 5.2, 5.5 and the weak equivalence
of the martingale problem to the SDE. For the proofs of the two propositions we note that
there exist K ′ > 0 and α0 ≥ 1 such that for all α ≥ α0, t ≥ 0 and x ∈ R,

|aα(t, x)|+ |bα(t, x)| ≤ K ′(1 + |x|). (16)
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This is true since we assumed (4) and uniform convergence of aα and bα to the coefficients a
and b, respectively. Throughout this section we will frequently use the well-known inequality
|
∑m

i=1 yi|p ≤ mp−1
∑m

i=1 |yi|p for all m ∈ N, p ≥ 1 and y1, . . . , ym ∈ R. As a first consequence
of (16) we obtain Lemma 5.1. For every x ∈ R+ we write bxcε for the largest element of
εN0 = {0, ε, 2ε, . . .} which is smaller than or equal to x. Moreover we assume without loss of
generality εα ≤ 1.

Lemma 5.1 For q > 2 and δ > 1 satisfying (10) and every T > 0,

sup
α≥α0

Eα
[

sup
t≤T
|Xα

t |q
]
<∞. (17)

Proof First of all note that for the proof it actually suffices to require q ≥ 2 and δ ≥ 1.
Set S = supα≥α0

|xα|q and Sαt = Eα[max1≤i≤nα(t) |Mα
tαi
−Mα

tαi−1
|q]. Using Proposition A.1 and

(16) we obtain for all t > 0 and α ≥ α0,

Eα
[

sup
i≤nα(t)

|Xα
ti |
q

]
(18)

≤ 3q−1

{
Eα
[

sup
i≤nα(t)

|Mα
ti |
q

]
+ S + Eα

[( nα(t)−1∑
i=0

|bα(tαi , X
α
tαi

)|εα
)q]}

≤ 3q−1Cq

{
Eα
[∣∣∣ nα(t)−1∑

i=0

a2
α(tαi , X

α
tαi

)εα
∣∣∣ q2]+ Sαt + S + Eα

[[ nα(t)−1∑
i=0

|bα(tαi , X
α
tαi

)|εα
]q]}

≤ kq

{
Eα
[[ nα(t)−1∑

i=0

(K ′(1 + |Xα
tαi
|))2εα

] q
2

]
+ Sαt + S + Eα

[[ nα(t)−1∑
i=0

K ′(1 + |Xα
tαi
|)εα

]q]}
where Cq is independent of t and α, and kq = 3q−1Cq. By Hölder’s inequality we get

Eα
[[ nα(t)−1∑

i=0

(K ′(1 + |Xα
tαi
|))2εα

]q/2]

≤ Eα
[( nα(t)−1∑

i=0

(2K ′2(1 + |Xα
tαi
|2))q/2

)( nα(t)−1∑
i=0

ε(q/2)/(q/2−1)
α

)q/2−1
]

≤ Eα
[( nα(t)−1∑

i=0

2q/2−1(2K ′2)q/2(1 + |Xα
tαi
|q)
)
nα(t)q/2−1εq/2α

]

≤ cq t
q/2 + cq t

q/2−1

nα(t)−1∑
i=0

Eα
[

sup
j≤i
|Xα

tαj
|q
]
εα

where cq = 2q/2−1(2K ′2)q/2. Analogously, with c̄q = 2q−1K ′q,

Eα
[[ nα(t)−1∑

i=0

K ′(1 + |Xα
tαi
|)εα

]q]
≤ c̄q t

q + cq t
q−1

nα(t)−1∑
i=0

Eα
[

sup
j≤i
|Xα

tαj
|q
]
εα.

8



Moreover, by (10) and (16) we obtain for all t ≤ T and α ≥ α0,

Sαt ≤
nα(t)∑
i=1

Eα
[
|Mα

tαi
−Mα

tαi−1
|q
]

≤ 2q−1

nα(t)∑
i=1

Eα
[
|Xα

tαi
−Xα

tαi−1
|q + |bα(tαi−1, X

α
tαi−1

)|qεqα
]

≤ 2q−1

nα(t)−1∑
i=0

{
CT

(
1 + Eα

[
|Xα

tαi
|q
])
εδα + Eα

[
K ′(1 + |Xα

tαi
|q)
]
εqα

}

≤ cq,T t + cq,T

nα(t)−1∑
i=0

Eα
[

sup
j≤i
|Xα

tαj
|q
]
εα

where cq,T = 2q−1(CT +K ′). By all account we have for all t ≤ T and α ≥ α0,

Eα
[

sup
i≤nα(t)

|Xα
ti |
q

]
≤ kq

{
S + (cq + c̄q + cq,T )(tq−1 ∨ 1)

(
1 + εα

nα(t)−1∑
i=0

Eα
[

sup
j≤i
|Xα

tαj
|q
])}

≤ (kqS + Cq,T ) + Cq,T εα

nα(t)−1∑
i=0

Eα
[

sup
j≤i
|Xα

tαj
|q
]

where Cq,T = kq(cq + c̄q + cq,T )(T q−1 ∨ 1). An application of Lemma A.2 yields

Eα
[

sup
s≤t
|Xα

s |q
]

= Eα
[

sup
i≤nα(t)

|Xα
ti |
q

]
≤ (kqS+Cq,T )(1+Cq,T εα)nα(t)+(Cq,T εα)nα(t)S, (19)

where we emphasize that the constants kq, S and Cq,T are independent of t ≤ T and α ≥ α0.
This proves Lemma 5.1 since lim supα→∞(1 + Cq,T εα)nα(t) is bounded by exp(tCq,T ) (note
that nα(t) = bt/εαc1 ≤ t/εα). 2

Proposition 5.2 If (Pα) is tight then the coordinate process of any weak limit point, that has
no mass outside of C(R), is a solution of the (a, b, x0)-martingale problem of Definition 1.1.

Proof We consider a weakly convergent subsequence whose limit, P, has no mass outside
of C(R). By an abuse of notation, we denote this subsequence by (Pα) either. We further
write X for the coordinate process of P. Since X is P-almost surely continuous, we know ([3]
Theorem 3.7.8) that

Pα ◦ π−1
t1,...,tk

⇒ P ◦ π−1
t1,...,tk

(20)

for all t1, . . . , tk ∈ R+, where πt1,...,tk : D(R)→ Rk is the usual coordinate projection. In the
remainder of the proof we will show in three steps that M defined in (6) is square-integrable,
provides an (F̄Xt )-martingale and has 〈M〉 defined in (7) as compensator. Here (F̄Xt ) denotes
the natural augmentation of the filtration (FXt ) induced by X.
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Step 1. With help of Fatou’s lemma as well as (20) and (17) we obtain for every T > 0,

sup
t≤T

E [|Xt|q] ≤ sup
t≤T

lim inf
N→∞

lim
α→∞

Eα[|Xα
t |q ∧N ] ≤ sup

t≤T
sup
α≥α0

Eα[|Xα
t |q] < ∞. (21)

Taking (4) into account we conclude that M defined in (6) is square-integrable.

Step 2. We next show that M is an (F̄Xt )-martingale. It suffices to show that M is an
(FXt )-martingale, see [2] p. 75. The latter is true if and only if

E
[(
Xt+s −Xt −

∫ t+s

t
b(r,Xr)dr

) l∏
i=1

hi(Xti)
]

= 0 (22)

holds for all 0 ≤ t1 < · · · ≤ tl ≤ t, s ≥ 0, l ≥ 1 and bounded h1, . . . , hl ∈ C(R) (do not confuse
ti and tαi ). Since Xα solves the (εα, aα, bα, xα)-martingale problem, we have

Eα
[(
Xα
t+s −Xα

t −
nα(t+s)−1∑
i=nα(t)

bα(tαi , X
α
tαi

)εα
) l∏
i=1

hi(Xα
ti)
]

= 0. (23)

We are going to verify (22) by showing that the left-hand side of (23) converges to the left-hand
side of (22) as α→∞. We begin with proving

lim
α→∞

Eα
[
Xα
u

l∏
i=1

hi(Xα
ti)
]

= E
[
Xu

l∏
i=1

hi(Xti)
]

(24)

for every u ≥ 0, which together with (28) below implies the required convergence. To this
end we set x(N) = (−N ∨ x) ∧N for all x ∈ R and N > 0. The right-hand side of∣∣∣∣Eα[Xα,(N)

u

l∏
i=1

hi(Xα
ti)
]
− Eα

[
Xα
u

l∏
i=1

hi(Xα
ti)
]∣∣∣∣ ≤ Eα

[∣∣∣Xα,(N)
u −Xα

u

∣∣∣ l∏
i=1

‖hi‖∞
]

can be estimated, for every T ≥ u, by

sup
r≤T

sup
α′≥α0

Eα′
[
|Xα′

r |1|Xα′
r |>N

] l∏
i=1

‖hi‖∞

which tends to 0 as N → ∞ since {Xα′
r : r ≤ T, α′ ≥ 1} is uniformly integrable by (17).

Therefore we have

lim
N→∞

Eα
[
Xα,(N)
u

l∏
i=1

hi(Xα
ti)
]

= Eα
[
Xα
u

l∏
i=1

hi(Xα
ti)
]

uniformly in α ≥ α0 (25)

(and uniformly in u ≤ T , for every T > 0). By (20) we further obtain for every N > 0,

lim
α→∞

Eα
[
Xα,(N)
u

l∏
i=1

hi(Xα
ti)
]

= E
[
X(N)
u

l∏
i=1

hi(Xti)
]

(26)
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since the mapping (x1, . . . , xl+1) 7→ x
(N)
l+1

∏l
i=1 hi(xi) from Rl+1 to R is bounded and con-

tinuous. This is the reason why we introduced the truncation x(N). By virtue of (21), an
application of the dominated convergence theorem gives

lim
N→∞

E
[
X(N)
u

l∏
i=1

hi(Xti)
]

= E
[
Xu

l∏
i=1

hi(Xti)
]

(27)

which along with (25) and (26) implies (24). It remains to show

lim
α→∞

Eα
[ nα(t+s)−1∑

i=nα(t)

bα(tαi , X
α
tαi

)εα
l∏

i=1

hi(Xα
ti)
]

= E
[ ∫ t+s

t
b(r,Xr)dr

l∏
i=1

hi(Xti)
]
. (28)

Taking (16) and (nα(t + s) − nα(t))εα ≤ s + εα into account we obtain analogously to (25)
and (27),

lim
N→∞

Eα
[ nα(t+s)−1∑

i=nα(t)

bα(tαi , X
α,(N)
tαi

)εα
l∏

i=1

hi(Xα
ti)
]

(29)

= Eα
[ nα(t+s)−1∑

i=nα(t)

bα(tαi , X
α
tαi

)εα
l∏

i=1

hi(Xα
ti)
]

uniformly in α ≥ α0

respectively

lim
N→∞

E
[ ∫ t+s

t
b(r,X(N)

r )dr
l∏

i=1

hi(Xti)
]

= E
[ ∫ t+s

t
b(r,Xr)dr

l∏
i=1

hi(Xti)
]
. (30)

By the uniform convergence of bα to b and (nα(t+ s)− nα(t))εα ≤ s+ εα, we also have

Eα
[ nα(t+s)−1∑

i=nα(t)

bα(tαi , X
α,(N)
tαi

)εα
l∏

i=1

hi(Xα
ti)
]

= Eα
[ nα(t+s)−1∑

i=nα(t)

b(tαi , X
α,(N)
tαi

)εα
l∏

i=1

hi(Xα
ti)
]

+oα(1).

(31)
Moreover we have

Eα
[ nα(t+s)−1∑

i=nα(t)

b(tαi , X
α,(N)
tαi

)εα
l∏

i=1

hi(Xα
ti)
]

= Eα
[ ∫ t+s

t
b(r,Xα,(N)

r )dr
l∏

i=1

hi(Xα
ti)
]

+ oα(1)

(32)
which is a consequence of the dominated convergence theorem and∣∣∣∣ nα(t+s)−1∑

i=nα(t)

b(tαi , X
α,(N)
tαi

)εα −
∫ t+s

t
b(r,Xα,(N)

r )dr
∣∣∣∣

≤
∫ bt+scεα−εα
btcεα

∣∣∣b(brcεα , Xα,(N)
r )− b(r,Xα,(N)

r )
∣∣∣ dr + oα(1)
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together with the fact that b is bounded and uniformly continuous on [0, t + s] × [−N,N ].
Finally we get by (20) and the dominated convergence theorem and (17),

lim
α→∞

Eα
[ ∫ t+s

t
b(r,Xα,(N)

r )dr
l∏

i=1

hi(Xα
ti)
]

=
∫ t+s

t
lim
α→∞

Eα
[
b(r,Xα,(N)

r )
l∏

i=1

hi(Xα
ti)
]
dr

=
∫ t+s

t
E
[
b(r,X(N)

r )
l∏

i=1

hi(Xti)
]
dr = E

[ ∫ t+s

t
b(r,X(N)

r )dr
l∏

i=1

hi(Xti)
]

(33)

which along with (31) and (32) implies

lim
α→∞

Eα
[ nα(t+s)−1∑

i=nα(t)

bα(tαi , X
α,(N)
tαi

)εα
l∏

i=1

hi(Xα
ti)
]

= E
[ ∫ t+s

t
b(r,X(N)

r )dr
l∏

i=1

hi(Xti)
]
.

This, (29) and (30) ensure (28).

Step 3. It remains to show (7). By the uniqueness of the Doob-Meyer decomposition, M has
the required compensator if and only if

E
[(
M2
t+s −M2

t −
∫ t+s

t
a2(r,Xr)dr

) l∏
i=1

hi(Xti)
]

= 0 (34)

holds for all 0 ≤ t1 < · · · ≤ tl ≤ t, s ≥ 0, l ≥ 1 and bounded h1, . . . , hl ∈ C(R). Now, the
discrete analogue of equation (34) for Eα, aα and Xα holds. Proceeding similarly to the proof
of (22) one can show that the left-hand side of this equation converges to the left-hand side of
(34) as α→∞. Therefore we obtain (34). For the sake of brevity we omit the details. It should
be mentioned, however, that we now need uniform integrability of {(Xα

r )2 : r ≤ t+ s, α ≥ 1}.
This is why we established (17) for q being strictly larger than 2. 2

The assumptions of Proposition 5.2 can be checked with help of the following two lemmas,
where Qα and Q refer to any laws on D(R), and Y α and Y are the respective coordinate
processes. By an abuse of notation, we denote the corresponding expectations by Qα and Q
either. The first lemma follows from [3] Theorem 3.8.8 and [3] Theorem 3.8.6 (b)⇒(a) along
with Prohorov’s theorem. Lemma 5.4 is more or less standard and can be proved with help
of the continuity criterion 3.10.3 in [3]; we omit the details.

Lemma 5.3 Assume (Y α
t ) is tight in R for every rational t ≥ 0. Let m > 0, γ > 1 and

assume for every T > 0 there is some finite constant CT > 0 such that for all α ≥ 1 and
t, h ≥ 0 with 0 ≤ t− h and t+ h ≤ T ,

Qα

[
|Y α
t−h − Y α

t |m/2|Y α
t − Y α

t+h|m/2
]
≤ CT hγ . (35)

Then (Qα) is tight.
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Lemma 5.4 Let m > 0, γ > 1 and assume for every T > 0 there is some finite constant
CT > 0 such that for all α ≥ 1 and 0 ≤ t′ ≤ t′′ ≤ T ,

lim sup
α→∞

Qα [|Y α
t′ − Y α

t′′ |m] ≤ CT (t′′ − t′)γ . (36)

Then if Qα ⇒ Q, the limit Q has no mass outside of C(R).

Proposition 5.5 (Pα) is tight and each limit point has no mass outside of C(R).

Proof Let q > 2 and δ > 1 satisfy (10). Using techniques as in the proof of Lemma 5.1 we
can find a finite constant Cq > 0 such that for every 0 ≤ t′ ≤ t′′ and α ≥ α0,

Eα[|Xα
t′ −Xα

t′′ |q]

≤ Cq

{
εq/2α Eα

[( nα(t′′)−1∑
i=nα(t′)

(1 + |Xα
tαi
|)2
)q/2]

+ εqα Eα
[( nα(t′′)−1∑

i=nα(t′)

(1 + |Xα
tαi
|)
)q]

+
nα(t′′)−1∑
i=nα(t′)

(
1 + Eα

[
|Xα

tαi
|q
])
εδ∧qα

}
.

Applying Hölder’s inequality to each of the first two summands on the right-hand side, using
(17) and setting γ = (q/2) ∧ δ we may continue with

≤ Cq

{
εq/2α

( nα(t′′)−1∑
i=nα(t′)

Eα
[
(1 + |Xα

tαi
|)2q/2

] )( nα(t′′)−1∑
i=nα(t′)

1q/(q−2)
)q/2−1

+

εqα

( nα(t′′)−1∑
i=nα(t′)

Eα
[
(1 + |Xα

tαi
|)q
] )( nα(t′′)−1∑

i=nα(t′)

1q/(q−1)
)q−1

+
nα(t′′)−1∑
i=nα(t′)

(
1 + Eα

[
|Xα

tαi
|q
])
εδ∧qα

}

≤ Cq,T

{
εq/2α

(
nα(t′′)− nα(t′)

)q/2 + εqα
(
nα(t′′)− nα(t′)

)q + εδ∧qα

(
nα(t′′)− nα(t′)

)}
≤ C̄q,T

(
εα
(
nα(t′′)− nα(t′)

))γ
≤ C̄q,T

(
(t′′ − t′) + εα

)γ (37)

where Cq,T , C̄q,T > 0 are some finite constants being independent of t′, t′′ ≤ T and α ≥ α0.
Then Lemma 5.4 ensures that any weak limit point of (Pα) has no mass outside of C(R). At
this point it is essential that we required q and δ to be strictly larger than 2 respectively 1.

Toward the verification of tightness of (Pα) we use Hölder’s inequality to get

Eα
[
|Xα

t−h −Xα
t |q/2|Xα

t −Xα
t+h|q/2

]
≤ Eα

[
|Xα

t−h −Xα
t |q
]1/2 Eα

[
|Xα

t −Xα
t+h|q

]1/2
. (38)

If h ≥ εα/2 then (37) implies that both factors on the right-hand side of (38) are bounded by
C̄q,T (3h)γ/2. If h < εα/2 then at least one of these factors vanishes since Xα is constant on
intervals of length εα. Hence,

Eα
[
|Xα

t−h −Xα
t |q/2|Xα

t −Xα
t+h|q/2

]
≤ (C̄2

q,T 3γ) hγ

for all α ≥ α0 and t, h ≥ 0 with t+h ≤ T . That is, (35) holds with m = q. Therefore Lemma
5.3 ensures tightness of (Pα). 2
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A Appendix

Here we give two auxiliary results. We first recall a square function inequality for martingales.
Let M = (Mn : n ∈ N0) be an (Fn)-martingale on some probability space (Ω,F ,P). The
corresponding compensator is given by 〈M〉n =

∑n
i=1 E[(Mi −Mi−1)2|Fi−1].

Proposition A.1 ([6] Theorem 2.11) For every q > 0 there is some finite constant Cq > 0
depending only on q such that

E
[

max
1≤i≤n

|Mi|q
]
≤ Cq

(
E
[
〈M〉q/2n

]
+ E

[
max
1≤i≤n

|Mi −Mi−1|q
])

.

The second result is a Gronwall lemma for functions with discrete domain. It can be proven
by means of iterating (39) n-times. We omit the proof since it is more or less well-known.

Lemma A.2 Suppose g is a mapping from N0 to R̄+ = [0,∞] with g(0) < ∞. If there are
finite constants c0, c1 ≥ 0 such that

g(n) ≤ c0 + c1

n−1∑
i=0

g(i) ∀ n ≤ N, (39)

then
g(n) ≤ c0(1 + c1)n + cn1g(0) < ∞ ∀ n ≤ N.
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[16] Méléard, S. and Roelly, S. (1993) Interacting measure branching processes. Some bounds
for the support. Stochastics and Stochastics Reports, 44:103–121.

[17] Roelly-Coppoletta, S. (1986) A criterion of convergence of measure-valued processes:
application to measure branching processes. Stochastics, 17:43–65.

[18] Stroock, D.W. and Varadhan S.R.S. (1979) Multidimensional diffusion processes.
Springer-Verlag, Berlin.

[19] Sturm, A. (2003) On convergence of population processes in random environments to the
stochastic heat equation with colored noise. Electronic Journal of Probability, 8(6):1–39.

[20] Yamada, T. and Watanabe, S. (1971). On the uniqueness of solutions of stochastic dif-
ferential equations. J. Math. Kyoto Univ., 11:155–167.

[21] Zähle, H. (2008) Approximation of SDEs by population-size-dependent Galton-Watson
processes. Preprint.

15


