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1 Introduction

From the time human beings first learned to count we have been fascinated by numbers and their
almost magical properties. While the mathematical world was thrilled with the final proof of
Fermat’s Big Theorem this result is only one of a vast array of amazing results in number theory.
We will concentrate on one of these, the prime number theorem, that describes the density
of the set of prime numbers, among all the natural numbers, in terms of the natural logarithm
function In. This theorem, and the techniques surrounding its proof, has been touted as the most
surprsing result in all of mathematics (see the article by Apostol [Apo]). Why should a result
about the natural numbers - the counting numbers - involve the natural logarithm function?
Why should the proof of a result about natural numbers involve the location of the zeros of a
complex function defined in terms of a complex power series? Why should an elementary proof
be more complicated and involved than a nonelementary proof? These are mysteries that still
astound even workers in the field and mysteries that we will try to explain in this article.



What we propose to do in this paper is retell an epic drama in the history of mathematics
that is still continuing. As with all goood drama it should be retold to each new generation of
mathematicians. Further as with all great epics, it has great heros. Here the heros are many
of history’s greatest mathemtaicians; Euler, Gauss, Legendre, Riemann, Hadamard, de la Vallee
Poussin, Hardy, Seleberg, Erdos and others.

The saga begins with two conjectures about the density of primes, one by Gauss and one by
Legendre, after some earlier suggestions by Euler. It continues until a formal proof of these
conjectures is found almost a hundred years later. Along the way, the search for a proof initiates a
whole new branch of mathematics, analytic number theory and introduces the use of complex
analysis into the study of number theory. Out of the search for a proof comes a conjecture,
the Riemann hypothesis that is now perhaps the outstanding open problem in mathematics.
Fifty years after the initial proof an elementary proof not using complex analysis was discovered
by Selberg and Erdos. This elementary proof is in many ways much more involved than the
nonelementary proof. After all of these discoveries the fascination with primes continues. Most
recently, Ben Green and Terence Tao (see [GT]), proved another astounding result concerning
arbitarily long sequences of primes. Terence Tao was awarded the Fields Medal in part for this
result.

This paper was prepared in part while the first author (B. Fine) was a Gambrinus Fellow in
Mathematics at the University of Dortmund in Germany. This was supported by a Gambrinus
Grant. The material in this paper was the basis for the Gambrinus lecture in 2005. We would
like to thank the Gambrinus Company and Foundation for their support.

2 The Prime Number Theorem:Development and Formu-
lation

Most of modern mathematics traces back, in one way or another, to the real number system.
Going further backward, the real numbers depend on the integers, and hence on number theory.
The atoms or building blocks of the integers, via the Fundamental Theorem of Arithmetic, are
the set of primes. Hence in quite a strong sense the study of the sequence of primes is truly
fundamental in mathematics.

The first important fact one observes about the primes is that there are infinitely many of them.
A proof of this fact appears in Euclid’s Elements and today there are a vast number of other
proofs of this basic result. In [FR] over thirty different independent proofs from distinct areas
of number theory were presented. These proofs illuminated mnay aspects of the general theory
of numbers. In distinction to the infinitude of primes, an inspection of the positive integers
clearly indicates that the primes ”thin out” . This is perhaps most strikingly quantified by the
result that there are arbitrarily large gaps in the sequence of primes. More specifically, given any
positive integer k, no matter how large, one can find a set of k consecutive integers all of which
are composite. Hence the natural question arises as to the distribution or density of the primes.
Here interest centers on the prime number function 7 (z) defined for all real numbers x by

m(z) = number or primes < x.



The basic question is whether there exists some easily defined function that either computes
m(x) or approximates 7(z). Clearly 7(x) — oo as x — 0o so the appropriate question on the
distribution of primes is what is the growth rate of this function. The Prime Number Theorem
asserts that asymptotically 7(x) is given by . Asymptotically means as x goes to co. It has
been touted as one of the most surprising results in mathematics given that it ties together the
primes and the natural logarithm function in a simple way that is most unexpected. Formally
stated this result is:

Theorem 2.1. (Prime Number Theorem) If w(x) is the prime number function then

fim @)

z—oo x/Inx

Whether or not it is the most surprising is of course open to debate. However as pointed out
by Apostol it certainly is surprising that the natural log function In appears so prominently in
a result about natural numbers. Further the original and most commonly presented proofs of
this result depend on complex analysis. This is again surprising in that a result concerning a
subset of the natural numbers would depend upon the theory of analytic functions. What is
certainly true is that the Prime Number Theorem is a result whose statement is known to most
mathematicians yet very few go through its proof or know much about its development. The
purpose of this article is to trace the development of the formulation and eventual proofs of this
important theorem.

Some ideas on 7(x) were hinted at by Euler however the first real conjecture concerning the prime
number function was given by Legendre in 1808. Shortly thereafter Gauss presented a different
but asymptotically equivalent formulation.

Legendre, by looking at the list of primes up to 1,000,000, conjectured the following concerning

the prime number function.
T

() ———m———————.

(z) Inz — 1.08366

Legendre gave no indication of how he arrived at the constant 1.08366. It must have arisen from
some sort of experimentation with approximations of the form

T

~

m(z) = Inx —a

where a is a real constant. Notice that for all such real constants a

. T X
lim — = lim ——
Tr—00 hll‘ Tr—00 lnx —a

It follows that the prime number theorem is equivalent to

)

e—coz/Inx —a
for any constant a. The question arises as to whether there is an optimal value for a. Empirical
evidence is that ¢ = 1 is an optimal choice and generally better for very large x than Legendre’s
1.08366.



Legendre did however attempt a proof of his conjecture. He did this by trying to quantify the
Sieve of Eratosthenes. Before we describe Legendre’s technique we recall some notation which
makes the presentation of some of the statments much easier. Suppose that f(x), g(z) are positive
real valued functions. Then

(1) f(z) = O(g(z)) (read f(x) is big O of g(x)) if there exists a constant A independent
of x and an xq such that
fx) < Ag(x) for all x > xq
(2) f(z) =o(g(x)) ( read f(x) is little o of g(x)) if

f(x)

— —>0asx— o©
g9(z)

In other words g(z) is of a higher order of magnitude than f(z).

(3) If f(x) = O(g(x)) and g(x) = O(f(x)), that is there exist constants A;, A2 independent
of x and an xq such that

A1g(z) < f(x) < Agg(x) for all x > xo,

then we say that f(x) and g(x) are of the same order of magnitude and write

f(z) = g(x)
(4) If
M —lasx — o0
9(x)
then we say that f(x) and g(x) are asymptotically equal and we write
f(@) ~ g(x)

In general we write O(g) or o(g) to signify an unspecified function f such that f = O(g) or
f = o(g). Hence for example writing f = g+ o(x) means that % — 0 and saying that f is o(1)
means that f(z) — 0 as z — oo.

It is clear that being o(g) implies being O(g) but not necessarily the other way around. Further

it is easy to see that

f ~ g is equivalent to f = g+ o(g) = g(1 + o(1)).

In terms of this notation the prime number theorem can be expressed by

x
W(Z‘) ~ m

or equivalently
x

n(z) = (1 +o(1)).



Now we return to Legendre’s attempted proof. Recall that the Sieve of Eratosthenes is a
straightforward method to obtain all the primes less than or equal to a fixed bound z. It is
ascribed (as the name suggests) to Eratosthenes ( 276-194 B.C.) who was the chief librarian of
the great ancient library in Alexandria. Besides the sieve method he was an influential scientist
and scholar in the ancient world, developing a chronology of ancient history (up to that point)
and helping to obtain an accurate measure (within the measurement errors of his time) of the
dimensions of the Earth.

The method of the Sieve of Eratosthenes is direct and works as follows. Given x > 0 list all the
positive integers less than or equal to . Starting with 2, which is prime, cross out all multiples
of 2 on the list. The next number on the list, not crossed out, which is 3, is prime. Now cross
out all the multiples of 3 not already eliminated. The next number left uneliminated, 5, is prime.
Continue in this manner. This must only be done for numbers < /z. Upon completion of this
process, any number not crossed out must be a prime.

Below we exhibit the Sieve of Eratosthenes for numbers < 100. In beginning each round of
elimination we must only consider numbers < /100 = 10.

1 2 3 A 5 K 7 A& p j0
11 A2 13 A4 A5 A6 17 A8 19 20
21 22 23 p4 25 26 27T 28 29 A0
31 A2 33 A4 B35 A6 3T A8 A9 A0
A1 A2 43 A4 A5 A6 4T A8 A9 B0
Bl B2 53 p4 B5 6 BT B8 59 S0
61 2 B3 p4 65 66 67 B3 9 0
112 73 A N5 6 T 48 79 R0
81 82 83 R4 B85 B6 AT 88 89 0
o1 P2 H3 P4 P5 P6 97 HS P9 400

After completing the sieving operation we obtain the list
{2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,53, 61,67, 71, 73,79,83,89,97}

which comprises all the primes less than or equal to 100.

Given positive integers m, x, by a slight modification, the Sieve of Eratosthenes can be used to
determine all the positive integers relatively prime to m and less than or equal to x.

Here suppose we are given m and x. Let pq,...,pr be the distinct prime factors of m arranged
in ascending order, that is p; < ps < ... < pi. Next list all the positive integers less than or
equal to x as we did for the ordinary sieve. Start with p; and eliminate all multiples of p; on
the list. Then successively do the same for p, through pi. The numbers remaining on the list
are precisely those relatively prime to m that are also less than or equal to x. If p; > x ignore
this prime and all higher primes.

Legendre in attempting to prove his conjecture derived a computational formula for the Sieve of
Eratosthenes. Given a positive integer m and a positive x let

Ny, (xz) = number of integers < z and relatively prime to m.



This is precisely the size of the list obtained in the modified Sieve of Eratosthenes derived above.
Then:

Theorem 2.2. (Legendre’s Formula for the Sieve of Eratosthenes) Let m € N,z > 0 then

Non(z) = > u(d)[3]
d|

where p(d) is the Moebius function and [ | is the greatest integer function.

Now given z > 0 let

msz

(p<V/x)

where p is prime. Then N,,(z) counts the number of primes in the interval [\/z,z]. It follows
that

Np(z) = m(z) — n(v/z) + 1.
Substituting Legendre’s formula into this expression we obtain as a corollary
Corollary 2.1. Forx > 2,

m(e) = -147(Va) + Y pd[3]
V()<

where v(d) is the greatest prime factor of d.
Although this gives a formula for 7(x), it is essentially useless in truly computing 7(x) for large

z, or in shedding any light on the prime number theorem. First of all if we estimate [%] by
2+ 0O(1) and substitute in the formula we have

(@) —r(VE)+ 1 =30 < mud)(g+O0(1)
= 2] z(1 - 1) +0(27V®)

Hence the error term is exponentially larger than the main term.

Meisel in 1870 gave an improvement to Legendre’s formula and was able to use this technique to
compute 7(x) correctly up to x = 108.

Theorem 2.3. (Meisel’s Formula) Let p1 < pa < ... < p, < ... be the listing of the primes in
increasing order so that p; is the jth prime. Let x > 4, n = w(y/x) and my, = p1...pn. Then

S

7(x) = Ny, (@) + m(1 + s) + %s(s— 1)—1-> m(

= Pm+j

T

)

where m = w(x3) and s = n —m.



Gauss a bit after Legendre presented a different conjecture concerning the prime number function.
By examining the list of primes less than 3,000,000 Gauss conjectured that the prime number
function is given asymptotically by the logarithmic integral function Li(z) defined as

1

Li = —

i) 5 Int
Gauss’ observation was then that

m(x) = Li(x).

If integration by parts is used on the integral defining Li(z), and we take the limit as © — oo, it
is clear that this integral is asymptotically —. Hence Gauss’s observation is then that

lim (@)

=1
z—oo z/Inx

and therefore equivalent to Legendre’s conjecture and the Prime Number Theorem.

Essentially Gauss’ conjecture is that the function ﬁ is a density function for the set of prime

numbers. Along these lines a very interesting interpretation of the prime number theorem is the
following. The ratio M represents the probability of randomly choosing a prime less than or
equal to x. The prime number theorem says that asymptotically this probability is given by le’
Gauss’ density function.

What is of further interest here is that even for very large x the value ﬁ is not that small. Henec
probabilistically it is not that hard to randomly choose a very large prime. This has applications
in cryptography, esepcially in the implementation of the RSA algorithm. The book [FR] has a
discussion and explanation of this.

The table below compares various approximations to 7(x).

x () T Li(z)  gz—iosse6 Wi
103 168 145 178 172 169
104 1229 1086 1246 1231 1218
10° 9592 8686 9630 9588 9512

106 78498 72382 78628 78534 78030
107 664579 620420 664918 665138 661459
108 5761455 5428681 5762209 5769341 5740304

Observing the table above one notices that Li(z) > m(z). The question arose as to whether
this is always true. Littlewood in 1914 [Li] proved that m(z) — Li(x) assumes both positive and
negative values infinitely often. Te Riele in 1986 [Re] showed that there are greater than 1080
consecutive integers for which 7(x) > Li(x) in the range 6.62 x 1037 < z < 6.69 x 1037°,

The prime number function 7(z) and the prime number theorem answer the basic questions
concerning the density of primes. A related question concerns the the function

p(n) =pn



where p,, is the nth prime. That is the question of whether there is a closed form function which
estimates the nth prime. The answer to this is yes and turns out to be equivalent to the prime
number theorem. We state it below.

Theorem 2.4. The nth prime p, is given asymptotically by

pn = nlnn.

3 The Use of Analysis in Number Theory

The proof of the prime number theorem was finally accomplished in 1896 independently by
Hadamard and de la Vallee-Poussin. Both proofs built on a brilliant method introduced by Rie-
mann in 1860. Riemann’s method introduced the use of complex analysis into number theory and
led ultimately to the development of that branch of mathematics now called analytic number
theory. As with most brilliant ideas, Riemann’s idea had precursors and the use of analysis
in studying number theoretical problems predates Riemann. The first use of analysis seems to
have been done by Euler who was examining the density of primes. In particular he proved the
following theorem.

Theorem 3.1. The sum over the set or primes
3 1
p prime
diverges. In particular as a consequence the set of primes must be infinite.

To interpret this result notice that it says for example that the set of primes, although they thin
out, is still more numerous that the set of perfect squares

{1,4,9,16,..n%...}.

To see why this is true, recall that by the p-series test, the infinite series
>

n2
n=1

converges.

To prove Theorem 2.1 Euler introduced the zeta function
= 1
((s) = Z v
n=1

where for Euler s was a real variable. From the p-series test this will converge if s > 1 and hence
will define a function over the interval (1, co)



By using the fundamental theorem of arithmetic that each n can be expressed as a product of
primes Euler showed that the zeta function can be written as the following product

p, prime
This product is known as that Euler product expansion. Then, by examining In({(s)) he was
able to prove the divergence result.

Euler’s ideas were extended by Dirichlet who used them to prove that there are infinitely many
primes in any arithmetic progression an + b with a and b relatively prime. This result is now
known as Dirichlet’s Theorem.

Theorem 3.2. (Dirichlet’s Theorem) Let a,b be natural numbers with (a,b) = 1. Then there are
infinitely many primes of the form an + b.

Dirichlet’s proof is a beautiful amalgam of number theory and analysis. The proof rests on two
concepts; Dirichlet characters and Dirichlet series. The basic idea is to build for each integer
a, a series, which would converge if there were only finitely many primes congruent to b mod a
and then show that this series actually diverges.

For each natural number k, Dirichlet introduces a complex-valued function
Xk :Z — C

called a Dirichlet character. Specifically, for any integer k, a Dirichlet character modulo k,
is a complex valued function on the integers x : Z — C satisfying

(1) x(a) =01if (a,k) > 1

(2) x(1) £ 0

(3) x(araz2) = x(a1)x(az) for all a1,as € Z

(4) x(a1) = x(az) whenever a1 = as mod k.

From (3) and (4) it is clear that a Dirichlet character can be considered as a multiplicative
complex function on the set of residue classes modulo k. We will shorten the notation and use
the word character to mean a Dirichlet character modulo k.

From a group theoretical point of view a Dirichlet character is just a character of a finite complex
representation of the unit group U(Zy,) of the modular ring Z.

Dirichlet then introduces what is now known as a Dirichlet L-series. This is defined in the
following manner.

If x is a character mod k then the Dirichlet L-series is defined for complex values s by

Lis) =3 A

This is clearly an extension of the zeta function of Euler. From this he shows an analog of the
Euler product expansion



- _xX0)y—
Lis,x)= [[ @ ps) :

pprime
This is valid for s > 1.

Then to prove the main result Dirichlet shows that if (a,b) = 1 and there were only finitely many
primes of the form an + b then a series related to the L-series for a would converge. He then
shows that this series must diverge. It follows then that there must be infinitely many primes of
the form an + b. (A complete proof of Dirichlet’s Theorem can be found in [FR].)

4 Chebyshev’s Estimate

The first significant progress in developing a proof of the prime number theorem was obtained
by Chebyshev in 1848. He proved that the functions m(z) and = are of the same order of
magnitude and that if

lim m(z)

z—oo z/Inx

existed then the limit would have to be 1. At first glance it appeared that he was quite close
to a proof of the prime number theorem. However it would take another fifty years and the
development of some completely new ideas from complex analysis to actually accomplish this. A
proof, along the lines of Chebyshev’s methods, without recourse to complex analysis, would not
be done until the work of Selberg and Erdos in the late 1940’s.

Chebyshev proved the following result, now known as Chebyshev’s estimate.

Theorem 4.1. There exist positive constants A1 and As such that

T T
Alm < 7T(£E) < Agm

for all x > 2. In the notation introduced in section 1 this says that

x
71'(3:) =~ m

that is the prime number function is of the same order of magnitude as the function 4.

In Chebyshev’s original proof he obtained the values A; = .922 and A = 1.105. His proof
actually involved a careful analysis of a form of Stirling’s approximation. The values of these
constants in Chebyshev’s inequality have been improved upon many times. Sylvester in 1882

improved the values to A; = .95695 and As; = 1.04423 for sufficiently large z. It can now be
shown that for all x > 10, A; = 1 can be used.

This following is an immediate corollary of the estimate, independent of the values of A; and As.

Corollary 4.1. @ — 0 as x — oo.

10



This corollary further quantifies the fact that the primes become relatively scarcer as = gets
larger. In probabilistic terms it says that the probability of randomly choosing a prime less than
or equal to x goes to zero as x goes to infinity.

Chebyshev further proved that if
()

z—oo z/Inx

existed then the limit would have to be one. Hence showing that the above limit existed would
prove the prime number theorem. Chebyshev however could not prove that the limit existed.

It was mentioned at the end of section 1 that the prime number theorem is equivalent to p, ~
nlnn where p, denotes the nth prime. Chebyshev’s estimate immediately shows that p, and
nlnn are of the same order of magnitude.

Theorem 4.2. There exist positive constants By, Bs such that
Binlnn < p, < Banlnn.

Equivalently
Pn T nlnn.

Using essentially the same techniques Chebyshev proved what is called Bertrand’s Theorem. This
result says that given any natural number n there is always a prime between n and 2n. The
proof actually shows that given any real number x > 1 there exists a prime between x and 2z.
Bertrand verified this empirically for a large number of natural numbers and conjectured the
result. The first proof was Chebyshev’s.

Theorem 4.3. (Bertrand’s Theorem) For every natural number n > 1 there is a prime p such
that n < p < 2n.

5 Riemann’s Method

From Chebyshev’s estimate and its consequences it seemed that a proof of the prime number
theorem was close at hand. In 1860 B.G. Riemann attempted to prove this main result. Riemann
eventually wrote only one paper in number theory, and although he failed in his primary goal
of proving the prime number theorem, this paper had a profound effect on both number theory
in particular and mathematics in general. Riemann’s basic new idea was to extend the zeta
function ((s) of Euler by allowing s to be a complex number. This idea of Riemann initiated the
use of complex analysis, specifically the theory of analytic functions and complex integration,
into number theory and laid the ground work for a new discipline in mathematics called analytic
number theory. Although the use of analysis begins with the Euler zeta function and continues
through the work of Dirichlet it is in this paper of Riemann and the introduction of complex
analytic methods that really is the beginning of analytic number theory. In modern parlance an
elementary method in number theory is any technique that does not involve analysis.

11



Riemann, in allowing a complex argument s, showed that the resulting function {(s) is an analytic
function for Re (s) > 1 and further can be continued analytically to a function, also denoted ((s),
that is analytic in all of C except s = 1. Further s =1 is a simple pole with residue 1, that is

1
((s) = —— + H(s)
where H(s) is an entire function. Riemann then showed that knowledge of the location of the
complex zeroes of ((s) describes the density of primes. In particular, if there are no zeroes along
the line Re (s) = 1, this would then imply the prime number theorem. This was precisely the
main step in the proofs of Hadamard and de la Vallee-Poussin (given independently) of the prime
number theorem given thirty-six years after Riemann’s paper.

The Riemann zeta function is then

— 1
((s)zzgWheres=a+itanda,t€R

n=1

By the p-series test this series converges absolutely for Re (s) > 1 and hence defines ((s) as an
analytic function in this region. Further the Euler product decomposition holds on a connected
arc ( the part of the real line s > 1), and hence by analytic continuation they are still valid for
complex arguments within the region of analyticity Re s > 1. Thus we have

¢(s) = H (%pﬂ),sé@,Res> 1;

p,prime

It follows that {(s) has no zeros for Re s > 1.

A crucial concept in studying the zeta function is that of analytic continuation. The basic
idea is the following: suppose a complex analytic function f(z) is given by an analytic expression
which holds in a region S in C. Suppose that this is equivalent within S or within a subset of S
to another analytic expression which holds in a larger region S;. Then the second expression can
be used to analytically extend or continue f(z) to the larger region S;. We make this precise.

Suppose that f1(z) is analytic on a region S; and f2(2) is analytic on a region Ss. Suppose that
S1N Sy # 0 and f1(z) = f2(z) on S;1 N S2. Then (f2(z),S2) is said to be a direct analytic
continuation of (fi(z),S1). The individual pairs (fi1,S51) and (f2,52) are called function
elements. A function element (f,S) is an analytic continuation of (fi,S) if there is a chain
(fi,Si) of function elements connecting (f1,S1) to (f,S) and with each neighboring pair a direct
analytic continuation. A global analytic function is a nonempty collection of function elements
F = {(fa,Sa)} such that any two in this collection are analytic continuations of each other. A
global analytic function is complete if it contains all analytic continuations of any of its function
elements.

Finally analytic continuation is essentially unique in the sense that two analytic functions which
agree on a sufficiently large domain, for example a curve, are identical.

12



Riemann first proves by using complex integration that {(s) can be continued analytically to a
function analytic for Re (s) > % He then establishes the following functional relation concerning
the zeta function:

T PT)s) = DR~ o

or equivalently
C(s) = 27" sin(Z)0(1 = )G(s = 1), # 0, 1.

In this relation I'(s) is the complex gamma function which is analytic except at z = 0, —1, =2, .....

The functional relation then has the form

where
s

K(s) = 257571 sin(g)f‘(l —5).
The transformation s — 1 — s has s = % as its center of symmetry. Therefore since ((s) is
defined for Re s > % the functional equation can be used to continue {(s) to a function defined
for Re s < % and hence defined over the whole complex plane. Therefore Riemann establishes
the following theorem.

Theorem 5.1. The Riemann zeta function ((s) can be analytically continued to a function, also
denoted ((s), which is meromorphic in the whole plane. The only singularity of ((s) is a simple
pole at s = 1 with residue 1, that is

1

C(s) = 5——1+H(8)

where H(s) is an entire function.

From the singularities of the complex Gamma function it follows that the function K(s) has
singularities, that is becomes infinite at the positive odd integers 2n+1,n > 1. However ((2n+1)
is finite for all n > 1. Hence from the functional relation this is possible only if (1 — s) = 0 if
s = 2n + 1. Therefore ((s) = 0 at all the negative even integers —2, —4, ...... These are called
the trivial zeros of ((s). What becomes crucial in applying the zeta function to the proof of
the prime number theorem is the location of its nontrivial zeros. Riemann showed that any
nontrivial zeros must fall in the critical strip 0 < Re s < 1. Further he conjectured that all
the nontrivial zeros lie along the line Re s = % which is called the critical line. This conjecture
is called the Riemann hypothesis and is still an open question. It has resisted solution for
almost a hundred and fifty years and has had tremendous impact on both Number Theory and
other branches of mathematics. We will say more later about the Riemann hypothesis. What
was most important for the proof of the prime number theorem was the following.

Theorem 5.2. If the Riemann zeta function ((s) has no zeros on the line Re s = 1 then the
prime number theorem holds.

13



In order to prove the above result Riemann introduced and analyzed several other related func-
tions, called the Chebyshev functions. The first, denoted 6(x), is defined for a real variable x
by

O(x) = Z Inp with p prime

p<z

while the second, denoted (), is defined, again for a real variable z, by

Y(x) = Z Inp with p prime

pF<zk>1

These functions count respectively the number of primes p < x and the number of prime powers
p¥ < x weighted by Inp. The van Mangoldt function A(n) is defined for positive integers by

Aln) =lhpifn=pc>1
= 0 for all other n > 0.

Hence the Chebyshev function ¥ (z) is actually the summation function of A(n). That is

o) = 3 Aln).

n<x

The crucial result for Riemann was that the prime number theorem is equivalent to certain limit
results involving the Chebyshev functions. Specifically:

Theorem 5.3. The following are all equivalent formulations of the prime number theorem

(¢) m(x) ~ 55
(b) 0(z) ~

(c) ¥(x) ~ .
What Riemann actually showed is that the absence of zeros on the line Re s = 1 implies part

(b) of the theorem above which in turn implies the prime number theorem.

6 The Proof and Some Consequences

In 1896, some 36 years after Riemann’s paper, Hadamard, and independently de la Vallee-
Poussin, proved the prime number theorem by finally establishing that {(s) has no zeros on the
line Re s = 1.

Theorem 6.1. The Riemann zeta function ((s) has no zeros on the line Re s = 1.
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The original proofs given by Hadamard and de la Valle-Poussin were quite complicated. The
proof was somewhat simplified by Wiener using what are known as Tauberian theorems, but still
remained quite difficult. Wiener also pointed out that the converse of Theorem 4.2 is also true
- that is the prime number theorem is actually equivalent to the fact that there are no zeros of
¢(s) on the line Re s = 1.

Theorem 6.2. The prime number theorem is equivalent to the fact that there are no zeros of
¢(s) on the line Re s = 1.

In 1980 D.J. Newman found a way to give a proof using only fairly straightforward facts about
complex integration and which allowed a relatively short proof to be presented.

Gauss’ original approximation to m(x) was the logarithmic integral function Li(x). Riemann

attempted to improve on this in the following manner. His work suggested that # would be

closer to ﬁ, that is the probability of choosing a prime randomly less than x, would be closer
to ﬁ if one counted not only the primes but also the ”weighted powers” of the primes. That

is counting a p? as half a prime, p? as a third of a prime and so on. This would lead to an
approximation for Li(x) given by

Li(x) = n(z) + %ﬂ'(x

=
+
|
A
&
@l
+

Upon inverting this

where p(n) is the Moebius function defined for natural numbers n by

w(n) =1lifn=1
= (=17 if n = pipa...pr
with p1, ..., p, distinct primes

= 0 otherwise.

The series on the right side of the explicit formula can be shown to converge for x > 2 and is
called the Riemann function R(x), that is

3=

R(z) = Z MLZ(;B

,x > 2.
n )x*

n=1

Riemann’s conjecture was then that 7(x) = R(z). It turns out that this is asymptotically correct.
That is



Theorem 6.3. We have ©(x) ~ R(x) where R(x) is the Riemann function.

In fact this approximation is remarkably close for large x. For x = 400, 000, 000 we have
(400, 000, 000) = 21, 336, 326 and R(400,000,000) = 21,355,517
while for z = 1,000, 000, 000
7(1,000, 000, 000) = 50,847,534 and R(1,000,000,000) = 50,847, 455.

Bertrand’s Theorem showed that for any real number x there is always a prime in the interval
[, 22]. Further the proof used the same methods as the proof of Chebyshev’s estimate. As an
immediate consequence of the prime number theorem the following result is obtained.

Theorem 6.4. For any € > 0 there exists an xo = xo(€) such that there is always a prime in the
interval [z, (1 + €)z] for x > xo. Equivalently w(xz +y) > m(x) for y = ex.

The above theorem and its proof has the following interesting interpretation. For large x
w(2z) — w(x) ~ 7(x).

Hence for large x there are as many primes asymptotically between x and 2z as there are less
than z, despite the fact that by the Prime Number Theorem the density of primes tends to thin
out. However it can be shown that

2m(x) — m(2z) — o0
as T — 00.

The result given in Theorem 6.4 has been improved upon in various ways. Huxley in 1972
continuing a long line of research in this direction showed that there is always a prime in the
interval [z, z + z°] if ¢ > % for large enough z. The value of ¢ has subsequently been improved,
the most recent being done by Baker and Harman who reduced ¢ to .535 again for large enough
x. Further Baker and Harman show that

535

535\ o
) = ml(2) > 20Inx

m(x + 2

for large enough .

Earlier Erdos, using a formula due to Selberg, had proved that for each ¢ > 0 there exists a
c(e)z
Inz

constant ¢(e) such that in the interval [z, (1 4 €)x] there are at least primes.
Finally we mention the following remarkable result which is a consequence of Bertrand’s Theorem.
Theorem 6.5. Given any positive integer n the set of integers {1,2,...,2n} can be partitioned
into n disjoint pairs so that the sum of each pair is a prime.
For example

{1,2,3,4,5,6,7,8,9,10}

can be partitioned into
{1,10},{2,9},{3,4},{5,8},{6,7}.

The result is in the same spirit as the Goldbach conjecture which states that any even integer
is the sum of two primes.
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7 The Riemann Hypothesis

As we have described, the functional relation

where s
K(s) = 281 sin(7)F(1 —5)

established that ((s) = 0 at all the negative even integers —2,—4, ...... These are called the
trivial zeros of ((s). Riemann in his original paper showed that any nontrivial zeros must
fall in the critical strip 0 < Re s < 1. He further showed that if {(s) has no zeros on the
line Re s = 1 this was sufficent to prove the prime number theorem which was the method of
proof for both Hadamard and de la Valle-Poussin. In the course of this investigation Riemann
conjectured that all the nontrivial zeros lie along the line Re s = % which is called the critical
line. This statement is the common form of the Riemann hypothesis.

Riemann Hypothesis: All the nontrivial zeros of the Riemann zeta function lie along the line
Re(s) = 1.

The Riemann hypothesis has resisted solution for almost a hundred and fifty years and has had
tremendous impact on both Number Theory and other branches of mathematics. Now that
Fermat’s Last Theorem and the Poincare Conjecture have been settled the Riemann hypothesis
can be considered the outstanding open problem in mathematics. It is included among the five
millenium problems.

There are various further results concerning the Riemann hypothesis and the zeros of the zeta
function. Hardy in 1914 proved that ¢(s) has infinitely many zeros along the critical line Re s = 3.
As of 2006 it is known that at least the first billion and a half nontrivial zeros of ((s) lie along
the critical line.

Selberg in 1942 showed that a positive proportion of the nontrivial zeros lie along the critical
line. Levinson in 1974 improved this to show that at least % of the nontrivial zeros are on the
critical line. This has subsequently been improved to at least 40% of the nontrivial zeros are on
the critical line.

There are several quantitative statements that are equivalent to the Riemann hypothesis. Koch
in 1901 showed that the Riemann hypothesis was equivalent to

n(x) = Li(z) + O(vzInx)

where Li(x) is the logarithmic integral function of Gauss

Li(z) = /2 L

Int

In a similar manner the Riemann hypothesis can be shown to be equivalent to

m(z) = Li(z) + O(x3+) Ve > 0.

17



The equality (6.1) was also conjectured by Riemann in his original paper and is often called the
prime number theorem form of the Riemann Hypothesis.

There are many other computational variations of both the prime number theorem and the
Riemann hypothesis. Several of these involve the Moebius function p(n) and Merten’s function
defined by

M(2) = 3 ula).

n<x

Merten’s function is related to the Riemann zeta function by the following
L&) /me
= p— d .
- )

Van Mangoldt proved the following.

Theorem 7.1. The prime number theorem is equivalent to the statement

oo

n=1

Further the following is also known.

Theorem 7.2. If M(x) is Merten’s function then:

(1) the prime number theorem is equivalent to

(2) the Riemann hypothesis is equivalent to

M (z) = O(x2*) for any fixed € > 0.

In observing computed values up to the bounds that were available to him Riemann proposed
that Li(z) > m(x) for all sufficently large x. This turned out to be incorrect. In 1914 Littlewood
proved the following.

Theorem 7.3. The difference n(x) — Li(xz) assumes both positive and negative values infinitely
often.

Littelwood’s proof was interesting in that it used the following technique which has become
extremely useful in analytic number theory. First he assumed that the Riemann hypothesis is true
and proved that m(x) — Li(z) changes sign infinitely often. He then showed that the same is true
if the Riemann hypothesis is assumed to be false. In 1986 Te Riele showed that there are greater
than 1080 consecutive integers for which 7(z) > Li(x) in the range 6.62x1037° < 2 < 6.69x 1037.
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The proof of Dirichlet’s theorem, giving that there are infinitely many primes in any arithmetic
progression an + b with (a,b) = 1, Dirichlet L-series. Such a series is defined by

n

where y is a character mod k, and s is a complex variable. Both the prime number theorem and
the Riemann hypothesis can be extended to primes in arithmetic progressions.

For (a,b) =1 let

m(x;a,b) = numbers of primes congruent to b mod a and < z.

The Prime Number Theorem for Arithmetic Progressions can then be expressed as:

Theorem 7.4. (The Prime Number Theorem for Arithmetic Progressions) For fized a,b > 0
with (a,b) =1 then

1 1

(@3 a,b) ~ ——7(x) ~ —— —— ~ —— Li().

1
¢(a) ¢(a) Inz  ¢(a)
Here ¢(n) is the Euler phi function.

The result can be expressed in probabilistic terms by saying that the primes are uniformly
distributed in the ¢(a) residue classes relatively prime to a. In fact much of the material on
the prime number theorem can be rephrased in terms of probability theory. The prime mumber
theorem itself can be expressed as:

Theorem 7.5. (The Prime Number Theorem) The probability of randomly choosing a prime less
than or equal to x is asymptotically given by ﬁ

The extension of the Riemann hypothesis to the case of arithmetic progressions is called the
generalized Riemann hypothesis or the extended Riemann hypothesis. This says that
1

the zeros of any Dirichlet L-series also lie along the critical line Re s = 3.

Generalized Riemann Hypothesis: For an integer k and any character x mod k then the
nontrivial zeros of the L-series -
x(n)
L(s,x) =) =
n=1

n

all lie along the critical line Re s = %

8 The Elementary Proof

Chebyshev’s estimate (Theorem 4.1) appeared to be quite close to the prime number theorem.
It provided the right bounds and further Chebyshev showed that if lim,_, W(w)# existed then
the value of the limit must be one. Chebyshev’s methods were elementary in the sense that
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they involved no analysis more complicated than simple real integration and the properties of
the logarithmic function (although the proofs themselves were complicated). This would seem
appropriate for a proof of a theorem about primes since primes are in the realm of arithmetic
and should not require deep analytic notions. However Chebyshev could not establish that
the limit existed and then Riemann, ten years or so later, tried a different approach using the
theory of complex analytic functions. The proof of the prime number theorem was reduced to
knowing the location of the zeros of the complex analytic Riemann zeta function. Still, even with
Riemann’s ideas, the proof resisted solution for another thirty-six years and during this time
many mathematicians began to doubt that the limit lim,_, ”(I)% existed. These doubts were
put to rest with the proofs of Hadamard and de la Valle-Poussin. The Prime Number Theorem,
a result seemingly arising in arithmetic, is equivalent to the result that there are no zeros of the
Riemann zeta function ((s) along the line Re(s) = 1, a result really in complex analysis. This
raised the question of the actual relationship between the distribution of primes and complex
function theory. This led to the further question of whether there could exist an elementary proof
of the prime number theorem along the lines of Chebyshev’s methods.

The opinion that came to prevail was that it was doubtful that such a proof existed. The feeling
was that complex analysis was somehow deeper than real analysis and in view of the equivalence
mentioned above it would be unlikely to prove the prime number theorem using just the methods
of real analysis. On the other hand it was felt that if such a proof existed it would open up all
sorts of new avenues in number theory.

The English mathematician G.H. Hardy, who made major contributions to the study of the
relationship between the prime number function 7(z) and Gauss’s logarithmic integral function
Li(z), described the situation this way in a lecture in 1921 (see [N]).

G.H. Hardy No elementary proof of the prime number theorem is known and one may ask
whether it is reasonable to expect one. Now we know that the theorem is roughly equivalent to a
theorem about an analytic function, the theorem that Riemann’s zeta function has no roots on a
certain line. A proof of such a theorem, not fundamentally dependent upon the ideas of the theory
of functions, seems to me to be extraordinarily unlikely. It is rash to assert that a mathematical
theorem cannot be proved in a particular way; but one thing seems quite clear. We have certain
views about the logic of the theory; we think that some theorems, as we say "lie deep” and others
nearer to the surface. If anyone produces an elementary proof of the prime number theorem, he
will show that these views are wrong, that the subject does not hang together in the way we have
supposed, and that it is time for the books to be cast aside and for the theory to be rewritten.

However what actually occurred was even more surprising. Selberg and then Erdos and then
Erdos and Selberg together in 1948 developed elementary proofs of the prime number theorem
along the lines of Chebyshev’s methods. All of these proofs depended on asymptotic estimates for
an extension of the von Mangoldt function. These asymptotic estimates are now called Selberg
formulae. The discovery of this elementary proof put to rest the discussion of the relative
profoundness of complex analysis versus real analysis. However, despite the brilliance of the
Selberg-Frdos approach, it did not produce the startling consequences in understanding both the
distribution of primes and the zeros of the Riemann zeta function that were predicted. There
are now many so-called elementary proofs and the techniques involved have become standard in
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analytic number theory. It may be that in time these methods will lead to a deeper understanding
of the basic questions.

The Selberg formula, from which the elementary proof, can be derived is the following.
Theorem 8.1. (Selberg Formula) For x > 1,

2:(lnp)2 + Z Inplng =2zlnx + O(z)

p<w p,q<z
where p,q run over all the primes < x.
Several alternative formulations of this result are used in the elementary proof. First, the formula
can be expressed in terms of the von Mangoldt function.
Theorem 8.2. (Selberg Formula) For x > 1,

Z A(n)Inn + Z An)A(n) =2zlnz + O(x)

n<x n,m<x

where A(n) is the von Mangoldt function.

The elementary proof requires two more equivalent formulations which tie the Selberg formula
to the Chebyshev functions 6(x) and i (x).

Theorem 8.3. (Selberg Formula) For x > 1

(1) 0(z)Inz + Zlnp@(%) =2zlnz + O(x)

p<z

(2) ¢(@)ne+ A(n)w(%) =% lnz+ O(x)

n<z

The prime number theorem is equivalent to 6(z) ~ x and to ¥ (x) ~ x. The Selberg proof shows
O(x) ~ x. This is proved via a series of estimates whose proofs all work with, or start with, the
Selberg formula ( in one of its formulations), and then use tricky and difficult manipulation of
series.

It is an easy consequence of the prime number theorem that if p,, is the nth prime then

lim 2% =1 (8.1)

n— oo pn

This fact however plays a role in the history of the elementary proof. When Selberg first gave
his formula Erdos used it to give an elementary proof of (8.1). Selberg then used his formula
along with the methods of Erdos’ proof to develop the first elementary proof of the prime number
theorem. Frdos then gave a second elementary proof. There now exist several elementary proofs
of the prime number theorem that do not depend on Selberg’s formula.
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9 Some Extensions

Related to Riemann’s explicit formula it can be shown that the distribution of the number of
zeros of the Riemann zeta function along the critical line can be given asymptotically by

t 4 4

where N(t) is the number of zeros z with z = % + is along the critical line with 0 < s < ¢.

There are also some surprising relationships between some physical phenomena and the location
of the zeros of the Riemann zeta function. This is further related to the distribution of eigenvalues
of certain operators.

An entirely elementary formulation of the Riemann hypothesis is the following (see [P]). Define
a positive squarefree integer n to be red if it is the product of an even number of distinct primes
and blue if it is the product of an odd number of distinct primes. Let R(n) be the number of red
integers not exceeding n and B(n) the number of blue integers not exceeding n. The Riemann
hypothesis is equivalent to the statement that for any € > 0 there exists an N such that for all
n>N

|R(n) — B(n)| < n2*e.

If p,, denotes the nth prime then it is a straightforward consequence of the prime number theorem
that
P ~nlnn

and hence D
lim 2 =1
Pn

even though there are arbitrarily large gaps in the primes. It was noted in the last section that
when Selberg first gave his formula Erdos then used it to give an elementary proof of the second
fact above. Subsequently Selberg then used his formula along with the methods of Erdos’ proof
to develop the first elementary proof of the prime number theorem.

There are two well-known conjectures concerning the difference p,11 — p,. The first is called
Cramer’s conjecture.

Cramer’s Conjecture: p,11 — p, < (1 +0(1))(Inn)?
It follows from Koch’s equivalence to the Riemann hypotheis that if the Riemann hypothesis is
true then .
Dnil — Pn = O(p%+€) for any fixed € > 0.
The second conjecture is called Lindelof’s hypothesis.

Lindelof’s Hypothesis: aném(anrl —pp)? < glte®

It can be shown that the Riemann hypothesis implies the Lindelof hypothesis.
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10 Literature

Below we give the references for most of the material in this article. It is by no means meant
to be exhaustive. The book by Narkiewicz [Na] has over a hundred pages of references and
is an excellent guide to the literature. It also contains a version of Riemann’s original; paper
and the original proofs of Hadamard and de la Vallee-Poussin. Complete versions of Selberg’s
original proof can be found in the book of Nathanson [N] while a self-contained exposition of
another elementary proof is in the book of Tenenbaum and Mendes-France [TMF]. A slightly
different approach based on Selberg’s methods can also be found in Hardy and Wright [HW].
The article by Diamond [Di] is a nice survey on the use of elementary methods in the study
of primes. Nathanson’s book is also an excellent source of historical comments. The book by
Apostol [A] is an excllent source on analytic number theory in general. A complete proof of
Dirichlet’s theorem appears in the books of Fine and Rosenberger [FR] and Landau [L], while
a clear discussion and outline of the proof is in the book by Tenenbaum and Mendes-France
[TMF]. A wealth of material on computational aspects of number theory can be found in the
excellent and comprehensive book by Crandall and Pomerance [CP]. This book also contains
many suggestions for research projects. The books by Eliot [E] and [E1] present probabilistic
number theory while [HR] by H. Halberstam and H.E. Richert is a source for the use sieving
methods in number theory. The nice article by Goldstein [Go] covers some of the aspects of
the same material as this paper while the paper by Bateman and Diamond [BT], written on the
hundredth anniversary of the proof of the prime number theorem looks at the development of
analytic number theory in general.
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