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Abstract: We propose a new method for the homogenization of hys-
teresis models of plasticity. For the one-dimensional wave equation with
an elasto-plastic stress-strain relation we derive averaged equations and
perform the homogenization limit for stochastic material parameters.
This generalizes results of the seminal paper by Franc̊u and Krejč́ı. Our
approach rests on energy methods for partial differential equations and
provides short proofs without recurrence to hysteresis operator theory.
It has the potential to be extended to the higher dimensional case.
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ential inclusion, nonlinear wave equation

1 Introduction

Linear models of continuum mechanics seem to be well understood in most
aspects of analysis and numerics. Much different is the situation in nonlinear
rheological models. In the plastic deformation of a body we encounter memory
effects, the relation between deformation and force includes an hysteresis term.
This complicates considerably the analysis of plastic materials.

The fundamental variables to describe a mechanical body are the displace-
ment vector u, the strain tensor ε, and the stress tensor σ. The strain describes
the infinitesimal local deformation of the body, the stress the inner forces. With
density ρ and volume forces f , assuming small strains and exploiting conserva-
tion of momentum, the body is described by a set of equations on the reference
volume Ω ⊂ R

N .

ρ ∂2
t u = ∇ · σ + f, ε =

1

2
(∇u+ (∇u)⊥), (1.1)

a constitutive relation between ε and σ. (1.2)

The simplest choice for (1.2) is the linear relation σ = A · ε for some tensor
A, which is the model of linear elasticity. We are interested here in plasticity
models for (1.2). Those models are non-linear and involve an hysteresis term.
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Many models have been suggested, for an overview we refer to the text-books
[11, 1, 6, 20]. A prominent position has the Prager model of elasto-plasticity
with linear kinematic hardening. It has a wide range of applications and can be
motivated by an arrangement of two elastic and one perfectly plastic element,
see e.g. [21, 23, 24]. Following these contributions, we use the differential
notation and write the law as

∂IK(σ − αε) ∋ ∂tε− β ∂tσ, (1.3)

with parameters α, β ≥ 0, K a closed compact subset of R
N×N , I the character-

istic function which is infinite in the complement of K, and ∂ the subdifferential.
The model has the advantage to include elasto-plasticity, rigid plasticity, and
elasticity as special cases. By replacing IK with a convex function, one obtains
the Kelvin-Voigt model.

In the one-dimensional case N = 1 we may write the hysteresis relation (1.3)
in a simpler form. Assuming symmetry, the set K coincides with a symmetric
interval, K = [−γ, γ]. The inverse Ψγ = (∂IK)−1 of the subdifferential ∂IK
is then the multivalued function Ψγ = γ sign with sign(0) = [−1, 1]. The
plasticity model takes the form

αε ∈ σ − γ sign(∂tε− β∂tσ). (1.4)

It is illustrated for β = 0 in Figure 1. We rewrite the system with the new
variable ε̃ := ε− βσ and the abbreviation κ = 1 − αβ as

αε̃ ∈ κσ − γ sign(∂tε̃).

Omitting the tilde symbol and restricting (1.1)–(1.2) to the one-dimensional
case, we therefore deal with the problem

ρ∂2
t u = ∂xσ + f (1.5)

∂xu = ε+ βσ (1.6)

αε ∈ κσ − γ sign(∂tε). (1.7)

Our main result concerns the homogenization of this wave equation with mem-
ory term. We introduce a small parameter η > 0 which refers to a small length
scale and a study a stochastic material distribution to define problem (Pη) in
(2.3)–(2.5) below. We furthermore introduce a homogenized problem (P∗) in
(2.6)–(2.8). Our main result is the following theorem.

Theorem 1.1 (Homogenization). Let the ergodicity of Property 2.1 be satisfied
and let α, β, γ, κ be positive. Let (uη, ση, εη) be a sequence of strong solutions
of problems (Pη) and let (u∗, σ∗, w) be a strong solution of (P∗) with compatible
boundary and initial data as in (3.1)–(3.3). Then, for η → 0, there holds

∂tu
η → ∂tu

∗ and ση → σ∗ in L2(ΩT ) almost surely. (1.8)
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To relate our result to the literature, we mention another way to express the
hysteresis relation. To simplify, we consider β = 0, the case of rigid plasticity.
In this case, two equivalent ways to express the constitutive relation are

∂IK(σ − αε) ∋ ∂tε and αε = PK [σ],

where PK is a play-type hysteresis operator corresponding to the set K.

γ

ε

σ
σ = αε

Figure 1: The hysteresis relation between ε and σ in the one-dimensional case
N = 1, for the convex set K = [−γ, γ], without kinematic hardening, i.e. β = 0.
The result is a play-type hysteresis relation between ε and σ.

Existence results for (1.5)–(1.7) and related equations can be found e.g.
in [6, 10, 20, 22]. The homogenized system (P∗) can be written again as a
wave equation with an hysteresis relation, now with an hysteresis-operator of
Prandtl-Ishlinskii type. This fact allows to apply abstract existence results in
order to find also solutions of (P∗). Concerning weak solutions to the problem
we refer to [20, 21]. Since our formulation of the homogenized system (P∗) and
also our solution concept differs from previous approaches, we include here the
construction of strong solutions.

First homogenization results for hysteresis problems are due to Visintin, we
refer once more to [20]. The homogenization process for the one-dimensional
play-type model (1.5)–(1.7) is made rigorous by Franc̊u and Krejč́ı in [10]. We
mention that the authors treated the deterministic case with α = 1 and β =
0. Our Theorem 1.1 generalizes their result to oscillating parameters α > 0
and β > 0 and to the stochastic case. Our emphasis is to introduce a new
method which is flexible and which provides short proofs. The method is based
on testing procedures and uses in an essential way the differential inclusion
formulation in the effective system (2.6)–(2.8).

Our approach extends the method of oscillating test-functions introduced by
Tartar, see [16]. This method is very flexible (cp. e.g. [15]), and was adapted
by Kozlov for stochastic homogenization problems [12, 14]. For other stochastic
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approaches we refer to [5, 8, 17]. Concerning stochastic homogenization for
hysteresis problems we are only aware of [18], where we introduced a method
to treat play-type hysteresis in porous media equations. The common feature
with the application in plasticity is the appearance of the new variable w(y)
which keeps track of microscopic properties of solutions. The approach in [18]
was technically more challanging since we worked with weak solutions and with
a structure property for ∂tw.

Another powerful tool to treat homogenization problems is two-scale con-
vergence of Allaire [2]. This method was used in hysteresis problems of vis-
coelasticity [24] and in Preisach models in porous media equations [13]. But,
at least in its standard form, it cannot be applied to stochastic problems (cp.
[5]). We emphasize that the viewpoint regarding the role of y is different in
two-scale convergence and in our approach. In two-scale convergence, y is the
microscopic independent variable. Here, just as in [3] or [18], y is an indicator
variable for the material and does not necessarily stand for a relative position.

Homogenization in higher space dimension is studied in a series of papers by
Visintin. In [21] and [23] a simple form of a limit system is given; it coincides
with our formulation in the one-dimensional case. Rigorous justifications are not
yet available. For the case of viscoelasticity, [24] provides a complete description
and proofs for higher dimensional homogenization results. The equations are
first written in a variational form with the help of the Fenchel inequality and
other tools from convex analysis. The method of two-scale convergence allows
to obtain a system of effective equations. It is worth noting that in the setting
of viscoelasticity the effective equations are much less accessible, cp. problem
7.1 and formula (137) of [24].

Our method has the potential to be applied in higher space dimension. As
pointed out by Visintin, the fundamental difference between one and higher
space dimension is as follows: While the control of ∇ · σ excludes oscillations
in the one-dimensional case, it still allows oscillations in the higher-dimensional
case. This may indicate that, in the averaged system for N > 1, also the stress
σ (and not only the strain ε) depends on the material indicator y.

The ultimate goal is to develop an understanding of effective theories for the
Prager model in higher dimension. Concerning this problem, Visintin writes in
[24], page 239: ... the choice of an appropriate functional framework for the
two-scale formulation of the Prager model [...] seems less obvious. We hope
that the new method introduced here is a step towards that goal.

We emphasize that our approach provides averaged models for hysteresis
effects in plastic materials. It is therefore an analysis of the time-dependent
problem. Regarding the interesting field of variational problems in plasticity we
mention [19] as a general reference, [4] for a homogenization result, and [7] for
an analysis of microstructures that appear as a consequence of non-convexity.



Homogenization of one-dimensional plasticity equations 5

2 Setting of the homogenization problem

Our aim is to homogenize the nonlinear wave equation (1.5)–(1.7) in order
to justify an effective model for heterogeneous plastic materials. To this end
we introduce a small parameter η > 0 which stands for the typical length
scale of the microscopic variations. We study a situation in which the material
parameters are oscillating,

α = αη, β = βη, γ = γη.

To keep the notation as simple as possible, we omit here variations of the den-
sity which can be treated along the same lines. Concerning the variations of the
parameters, one may think of the standard setting of homogenization, namely of
given [0, 1)N -periodic functions αper, βper, γper and the rapidly oscillating func-
tions

αη(x) = αper

(

x

η

)

, βη(x) = βper

(

x

η

)

, γη(x) = γper

(

x

η

)

.

We want to take another point of view. We imagine that the body is com-
posed of different materials and that this fact creates the variations in the pa-
rameters. We introduce a variable y ∈ [0, 1] =: I of a material indicator which
labels the different types of material. A function χη : Ω → I describes the distri-
bution of material: material χη(x) ∈ I is present in the point x ∈ Ω. According
to this description of the physics, we can then assume that the material param-
eters depend only on y, with the characterizations α : [0, 1] ∋ y 7→ α(y) ∈ R

etc. We therefore assume

αη(x) = α(χη(x)), βη(x) = β(χη(x)), γη(x) = γ(χη(x)), (2.1)

with

χη(x) = χ1

(

x

η

)

, (2.2)

χ1 : R
N → I = [0, 1]. The case of one-dimensional periodic media is recovered

by setting χ1(x) = x mod 1.

Stochastic Homogenization The more general case of a stochastic material
can easily be treated in the above setting. In the simplest case one chooses a
probability measure space (ΩP ,A,P) such that the elements χ1 ≡ ω ∈ ΩP are
functions, χ1 : R

N → I, and keeps (2.1), (2.2). To compare this construction
with the notation of [12], we note that for a random variable of the form A :
ΩP → R, ω 7→ α(ω(0)), and the group of translations T (x) : ω(.) 7→ ω(. + x),
there holds

A

(

T

(

x

η

)

ω

)

= α

((

T

(

x

η

)

ω

)

(0)

)

= α(χ1(x/η)) = α(χη(x)).
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Regarding the probability space we always assume that the ergodicity Prop-
erty 2.1 below holds. The Birkhoff theorem [9, 12] guarantees that the property
is satisfied if the probability space is ergodic with respect to the group of trans-
lations T . Our convergence results hold almost surely, i.e. for P-almost all
χ1 = ω ∈ ΩP . We denote the distribution of the values of χ1(0) ∈ I by the
probability measure µ ∈ M(I). Expected values are averages with respect to
this measure; for g : I → R we set

〈g〉 :=

∫

I

g(y) dµ(y) ∈ R.

Property 2.1 (Ergodicity property). Let g ∈ Lq(I, dµ) for q ≥ 1 and let
gη : Ω → R be defined as

gη(x) = g(χη(x)).

Then gη converges weakly to a constant function,

gη(x) ⇀ 〈g〉 in Lq(Ω) almost surely.

Our results on stochastic homogenization exploit only this ergodicity prop-
erty of the probability measure. We recall that the periodic setting is a special
case. Another typical example is to choose χ1 constant in each cell k + [0, 1),
k ∈ Z, with the constant values chosen stochastically as independent, identically
distributed random variables with distribution µ. Our choice of the coefficients
in (2.1) implies that we include stochastic dependencies of the parameters, which
reflects the physical situation.

Effective equations For convenience, the results are stated for a constant
density ρ = 1. The general case and even an oscillatory density ρη can be
treated following the proofs below. We use the variable ε̃ that was introduced
before, but omit the tilde symbol. We always study the domain Ω = (0, L) ⊂ R

1

and equations on ΩT = (0, L) × (0, T ).
The hysteresis problem with oscillatory parameter functions is the following

problem (Pη) for uη, ση, εη : ΩT → R with κη = 1 − αηβη.

∂2
t u

η = ∂xσ
η + f (2.3)

∂xu
η = εη + βηση (2.4)

αηεη ∈ κηση − γη sign(∂tε
η) (2.5)

We claim that, with the additional independent variable y ∈ I := [0, 1], the
homogenized problem is given by the following problem (P∗) for u∗, σ∗ : ΩT → R

and w : ΩT × I → R.

∂2
t u

∗ = ∂xσ
∗ + f (2.6)

∂xu
∗ =

∫

I

w(y) dµ(y) + β∗σ∗ (2.7)

α(y)w(y) ∈ κ(y)σ∗ − γ(y) sign(∂tw(y)) µ− a.e. y ∈ I (2.8)
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where β∗ = 〈β〉 is the expected value of β. In the case of periodic homog-
enization, β∗ is the Y -average of β ◦ χ1. In all results, we assume that the
material parameters α, β, and γ are positive continuous functions on I, with
κ = 1 − αβ > 0.

The loose description of the homogenized equations is as follows. The
stresses ση have small variations and converge strongly to σ∗, equation (2.7)
is the averaged version of (2.4). The strain, instead, has large variations. It
depends on the material in each point, hence it is approximated with a function
w(x, t, y). Equation (2.8) demands that the constitutive relation (2.5) holds for
every single material.

3 Estimates and existence results

We consider N = 1, Ω = (0, L) ⊂ R
1, and ΩT = Ω × (0, T ). We always impose

the boundary conditions ση(0) = ση(L) = 0 and σ∗(0) = σ∗(L) = 0. In the
initial conditions we must exercise care due to compatibility requirements. With
uη

0, v0 ∈ H1(Ω) and s0 ∈ H1
0 (Ω) given, we set eη

0 := ∂xu
η
0 − βηs0 and pose the

initial condition

uη|t=0 = uη
0, (∂tu

η)|t=0 = v0, εη|t=0 = eη
0. (3.1)

In order to satisfy (2.5) we must always assume the compatibility condition

αηeη
0 ∈ κηs0 + [−γη, γη] on Ω. (3.2)

To avoid technical difficulties in the choice of the initial values, we restrict
to a situation of increasing strains until time 0. We are then given v0 ∈ H1(Ω)
and s0 ∈ H1

0 (Ω), and set eη
0 = 1

αη (κηs0 − γη) ∈ L2(Ω) according to (2.5) and the
history. The initial displacement uη

0 ∈ H1(Ω) is determined by ∂xu
η
0 = eη

0+βηs0.
For the averaged equations we determine an averaged initial condition through

∂xu
∗
0(x) = s0(x)

〈κ

α
+ β

〉

−
〈γ

α

〉

.

The initial condition for problem (P∗) is set to

u∗|t=0 = u∗0, (∂tu
∗)|t=0 = v0, w(y)|t=0 =

1

α(y)
(κ(y)s0 − γ(y)). (3.3)

We note that the initial conditions are consistent with (2.7) because of 〈w〉 =
∂xu

∗
0 − β∗s0.
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Energy estimates and approximate solutions

Let us start with the calculation of an energy decay estimate for solutions of
the above problems (Pη) and (P∗). The derivation is rigorous for the strong
solutions of Definition 3.4. Our aim here is to present, in its simplest form, a
calculation which is the basis for several results of this work.

Lemma 3.1 (Energy estimate). Strong solutions to problem (Pη) satisfy, in the
weak sense on (0, T ), the energy equality

∂t

1

2

∫

Ω

{

|∂tu
η|2 +

αη

κη
|εη|2 + βη|ση|2

}

+

∫

Ω

γη

κη
|∂tε

η| =

∫

Ω

∂tu
η f. (3.4)

Strong solutions to problem (P∗) satisfy

∂t

1

2

∫

Ω

{

|∂tu
∗|2 +

∫

I

α(y)

κ(y)
|w(y)|2 dµ(y) + β∗|σ∗|2

}

+

∫

Ω

∫

I

γ(y)

κ(y)
|∂tw(y)| dµ(y) =

∫

Ω

∂tu
∗ f.

(3.5)

Proof. The calculations are straightforward. We present them for the averaged
problem (P∗).

∂t

(

1

2

∫

Ω

|∂tu
∗|2

)

−

∫

Ω

∂tu
∗ f

(2.6)
=

∫

Ω

∂tu
∗∂xσ

∗ = −

∫

Ω

∂t∂xu
∗σ∗

(2.7)
= −

∫

Ω

(∂t

∫

I

w(y) dµ(y) + β∗∂tσ
∗)σ∗

(2.8)
∈ −∂t

1

2

∫

Ω

β∗|σ∗|2 −

∫

Ω

∫

I

∂tw(y)
[α

κ
w +

γ

κ
sign(∂tw)

]

(y) dµ(y)

= −∂t

1

2

∫

Ω

β∗|σ∗|2 −

∫

Ω

∫

I

{

∂t

1

2

α

κ
|w(y)|2 +

γ

κ
|∂tw|

}

dµ(y).

This provides the energy estimate.

The energy estimates imply that the natural function spaces for weak solu-
tions are

∂tu
η, εη, ση ∈ L∞(0, T ;L2(Ω)), ∂tε

η ∈ L1(ΩT )

for problem (Pη), and

∂tu
∗, σ∗ ∈ L∞(0, T ;L2(Ω)),

w ∈ L∞(0, T ;L2(Ω × I, dx⊗ dµ)), ∂tw ∈ L1(Ω × (0, T ) × I, dx⊗ dt⊗ dµ)

for problem (P∗).
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The δ-regularization of the equations

A possibility to find approximate solutions is to regularize the sign-function and
its inverse. For δ > 0, let ψδ : R → R be the following approximation of sign−1.

ψδ(r) :=







δr for r ∈ [−1, 1],
δ + 1

δ
(r − 1) for r > 1,

−δ + 1
δ
(r + 1) for r < −1.

(3.6)

We will also use the inverse of ψδ, the function φδ := (ψδ)
−1. We note that

ξφδ(ξ) ≥ |ξ| − δ for all ξ ∈ R.

φ
δ

+1

−1

δ−δ

ψ
δ

−δ

+δ

+1

−1

Figure 2: The functions φδ and ψδ

We now define the following regularized system (P δ
η ).

∂2
t u

η
δ = ∂xσ

η
δ + f (3.7)

ση
δ =

1

βη
(∂xu

η
δ − εη

δ) (3.8)

∂tε
η
δ = ψδ

(

1

γη
[κηση

δ − αηεη
δ ]

)

(3.9)

complemented with the boundary conditions for σ and with the initial condition
(3.1). We note that the compatibility condition (3.2) guarantees that ∂tε

η
δ |t=0 is

bounded in L∞(Ω), independent of δ. Replacing ση
δ with the help of (3.8) in the

other two equation, we see that the regularized system is a wave equation with
a force-term that is determined by a family of ordinary differential equations.

The same procedure defines the regularized effective system (P δ
∗ ).

∂2
t u

∗
δ(x, t) = ∂xσ

∗
δ (x, t) + f(x, t) (3.10)

β∗σ∗
δ (x, t) = ∂xu

∗
δ(x, t) −

∫

I

wδ(x, t, y) dµ(y) (3.11)

∂twδ(x, t, y) = ψδ

(

κ(y)σ∗
δ(x, t) − α(y)wδ(x, t, y)

γ(y)

)

(3.12)
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which we complement with the initial condition (3.3). The choice of the aver-
aged initial condition guarantees σ∗

δ |t=0 = s0 and therefore that ∂twδ|t=0 remains
bounded in L∞(Ω × I).

Problem (P δ
∗ ) is a coupled system of one wave equation in Ω (namely (3.10)

with σ∗
δ replaced with the help of (3.11)), and a family of nonlinear ordinary

differential equations, parametrized by y (namely (3.12) with σ∗
δ from (3.11)).

The solvability of the regularized system is not demonstrated here, it can be
shown e.g. with a Galerkin approximation as in [18]. In our next step we derive
a priori estimates that are independent of δ.

Lemma 3.2 (Energy estimates for the regularized problem). There exists C =
C(Ω, α, κ) > 0, independent of δ and η, such that the following holds. Solutions
uη

δ to the regularized problem (P δ
η ) satisfy

∂t

1

2

∫

Ω

{

|∂tu
η
δ |

2 +
αη

κη
|εη

δ |
2 + βη|ση

δ |
2

}

+

∫

Ω

γη

κη
|∂tε

η
δ | ≤

∫

Ω

∂tu
η
δ f + Cδ. (3.13)

Solutions u∗δ to the regularized problem (P δ
∗ ) satisfy

∂t

1

2

∫

Ω

{

|∂tu
∗
δ|

2 +

∫

I

α

κ
|wδ|

2 dµ+ β∗|σ∗
δ |

2

}

+

∫

Ω

∫

I

γ

κ
|∂twδ| dµ ≤

∫

Ω

∂tu
∗
δ f +Cδ.

(3.14)

Proof. The calculation is the same as in Lemma 3.2. For the averaged equations
one calculates

∂t

1

2

{
∫

Ω

|∂tu
∗
δ|

2 +

∫

Ω

β∗|σ∗
δ |

2

}

−

∫

Ω

∂tu
∗
δ f

= −

∫

Ω

∫

I

∂twδ(y) σ
∗
δ dµ(y)

= −

∫

Ω

∫

I

∂twδ(y)
[α

κ
wδ +

γ

κ
φδ(∂tw)

]

(y) dµ(y)

= −∂t

1

2

∫

Ω

∫

I

α(y)

κ(y)
|wδ(y)|

2 dµ(y)−

∫

Ω

∫

I

γ

κ
∂twδ φδ(∂twδ) dµ

≤ −∂t

1

2

∫

Ω

∫

I

α

κ
|wδ|

2 dµ−

∫

Ω

∫

I

γ

κ
|∂twδ| + δ|Ω|

∫

I

γ

κ
dµ,

where, in the last line, we exploited ξφδ(ξ) ≥ |ξ| − δ.
This shows the energy estimate for the regularized system. The calculation

for the regularized system (P δ
η ) is analogous.

Strong solutions

The next Lemma provides higher order estimates for solutions of the δ-problems.
It is valid for strong solutions that have derivatives ∂3

t u
∗
δ, ∂

2
t ∂xu

∗
δ and ∂2

twδ in
an L2 space.
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Lemma 3.3 (Higher order estimates). Let f ∈ H1(ΩT ) be given, let v0 ∈ H1(Ω)
and s0 ∈ H1

0 (Ω) define the initial data uη
0, u

∗
0 ∈ H1(Ω) and w|t=0 ∈ L2(Ω × I)

as in (3.3). Then, independent of δ and η, strong solutions of the approximate
equations satisfy uniform bounds.
Solutions of problem (P δ

η ) are bounded in

∂2
t u

η
δ , ∂t∂xu

η
δ , ∂xσ

η
δ , ∂tσ

η
δ , ∂tε

η
δ ∈ L∞(0, T ;L2(Ω)).

Solutions of problem (P δ
∗ ) are bounded in

∂tu
∗
δ, ∂

2
t u

∗
δ, ∂t∂xu

∗
δ, ∂xσ

∗
δ , ∂tσ

∗
δ ∈ L∞(0, T ;L2(Ω)),

wδ, ∂twδ ∈ L∞(0, T ;L2(Ω × I, dx⊗ dµ)).

Proof. We again restrict to the averaged equations (P δ
∗ ). We start with the

time differentiated version of the wave equation,

∂3
t u

∗
δ(x, t) = ∂t∂xσ

∗
δ (x, t) + ∂tf(x, t).

This equation is multiplied with ∂2
t u

∗
δ and integrated over Ω. We calculate along

the lines of the energy estimate.

∂t

(

1

2

∫

Ω

|∂2
t u

∗
δ|

2

)

−

∫

Ω

∂2
t u

∗
δ ∂tf

=

∫

Ω

∂2
t u

∗
δ ∂t∂xσ

∗
δ = −

∫

Ω

∂2
t ∂xu

∗
δ ∂tσ

∗
δ

= −

∫

Ω

∂2
t

[

β∗σ∗
δ +

∫

I

wδ(x, t, y) dµ(y)

]

∂tσ
∗
δ

= −∂t

1

2

∫

Ω

β∗|∂tσ
∗
δ |

2 −

∫

Ω

∫

I

∂2
twδ(x, t, y) ∂t

[α

κ
wδ +

γ

κ
φδ(∂twδ)

]

(x, t, y) dµ(y).

We exploit φ′
δ ≥ 0 and obtain

∂t

1

2

{
∫

Ω

|∂2
t u

∗
δ|

2 +

∫

Ω

β∗|∂tσ
∗
δ |

2 +

∫

Ω

∫

I

α

κ
|∂twδ|

2 dµ

}

≤

∫

Ω

∂2
t u

∗
δ ∂tf.

This higher order estimate is completely analogous to the energy estimate, but
we gained one time derivative. It is worth noticing that an estimate for ∂2

twδ

cannot be concluded.
Our choice of initial values guarantees, as already noted, the boundedness

of ∂twδ|t=0 in L∞, and hence also the boundedness of

∂2
t u

∗
δ|t=0 = ∂xs0 + f |t=0 ∈ L2(Ω),

∂tσ
∗
δ |t=0 =

1

β∗

[

∂xv0 −

∫

I

∂twδ(x, 0, y) dµ(y)

]

∈ L2(Ω),

A standard Gronwall-type argument provides the uniform bounds for ∂2
t u

∗
δ, ∂tσ

∗
δ ,

and ∂twδ. The uniform estimates for the remaining derivatives can be concluded
from the equations, that of ∂xσ

∗
δ from (3.10), that of ∂t∂xu

∗
δ from (3.11).
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We will exploit the high regularity of Lemma 3.3 to define a strong solution
concept where ∂tε and ∂tw are functions.

Definition 3.4 (Strong solutions). Let f ∈ H1(ΩT ) be given. A vector
(uη, ση, εη) ∈ L2(ΩT )3 is called a strong solution to problem (Pη), if the dis-
tributional derivatives satisfy

∂2
t u

η, ∂tσ
η, ∂tε

η ∈ L∞(0, T ;L2(Ω)),

and equations (2.3)–(2.5) are satisfied in the sense of distributions.
A vector (u∗, σ∗, w) ∈ L2(ΩT )2 ×L2(ΩT × I, dx⊗ dt⊗ dµ) is called a strong

solution to problem (P∗), if the distributional derivatives satisfy

∂2
t u

∗, ∂tσ
∗ ∈ L∞(0, T ;L2(Ω)),

∂tw ∈ L∞(0, T ;L2(Ω × I, dx⊗ dµ)),

and equations (2.6)–(2.8) are satisfied in the sense of distributions.
For both systems we additionally demand that the initial conditions and

boundary conditions are satisfied in the sense of traces.

We note that, for strong solutions, the equations are relations for functions
and that the equations hold almost everywhere. We next analyze a slightly
weaker solution concept. It will turn out to be equivalent with the previous
construction, but the definition is useful in proofs.

Definition 3.5 (Strong variational solutions). A vector (uη, ση, εη) ∈ L2(ΩT )3

is a strong variational solution to problem (Pη), if it satisfies the regularity
properties of a strong solution, equations (2.3)–(2.4) almost everywhere,

− αηεη + κηση ∈ [−γη, γη] a.e. in ΩT , (3.15)

and the energy inequality

1

2

∫

Ω

{

|∂tu
η|2 +

αη

κη
|εη|2 + βη|ση|2

}
∣

∣

∣

∣

t

0

+

∫ t

0

∫

Ω

γη

κη
|∂tε

η| ≤

∫ t

0

∫

Ω

∂tu
η f (3.16)

for almost every t ∈ (0, T ). The definition of a strong variational solution to
problem (P∗) is analogous.

Lemma 3.6. Every strong variational solution is a strong solution. This holds
for the original system (Pη) and for the averaged system (P∗).

Proof. It suffices to read the calculation of the energy estimate in Lemma 3.1 in
the opposite direction. The regularity of the solution allows to perform all the
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necessary manipulations. Introducing Sη := [κηση − αηεη]/γη, the well-known
calculations transform the energy inequality of (3.16) into

∫ t

0

∫

Ω

γη

κη
|∂tε

η| ≤ −

∫ t

0

∫

Ω

∂t

1

2

{

|∂tu
η|2 +

αη

κη
|εη|2 + βη|ση|2

}

+

∫ t

0

∫

Ω

∂tu
η f

=

∫ t

0

∫

Ω

∂tε
η

[

ση −
αη

κη
εη

]

=

∫ t

0

∫

Ω

γη

κη
∂tε

η Sη.

Relation (3.15) implies Sη ∈ [−1, 1] almost everywhere. The integral condition
estimates absolute values |∂tε

η| in terms of ∂tε
η · Sη. This is only posible if

Sη ∈ sign(∂tε
η) almost everywhere. This provides the missing relation (2.5).

The same proof works for the averaged system (P∗).

Theorem 3.7. Let f ∈ H1(ΩT ) be a right hand side, let v0 ∈ H1(Ω) and
s0 ∈ H1

0 (Ω) define the initial data, and let α(y) and κ(y) = 1 − α(y)β(y) be
strictly positive on I = [0, 1]. Then, for every η > 0, problems (Pη) and (P∗)
have a unique strong solution.

Proof. We use strong solutions (uη
δ , σ

η
δ , ε

η
δ) of problem (P δ

η ) for δ > 0. The
uniform a priori estimates of Lemma 3.3 guarantee that, taking the limit δ → 0,
we find a weak-* convergent subsequence and limit functions (uη, ση, εη). In the
first two equations of the approximate system, (3.7)–(3.8), the weak limit δ → 0
can be performed in all terms. This provides relations (2.3)–(2.4) for the limit
functions.

Instead of deriving (2.5) directly, we better show that the weak limit is a
strong variational solution. Taking the limit in the energy inequality (3.13)
for the approximate solutions yields the energy inequality (3.16). The L2-
boundedness of ∂tε

η
δ together with the shape of ψδ in (3.9) implies that the weak

limit of the squared bracket, [κηση −αηεη], takes values in [−γη, γη], for almost
all (x, t) ∈ ΩT . This provides (3.15). We conclude that the limit (uη, ση, εη) is
a strong variational solution and hence, by Lemma 3.6, also a strong solution.

The proof for problem (P∗) is completely analogous.
It remains to verify the uniqueness property for the averaged system. Let

therefore (u1, σ1, w1) and (u2, σ2, w2) be two strong solutions of system (2.6)–
(2.8) with the same right hand side and with the same initial values. We can
calculate for the difference (u#, σ#, w#) = (u1, σ1, w1) − (u2, σ2, w2)

∂t

(

1

2

∫

Ω

|∂tu
#|2

)

=

∫

Ω

∂tu
#∂xσ

# = −

∫

Ω

∂t∂xu
#σ#

= −

∫

Ω

(∂t

∫

I

w#(y) dµ(y) + β∗∂tσ
#)σ#

∈ −∂t

1

2

∫

Ω

β∗|σ#|2

−

∫

Ω

∫

I

∂tw
#(y)

[α

κ
w# +

γ

κ

(

sign(∂tw
1) − sign(∂tw

2)
)

]

(y) dµ(y)
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≤ −∂t

1

2

∫

Ω

β∗|σ#|2 −

∫

Ω

∫

I

∂t

1

2

α

κ
|w#(y)|2 dµ(y),

where, in the last line, we exploited the monotonicity of the sign-function, (ξ−
ζ)(sign(ξ) − sign(ζ)) ≥ 0, for ξ = ∂tw

1 and ζ = ∂tw
2.

4 Homogenization

4.1 Two-scale ergodicity

To prepare the averaging procedure we first generalize the ergodicity property
2.1 to functions with oscillations on two scales. The counterexample recalled in
(4.4) of Section 4.3 shows that a careful analysis is appropriate.

Definition 4.1 (Two-scale ergodicity property). We say that the stochastic
process and a function g : Ω × I → R satisfy the two-scale ergodicity property
with q ∈ [1,∞) if the following holds.

Let µ ∈ M(I) be the distribution of the values χ1(0), set χη(x) = χ1(x/η).
Let the oscillating functions gη : Ω → R and the expected values 〈g〉 : Ω → R be
defined as

gη(x) = g(x, χη(x)), 〈g〉 (x) =

∫

I

g(x, y) dµ(y).

Then

gη ⇀ 〈g〉 for η → 0 in Lq(Ω) almost surely. (4.1)

The next lemma shows that a certain smoothness of the function g guaran-
tees the two-scale ergodicity property.

Lemma 4.2. Let the process satisfy the single-scale ergodicity of Property 2.1
and let g be continuous, g ∈ C0(Ω × I). Then the two-scale ergodicity property
is satisfied and (4.1) holds for every q <∞.

Proof. We choose a countable dense set of points xi ∈ Ω, i ∈ N. An application
of Property 2.1 to the countable number of functions g(xi, .) shows that

∫

Ω

g(xi, χ
η(x))ϕ(x) dx→

∫

Ω

〈g〉 (xi)ϕ(x) dx ∀i ∈ N, ϕ ∈ L∞(Ω), almost surely.

(4.2)
The family gη ∈ Lq(Ω) is bounded. To verify (4.1), it suffices to show that for
every weakly convergent subsequence gη ⇀ ḡ in Lq(Ω) we have ḡ = 〈g〉.

With this aim we fix a test function ϕ ∈ C∞
0 (Ω) and ε > 0. The function g

is uniformly continuous on supp(ϕ) × I. We therefore find n ∈ N and disjoint
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sets Ωi ⊂ Ω such that supp(ϕ) ⊂
⋃n

i=1 Ωi, xi ∈ Ωi, with |g(x, y) − g(xi, y)| ≤ ε
for all x ∈ Ωi, y ∈ I. This allows to calculate
∫

Ω

gη(x)ϕ(x) dx =

∫

Ω

g(x, χη(x))ϕ(x) dx

=
n

∑

i=1

∫

Ωi

g(xi, χ
η(x))ϕ(x) dx+

n
∑

i=1

∫

Ωi

[g(x, χη(x)) − g(xi, χ
η(x))] ϕ(x) dx.

The last sum is, in absolute value, bounded by Cε, with C depending only on
Ω and the test-function ϕ. Taking the limit η → 0 and exploiting (4.2) we find

∣

∣

∣

∣

∣

∫

Ω

ḡ(x)ϕ(x) dx−
n

∑

i=1

∫

Ωi

〈g〉 (xi)ϕ(x) dx

∣

∣

∣

∣

∣

= lim
η→0

∣

∣

∣

∣

∣

∫

Ω

gη(x)ϕ(x) dx−
n

∑

i=1

∫

Ωi

g(xi, χ
η(x))ϕ(x) dx

∣

∣

∣

∣

∣

≤ Cε.

The function 〈g〉 is obtained as a y-average of g and has therefore the same
modulus of continuity, | 〈g〉 (x) − 〈g〉 (xi)| ≤ ε for all x ∈ Ωi. Increasing the
constant C, we find have

∣

∣

∣

∣

∫

Ω

ḡ(x)ϕ(x) dx−

∫

Ω

〈g〉 (x)ϕ(x) dx

∣

∣

∣

∣

≤ Cε.

Since ε was arbitrary, this demonstrates ḡ = 〈g〉 and hence the result.

In the next lemma we study stochastic processes that take only finitely many
values. In this special case, general functions g satisfy the two-scale ergodicity.

Lemma 4.3. Let the process satisfy the single-scale ergodicity of Property 2.1
and let the support of µ be finite, µ =

∑m

k=1 ρkδyk
with yk ∈ I and ρk ∈ [0, 1].

Then, for every q <∞ and every g ∈ Lq(Ω×I, dx⊗µ), the two-scale ergodicity
property (4.1) of Definition 4.1 is satisfied.

Proof. We exploit that we can identify

Lq(Ω × I, dx⊗ µ) ≡ Lq(Ω)m via g(x, yk) = gk(x) ∀k ≤ m.

We are given a function g ∈ Lq(Ω× I, dx⊗µ) which we identify with the m
scalar functions gk ∈ Lq(Ω). The function gη(x) = g(x, χη(x)) satisfies

‖gη‖q

Lq(Ω) =

∫

Ω

|g(x, χη(x))|q dx ≤

∫

Ω

max
k≤m

|gk(x)|
q dx ≤ C.

We can therefore assume that gη converges weakly in Lq. It remains to verify
that the limit is almost surely 〈g〉 (x) =

∑

k ρkgk(x).
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For i ∈ N we consider εi = 1
i
ց 0, and approximations gi

k ∈ C0(Ω) of the
functions gk ∈ Lq(Ω) with

m
∑

k=1

‖gi
k − gk‖

q

Lq(Ω) ≤ εi.

With our identification of the function spaces, the functions gi
k define a function

gi ∈ Lq(Ω × I, dx⊗ µ). We calculate

‖(gi)η − gη‖q

Lq(Ω) =

∫

Ω

|gi(x, χη(x)) − g(x, χη(x))|q dx

≤

∫

Ω

max
k≤m

|gi
k(x) − gk(x)|

q dx ≤ εi.

Furthermore, also the averaged functions are comparable,

‖
〈

gi
〉

− 〈g〉 ‖q

Lq(Ω) =

∫

Ω

∣

∣

∣

∣

∣

m
∑

k=1

ρk(g
i
k(x) − gk(x))

∣

∣

∣

∣

∣

q

dx

≤

∫

Ω

max
k≤m

|gi
k(x) − gk(x)|

q dx ≤ εi.

Lemma 4.2 provides the convergence (4.1) for the smooth approximation,

(gi)η ⇀
〈

gi
〉

in Lq(Ω) for all i ∈ N, almost surely.

To combine our findings we write

gη − 〈g〉 = [gη − (gi)η] + [(gi)η −
〈

gi
〉

] + [
〈

gi
〉

− 〈g〉]

and conclude that, almost surely, the left hand side converges weakly to 0 in
Lq(Ω). This shows (4.1) and concludes the proof.

In our application of the two-scale ergodicity lemmas we use functions with
an additional time dependence, g : Ω × (0, T ) × I → R. We remark here that
the above convergence results remain valid if Ω is replaced by ΩT .

4.2 Homogenization for a finite number of materials

We are now in the position to present a very short proof of the homogenization
result. It is particularly simple since strong solutions are available. We treat
here the special case of measures µ with a finite support, corresponding to only
a finite number of material properties.
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Theorem 4.4 (Homogenization). Let the single-scale ergodicity of Property 2.1
be satisfied, let supp(µ) be finite, µ =

∑m
k=1 ρkδyk

. Let (uη, ση, εη) be a sequence
of strong solutions of problems (Pη), (2.3)–(2.5). Furthermore, let (u∗, σ∗, w)
be a strong solution of (P∗), (2.6)–(2.8), with compatible initial and boundary
data as in (3.1)–(3.3). Then

∂tu
η − ∂tu

∗ → 0, ση − σ∗ → 0

εη − w ◦ χη → 0
in L2(ΩT ), almost surely. (4.3)

Proof. We define an appropriate quadratic distance between η-solution and a
special function, which we reconstruct from the solution of the homogenized
problem. We use χη and set wη(t, x) := w(t, x, χη(x)).

E(t) =
1

2

∫

Ω

|∂tu
η − ∂tu

∗|2 +
1

2

∫

Ω

αη

κη
|εη − wη|2

We can calculate for this quadratic distance the weak derivative

d

dt
E(t) =

∫

Ω

(∂tu
η − ∂tu

∗)∂x(σ
η − σ∗) +

∫

Ω

αη

κη
(εη − wη) (∂tε

η − ∂tw
η)

= −

∫

Ω

∂t∂xu
η(ση − σ∗) +

∫

Ω

∂t∂xu
∗(ση − σ∗)

+

∫

Ω

αη

κη
(εη − wη) (∂tε

η − ∂tw
η)

= −

∫

Ω

∂tε
ηση +

∫

Ω

∂tε
ησ∗ −

∫

Ω

βη∂tσ
η(ση − σ∗)

+

∫

Ω

(

∂t

∫

I

w(y) dµ(y)

)

(ση − σ∗) +

∫

Ω

β∗∂tσ
∗(ση − σ∗)

+

∫

Ω

(εη − wη)
αη

κη
∂tε

η −

∫

Ω

(εη − wη)
αη

κη
∂tw

η.

With the help of the constitutive law we now evaluate ση and σ∗ in the first
integral. Relation (2.5) can be used directly, in (2.8) we insert y = χη(x) to
obtain

ση ∈
αη

κη
εη +

γη

κη
sign(∂tε

η), σ∗ ∈
αη

κη
wη +

γη

κη
sign(∂tw

η).

We evaluate εη and wη with the same relation in the last integral to obtain

d

dt
E(t) ∈ −

∫

Ω

∂tε
η

[

αη

κη
εη +

γη

κη
sign(∂tε

η)

]

+

∫

Ω

∂tε
η

[

αη

κη
wη +

γη

κη
sign(∂tw

η)

]

+

∫

Ω

(
∫

I

∂tw(y) dµ(y)

)

(ση − σ∗)
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−

∫

Ω

(βη∂tσ
η − β∗∂tσ

∗)(ση − σ∗) +

∫

Ω

(εη − wη)
αη

κη
∂tε

η

−

∫

Ω

[

ση −
γη

κη
sign(∂tε

η) − σ∗ +
γη

κη
sign(∂tw

η)

]

∂tw
η.

In this expression, many terms cancel or can be neglected. The fifth integral
over Ω cancels with identical terms that appear in the first two integrals. What
remains from the first two integrals has a sign,

−

∫

Ω

∂tε
η γ

η

κη
sign(∂tε

η) +

∫

Ω

∂tε
η γ

η

κη
sign(∂tw

η) ≤ 0.

The same sign appears in the last integral,

−

∫

Ω

[

−
γη

κη
sign(∂tε

η) +
γη

κη
sign(∂tw

η)

]

∂tw
η ≤ 0.

We arrive at the expression

d

dt
E(t) ≤

∫

Ω

(
∫

I

∂tw(y) dµ(y)− ∂tw
η

)

(ση − σ∗)

−

∫

Ω

(βη∂tσ
η − β∗∂tσ

∗)(ση − σ∗).

After a time integration, the last integral can be written as

−

∫ t

0

∫

Ω

(βη∂tσ
η − β∗∂tσ

∗)(ση − σ∗)

= −

∫ t

0

∫

Ω

βη(∂tσ
η − ∂tσ

∗)(ση − σ∗) −

∫ t

0

∫

Ω

(βη − β∗)∂tσ
∗(ση − σ∗)

= −

∫

Ω

βη

2
|ση − σ∗|2

∣

∣

∣

∣

t

0

−

∫ t

0

∫

Ω

(βη − β∗)∂tσ
∗(ση − σ∗).

We can now exploit our choice of initial values (3.1) and (3.3). The velocities
satisfy ∂tu

η|t=0 = v0 = ∂tu
∗|t=0, the stresses ση|t=0 = s0 = σ∗|t=0, and the

strains εη|t=0 = eη
0 = (κηs0 − γη)/αη = wη|t=0.

We therefore find, for almost every t ∈ (0, T ), the time-integral

E(t) +

∫

Ω

βη

2
|ση − σ∗|2(t) =

∫

Ω

∫ t

0

d

dt
E +

∫

Ω

βη

2
|ση − σ∗|2

∣

∣

∣

∣

t

0

≤

∫

Ωt

(
∫

I

∂tw(y) dµ(y)− ∂tw
η

)

(ση − σ∗) −

∫

Ωt

(βη − β∗)∂tσ
∗(ση − σ∗).

To the function g(x, y) = ∂tw(x, y), ∂tw ∈ L2(ΩT × I, dx⊗ dt⊗ dµ), we apply
Lemma 4.3, which yields the weak convergence

∂tw
η ⇀

∫

I

∂tw(y) dµ(y) in L2(ΩT ) almost surely.
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Since ση is bounded in H1(ΩT ), a subsequence of ση converges strongly in
L2(ΩT ). This provides that, almost surely, for every t < T holds

∫

Ωt

(
∫

I

∂tw(y) dµ(y)− ∂tw
η

)

(ση − σ∗) → 0 for η → 0.

For the second integral in the E(t)-estimate it suffices to apply the single-
scale ergodicity, Property 2.1. It provides βη ⇀ β∗ in Lq(ΩT ) almost surely, for
every q <∞. Since ∂tσ

∗ ∈ L2(ΩT ) is a fixed function and ση converges strongly
in Ls(ΩT ) for some s > 2, this integral vanishes in the limit.

4.3 Infinite number of materials

The above proof of the homogenization result works whenever we have the two-
scale ergodicity of Definition 4.1 for the function g = ∂tw at our disposal. But,
in general, the function ∂tw is not continuous and we can therefore not conclude
(4.1) with Lemma 4.2. For arbitrary Lq-functions g, relation (4.1) turns out to
be intricate. This is already known from periodic homogenization problems.

Let us recall an example developed by Gérard, Murat, and Allaire (see [2],
Proposition 5.8). It provides a characteristic function g ∈ L∞([0, 1] × [0, 1]) ∩
C0([0, 1], L1([0, 1])), periodically extended in the second variable, with

lim
η→0

∫ 1

0

g(x, x/η) 6=

∫ 1

0

∫ 1

0

g(x, y) dy dx. (4.4)

In our notation, this means: even in the case of periodic homogenization, i.e.
with the deterministic choice χ1(x) = x mod 1 in one space dimension, property
(4.1) fails for a general g ∈ L∞(Ω × Y ).

We solve this problem by working with the following semi-discrete approxi-
mation (P∗,h) of the limiting system. We choose h = 1

m
> 0, m ∈ N, set yj = jh

for j = 0, ..., m, and consider the finite set of points Ih = {y0, ..., ym}. With the
projection Ph : y 7→ sup{yj ∈ Ih|yj ≤ y} we impose for uh, σh : ΩT → R and
wh : ΩT × Ih → R the following equations on ΩT .

∂2
t uh = ∂xσh + f (4.5)

∂xuh =

∫

I

wh(Ph(y)) dµ(y) + β∗σh (4.6)

α(y)wh(y) ∈ κ(y)σh − γ(y) sign(∂twh(y)) ∀y ∈ Ih (4.7)

This system can be regarded as an approximation of the averaged system (P∗)
with the distribution µ.

We can also take another point of view. We can regard system (4.5)–(4.7)
as problem (P∗) with a new measure, namely the finitely valued measure µh =
Ph,#µ on Ih. It is the push-forward of µ, which is defined by µh(F ) = µ(P−1

h (F )).
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In particular, Theorem 3.7 can be applied and yields the existence of a strong
solution to problem (4.5)–(4.7).

Furthermore, the uniform estimates of Lemma 3.3 are valid and we can
conclude, along a subsequence,

∂tuh → ∂tu
∗, σh → σ∗ in L2(ΩT ) (4.8)

for h→ 0. We need a variant of Lemma 4.3 to conclude the ergodicity limit.

Lemma 4.5. Let the single-scale ergodicity of Property 2.1 be satisfied and let
g ∈ Lq(Ω × I) be constant on intervals [yj, yj+1) ⊂ I for almost every x ∈ Ω.
Then the two-scale ergodicity of Definition 4.1 holds for g.

Proof. It suffices to consider the new stochastic variables Ψ1 = Phχ1 and Ψη =
Phχ

η instead of χ1 and χη. The distribution of the values Ψ1(0) ∈ I is given by
ν = Ph,#µ. This measure has its finite support contained in Ih, which essentially
brings us back to the situation of Lemma 4.3.

We claim that the new process satisfies again the single-scale ergodicity
property 2.1. To see this, let ḡ : Ih → R be given. We identify ḡ with a function
that is constant on the intervals [yj, yj+1). Then, by the single-scale ergodicity
property of χ1, almost surely holds

ḡ(Ψη) = ḡ(χη) ⇀ 〈ḡ〉 =

∫

I

ḡ(y) dµ(y) =
∑

j

g(yj)µ([yj, yj+1)) =

∫

I

ḡ(y) dν(y).

We can thus apply Lemma 4.3 to Ψ1 and conclude that a piecewise constant
Lq-function g : Ω×I → R, restricted to Ω×Ih, satisfies the two-scale ergodicity
for Ψ1. We find that, almost surely in Lq(Ω),

gη = g(., χη(.)) = g(.,Ψη(.)) ⇀

∫

I

g(., y) dν(y) =

∫

I

g(., y) dµ(y).

This shows (4.1) for the original process.

We are now in the position to prove our main result.

Proof of Theorem 1.1. We follow the calculations of the proof of Theorem 4.4,
but as comparison functions we now use the semi-discrete solutions of the
averaged system, uh, σh, and wh. As a comparison function we now use
wη(t, x) := wh(t, x, Phχ

η(x)). We identify wh with the function that is con-
stant on intervals [yj, yj+1). We may then also write wη(t, x) := wh(t, x, χ

η(x).
With

Eh(t) =
1

2

∫

Ω

|∂tu
η − ∂tuh|

2 +
1

2

∫

Ω

αη

κη
|εη − wη|2
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we can calculate

d

dt
Eh(t) = −

∫

Ω

∂tε
ηση +

∫

Ω

∂tε
ησh −

∫

Ω

βη∂tσ
η(ση − σh)

+

∫

Ω

(

∂t

∫

I

wh(Phy) dµ(y)

)

(ση − σh) +

∫

Ω

β∗∂tσh(σ
η − σh)

+

∫

Ω

(εη − wη)
αη

κη
∂tε

η −

∫

Ω

(εη − wη)
αη

κη
∂tw

η.

With the help of the constitutive law we now evaluate ση and σh in the first
integral. Relation (2.5) can be used directly, in (4.7) we insert y = Phχ

η(x) to
obtain

ση ∈
αη

κη
εη +

γη

κη
sign(∂tε

η), σh ∈
ᾱη

κ̄η
wη +

γ̄η

κ̄η
sign(∂tw

η)

with

ᾱ(y) = α(Phy), κ̄(y) = κ(Phy), γ̄(y) = γ(Phy).

At the same time, we evaluate εη and wη with these relations in the last integral.
Note that we omit the overbar in the second integral and compensate this fact
in the last integral.

d

dt
Eh(t) ∈ −

∫

Ω

∂tε
η

[

αη

κη
εη +

γη

κη
sign(∂tε

η)

]

+

∫

Ω

∂tε
η

[

αη

κη
wη +

γ̄η

κ̄η
sign(∂tw

η)

]

+

∫

Ω

(
∫

I

∂twh(Phy) dµ(y)

)

(ση − σh)

−

∫

Ω

(βη∂tσ
η − β∗∂tσh)(σ

η − σh) +

∫

Ω

(εη − wη)
αη

κη
∂tε

η

−

∫

Ω

[

ση −
γη

κη
sign(∂tε

η) − σh +
γ̄η

κ̄η
sign(∂tw

η)

]

∂tw
η

+

∫

Ω

wη

[

αη

κη
−
ᾱη

κ̄η

]

(∂tw
η − ∂tε

η) .

Again, many terms cancel or can be neglected. The fifth integral over Ω cancels
with identical terms that appear in the first two integrals. What remains from
the first two integrals has a sign,

−

∫

Ωt

∂tε
η γ

η

κη
sign(∂tε

η) +

∫

Ωt

∂tε
η γ̄

η

κ̄η
sign(∂tw

η) ≤ q1(h),
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where we introduce an error estimate q1(h) > 0. The error only depends on the
L1-norm of ∂tε

η and the maximal distance maxy(γ̄/κ̄ − γ/κ). This error has,
like all error terms ql(h), l = 1, ..., 5 of the subsequent calculation, the property

ql(h) → 0 for h→ 0 independent of η.

The sign property appears also in

−

∫

Ωt

[

−
γη

κη
sign(∂tε

η) +
γ̄η

κ̄η
sign(∂tw

η)

]

∂tw
η ≤ q2(h).

Since the last integral satisfies the same estimate, we arrive at the time inte-
grated expression

Eh(.)|
t

0 ≤

∫

Ωt

(
∫

I

∂twh(Phy) dµ(y)− ∂tw
η

)

(ση − σh)

−

∫

Ωt

(βη∂tσ
η − β∗∂tσh)(σ

η − σh) + q3(h)

for almost every t ∈ (0, T ). We apply the manipulations on the σ-integral as
known from the proof of Theorem 1.1. For arbitrary t > 0 we arrive at

{

Eh +

∫

Ω

βη

2
|ση − σh|

2

}

(t) ≤

∫

Ωt

(
∫

I

∂twh(y) dµ(y)− ∂tw
η

)

(ση − σh)

−

∫

Ωt

(βη − β∗)∂tσh(σ
η − σh) + q4(h)

for almost every t ∈ (0, T ). For fixed h > 0 we let η tend to 0. We exploit that,
almost surely, along a subsequence holds: ση converges strongly in Ls(ΩT ) for
some s > 2, ∂tσh is a fixed function in L2(ΩT ), and βη ⇀ β∗ in Lq(ΩT ) for all
q <∞. With the two-scale ergodicity property of Lemma 4.5 for ∂twh we find

lim inf
η→0

∫ T

0

{

Eh +

∫

Ω

βη

2
|ση − σh|

2

}

(t) dt ≤ q5(h).

Because of (4.8), we find that, almost surely,

∂tu
η → ∂tu

∗ and ση → σ∗ in L2(ΩT ),

and thus the claim of Theorem 1.1.

Conclusions

We studied plasticity equations with an hysteretic constitutive law. Homoge-
nized equations are presented in the form of differential inclusions; in this form,
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they are a natural extension of the original equations for a family of materials.
The homogenization limit is performed rigorously, the key idea is to use the
solution of the averaged equations to construct oscillating test-functions. The
notion of two-scale ergodicity helps to perform the limit process. In the case of
a finite number of materials the process is two-scale ergodic and limits can be
taken directly. The general case is reduced to this situation with a discretization
of the homogenized equations.
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H. Poincaré Anal. Non Linéaire, 19(4):451–476, 2002.

[23] A. Visintin. On homogenization of elasto-plasticity. J. Phys.: Conf. Ser.,
22:222–234, 2005.

[24] A. Visintin. Homogenization of the nonlinear Kelvin-Voigt model of vis-
coelasticity and of the Prager model of plasticity. Contin. Mech. Thermo-
dyn., 18(3-4):223–252, 2006.


